1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/madvise.c
4 *
5 * Copyright (C) 1999 Linus Torvalds
6 * Copyright (C) 2002 Christoph Hellwig
7 */
8
9 #include <linux/mman.h>
10 #include <linux/pagemap.h>
11 #include <linux/syscalls.h>
12 #include <linux/mempolicy.h>
13 #include <linux/page-isolation.h>
14 #include <linux/page_idle.h>
15 #include <linux/userfaultfd_k.h>
16 #include <linux/hugetlb.h>
17 #include <linux/falloc.h>
18 #include <linux/fadvise.h>
19 #include <linux/sched.h>
20 #include <linux/sched/mm.h>
21 #include <linux/mm_inline.h>
22 #include <linux/string.h>
23 #include <linux/uio.h>
24 #include <linux/ksm.h>
25 #include <linux/fs.h>
26 #include <linux/file.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagewalk.h>
30 #include <linux/swap.h>
31 #include <linux/swapops.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/mmu_notifier.h>
34
35 #include <asm/tlb.h>
36
37 #include "internal.h"
38 #include "swap.h"
39
40 #define __MADV_SET_ANON_VMA_NAME (-1)
41
42 /*
43 * Maximum number of attempts we make to install guard pages before we give up
44 * and return -ERESTARTNOINTR to have userspace try again.
45 */
46 #define MAX_MADVISE_GUARD_RETRIES 3
47
48 struct madvise_walk_private {
49 struct mmu_gather *tlb;
50 bool pageout;
51 };
52
53 enum madvise_lock_mode {
54 MADVISE_NO_LOCK,
55 MADVISE_MMAP_READ_LOCK,
56 MADVISE_MMAP_WRITE_LOCK,
57 MADVISE_VMA_READ_LOCK,
58 };
59
60 struct madvise_behavior_range {
61 unsigned long start;
62 unsigned long end;
63 };
64
65 struct madvise_behavior {
66 struct mm_struct *mm;
67 int behavior;
68 struct mmu_gather *tlb;
69 enum madvise_lock_mode lock_mode;
70 struct anon_vma_name *anon_name;
71
72 /*
73 * The range over which the behaviour is currently being applied. If
74 * traversing multiple VMAs, this is updated for each.
75 */
76 struct madvise_behavior_range range;
77 /* The VMA and VMA preceding it (if applicable) currently targeted. */
78 struct vm_area_struct *prev;
79 struct vm_area_struct *vma;
80 bool lock_dropped;
81 };
82
83 #ifdef CONFIG_ANON_VMA_NAME
84 static int madvise_walk_vmas(struct madvise_behavior *madv_behavior);
85
anon_vma_name_alloc(const char * name)86 struct anon_vma_name *anon_vma_name_alloc(const char *name)
87 {
88 struct anon_vma_name *anon_name;
89 size_t count;
90
91 /* Add 1 for NUL terminator at the end of the anon_name->name */
92 count = strlen(name) + 1;
93 anon_name = kmalloc(struct_size(anon_name, name, count), GFP_KERNEL);
94 if (anon_name) {
95 kref_init(&anon_name->kref);
96 memcpy(anon_name->name, name, count);
97 }
98
99 return anon_name;
100 }
101
anon_vma_name_free(struct kref * kref)102 void anon_vma_name_free(struct kref *kref)
103 {
104 struct anon_vma_name *anon_name =
105 container_of(kref, struct anon_vma_name, kref);
106 kfree(anon_name);
107 }
108
anon_vma_name(struct vm_area_struct * vma)109 struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma)
110 {
111 if (!rwsem_is_locked(&vma->vm_mm->mmap_lock))
112 vma_assert_locked(vma);
113
114 return vma->anon_name;
115 }
116
117 /* mmap_lock should be write-locked */
replace_anon_vma_name(struct vm_area_struct * vma,struct anon_vma_name * anon_name)118 static int replace_anon_vma_name(struct vm_area_struct *vma,
119 struct anon_vma_name *anon_name)
120 {
121 struct anon_vma_name *orig_name = anon_vma_name(vma);
122
123 if (!anon_name) {
124 vma->anon_name = NULL;
125 anon_vma_name_put(orig_name);
126 return 0;
127 }
128
129 if (anon_vma_name_eq(orig_name, anon_name))
130 return 0;
131
132 vma->anon_name = anon_vma_name_reuse(anon_name);
133 anon_vma_name_put(orig_name);
134
135 return 0;
136 }
137 #else /* CONFIG_ANON_VMA_NAME */
replace_anon_vma_name(struct vm_area_struct * vma,struct anon_vma_name * anon_name)138 static int replace_anon_vma_name(struct vm_area_struct *vma,
139 struct anon_vma_name *anon_name)
140 {
141 if (anon_name)
142 return -EINVAL;
143
144 return 0;
145 }
146 #endif /* CONFIG_ANON_VMA_NAME */
147 /*
148 * Update the vm_flags or anon_name on region of a vma, splitting it or merging
149 * it as necessary. Must be called with mmap_lock held for writing.
150 */
madvise_update_vma(vm_flags_t new_flags,struct madvise_behavior * madv_behavior)151 static int madvise_update_vma(vm_flags_t new_flags,
152 struct madvise_behavior *madv_behavior)
153 {
154 struct vm_area_struct *vma = madv_behavior->vma;
155 struct madvise_behavior_range *range = &madv_behavior->range;
156 struct anon_vma_name *anon_name = madv_behavior->anon_name;
157 bool set_new_anon_name = madv_behavior->behavior == __MADV_SET_ANON_VMA_NAME;
158 VMA_ITERATOR(vmi, madv_behavior->mm, range->start);
159
160 if (new_flags == vma->vm_flags && (!set_new_anon_name ||
161 anon_vma_name_eq(anon_vma_name(vma), anon_name)))
162 return 0;
163
164 if (set_new_anon_name)
165 vma = vma_modify_name(&vmi, madv_behavior->prev, vma,
166 range->start, range->end, anon_name);
167 else
168 vma = vma_modify_flags(&vmi, madv_behavior->prev, vma,
169 range->start, range->end, new_flags);
170
171 if (IS_ERR(vma))
172 return PTR_ERR(vma);
173
174 madv_behavior->vma = vma;
175
176 /* vm_flags is protected by the mmap_lock held in write mode. */
177 vma_start_write(vma);
178 vm_flags_reset(vma, new_flags);
179 if (set_new_anon_name)
180 return replace_anon_vma_name(vma, anon_name);
181
182 return 0;
183 }
184
185 #ifdef CONFIG_SWAP
swapin_walk_pmd_entry(pmd_t * pmd,unsigned long start,unsigned long end,struct mm_walk * walk)186 static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start,
187 unsigned long end, struct mm_walk *walk)
188 {
189 struct vm_area_struct *vma = walk->private;
190 struct swap_iocb *splug = NULL;
191 pte_t *ptep = NULL;
192 spinlock_t *ptl;
193 unsigned long addr;
194
195 for (addr = start; addr < end; addr += PAGE_SIZE) {
196 pte_t pte;
197 swp_entry_t entry;
198 struct folio *folio;
199
200 if (!ptep++) {
201 ptep = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
202 if (!ptep)
203 break;
204 }
205
206 pte = ptep_get(ptep);
207 if (!is_swap_pte(pte))
208 continue;
209 entry = pte_to_swp_entry(pte);
210 if (unlikely(non_swap_entry(entry)))
211 continue;
212
213 pte_unmap_unlock(ptep, ptl);
214 ptep = NULL;
215
216 folio = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE,
217 vma, addr, &splug);
218 if (folio)
219 folio_put(folio);
220 }
221
222 if (ptep)
223 pte_unmap_unlock(ptep, ptl);
224 swap_read_unplug(splug);
225 cond_resched();
226
227 return 0;
228 }
229
230 static const struct mm_walk_ops swapin_walk_ops = {
231 .pmd_entry = swapin_walk_pmd_entry,
232 .walk_lock = PGWALK_RDLOCK,
233 };
234
shmem_swapin_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct address_space * mapping)235 static void shmem_swapin_range(struct vm_area_struct *vma,
236 unsigned long start, unsigned long end,
237 struct address_space *mapping)
238 {
239 XA_STATE(xas, &mapping->i_pages, linear_page_index(vma, start));
240 pgoff_t end_index = linear_page_index(vma, end) - 1;
241 struct folio *folio;
242 struct swap_iocb *splug = NULL;
243
244 rcu_read_lock();
245 xas_for_each(&xas, folio, end_index) {
246 unsigned long addr;
247 swp_entry_t entry;
248
249 if (!xa_is_value(folio))
250 continue;
251 entry = radix_to_swp_entry(folio);
252 /* There might be swapin error entries in shmem mapping. */
253 if (non_swap_entry(entry))
254 continue;
255
256 addr = vma->vm_start +
257 ((xas.xa_index - vma->vm_pgoff) << PAGE_SHIFT);
258 xas_pause(&xas);
259 rcu_read_unlock();
260
261 folio = read_swap_cache_async(entry, mapping_gfp_mask(mapping),
262 vma, addr, &splug);
263 if (folio)
264 folio_put(folio);
265
266 rcu_read_lock();
267 }
268 rcu_read_unlock();
269 swap_read_unplug(splug);
270 }
271 #endif /* CONFIG_SWAP */
272
mark_mmap_lock_dropped(struct madvise_behavior * madv_behavior)273 static void mark_mmap_lock_dropped(struct madvise_behavior *madv_behavior)
274 {
275 VM_WARN_ON_ONCE(madv_behavior->lock_mode == MADVISE_VMA_READ_LOCK);
276 madv_behavior->lock_dropped = true;
277 }
278
279 /*
280 * Schedule all required I/O operations. Do not wait for completion.
