xref: /linux/include/linux/perf_event.h (revision 4d84667627c4ff70826b349c449bbaf63b9af4e5)
1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Linutronix GmbH, Thomas Gleixner <tglx@kernel.org>
5  *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16 
17 #include <uapi/linux/perf_event.h>
18 #include <uapi/linux/bpf_perf_event.h>
19 
20 /*
21  * Kernel-internal data types and definitions:
22  */
23 
24 #ifdef CONFIG_PERF_EVENTS
25 # include <asm/perf_event.h>
26 # include <asm/local64.h>
27 #endif
28 
29 #ifdef CONFIG_HAVE_HW_BREAKPOINT
30 # include <linux/rhashtable-types.h>
31 # include <asm/hw_breakpoint.h>
32 #endif
33 
34 #include <linux/list.h>
35 #include <linux/mutex.h>
36 #include <linux/rculist.h>
37 #include <linux/rcupdate.h>
38 #include <linux/spinlock.h>
39 #include <linux/hrtimer.h>
40 #include <linux/fs.h>
41 #include <linux/pid_namespace.h>
42 #include <linux/workqueue.h>
43 #include <linux/ftrace.h>
44 #include <linux/cpu.h>
45 #include <linux/irq_work.h>
46 #include <linux/static_key.h>
47 #include <linux/jump_label_ratelimit.h>
48 #include <linux/atomic.h>
49 #include <linux/sysfs.h>
50 #include <linux/perf_regs.h>
51 #include <linux/cgroup.h>
52 #include <linux/refcount.h>
53 #include <linux/security.h>
54 #include <linux/static_call.h>
55 #include <linux/lockdep.h>
56 
57 #include <asm/local.h>
58 
59 struct perf_callchain_entry {
60 	u64				nr;
61 	u64				ip[]; /* /proc/sys/kernel/perf_event_max_stack */
62 };
63 
64 struct perf_callchain_entry_ctx {
65 	struct perf_callchain_entry	*entry;
66 	u32				max_stack;
67 	u32				nr;
68 	short				contexts;
69 	bool				contexts_maxed;
70 };
71 
72 typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
73 				     unsigned long off, unsigned long len);
74 
75 struct perf_raw_frag {
76 	union {
77 		struct perf_raw_frag	*next;
78 		unsigned long		pad;
79 	};
80 	perf_copy_f			copy;
81 	void				*data;
82 	u32				size;
83 } __packed;
84 
85 struct perf_raw_record {
86 	struct perf_raw_frag		frag;
87 	u32				size;
88 };
89 
90 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
91 {
92 	return frag->pad < sizeof(u64);
93 }
94 
95 /*
96  * branch stack layout:
97  *  nr: number of taken branches stored in entries[]
98  *  hw_idx: The low level index of raw branch records
99  *          for the most recent branch.
100  *          -1ULL means invalid/unknown.
101  *
102  * Note that nr can vary from sample to sample
103  * branches (to, from) are stored from most recent
104  * to least recent, i.e., entries[0] contains the most
105  * recent branch.
106  * The entries[] is an abstraction of raw branch records,
107  * which may not be stored in age order in HW, e.g. Intel LBR.
108  * The hw_idx is to expose the low level index of raw
109  * branch record for the most recent branch aka entries[0].
110  * The hw_idx index is between -1 (unknown) and max depth,
111  * which can be retrieved in /sys/devices/cpu/caps/branches.
112  * For the architectures whose raw branch records are
113  * already stored in age order, the hw_idx should be 0.
114  */
115 struct perf_branch_stack {
116 	u64				nr;
117 	u64				hw_idx;
118 	struct perf_branch_entry	entries[];
119 };
120 
121 struct task_struct;
122 
123 /*
124  * extra PMU register associated with an event
125  */
126 struct hw_perf_event_extra {
127 	u64				config;	/* register value */
128 	unsigned int			reg;	/* register address or index */
129 	int				alloc;	/* extra register already allocated */
130 	int				idx;	/* index in shared_regs->regs[] */
131 };
132 
133 /**
134  * hw_perf_event::flag values
135  *
136  * PERF_EVENT_FLAG_ARCH bits are reserved for architecture-specific
137  * usage.
138  */
139 #define PERF_EVENT_FLAG_ARCH		0x0fffffff
140 #define PERF_EVENT_FLAG_USER_READ_CNT	0x80000000
141 
142 static_assert((PERF_EVENT_FLAG_USER_READ_CNT & PERF_EVENT_FLAG_ARCH) == 0);
143 
144 /**
145  * struct hw_perf_event - performance event hardware details:
146  */
147 struct hw_perf_event {
148 #ifdef CONFIG_PERF_EVENTS
149 	union {
150 		struct { /* hardware */
151 			u64		config;
152 			u64		config1;
153 			u64		last_tag;
154 			u64		dyn_constraint;
155 			unsigned long	config_base;
156 			unsigned long	event_base;
157 			int		event_base_rdpmc;
158 			int		idx;
159 			int		last_cpu;
160 			int		flags;
161 
162 			struct hw_perf_event_extra extra_reg;
163 			struct hw_perf_event_extra branch_reg;
164 		};
165 		struct { /* aux / Intel-PT */
166 			u64		aux_config;
167 			/*
168 			 * For AUX area events, aux_paused cannot be a state
169 			 * flag because it can be updated asynchronously to
170 			 * state.
171 			 */
172 			unsigned int	aux_paused;
173 		};
174 		struct { /* software */
175 			struct hrtimer	hrtimer;
176 		};
177 		struct { /* tracepoint */
178 			/* for tp_event->class */
179 			struct list_head	tp_list;
180 		};
181 		struct { /* amd_power */
182 			u64	pwr_acc;
183 			u64	ptsc;
184 		};
185 #ifdef CONFIG_HAVE_HW_BREAKPOINT
186 		struct { /* breakpoint */
187 			/*
188 			 * Crufty hack to avoid the chicken and egg
189 			 * problem hw_breakpoint has with context
190 			 * creation and event initalization.
191 			 */
192 			struct arch_hw_breakpoint	info;
193 			struct rhlist_head		bp_list;
194 		};
195 #endif
196 		struct { /* amd_iommu */
197 			u8	iommu_bank;
198 			u8	iommu_cntr;
199 			u16	padding;
200 			u64	conf;
201 			u64	conf1;
202 		};
203 	};
204 	/*
205 	 * If the event is a per task event, this will point to the task in
206 	 * question. See the comment in perf_event_alloc().
207 	 */
208 	struct task_struct		*target;
209 
210 	/*
211 	 * PMU would store hardware filter configuration
212 	 * here.
213 	 */
214 	void				*addr_filters;
215 
216 	/* Last sync'ed generation of filters */
217 	unsigned long			addr_filters_gen;
218 
219 /*
220  * hw_perf_event::state flags; used to track the PERF_EF_* state.
221  */
222 
223 /* the counter is stopped */
224 #define PERF_HES_STOPPED		0x01
225 
226 /* event->count up-to-date */
227 #define PERF_HES_UPTODATE		0x02
228 
229 #define PERF_HES_ARCH			0x04
230 
231 	int				state;
232 
233 	/*
234 	 * The last observed hardware counter value, updated with a
235 	 * local64_cmpxchg() such that pmu::read() can be called nested.
236 	 */
237 	local64_t			prev_count;
238 
239 	/*
240 	 * The period to start the next sample with.
241 	 */
242 	u64				sample_period;
243 
244 	union {
245 		struct { /* Sampling */
246 			/*
247 			 * The period we started this sample with.
248 			 */
249 			u64				last_period;
250 
251 			/*
252 			 * However much is left of the current period;
253 			 * note that this is a full 64bit value and
254 			 * allows for generation of periods longer
255 			 * than hardware might allow.
256 			 */
257 			local64_t			period_left;
258 		};
259 		struct { /* Topdown events counting for context switch */
260 			u64				saved_metric;
261 			u64				saved_slots;
262 		};
263 	};
264 
265 	/*
266 	 * State for throttling the event, see __perf_event_overflow() and
267 	 * perf_adjust_freq_unthr_context().
268 	 */
269 	u64                             interrupts_seq;
270 	u64				interrupts;
271 
272 	/*
273 	 * State for freq target events, see __perf_event_overflow() and
274 	 * perf_adjust_freq_unthr_context().
