1 // SPDX-License-Identifier: GPL-2.0-only
2 //
3 // Copyright(c) 2020 Intel Corporation
4 //
5 // Author: Cezary Rojewski <cezary.rojewski@intel.com>
6 //
7
8 #include <linux/devcoredump.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/firmware.h>
11 #include <linux/pci.h>
12 #include <linux/pxa2xx_ssp.h>
13 #include "core.h"
14 #include "messages.h"
15 #include "registers.h"
16
catpt_dma_filter(struct dma_chan * chan,void * param)17 static bool catpt_dma_filter(struct dma_chan *chan, void *param)
18 {
19 return param == chan->device->dev;
20 }
21
22 /*
23 * Either engine 0 or 1 can be used for image loading.
24 * Align with Windows driver equivalent and stick to engine 1.
25 */
26 #define CATPT_DMA_DEVID 1
27 #define CATPT_DMA_DSP_ADDR_MASK GENMASK(31, 20)
28
catpt_dma_request_config_chan(struct catpt_dev * cdev)29 struct dma_chan *catpt_dma_request_config_chan(struct catpt_dev *cdev)
30 {
31 struct dma_slave_config config;
32 struct dma_chan *chan;
33 dma_cap_mask_t mask;
34 int ret;
35
36 dma_cap_zero(mask);
37 dma_cap_set(DMA_MEMCPY, mask);
38
39 chan = dma_request_channel(mask, catpt_dma_filter, cdev->dev);
40 if (!chan) {
41 dev_err(cdev->dev, "request channel failed\n");
42 return ERR_PTR(-ENODEV);
43 }
44
45 memset(&config, 0, sizeof(config));
46 config.direction = DMA_MEM_TO_DEV;
47 config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
48 config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
49 config.src_maxburst = 16;
50 config.dst_maxburst = 16;
51
52 ret = dmaengine_slave_config(chan, &config);
53 if (ret) {
54 dev_err(cdev->dev, "slave config failed: %d\n", ret);
55 dma_release_channel(chan);
56 return ERR_PTR(ret);
57 }
58
59 return chan;
60 }
61
catpt_dma_memcpy(struct catpt_dev * cdev,struct dma_chan * chan,dma_addr_t dst_addr,dma_addr_t src_addr,size_t size)62 static int catpt_dma_memcpy(struct catpt_dev *cdev, struct dma_chan *chan,
63 dma_addr_t dst_addr, dma_addr_t src_addr,
64 size_t size)
65 {
66 struct dma_async_tx_descriptor *desc;
67 enum dma_status status;
68 int ret;
69
70 desc = dmaengine_prep_dma_memcpy(chan, dst_addr, src_addr, size,
71 DMA_CTRL_ACK);
72 if (!desc) {
73 dev_err(cdev->dev, "prep dma memcpy failed\n");
74 return -EIO;
75 }
76
77 /* enable demand mode for dma channel */
78 catpt_updatel_shim(cdev, HMDC,
79 CATPT_HMDC_HDDA(CATPT_DMA_DEVID, chan->chan_id),
80 CATPT_HMDC_HDDA(CATPT_DMA_DEVID, chan->chan_id));
81
82 ret = dma_submit_error(dmaengine_submit(desc));
83 if (ret) {
84 dev_err(cdev->dev, "submit tx failed: %d\n", ret);
85 goto clear_hdda;
86 }
87
88 status = dma_wait_for_async_tx(desc);
89 ret = (status == DMA_COMPLETE) ? 0 : -EPROTO;
90
91 clear_hdda:
92 /* regardless of status, disable access to HOST memory in demand mode */
93 catpt_updatel_shim(cdev, HMDC,
94 CATPT_HMDC_HDDA(CATPT_DMA_DEVID, chan->chan_id), 0);
95
96 return ret;
97 }
98
