xref: /linux/include/linux/cgroup-defs.h (revision 755fa5b4fb36627796af19932a432d343220ec63)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * linux/cgroup-defs.h - basic definitions for cgroup
4  *
5  * This file provides basic type and interface.  Include this file directly
6  * only if necessary to avoid cyclic dependencies.
7  */
8 #ifndef _LINUX_CGROUP_DEFS_H
9 #define _LINUX_CGROUP_DEFS_H
10 
11 #include <linux/limits.h>
12 #include <linux/list.h>
13 #include <linux/idr.h>
14 #include <linux/wait.h>
15 #include <linux/mutex.h>
16 #include <linux/rcupdate.h>
17 #include <linux/refcount.h>
18 #include <linux/percpu-refcount.h>
19 #include <linux/percpu-rwsem.h>
20 #include <linux/u64_stats_sync.h>
21 #include <linux/workqueue.h>
22 #include <linux/bpf-cgroup-defs.h>
23 #include <linux/psi_types.h>
24 
25 #ifdef CONFIG_CGROUPS
26 
27 struct cgroup;
28 struct cgroup_root;
29 struct cgroup_subsys;
30 struct cgroup_taskset;
31 struct kernfs_node;
32 struct kernfs_ops;
33 struct kernfs_open_file;
34 struct seq_file;
35 struct poll_table_struct;
36 
37 #define MAX_CGROUP_TYPE_NAMELEN 32
38 #define MAX_CGROUP_ROOT_NAMELEN 64
39 #define MAX_CFTYPE_NAME		64
40 
41 /* define the enumeration of all cgroup subsystems */
42 #define SUBSYS(_x) _x ## _cgrp_id,
43 enum cgroup_subsys_id {
44 #include <linux/cgroup_subsys.h>
45 	CGROUP_SUBSYS_COUNT,
46 };
47 #undef SUBSYS
48 
49 /* bits in struct cgroup_subsys_state flags field */
50 enum {
51 	CSS_NO_REF	= (1 << 0), /* no reference counting for this css */
52 	CSS_ONLINE	= (1 << 1), /* between ->css_online() and ->css_offline() */
53 	CSS_RELEASED	= (1 << 2), /* refcnt reached zero, released */
54 	CSS_VISIBLE	= (1 << 3), /* css is visible to userland */
55 	CSS_DYING	= (1 << 4), /* css is dying */
56 };
57 
58 /* bits in struct cgroup flags field */
59 enum {
60 	/* Control Group requires release notifications to userspace */
61 	CGRP_NOTIFY_ON_RELEASE,
62 	/*
63 	 * Clone the parent's configuration when creating a new child
64 	 * cpuset cgroup.  For historical reasons, this option can be
65 	 * specified at mount time and thus is implemented here.
66 	 */
67 	CGRP_CPUSET_CLONE_CHILDREN,
68 
69 	/* Control group has to be frozen. */
70 	CGRP_FREEZE,
71 
72 	/* Cgroup is frozen. */
73 	CGRP_FROZEN,
74 };
75 
76 /* cgroup_root->flags */
77 enum {
78 	CGRP_ROOT_NOPREFIX	= (1 << 1), /* mounted subsystems have no named prefix */
79 	CGRP_ROOT_XATTR		= (1 << 2), /* supports extended attributes */
80 
81 	/*
82 	 * Consider namespaces as delegation boundaries.  If this flag is
83 	 * set, controller specific interface files in a namespace root
84 	 * aren't writeable from inside the namespace.
85 	 */
86 	CGRP_ROOT_NS_DELEGATE	= (1 << 3),
87 
88 	/*
89 	 * Reduce latencies on dynamic cgroup modifications such as task
90 	 * migrations and controller on/offs by disabling percpu operation on
91 	 * cgroup_threadgroup_rwsem. This makes hot path operations such as
92 	 * forks and exits into the slow path and more expensive.
93 	 *
94 	 * Alleviate the contention between fork, exec, exit operations and
95 	 * writing to cgroup.procs by taking a per threadgroup rwsem instead of
96 	 * the global cgroup_threadgroup_rwsem. Fork and other operations
97 	 * from threads in different thread groups no longer contend with
98 	 * writing to cgroup.procs.
99 	 *
100 	 * The static usage pattern of creating a cgroup, enabling controllers,
101 	 * and then seeding it with CLONE_INTO_CGROUP doesn't require write
102 	 * locking cgroup_threadgroup_rwsem and thus doesn't benefit from
103 	 * favordynmod.
104 	 */
105 	CGRP_ROOT_FAVOR_DYNMODS = (1 << 4),
106 
107 	/*
108 	 * Enable cpuset controller in v1 cgroup to use v2 behavior.
109 	 */
110 	CGRP_ROOT_CPUSET_V2_MODE = (1 << 16),
111 
112 	/*
113 	 * Enable legacy local memory.events.
