1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <inttypes.h>
5 #include <regex.h>
6 #include <stdlib.h>
7 #include "callchain.h"
8 #include "debug.h"
9 #include "dso.h"
10 #include "env.h"
11 #include "event.h"
12 #include "evsel.h"
13 #include "hist.h"
14 #include "machine.h"
15 #include "map.h"
16 #include "map_symbol.h"
17 #include "branch.h"
18 #include "mem-events.h"
19 #include "mem-info.h"
20 #include "path.h"
21 #include "srcline.h"
22 #include "symbol.h"
23 #include "synthetic-events.h"
24 #include "sort.h"
25 #include "strlist.h"
26 #include "target.h"
27 #include "thread.h"
28 #include "util.h"
29 #include "vdso.h"
30 #include <stdbool.h>
31 #include <sys/types.h>
32 #include <sys/stat.h>
33 #include <unistd.h>
34 #include "unwind.h"
35 #include "linux/hash.h"
36 #include "asm/bug.h"
37 #include "bpf-event.h"
38 #include <internal/lib.h> // page_size
39 #include "cgroup.h"
40 #include "arm64-frame-pointer-unwind-support.h"
41 #include <api/io_dir.h>
42
43 #include <linux/ctype.h>
44 #include <symbol/kallsyms.h>
45 #include <linux/mman.h>
46 #include <linux/string.h>
47 #include <linux/zalloc.h>
48
machine__kernel_dso(struct machine * machine)49 static struct dso *machine__kernel_dso(struct machine *machine)
50 {
51 return map__dso(machine->vmlinux_map);
52 }
53
machine__set_mmap_name(struct machine * machine)54 static int machine__set_mmap_name(struct machine *machine)
55 {
56 if (machine__is_host(machine))
57 machine->mmap_name = strdup("[kernel.kallsyms]");
58 else if (machine__is_default_guest(machine))
59 machine->mmap_name = strdup("[guest.kernel.kallsyms]");
60 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
61 machine->pid) < 0)
62 machine->mmap_name = NULL;
63
64 return machine->mmap_name ? 0 : -ENOMEM;
65 }
66
thread__set_guest_comm(struct thread * thread,pid_t pid)67 static void thread__set_guest_comm(struct thread *thread, pid_t pid)
68 {
69 char comm[64];
70
71 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
72 thread__set_comm(thread, comm, 0);
73 }
74
machine__init(struct machine * machine,const char * root_dir,pid_t pid)75 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
76 {
77 int err = -ENOMEM;
78
79 memset(machine, 0, sizeof(*machine));
80 machine->kmaps = maps__new(machine);
81 if (machine->kmaps == NULL)
82 return -ENOMEM;
83
84 RB_CLEAR_NODE(&machine->rb_node);
85 dsos__init(&machine->dsos);
86
87 threads__init(&machine->threads);
88
89 machine->vdso_info = NULL;
90 machine->env = NULL;
91
92 machine->pid = pid;
93
94 machine->id_hdr_size = 0;
95 machine->kptr_restrict_warned = false;
96 machine->comm_exec = false;
97 machine->kernel_start = 0;
98 machine->vmlinux_map = NULL;
99 /* There is no initial context switch in, so we start at 1. */
100 machine->parallelism = 1;
101
102 machine->root_dir = strdup(root_dir);
103 if (machine->root_dir == NULL)
104 goto out;
105
106 if (machine__set_mmap_name(machine))
107 goto out;
108
109 if (pid != HOST_KERNEL_ID) {
110 struct thread *thread = machine__findnew_thread(machine, -1,
111 pid);
112
113 if (thread == NULL)
114 goto out;
115
116 thread__set_guest_comm(thread, pid);
117 thread__put(thread);
118 }
119
120 machine->current_tid = NULL;
121 err = 0;
122
123 out:
124 if (err) {
125 zfree(&machine->kmaps);
126 zfree(&machine->root_dir);
127 zfree(&machine->mmap_name);
128 }
129 return 0;
130 }
131
__machine__new_host(struct perf_env * host_env,bool kernel_maps)132 static struct machine *__machine__new_host(struct perf_env *host_env, bool kernel_maps)
133 {
134 struct machine *machine = malloc(sizeof(*machine));
135
136 if (!machine)
137 return NULL;
138
139 machine__init(machine, "", HOST_KERNEL_ID);
140
141 if (kernel_maps && machine__create_kernel_maps(machine) < 0) {
142 free(machine);
143 return NULL;
144 }
145 machine->env = host_env;
146 return machine;
147 }
148
machine__new_host(struct perf_env * host_env)149 struct machine *machine__new_host(struct perf_env *host_env)
150 {
151 return __machine__new_host(host_env, /*kernel_maps=*/true);
152 }
153