281 */
madvise_willneed(struct madvise_behavior * madv_behavior)282 static long madvise_willneed(struct madvise_behavior *madv_behavior)
283 {
284 struct vm_area_struct *vma = madv_behavior->vma;
285 struct mm_struct *mm = madv_behavior->mm;
286 struct file *file = vma->vm_file;
287 unsigned long start = madv_behavior->range.start;
288 unsigned long end = madv_behavior->range.end;
289 loff_t offset;
290
291 #ifdef CONFIG_SWAP
292 if (!file) {
293 walk_page_range_vma(vma, start, end, &swapin_walk_ops, vma);
294 lru_add_drain(); /* Push any new pages onto the LRU now */
295 return 0;
296 }
297
298 if (shmem_mapping(file->f_mapping)) {
299 shmem_swapin_range(vma, start, end, file->f_mapping);
300 lru_add_drain(); /* Push any new pages onto the LRU now */
301 return 0;
302 }
303 #else
304 if (!file)
305 return -EBADF;
306 #endif
307
308 if (IS_DAX(file_inode(file))) {
309 /* no bad return value, but ignore advice */
310 return 0;
311 }
312
313 /*
314 * Filesystem's fadvise may need to take various locks. We need to
315 * explicitly grab a reference because the vma (and hence the
316 * vma's reference to the file) can go away as soon as we drop
317 * mmap_lock.
318 */
319 mark_mmap_lock_dropped(madv_behavior);
320 get_file(file);
321 offset = (loff_t)(start - vma->vm_start)
322 + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
323 mmap_read_unlock(mm);
324 vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED);
325 fput(file);
326 mmap_read_lock(mm);
327 return 0;
328 }
329
can_do_file_pageout(struct vm_area_struct * vma)330 static inline bool can_do_file_pageout(struct vm_area_struct *vma)
331 {
332 if (!vma->vm_file)
333 return false;
334 /*
335 * paging out pagecache only for non-anonymous mappings that correspond
336 * to the files the calling process could (if tried) open for writing;
337 * otherwise we'd be including shared non-exclusive mappings, which
338 * opens a side channel.
339 */
340 return inode_owner_or_capable(&nop_mnt_idmap,
341 file_inode(vma->vm_file)) ||
342 file_permission(vma->vm_file, MAY_WRITE) == 0;
343 }
344
madvise_folio_pte_batch(unsigned long addr,unsigned long end,struct folio * folio,pte_t * ptep,pte_t * ptentp)345 static inline int madvise_folio_pte_batch(unsigned long addr, unsigned long end,
346 struct folio *folio, pte_t *ptep,
347 pte_t *ptentp)
348 {
349 int max_nr = (end - addr) / PAGE_SIZE;
350
351 return folio_pte_batch_flags(folio, NULL, ptep, ptentp, max_nr,
352 FPB_MERGE_YOUNG_DIRTY);
353 }
354
madvise_cold_or_pageout_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)355 static int madvise_cold_or_pageout_pte_range(pmd_t *pmd,
356 unsigned long addr, unsigned long end,
357 struct mm_walk *walk)
358 {
359 struct madvise_walk_private *private = walk->private;
360 struct mmu_gather *tlb = private->tlb;
361 bool pageout = private->pageout;
362 struct mm_struct *mm = tlb->mm;
363 struct vm_area_struct *vma = walk->vma;
364 pte_t *start_pte, *pte, ptent;
365 spinlock_t *ptl;
366 struct folio *folio = NULL;
367 LIST_HEAD(folio_list);
368 bool pageout_anon_only_filter;
369 unsigned int batch_count = 0;
370 int nr;
371
372 if (fatal_signal_pending(current))
373 return -EINTR;
374
375 pageout_anon_only_filter = pageout && !vma_is_anonymous(vma) &&
376 !can_do_file_pageout(vma);
377
378 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
379 if (pmd_trans_huge(*pmd)) {
380 pmd_t orig_pmd;
381 unsigned long next = pmd_addr_end(addr, end);
382
383 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
384 ptl = pmd_trans_huge_lock(pmd, vma);
385 if (!ptl)
386 return 0;
387
388 orig_pmd = *pmd;
389 if (is_huge_zero_pmd(orig_pmd))
390 goto huge_unlock;
391
392 if (unlikely(!pmd_present(orig_pmd))) {
393 VM_BUG_ON(thp_migration_supported() &&
394 !is_pmd_migration_entry(orig_pmd));
395 goto huge_unlock;
396 }
397
398 folio = pmd_folio(orig_pmd);
399
400 /* Do not interfere with other mappings of this folio */
401 if (folio_maybe_mapped_shared(folio))
402 goto huge_unlock;
403
404 if (pageout_anon_only_filter && !folio_test_anon(folio))
405 goto huge_unlock;
406
407 if (next - addr != HPAGE_PMD_SIZE) {
408 int err;
409
410 folio_get(folio);
411 spin_unlock(ptl);
412 folio_lock(folio);
413 err = split_folio(folio);
414 folio_unlock(folio);
415 folio_put(folio);
416 if (!err)
417 goto regular_folio;
418 return 0;
419 }
420
421 if (!pageout && pmd_young(orig_pmd)) {
422 pmdp_invalidate(vma, addr, pmd);
423 orig_pmd = pmd_mkold(orig_pmd);
424
425 set_pmd_at(mm, addr, pmd, orig_pmd);
426 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
427 }
428
429 folio_clear_referenced(folio);
430 folio_test_clear_young(folio);
431 if (folio_test_active(folio))
432 folio_set_workingset(folio);
433 if (pageout) {
434 if (folio_isolate_lru(folio)) {
435 if (folio_test_unevictable(folio))
436 folio_putback_lru(folio);
437 else
438 list_add(&folio->lru, &folio_list);
439 }
440 } else
441 folio_deactivate(folio);
442 huge_unlock:
443 spin_unlock(ptl);
444 if (pageout)
445 reclaim_pages(&folio_list);
446 return 0;
447 }
448
449 regular_folio:
450 #endif
451 tlb_change_page_size(tlb, PAGE_SIZE);
452 restart:
453 start_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
454 if (!start_pte)
455 return 0;
456 flush_tlb_batched_pending(mm);
457 arch_enter_lazy_mmu_mode();
458 for (; addr < end; pte += nr, addr += nr * PAGE_SIZE) {
459 nr = 1;
460 ptent = ptep_get(pte);
461
462 if (++batch_count == SWAP_CLUSTER_MAX) {
463 batch_count = 0;
464 if (need_resched()) {
465 arch_leave_lazy_mmu_mode();
466 pte_unmap_unlock(start_pte, ptl);
467 cond_resched();
468 goto restart;
469 }
470 }
471
472 if (pte_none(ptent))
473 continue;
474
475 if (!pte_present(ptent))
476 continue;
477
478 folio = vm_normal_folio(vma, addr, ptent);
479 if (!folio || folio_is_zone_device(folio))
480 continue;
481
482 /*
483 * If we encounter a large folio, only split it if it is not
484 * fully mapped within the range we are operating on. Otherwise
485 * leave it as is so that it can be swapped out whole. If we
486 * fail to split a folio, leave it in place and advance to the
487 * next pte in the range.
488 */
489 if (folio_test_large(folio)) {
490 nr = madvise_folio_pte_batch(addr, end, folio, pte, &ptent);
491 if (nr < folio_nr_pages(folio)) {
492 int err;
493
494 if (folio_maybe_mapped_shared(folio))
495 continue;
496 if (pageout_anon_only_filter && !folio_test_anon(folio))
497 continue;
498 if (!folio_trylock(folio))
499 continue;
500 folio_get(folio);
501 arch_leave_lazy_mmu_mode();
502 pte_unmap_unlock(start_pte, ptl);
503 start_pte = NULL;
504 err = split_folio(folio);
505 folio_unlock(folio);
506 folio_put(folio);
507 start_pte = pte =
508 pte_offset_map_lock(mm, pmd, addr, &ptl);
509 if (!start_pte)
510 break;
511 flush_tlb_batched_pending(mm);
512 arch_enter_lazy_mmu_mode();
513 if (!err)
514 nr = 0;
515 continue;
516 }
517 }
518
519 /*
520 * Do not interfere with other mappings of this folio and
521 * non-LRU folio. If we have a large folio at this point, we
522 * know it is fully mapped so if its mapcount is the same as its
523 * number of pages, it must be exclusive.
524 */
525 if (!folio_test_lru(folio) ||
526 folio_mapcount(folio) != folio_nr_pages(folio))
527 continue;
528
529 if (pageout_anon_only_filter && !folio_test_anon(folio))
530 continue;
531
532 if (!pageout && pte_young(ptent)) {
533 clear_young_dirty_ptes(vma, addr, pte, nr,
534 CYDP_CLEAR_YOUNG);
535 tlb_remove_tlb_entries(tlb, pte, nr, addr);
536 }
537
538 /*
539 * We are deactivating a folio for accelerating reclaiming.
540 * VM couldn't reclaim the folio unless we clear PG_young.
541 * As a side effect, it makes confuse idle-page tracking
542 * because they will miss recent referenced history.