114 	 */
115 	CGRP_ROOT_MEMORY_LOCAL_EVENTS = (1 << 17),
116 
117 	/*
118 	 * Enable recursive subtree protection
119 	 */
120 	CGRP_ROOT_MEMORY_RECURSIVE_PROT = (1 << 18),
121 
122 	/*
123 	 * Enable hugetlb accounting for the memory controller.
124 	 */
125 	CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING = (1 << 19),
126 
127 	/*
128 	 * Enable legacy local pids.events.
129 	 */
130 	CGRP_ROOT_PIDS_LOCAL_EVENTS = (1 << 20),
131 };
132 
133 /* cftype->flags */
134 enum {
135 	CFTYPE_ONLY_ON_ROOT	= (1 << 0),	/* only create on root cgrp */
136 	CFTYPE_NOT_ON_ROOT	= (1 << 1),	/* don't create on root cgrp */
137 	CFTYPE_NS_DELEGATABLE	= (1 << 2),	/* writeable beyond delegation boundaries */
138 
139 	CFTYPE_NO_PREFIX	= (1 << 3),	/* (DON'T USE FOR NEW FILES) no subsys prefix */
140 	CFTYPE_WORLD_WRITABLE	= (1 << 4),	/* (DON'T USE FOR NEW FILES) S_IWUGO */
141 	CFTYPE_DEBUG		= (1 << 5),	/* create when cgroup_debug */
142 
143 	/* internal flags, do not use outside cgroup core proper */
144 	__CFTYPE_ONLY_ON_DFL	= (1 << 16),	/* only on default hierarchy */
145 	__CFTYPE_NOT_ON_DFL	= (1 << 17),	/* not on default hierarchy */
146 	__CFTYPE_ADDED		= (1 << 18),
147 };
148 
149 enum cgroup_attach_lock_mode {
150 	/* Default */
151 	CGRP_ATTACH_LOCK_GLOBAL,
152 
153 	/* When pid=0 && threadgroup=false, see comments in cgroup_procs_write_start */
154 	CGRP_ATTACH_LOCK_NONE,
155 
156 	/* When favordynmods is on, see comments above CGRP_ROOT_FAVOR_DYNMODS */
157 	CGRP_ATTACH_LOCK_PER_THREADGROUP,
158 };
159 
160 /*
161  * cgroup_file is the handle for a file instance created in a cgroup which
162  * is used, for example, to generate file changed notifications.  This can
163  * be obtained by setting cftype->file_offset.
164  */
165 struct cgroup_file {
166 	/* do not access any fields from outside cgroup core */
167 	struct kernfs_node *kn;
168 	unsigned long notified_at;
169 	struct timer_list notify_timer;
170 };
171 
172 /*
173  * Per-subsystem/per-cgroup state maintained by the system.  This is the
174  * fundamental structural building block that controllers deal with.
175  *
176  * Fields marked with "PI:" are public and immutable and may be accessed
177  * directly without synchronization.
178  */
179 struct cgroup_subsys_state {
180 	/* PI: the cgroup that this css is attached to */
181 	struct cgroup *cgroup;
182 
183 	/* PI: the cgroup subsystem that this css is attached to */
184 	struct cgroup_subsys *ss;
185 
186 	/* reference count - access via css_[try]get() and css_put() */
187 	struct percpu_ref refcnt;
188 
189 	/*
190 	 * Depending on the context, this field is initialized
191 	 * via css_rstat_init() at different places:
192 	 *
193 	 * when css is associated with cgroup::self
194 	 *   when css->cgroup is the root cgroup
195 	 *     performed in cgroup_init()
196 	 *   when css->cgroup is not the root cgroup
197 	 *     performed in cgroup_create()
198 	 * when css is associated with a subsystem
199 	 *   when css->cgroup is the root cgroup
200 	 *     performed in cgroup_init_subsys() in the non-early path
201 	 *   when css->cgroup is not the root cgroup
202 	 *     performed in css_create()
203 	 */
204 	struct css_rstat_cpu __percpu *rstat_cpu;
205 
206 	/*
207 	 * siblings list anchored at the parent's ->children
208 	 *
209 	 * linkage is protected by cgroup_mutex or RCU
210 	 */
211 	struct list_head sibling;
212 	struct list_head children;
213 
214 	/*
215 	 * PI: Subsys-unique ID.  0 is unused and root is always 1.  The
216 	 * matching css can be looked up using css_from_id().
217 	 */
218 	int id;
219 
220 	unsigned int flags;
221 
222 	/*
223 	 * Monotonically increasing unique serial number which defines a
224 	 * uniform order among all csses.  It's guaranteed that all
225 	 * ->children lists are in the ascending order of ->serial_nr and
226 	 * used to allow interrupting and resuming iterations.
227 	 */
228 	u64 serial_nr;
229 
230 	/*
231 	 * Incremented by online self and children.  Used to guarantee that
232 	 * parents are not offlined before their children.