275 	 */
276 	u64				freq_time_stamp;
277 	u64				freq_count_stamp;
278 #endif /* CONFIG_PERF_EVENTS */
279 };
280 
281 struct perf_event;
282 struct perf_event_pmu_context;
283 
284 /*
285  * Common implementation detail of pmu::{start,commit,cancel}_txn
286  */
287 
288 /* txn to add/schedule event on PMU */
289 #define PERF_PMU_TXN_ADD		0x1
290 
291 /* txn to read event group from PMU */
292 #define PERF_PMU_TXN_READ		0x2
293 
294 /**
295  * pmu::capabilities flags
296  */
297 #define PERF_PMU_CAP_NO_INTERRUPT	0x0001
298 #define PERF_PMU_CAP_NO_NMI		0x0002
299 #define PERF_PMU_CAP_AUX_NO_SG		0x0004
300 #define PERF_PMU_CAP_EXTENDED_REGS	0x0008
301 #define PERF_PMU_CAP_EXCLUSIVE		0x0010
302 #define PERF_PMU_CAP_ITRACE		0x0020
303 #define PERF_PMU_CAP_NO_EXCLUDE		0x0040
304 #define PERF_PMU_CAP_AUX_OUTPUT		0x0080
305 #define PERF_PMU_CAP_EXTENDED_HW_TYPE	0x0100
306 #define PERF_PMU_CAP_AUX_PAUSE		0x0200
307 #define PERF_PMU_CAP_AUX_PREFER_LARGE	0x0400
308 #define PERF_PMU_CAP_MEDIATED_VPMU	0x0800
309 
310 /**
311  * pmu::scope
312  */
313 enum perf_pmu_scope {
314 	PERF_PMU_SCOPE_NONE = 0,
315 	PERF_PMU_SCOPE_CORE,
316 	PERF_PMU_SCOPE_DIE,
317 	PERF_PMU_SCOPE_CLUSTER,
318 	PERF_PMU_SCOPE_PKG,
319 	PERF_PMU_SCOPE_SYS_WIDE,
320 	PERF_PMU_MAX_SCOPE,
321 };
322 
323 struct perf_output_handle;
324 
325 #define PMU_NULL_DEV	((void *)(~0UL))
326 
327 /**
328  * struct pmu - generic performance monitoring unit
329  */
330 struct pmu {
331 	struct list_head		entry;
332 
333 	spinlock_t			events_lock;
334 	struct list_head		events;
335 
336 	struct module			*module;
337 	struct device			*dev;
338 	struct device			*parent;
339 	const struct attribute_group	**attr_groups;
340 	const struct attribute_group	**attr_update;
341 	const char			*name;
342 	int				type;
343 
344 	/*
345 	 * various common per-pmu feature flags
346 	 */
347 	int				capabilities;
348 
349 	/*
350 	 * PMU scope
351 	 */
352 	unsigned int			scope;
353 
354 	struct perf_cpu_pmu_context * __percpu *cpu_pmu_context;
355 	atomic_t			exclusive_cnt; /* < 0: cpu; > 0: tsk */
356 	int				task_ctx_nr;
357 	int				hrtimer_interval_ms;
358 
359 	/* number of address filters this PMU can do */
360 	unsigned int			nr_addr_filters;
361 
362 	/*
363 	 * Fully disable/enable this PMU, can be used to protect from the PMI
364 	 * as well as for lazy/batch writing of the MSRs.
365 	 */
366 	void (*pmu_enable)		(struct pmu *pmu); /* optional */
367 	void (*pmu_disable)		(struct pmu *pmu); /* optional */
368 
369 	/*
370 	 * Try and initialize the event for this PMU.
371 	 *
372 	 * Returns:
373 	 *  -ENOENT	-- @event is not for this PMU
374 	 *
375 	 *  -ENODEV	-- @event is for this PMU but PMU not present
376 	 *  -EBUSY	-- @event is for this PMU but PMU temporarily unavailable
377 	 *  -EINVAL	-- @event is for this PMU but @event is not valid
378 	 *  -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
379 	 *  -EACCES	-- @event is for this PMU, @event is valid, but no privileges
380 	 *
381 	 *  0		-- @event is for this PMU and valid
382 	 *
383 	 * Other error return values are allowed.
384 	 */
385 	int (*event_init)		(struct perf_event *event);
386 
387 	/*
388 	 * Notification that the event was mapped or unmapped.  Called
389 	 * in the context of the mapping task.
390 	 */
391 	void (*event_mapped)		(struct perf_event *event, struct mm_struct *mm); /* optional */
392 	void (*event_unmapped)		(struct perf_event *event, struct mm_struct *mm); /* optional */
393 
394 	/*
395 	 * Flags for ->add()/->del()/ ->start()/->stop(). There are
396 	 * matching hw_perf_event::state flags.
397 	 */
398 
399 /* start the counter when adding    */
400 #define PERF_EF_START			0x01
401 
402 /* reload the counter when starting */
403 #define PERF_EF_RELOAD			0x02
404 
405 /* update the counter when stopping */
406 #define PERF_EF_UPDATE			0x04
407 
408 /* AUX area event, pause tracing */
409 #define PERF_EF_PAUSE			0x08
410 
411 /* AUX area event, resume tracing */
412 #define PERF_EF_RESUME			0x10
413 
414 	/*
415 	 * Adds/Removes a counter to/from the PMU, can be done inside a
416 	 * transaction, see the ->*_txn() methods.
417 	 *
418 	 * The add/del callbacks will reserve all hardware resources required
419 	 * to service the event, this includes any counter constraint
420 	 * scheduling etc.
421 	 *
422 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
423 	 * is on.
424 	 *
425 	 * ->add() called without PERF_EF_START should result in the same state
426 	 *  as ->add() followed by ->stop().
427 	 *
428 	 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
429 	 *  ->stop() that must deal with already being stopped without
430 	 *  PERF_EF_UPDATE.
431 	 */
432 	int  (*add)			(struct perf_event *event, int flags);
433 	void (*del)			(struct perf_event *event, int flags);
434 
435 	/*
436 	 * Starts/Stops a counter present on the PMU.
437 	 *
438 	 * The PMI handler should stop the counter when perf_event_overflow()
439 	 * returns !0. ->start() will be used to continue.
440 	 *
441 	 * Also used to change the sample period.
442 	 *
443 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
444 	 * is on -- will be called from NMI context with the PMU generates
445 	 * NMIs.
446 	 *
447 	 * ->stop() with PERF_EF_UPDATE will read the counter and update
448 	 *  period/count values like ->read() would.
449 	 *
450 	 * ->start() with PERF_EF_RELOAD will reprogram the counter
451 	 *  value, must be preceded by a ->stop() with PERF_EF_UPDATE.
452 	 *
453 	 * ->stop() with PERF_EF_PAUSE will stop as simply as possible. Will not
454 	 * overlap another ->stop() with PERF_EF_PAUSE nor ->start() with
455 	 * PERF_EF_RESUME.
456 	 *
457 	 * ->start() with PERF_EF_RESUME will start as simply as possible but
458 	 * only if the counter is not otherwise stopped. Will not overlap
459 	 * another ->start() with PERF_EF_RESUME nor ->stop() with
460 	 * PERF_EF_PAUSE.
461 	 *
462 	 * Notably, PERF_EF_PAUSE/PERF_EF_RESUME *can* be concurrent with other
463 	 * ->stop()/->start() invocations, just not itself.
464 	 */
465 	void (*start)			(struct perf_event *event, int flags);
466 	void (*stop)			(struct perf_event *event, int flags);
467 
468 	/*
469 	 * Updates the counter value of the event.
470 	 *
471 	 * For sampling capable PMUs this will also update the software period
472 	 * hw_perf_event::period_left field.
473 	 */
474 	void (*read)			(struct perf_event *event);
475 
476 	/*
477 	 * Group events scheduling is treated as a transaction, add
478 	 * group events as a whole and perform one schedulability test.
479 	 * If the test fails, roll back the whole group
480 	 *
481 	 * Start the transaction, after this ->add() doesn't need to
482 	 * do schedulability tests.
483 	 *
484 	 * Optional.
485 	 */
486 	void (*start_txn)		(struct pmu *pmu, unsigned int txn_flags);
487 	/*
488 	 * If ->start_txn() disabled the ->add() schedulability test
489 	 * then ->commit_txn() is required to perform one. On success
490 	 * the transaction is closed. On error the transaction is kept
491 	 * open until ->cancel_txn() is called.
492 	 *
493 	 * Optional.
494 	 */
495 	int  (*commit_txn)		(struct pmu *pmu);
496 	/*
497 	 * Will cancel the transaction, assumes ->del() is called
498 	 * for each successful ->add() during the transaction.
499 	 *
500 	 * Optional.
501 	 */
502 	void (*cancel_txn)		(struct pmu *pmu);
503 
504 	/*
505 	 * Will return the value for perf_event_mmap_page::index for this event,
506 	 * if no implementation is provided it will default to 0 (see
507 	 * perf_event_idx_default).
508 	 */
509 	int (*event_idx)		(struct perf_event *event); /*optional */
510 
511 	/*
512 	 * context-switches callback
513 	 */
514 	void (*sched_task)		(struct perf_event_pmu_context *pmu_ctx,
515 					 struct task_struct *task, bool sched_in);
516 
517 	/*
518 	 * Kmem cache of PMU specific data
519 	 */
520 	struct kmem_cache		*task_ctx_cache;
521 
522 	/*
523 	 * Set up pmu-private data structures for an AUX area
524 	 */
525 	void *(*setup_aux)		(struct perf_event *event, void **pages,
526 					 int nr_pages, bool overwrite);
527 					/* optional */
528 
529 	/*
530 	 * Free pmu-private AUX data structures
531 	 */
532 	void (*free_aux)		(void *aux); /* optional */
533 
534 	/*
535 	 * Take a snapshot of the AUX buffer without touching the event
536 	 * state, so that preempting ->start()/->stop() callbacks does
537 	 * not interfere with their logic. Called in PMI context.
538 	 *
539 	 * Returns the size of AUX data copied to the output handle.
540 	 *
541 	 * Optional.
542 	 */
543 	long (*snapshot_aux)		(struct perf_event *event,
544 					 struct perf_output_handle *handle,
545 					 unsigned long size);
546 
547 	/*
548 	 * Validate address range filters: make sure the HW supports the
549 	 * requested configuration and number of filters; return 0 if the
550 	 * supplied filters are valid, -errno otherwise.
551 	 *
552 	 * Runs in the context of the ioctl()ing process and is not serialized
553 	 * with the rest of the PMU callbacks.
554 	 */
555 	int (*addr_filters_validate)	(struct list_head *filters);
556 					/* optional */
557 
558 	/*
559 	 * Synchronize address range filter configuration:
560 	 * translate hw-agnostic filters into hardware configuration in
561 	 * event::hw::addr_filters.
562 	 *
563 	 * Runs as a part of filter sync sequence that is done in ->start()
564 	 * callback by calling perf_event_addr_filters_sync().
565 	 *
566 	 * May (and should) traverse event::addr_filters::list, for which its
567 	 * caller provides necessary serialization.
568 	 */
569 	void (*addr_filters_sync)	(struct perf_event *event);
570 					/* optional */
571 
572 	/*
573 	 * Check if event can be used for aux_output purposes for
574 	 * events of this PMU.