catpt_dma_memcpy_todsp(struct catpt_dev * cdev,struct dma_chan * chan,dma_addr_t dst_addr,dma_addr_t src_addr,size_t size)99 int catpt_dma_memcpy_todsp(struct catpt_dev *cdev, struct dma_chan *chan,
100 dma_addr_t dst_addr, dma_addr_t src_addr,
101 size_t size)
102 {
103 return catpt_dma_memcpy(cdev, chan, dst_addr | CATPT_DMA_DSP_ADDR_MASK,
104 src_addr, size);
105 }
106
catpt_dma_memcpy_fromdsp(struct catpt_dev * cdev,struct dma_chan * chan,dma_addr_t dst_addr,dma_addr_t src_addr,size_t size)107 int catpt_dma_memcpy_fromdsp(struct catpt_dev *cdev, struct dma_chan *chan,
108 dma_addr_t dst_addr, dma_addr_t src_addr,
109 size_t size)
110 {
111 return catpt_dma_memcpy(cdev, chan, dst_addr,
112 src_addr | CATPT_DMA_DSP_ADDR_MASK, size);
113 }
114
catpt_dmac_probe(struct catpt_dev * cdev)115 int catpt_dmac_probe(struct catpt_dev *cdev)
116 {
117 struct dw_dma_chip *dmac;
118 int ret;
119
120 dmac = devm_kzalloc(cdev->dev, sizeof(*dmac), GFP_KERNEL);
121 if (!dmac)
122 return -ENOMEM;
123
124 dmac->regs = cdev->lpe_ba + cdev->spec->host_dma_offset[CATPT_DMA_DEVID];
125 dmac->dev = cdev->dev;
126 dmac->irq = cdev->irq;
127
128 ret = dma_coerce_mask_and_coherent(cdev->dev, DMA_BIT_MASK(31));
129 if (ret)
130 return ret;
131 /*
132 * Caller is responsible for putting device in D0 to allow
133 * for I/O and memory access before probing DW.
134 */
135 ret = dw_dma_probe(dmac);
136 if (ret)
137 return ret;
138
139 cdev->dmac = dmac;
140 return 0;
141 }
142
catpt_dmac_remove(struct catpt_dev * cdev)143 void catpt_dmac_remove(struct catpt_dev *cdev)
144 {
145 /*
146 * As do_dma_remove() juggles with pm_runtime_get_xxx() and
147 * pm_runtime_put_xxx() while both ADSP and DW 'devices' are part of
148 * the same module, caller makes sure pm_runtime_disable() is invoked
149 * before removing DW to prevent postmortem resume and suspend.
150 */
151 dw_dma_remove(cdev->dmac);
152 }
153
catpt_dsp_set_srampge(struct catpt_dev * cdev,struct resource * sram,unsigned long mask,unsigned long new)154 static void catpt_dsp_set_srampge(struct catpt_dev *cdev, struct resource *sram,
155 unsigned long mask, unsigned long new)
156 {
157 unsigned long old;
158 u32 off = sram->start;
159 u32 b = __ffs(mask);
160
161 old = catpt_readl_pci(cdev, VDRTCTL0) & mask;
162 dev_dbg(cdev->dev, "SRAMPGE [0x%08lx] 0x%08lx -> 0x%08lx",
163 mask, old, new);
164
165 if (old == new)
166 return;
167
168 catpt_updatel_pci(cdev, VDRTCTL0, mask, new);
169 /* wait for SRAM power gating to propagate */
170 udelay(60);
171
172 /*
173 * Dummy read as the very first access after block enable
174 * to prevent byte loss in future operations.
175 */
176 for_each_clear_bit_from(b, &new, fls_long(mask)) {
177 u8 buf[4];
178
179 /* newly enabled: new bit=0 while old bit=1 */
180 if (test_bit(b, &old)) {
181 dev_dbg(cdev->dev, "sanitize block %ld: off 0x%08x\n",
182 b - __ffs(mask), off);
183 memcpy_fromio(buf, cdev->lpe_ba + off, sizeof(buf));
184 }
185 off += CATPT_MEMBLOCK_SIZE;
186 }
187 }
188