233 	 */
234 	atomic_t online_cnt;
235 
236 	/* percpu_ref killing and RCU release */
237 	struct work_struct destroy_work;
238 	struct rcu_work destroy_rwork;
239 
240 	/*
241 	 * PI: the parent css.	Placed here for cache proximity to following
242 	 * fields of the containing structure.
243 	 */
244 	struct cgroup_subsys_state *parent;
245 
246 	/*
247 	 * Keep track of total numbers of visible descendant CSSes.
248 	 * The total number of dying CSSes is tracked in
249 	 * css->cgroup->nr_dying_subsys[ssid].
250 	 * Protected by cgroup_mutex.
251 	 */
252 	int nr_descendants;
253 
254 	/*
255 	 * A singly-linked list of css structures to be rstat flushed.
256 	 * This is a scratch field to be used exclusively by
257 	 * css_rstat_flush().
258 	 *
259 	 * Protected by rstat_base_lock when css is cgroup::self.
260 	 * Protected by css->ss->rstat_ss_lock otherwise.
261 	 */
262 	struct cgroup_subsys_state *rstat_flush_next;
263 };
264 
265 /*
266  * A css_set is a structure holding pointers to a set of
267  * cgroup_subsys_state objects. This saves space in the task struct
268  * object and speeds up fork()/exit(), since a single inc/dec and a
269  * list_add()/del() can bump the reference count on the entire cgroup
270  * set for a task.
271  */
272 struct css_set {
273 	/*
274 	 * Set of subsystem states, one for each subsystem. This array is
275 	 * immutable after creation apart from the init_css_set during
276 	 * subsystem registration (at boot time).
277 	 */
278 	struct cgroup_subsys_state *subsys[CGROUP_SUBSYS_COUNT];
279 
280 	/* reference count */
281 	refcount_t refcount;
282 
283 	/*
284 	 * For a domain cgroup, the following points to self.  If threaded,
285 	 * to the matching cset of the nearest domain ancestor.  The
286 	 * dom_cset provides access to the domain cgroup and its csses to
287 	 * which domain level resource consumptions should be charged.
288 	 */
289 	struct css_set *dom_cset;
290 
291 	/* the default cgroup associated with this css_set */
292 	struct cgroup *dfl_cgrp;
293 
294 	/* internal task count, protected by css_set_lock */
295 	int nr_tasks;
296 
297 	/*
298 	 * Lists running through all tasks using this cgroup group.
299 	 * mg_tasks lists tasks which belong to this cset but are in the
300 	 * process of being migrated out or in.  Protected by
301 	 * css_set_lock, but, during migration, once tasks are moved to
302 	 * mg_tasks, it can be read safely while holding cgroup_mutex.
303 	 */
304 	struct list_head tasks;
305 	struct list_head mg_tasks;
306 	struct list_head dying_tasks;
307 
308 	/* all css_task_iters currently walking this cset */
309 	struct list_head task_iters;
310 
311 	/*
312 	 * On the default hierarchy, ->subsys[ssid] may point to a css
313 	 * attached to an ancestor instead of the cgroup this css_set is
314 	 * associated with.  The following node is anchored at
315 	 * ->subsys[ssid]->cgroup->e_csets[ssid] and provides a way to
316 	 * iterate through all css's attached to a given cgroup.
317 	 */
318 	struct list_head e_cset_node[CGROUP_SUBSYS_COUNT];
319 
320 	/* all threaded csets whose ->dom_cset points to this cset */
321 	struct list_head threaded_csets;
322 	struct list_head threaded_csets_node;
323 
324 	/*
325 	 * List running through all cgroup groups in the same hash
326 	 * slot. Protected by css_set_lock
327 	 */
328 	struct hlist_node hlist;
329 
330 	/*
331 	 * List of cgrp_cset_links pointing at cgroups referenced from this
332 	 * css_set.  Protected by css_set_lock.
333 	 */
334 	struct list_head cgrp_links;
335 
336 	/*
337 	 * List of csets participating in the on-going migration either as
338 	 * source or destination.  Protected by cgroup_mutex.
339 	 */
340 	struct list_head mg_src_preload_node;
341 	struct list_head mg_dst_preload_node;
342 	struct list_head mg_node;
343 
344 	/*
345 	 * If this cset is acting as the source of migration the following
346 	 * two fields are set.  mg_src_cgrp and mg_dst_cgrp are
347 	 * respectively the source and destination cgroups of the on-going
348 	 * migration.  mg_dst_cset is the destination cset the target tasks
349 	 * on this cset should be migrated to.  Protected by cgroup_mutex.