575 	 *
576 	 * Runs from perf_event_open(). Should return 0 for "no match"
577 	 * or non-zero for "match".
578 	 */
579 	int (*aux_output_match)		(struct perf_event *event);
580 					/* optional */
581 
582 	/*
583 	 * Skip programming this PMU on the given CPU. Typically needed for
584 	 * big.LITTLE things.
585 	 */
586 	bool (*filter)			(struct pmu *pmu, int cpu); /* optional */
587 
588 	/*
589 	 * Check period value for PERF_EVENT_IOC_PERIOD ioctl.
590 	 */
591 	int (*check_period)		(struct perf_event *event, u64 value); /* optional */
592 };
593 
594 enum perf_addr_filter_action_t {
595 	PERF_ADDR_FILTER_ACTION_STOP = 0,
596 	PERF_ADDR_FILTER_ACTION_START,
597 	PERF_ADDR_FILTER_ACTION_FILTER,
598 };
599 
600 /**
601  * struct perf_addr_filter - address range filter definition
602  * @entry:	event's filter list linkage
603  * @path:	object file's path for file-based filters
604  * @offset:	filter range offset
605  * @size:	filter range size (size==0 means single address trigger)
606  * @action:	filter/start/stop
607  *
608  * This is a hardware-agnostic filter configuration as specified by the user.
609  */
610 struct perf_addr_filter {
611 	struct list_head		entry;
612 	struct path			path;
613 	unsigned long			offset;
614 	unsigned long			size;
615 	enum perf_addr_filter_action_t	action;
616 };
617 
618 /**
619  * struct perf_addr_filters_head - container for address range filters
620  * @list:	list of filters for this event
621  * @lock:	spinlock that serializes accesses to the @list and event's
622  *		(and its children's) filter generations.
623  * @nr_file_filters:	number of file-based filters
624  *
625  * A child event will use parent's @list (and therefore @lock), so they are
626  * bundled together; see perf_event_addr_filters().
627  */
628 struct perf_addr_filters_head {
629 	struct list_head		list;
630 	raw_spinlock_t			lock;
631 	unsigned int			nr_file_filters;
632 };
633 
634 struct perf_addr_filter_range {
635 	unsigned long			start;
636 	unsigned long			size;
637 };
638 
639 /*
640  * The normal states are:
641  *
642  *            ACTIVE    --.
643  *               ^        |
644  *               |        |
645  *       sched_{in,out}() |
646  *               |        |
647  *               v        |
648  *      ,---> INACTIVE  --+ <-.
649  *      |                 |   |
650  *      |                {dis,en}able()
651  *   sched_in()           |   |
652  *      |       OFF    <--' --+
653  *      |                     |
654  *      `--->  ERROR    ------'
655  *
656  * That is:
657  *
658  * sched_in:       INACTIVE          -> {ACTIVE,ERROR}
659  * sched_out:      ACTIVE            -> INACTIVE
660  * disable:        {ACTIVE,INACTIVE} -> OFF
661  * enable:         {OFF,ERROR}       -> INACTIVE
662  *
663  * Where {OFF,ERROR} are disabled states.
664  *
665  * Then we have the {EXIT,REVOKED,DEAD} states which are various shades of
666  * defunct events:
667  *
668  *  - EXIT means task that the even was assigned to died, but child events
669  *    still live, and further children can still be created. But the event
670  *    itself will never be active again. It can only transition to
671  *    {REVOKED,DEAD};
672  *
673  *  - REVOKED means the PMU the event was associated with is gone; all
674  *    functionality is stopped but the event is still alive. Can only
675  *    transition to DEAD;
676  *
677  *  - DEAD event really is DYING tearing down state and freeing bits.
678  *
679  */
680 enum perf_event_state {
681 	PERF_EVENT_STATE_DEAD		= -5,
682 	PERF_EVENT_STATE_REVOKED	= -4, /* pmu gone, must not touch */
683 	PERF_EVENT_STATE_EXIT		= -3, /* task died, still inherit */
684 	PERF_EVENT_STATE_ERROR		= -2, /* scheduling error, can enable */
685 	PERF_EVENT_STATE_OFF		= -1,
686 	PERF_EVENT_STATE_INACTIVE	=  0,
687 	PERF_EVENT_STATE_ACTIVE		=  1,
688 };
689 
690 struct file;
691 struct perf_sample_data;
692 
693 typedef void (*perf_overflow_handler_t)(struct perf_event *,
694 					struct perf_sample_data *,
695 					struct pt_regs *regs);
696 
697 /*
698  * Event capabilities. For event_caps and groups caps.
699  *
700  * PERF_EV_CAP_SOFTWARE: Is a software event.
701  * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read
702  * from any CPU in the package where it is active.
703  * PERF_EV_CAP_SIBLING: An event with this flag must be a group sibling and
704  * cannot be a group leader. If an event with this flag is detached from the
705  * group it is scheduled out and moved into an unrecoverable ERROR state.
706  * PERF_EV_CAP_READ_SCOPE: A CPU event that can be read from any CPU of the
707  * PMU scope where it is active.
708  */
709 #define PERF_EV_CAP_SOFTWARE		BIT(0)
710 #define PERF_EV_CAP_READ_ACTIVE_PKG	BIT(1)
711 #define PERF_EV_CAP_SIBLING		BIT(2)
712 #define PERF_EV_CAP_READ_SCOPE		BIT(3)
713 
714 #define SWEVENT_HLIST_BITS		8
715 #define SWEVENT_HLIST_SIZE		(1 << SWEVENT_HLIST_BITS)
716 
717 struct swevent_hlist {
718 	struct hlist_head		heads[SWEVENT_HLIST_SIZE];
719 	struct rcu_head			rcu_head;
720 };
721 
722 #define PERF_ATTACH_CONTEXT		0x0001
723 #define PERF_ATTACH_GROUP		0x0002
724 #define PERF_ATTACH_TASK		0x0004
725 #define PERF_ATTACH_TASK_DATA		0x0008
726 #define PERF_ATTACH_GLOBAL_DATA		0x0010
727 #define PERF_ATTACH_SCHED_CB		0x0020
728 #define PERF_ATTACH_CHILD		0x0040
729 #define PERF_ATTACH_EXCLUSIVE		0x0080
730 #define PERF_ATTACH_CALLCHAIN		0x0100
731 #define PERF_ATTACH_ITRACE		0x0200
732 
733 struct bpf_prog;
734 struct perf_cgroup;
735 struct perf_buffer;
736 
737 struct pmu_event_list {
738 	raw_spinlock_t			lock;
739 	struct list_head		list;
740 };
741 
742 /*
743  * event->sibling_list is modified whole holding both ctx->lock and ctx->mutex
744  * as such iteration must hold either lock. However, since ctx->lock is an IRQ
745  * safe lock, and is only held by the CPU doing the modification, having IRQs
746  * disabled is sufficient since it will hold-off the IPIs.
747  */
748 #ifdef CONFIG_PROVE_LOCKING
749 # define lockdep_assert_event_ctx(event)			\
750 	WARN_ON_ONCE(__lockdep_enabled &&			\
751 		     (this_cpu_read(hardirqs_enabled) &&	\
752 		      lockdep_is_held(&(event)->ctx->mutex) != LOCK_STATE_HELD))
753 #else
754 # define lockdep_assert_event_ctx(event)
755 #endif
756 
757 #define for_each_sibling_event(sibling, event)			\
758 	lockdep_assert_event_ctx(event);			\
759 	if ((event)->group_leader == (event))			\
760 		list_for_each_entry((sibling), &(event)->sibling_list, sibling_list)
761 
762 /**
763  * struct perf_event - performance event kernel representation:
764  */
765 struct perf_event {
766 #ifdef CONFIG_PERF_EVENTS
767 	/*
768 	 * entry onto perf_event_context::event_list;
769 	 *   modifications require ctx->lock
770 	 *   RCU safe iterations.
771 	 */
772 	struct list_head		event_entry;
773 
774 	/*
775 	 * Locked for modification by both ctx->mutex and ctx->lock; holding
776 	 * either sufficies for read.
777 	 */
778 	struct list_head		sibling_list;
779 	struct list_head		active_list;
780 	/*
781 	 * Node on the pinned or flexible tree located at the event context;
782 	 */
783 	struct rb_node			group_node;
784 	u64				group_index;
785 	/*
786 	 * We need storage to track the entries in perf_pmu_migrate_context; we
787 	 * cannot use the event_entry because of RCU and we want to keep the
788 	 * group in tact which avoids us using the other two entries.
789 	 */
790 	struct list_head		migrate_entry;
791 
792 	struct hlist_node		hlist_entry;
793 	struct list_head		active_entry;
794 	int				nr_siblings;
795 
796 	/* Not serialized. Only written during event initialization. */
797 	int				event_caps;
798 	/* The cumulative AND of all event_caps for events in this group. */
799 	int				group_caps;
800 
801 	unsigned int			group_generation;
802 	struct perf_event		*group_leader;
803 	/*
804 	 * event->pmu will always point to pmu in which this event belongs.
805 	 * Whereas event->pmu_ctx->pmu may point to other pmu when group of
806 	 * different pmu events is created.
807 	 */
808 	struct pmu			*pmu;
809 	void				*pmu_private;
810 
811 	enum perf_event_state		state;
812 	unsigned int			attach_state;
813 	local64_t			count;
814 	atomic64_t			child_count;
815 
816 	/*
817 	 * These are the total time in nanoseconds that the event
818 	 * has been enabled (i.e. eligible to run, and the task has
819 	 * been scheduled in, if this is a per-task event)
820 	 * and running (scheduled onto the CPU), respectively.