catpt_dsp_update_srampge(struct catpt_dev * cdev,struct resource * sram,unsigned long mask)189 void catpt_dsp_update_srampge(struct catpt_dev *cdev, struct resource *sram,
190 unsigned long mask)
191 {
192 struct resource *res;
193 unsigned long new = 0;
194
195 /* flag all busy blocks */
196 for (res = sram->child; res; res = res->sibling) {
197 u32 h, l;
198
199 h = (res->end - sram->start) / CATPT_MEMBLOCK_SIZE;
200 l = (res->start - sram->start) / CATPT_MEMBLOCK_SIZE;
201 new |= GENMASK(h, l);
202 }
203
204 /* offset value given mask's start and invert it as ON=b0 */
205 new = ~(new << __ffs(mask)) & mask;
206
207 /* disable core clock gating */
208 catpt_updatel_pci(cdev, VDRTCTL2, CATPT_VDRTCTL2_DCLCGE, 0);
209
210 catpt_dsp_set_srampge(cdev, sram, mask, new);
211
212 /* enable core clock gating */
213 catpt_updatel_pci(cdev, VDRTCTL2, CATPT_VDRTCTL2_DCLCGE,
214 CATPT_VDRTCTL2_DCLCGE);
215 }
216
catpt_dsp_stall(struct catpt_dev * cdev,bool stall)217 int catpt_dsp_stall(struct catpt_dev *cdev, bool stall)
218 {
219 u32 reg, val;
220
221 val = stall ? CATPT_CS_STALL : 0;
222 catpt_updatel_shim(cdev, CS1, CATPT_CS_STALL, val);
223
224 return catpt_readl_poll_shim(cdev, CS1,
225 reg, (reg & CATPT_CS_STALL) == val,
226 500, 10000);
227 }
228
catpt_dsp_reset(struct catpt_dev * cdev,bool reset)229 static int catpt_dsp_reset(struct catpt_dev *cdev, bool reset)
230 {
231 u32 reg, val;
232
233 val = reset ? CATPT_CS_RST : 0;
234 catpt_updatel_shim(cdev, CS1, CATPT_CS_RST, val);
235
236 return catpt_readl_poll_shim(cdev, CS1,
237 reg, (reg & CATPT_CS_RST) == val,
238 500, 10000);
239 }
240
lpt_dsp_pll_shutdown(struct catpt_dev * cdev,bool enable)241 void lpt_dsp_pll_shutdown(struct catpt_dev *cdev, bool enable)
242 {
243 u32 val;
244
245 val = enable ? LPT_VDRTCTL0_APLLSE : 0;
246 catpt_updatel_pci(cdev, VDRTCTL0, LPT_VDRTCTL0_APLLSE, val);
247 }
248
wpt_dsp_pll_shutdown(struct catpt_dev * cdev,bool enable)249 void wpt_dsp_pll_shutdown(struct catpt_dev *cdev, bool enable)
250 {
251 u32 val;
252
253 val = enable ? WPT_VDRTCTL2_APLLSE : 0;
254 catpt_updatel_pci(cdev, VDRTCTL2, WPT_VDRTCTL2_APLLSE, val);
255 }
256
catpt_dsp_select_lpclock(struct catpt_dev * cdev,bool lp,bool waiti)257 static int catpt_dsp_select_lpclock(struct catpt_dev *cdev, bool lp, bool waiti)
258 {
259 u32 mask, reg, val;
260 int ret;
261
262 mutex_lock(&cdev->clk_mutex);
263
264 val = lp ? CATPT_CS_LPCS : 0;
265 reg = catpt_readl_shim(cdev, CS1) & CATPT_CS_LPCS;
266 dev_dbg(cdev->dev, "LPCS [0x%08lx] 0x%08x -> 0x%08x",
267 CATPT_CS_LPCS, reg, val);
268
269 if (reg == val) {
270 mutex_unlock(&cdev->clk_mutex);
271 return 0;
272 }
273
274 if (waiti) {
275 /* wait for DSP to signal WAIT state */
276 ret = catpt_readl_poll_shim(cdev, ISD,
277 reg, (reg & CATPT_ISD_DCPWM),
278 500, 10000);
279 if (ret) {
280 dev_warn(cdev->dev, "await WAITI timeout\n");
281 /* no signal - only high clock selection allowed */
282 if (lp) {
283 mutex_unlock(&cdev->clk_mutex);
284 return 0;
285 }