mmap_handler(const struct perf_tool * tool __maybe_unused,union perf_event * event,struct perf_sample * sample,struct machine * machine)154 static int mmap_handler(const struct perf_tool *tool __maybe_unused,
155 union perf_event *event,
156 struct perf_sample *sample,
157 struct machine *machine)
158 {
159 return machine__process_mmap2_event(machine, event, sample);
160 }
161
machine__init_live(struct machine * machine,pid_t pid)162 static int machine__init_live(struct machine *machine, pid_t pid)
163 {
164 union perf_event event;
165
166 memset(&event, 0, sizeof(event));
167 return perf_event__synthesize_mmap_events(NULL, &event, pid, pid,
168 mmap_handler, machine, true);
169 }
170
machine__new_live(struct perf_env * host_env,bool kernel_maps,pid_t pid)171 struct machine *machine__new_live(struct perf_env *host_env, bool kernel_maps, pid_t pid)
172 {
173 struct machine *machine = __machine__new_host(host_env, kernel_maps);
174
175 if (!machine)
176 return NULL;
177
178 if (machine__init_live(machine, pid)) {
179 machine__delete(machine);
180 return NULL;
181 }
182 return machine;
183 }
184
machine__new_kallsyms(struct perf_env * host_env)185 struct machine *machine__new_kallsyms(struct perf_env *host_env)
186 {
187 struct machine *machine = machine__new_host(host_env);
188 /*
189 * FIXME:
190 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
191 * ask for not using the kcore parsing code, once this one is fixed
192 * to create a map per module.
193 */
194 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
195 machine__delete(machine);
196 machine = NULL;
197 }
198
199 return machine;
200 }
201
machine__delete_threads(struct machine * machine)202 void machine__delete_threads(struct machine *machine)
203 {
204 threads__remove_all_threads(&machine->threads);
205 }
206
machine__exit(struct machine * machine)207 void machine__exit(struct machine *machine)
208 {
209 if (machine == NULL)
210 return;
211
212 machine__destroy_kernel_maps(machine);
213 maps__zput(machine->kmaps);
214 dsos__exit(&machine->dsos);
215 machine__exit_vdso(machine);
216 zfree(&machine->root_dir);
217 zfree(&machine->mmap_name);
218 zfree(&machine->current_tid);
219 zfree(&machine->kallsyms_filename);
220
221 threads__exit(&machine->threads);
222 }
223
machine__delete(struct machine * machine)224 void machine__delete(struct machine *machine)
225 {
226 if (machine) {
227 machine__exit(machine);
228 free(machine);
229 }
230 }
231
machines__init(struct machines * machines)232 void machines__init(struct machines *machines)
233 {
234 machine__init(&machines->host, "", HOST_KERNEL_ID);
235 machines->guests = RB_ROOT_CACHED;
236 }
237
machines__exit(struct machines * machines)238 void machines__exit(struct machines *machines)
239 {
240 machine__exit(&machines->host);
241 /* XXX exit guest */
242 }
243
machines__add(struct machines * machines,pid_t pid,const char * root_dir)244 struct machine *machines__add(struct machines *machines, pid_t pid,
245 const char *root_dir)
246 {
247 struct rb_node **p = &machines->guests.rb_root.rb_node;
248 struct rb_node *parent = NULL;
249 struct machine *pos, *machine = malloc(sizeof(*machine));
250 bool leftmost = true;
251
252 if (machine == NULL)
253 return NULL;
254
255 if (machine__init(machine, root_dir, pid) != 0) {
256 free(machine);
257 return NULL;
258 }
259
260 while (*p != NULL) {
261 parent = *p;
262 pos = rb_entry(parent, struct machine, rb_node);
263 if (pid < pos->pid)
264 p = &(*p)->rb_left;
265 else {
266 p = &(*p)->rb_right;
267 leftmost = false;
268 }
269 }
270
271 rb_link_node(&machine->rb_node, parent, p);
272 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
273
274 machine->machines = machines;
275
276 return machine;
277 }
278
machines__set_comm_exec(struct machines * machines,bool comm_exec)279 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
280 {
281 struct rb_node *nd;
282
283 machines->host.comm_exec = comm_exec;
284
285 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
286 struct machine *machine = rb_entry(nd, struct machine, rb_node);
287
288 machine->comm_exec = comm_exec;