350 	 */
351 	struct cgroup *mg_src_cgrp;
352 	struct cgroup *mg_dst_cgrp;
353 	struct css_set *mg_dst_cset;
354 
355 	/* dead and being drained, ignore for migration */
356 	bool dead;
357 
358 	/* For RCU-protected deletion */
359 	struct rcu_head rcu_head;
360 };
361 
362 struct cgroup_base_stat {
363 	struct task_cputime cputime;
364 
365 #ifdef CONFIG_SCHED_CORE
366 	u64 forceidle_sum;
367 #endif
368 	u64 ntime;
369 };
370 
371 /*
372  * rstat - cgroup scalable recursive statistics.  Accounting is done
373  * per-cpu in css_rstat_cpu which is then lazily propagated up the
374  * hierarchy on reads.
375  *
376  * When a stat gets updated, the css_rstat_cpu and its ancestors are
377  * linked into the updated tree.  On the following read, propagation only
378  * considers and consumes the updated tree.  This makes reading O(the
379  * number of descendants which have been active since last read) instead of
380  * O(the total number of descendants).
381  *
382  * This is important because there can be a lot of (draining) cgroups which
383  * aren't active and stat may be read frequently.  The combination can
384  * become very expensive.  By propagating selectively, increasing reading
385  * frequency decreases the cost of each read.
386  *
387  * This struct hosts both the fields which implement the above -
388  * updated_children and updated_next.
389  */
390 struct css_rstat_cpu {
391 	/*
392 	 * Child cgroups with stat updates on this cpu since the last read
393 	 * are linked on the parent's ->updated_children through
394 	 * ->updated_next. updated_children is terminated by its container css.
395 	 */
396 	struct cgroup_subsys_state *updated_children;
397 	struct cgroup_subsys_state *updated_next;	/* NULL if not on the list */
398 
399 	struct llist_node lnode;		/* lockless list for update */
400 	struct cgroup_subsys_state *owner;	/* back pointer */
401 };
402 
403 /*
404  * This struct hosts the fields which track basic resource statistics on
405  * top of it - bsync, bstat and last_bstat.
406  */
407 struct cgroup_rstat_base_cpu {
408 	/*
409 	 * ->bsync protects ->bstat.  These are the only fields which get
410 	 * updated in the hot path.
411 	 */
412 	struct u64_stats_sync bsync;
413 	struct cgroup_base_stat bstat;
414 
415 	/*
416 	 * Snapshots at the last reading.  These are used to calculate the
417 	 * deltas to propagate to the global counters.
418 	 */
419 	struct cgroup_base_stat last_bstat;
420 
421 	/*
422 	 * This field is used to record the cumulative per-cpu time of
423 	 * the cgroup and its descendants. Currently it can be read via
424 	 * eBPF/drgn etc, and we are still trying to determine how to
425 	 * expose it in the cgroupfs interface.
426 	 */
427 	struct cgroup_base_stat subtree_bstat;
428 
429 	/*
430 	 * Snapshots at the last reading. These are used to calculate the
431 	 * deltas to propagate to the per-cpu subtree_bstat.
432 	 */
433 	struct cgroup_base_stat last_subtree_bstat;
434 };
435 
436 struct cgroup_freezer_state {
437 	/* Should the cgroup and its descendants be frozen. */
438 	bool freeze;
439 
440 	/* Should the cgroup actually be frozen? */
441 	bool e_freeze;
442 
443 	/* Fields below are protected by css_set_lock */
444 
445 	/* Number of frozen descendant cgroups */
446 	int nr_frozen_descendants;
447 
448 	/*
449 	 * Number of tasks, which are counted as frozen:
450 	 * frozen, SIGSTOPped, and PTRACEd.
451 	 */
452 	int nr_frozen_tasks;
453 
454 	/* Freeze time data consistency protection */
455 	seqcount_t freeze_seq;
456 
457 	/*
458 	 * Most recent time the cgroup was requested to freeze.
459 	 * Accesses guarded by freeze_seq counter. Writes serialized
460 	 * by css_set_lock.
461 	 */
462 	u64 freeze_start_nsec;
463 
464 	/*
465 	 * Total duration the cgroup has spent freezing.
466 	 * Accesses guarded by freeze_seq counter. Writes serialized
467 	 * by css_set_lock.
468 	 */
469 	u64 frozen_nsec;
470 };
471 
472 struct cgroup {
473 	/* self css with NULL ->ss, points back to this cgroup */
474 	struct cgroup_subsys_state self;
475 
476 	unsigned long flags;		/* "unsigned long" so bitops work */
477 
478 	/*
479 	 * The depth this cgroup is at.  The root is at depth zero and each
480 	 * step down the hierarchy increments the level.  This along with
481 	 * ancestors[] can determine whether a given cgroup is a
482 	 * descendant of another without traversing the hierarchy.
483 	 */
484 	int level;
485 
486 	/* Maximum allowed descent tree depth */
487 	int max_depth;
488 
489 	/*
490 	 * Keep track of total numbers of visible and dying descent cgroups.
491 	 * Dying cgroups are cgroups which were deleted by a user,
492 	 * but are still existing because someone else is holding a reference.
493 	 * max_descendants is a maximum allowed number of descent cgroups.