286 }
287 }
288
289 ret = catpt_readl_poll_shim(cdev, CLKCTL,
290 reg, !(reg & CATPT_CLKCTL_CFCIP),
291 500, 10000);
292 if (ret)
293 dev_warn(cdev->dev, "clock change still in progress\n");
294
295 /* default to DSP core & audio fabric high clock */
296 val |= CATPT_CS_DCS_HIGH;
297 mask = CATPT_CS_LPCS | CATPT_CS_DCS;
298 catpt_updatel_shim(cdev, CS1, mask, val);
299
300 ret = catpt_readl_poll_shim(cdev, CLKCTL,
301 reg, !(reg & CATPT_CLKCTL_CFCIP),
302 500, 10000);
303 if (ret)
304 dev_warn(cdev->dev, "clock change still in progress\n");
305
306 /* update PLL accordingly */
307 cdev->spec->pll_shutdown(cdev, lp);
308
309 mutex_unlock(&cdev->clk_mutex);
310 return 0;
311 }
312
catpt_dsp_update_lpclock(struct catpt_dev * cdev)313 int catpt_dsp_update_lpclock(struct catpt_dev *cdev)
314 {
315 struct catpt_stream_runtime *stream;
316
317 list_for_each_entry(stream, &cdev->stream_list, node)
318 if (stream->prepared)
319 return catpt_dsp_select_lpclock(cdev, false, true);
320
321 return catpt_dsp_select_lpclock(cdev, true, true);
322 }
323
324 /* bring registers to their defaults as HW won't reset itself */
catpt_dsp_set_regs_defaults(struct catpt_dev * cdev)325 static void catpt_dsp_set_regs_defaults(struct catpt_dev *cdev)
326 {
327 int i;
328
329 catpt_writel_shim(cdev, CS1, CATPT_CS_DEFAULT);
330 catpt_writel_shim(cdev, ISC, CATPT_ISC_DEFAULT);
331 catpt_writel_shim(cdev, ISD, CATPT_ISD_DEFAULT);
332 catpt_writel_shim(cdev, IMC, CATPT_IMC_DEFAULT);
333 catpt_writel_shim(cdev, IMD, CATPT_IMD_DEFAULT);
334 catpt_writel_shim(cdev, IPCC, CATPT_IPCC_DEFAULT);
335 catpt_writel_shim(cdev, IPCD, CATPT_IPCD_DEFAULT);
336 catpt_writel_shim(cdev, CLKCTL, CATPT_CLKCTL_DEFAULT);
337 catpt_writel_shim(cdev, CS2, CATPT_CS2_DEFAULT);
338 catpt_writel_shim(cdev, LTRC, CATPT_LTRC_DEFAULT);
339 catpt_writel_shim(cdev, HMDC, CATPT_HMDC_DEFAULT);
340
341 for (i = 0; i < CATPT_SSP_COUNT; i++) {
342 catpt_writel_ssp(cdev, i, SSCR0, CATPT_SSC0_DEFAULT);
343 catpt_writel_ssp(cdev, i, SSCR1, CATPT_SSC1_DEFAULT);
344 catpt_writel_ssp(cdev, i, SSSR, CATPT_SSS_DEFAULT);
345 catpt_writel_ssp(cdev, i, SSITR, CATPT_SSIT_DEFAULT);
346 catpt_writel_ssp(cdev, i, SSDR, CATPT_SSD_DEFAULT);
347 catpt_writel_ssp(cdev, i, SSTO, CATPT_SSTO_DEFAULT);
348 catpt_writel_ssp(cdev, i, SSPSP, CATPT_SSPSP_DEFAULT);
349 catpt_writel_ssp(cdev, i, SSTSA, CATPT_SSTSA_DEFAULT);
350 catpt_writel_ssp(cdev, i, SSRSA, CATPT_SSRSA_DEFAULT);
351 catpt_writel_ssp(cdev, i, SSTSS, CATPT_SSTSS_DEFAULT);
352 catpt_writel_ssp(cdev, i, SSCR2, CATPT_SSCR2_DEFAULT);
353 catpt_writel_ssp(cdev, i, SSPSP2, CATPT_SSPSP2_DEFAULT);
354 }
355 }
356
catpt_dsp_power_down(struct catpt_dev * cdev)357 int catpt_dsp_power_down(struct catpt_dev *cdev)
358 {
359 u32 mask, val;
360
361 /* disable core clock gating */
362 catpt_updatel_pci(cdev, VDRTCTL2, CATPT_VDRTCTL2_DCLCGE, 0);
363
364 catpt_dsp_reset(cdev, true);
365 /* set 24Mhz clock for both SSPs */