289 }
290 }
291
machines__find(struct machines * machines,pid_t pid)292 struct machine *machines__find(struct machines *machines, pid_t pid)
293 {
294 struct rb_node **p = &machines->guests.rb_root.rb_node;
295 struct rb_node *parent = NULL;
296 struct machine *machine;
297 struct machine *default_machine = NULL;
298
299 if (pid == HOST_KERNEL_ID)
300 return &machines->host;
301
302 while (*p != NULL) {
303 parent = *p;
304 machine = rb_entry(parent, struct machine, rb_node);
305 if (pid < machine->pid)
306 p = &(*p)->rb_left;
307 else if (pid > machine->pid)
308 p = &(*p)->rb_right;
309 else
310 return machine;
311 if (!machine->pid)
312 default_machine = machine;
313 }
314
315 return default_machine;
316 }
317
machines__findnew(struct machines * machines,pid_t pid)318 struct machine *machines__findnew(struct machines *machines, pid_t pid)
319 {
320 char path[PATH_MAX];
321 const char *root_dir = "";
322 struct machine *machine = machines__find(machines, pid);
323
324 if (machine && (machine->pid == pid))
325 goto out;
326
327 if ((pid != HOST_KERNEL_ID) &&
328 (pid != DEFAULT_GUEST_KERNEL_ID) &&
329 (symbol_conf.guestmount)) {
330 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
331 if (access(path, R_OK)) {
332 static struct strlist *seen;
333
334 if (!seen)
335 seen = strlist__new(NULL, NULL);
336
337 if (!strlist__has_entry(seen, path)) {
338 pr_err("Can't access file %s\n", path);
339 strlist__add(seen, path);
340 }
341 machine = NULL;
342 goto out;
343 }
344 root_dir = path;
345 }
346
347 machine = machines__add(machines, pid, root_dir);
348 out:
349 return machine;
350 }
351
machines__find_guest(struct machines * machines,pid_t pid)352 struct machine *machines__find_guest(struct machines *machines, pid_t pid)
353 {
354 struct machine *machine = machines__find(machines, pid);
355
356 if (!machine)
357 machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID);
358 return machine;
359 }
360
361 /*
362 * A common case for KVM test programs is that the test program acts as the
363 * hypervisor, creating, running and destroying the virtual machine, and
364 * providing the guest object code from its own object code. In this case,
365 * the VM is not running an OS, but only the functions loaded into it by the
366 * hypervisor test program, and conveniently, loaded at the same virtual
367 * addresses.
368 *
369 * Normally to resolve addresses, MMAP events are needed to map addresses
370 * back to the object code and debug symbols for that object code.
371 *
372 * Currently, there is no way to get such mapping information from guests
373 * but, in the scenario described above, the guest has the same mappings
374 * as the hypervisor, so support for that scenario can be achieved.
375 *
376 * To support that, copy the host thread's maps to the guest thread's maps.
377 * Note, we do not discover the guest until we encounter a guest event,
378 * which works well because it is not until then that we know that the host
379 * thread's maps have been set up.
380 *
381 * This function returns the guest thread. Apart from keeping the data
382 * structures sane, using a thread belonging to the guest machine, instead
383 * of the host thread, allows it to have its own comm (refer
384 * thread__set_guest_comm()).
385 */
findnew_guest_code(struct machine * machine,struct machine * host_machine,pid_t pid)386 static struct thread *findnew_guest_code(struct machine *machine,
387 struct machine *host_machine,
388 pid_t pid)
389 {
390 struct thread *host_thread;
391 struct thread *thread;
392 int err;
393
394 if (!machine)
395 return NULL;
396
397 thread = machine__findnew_thread(machine, -1, pid);
398 if (!thread)
399 return NULL;
400
401 /* Assume maps are set up if there are any */
402 if (!maps__empty(thread__maps(thread)))
403 return thread;
404
405 host_thread = machine__find_thread(host_machine, -1, pid);
406 if (!host_thread)
407 goto out_err;
408
409 thread__set_guest_comm(thread, pid);
410
411 /*
412 * Guest code can be found in hypervisor process at the same address
413 * so copy host maps.