494 	 *
495 	 * nr_descendants and nr_dying_descendants are protected
496 	 * by cgroup_mutex and css_set_lock. It's fine to read them holding
497 	 * any of cgroup_mutex and css_set_lock; for writing both locks
498 	 * should be held.
499 	 */
500 	int nr_descendants;
501 	int nr_dying_descendants;
502 	int max_descendants;
503 
504 	/*
505 	 * Each non-empty css_set associated with this cgroup contributes
506 	 * one to nr_populated_csets.  The counter is zero iff this cgroup
507 	 * doesn't have any tasks.
508 	 *
509 	 * All children which have non-zero nr_populated_csets and/or
510 	 * nr_populated_children of their own contribute one to either
511 	 * nr_populated_domain_children or nr_populated_threaded_children
512 	 * depending on their type.  Each counter is zero iff all cgroups
513 	 * of the type in the subtree proper don't have any tasks.
514 	 */
515 	int nr_populated_csets;
516 	int nr_populated_domain_children;
517 	int nr_populated_threaded_children;
518 
519 	int nr_threaded_children;	/* # of live threaded child cgroups */
520 
521 	/* sequence number for cgroup.kill, serialized by css_set_lock. */
522 	unsigned int kill_seq;
523 
524 	struct kernfs_node *kn;		/* cgroup kernfs entry */
525 	struct cgroup_file procs_file;	/* handle for "cgroup.procs" */
526 	struct cgroup_file events_file;	/* handle for "cgroup.events" */
527 
528 	/* handles for "{cpu,memory,io,irq}.pressure" */
529 	struct cgroup_file psi_files[NR_PSI_RESOURCES];
530 
531 	/*
532 	 * The bitmask of subsystems enabled on the child cgroups.
533 	 * ->subtree_control is the one configured through
534 	 * "cgroup.subtree_control" while ->subtree_ss_mask is the effective
535 	 * one which may have more subsystems enabled.  Controller knobs
536 	 * are made available iff it's enabled in ->subtree_control.
537 	 */
538 	u16 subtree_control;
539 	u16 subtree_ss_mask;
540 	u16 old_subtree_control;
541 	u16 old_subtree_ss_mask;
542 
543 	/* Private pointers for each registered subsystem */
544 	struct cgroup_subsys_state __rcu *subsys[CGROUP_SUBSYS_COUNT];
545 
546 	/*
547 	 * Keep track of total number of dying CSSes at and below this cgroup.
548 	 * Protected by cgroup_mutex.
549 	 */
550 	int nr_dying_subsys[CGROUP_SUBSYS_COUNT];
551 
552 	struct cgroup_root *root;
553 
554 	/*
555 	 * List of cgrp_cset_links pointing at css_sets with tasks in this
556 	 * cgroup.  Protected by css_set_lock.
557 	 */
558 	struct list_head cset_links;
559 
560 	/*
561 	 * On the default hierarchy, a css_set for a cgroup with some
562 	 * susbsys disabled will point to css's which are associated with
563 	 * the closest ancestor which has the subsys enabled.  The
564 	 * following lists all css_sets which point to this cgroup's css
565 	 * for the given subsystem.
566 	 */
567 	struct list_head e_csets[CGROUP_SUBSYS_COUNT];
568 
569 	/*
570 	 * If !threaded, self.  If threaded, it points to the nearest
571 	 * domain ancestor.  Inside a threaded subtree, cgroups are exempt
572 	 * from process granularity and no-internal-task constraint.
573 	 * Domain level resource consumptions which aren't tied to a
574 	 * specific task are charged to the dom_cgrp.
575 	 */
576 	struct cgroup *dom_cgrp;
577 	struct cgroup *old_dom_cgrp;		/* used while enabling threaded */
578 
579 	/*
580 	 * Depending on the context, this field is initialized via
581 	 * css_rstat_init() at different places:
582 	 *
583 	 * when cgroup is the root cgroup
584 	 *   performed in cgroup_setup_root()
585 	 * otherwise
586 	 *   performed in cgroup_create()
587 	 */
588 	struct cgroup_rstat_base_cpu __percpu *rstat_base_cpu;
589 
590 	/*
591 	 * Add padding to keep the read mostly rstat per-cpu pointer on a
592 	 * different cacheline than the following *bstat fields which can have
593 	 * frequent updates.
594 	 */
595 	CACHELINE_PADDING(_pad_);
596 
597 	/* cgroup basic resource statistics */
598 	struct cgroup_base_stat last_bstat;
599 	struct cgroup_base_stat bstat;
600 	struct prev_cputime prev_cputime;	/* for printing out cputime */
601 
602 	/*
603 	 * list of pidlists, up to two for each namespace (one for procs, one
604 	 * for tasks); created on demand.