543 */
544 folio_clear_referenced(folio);
545 folio_test_clear_young(folio);
546 if (folio_test_active(folio))
547 folio_set_workingset(folio);
548 if (pageout) {
549 if (folio_isolate_lru(folio)) {
550 if (folio_test_unevictable(folio))
551 folio_putback_lru(folio);
552 else
553 list_add(&folio->lru, &folio_list);
554 }
555 } else
556 folio_deactivate(folio);
557 }
558
559 if (start_pte) {
560 arch_leave_lazy_mmu_mode();
561 pte_unmap_unlock(start_pte, ptl);
562 }
563 if (pageout)
564 reclaim_pages(&folio_list);
565 cond_resched();
566
567 return 0;
568 }
569
570 static const struct mm_walk_ops cold_walk_ops = {
571 .pmd_entry = madvise_cold_or_pageout_pte_range,
572 .walk_lock = PGWALK_RDLOCK,
573 };
574
madvise_cold_page_range(struct mmu_gather * tlb,struct madvise_behavior * madv_behavior)575 static void madvise_cold_page_range(struct mmu_gather *tlb,
576 struct madvise_behavior *madv_behavior)
577
578 {
579 struct vm_area_struct *vma = madv_behavior->vma;
580 struct madvise_behavior_range *range = &madv_behavior->range;
581 struct madvise_walk_private walk_private = {
582 .pageout = false,
583 .tlb = tlb,
584 };
585
586 tlb_start_vma(tlb, vma);
587 walk_page_range_vma(vma, range->start, range->end, &cold_walk_ops,
588 &walk_private);
589 tlb_end_vma(tlb, vma);
590 }
591
can_madv_lru_vma(struct vm_area_struct * vma)592 static inline bool can_madv_lru_vma(struct vm_area_struct *vma)
593 {
594 return !(vma->vm_flags & (VM_LOCKED|VM_PFNMAP|VM_HUGETLB));
595 }
596
madvise_cold(struct madvise_behavior * madv_behavior)597 static long madvise_cold(struct madvise_behavior *madv_behavior)
598 {
599 struct vm_area_struct *vma = madv_behavior->vma;
600 struct mmu_gather tlb;
601
602 if (!can_madv_lru_vma(vma))
603 return -EINVAL;
604
605 lru_add_drain();
606 tlb_gather_mmu(&tlb, madv_behavior->mm);
607 madvise_cold_page_range(&tlb, madv_behavior);
608 tlb_finish_mmu(&tlb);
609
610 return 0;
611 }
612
madvise_pageout_page_range(struct mmu_gather * tlb,struct vm_area_struct * vma,struct madvise_behavior_range * range)613 static void madvise_pageout_page_range(struct mmu_gather *tlb,
614 struct vm_area_struct *vma,
615 struct madvise_behavior_range *range)
616 {
617 struct madvise_walk_private walk_private = {
618 .pageout = true,
619 .tlb = tlb,
620 };
621
622 tlb_start_vma(tlb, vma);
623 walk_page_range_vma(vma, range->start, range->end, &cold_walk_ops,
624 &walk_private);
625 tlb_end_vma(tlb, vma);
626 }
627
madvise_pageout(struct madvise_behavior * madv_behavior)628 static long madvise_pageout(struct madvise_behavior *madv_behavior)
629 {
630 struct mmu_gather tlb;
631 struct vm_area_struct *vma = madv_behavior->vma;
632
633 if (!can_madv_lru_vma(vma))
634 return -EINVAL;
635
636 /*
637 * If the VMA belongs to a private file mapping, there can be private
638 * dirty pages which can be paged out if even this process is neither
639 * owner nor write capable of the file. We allow private file mappings
640 * further to pageout dirty anon pages.
641 */
642 if (!vma_is_anonymous(vma) && (!can_do_file_pageout(vma) &&
643 (vma->vm_flags & VM_MAYSHARE)))
644 return 0;
645
646 lru_add_drain();
647 tlb_gather_mmu(&tlb, madv_behavior->mm);
648 madvise_pageout_page_range(&tlb, vma, &madv_behavior->range);
649 tlb_finish_mmu(&tlb);
650
651 return 0;
652 }
653
madvise_free_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)654 static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr,
655 unsigned long end, struct mm_walk *walk)
656
657 {
658 const cydp_t cydp_flags = CYDP_CLEAR_YOUNG | CYDP_CLEAR_DIRTY;
659 struct mmu_gather *tlb = walk->private;
660 struct mm_struct *mm = tlb->mm;
661 struct vm_area_struct *vma = walk->vma;
662 spinlock_t *ptl;
663 pte_t *start_pte, *pte, ptent;
664 struct folio *folio;
665 int nr_swap = 0;
666 unsigned long next;
667 int nr, max_nr;
668
669 next = pmd_addr_end(addr, end);
670 if (pmd_trans_huge(*pmd))
671 if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next))
672 return 0;
673
674 tlb_change_page_size(tlb, PAGE_SIZE);
675 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
676 if (!start_pte)
677 return 0;
678 flush_tlb_batched_pending(mm);
679 arch_enter_lazy_mmu_mode();
680 for (; addr != end; pte += nr, addr += PAGE_SIZE * nr) {
681 nr = 1;
682 ptent = ptep_get(pte);
683
684 if (pte_none(ptent))
685 continue;
686 /*
687 * If the pte has swp_entry, just clear page table to
688 * prevent swap-in which is more expensive rather than
689 * (page allocation + zeroing).
690 */
691 if (!pte_present(ptent)) {
692 swp_entry_t entry;
693
694 entry = pte_to_swp_entry(ptent);
695 if (!non_swap_entry(entry)) {
696 max_nr = (end - addr) / PAGE_SIZE;
697 nr = swap_pte_batch(pte, max_nr, ptent);
698 nr_swap -= nr;
699 free_swap_and_cache_nr(entry, nr);
700 clear_not_present_full_ptes(mm, addr, pte, nr, tlb->fullmm);
701 } else if (is_hwpoison_entry(entry) ||
702 is_poisoned_swp_entry(entry)) {
703 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
704 }
705 continue;
706 }
707
708 folio = vm_normal_folio(vma, addr, ptent);
709 if (!folio || folio_is_zone_device(folio))
710 continue;
711
712 /*
713 * If we encounter a large folio, only split it if it is not
714 * fully mapped within the range we are operating on. Otherwise
715 * leave it as is so that it can be marked as lazyfree. If we
716 * fail to split a folio, leave it in place and advance to the
717 * next pte in the range.
718 */
719 if (folio_test_large(folio)) {
720 nr = madvise_folio_pte_batch(addr, end, folio, pte, &ptent);
721 if (nr < folio_nr_pages(folio)) {
722 int err;
723
724 if (folio_maybe_mapped_shared(folio))
725 continue;
726 if (!folio_trylock(folio))
727 continue;
728 folio_get(folio);
729 arch_leave_lazy_mmu_mode();
730 pte_unmap_unlock(start_pte, ptl);
731 start_pte = NULL;
732 err = split_folio(folio);
733 folio_unlock(folio);
734 folio_put(folio);
735 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
736 start_pte = pte;
737 if (!start_pte)
738 break;
739 flush_tlb_batched_pending(mm);
740 arch_enter_lazy_mmu_mode();
741 if (!err)
742 nr = 0;
743 continue;
744 }
745 }
746
747 if (folio_test_swapcache(folio) || folio_test_dirty(folio)) {
748 if (!folio_trylock(folio))
749 continue;
750 /*
751 * If we have a large folio at this point, we know it is
752 * fully mapped so if its mapcount is the same as its
753 * number of pages, it must be exclusive.
754 */
755 if (folio_mapcount(folio) != folio_nr_pages(folio)) {
756 folio_unlock(folio);
757 continue;
758 }
759
760 if (folio_test_swapcache(folio) &&
761 !folio_free_swap(folio)) {
762 folio_unlock(folio);
763 continue;
764 }
765
766 folio_clear_dirty(folio);
767 folio_unlock(folio);
768 }
769
770 if (pte_young(ptent) || pte_dirty(ptent)) {
771 clear_young_dirty_ptes(vma, addr, pte, nr, cydp_flags);
772 tlb_remove_tlb_entries(tlb, pte, nr, addr);
773 }
774 folio_mark_lazyfree(folio);
775 }
776
777 if (nr_swap)
778 add_mm_counter(mm, MM_SWAPENTS, nr_swap);
779 if (start_pte) {
780 arch_leave_lazy_mmu_mode();
781 pte_unmap_unlock(start_pte, ptl);
782 }
783 cond_resched();
784
785 return 0;
786 }
787
get_walk_lock(enum madvise_lock_mode mode)788 static inline enum page_walk_lock get_walk_lock(enum madvise_lock_mode mode)
789 {
790 switch (mode) {
791 case MADVISE_VMA_READ_LOCK:
792 return PGWALK_VMA_RDLOCK_VERIFY;
793 case MADVISE_MMAP_READ_LOCK:
794 return PGWALK_RDLOCK;
795 default:
796 /* Other modes don't require fixing up the walk_lock */
797 WARN_ON_ONCE(1);
798 return PGWALK_RDLOCK;
799 }
800 }
801
madvise_free_single_vma(struct madvise_behavior * madv_behavior)802 static int madvise_free_single_vma(struct madvise_behavior *madv_behavior)
803 {
804 struct mm_struct *mm = madv_behavior->mm;
805 struct vm_area_struct *vma = madv_behavior->vma;
806 unsigned long start_addr = madv_behavior->range.start;
807 unsigned long end_addr = madv_behavior->range.end;
808 struct mmu_notifier_range range;
809 struct mmu_gather *tlb = madv_behavior->tlb;
810 struct mm_walk_ops walk_ops = {
811 .pmd_entry = madvise_free_pte_range,
812 };
813
814 /* MADV_FREE works for only anon vma at the moment */
815 if (!vma_is_anonymous(vma))
816 return -EINVAL;
817
818 range.start = max(vma->vm_start, start_addr);
819 if (range.start >= vma->vm_end)
820 return -EINVAL;
821 range.end = min(vma->vm_end, end_addr);
822 if (range.end <= vma->vm_start)
823 return -EINVAL;
824 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
825 range.start, range.end);
826
827 lru_add_drain();
828 update_hiwater_rss(mm);
829
830 mmu_notifier_invalidate_range_start(&range);
831 tlb_start_vma(tlb, vma);
832 walk_ops.walk_lock = get_walk_lock(madv_behavior->lock_mode);
833 walk_page_range_vma(vma, range.start, range.end,
834 &walk_ops, tlb);
835 tlb_end_vma(tlb, vma);
836 mmu_notifier_invalidate_range_end(&range);
837 return 0;
838 }
839
840 /*
841 * Application no longer needs these pages. If the pages are dirty,
842 * it's OK to just throw them away. The app will be more careful about
843 * data it wants to keep. Be sure to free swap resources too. The
844 * zap_page_range_single call sets things up for shrink_active_list to actually
845 * free these pages later if no one else has touched them in the meantime,
846 * although we could add these pages to a global reuse list for
847 * shrink_active_list to pick up before reclaiming other pages.