414 */
415 err = maps__copy_from(thread__maps(thread), thread__maps(host_thread));
416 thread__put(host_thread);
417 if (err)
418 goto out_err;
419
420 return thread;
421
422 out_err:
423 thread__zput(thread);
424 return NULL;
425 }
426
machines__findnew_guest_code(struct machines * machines,pid_t pid)427 struct thread *machines__findnew_guest_code(struct machines *machines, pid_t pid)
428 {
429 struct machine *host_machine = machines__find(machines, HOST_KERNEL_ID);
430 struct machine *machine = machines__findnew(machines, pid);
431
432 return findnew_guest_code(machine, host_machine, pid);
433 }
434
machine__findnew_guest_code(struct machine * machine,pid_t pid)435 struct thread *machine__findnew_guest_code(struct machine *machine, pid_t pid)
436 {
437 struct machines *machines = machine->machines;
438 struct machine *host_machine;
439
440 if (!machines)
441 return NULL;
442
443 host_machine = machines__find(machines, HOST_KERNEL_ID);
444
445 return findnew_guest_code(machine, host_machine, pid);
446 }
447
machines__process_guests(struct machines * machines,machine__process_t process,void * data)448 void machines__process_guests(struct machines *machines,
449 machine__process_t process, void *data)
450 {
451 struct rb_node *nd;
452
453 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
454 struct machine *pos = rb_entry(nd, struct machine, rb_node);
455 process(pos, data);
456 }
457 }
458
machines__set_id_hdr_size(struct machines * machines,u16 id_hdr_size)459 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
460 {
461 struct rb_node *node;
462 struct machine *machine;
463
464 machines->host.id_hdr_size = id_hdr_size;
465
466 for (node = rb_first_cached(&machines->guests); node;
467 node = rb_next(node)) {
468 machine = rb_entry(node, struct machine, rb_node);
469 machine->id_hdr_size = id_hdr_size;
470 }
471
472 return;
473 }
474
machine__update_thread_pid(struct machine * machine,struct thread * th,pid_t pid)475 static void machine__update_thread_pid(struct machine *machine,
476 struct thread *th, pid_t pid)
477 {
478 struct thread *leader;
479
480 if (pid == thread__pid(th) || pid == -1 || thread__pid(th) != -1)
481 return;
482
483 thread__set_pid(th, pid);
484
485 if (thread__pid(th) == thread__tid(th))
486 return;
487
488 leader = machine__findnew_thread(machine, thread__pid(th), thread__pid(th));
489 if (!leader)
490 goto out_err;
491
492 if (!thread__maps(leader))
493 thread__set_maps(leader, maps__new(machine));
494
495 if (!thread__maps(leader))
496 goto out_err;
497
498 if (thread__maps(th) == thread__maps(leader))
499 goto out_put;
500
501 if (thread__maps(th)) {
502 /*
503 * Maps are created from MMAP events which provide the pid and
504 * tid. Consequently there never should be any maps on a thread
505 * with an unknown pid. Just print an error if there are.
506 */
507 if (!maps__empty(thread__maps(th)))
508 pr_err("Discarding thread maps for %d:%d\n",
509 thread__pid(th), thread__tid(th));
510 maps__put(thread__maps(th));
511 }
512
513 thread__set_maps(th, maps__get(thread__maps(leader)));
514 out_put:
515 thread__put(leader);
516 return;
517 out_err:
518 pr_err("Failed to join map groups for %d:%d\n", thread__pid(th), thread__tid(th));
519 goto out_put;
520 }
521
522 /*
523 * Caller must eventually drop thread->refcnt returned with a successful
524 * lookup/new thread inserted.
525 */
__machine__findnew_thread(struct machine * machine,pid_t pid,pid_t tid,bool create)526 static struct thread *__machine__findnew_thread(struct machine *machine,
527 pid_t pid,
528 pid_t tid,
529 bool create)
530 {
531 struct thread *th = threads__find(&machine->threads, tid);
532 bool created;
533
534 if (th) {
535 machine__update_thread_pid(machine, th, pid);
536 return th;
537 }
538 if (!create)
539 return NULL;
540
541 th = threads__findnew(&machine->threads, pid, tid, &created);
542 if (created) {
543 /*
544 * We have to initialize maps separately after rb tree is
545 * updated.
546 *
547 * The reason is that we call machine__findnew_thread within
548 * thread__init_maps to find the thread leader and that would
549 * screwed the rb tree.
550 */
551 if (thread__init_maps(th, machine)) {
552 pr_err("Thread init failed thread %d\n", pid);
553 threads__remove(&machine->threads, th);
554 thread__put(th);
555 return NULL;
556 }
557 } else
558 machine__update_thread_pid(machine, th, pid);
559
560 return th;
561 }
562
machine__findnew_thread(struct machine * machine,pid_t pid,pid_t tid)563 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
564 {
565 return __machine__findnew_thread(machine, pid, tid, /*create=*/true);
566 }
567
machine__find_thread(struct machine * machine,pid_t pid,pid_t tid)568 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
569 pid_t tid)
570 {
571 return __machine__findnew_thread(machine, pid, tid, /*create=*/false);
572 }
573
574 /*
575 * Threads are identified by pid and tid, and the idle task has pid == tid == 0.