605 	 */
606 	struct list_head pidlists;
607 	struct mutex pidlist_mutex;
608 
609 	/* used to wait for offlining of csses */
610 	wait_queue_head_t offline_waitq;
611 
612 	/* used to schedule release agent */
613 	struct work_struct release_agent_work;
614 
615 	/* used to track pressure stalls */
616 	struct psi_group *psi;
617 
618 	/* used to store eBPF programs */
619 	struct cgroup_bpf bpf;
620 
621 	/* Used to store internal freezer state */
622 	struct cgroup_freezer_state freezer;
623 
624 #ifdef CONFIG_BPF_SYSCALL
625 	struct bpf_local_storage __rcu  *bpf_cgrp_storage;
626 #endif
627 
628 	/* All ancestors including self */
629 	struct cgroup *ancestors[];
630 };
631 
632 /*
633  * A cgroup_root represents the root of a cgroup hierarchy, and may be
634  * associated with a kernfs_root to form an active hierarchy.  This is
635  * internal to cgroup core.  Don't access directly from controllers.
636  */
637 struct cgroup_root {
638 	struct kernfs_root *kf_root;
639 
640 	/* The bitmask of subsystems attached to this hierarchy */
641 	unsigned int subsys_mask;
642 
643 	/* Unique id for this hierarchy. */
644 	int hierarchy_id;
645 
646 	/* A list running through the active hierarchies */
647 	struct list_head root_list;
648 	struct rcu_head rcu;	/* Must be near the top */
649 
650 	/*
651 	 * The root cgroup. The containing cgroup_root will be destroyed on its
652 	 * release. cgrp->ancestors[0] will be used overflowing into the
653 	 * following field. cgrp_ancestor_storage must immediately follow.
654 	 */
655 	struct cgroup cgrp;
656 
657 	/* must follow cgrp for cgrp->ancestors[0], see above */
658 	struct cgroup *cgrp_ancestor_storage;
659 
660 	/* Number of cgroups in the hierarchy, used only for /proc/cgroups */
661 	atomic_t nr_cgrps;
662 
663 	/* Hierarchy-specific flags */
664 	unsigned int flags;
665 
666 	/* The path to use for release notifications. */
667 	char release_agent_path[PATH_MAX];
668 
669 	/* The name for this hierarchy - may be empty */
670 	char name[MAX_CGROUP_ROOT_NAMELEN];
671 };
672 
673 /*
674  * struct cftype: handler definitions for cgroup control files
675  *
676  * When reading/writing to a file:
677  *	- the cgroup to use is file->f_path.dentry->d_parent->d_fsdata
678  *	- the 'cftype' of the file is file->f_path.dentry->d_fsdata
679  */
680 struct cftype {
681 	/*
682 	 * Name of the subsystem is prepended in cgroup_file_name().
683 	 * Zero length string indicates end of cftype array.
684 	 */
685 	char name[MAX_CFTYPE_NAME];
686 	unsigned long private;
687 
688 	/*
689 	 * The maximum length of string, excluding trailing nul, that can
690 	 * be passed to write.  If < PAGE_SIZE-1, PAGE_SIZE-1 is assumed.
691 	 */
692 	size_t max_write_len;
693 
694 	/* CFTYPE_* flags */
695 	unsigned int flags;
696 
697 	/*
698 	 * If non-zero, should contain the offset from the start of css to
699 	 * a struct cgroup_file field.  cgroup will record the handle of
700 	 * the created file into it.  The recorded handle can be used as
701 	 * long as the containing css remains accessible.
702 	 */
703 	unsigned int file_offset;
704 
705 	/*
706 	 * Fields used for internal bookkeeping.  Initialized automatically
707 	 * during registration.
708 	 */
709 	struct cgroup_subsys *ss;	/* NULL for cgroup core files */
710 	struct list_head node;		/* anchored at ss->cfts */
711 	struct kernfs_ops *kf_ops;
712 
713 	int (*open)(struct kernfs_open_file *of);
714 	void (*release)(struct kernfs_open_file *of);
715 
716 	/*
717 	 * read_u64() is a shortcut for the common case of returning a
718 	 * single integer. Use it in place of read()
719 	 */
720 	u64 (*read_u64)(struct cgroup_subsys_state *css, struct cftype *cft);
721 	/*
722 	 * read_s64() is a signed version of read_u64()
723 	 */
724 	s64 (*read_s64)(struct cgroup_subsys_state *css, struct cftype *cft);
725 
726 	/* generic seq_file read interface */
727 	int (*seq_show)(struct seq_file *sf, void *v);
728 
729 	/* optional ops, implement all or none */
730 	void *(*seq_start)(struct seq_file *sf, loff_t *ppos);
731 	void *(*seq_next)(struct seq_file *sf, void *v, loff_t *ppos);
732 	void (*seq_stop)(struct seq_file *sf, void *v);
733 
734 	/*
735 	 * write_u64() is a shortcut for the common case of accepting
736 	 * a single integer (as parsed by simple_strtoull) from
737 	 * userspace. Use in place of write(); return 0 or error.