366 catpt_updatel_shim(cdev, CS1, CATPT_CS_SBCS(0) | CATPT_CS_SBCS(1),
367 CATPT_CS_SBCS(0) | CATPT_CS_SBCS(1));
368 catpt_dsp_select_lpclock(cdev, true, false);
369 /* disable MCLK */
370 catpt_updatel_shim(cdev, CLKCTL, CATPT_CLKCTL_SMOS, 0);
371
372 catpt_dsp_set_regs_defaults(cdev);
373
374 /* switch clock gating */
375 mask = CATPT_VDRTCTL2_CGEALL & (~CATPT_VDRTCTL2_DCLCGE);
376 val = mask & (~CATPT_VDRTCTL2_DTCGE);
377 catpt_updatel_pci(cdev, VDRTCTL2, mask, val);
378 /* enable DTCGE separatelly */
379 catpt_updatel_pci(cdev, VDRTCTL2, CATPT_VDRTCTL2_DTCGE,
380 CATPT_VDRTCTL2_DTCGE);
381
382 /* SRAM power gating all */
383 catpt_dsp_set_srampge(cdev, &cdev->dram, cdev->spec->dram_mask,
384 cdev->spec->dram_mask);
385 catpt_dsp_set_srampge(cdev, &cdev->iram, cdev->spec->iram_mask,
386 cdev->spec->iram_mask);
387 mask = cdev->spec->d3srampgd_bit | cdev->spec->d3pgd_bit;
388 catpt_updatel_pci(cdev, VDRTCTL0, mask, cdev->spec->d3pgd_bit);
389
390 catpt_updatel_pci(cdev, PMCS, PCI_PM_CTRL_STATE_MASK, (__force u32)PCI_D3hot);
391 /* give hw time to drop off */
392 udelay(50);
393
394 /* enable core clock gating */
395 catpt_updatel_pci(cdev, VDRTCTL2, CATPT_VDRTCTL2_DCLCGE,
396 CATPT_VDRTCTL2_DCLCGE);
397 udelay(50);
398
399 return 0;
400 }
401
catpt_dsp_power_up(struct catpt_dev * cdev)402 int catpt_dsp_power_up(struct catpt_dev *cdev)
403 {
404 u32 mask, val;
405
406 /* disable core clock gating */
407 catpt_updatel_pci(cdev, VDRTCTL2, CATPT_VDRTCTL2_DCLCGE, 0);
408
409 /* switch clock gating */
410 mask = CATPT_VDRTCTL2_CGEALL & (~CATPT_VDRTCTL2_DCLCGE);
411 val = mask & (~CATPT_VDRTCTL2_DTCGE);
412 catpt_updatel_pci(cdev, VDRTCTL2, mask, val);
413
414 catpt_updatel_pci(cdev, PMCS, PCI_PM_CTRL_STATE_MASK, (__force u32)PCI_D0);
415
416 /* SRAM power gating none */
417 mask = cdev->spec->d3srampgd_bit | cdev->spec->d3pgd_bit;
418 catpt_updatel_pci(cdev, VDRTCTL0, mask, mask);
419 catpt_dsp_set_srampge(cdev, &cdev->dram, cdev->spec->dram_mask, 0);
420 catpt_dsp_set_srampge(cdev, &cdev->iram, cdev->spec->iram_mask, 0);
421
422 catpt_dsp_set_regs_defaults(cdev);
423
424 /* restore MCLK */
425 catpt_updatel_shim(cdev, CLKCTL, CATPT_CLKCTL_SMOS, CATPT_CLKCTL_SMOS);
426 catpt_dsp_select_lpclock(cdev, false, false);
427 /* set 24Mhz clock for both SSPs */
428 catpt_updatel_shim(cdev, CS1, CATPT_CS_SBCS(0) | CATPT_CS_SBCS(1),
429 CATPT_CS_SBCS(0) | CATPT_CS_SBCS(1));
430 catpt_dsp_reset(cdev, false);
431
432 /* enable core clock gating */
433 catpt_updatel_pci(cdev, VDRTCTL2, CATPT_VDRTCTL2_DCLCGE,
434 CATPT_VDRTCTL2_DCLCGE);
435
436 /* generate int deassert msg to fix inversed int logic */
437 catpt_updatel_shim(cdev, IMC, CATPT_IMC_IPCDB | CATPT_IMC_IPCCD, 0);
438
439 return 0;
440 }
441
442 #define CATPT_DUMP_MAGIC 0xcd42
443 #define CATPT_DUMP_SECTION_ID_FILE 0x00
444 #define CATPT_DUMP_SECTION_ID_IRAM 0x01
445 #define CATPT_DUMP_SECTION_ID_DRAM 0x02
446 #define CATPT_DUMP_SECTION_ID_REGS 0x03