821 	 */
822 	u64				total_time_enabled;
823 	u64				total_time_running;
824 	u64				tstamp;
825 
826 	struct perf_event_attr		attr;
827 	u16				header_size;
828 	u16				id_header_size;
829 	u16				read_size;
830 	struct hw_perf_event		hw;
831 
832 	struct perf_event_context	*ctx;
833 	/*
834 	 * event->pmu_ctx points to perf_event_pmu_context in which the event
835 	 * is added. This pmu_ctx can be of other pmu for sw event when that
836 	 * sw event is part of a group which also contains non-sw events.
837 	 */
838 	struct perf_event_pmu_context	*pmu_ctx;
839 	atomic_long_t			refcount;
840 
841 	/*
842 	 * These accumulate total time (in nanoseconds) that children
843 	 * events have been enabled and running, respectively.
844 	 */
845 	atomic64_t			child_total_time_enabled;
846 	atomic64_t			child_total_time_running;
847 
848 	/*
849 	 * Protect attach/detach and child_list:
850 	 */
851 	struct mutex			child_mutex;
852 	struct list_head		child_list;
853 	struct perf_event		*parent;
854 
855 	int				oncpu;
856 	int				cpu;
857 
858 	struct list_head		owner_entry;
859 	struct task_struct		*owner;
860 
861 	/* mmap bits */
862 	struct mutex			mmap_mutex;
863 	refcount_t			mmap_count;
864 
865 	struct perf_buffer		*rb;
866 	struct list_head		rb_entry;
867 	unsigned long			rcu_batches;
868 	int				rcu_pending;
869 
870 	/* poll related */
871 	wait_queue_head_t		waitq;
872 	struct fasync_struct		*fasync;
873 
874 	/* delayed work for NMIs and such */
875 	unsigned int			pending_wakeup;
876 	unsigned int			pending_kill;
877 	unsigned int			pending_disable;
878 	unsigned long			pending_addr;	/* SIGTRAP */
879 	struct irq_work			pending_irq;
880 	struct irq_work			pending_disable_irq;
881 	struct callback_head		pending_task;
882 	unsigned int			pending_work;
883 
884 	atomic_t			event_limit;
885 
886 	/* address range filters */
887 	struct perf_addr_filters_head	addr_filters;
888 	/* vma address array for file-based filders */
889 	struct perf_addr_filter_range	*addr_filter_ranges;
890 	unsigned long			addr_filters_gen;
891 
892 	/* for aux_output events */
893 	struct perf_event		*aux_event;
894 
895 	void (*destroy)(struct perf_event *);
896 	struct rcu_head			rcu_head;
897 
898 	struct pid_namespace		*ns;
899 	u64				id;
900 
901 	atomic64_t			lost_samples;
902 
903 	u64				(*clock)(void);
904 	perf_overflow_handler_t		overflow_handler;
905 	void				*overflow_handler_context;
906 	struct bpf_prog			*prog;
907 	u64				bpf_cookie;
908 
909 #ifdef CONFIG_EVENT_TRACING
910 	struct trace_event_call		*tp_event;
911 	struct event_filter		*filter;
912 # ifdef CONFIG_FUNCTION_TRACER
913 	struct ftrace_ops               ftrace_ops;
914 # endif
915 #endif
916 
917 #ifdef CONFIG_CGROUP_PERF
918 	struct perf_cgroup		*cgrp; /* cgroup event is attach to */
919 #endif
920 
921 #ifdef CONFIG_SECURITY
922 	void *security;
923 #endif
924 	struct list_head		sb_list;
925 	struct list_head		pmu_list;
926 
927 	/*
928 	 * Certain events gets forwarded to another pmu internally by over-
929 	 * writing kernel copy of event->attr.type without user being aware
930 	 * of it. event->orig_type contains original 'type' requested by
931 	 * user.
932 	 */
933 	u32				orig_type;
934 #endif /* CONFIG_PERF_EVENTS */
935 };
936 
937 /*
938  *           ,-----------------------[1:n]------------------------.
939  *           V                                                    V
940  * perf_event_context <-[1:n]-> perf_event_pmu_context <-[1:n]- perf_event
941  *                                        |                       |
942  *                                        `--[n:1]-> pmu <-[1:n]--'
943  *
944  *
945  * struct perf_event_pmu_context  lifetime is refcount based and RCU freed
946  * (similar to perf_event_context). Locking is as if it were a member of
947  * perf_event_context; specifically:
948  *
949  *   modification, both: ctx->mutex && ctx->lock
950  *   reading, either:    ctx->mutex || ctx->lock
951  *
952  * There is one exception to this; namely put_pmu_ctx() isn't always called
953  * with ctx->mutex held; this means that as long as we can guarantee the epc
954  * has events the above rules hold.
955  *
956  * Specificially, sys_perf_event_open()'s group_leader case depends on
957  * ctx->mutex pinning the configuration. Since we hold a reference on
958  * group_leader (through the filedesc) it can't go away, therefore it's
959  * associated pmu_ctx must exist and cannot change due to ctx->mutex.
960  *
961  * perf_event holds a refcount on perf_event_context
962  * perf_event holds a refcount on perf_event_pmu_context
963  */
964 struct perf_event_pmu_context {
965 	struct pmu			*pmu;
966 	struct perf_event_context       *ctx;
967 
968 	struct list_head		pmu_ctx_entry;
969 
970 	struct list_head		pinned_active;
971 	struct list_head		flexible_active;
972 
973 	/* Used to identify the per-cpu perf_event_pmu_context */
974 	unsigned int			embedded : 1;
975 
976 	unsigned int			nr_events;
977 	unsigned int			nr_cgroups;
978 	unsigned int			nr_freq;
979 
980 	atomic_t			refcount; /* event <-> epc */
981 	struct rcu_head			rcu_head;
982 
983 	/*
984 	 * Set when one or more (plausibly active) event can't be scheduled
985 	 * due to pmu overcommit or pmu constraints, except tolerant to
986 	 * events not necessary to be active due to scheduling constraints,
987 	 * such as cgroups.
988 	 */
989 	int				rotate_necessary;
990 };
991 
992 static inline bool perf_pmu_ctx_is_active(struct perf_event_pmu_context *epc)
993 {
994 	return !list_empty(&epc->flexible_active) || !list_empty(&epc->pinned_active);
995 }
996 
997 struct perf_event_groups {
998 	struct rb_root			tree;
999 	u64				index;
1000 };
1001 
1002 struct perf_time_ctx {
1003 	u64		time;
1004 	u64		stamp;
1005 	u64		offset;
1006 };
1007 
1008 /**
1009  * struct perf_event_context - event context structure
1010  *
1011  * Used as a container for task events and CPU events as well:
1012  */
1013 struct perf_event_context {
1014 	/*
1015 	 * Protect the states of the events in the list,
1016 	 * nr_active, and the list:
1017 	 */
1018 	raw_spinlock_t			lock;
1019 	/*
1020 	 * Protect the list of events.  Locking either mutex or lock
1021 	 * is sufficient to ensure the list doesn't change; to change
1022 	 * the list you need to lock both the mutex and the spinlock.
1023 	 */
1024 	struct mutex			mutex;
1025 
1026 	struct list_head		pmu_ctx_list;
1027 	struct perf_event_groups	pinned_groups;
1028 	struct perf_event_groups	flexible_groups;
1029 	struct list_head		event_list;
1030 
1031 	int				nr_events;
1032 	int				nr_user;
1033 	int				is_active;
1034 
1035 	int				nr_stat;
1036 	int				nr_freq;
1037 	int				rotate_disable;
1038 
1039 	refcount_t			refcount; /* event <-> ctx */
1040 	struct task_struct		*task;
1041 
1042 	/*
1043 	 * Context clock, runs when context enabled.
1044 	 */
1045 	struct perf_time_ctx		time;
1046 
1047 	/*
1048 	 * Context clock, runs when in the guest mode.
1049 	 */
1050 	struct perf_time_ctx		timeguest;
1051 
1052 	/*
1053 	 * These fields let us detect when two contexts have both
1054 	 * been cloned (inherited) from a common ancestor.
1055 	 */
1056 	struct perf_event_context	*parent_ctx;
1057 	u64				parent_gen;
1058 	u64				generation;
1059 	int				pin_count;
1060 #ifdef CONFIG_CGROUP_PERF
1061 	int				nr_cgroups;	 /* cgroup evts */
1062 #endif
1063 	struct rcu_head			rcu_head;
1064 
1065 	/*
1066 	 * The count of events for which using the switch-out fast path
1067 	 * should be avoided.
1068 	 *
1069 	 * Sum (event->pending_work + events with
1070 	 *    (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)))
1071 	 *
1072 	 * The SIGTRAP is targeted at ctx->task, as such it won't do changing
1073 	 * that until the signal is delivered.
1074 	 */
1075 	local_t				nr_no_switch_fast;
1076 };
1077 
1078 /**
1079  * struct perf_ctx_data - PMU specific data for a task
1080  * @rcu_head:  To avoid the race on free PMU specific data
1081  * @refcount:  To track users
1082  * @global:    To track system-wide users
1083  * @ctx_cache: Kmem cache of PMU specific data
1084  * @data:      PMU specific data
1085  *
1086  * Currently, the struct is only used in Intel LBR call stack mode to
1087  * save/restore the call stack of a task on context switches.
1088  *
1089  * The rcu_head is used to prevent the race on free the data.
1090  * The data only be allocated when Intel LBR call stack mode is enabled.
1091  * The data will be freed when the mode is disabled.
1092  * The content of the data will only be accessed in context switch, which
1093  * should be protected by rcu_read_lock().
1094  *
1095  * Because of the alignment requirement of Intel Arch LBR, the Kmem cache
1096  * is used to allocate the PMU specific data. The ctx_cache is to track
1097  * the Kmem cache.
1098  *
1099  * Careful: Struct perf_ctx_data is added as a pointer in struct task_struct.
1100  * When system-wide Intel LBR call stack mode is enabled, a buffer with
1101  * constant size will be allocated for each task.