576 * So here a single thread is created for that, but actually there is a separate
577 * idle task per cpu, so there should be one 'struct thread' per cpu, but there
578 * is only 1. That causes problems for some tools, requiring workarounds. For
579 * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu().
580 */
machine__idle_thread(struct machine * machine)581 struct thread *machine__idle_thread(struct machine *machine)
582 {
583 struct thread *thread = machine__findnew_thread(machine, 0, 0);
584
585 if (!thread || thread__set_comm(thread, "swapper", 0) ||
586 thread__set_namespaces(thread, 0, NULL))
587 pr_err("problem inserting idle task for machine pid %d\n", machine->pid);
588
589 return thread;
590 }
591
machine__thread_exec_comm(struct machine * machine,struct thread * thread)592 struct comm *machine__thread_exec_comm(struct machine *machine,
593 struct thread *thread)
594 {
595 if (machine->comm_exec)
596 return thread__exec_comm(thread);
597 else
598 return thread__comm(thread);
599 }
600
machine__process_comm_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)601 int machine__process_comm_event(struct machine *machine, union perf_event *event,
602 struct perf_sample *sample)
603 {
604 struct thread *thread = machine__findnew_thread(machine,
605 event->comm.pid,
606 event->comm.tid);
607 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
608 int err = 0;
609
610 if (exec)
611 machine->comm_exec = true;
612
613 if (dump_trace)
614 perf_event__fprintf_comm(event, stdout);
615
616 if (thread == NULL ||
617 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
618 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
619 err = -1;
620 }
621
622 thread__put(thread);
623
624 return err;
625 }
626
machine__process_namespaces_event(struct machine * machine __maybe_unused,union perf_event * event,struct perf_sample * sample __maybe_unused)627 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
628 union perf_event *event,
629 struct perf_sample *sample __maybe_unused)
630 {
631 struct thread *thread = machine__findnew_thread(machine,
632 event->namespaces.pid,
633 event->namespaces.tid);
634 int err = 0;
635
636 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
637 "\nWARNING: kernel seems to support more namespaces than perf"
638 " tool.\nTry updating the perf tool..\n\n");
639
640 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
641 "\nWARNING: perf tool seems to support more namespaces than"
642 " the kernel.\nTry updating the kernel..\n\n");
643
644 if (dump_trace)
645 perf_event__fprintf_namespaces(event, stdout);
646
647 if (thread == NULL ||
648 thread__set_namespaces(thread, sample->time, &event->namespaces)) {
649 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
650 err = -1;
651 }
652
653 thread__put(thread);
654
655 return err;
656 }
657
machine__process_cgroup_event(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)658 int machine__process_cgroup_event(struct machine *machine,
659 union perf_event *event,
660 struct perf_sample *sample __maybe_unused)
661 {
662 struct cgroup *cgrp;
663
664 if (dump_trace)
665 perf_event__fprintf_cgroup(event, stdout);
666
667 cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path);
668 if (cgrp == NULL)
669 return -ENOMEM;
670
671 return 0;
672 }
673
machine__process_lost_event(struct machine * machine __maybe_unused,union perf_event * event,struct perf_sample * sample __maybe_unused)674 int machine__process_lost_event(struct machine *machine __maybe_unused,
675 union perf_event *event, struct perf_sample *sample __maybe_unused)
676 {
677 dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
678 event->lost.id, event->lost.lost);
679 return 0;
680 }
681
machine__process_lost_samples_event(struct machine * machine __maybe_unused,union perf_event * event,struct perf_sample * sample)682 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
683 union perf_event *event, struct perf_sample *sample)
684 {
685 dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "%s\n",
686 sample->id, event->lost_samples.lost,
687 event->header.misc & PERF_RECORD_MISC_LOST_SAMPLES_BPF ? " (BPF)" : "");
688 return 0;
689 }
690
machine__process_aux_event(struct machine * machine __maybe_unused,union perf_event * event)691 int machine__process_aux_event(struct machine *machine __maybe_unused,
692 union perf_event *event)
693 {
694 if (dump_trace)
695 perf_event__fprintf_aux(event, stdout);
696 return 0;
697 }
698
machine__process_itrace_start_event(struct machine * machine __maybe_unused,union perf_event * event)699 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
700 union perf_event *event)
701 {
702 if (dump_trace)