848 *
849 * NB: This interface discards data rather than pushes it out to swap,
850 * as some implementations do. This has performance implications for
851 * applications like large transactional databases which want to discard
852 * pages in anonymous maps after committing to backing store the data
853 * that was kept in them. There is no reason to write this data out to
854 * the swap area if the application is discarding it.
855 *
856 * An interface that causes the system to free clean pages and flush
857 * dirty pages is already available as msync(MS_INVALIDATE).
858 */
madvise_dontneed_single_vma(struct madvise_behavior * madv_behavior)859 static long madvise_dontneed_single_vma(struct madvise_behavior *madv_behavior)
860
861 {
862 struct madvise_behavior_range *range = &madv_behavior->range;
863 struct zap_details details = {
864 .reclaim_pt = true,
865 .even_cows = true,
866 };
867
868 zap_page_range_single_batched(
869 madv_behavior->tlb, madv_behavior->vma, range->start,
870 range->end - range->start, &details);
871 return 0;
872 }
873
874 static
madvise_dontneed_free_valid_vma(struct madvise_behavior * madv_behavior)875 bool madvise_dontneed_free_valid_vma(struct madvise_behavior *madv_behavior)
876 {
877 struct vm_area_struct *vma = madv_behavior->vma;
878 int behavior = madv_behavior->behavior;
879 struct madvise_behavior_range *range = &madv_behavior->range;
880
881 if (!is_vm_hugetlb_page(vma)) {
882 unsigned int forbidden = VM_PFNMAP;
883
884 if (behavior != MADV_DONTNEED_LOCKED)
885 forbidden |= VM_LOCKED;
886
887 return !(vma->vm_flags & forbidden);
888 }
889
890 if (behavior != MADV_DONTNEED && behavior != MADV_DONTNEED_LOCKED)
891 return false;
892 if (range->start & ~huge_page_mask(hstate_vma(vma)))
893 return false;
894
895 /*
896 * Madvise callers expect the length to be rounded up to PAGE_SIZE
897 * boundaries, and may be unaware that this VMA uses huge pages.
898 * Avoid unexpected data loss by rounding down the number of
899 * huge pages freed.
900 */
901 range->end = ALIGN_DOWN(range->end, huge_page_size(hstate_vma(vma)));
902
903 return true;
904 }
905
madvise_dontneed_free(struct madvise_behavior * madv_behavior)906 static long madvise_dontneed_free(struct madvise_behavior *madv_behavior)
907 {
908 struct mm_struct *mm = madv_behavior->mm;
909 struct madvise_behavior_range *range = &madv_behavior->range;
910 int behavior = madv_behavior->behavior;
911
912 if (!madvise_dontneed_free_valid_vma(madv_behavior))
913 return -EINVAL;
914
915 if (range->start == range->end)
916 return 0;
917
918 if (!userfaultfd_remove(madv_behavior->vma, range->start, range->end)) {
919 struct vm_area_struct *vma;
920
921 mark_mmap_lock_dropped(madv_behavior);
922 mmap_read_lock(mm);
923 madv_behavior->vma = vma = vma_lookup(mm, range->start);
924 if (!vma)
925 return -ENOMEM;
926 /*
927 * Potential end adjustment for hugetlb vma is OK as
928 * the check below keeps end within vma.
929 */
930 if (!madvise_dontneed_free_valid_vma(madv_behavior))
931 return -EINVAL;
932 if (range->end > vma->vm_end) {
933 /*
934 * Don't fail if end > vma->vm_end. If the old
935 * vma was split while the mmap_lock was
936 * released the effect of the concurrent
937 * operation may not cause madvise() to
938 * have an undefined result. There may be an
939 * adjacent next vma that we'll walk
940 * next. userfaultfd_remove() will generate an
941 * UFFD_EVENT_REMOVE repetition on the
942 * end-vma->vm_end range, but the manager can
943 * handle a repetition fine.
944 */
945 range->end = vma->vm_end;
946 }
947 /*
948 * If the memory region between start and end was
949 * originally backed by 4kB pages and then remapped to
950 * be backed by hugepages while mmap_lock was dropped,
951 * the adjustment for hugetlb vma above may have rounded
952 * end down to the start address.
953 */
954 if (range->start == range->end)
955 return 0;
956 VM_WARN_ON(range->start > range->end);
957 }
958
959 if (behavior == MADV_DONTNEED || behavior == MADV_DONTNEED_LOCKED)
960 return madvise_dontneed_single_vma(madv_behavior);
961 else if (behavior == MADV_FREE)
962 return madvise_free_single_vma(madv_behavior);
963 else
964 return -EINVAL;
965 }
966
madvise_populate(struct madvise_behavior * madv_behavior)967 static long madvise_populate(struct madvise_behavior *madv_behavior)
968 {
969 struct mm_struct *mm = madv_behavior->mm;
970 const bool write = madv_behavior->behavior == MADV_POPULATE_WRITE;
971 int locked = 1;
972 unsigned long start = madv_behavior->range.start;
973 unsigned long end = madv_behavior->range.end;
974 long pages;
975
976 while (start < end) {
977 /* Populate (prefault) page tables readable/writable. */
978 pages = faultin_page_range(mm, start, end, write, &locked);
979 if (!locked) {
980 mmap_read_lock(mm);
981 locked = 1;
982 }
983 if (pages < 0) {
984 switch (pages) {
985 case -EINTR:
986 return -EINTR;
987 case -EINVAL: /* Incompatible mappings / permissions. */
988 return -EINVAL;
989 case -EHWPOISON:
990 return -EHWPOISON;
991 case -EFAULT: /* VM_FAULT_SIGBUS or VM_FAULT_SIGSEGV */
992 return -EFAULT;
993 default:
994 pr_warn_once("%s: unhandled return value: %ld\n",
995 __func__, pages);
996 fallthrough;
997 case -ENOMEM: /* No VMA or out of memory. */
998 return -ENOMEM;
999 }
1000 }
1001 start += pages * PAGE_SIZE;
1002 }
1003 return 0;
1004 }
1005
1006 /*
1007 * Application wants to free up the pages and associated backing store.
1008 * This is effectively punching a hole into the middle of a file.
1009 */
madvise_remove(struct madvise_behavior * madv_behavior)1010 static long madvise_remove(struct madvise_behavior *madv_behavior)
1011 {
1012 loff_t offset;
1013 int error;
1014 struct file *f;
1015 struct mm_struct *mm = madv_behavior->mm;
1016 struct vm_area_struct *vma = madv_behavior->vma;
1017 unsigned long start = madv_behavior->range.start;
1018 unsigned long end = madv_behavior->range.end;
1019
1020 mark_mmap_lock_dropped(madv_behavior);
1021
1022 if (vma->vm_flags & VM_LOCKED)
1023 return -EINVAL;
1024
1025 f = vma->vm_file;
1026
1027 if (!f || !f->f_mapping || !f->f_mapping->host) {
1028 return -EINVAL;
1029 }
1030
1031 if (!vma_is_shared_maywrite(vma))
1032 return -EACCES;
1033
1034 offset = (loff_t)(start - vma->vm_start)
1035 + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
1036
1037 /*
1038 * Filesystem's fallocate may need to take i_rwsem. We need to
1039 * explicitly grab a reference because the vma (and hence the
1040 * vma's reference to the file) can go away as soon as we drop
1041 * mmap_lock.
1042 */
1043 get_file(f);
1044 if (userfaultfd_remove(vma, start, end)) {
1045 /* mmap_lock was not released by userfaultfd_remove() */
1046 mmap_read_unlock(mm);
1047 }
1048 error = vfs_fallocate(f,
1049 FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
1050 offset, end - start);
1051 fput(f);
1052 mmap_read_lock(mm);
1053 return error;
1054 }
1055
is_valid_guard_vma(struct vm_area_struct * vma,bool allow_locked)1056 static bool is_valid_guard_vma(struct vm_area_struct *vma, bool allow_locked)
1057 {
1058 vm_flags_t disallowed = VM_SPECIAL | VM_HUGETLB;
1059
1060 /*
1061 * A user could lock after setting a guard range but that's fine, as
1062 * they'd not be able to fault in. The issue arises when we try to zap
1063 * existing locked VMAs. We don't want to do that.
1064 */
1065 if (!allow_locked)
1066 disallowed |= VM_LOCKED;
1067
1068 return !(vma->vm_flags & disallowed);
1069 }
1070
is_guard_pte_marker(pte_t ptent)1071 static bool is_guard_pte_marker(pte_t ptent)
1072 {
1073 return is_pte_marker(ptent) &&
1074 is_guard_swp_entry(pte_to_swp_entry(ptent));
1075 }
1076
guard_install_pud_entry(pud_t * pud,unsigned long addr,unsigned long next,struct mm_walk * walk)1077 static int guard_install_pud_entry(pud_t *pud, unsigned long addr,
1078 unsigned long next, struct mm_walk *walk)
1079 {
1080 pud_t pudval = pudp_get(pud);
1081
1082 /* If huge return >0 so we abort the operation + zap. */
1083 return pud_trans_huge(pudval);
1084 }
1085
guard_install_pmd_entry(pmd_t * pmd,unsigned long addr,unsigned long next,struct mm_walk * walk)1086 static int guard_install_pmd_entry(pmd_t *pmd, unsigned long addr,
1087 unsigned long next, struct mm_walk *walk)
1088 {
1089 pmd_t pmdval = pmdp_get(pmd);
1090
1091 /* If huge return >0 so we abort the operation + zap. */
1092 return pmd_trans_huge(pmdval);
1093 }
1094
guard_install_pte_entry(pte_t * pte,unsigned long addr,unsigned long next,struct mm_walk * walk)1095 static int guard_install_pte_entry(pte_t *pte, unsigned long addr,
1096 unsigned long next, struct mm_walk *walk)
1097 {
1098 pte_t pteval = ptep_get(pte);
1099 unsigned long *nr_pages = (unsigned long *)walk->private;
1100
1101 /* If there is already a guard page marker, we have nothing to do. */
1102 if (is_guard_pte_marker(pteval)) {
1103 (*nr_pages)++;
1104
1105 return 0;
1106 }
1107
1108 /* If populated return >0 so we abort the operation + zap. */
1109 return 1;
1110 }
1111
guard_install_set_pte(unsigned long addr,unsigned long next,pte_t * ptep,struct mm_walk * walk)1112 static int guard_install_set_pte(unsigned long addr, unsigned long next,
1113 pte_t *ptep, struct mm_walk *walk)
1114 {
1115 unsigned long *nr_pages = (unsigned long *)walk->private;
1116
1117 /* Simply install a PTE marker, this causes segfault on access. */
1118 *ptep = make_pte_marker(PTE_MARKER_GUARD);
1119 (*nr_pages)++;
1120
1121 return 0;
1122 }
1123
1124 static const struct mm_walk_ops guard_install_walk_ops = {
1125 .pud_entry = guard_install_pud_entry,
1126 .pmd_entry = guard_install_pmd_entry,
1127 .pte_entry = guard_install_pte_entry,
1128 .install_pte = guard_install_set_pte,
1129 .walk_lock = PGWALK_RDLOCK,
1130 };
1131
madvise_guard_install(struct madvise_behavior * madv_behavior)1132 static long madvise_guard_install(struct madvise_behavior *madv_behavior)
1133 {
1134 struct vm_area_struct *vma = madv_behavior->vma;
1135 struct madvise_behavior_range *range = &madv_behavior->range;
1136 long err;
1137 int i;
1138
1139 if (!is_valid_guard_vma(vma, /* allow_locked = */false))
1140 return -EINVAL;
1141
1142 /*
1143 * If we install guard markers, then the range is no longer
1144 * empty from a page table perspective and therefore it's
1145 * appropriate to have an anon_vma.