738 	 */
739 	int (*write_u64)(struct cgroup_subsys_state *css, struct cftype *cft,
740 			 u64 val);
741 	/*
742 	 * write_s64() is a signed version of write_u64()
743 	 */
744 	int (*write_s64)(struct cgroup_subsys_state *css, struct cftype *cft,
745 			 s64 val);
746 
747 	/*
748 	 * write() is the generic write callback which maps directly to
749 	 * kernfs write operation and overrides all other operations.
750 	 * Maximum write size is determined by ->max_write_len.  Use
751 	 * of_css/cft() to access the associated css and cft.
752 	 */
753 	ssize_t (*write)(struct kernfs_open_file *of,
754 			 char *buf, size_t nbytes, loff_t off);
755 
756 	__poll_t (*poll)(struct kernfs_open_file *of,
757 			 struct poll_table_struct *pt);
758 
759 	struct lock_class_key	lockdep_key;
760 };
761 
762 /*
763  * Control Group subsystem type.
764  * See Documentation/admin-guide/cgroup-v1/cgroups.rst for details
765  */
766 struct cgroup_subsys {
767 	struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state *parent_css);
768 	int (*css_online)(struct cgroup_subsys_state *css);
769 	void (*css_offline)(struct cgroup_subsys_state *css);
770 	void (*css_released)(struct cgroup_subsys_state *css);
771 	void (*css_free)(struct cgroup_subsys_state *css);
772 	void (*css_reset)(struct cgroup_subsys_state *css);
773 	void (*css_killed)(struct cgroup_subsys_state *css);
774 	void (*css_rstat_flush)(struct cgroup_subsys_state *css, int cpu);
775 	int (*css_extra_stat_show)(struct seq_file *seq,
776 				   struct cgroup_subsys_state *css);
777 	int (*css_local_stat_show)(struct seq_file *seq,
778 				   struct cgroup_subsys_state *css);
779 
780 	int (*can_attach)(struct cgroup_taskset *tset);
781 	void (*cancel_attach)(struct cgroup_taskset *tset);
782 	void (*attach)(struct cgroup_taskset *tset);
783 	int (*can_fork)(struct task_struct *task,
784 			struct css_set *cset);
785 	void (*cancel_fork)(struct task_struct *task, struct css_set *cset);
786 	void (*fork)(struct task_struct *task);
787 	void (*exit)(struct task_struct *task);
788 	void (*release)(struct task_struct *task);
789 	void (*bind)(struct cgroup_subsys_state *root_css);
790 
791 	bool early_init:1;
792 
793 	/*
794 	 * If %true, the controller, on the default hierarchy, doesn't show
795 	 * up in "cgroup.controllers" or "cgroup.subtree_control", is
796 	 * implicitly enabled on all cgroups on the default hierarchy, and
797 	 * bypasses the "no internal process" constraint.  This is for
798 	 * utility type controllers which is transparent to userland.
799 	 *
800 	 * An implicit controller can be stolen from the default hierarchy
801 	 * anytime and thus must be okay with offline csses from previous
802 	 * hierarchies coexisting with csses for the current one.
803 	 */
804 	bool implicit_on_dfl:1;
805 
806 	/*
807 	 * If %true, the controller, supports threaded mode on the default
808 	 * hierarchy.  In a threaded subtree, both process granularity and
809 	 * no-internal-process constraint are ignored and a threaded
810 	 * controllers should be able to handle that.
811 	 *
812 	 * Note that as an implicit controller is automatically enabled on
813 	 * all cgroups on the default hierarchy, it should also be
814 	 * threaded.  implicit && !threaded is not supported.
815 	 */
816 	bool threaded:1;
817 
818 	/* the following two fields are initialized automatically during boot */
819 	int id;
820 	const char *name;
821 
822 	/* optional, initialized automatically during boot if not set */
823 	const char *legacy_name;
824 
825 	/* link to parent, protected by cgroup_lock() */
826 	struct cgroup_root *root;
827 
828 	/* idr for css->id */
829 	struct idr css_idr;
830 
831 	/*
832 	 * List of cftypes.  Each entry is the first entry of an array
833 	 * terminated by zero length name.
834 	 */
835 	struct list_head cfts;
836 
837 	/*
838 	 * Base cftypes which are automatically registered.  The two can
839 	 * point to the same array.
840 	 */
841 	struct cftype *dfl_cftypes;	/* for the default hierarchy */
842 	struct cftype *legacy_cftypes;	/* for the legacy hierarchies */
843 
844 	/*
845 	 * A subsystem may depend on other subsystems.  When such subsystem
846 	 * is enabled on a cgroup, the depended-upon subsystems are enabled
847 	 * together if available.  Subsystems enabled due to dependency are
848 	 * not visible to userland until explicitly enabled.  The following
849 	 * specifies the mask of subsystems that this one depends on.