703 perf_event__fprintf_itrace_start(event, stdout);
704 return 0;
705 }
706
machine__process_aux_output_hw_id_event(struct machine * machine __maybe_unused,union perf_event * event)707 int machine__process_aux_output_hw_id_event(struct machine *machine __maybe_unused,
708 union perf_event *event)
709 {
710 if (dump_trace)
711 perf_event__fprintf_aux_output_hw_id(event, stdout);
712 return 0;
713 }
714
machine__process_switch_event(struct machine * machine __maybe_unused,union perf_event * event)715 int machine__process_switch_event(struct machine *machine __maybe_unused,
716 union perf_event *event)
717 {
718 bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
719
720 if (dump_trace)
721 perf_event__fprintf_switch(event, stdout);
722 machine->parallelism += out ? -1 : 1;
723 return 0;
724 }
725
machine__process_ksymbol_register(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)726 static int machine__process_ksymbol_register(struct machine *machine,
727 union perf_event *event,
728 struct perf_sample *sample __maybe_unused)
729 {
730 struct symbol *sym;
731 struct dso *dso = NULL;
732 struct map *map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
733 int err = 0;
734
735 if (!map) {
736 dso = dso__new(event->ksymbol.name);
737
738 if (!dso) {
739 err = -ENOMEM;
740 goto out;
741 }
742 dso__set_kernel(dso, DSO_SPACE__KERNEL);
743 map = map__new2(0, dso);
744 if (!map) {
745 err = -ENOMEM;
746 goto out;
747 }
748 if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) {
749 dso__set_binary_type(dso, DSO_BINARY_TYPE__OOL);
750 dso__data(dso)->file_size = event->ksymbol.len;
751 dso__set_loaded(dso);
752 }
753
754 map__set_start(map, event->ksymbol.addr);
755 map__set_end(map, map__start(map) + event->ksymbol.len);
756 err = maps__fixup_overlap_and_insert(machine__kernel_maps(machine), map);
757 if (err) {
758 err = -ENOMEM;
759 goto out;
760 }
761
762 dso__set_loaded(dso);
763
764 if (is_bpf_image(event->ksymbol.name)) {
765 dso__set_binary_type(dso, DSO_BINARY_TYPE__BPF_IMAGE);
766 dso__set_long_name(dso, "", false);
767 }
768 } else {
769 dso = dso__get(map__dso(map));
770 }
771
772 sym = symbol__new(map__map_ip(map, map__start(map)),
773 event->ksymbol.len,
774 0, 0, event->ksymbol.name);
775 if (!sym) {
776 err = -ENOMEM;
777 goto out;
778 }
779 dso__insert_symbol(dso, sym);
780 out:
781 map__put(map);
782 dso__put(dso);
783 return err;
784 }
785
machine__process_ksymbol_unregister(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)786 static int machine__process_ksymbol_unregister(struct machine *machine,
787 union perf_event *event,
788 struct perf_sample *sample __maybe_unused)
789 {
790 struct symbol *sym;
791 struct map *map;
792
793 map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
794 if (!map)
795 return 0;
796
797 if (!RC_CHK_EQUAL(map, machine->vmlinux_map))
798 maps__remove(machine__kernel_maps(machine), map);
799 else {
800 struct dso *dso = map__dso(map);
801
802 sym = dso__find_symbol(dso, map__map_ip(map, map__start(map)));
803 if (sym)
804 dso__delete_symbol(dso, sym);
805 }
806 map__put(map);
807 return 0;
808 }
809
machine__process_ksymbol(struct machine * machine __maybe_unused,union perf_event * event,struct perf_sample * sample)810 int machine__process_ksymbol(struct machine *machine __maybe_unused,
811 union perf_event *event,
812 struct perf_sample *sample)
813 {
814 if (dump_trace)
815 perf_event__fprintf_ksymbol(event, stdout);
816
817 /* no need to process non-JIT BPF as it cannot get samples */
818 if (event->ksymbol.len == 0)
819 return 0;
820
821 if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
822 return machine__process_ksymbol_unregister(machine, event,
823 sample);
824 return machine__process_ksymbol_register(machine, event, sample);
825 }
826
machine__process_text_poke(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)827 int machine__process_text_poke(struct machine *machine, union perf_event *event,
828 struct perf_sample *sample __maybe_unused)
829 {
830 struct map *map = maps__find(machine__kernel_maps(machine), event->text_poke.addr);
831 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
832 struct dso *dso = map ? map__dso(map) : NULL;
833
834 if (dump_trace)
835 perf_event__fprintf_text_poke(event, machine, stdout);
836
837 if (!event->text_poke.new_len)
838 goto out;
839
840 if (cpumode != PERF_RECORD_MISC_KERNEL) {
841 pr_debug("%s: unsupported cpumode - ignoring\n", __func__);
842 goto out;
843 }
844
845 if (dso) {
846 u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len;
847 int ret;
848
849 /*
850 * Kernel maps might be changed when loading symbols so loading
851 * must be done prior to using kernel maps.