1146 *
1147 * This ensures that on fork, we copy page tables correctly.
1148 */
1149 err = anon_vma_prepare(vma);
1150 if (err)
1151 return err;
1152
1153 /*
1154 * Optimistically try to install the guard marker pages first. If any
1155 * non-guard pages are encountered, give up and zap the range before
1156 * trying again.
1157 *
1158 * We try a few times before giving up and releasing back to userland to
1159 * loop around, releasing locks in the process to avoid contention. This
1160 * would only happen if there was a great many racing page faults.
1161 *
1162 * In most cases we should simply install the guard markers immediately
1163 * with no zap or looping.
1164 */
1165 for (i = 0; i < MAX_MADVISE_GUARD_RETRIES; i++) {
1166 unsigned long nr_pages = 0;
1167
1168 /* Returns < 0 on error, == 0 if success, > 0 if zap needed. */
1169 err = walk_page_range_mm(vma->vm_mm, range->start, range->end,
1170 &guard_install_walk_ops, &nr_pages);
1171 if (err < 0)
1172 return err;
1173
1174 if (err == 0) {
1175 unsigned long nr_expected_pages =
1176 PHYS_PFN(range->end - range->start);
1177
1178 VM_WARN_ON(nr_pages != nr_expected_pages);
1179 return 0;
1180 }
1181
1182 /*
1183 * OK some of the range have non-guard pages mapped, zap
1184 * them. This leaves existing guard pages in place.
1185 */
1186 zap_page_range_single(vma, range->start,
1187 range->end - range->start, NULL);
1188 }
1189
1190 /*
1191 * We were unable to install the guard pages due to being raced by page
1192 * faults. This should not happen ordinarily. We return to userspace and
1193 * immediately retry, relieving lock contention.
1194 */
1195 return restart_syscall();
1196 }
1197
guard_remove_pud_entry(pud_t * pud,unsigned long addr,unsigned long next,struct mm_walk * walk)1198 static int guard_remove_pud_entry(pud_t *pud, unsigned long addr,
1199 unsigned long next, struct mm_walk *walk)
1200 {
1201 pud_t pudval = pudp_get(pud);
1202
1203 /* If huge, cannot have guard pages present, so no-op - skip. */
1204 if (pud_trans_huge(pudval))
1205 walk->action = ACTION_CONTINUE;
1206
1207 return 0;
1208 }
1209
guard_remove_pmd_entry(pmd_t * pmd,unsigned long addr,unsigned long next,struct mm_walk * walk)1210 static int guard_remove_pmd_entry(pmd_t *pmd, unsigned long addr,
1211 unsigned long next, struct mm_walk *walk)
1212 {
1213 pmd_t pmdval = pmdp_get(pmd);
1214
1215 /* If huge, cannot have guard pages present, so no-op - skip. */
1216 if (pmd_trans_huge(pmdval))
1217 walk->action = ACTION_CONTINUE;
1218
1219 return 0;
1220 }
1221
guard_remove_pte_entry(pte_t * pte,unsigned long addr,unsigned long next,struct mm_walk * walk)1222 static int guard_remove_pte_entry(pte_t *pte, unsigned long addr,
1223 unsigned long next, struct mm_walk *walk)
1224 {
1225 pte_t ptent = ptep_get(pte);
1226
1227 if (is_guard_pte_marker(ptent)) {
1228 /* Simply clear the PTE marker. */
1229 pte_clear_not_present_full(walk->mm, addr, pte, false);
1230 update_mmu_cache(walk->vma, addr, pte);
1231 }
1232
1233 return 0;
1234 }
1235
1236 static const struct mm_walk_ops guard_remove_walk_ops = {
1237 .pud_entry = guard_remove_pud_entry,
1238 .pmd_entry = guard_remove_pmd_entry,
1239 .pte_entry = guard_remove_pte_entry,
1240 .walk_lock = PGWALK_RDLOCK,
1241 };
1242
madvise_guard_remove(struct madvise_behavior * madv_behavior)1243 static long madvise_guard_remove(struct madvise_behavior *madv_behavior)
1244 {
1245 struct vm_area_struct *vma = madv_behavior->vma;
1246 struct madvise_behavior_range *range = &madv_behavior->range;
1247
1248 /*
1249 * We're ok with removing guards in mlock()'d ranges, as this is a
1250 * non-destructive action.
1251 */
1252 if (!is_valid_guard_vma(vma, /* allow_locked = */true))
1253 return -EINVAL;
1254
1255 return walk_page_range_vma(vma, range->start, range->end,
1256 &guard_remove_walk_ops, NULL);
1257 }
1258
1259 /*
1260 * Apply an madvise behavior to a region of a vma. madvise_update_vma
1261 * will handle splitting a vm area into separate areas, each area with its own
1262 * behavior.
1263 */
madvise_vma_behavior(struct madvise_behavior * madv_behavior)1264 static int madvise_vma_behavior(struct madvise_behavior *madv_behavior)
1265 {
1266 int behavior = madv_behavior->behavior;
1267 struct vm_area_struct *vma = madv_behavior->vma;
1268 vm_flags_t new_flags = vma->vm_flags;
1269 struct madvise_behavior_range *range = &madv_behavior->range;
1270 int error;
1271
1272 if (unlikely(!can_modify_vma_madv(madv_behavior->vma, behavior)))
1273 return -EPERM;
1274
1275 switch (behavior) {
1276 case MADV_REMOVE:
1277 return madvise_remove(madv_behavior);
1278 case MADV_WILLNEED:
1279 return madvise_willneed(madv_behavior);
1280 case MADV_COLD:
1281 return madvise_cold(madv_behavior);
1282 case MADV_PAGEOUT:
1283 return madvise_pageout(madv_behavior);
1284 case MADV_FREE:
1285 case MADV_DONTNEED:
1286 case MADV_DONTNEED_LOCKED:
1287 return madvise_dontneed_free(madv_behavior);
1288 case MADV_COLLAPSE:
1289 return madvise_collapse(vma, range->start, range->end,
1290 &madv_behavior->lock_dropped);
1291 case MADV_GUARD_INSTALL:
1292 return madvise_guard_install(madv_behavior);
1293 case MADV_GUARD_REMOVE:
1294 return madvise_guard_remove(madv_behavior);
1295
1296 /* The below behaviours update VMAs via madvise_update_vma(). */
1297
1298 case MADV_NORMAL:
1299 new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ;
1300 break;
1301 case MADV_SEQUENTIAL:
1302 new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ;
1303 break;
1304 case MADV_RANDOM:
1305 new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ;
1306 break;
1307 case MADV_DONTFORK:
1308 new_flags |= VM_DONTCOPY;
1309 break;
1310 case MADV_DOFORK:
1311 if (new_flags & VM_IO)
1312 return -EINVAL;
1313 new_flags &= ~VM_DONTCOPY;
1314 break;
1315 case MADV_WIPEONFORK:
1316 /* MADV_WIPEONFORK is only supported on anonymous memory. */
1317 if (vma->vm_file || new_flags & VM_SHARED)
1318 return -EINVAL;
1319 new_flags |= VM_WIPEONFORK;
1320 break;
1321 case MADV_KEEPONFORK:
1322 if (new_flags & VM_DROPPABLE)
1323 return -EINVAL;
1324 new_flags &= ~VM_WIPEONFORK;
1325 break;
1326 case MADV_DONTDUMP:
1327 new_flags |= VM_DONTDUMP;
1328 break;
1329 case MADV_DODUMP:
1330 if ((!is_vm_hugetlb_page(vma) && (new_flags & VM_SPECIAL)) ||
1331 (new_flags & VM_DROPPABLE))
1332 return -EINVAL;
1333 new_flags &= ~VM_DONTDUMP;
1334 break;
1335 case MADV_MERGEABLE:
1336 case MADV_UNMERGEABLE:
1337 error = ksm_madvise(vma, range->start, range->end,
1338 behavior, &new_flags);
1339 if (error)
1340 goto out;
1341 break;
1342 case MADV_HUGEPAGE:
1343 case MADV_NOHUGEPAGE:
1344 error = hugepage_madvise(vma, &new_flags, behavior);
1345 if (error)
1346 goto out;
1347 break;
1348 case __MADV_SET_ANON_VMA_NAME:
1349 /* Only anonymous mappings can be named */
1350 if (vma->vm_file && !vma_is_anon_shmem(vma))
1351 return -EBADF;
1352 break;
1353 }
1354
1355 /* This is a write operation.*/
1356 VM_WARN_ON_ONCE(madv_behavior->lock_mode != MADVISE_MMAP_WRITE_LOCK);
1357
1358 error = madvise_update_vma(new_flags, madv_behavior);
1359 out:
1360 /*
1361 * madvise() returns EAGAIN if kernel resources, such as
1362 * slab, are temporarily unavailable.