1102  * Also, system memory consumption can further grow when the size of
1103  * struct perf_ctx_data enlarges.
1104  */
1105 struct perf_ctx_data {
1106 	struct rcu_head			rcu_head;
1107 	refcount_t			refcount;
1108 	int				global;
1109 	struct kmem_cache		*ctx_cache;
1110 	void				*data;
1111 };
1112 
1113 struct perf_cpu_pmu_context {
1114 	struct perf_event_pmu_context	epc;
1115 	struct perf_event_pmu_context	*task_epc;
1116 
1117 	struct list_head		sched_cb_entry;
1118 	int				sched_cb_usage;
1119 
1120 	int				active_oncpu;
1121 	int				exclusive;
1122 	int				pmu_disable_count;
1123 
1124 	raw_spinlock_t			hrtimer_lock;
1125 	struct hrtimer			hrtimer;
1126 	ktime_t				hrtimer_interval;
1127 	unsigned int			hrtimer_active;
1128 };
1129 
1130 /**
1131  * struct perf_event_cpu_context - per cpu event context structure
1132  */
1133 struct perf_cpu_context {
1134 	struct perf_event_context	ctx;
1135 	struct perf_event_context	*task_ctx;
1136 	int				online;
1137 
1138 #ifdef CONFIG_CGROUP_PERF
1139 	struct perf_cgroup		*cgrp;
1140 #endif
1141 
1142 	/*
1143 	 * Per-CPU storage for iterators used in visit_groups_merge. The default
1144 	 * storage is of size 2 to hold the CPU and any CPU event iterators.
1145 	 */
1146 	int				heap_size;
1147 	struct perf_event		**heap;
1148 	struct perf_event		*heap_default[2];
1149 };
1150 
1151 struct perf_output_handle {
1152 	struct perf_event		*event;
1153 	struct perf_buffer		*rb;
1154 	unsigned long			wakeup;
1155 	unsigned long			size;
1156 	union {
1157 		u64			flags;		/* perf_output*() */
1158 		u64			aux_flags;	/* perf_aux_output*() */
1159 		struct {
1160 			u64		skip_read : 1;
1161 		};
1162 	};
1163 	union {
1164 		void			*addr;
1165 		unsigned long		head;
1166 	};
1167 	int				page;
1168 };
1169 
1170 struct bpf_perf_event_data_kern {
1171 	bpf_user_pt_regs_t *regs;
1172 	struct perf_sample_data *data;
1173 	struct perf_event *event;
1174 };
1175 
1176 #ifdef CONFIG_CGROUP_PERF
1177 
1178 /*
1179  * perf_cgroup_info keeps track of time_enabled for a cgroup.
1180  * This is a per-cpu dynamically allocated data structure.
1181  */
1182 struct perf_cgroup_info {
1183 	struct perf_time_ctx		time;
1184 	struct perf_time_ctx		timeguest;
1185 	int				active;
1186 };
1187 
1188 struct perf_cgroup {
1189 	struct cgroup_subsys_state	css;
1190 	struct perf_cgroup_info	__percpu *info;
1191 };
1192 
1193 /*
1194  * Must ensure cgroup is pinned (css_get) before calling
1195  * this function. In other words, we cannot call this function
1196  * if there is no cgroup event for the current CPU context.
1197  */
1198 static inline struct perf_cgroup *
1199 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
1200 {
1201 	return container_of(task_css_check(task, perf_event_cgrp_id,
1202 					   ctx ? lockdep_is_held(&ctx->lock)
1203 					       : true),
1204 			    struct perf_cgroup, css);
1205 }
1206 #endif /* CONFIG_CGROUP_PERF */
1207 
1208 #ifdef CONFIG_PERF_EVENTS
1209 
1210 extern struct perf_event_context *perf_cpu_task_ctx(void);
1211 
1212 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
1213 				   struct perf_event *event);
1214 extern void perf_aux_output_end(struct perf_output_handle *handle,
1215 				unsigned long size);
1216 extern int perf_aux_output_skip(struct perf_output_handle *handle,
1217 				unsigned long size);
1218 extern void *perf_get_aux(struct perf_output_handle *handle);
1219 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags);
1220 extern void perf_event_itrace_started(struct perf_event *event);
1221 
1222 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
1223 extern int perf_pmu_unregister(struct pmu *pmu);
1224 
1225 extern void __perf_event_task_sched_in(struct task_struct *prev,
1226 				       struct task_struct *task);
1227 extern void __perf_event_task_sched_out(struct task_struct *prev,
1228 					struct task_struct *next);
1229 extern int perf_event_init_task(struct task_struct *child, u64 clone_flags);
1230 extern void perf_event_exit_task(struct task_struct *child);
1231 extern void perf_event_free_task(struct task_struct *task);
1232 extern void perf_event_delayed_put(struct task_struct *task);
1233 extern struct file *perf_event_get(unsigned int fd);
1234 extern const struct perf_event *perf_get_event(struct file *file);
1235 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
1236 extern void perf_event_print_debug(void);
1237 extern void perf_pmu_disable(struct pmu *pmu);
1238 extern void perf_pmu_enable(struct pmu *pmu);
1239 extern void perf_sched_cb_dec(struct pmu *pmu);
1240 extern void perf_sched_cb_inc(struct pmu *pmu);
1241 extern int perf_event_task_disable(void);
1242 extern int perf_event_task_enable(void);
1243 
1244 extern void perf_pmu_resched(struct pmu *pmu);
1245 
1246 extern int perf_event_refresh(struct perf_event *event, int refresh);
1247 extern void perf_event_update_userpage(struct perf_event *event);
1248 extern int perf_event_release_kernel(struct perf_event *event);
1249 
1250 extern struct perf_event *
1251 perf_event_create_kernel_counter(struct perf_event_attr *attr,
1252 				 int cpu,
1253 				 struct task_struct *task,
1254 				 perf_overflow_handler_t callback,
1255 				 void *context);
1256 
1257 extern void perf_pmu_migrate_context(struct pmu *pmu,
1258 				     int src_cpu, int dst_cpu);
1259 extern int perf_event_read_local(struct perf_event *event, u64 *value,
1260 				 u64 *enabled, u64 *running);
1261 extern u64 perf_event_read_value(struct perf_event *event,
1262 				 u64 *enabled, u64 *running);
1263 
1264 extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs);
1265 
1266 static inline bool branch_sample_no_flags(const struct perf_event *event)
1267 {
1268 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_NO_FLAGS;
1269 }
1270 
1271 static inline bool branch_sample_no_cycles(const struct perf_event *event)
1272 {
1273 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_NO_CYCLES;
1274 }
1275 
1276 static inline bool branch_sample_type(const struct perf_event *event)
1277 {
1278 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_TYPE_SAVE;
1279 }
1280 
1281 static inline bool branch_sample_hw_index(const struct perf_event *event)
1282 {
1283 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
1284 }
1285 
1286 static inline bool branch_sample_priv(const struct perf_event *event)
1287 {
1288 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_PRIV_SAVE;
1289 }
1290 
1291 static inline bool branch_sample_counters(const struct perf_event *event)
1292 {
1293 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_COUNTERS;
1294 }
1295 
1296 static inline bool branch_sample_call_stack(const struct perf_event *event)
1297 {
1298 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK;
1299 }
1300 
1301 struct perf_sample_data {
1302 	/*
1303 	 * Fields set by perf_sample_data_init() unconditionally,
1304 	 * group so as to minimize the cachelines touched.
1305 	 */
1306 	u64				sample_flags;
1307 	u64				period;
1308 	u64				dyn_size;
1309 
1310 	/*
1311 	 * Fields commonly set by __perf_event_header__init_id(),
1312 	 * group so as to minimize the cachelines touched.
1313 	 */
1314 	u64				type;
1315 	struct {
1316 		u32	pid;
1317 		u32	tid;
1318 	}				tid_entry;
1319 	u64				time;
1320 	u64				id;
1321 	struct {
1322 		u32	cpu;
1323 		u32	reserved;
1324 	}				cpu_entry;
1325 
1326 	/*
1327 	 * The other fields, optionally {set,used} by
1328 	 * perf_{prepare,output}_sample().