852 */
853 map__load(map);
854 ret = dso__data_write_cache_addr(dso, map, machine,
855 event->text_poke.addr,
856 new_bytes,
857 event->text_poke.new_len);
858 if (ret != event->text_poke.new_len)
859 pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n",
860 event->text_poke.addr);
861 } else {
862 pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n",
863 event->text_poke.addr);
864 }
865 out:
866 map__put(map);
867 return 0;
868 }
869
machine__addnew_module_map(struct machine * machine,u64 start,const char * filename)870 static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
871 const char *filename)
872 {
873 struct map *map = NULL;
874 struct kmod_path m;
875 struct dso *dso;
876 int err;
877
878 if (kmod_path__parse_name(&m, filename))
879 return NULL;
880
881 dso = dsos__findnew_module_dso(&machine->dsos, machine, &m, filename);
882 if (dso == NULL)
883 goto out;
884
885 map = map__new2(start, dso);
886 if (map == NULL)
887 goto out;
888
889 err = maps__insert(machine__kernel_maps(machine), map);
890 /* If maps__insert failed, return NULL. */
891 if (err) {
892 map__put(map);
893 map = NULL;
894 }
895 out:
896 /* put the dso here, corresponding to machine__findnew_module_dso */
897 dso__put(dso);
898 zfree(&m.name);
899 return map;
900 }
901
machines__fprintf_dsos(struct machines * machines,FILE * fp)902 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
903 {
904 struct rb_node *nd;
905 size_t ret = dsos__fprintf(&machines->host.dsos, fp);
906
907 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
908 struct machine *pos = rb_entry(nd, struct machine, rb_node);
909 ret += dsos__fprintf(&pos->dsos, fp);
910 }
911
912 return ret;
913 }
914
machine__fprintf_dsos_buildid(struct machine * m,FILE * fp,bool (skip)(struct dso * dso,int parm),int parm)915 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
916 bool (skip)(struct dso *dso, int parm), int parm)
917 {
918 return dsos__fprintf_buildid(&m->dsos, fp, skip, parm);
919 }
920
machines__fprintf_dsos_buildid(struct machines * machines,FILE * fp,bool (skip)(struct dso * dso,int parm),int parm)921 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
922 bool (skip)(struct dso *dso, int parm), int parm)
923 {
924 struct rb_node *nd;
925 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
926
927 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
928 struct machine *pos = rb_entry(nd, struct machine, rb_node);
929 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
930 }
931 return ret;
932 }
933
934 struct machine_fprintf_cb_args {
935 FILE *fp;
936 size_t printed;
937 };
938
machine_fprintf_cb(struct thread * thread,void * data)939 static int machine_fprintf_cb(struct thread *thread, void *data)
940 {
941 struct machine_fprintf_cb_args *args = data;
942
943 /* TODO: handle fprintf errors. */
944 args->printed += thread__fprintf(thread, args->fp);
945 return 0;
946 }
947
machine__fprintf(struct machine * machine,FILE * fp)948 size_t machine__fprintf(struct machine *machine, FILE *fp)
949 {
950 struct machine_fprintf_cb_args args = {
951 .fp = fp,
952 .printed = 0,
953 };
954 size_t ret = fprintf(fp, "Threads: %zu\n", threads__nr(&machine->threads));
955
956 machine__for_each_thread(machine, machine_fprintf_cb, &args);
957 return ret + args.printed;
958 }
959
machine__get_kernel(struct machine * machine)960 static struct dso *machine__get_kernel(struct machine *machine)
961 {
962 const char *vmlinux_name = machine->mmap_name;
963 struct dso *kernel;
964
965 if (machine__is_host(machine)) {
966 if (symbol_conf.vmlinux_name)
967 vmlinux_name = symbol_conf.vmlinux_name;
968
969 kernel = machine__findnew_kernel(machine, vmlinux_name,
970 "[kernel]", DSO_SPACE__KERNEL);
971 } else {
972 if (symbol_conf.default_guest_vmlinux_name)
973 vmlinux_name = symbol_conf.default_guest_vmlinux_name;
974
975 kernel = machine__findnew_kernel(machine, vmlinux_name,
976 "[guest.kernel]",
977 DSO_SPACE__KERNEL_GUEST);
978 }
979
980 if (kernel != NULL && (!dso__has_build_id(kernel)))
981 dso__read_running_kernel_build_id(kernel, machine);
982
983 return kernel;
984 }
985
machine__get_kallsyms_filename(struct machine * machine,char * buf,size_t bufsz)986 void machine__get_kallsyms_filename(struct machine *machine, char *buf,
987 size_t bufsz)
988 {
989 if (machine__is_default_guest(machine))
990 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
991 else
992 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
993 }
994
995 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
996
997 /* Figure out the start address of kernel map from /proc/kallsyms.