1363 */
1364 if (error == -ENOMEM)
1365 error = -EAGAIN;
1366 return error;
1367 }
1368
1369 #ifdef CONFIG_MEMORY_FAILURE
1370 /*
1371 * Error injection support for memory error handling.
1372 */
madvise_inject_error(struct madvise_behavior * madv_behavior)1373 static int madvise_inject_error(struct madvise_behavior *madv_behavior)
1374 {
1375 unsigned long size;
1376 unsigned long start = madv_behavior->range.start;
1377 unsigned long end = madv_behavior->range.end;
1378
1379 if (!capable(CAP_SYS_ADMIN))
1380 return -EPERM;
1381
1382 for (; start < end; start += size) {
1383 unsigned long pfn;
1384 struct page *page;
1385 int ret;
1386
1387 ret = get_user_pages_fast(start, 1, 0, &page);
1388 if (ret != 1)
1389 return ret;
1390 pfn = page_to_pfn(page);
1391
1392 /*
1393 * When soft offlining hugepages, after migrating the page
1394 * we dissolve it, therefore in the second loop "page" will
1395 * no longer be a compound page.
1396 */
1397 size = page_size(compound_head(page));
1398
1399 if (madv_behavior->behavior == MADV_SOFT_OFFLINE) {
1400 pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n",
1401 pfn, start);
1402 ret = soft_offline_page(pfn, MF_COUNT_INCREASED);
1403 } else {
1404 pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n",
1405 pfn, start);
1406 ret = memory_failure(pfn, MF_ACTION_REQUIRED | MF_COUNT_INCREASED | MF_SW_SIMULATED);
1407 if (ret == -EOPNOTSUPP)
1408 ret = 0;
1409 }
1410
1411 if (ret)
1412 return ret;
1413 }
1414
1415 return 0;
1416 }
1417
is_memory_failure(struct madvise_behavior * madv_behavior)1418 static bool is_memory_failure(struct madvise_behavior *madv_behavior)
1419 {
1420 switch (madv_behavior->behavior) {
1421 case MADV_HWPOISON:
1422 case MADV_SOFT_OFFLINE:
1423 return true;
1424 default:
1425 return false;
1426 }
1427 }
1428
1429 #else
1430
madvise_inject_error(struct madvise_behavior * madv_behavior)1431 static int madvise_inject_error(struct madvise_behavior *madv_behavior)
1432 {
1433 return 0;
1434 }
1435
is_memory_failure(struct madvise_behavior * madv_behavior)1436 static bool is_memory_failure(struct madvise_behavior *madv_behavior)
1437 {
1438 return false;
1439 }
1440
1441 #endif /* CONFIG_MEMORY_FAILURE */
1442
1443 static bool
madvise_behavior_valid(int behavior)1444 madvise_behavior_valid(int behavior)
1445 {
1446 switch (behavior) {
1447 case MADV_DOFORK:
1448 case MADV_DONTFORK:
1449 case MADV_NORMAL:
1450 case MADV_SEQUENTIAL:
1451 case MADV_RANDOM:
1452 case MADV_REMOVE:
1453 case MADV_WILLNEED:
1454 case MADV_DONTNEED:
1455 case MADV_DONTNEED_LOCKED:
1456 case MADV_FREE:
1457 case MADV_COLD:
1458 case MADV_PAGEOUT:
1459 case MADV_POPULATE_READ:
1460 case MADV_POPULATE_WRITE:
1461 #ifdef CONFIG_KSM
1462 case MADV_MERGEABLE:
1463 case MADV_UNMERGEABLE:
1464 #endif
1465 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1466 case MADV_HUGEPAGE:
1467 case MADV_NOHUGEPAGE:
1468 case MADV_COLLAPSE:
1469 #endif
1470 case MADV_DONTDUMP:
1471 case MADV_DODUMP:
1472 case MADV_WIPEONFORK:
1473 case MADV_KEEPONFORK:
1474 case MADV_GUARD_INSTALL:
1475 case MADV_GUARD_REMOVE:
1476 #ifdef CONFIG_MEMORY_FAILURE
1477 case MADV_SOFT_OFFLINE:
1478 case MADV_HWPOISON:
1479 #endif
1480 return true;
1481
1482 default:
1483 return false;
1484 }
1485 }
1486
1487 /* Can we invoke process_madvise() on a remote mm for the specified behavior? */
process_madvise_remote_valid(int behavior)1488 static bool process_madvise_remote_valid(int behavior)
1489 {
1490 switch (behavior) {
1491 case MADV_COLD:
1492 case MADV_PAGEOUT:
1493 case MADV_WILLNEED:
1494 case MADV_COLLAPSE:
1495 return true;
1496 default:
1497 return false;
1498 }
1499 }
1500
1501 /*
1502 * Try to acquire a VMA read lock if possible.
1503 *
1504 * We only support this lock over a single VMA, which the input range must
1505 * span either partially or fully.
1506 *
1507 * This function always returns with an appropriate lock held. If a VMA read
1508 * lock could be acquired, we return true and set madv_behavior state
1509 * accordingly.
1510 *
1511 * If a VMA read lock could not be acquired, we return false and expect caller to
1512 * fallback to mmap lock behaviour.
1513 */
try_vma_read_lock(struct madvise_behavior * madv_behavior)1514 static bool try_vma_read_lock(struct madvise_behavior *madv_behavior)
1515 {
1516 struct mm_struct *mm = madv_behavior->mm;
1517 struct vm_area_struct *vma;
1518
1519 vma = lock_vma_under_rcu(mm, madv_behavior->range.start);
1520 if (!vma)
1521 goto take_mmap_read_lock;
1522 /*
1523 * Must span only a single VMA; uffd and remote processes are
1524 * unsupported.
1525 */
1526 if (madv_behavior->range.end > vma->vm_end || current->mm != mm ||
1527 userfaultfd_armed(vma)) {
1528 vma_end_read(vma);
1529 goto take_mmap_read_lock;
1530 }
1531 madv_behavior->vma = vma;
1532 return true;
1533
1534 take_mmap_read_lock:
1535 mmap_read_lock(mm);
1536 madv_behavior->lock_mode = MADVISE_MMAP_READ_LOCK;
1537 return false;
1538 }
1539
1540 /*
1541 * Walk the vmas in range [start,end), and call the madvise_vma_behavior
1542 * function on each one. The function will get start and end parameters that
1543 * cover the overlap between the current vma and the original range. Any
1544 * unmapped regions in the original range will result in this function returning
1545 * -ENOMEM while still calling the madvise_vma_behavior function on all of the
1546 * existing vmas in the range. Must be called with the mmap_lock held for
1547 * reading or writing.
1548 */
1549 static
madvise_walk_vmas(struct madvise_behavior * madv_behavior)1550 int madvise_walk_vmas(struct madvise_behavior *madv_behavior)
1551 {
1552 struct mm_struct *mm = madv_behavior->mm;
1553 struct madvise_behavior_range *range = &madv_behavior->range;
1554 /* range is updated to span each VMA, so store end of entire range. */
1555 unsigned long last_end = range->end;
1556 int unmapped_error = 0;
1557 int error;
1558 struct vm_area_struct *prev, *vma;
1559
1560 /*
1561 * If VMA read lock is supported, apply madvise to a single VMA
1562 * tentatively, avoiding walking VMAs.
1563 */
1564 if (madv_behavior->lock_mode == MADVISE_VMA_READ_LOCK &&
1565 try_vma_read_lock(madv_behavior)) {
1566 error = madvise_vma_behavior(madv_behavior);
1567 vma_end_read(madv_behavior->vma);
1568 return error;
1569 }
1570
1571 vma = find_vma_prev(mm, range->start, &prev);
1572 if (vma && range->start > vma->vm_start)
1573 prev = vma;
1574
1575 for (;;) {
1576 /* Still start < end. */
1577 if (!vma)
1578 return -ENOMEM;
1579
1580 /* Here start < (last_end|vma->vm_end). */
1581 if (range->start < vma->vm_start) {
1582 /*
1583 * This indicates a gap between VMAs in the input
1584 * range. This does not cause the operation to abort,
1585 * rather we simply return -ENOMEM to indicate that this
1586 * has happened, but carry on.
1587 */
1588 unmapped_error = -ENOMEM;
1589 range->start = vma->vm_start;
1590 if (range->start >= last_end)
1591 break;
1592 }
1593
1594 /* Here vma->vm_start <= range->start < (last_end|vma->vm_end) */
1595 range->end = min(vma->vm_end, last_end);
1596
1597 /* Here vma->vm_start <= range->start < range->end <= (last_end|vma->vm_end). */
1598 madv_behavior->prev = prev;
1599 madv_behavior->vma = vma;
1600 error = madvise_vma_behavior(madv_behavior);
1601 if (error)
1602 return error;
1603 if (madv_behavior->lock_dropped) {
1604 /* We dropped the mmap lock, we can't ref the VMA. */
1605 prev = NULL;
1606 vma = NULL;
1607 madv_behavior->lock_dropped = false;
1608 } else {
1609 vma = madv_behavior->vma;
1610 prev = vma;
1611 }
1612
1613 if (vma && range->end < vma->vm_end)
1614 range->end = vma->vm_end;
1615 if (range->end >= last_end)
1616 break;
1617
1618 vma = find_vma(mm, vma ? vma->vm_end : range->end);
1619 range->start = range->end;
1620 }
1621
1622 return unmapped_error;
1623 }
1624
1625 /*
1626 * Any behaviour which results in changes to the vma->vm_flags needs to
1627 * take mmap_lock for writing. Others, which simply traverse vmas, need
1628 * to only take it for reading.