850 	 */
851 	unsigned int depends_on;
852 
853 	spinlock_t rstat_ss_lock;
854 	struct llist_head __percpu *lhead; /* lockless update list head */
855 };
856 
857 extern struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
858 extern bool cgroup_enable_per_threadgroup_rwsem;
859 
860 struct cgroup_of_peak {
861 	unsigned long		value;
862 	struct list_head	list;
863 };
864 
865 /**
866  * cgroup_threadgroup_change_begin - threadgroup exclusion for cgroups
867  * @tsk: target task
868  *
869  * Allows cgroup operations to synchronize against threadgroup changes
870  * using a global percpu_rw_semaphore and a per threadgroup rw_semaphore when
871  * favordynmods is on. See the comment above CGRP_ROOT_FAVOR_DYNMODS definition.
872  */
cgroup_threadgroup_change_begin(struct task_struct * tsk)873 static inline void cgroup_threadgroup_change_begin(struct task_struct *tsk)
874 {
875 	percpu_down_read(&cgroup_threadgroup_rwsem);
876 	if (cgroup_enable_per_threadgroup_rwsem)
877 		down_read(&tsk->signal->cgroup_threadgroup_rwsem);
878 }
879 
880 /**
881  * cgroup_threadgroup_change_end - threadgroup exclusion for cgroups
882  * @tsk: target task
883  *
884  * Counterpart of cgroup_threadcgroup_change_begin().
885  */
cgroup_threadgroup_change_end(struct task_struct * tsk)886 static inline void cgroup_threadgroup_change_end(struct task_struct *tsk)
887 {
888 	if (cgroup_enable_per_threadgroup_rwsem)
889 		up_read(&tsk->signal->cgroup_threadgroup_rwsem);
890 	percpu_up_read(&cgroup_threadgroup_rwsem);
891 }
892 
893 #else	/* CONFIG_CGROUPS */
894 
895 #define CGROUP_SUBSYS_COUNT 0
896 
cgroup_threadgroup_change_begin(struct task_struct * tsk)897 static inline void cgroup_threadgroup_change_begin(struct task_struct *tsk)
898 {
899 	might_sleep();
900 }
901 
cgroup_threadgroup_change_end(struct task_struct * tsk)902 static inline void cgroup_threadgroup_change_end(struct task_struct *tsk) {}
903 
904 #endif	/* CONFIG_CGROUPS */
905 
906 #ifdef CONFIG_SOCK_CGROUP_DATA
907 
908 /*
909  * sock_cgroup_data is embedded at sock->sk_cgrp_data and contains
910  * per-socket cgroup information except for memcg association.
911  *
912  * On legacy hierarchies, net_prio and net_cls controllers directly
913  * set attributes on each sock which can then be tested by the network
914  * layer. On the default hierarchy, each sock is associated with the
915  * cgroup it was created in and the networking layer can match the
916  * cgroup directly.
917  */
918 struct sock_cgroup_data {
919 	struct cgroup	*cgroup; /* v2 */
920 #ifdef CONFIG_CGROUP_NET_CLASSID
921 	u32		classid; /* v1 */
922 #endif
923 #ifdef CONFIG_CGROUP_NET_PRIO
924 	u16		prioidx; /* v1 */
925 #endif
926 };
927 
sock_cgroup_prioidx(const struct sock_cgroup_data * skcd)928 static inline u16 sock_cgroup_prioidx(const struct sock_cgroup_data *skcd)
929 {
930 #ifdef CONFIG_CGROUP_NET_PRIO
931 	return READ_ONCE(skcd->prioidx);
932 #else
933 	return 1;
934 #endif
935 }
936 
937 #ifdef CONFIG_CGROUP_NET_CLASSID
sock_cgroup_classid(const struct sock_cgroup_data * skcd)938 static inline u32 sock_cgroup_classid(const struct sock_cgroup_data *skcd)
939 {
940 	return READ_ONCE(skcd->classid);
941 }
942 #endif
943 
sock_cgroup_set_prioidx(struct sock_cgroup_data * skcd,u16 prioidx)944 static inline void sock_cgroup_set_prioidx(struct sock_cgroup_data *skcd,
945 					   u16 prioidx)
946 {
947 #ifdef CONFIG_CGROUP_NET_PRIO
948 	WRITE_ONCE(skcd->prioidx, prioidx);
949 #endif
950 }
951 
952 #ifdef CONFIG_CGROUP_NET_CLASSID
sock_cgroup_set_classid(struct sock_cgroup_data * skcd,u32 classid)953 static inline void sock_cgroup_set_classid(struct sock_cgroup_data *skcd,
954 					   u32 classid)
955 {
956 	WRITE_ONCE(skcd->classid, classid);
957 }
958 #endif
959 
960 #else	/* CONFIG_SOCK_CGROUP_DATA */
961 
962 struct sock_cgroup_data {
963 };
964 
965 #endif	/* CONFIG_SOCK_CGROUP_DATA */
966 
967 #endif	/* _LINUX_CGROUP_DEFS_H */
968