1329 	 */
1330 	u64				ip;
1331 	struct perf_callchain_entry	*callchain;
1332 	struct perf_raw_record		*raw;
1333 	struct perf_branch_stack	*br_stack;
1334 	u64				*br_stack_cntr;
1335 	union perf_sample_weight	weight;
1336 	union  perf_mem_data_src	data_src;
1337 	u64				txn;
1338 
1339 	struct perf_regs		regs_user;
1340 	struct perf_regs		regs_intr;
1341 	u64				stack_user_size;
1342 
1343 	u64				stream_id;
1344 	u64				cgroup;
1345 	u64				addr;
1346 	u64				phys_addr;
1347 	u64				data_page_size;
1348 	u64				code_page_size;
1349 	u64				aux_size;
1350 } ____cacheline_aligned;
1351 
1352 /* default value for data source */
1353 #define PERF_MEM_NA (PERF_MEM_S(OP, NA)   |\
1354 		    PERF_MEM_S(LVL, NA)   |\
1355 		    PERF_MEM_S(SNOOP, NA) |\
1356 		    PERF_MEM_S(LOCK, NA)  |\
1357 		    PERF_MEM_S(TLB, NA)   |\
1358 		    PERF_MEM_S(LVLNUM, NA))
1359 
1360 static inline void perf_sample_data_init(struct perf_sample_data *data,
1361 					 u64 addr, u64 period)
1362 {
1363 	/* remaining struct members initialized in perf_prepare_sample() */
1364 	data->sample_flags = PERF_SAMPLE_PERIOD;
1365 	data->period = period;
1366 	data->dyn_size = 0;
1367 
1368 	if (addr) {
1369 		data->addr = addr;
1370 		data->sample_flags |= PERF_SAMPLE_ADDR;
1371 	}
1372 }
1373 
1374 static inline void perf_sample_save_callchain(struct perf_sample_data *data,
1375 					      struct perf_event *event,
1376 					      struct pt_regs *regs)
1377 {
1378 	int size = 1;
1379 
1380 	if (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN))
1381 		return;
1382 	if (WARN_ON_ONCE(data->sample_flags & PERF_SAMPLE_CALLCHAIN))
1383 		return;
1384 
1385 	data->callchain = perf_callchain(event, regs);
1386 	size += data->callchain->nr;
1387 
1388 	data->dyn_size += size * sizeof(u64);
1389 	data->sample_flags |= PERF_SAMPLE_CALLCHAIN;
1390 }
1391 
1392 static inline void perf_sample_save_raw_data(struct perf_sample_data *data,
1393 					     struct perf_event *event,
1394 					     struct perf_raw_record *raw)
1395 {
1396 	struct perf_raw_frag *frag = &raw->frag;
1397 	u32 sum = 0;
1398 	int size;
1399 
1400 	if (!(event->attr.sample_type & PERF_SAMPLE_RAW))
1401 		return;
1402 	if (WARN_ON_ONCE(data->sample_flags & PERF_SAMPLE_RAW))
1403 		return;
1404 
1405 	do {
1406 		sum += frag->size;
1407 		if (perf_raw_frag_last(frag))
1408 			break;
1409 		frag = frag->next;
1410 	} while (1);
1411 
1412 	size = round_up(sum + sizeof(u32), sizeof(u64));
1413 	raw->size = size - sizeof(u32);
1414 	frag->pad = raw->size - sum;
1415 
1416 	data->raw = raw;
1417 	data->dyn_size += size;
1418 	data->sample_flags |= PERF_SAMPLE_RAW;
1419 }
1420 
1421 static inline bool has_branch_stack(struct perf_event *event)
1422 {
1423 	return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1424 }
1425 
1426 static inline void perf_sample_save_brstack(struct perf_sample_data *data,
1427 					    struct perf_event *event,
1428 					    struct perf_branch_stack *brs,
1429 					    u64 *brs_cntr)
1430 {
1431 	int size = sizeof(u64); /* nr */
1432 
1433 	if (!has_branch_stack(event))
1434 		return;
1435 	if (WARN_ON_ONCE(data->sample_flags & PERF_SAMPLE_BRANCH_STACK))
1436 		return;
1437 
1438 	if (branch_sample_hw_index(event))
1439 		size += sizeof(u64);
1440 
1441 	brs->nr = min_t(u16, event->attr.sample_max_stack, brs->nr);
1442 
1443 	size += brs->nr * sizeof(struct perf_branch_entry);
1444 
1445 	/*
1446 	 * The extension space for counters is appended after the
1447 	 * struct perf_branch_stack. It is used to store the occurrences
1448 	 * of events of each branch.
1449 	 */
1450 	if (brs_cntr)
1451 		size += brs->nr * sizeof(u64);
1452 
1453 	data->br_stack = brs;
1454 	data->br_stack_cntr = brs_cntr;
1455 	data->dyn_size += size;
1456 	data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
1457 }
1458 
1459 static inline u32 perf_sample_data_size(struct perf_sample_data *data,
1460 					struct perf_event *event)
1461 {
1462 	u32 size = sizeof(struct perf_event_header);
1463 
1464 	size += event->header_size + event->id_header_size;
1465 	size += data->dyn_size;
1466 
1467 	return size;
1468 }
1469 
1470 /*
1471  * Clear all bitfields in the perf_branch_entry.
1472  * The to and from fields are not cleared because they are
1473  * systematically modified by caller.
1474  */
1475 static inline void perf_clear_branch_entry_bitfields(struct perf_branch_entry *br)
1476 {
1477 	br->mispred	= 0;
1478 	br->predicted	= 0;
1479 	br->in_tx	= 0;
1480 	br->abort	= 0;
1481 	br->cycles	= 0;
1482 	br->type	= 0;
1483 	br->spec	= PERF_BR_SPEC_NA;
1484 	br->reserved	= 0;
1485 }
1486 
1487 extern void perf_output_sample(struct perf_output_handle *handle,
1488 			       struct perf_event_header *header,
1489 			       struct perf_sample_data *data,
1490 			       struct perf_event *event);
1491 extern void perf_prepare_sample(struct perf_sample_data *data,
1492 				struct perf_event *event,
1493 				struct pt_regs *regs);
1494 extern void perf_prepare_header(struct perf_event_header *header,
1495 				struct perf_sample_data *data,
1496 				struct perf_event *event,
1497 				struct pt_regs *regs);
1498 
1499 extern int perf_event_overflow(struct perf_event *event,
1500 				 struct perf_sample_data *data,
1501 				 struct pt_regs *regs);
1502 
1503 extern void perf_event_output_forward(struct perf_event *event,
1504 				     struct perf_sample_data *data,
1505 				     struct pt_regs *regs);
1506 extern void perf_event_output_backward(struct perf_event *event,
1507 				       struct perf_sample_data *data,
1508 				       struct pt_regs *regs);
1509 extern int perf_event_output(struct perf_event *event,
1510 			     struct perf_sample_data *data,
1511 			     struct pt_regs *regs);
1512 
1513 static inline bool
1514 is_default_overflow_handler(struct perf_event *event)
1515 {
1516 	perf_overflow_handler_t overflow_handler = event->overflow_handler;
1517 
1518 	if (likely(overflow_handler == perf_event_output_forward))
1519 		return true;
1520 	if (unlikely(overflow_handler == perf_event_output_backward))
1521 		return true;
1522 	return false;
1523 }
1524 
1525 extern void
1526 perf_event_header__init_id(struct perf_event_header *header,
1527 			   struct perf_sample_data *data,
1528 			   struct perf_event *event);
1529 extern void
1530 perf_event__output_id_sample(struct perf_event *event,
1531 			     struct perf_output_handle *handle,
1532 			     struct perf_sample_data *sample);
1533 
1534 extern void
1535 perf_log_lost_samples(struct perf_event *event, u64 lost);
1536 
1537 static inline bool event_has_any_exclude_flag(struct perf_event *event)
1538 {
1539 	struct perf_event_attr *attr = &event->attr;
1540 
1541 	return attr->exclude_idle || attr->exclude_user ||
1542 	       attr->exclude_kernel || attr->exclude_hv ||
1543 	       attr->exclude_guest || attr->exclude_host;
1544 }
1545 
1546 static inline bool is_sampling_event(struct perf_event *event)
1547 {
1548 	return event->attr.sample_period != 0;
1549 }
1550 
1551 /*
1552  * Return 1 for a software event, 0 for a hardware event
1553  */
1554 static inline int is_software_event(struct perf_event *event)
1555 {
1556 	return event->event_caps & PERF_EV_CAP_SOFTWARE;
1557 }
1558 
1559 /*
1560  * Return 1 for event in sw context, 0 for event in hw context
1561  */
1562 static inline int in_software_context(struct perf_event *event)
1563 {
1564 	return event->pmu_ctx->pmu->task_ctx_nr == perf_sw_context;
1565 }
1566 
1567 static inline int is_exclusive_pmu(struct pmu *pmu)
1568 {
1569 	return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE;
1570 }
1571 
1572 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1573 
1574 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
1575 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1576 
1577 #ifndef perf_arch_fetch_caller_regs
1578 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1579 #endif
1580 
1581 /*
1582  * When generating a perf sample in-line, instead of from an interrupt /
1583  * exception, we lack a pt_regs. This is typically used from software events
1584  * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints.
1585  *
1586  * We typically don't need a full set, but (for x86) do require:
1587  * - ip for PERF_SAMPLE_IP
1588  * - cs for user_mode() tests
1589  * - sp for PERF_SAMPLE_CALLCHAIN
1590  * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs())
1591  *
1592  * NOTE: assumes @regs is otherwise already 0 filled; this is important for
1593  * things like PERF_SAMPLE_REGS_INTR.
1594  */
1595 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1596 {
1597 	perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1598 }
1599 
1600 static __always_inline void
1601 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1602 {
1603 	if (static_key_false(&perf_swevent_enabled[event_id]))
1604 		__perf_sw_event(event_id, nr, regs, addr);
1605 }
1606 
1607 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1608 
1609 /*
1610  * 'Special' version for the scheduler, it hard assumes no recursion,
1611  * which is guaranteed by us not actually scheduling inside other swevents
1612  * because those disable preemption.