1629 */
get_lock_mode(struct madvise_behavior * madv_behavior)1630 static enum madvise_lock_mode get_lock_mode(struct madvise_behavior *madv_behavior)
1631 {
1632 if (is_memory_failure(madv_behavior))
1633 return MADVISE_NO_LOCK;
1634
1635 switch (madv_behavior->behavior) {
1636 case MADV_REMOVE:
1637 case MADV_WILLNEED:
1638 case MADV_COLD:
1639 case MADV_PAGEOUT:
1640 case MADV_POPULATE_READ:
1641 case MADV_POPULATE_WRITE:
1642 case MADV_COLLAPSE:
1643 case MADV_GUARD_INSTALL:
1644 case MADV_GUARD_REMOVE:
1645 return MADVISE_MMAP_READ_LOCK;
1646 case MADV_DONTNEED:
1647 case MADV_DONTNEED_LOCKED:
1648 case MADV_FREE:
1649 return MADVISE_VMA_READ_LOCK;
1650 default:
1651 return MADVISE_MMAP_WRITE_LOCK;
1652 }
1653 }
1654
madvise_lock(struct madvise_behavior * madv_behavior)1655 static int madvise_lock(struct madvise_behavior *madv_behavior)
1656 {
1657 struct mm_struct *mm = madv_behavior->mm;
1658 enum madvise_lock_mode lock_mode = get_lock_mode(madv_behavior);
1659
1660 switch (lock_mode) {
1661 case MADVISE_NO_LOCK:
1662 break;
1663 case MADVISE_MMAP_WRITE_LOCK:
1664 if (mmap_write_lock_killable(mm))
1665 return -EINTR;
1666 break;
1667 case MADVISE_MMAP_READ_LOCK:
1668 mmap_read_lock(mm);
1669 break;
1670 case MADVISE_VMA_READ_LOCK:
1671 /* We will acquire the lock per-VMA in madvise_walk_vmas(). */
1672 break;
1673 }
1674
1675 madv_behavior->lock_mode = lock_mode;
1676 return 0;
1677 }
1678
madvise_unlock(struct madvise_behavior * madv_behavior)1679 static void madvise_unlock(struct madvise_behavior *madv_behavior)
1680 {
1681 struct mm_struct *mm = madv_behavior->mm;
1682
1683 switch (madv_behavior->lock_mode) {
1684 case MADVISE_NO_LOCK:
1685 return;
1686 case MADVISE_MMAP_WRITE_LOCK:
1687 mmap_write_unlock(mm);
1688 break;
1689 case MADVISE_MMAP_READ_LOCK:
1690 mmap_read_unlock(mm);
1691 break;
1692 case MADVISE_VMA_READ_LOCK:
1693 /* We will drop the lock per-VMA in madvise_walk_vmas(). */
1694 break;
1695 }
1696
1697 madv_behavior->lock_mode = MADVISE_NO_LOCK;
1698 }
1699
madvise_batch_tlb_flush(int behavior)1700 static bool madvise_batch_tlb_flush(int behavior)
1701 {
1702 switch (behavior) {
1703 case MADV_DONTNEED:
1704 case MADV_DONTNEED_LOCKED:
1705 case MADV_FREE:
1706 return true;
1707 default:
1708 return false;
1709 }
1710 }
1711
madvise_init_tlb(struct madvise_behavior * madv_behavior)1712 static void madvise_init_tlb(struct madvise_behavior *madv_behavior)
1713 {
1714 if (madvise_batch_tlb_flush(madv_behavior->behavior))
1715 tlb_gather_mmu(madv_behavior->tlb, madv_behavior->mm);
1716 }
1717
madvise_finish_tlb(struct madvise_behavior * madv_behavior)1718 static void madvise_finish_tlb(struct madvise_behavior *madv_behavior)
1719 {
1720 if (madvise_batch_tlb_flush(madv_behavior->behavior))
1721 tlb_finish_mmu(madv_behavior->tlb);
1722 }
1723
is_valid_madvise(unsigned long start,size_t len_in,int behavior)1724 static bool is_valid_madvise(unsigned long start, size_t len_in, int behavior)
1725 {
1726 size_t len;
1727
1728 if (!madvise_behavior_valid(behavior))
1729 return false;
1730
1731 if (!PAGE_ALIGNED(start))
1732 return false;
1733 len = PAGE_ALIGN(len_in);
1734
1735 /* Check to see whether len was rounded up from small -ve to zero */
1736 if (len_in && !len)
1737 return false;
1738
1739 if (start + len < start)
1740 return false;
1741
1742 return true;
1743 }
1744
1745 /*
1746 * madvise_should_skip() - Return if the request is invalid or nothing.
1747 * @start: Start address of madvise-requested address range.
1748 * @len_in: Length of madvise-requested address range.
1749 * @behavior: Requested madvise behavor.
1750 * @err: Pointer to store an error code from the check.
1751 *
1752 * If the specified behaviour is invalid or nothing would occur, we skip the
1753 * operation. This function returns true in the cases, otherwise false. In
1754 * the former case we store an error on @err.
1755 */
madvise_should_skip(unsigned long start,size_t len_in,int behavior,int * err)1756 static bool madvise_should_skip(unsigned long start, size_t len_in,
1757 int behavior, int *err)
1758 {
1759 if (!is_valid_madvise(start, len_in, behavior)) {
1760 *err = -EINVAL;
1761 return true;
1762 }
1763 if (start + PAGE_ALIGN(len_in) == start) {
1764 *err = 0;
1765 return true;
1766 }
1767 return false;
1768 }
1769
is_madvise_populate(struct madvise_behavior * madv_behavior)1770 static bool is_madvise_populate(struct madvise_behavior *madv_behavior)
1771 {
1772 switch (madv_behavior->behavior) {
1773 case MADV_POPULATE_READ:
1774 case MADV_POPULATE_WRITE:
1775 return true;
1776 default:
1777 return false;
1778 }
1779 }
1780
1781 /*
1782 * untagged_addr_remote() assumes mmap_lock is already held. On
1783 * architectures like x86 and RISC-V, tagging is tricky because each
1784 * mm may have a different tagging mask. However, we might only hold
1785 * the per-VMA lock (currently only local processes are supported),
1786 * so untagged_addr is used to avoid the mmap_lock assertion for
1787 * local processes.
1788 */
get_untagged_addr(struct mm_struct * mm,unsigned long start)1789 static inline unsigned long get_untagged_addr(struct mm_struct *mm,
1790 unsigned long start)
1791 {
1792 return current->mm == mm ? untagged_addr(start) :
1793 untagged_addr_remote(mm, start);
1794 }
1795
madvise_do_behavior(unsigned long start,size_t len_in,struct madvise_behavior * madv_behavior)1796 static int madvise_do_behavior(unsigned long start, size_t len_in,
1797 struct madvise_behavior *madv_behavior)
1798 {
1799 struct blk_plug plug;
1800 int error;
1801 struct madvise_behavior_range *range = &madv_behavior->range;
1802
1803 if (is_memory_failure(madv_behavior)) {
1804 range->start = start;
1805 range->end = start + len_in;
1806 return madvise_inject_error(madv_behavior);
1807 }
1808
1809 range->start = get_untagged_addr(madv_behavior->mm, start);
1810 range->end = range->start + PAGE_ALIGN(len_in);
1811
1812 blk_start_plug(&plug);
1813 if (is_madvise_populate(madv_behavior))
1814 error = madvise_populate(madv_behavior);
1815 else
1816 error = madvise_walk_vmas(madv_behavior);
1817 blk_finish_plug(&plug);
1818 return error;
1819 }
1820
1821 /*
1822 * The madvise(2) system call.
1823 *
1824 * Applications can use madvise() to advise the kernel how it should
1825 * handle paging I/O in this VM area. The idea is to help the kernel
1826 * use appropriate read-ahead and caching techniques. The information
1827 * provided is advisory only, and can be safely disregarded by the
1828 * kernel without affecting the correct operation of the application.
1829 *
1830 * behavior values:
1831 * MADV_NORMAL - the default behavior is to read clusters. This
1832 * results in some read-ahead and read-behind.
1833 * MADV_RANDOM - the system should read the minimum amount of data
1834 * on any access, since it is unlikely that the appli-
1835 * cation will need more than what it asks for.
1836 * MADV_SEQUENTIAL - pages in the given range will probably be accessed
1837 * once, so they can be aggressively read ahead, and
1838 * can be freed soon after they are accessed.
1839 * MADV_WILLNEED - the application is notifying the system to read
1840 * some pages ahead.
1841 * MADV_DONTNEED - the application is finished with the given range,
1842 * so the kernel can free resources associated with it.
1843 * MADV_FREE - the application marks pages in the given range as lazy free,
1844 * where actual purges are postponed until memory pressure happens.
1845 * MADV_REMOVE - the application wants to free up the given range of
1846 * pages and associated backing store.
1847 * MADV_DONTFORK - omit this area from child's address space when forking:
1848 * typically, to avoid COWing pages pinned by get_user_pages().
1849 * MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
1850 * MADV_WIPEONFORK - present the child process with zero-filled memory in this
1851 * range after a fork.
1852 * MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK
1853 * MADV_HWPOISON - trigger memory error handler as if the given memory range
1854 * were corrupted by unrecoverable hardware memory failure.
1855 * MADV_SOFT_OFFLINE - try to soft-offline the given range of memory.
1856 * MADV_MERGEABLE - the application recommends that KSM try to merge pages in
1857 * this area with pages of identical content from other such areas.
1858 * MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
1859 * MADV_HUGEPAGE - the application wants to back the given range by transparent
1860 * huge pages in the future. Existing pages might be coalesced and
1861 * new pages might be allocated as THP.
1862 * MADV_NOHUGEPAGE - mark the given range as not worth being backed by
1863 * transparent huge pages so the existing pages will not be
1864 * coalesced into THP and new pages will not be allocated as THP.
1865 * MADV_COLLAPSE - synchronously coalesce pages into new THP.