447 #define CATPT_DUMP_HASH_SIZE 20
448
449 struct catpt_dump_section_hdr {
450 u16 magic;
451 u8 core_id;
452 u8 section_id;
453 u32 size;
454 };
455
catpt_coredump(struct catpt_dev * cdev)456 int catpt_coredump(struct catpt_dev *cdev)
457 {
458 struct catpt_dump_section_hdr *hdr;
459 size_t dump_size, regs_size;
460 u8 *dump, *pos;
461 const char *eof;
462 char *info;
463 int i;
464
465 regs_size = CATPT_SHIM_REGS_SIZE;
466 regs_size += CATPT_DMA_COUNT * CATPT_DMA_REGS_SIZE;
467 regs_size += CATPT_SSP_COUNT * CATPT_SSP_REGS_SIZE;
468 dump_size = resource_size(&cdev->dram);
469 dump_size += resource_size(&cdev->iram);
470 dump_size += regs_size;
471 /* account for header of each section and hash chunk */
472 dump_size += 4 * sizeof(*hdr) + CATPT_DUMP_HASH_SIZE;
473
474 dump = vzalloc(dump_size);
475 if (!dump)
476 return -ENOMEM;
477
478 pos = dump;
479
480 hdr = (struct catpt_dump_section_hdr *)pos;
481 hdr->magic = CATPT_DUMP_MAGIC;
482 hdr->core_id = cdev->spec->core_id;
483 hdr->section_id = CATPT_DUMP_SECTION_ID_FILE;
484 hdr->size = dump_size - sizeof(*hdr);
485 pos += sizeof(*hdr);
486
487 info = cdev->ipc.config.fw_info;
488 eof = info + FW_INFO_SIZE_MAX;
489 /* navigate to fifth info segment (fw hash) */
490 for (i = 0; i < 4 && info < eof; i++, info++) {
491 /* info segments are separated by space each */
492 info = strnchr(info, eof - info, ' ');
493 if (!info)
494 break;
495 }
496
497 if (i == 4 && info)
498 memcpy(pos, info, min_t(u32, eof - info, CATPT_DUMP_HASH_SIZE));
499 pos += CATPT_DUMP_HASH_SIZE;
500
501 hdr = (struct catpt_dump_section_hdr *)pos;
502 hdr->magic = CATPT_DUMP_MAGIC;
503 hdr->core_id = cdev->spec->core_id;
504 hdr->section_id = CATPT_DUMP_SECTION_ID_IRAM;
505 hdr->size = resource_size(&cdev->iram);
506 pos += sizeof(*hdr);
507
508 memcpy_fromio(pos, cdev->lpe_ba + cdev->iram.start, hdr->size);
509 pos += hdr->size;
510
511 hdr = (struct catpt_dump_section_hdr *)pos;
512 hdr->magic = CATPT_DUMP_MAGIC;
513 hdr->core_id = cdev->spec->core_id;
514 hdr->section_id = CATPT_DUMP_SECTION_ID_DRAM;
515 hdr->size = resource_size(&cdev->dram);
516 pos += sizeof(*hdr);
517
518 memcpy_fromio(pos, cdev->lpe_ba + cdev->dram.start, hdr->size);
519 pos += hdr->size;
520
521 hdr = (struct catpt_dump_section_hdr *)pos;
522 hdr->magic = CATPT_DUMP_MAGIC;
523 hdr->core_id = cdev->spec->core_id;
524 hdr->section_id = CATPT_DUMP_SECTION_ID_REGS;
525 hdr->size = regs_size;
526 pos += sizeof(*hdr);
527
528 memcpy_fromio(pos, catpt_shim_addr(cdev), CATPT_SHIM_REGS_SIZE);
529 pos += CATPT_SHIM_REGS_SIZE;
530
531 for (i = 0; i < CATPT_SSP_COUNT; i++) {
532 memcpy_fromio(pos, catpt_ssp_addr(cdev, i),
533 CATPT_SSP_REGS_SIZE);
534 pos += CATPT_SSP_REGS_SIZE;
535 }
536 for (i = 0; i < CATPT_DMA_COUNT; i++) {
537 memcpy_fromio(pos, catpt_dma_addr(cdev, i),
538 CATPT_DMA_REGS_SIZE);
539 pos += CATPT_DMA_REGS_SIZE;
540 }
541
542 dev_coredumpv(cdev->dev, dump, dump_size, GFP_KERNEL);
543
544 return 0;
545 }
546