1613  */
1614 static __always_inline void __perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1615 {
1616 	struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1617 
1618 	perf_fetch_caller_regs(regs);
1619 	___perf_sw_event(event_id, nr, regs, addr);
1620 }
1621 
1622 extern struct static_key_false perf_sched_events;
1623 
1624 static __always_inline bool __perf_sw_enabled(int swevt)
1625 {
1626 	return static_key_false(&perf_swevent_enabled[swevt]);
1627 }
1628 
1629 static inline void perf_event_task_migrate(struct task_struct *task)
1630 {
1631 	if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS))
1632 		task->sched_migrated = 1;
1633 }
1634 
1635 static inline void perf_event_task_sched_in(struct task_struct *prev,
1636 					    struct task_struct *task)
1637 {
1638 	if (static_branch_unlikely(&perf_sched_events))
1639 		__perf_event_task_sched_in(prev, task);
1640 
1641 	if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS) &&
1642 	    task->sched_migrated) {
1643 		__perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0);
1644 		task->sched_migrated = 0;
1645 	}
1646 }
1647 
1648 static inline void perf_event_task_sched_out(struct task_struct *prev,
1649 					     struct task_struct *next)
1650 {
1651 	if (__perf_sw_enabled(PERF_COUNT_SW_CONTEXT_SWITCHES))
1652 		__perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1653 
1654 #ifdef CONFIG_CGROUP_PERF
1655 	if (__perf_sw_enabled(PERF_COUNT_SW_CGROUP_SWITCHES) &&
1656 	    perf_cgroup_from_task(prev, NULL) !=
1657 	    perf_cgroup_from_task(next, NULL))
1658 		__perf_sw_event_sched(PERF_COUNT_SW_CGROUP_SWITCHES, 1, 0);
1659 #endif
1660 
1661 	if (static_branch_unlikely(&perf_sched_events))
1662 		__perf_event_task_sched_out(prev, next);
1663 }
1664 
1665 extern void perf_event_mmap(struct vm_area_struct *vma);
1666 
1667 extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1668 			       bool unregister, const char *sym);
1669 extern void perf_event_bpf_event(struct bpf_prog *prog,
1670 				 enum perf_bpf_event_type type,
1671 				 u16 flags);
1672 
1673 #define PERF_GUEST_ACTIVE		0x01
1674 #define PERF_GUEST_USER			0x02
1675 
1676 struct perf_guest_info_callbacks {
1677 	unsigned int			(*state)(void);
1678 	unsigned long			(*get_ip)(void);
1679 	unsigned int			(*handle_intel_pt_intr)(void);
1680 
1681 	void				(*handle_mediated_pmi)(void);
1682 };
1683 
1684 #ifdef CONFIG_GUEST_PERF_EVENTS
1685 
1686 extern struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
1687 
1688 DECLARE_STATIC_CALL(__perf_guest_state, *perf_guest_cbs->state);
1689 DECLARE_STATIC_CALL(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
1690 DECLARE_STATIC_CALL(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
1691 DECLARE_STATIC_CALL(__perf_guest_handle_mediated_pmi, *perf_guest_cbs->handle_mediated_pmi);
1692 
1693 static inline unsigned int perf_guest_state(void)
1694 {
1695 	return static_call(__perf_guest_state)();
1696 }
1697 
1698 static inline unsigned long perf_guest_get_ip(void)
1699 {
1700 	return static_call(__perf_guest_get_ip)();
1701 }
1702 
1703 static inline unsigned int perf_guest_handle_intel_pt_intr(void)
1704 {
1705 	return static_call(__perf_guest_handle_intel_pt_intr)();
1706 }
1707 
1708 static inline void perf_guest_handle_mediated_pmi(void)
1709 {
1710 	static_call(__perf_guest_handle_mediated_pmi)();
1711 }
1712 
1713 extern void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs);
1714 extern void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs);
1715 
1716 #else /* !CONFIG_GUEST_PERF_EVENTS: */
1717 
1718 static inline unsigned int perf_guest_state(void)		 { return 0; }
1719 static inline unsigned long perf_guest_get_ip(void)		 { return 0; }
1720 static inline unsigned int perf_guest_handle_intel_pt_intr(void) { return 0; }
1721 
1722 #endif /* !CONFIG_GUEST_PERF_EVENTS */
1723 
1724 extern void perf_event_exec(void);
1725 extern void perf_event_comm(struct task_struct *tsk, bool exec);
1726 extern void perf_event_namespaces(struct task_struct *tsk);
1727 extern void perf_event_fork(struct task_struct *tsk);
1728 extern void perf_event_text_poke(const void *addr,
1729 				 const void *old_bytes, size_t old_len,
1730 				 const void *new_bytes, size_t new_len);
1731 
1732 /* Callchains */
1733 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1734 
1735 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1736 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1737 extern struct perf_callchain_entry *
1738 get_perf_callchain(struct pt_regs *regs, bool kernel, bool user,
1739 		   u32 max_stack, bool crosstask, bool add_mark, u64 defer_cookie);
1740 extern int get_callchain_buffers(int max_stack);
1741 extern void put_callchain_buffers(void);
1742 extern struct perf_callchain_entry *get_callchain_entry(int *rctx);
1743 extern void put_callchain_entry(int rctx);
1744 
1745 extern int sysctl_perf_event_max_stack;
1746 extern int sysctl_perf_event_max_contexts_per_stack;
1747 
1748 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1749 {
1750 	if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1751 		struct perf_callchain_entry *entry = ctx->entry;
1752 
1753 		entry->ip[entry->nr++] = ip;
1754 		++ctx->contexts;
1755 		return 0;
1756 	} else {
1757 		ctx->contexts_maxed = true;
1758 		return -1; /* no more room, stop walking the stack */
1759 	}
1760 }
1761 
1762 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1763 {
1764 	if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1765 		struct perf_callchain_entry *entry = ctx->entry;
1766 
1767 		entry->ip[entry->nr++] = ip;
1768 		++ctx->nr;
1769 		return 0;
1770 	} else {
1771 		return -1; /* no more room, stop walking the stack */
1772 	}
1773 }
1774 
1775 extern int sysctl_perf_event_paranoid;
1776 extern int sysctl_perf_event_sample_rate;
1777 
1778 extern void perf_sample_event_took(u64 sample_len_ns);
1779 
1780 /* Access to perf_event_open(2) syscall. */
1781 #define PERF_SECURITY_OPEN		0
1782 
1783 /* Finer grained perf_event_open(2) access control. */
1784 #define PERF_SECURITY_CPU		1
1785 #define PERF_SECURITY_KERNEL		2
1786 #define PERF_SECURITY_TRACEPOINT	3
1787 
1788 static inline int perf_is_paranoid(void)
1789 {
1790 	return sysctl_perf_event_paranoid > -1;
1791 }
1792 
1793 extern int perf_allow_kernel(void);
1794 
1795 static inline int perf_allow_cpu(void)
1796 {
1797 	if (sysctl_perf_event_paranoid > 0 && !perfmon_capable())
1798 		return -EACCES;
1799 
1800 	return security_perf_event_open(PERF_SECURITY_CPU);
1801 }
1802 
1803 static inline int perf_allow_tracepoint(void)
1804 {
1805 	if (sysctl_perf_event_paranoid > -1 && !perfmon_capable())
1806 		return -EPERM;
1807 
1808 	return security_perf_event_open(PERF_SECURITY_TRACEPOINT);
1809 }
1810 
1811 extern int perf_exclude_event(struct perf_event *event, struct pt_regs *regs);
1812 
1813 extern void perf_event_init(void);
1814 extern void perf_tp_event(u16 event_type, u64 count, void *record,
1815 			  int entry_size, struct pt_regs *regs,
1816 			  struct hlist_head *head, int rctx,
1817 			  struct task_struct *task);
1818 extern void perf_bp_event(struct perf_event *event, void *data);
1819 
1820 extern unsigned long perf_misc_flags(struct perf_event *event, struct pt_regs *regs);
1821 extern unsigned long perf_instruction_pointer(struct perf_event *event,
1822 					      struct pt_regs *regs);
1823 
1824 #ifndef perf_arch_misc_flags
1825 # define perf_arch_misc_flags(regs) \
1826 		(user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1827 # define perf_arch_instruction_pointer(regs)	instruction_pointer(regs)
1828 #endif
1829 #ifndef perf_arch_bpf_user_pt_regs
1830 # define perf_arch_bpf_user_pt_regs(regs) regs
1831 #endif
1832 
1833 #ifndef perf_arch_guest_misc_flags
1834 static inline unsigned long perf_arch_guest_misc_flags(struct pt_regs *regs)
1835 {
1836 	unsigned long guest_state = perf_guest_state();
1837 
1838 	if (!(guest_state & PERF_GUEST_ACTIVE))
1839 		return 0;
1840 
1841 	if (guest_state & PERF_GUEST_USER)
1842 		return PERF_RECORD_MISC_GUEST_USER;
1843 	else
1844 		return PERF_RECORD_MISC_GUEST_KERNEL;
1845 }
1846 # define perf_arch_guest_misc_flags(regs)	perf_arch_guest_misc_flags(regs)
1847 #endif
1848 
1849 static inline bool needs_branch_stack(struct perf_event *event)
1850 {
1851 	return event->attr.branch_sample_type != 0;
1852 }
1853 
1854 static inline bool has_aux(struct perf_event *event)
1855 {
1856 	return event->pmu && event->pmu->setup_aux;
1857 }
1858 
1859 static inline bool has_aux_action(struct perf_event *event)
1860 {
1861 	return event->attr.aux_sample_size ||
1862 	       event->attr.aux_pause ||
1863 	       event->attr.aux_resume;
1864 }
1865 
1866 static inline bool is_write_backward(struct perf_event *event)
1867 {
1868 	return !!event->attr.write_backward;
1869 }
1870 
1871 static inline bool has_addr_filter(struct perf_event *event)
1872 {
1873 	return event->pmu->nr_addr_filters;
1874 }
1875 
1876 /*
1877  * An inherited event uses parent's filters
1878  */
1879 static inline struct perf_addr_filters_head *
1880 perf_event_addr_filters(struct perf_event *event)
1881 {
1882 	struct perf_addr_filters_head *ifh = &event->addr_filters;
1883 
1884 	if (event->parent)
1885 		ifh = &event->parent->addr_filters;
1886 
1887 	return ifh;
1888 }
1889 
1890 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
1891 {
1892 	/* Only the parent has fasync state */
1893 	if (event->parent)
1894 		event = event->parent;
1895 	return &event->fasync;
1896 }
1897 
1898 extern void perf_event_addr_filters_sync(struct perf_event *event);
1899 extern void perf_report_aux_output_id(struct perf_event *event, u64 hw_id);
1900 
1901 extern int perf_output_begin(struct perf_output_handle *handle,