1866 * MADV_DONTDUMP - the application wants to prevent pages in the given range
1867 * from being included in its core dump.
1868 * MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump.
1869 * MADV_COLD - the application is not expected to use this memory soon,
1870 * deactivate pages in this range so that they can be reclaimed
1871 * easily if memory pressure happens.
1872 * MADV_PAGEOUT - the application is not expected to use this memory soon,
1873 * page out the pages in this range immediately.
1874 * MADV_POPULATE_READ - populate (prefault) page tables readable by
1875 * triggering read faults if required
1876 * MADV_POPULATE_WRITE - populate (prefault) page tables writable by
1877 * triggering write faults if required
1878 *
1879 * return values:
1880 * zero - success
1881 * -EINVAL - start + len < 0, start is not page-aligned,
1882 * "behavior" is not a valid value, or application
1883 * is attempting to release locked or shared pages,
1884 * or the specified address range includes file, Huge TLB,
1885 * MAP_SHARED or VMPFNMAP range.
1886 * -ENOMEM - addresses in the specified range are not currently
1887 * mapped, or are outside the AS of the process.
1888 * -EIO - an I/O error occurred while paging in data.
1889 * -EBADF - map exists, but area maps something that isn't a file.
1890 * -EAGAIN - a kernel resource was temporarily unavailable.
1891 * -EPERM - memory is sealed.
1892 */
do_madvise(struct mm_struct * mm,unsigned long start,size_t len_in,int behavior)1893 int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior)
1894 {
1895 int error;
1896 struct mmu_gather tlb;
1897 struct madvise_behavior madv_behavior = {
1898 .mm = mm,
1899 .behavior = behavior,
1900 .tlb = &tlb,
1901 };
1902
1903 if (madvise_should_skip(start, len_in, behavior, &error))
1904 return error;
1905 error = madvise_lock(&madv_behavior);
1906 if (error)
1907 return error;
1908 madvise_init_tlb(&madv_behavior);
1909 error = madvise_do_behavior(start, len_in, &madv_behavior);
1910 madvise_finish_tlb(&madv_behavior);
1911 madvise_unlock(&madv_behavior);
1912
1913 return error;
1914 }
1915
SYSCALL_DEFINE3(madvise,unsigned long,start,size_t,len_in,int,behavior)1916 SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
1917 {
1918 return do_madvise(current->mm, start, len_in, behavior);
1919 }
1920
1921 /* Perform an madvise operation over a vector of addresses and lengths. */
vector_madvise(struct mm_struct * mm,struct iov_iter * iter,int behavior)1922 static ssize_t vector_madvise(struct mm_struct *mm, struct iov_iter *iter,
1923 int behavior)
1924 {
1925 ssize_t ret = 0;
1926 size_t total_len;
1927 struct mmu_gather tlb;
1928 struct madvise_behavior madv_behavior = {
1929 .mm = mm,
1930 .behavior = behavior,
1931 .tlb = &tlb,
1932 };
1933
1934 total_len = iov_iter_count(iter);
1935
1936 ret = madvise_lock(&madv_behavior);
1937 if (ret)
1938 return ret;
1939 madvise_init_tlb(&madv_behavior);
1940
1941 while (iov_iter_count(iter)) {
1942 unsigned long start = (unsigned long)iter_iov_addr(iter);
1943 size_t len_in = iter_iov_len(iter);
1944 int error;
1945
1946 if (madvise_should_skip(start, len_in, behavior, &error))
1947 ret = error;
1948 else
1949 ret = madvise_do_behavior(start, len_in, &madv_behavior);
1950 /*
1951 * An madvise operation is attempting to restart the syscall,
1952 * but we cannot proceed as it would not be correct to repeat
1953 * the operation in aggregate, and would be surprising to the
1954 * user.
1955 *
1956 * We drop and reacquire locks so it is safe to just loop and
1957 * try again. We check for fatal signals in case we need exit
1958 * early anyway.
1959 */
1960 if (ret == -ERESTARTNOINTR) {
1961 if (fatal_signal_pending(current)) {
1962 ret = -EINTR;
1963 break;
1964 }
1965
1966 /* Drop and reacquire lock to unwind race. */
1967 madvise_finish_tlb(&madv_behavior);
1968 madvise_unlock(&madv_behavior);
1969 ret = madvise_lock(&madv_behavior);
1970 if (ret)
1971 goto out;
1972 madvise_init_tlb(&madv_behavior);
1973 continue;
1974 }
1975 if (ret < 0)
1976 break;
1977 iov_iter_advance(iter, iter_iov_len(iter));
1978 }
1979 madvise_finish_tlb(&madv_behavior);
1980 madvise_unlock(&madv_behavior);
1981
1982 out:
1983 ret = (total_len - iov_iter_count(iter)) ? : ret;
1984
1985 return ret;
1986 }
1987
SYSCALL_DEFINE5(process_madvise,int,pidfd,const struct iovec __user *,vec,size_t,vlen,int,behavior,unsigned int,flags)1988 SYSCALL_DEFINE5(process_madvise, int, pidfd, const struct iovec __user *, vec,
1989 size_t, vlen, int, behavior, unsigned int, flags)
1990 {
1991 ssize_t ret;
1992 struct iovec iovstack[UIO_FASTIOV];
1993 struct iovec *iov = iovstack;
1994 struct iov_iter iter;
1995 struct task_struct *task;
1996 struct mm_struct *mm;
1997 unsigned int f_flags;
1998
1999 if (flags != 0) {
2000 ret = -EINVAL;
2001 goto out;
2002 }
2003
2004 ret = import_iovec(ITER_DEST, vec, vlen, ARRAY_SIZE(iovstack), &iov, &iter);
2005 if (ret < 0)
2006 goto out;
2007
2008 task = pidfd_get_task(pidfd, &f_flags);
2009 if (IS_ERR(task)) {
2010 ret = PTR_ERR(task);
2011 goto free_iov;
2012 }
2013
2014 /* Require PTRACE_MODE_READ to avoid leaking ASLR metadata. */
2015 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
2016 if (IS_ERR(mm)) {
2017 ret = PTR_ERR(mm);
2018 goto release_task;
2019 }
2020
2021 /*
2022 * We need only perform this check if we are attempting to manipulate a
2023 * remote process's address space.
2024 */
2025 if (mm != current->mm && !process_madvise_remote_valid(behavior)) {
2026 ret = -EINVAL;
2027 goto release_mm;
2028 }
2029
2030 /*
2031 * Require CAP_SYS_NICE for influencing process performance. Note that
2032 * only non-destructive hints are currently supported for remote
2033 * processes.
2034 */
2035 if (mm != current->mm && !capable(CAP_SYS_NICE)) {
2036 ret = -EPERM;
2037 goto release_mm;
2038 }
2039
2040 ret = vector_madvise(mm, &iter, behavior);
2041
2042 release_mm:
2043 mmput(mm);
2044 release_task:
2045 put_task_struct(task);
2046 free_iov:
2047 kfree(iov);
2048 out:
2049 return ret;
2050 }
2051
2052 #ifdef CONFIG_ANON_VMA_NAME
2053
2054 #define ANON_VMA_NAME_MAX_LEN 80
2055 #define ANON_VMA_NAME_INVALID_CHARS "\\`$[]"
2056
is_valid_name_char(char ch)2057 static inline bool is_valid_name_char(char ch)
2058 {
2059 /* printable ascii characters, excluding ANON_VMA_NAME_INVALID_CHARS */
2060 return ch > 0x1f && ch < 0x7f &&
2061 !strchr(ANON_VMA_NAME_INVALID_CHARS, ch);
2062 }
2063
madvise_set_anon_name(struct mm_struct * mm,unsigned long start,unsigned long len_in,struct anon_vma_name * anon_name)2064 static int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
2065 unsigned long len_in, struct anon_vma_name *anon_name)
2066 {
2067 unsigned long end;
2068 unsigned long len;
2069 int error;
2070 struct madvise_behavior madv_behavior = {
2071 .mm = mm,
2072 .behavior = __MADV_SET_ANON_VMA_NAME,
2073 .anon_name = anon_name,
2074 };
2075
2076 if (start & ~PAGE_MASK)
2077 return -EINVAL;
2078 len = (len_in + ~PAGE_MASK) & PAGE_MASK;
2079
2080 /* Check to see whether len was rounded up from small -ve to zero */
2081 if (len_in && !len)
2082 return -EINVAL;
2083
2084 end = start + len;
2085 if (end < start)
2086 return -EINVAL;
2087
2088 if (end == start)
2089 return 0;
2090
2091 madv_behavior.range.start = start;
2092 madv_behavior.range.end = end;
2093
2094 error = madvise_lock(&madv_behavior);
2095 if (error)
2096 return error;
2097 error = madvise_walk_vmas(&madv_behavior);
2098 madvise_unlock(&madv_behavior);
2099
2100 return error;
2101 }
2102
set_anon_vma_name(unsigned long addr,unsigned long size,const char __user * uname)2103 int set_anon_vma_name(unsigned long addr, unsigned long size,
2104 const char __user *uname)
2105 {
2106 struct anon_vma_name *anon_name = NULL;
2107 struct mm_struct *mm = current->mm;
2108 int error;
2109
2110 if (uname) {
2111 char *name, *pch;
2112
2113 name = strndup_user(uname, ANON_VMA_NAME_MAX_LEN);
2114 if (IS_ERR(name))
2115 return PTR_ERR(name);
2116
2117 for (pch = name; *pch != '\0'; pch++) {
2118 if (!is_valid_name_char(*pch)) {
2119 kfree(name);
2120 return -EINVAL;
2121 }
2122 }
2123 /* anon_vma has its own copy */
2124 anon_name = anon_vma_name_alloc(name);
2125 kfree(name);
2126 if (!anon_name)
2127 return -ENOMEM;
2128 }
2129
2130 error = madvise_set_anon_name(mm, addr, size, anon_name);
2131 anon_vma_name_put(anon_name);
2132
2133 return error;
2134 }
2135 #endif
2136