1902 			     struct perf_sample_data *data,
1903 			     struct perf_event *event, unsigned int size);
1904 extern int perf_output_begin_forward(struct perf_output_handle *handle,
1905 				     struct perf_sample_data *data,
1906 				     struct perf_event *event,
1907 				     unsigned int size);
1908 extern int perf_output_begin_backward(struct perf_output_handle *handle,
1909 				      struct perf_sample_data *data,
1910 				      struct perf_event *event,
1911 				      unsigned int size);
1912 
1913 extern void perf_output_end(struct perf_output_handle *handle);
1914 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1915 				     const void *buf, unsigned int len);
1916 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1917 				     unsigned int len);
1918 extern long perf_output_copy_aux(struct perf_output_handle *aux_handle,
1919 				 struct perf_output_handle *handle,
1920 				 unsigned long from, unsigned long to);
1921 extern int perf_swevent_get_recursion_context(void);
1922 extern void perf_swevent_put_recursion_context(int rctx);
1923 extern u64 perf_swevent_set_period(struct perf_event *event);
1924 extern void perf_event_enable(struct perf_event *event);
1925 extern void perf_event_disable(struct perf_event *event);
1926 extern void perf_event_disable_local(struct perf_event *event);
1927 extern void perf_event_disable_inatomic(struct perf_event *event);
1928 extern void perf_event_task_tick(void);
1929 extern int perf_event_account_interrupt(struct perf_event *event);
1930 extern int perf_event_period(struct perf_event *event, u64 value);
1931 extern u64 perf_event_pause(struct perf_event *event, bool reset);
1932 
1933 #ifdef CONFIG_PERF_GUEST_MEDIATED_PMU
1934 int perf_create_mediated_pmu(void);
1935 void perf_release_mediated_pmu(void);
1936 void perf_load_guest_context(void);
1937 void perf_put_guest_context(void);
1938 #endif
1939 
1940 #else /* !CONFIG_PERF_EVENTS: */
1941 
1942 static inline void *
1943 perf_aux_output_begin(struct perf_output_handle *handle,
1944 		      struct perf_event *event)				{ return NULL; }
1945 static inline void
1946 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
1947 									{ }
1948 static inline int
1949 perf_aux_output_skip(struct perf_output_handle *handle,
1950 		     unsigned long size)				{ return -EINVAL; }
1951 static inline void *
1952 perf_get_aux(struct perf_output_handle *handle)				{ return NULL; }
1953 static inline void
1954 perf_event_task_migrate(struct task_struct *task)			{ }
1955 static inline void
1956 perf_event_task_sched_in(struct task_struct *prev,
1957 			 struct task_struct *task)			{ }
1958 static inline void
1959 perf_event_task_sched_out(struct task_struct *prev,
1960 			  struct task_struct *next)			{ }
1961 static inline int perf_event_init_task(struct task_struct *child,
1962 				       u64 clone_flags)			{ return 0; }
1963 static inline void perf_event_exit_task(struct task_struct *child)	{ }
1964 static inline void perf_event_free_task(struct task_struct *task)	{ }
1965 static inline void perf_event_delayed_put(struct task_struct *task)	{ }
1966 static inline struct file *perf_event_get(unsigned int fd)	{ return ERR_PTR(-EINVAL); }
1967 static inline const struct perf_event *perf_get_event(struct file *file)
1968 {
1969 	return ERR_PTR(-EINVAL);
1970 }
1971 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1972 {
1973 	return ERR_PTR(-EINVAL);
1974 }
1975 static inline int perf_event_read_local(struct perf_event *event, u64 *value,
1976 					u64 *enabled, u64 *running)
1977 {
1978 	return -EINVAL;
1979 }
1980 static inline void perf_event_print_debug(void)				{ }
1981 static inline int perf_event_task_disable(void)				{ return -EINVAL; }
1982 static inline int perf_event_task_enable(void)				{ return -EINVAL; }
1983 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1984 {
1985 	return -EINVAL;
1986 }
1987 
1988 static inline void
1989 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)	{ }
1990 static inline void
1991 perf_bp_event(struct perf_event *event, void *data)			{ }
1992 
1993 static inline void perf_event_mmap(struct vm_area_struct *vma)		{ }
1994 
1995 typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data);
1996 static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1997 				      bool unregister, const char *sym)	{ }
1998 static inline void perf_event_bpf_event(struct bpf_prog *prog,
1999 					enum perf_bpf_event_type type,
2000 					u16 flags)			{ }
2001 static inline void perf_event_exec(void)				{ }
2002 static inline void perf_event_comm(struct task_struct *tsk, bool exec)	{ }
2003 static inline void perf_event_namespaces(struct task_struct *tsk)	{ }
2004 static inline void perf_event_fork(struct task_struct *tsk)		{ }
2005 static inline void perf_event_text_poke(const void *addr,
2006 					const void *old_bytes,
2007 					size_t old_len,
2008 					const void *new_bytes,
2009 					size_t new_len)			{ }
2010 static inline void perf_event_init(void)				{ }
2011 static inline int  perf_swevent_get_recursion_context(void)		{ return -1; }
2012 static inline void perf_swevent_put_recursion_context(int rctx)		{ }
2013 static inline u64 perf_swevent_set_period(struct perf_event *event)	{ return 0; }
2014 static inline void perf_event_enable(struct perf_event *event)		{ }
2015 static inline void perf_event_disable(struct perf_event *event)		{ }
2016 static inline int __perf_event_disable(void *info)			{ return -1; }
2017 static inline void perf_event_task_tick(void)				{ }
2018 static inline int perf_event_release_kernel(struct perf_event *event)	{ return 0; }
2019 static inline int
2020 perf_event_period(struct perf_event *event, u64 value)			{ return -EINVAL; }
2021 static inline u64
2022 perf_event_pause(struct perf_event *event, bool reset)			{ return 0; }
2023 static inline int
2024 perf_exclude_event(struct perf_event *event, struct pt_regs *regs)	{ return 0; }
2025 
2026 #endif /* !CONFIG_PERF_EVENTS */
2027 
2028 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
2029 extern void perf_restore_debug_store(void);
2030 #else
2031 static inline void perf_restore_debug_store(void)			{ }
2032 #endif
2033 
2034 #define perf_output_put(handle, x)	perf_output_copy((handle), &(x), sizeof(x))
2035 
2036 struct perf_pmu_events_attr {
2037 	struct device_attribute		attr;
2038 	u64				id;
2039 	const char			*event_str;
2040 };
2041 
2042 struct perf_pmu_events_ht_attr {
2043 	struct device_attribute		attr;
2044 	u64				id;
2045 	const char			*event_str_ht;
2046 	const char			*event_str_noht;
2047 };
2048 
2049 struct perf_pmu_events_hybrid_attr {
2050 	struct device_attribute		attr;
2051 	u64				id;
2052 	const char			*event_str;
2053 	u64				pmu_type;
2054 };
2055 
2056 struct perf_pmu_format_hybrid_attr {
2057 	struct device_attribute		attr;
2058 	u64				pmu_type;
2059 };
2060 
2061 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
2062 			      char *page);
2063 
2064 #define PMU_EVENT_ATTR(_name, _var, _id, _show)				\
2065 static struct perf_pmu_events_attr _var = {				\
2066 	.attr = __ATTR(_name, 0444, _show, NULL),			\
2067 	.id   =  _id,							\
2068 };
2069 
2070 #define PMU_EVENT_ATTR_STRING(_name, _var, _str)			    \
2071 static struct perf_pmu_events_attr _var = {				    \
2072 	.attr		= __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
2073 	.id		= 0,						    \
2074 	.event_str	= _str,						    \
2075 };
2076 
2077 #define PMU_EVENT_ATTR_ID(_name, _show, _id)				\
2078 	(&((struct perf_pmu_events_attr[]) {				\
2079 		{ .attr = __ATTR(_name, 0444, _show, NULL),		\
2080 		  .id = _id, }						\
2081 	})[0].attr.attr)
2082 
2083 #define PMU_FORMAT_ATTR_SHOW(_name, _format)				\
2084 static ssize_t								\
2085 _name##_show(struct device *dev,					\
2086 			       struct device_attribute *attr,		\
2087 			       char *page)				\
2088 {									\
2089 	BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE);			\
2090 	return sprintf(page, _format "\n");				\
2091 }									\
2092 
2093 #define PMU_FORMAT_ATTR(_name, _format)					\
2094 	PMU_FORMAT_ATTR_SHOW(_name, _format)				\
2095 									\
2096 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
2097 
2098 /* Performance counter hotplug functions */
2099 #ifdef CONFIG_PERF_EVENTS
2100 extern int perf_event_init_cpu(unsigned int cpu);
2101 extern int perf_event_exit_cpu(unsigned int cpu);
2102 #else
2103 # define perf_event_init_cpu		NULL
2104 # define perf_event_exit_cpu		NULL
2105 #endif
2106 
2107 extern void arch_perf_update_userpage(struct perf_event *event,
2108 				      struct perf_event_mmap_page *userpg,
2109 				      u64 now);
2110 
2111 /*
2112  * Snapshot branch stack on software events.
2113  *
2114  * Branch stack can be very useful in understanding software events. For
2115  * example, when a long function, e.g. sys_perf_event_open, returns an
2116  * errno, it is not obvious why the function failed. Branch stack could
2117  * provide very helpful information in this type of scenarios.
2118  *
2119  * On software event, it is necessary to stop the hardware branch recorder
2120  * fast. Otherwise, the hardware register/buffer will be flushed with
2121  * entries of the triggering event. Therefore, static call is used to
2122  * stop the hardware recorder.
2123  */
2124 
2125 /*
2126  * cnt is the number of entries allocated for entries.
2127  * Return number of entries copied to .
2128  */
2129 typedef int (perf_snapshot_branch_stack_t)(struct perf_branch_entry *entries,
2130 					   unsigned int cnt);
2131 DECLARE_STATIC_CALL(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
2132 
2133 #ifndef PERF_NEEDS_LOPWR_CB
2134 static inline void perf_lopwr_cb(bool mode)
2135 {
2136 }
2137 #endif
2138 
2139 #endif /* _LINUX_PERF_EVENT_H */
2140