998 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
999 * symbol_name if it's not that important.
1000 */
machine__get_running_kernel_start(struct machine * machine,const char ** symbol_name,u64 * start,u64 * end)1001 static int machine__get_running_kernel_start(struct machine *machine,
1002 const char **symbol_name,
1003 u64 *start, u64 *end)
1004 {
1005 char filename[PATH_MAX];
1006 int i, err = -1;
1007 const char *name;
1008 u64 addr = 0;
1009
1010 machine__get_kallsyms_filename(machine, filename, PATH_MAX);
1011
1012 if (symbol__restricted_filename(filename, "/proc/kallsyms"))
1013 return 0;
1014
1015 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
1016 err = kallsyms__get_function_start(filename, name, &addr);
1017 if (!err)
1018 break;
1019 }
1020
1021 if (err)
1022 return -1;
1023
1024 if (symbol_name)
1025 *symbol_name = name;
1026
1027 *start = addr;
1028
1029 err = kallsyms__get_symbol_start(filename, "_edata", &addr);
1030 if (err)
1031 err = kallsyms__get_symbol_start(filename, "_etext", &addr);
1032 if (!err)
1033 *end = addr;
1034
1035 return 0;
1036 }
1037
machine__create_extra_kernel_map(struct machine * machine,struct dso * kernel,struct extra_kernel_map * xm)1038 int machine__create_extra_kernel_map(struct machine *machine,
1039 struct dso *kernel,
1040 struct extra_kernel_map *xm)
1041 {
1042 struct kmap *kmap;
1043 struct map *map;
1044 int err;
1045
1046 map = map__new2(xm->start, kernel);
1047 if (!map)
1048 return -ENOMEM;
1049
1050 map__set_end(map, xm->end);
1051 map__set_pgoff(map, xm->pgoff);
1052
1053 kmap = map__kmap(map);
1054
1055 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1056
1057 err = maps__insert(machine__kernel_maps(machine), map);
1058
1059 if (!err) {
1060 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1061 kmap->name, map__start(map), map__end(map));
1062 }
1063
1064 map__put(map);
1065
1066 return err;
1067 }
1068
find_entry_trampoline(struct dso * dso)1069 static u64 find_entry_trampoline(struct dso *dso)
1070 {
1071 /* Duplicates are removed so lookup all aliases */
1072 const char *syms[] = {
1073 "_entry_trampoline",
1074 "__entry_trampoline_start",
1075 "entry_SYSCALL_64_trampoline",
1076 };
1077 struct symbol *sym = dso__first_symbol(dso);
1078 unsigned int i;
1079
1080 for (; sym; sym = dso__next_symbol(sym)) {
1081 if (sym->binding != STB_GLOBAL)
1082 continue;
1083 for (i = 0; i < ARRAY_SIZE(syms); i++) {
1084 if (!strcmp(sym->name, syms[i]))
1085 return sym->start;
1086 }
1087 }
1088
1089 return 0;
1090 }
1091
1092 /*
1093 * These values can be used for kernels that do not have symbols for the entry
1094 * trampolines in kallsyms.
1095 */
1096 #define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL
1097 #define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000
1098 #define X86_64_ENTRY_TRAMPOLINE 0x6000
1099
1100 struct machine__map_x86_64_entry_trampolines_args {
1101 struct maps *kmaps;
1102 bool found;
1103 };
1104
machine__map_x86_64_entry_trampolines_cb(struct map * map,void * data)1105 static int machine__map_x86_64_entry_trampolines_cb(struct map *map, void *data)
1106 {
1107 struct machine__map_x86_64_entry_trampolines_args *args = data;
1108 struct map *dest_map;
1109 struct kmap *kmap = __map__kmap(map);
1110
1111 if (!kmap || !is_entry_trampoline(kmap->name))
1112 return 0;
1113
1114 dest_map = maps__find(args->kmaps, map__pgoff(map));
1115 if (RC_CHK_ACCESS(dest_map) != RC_CHK_ACCESS(map))
1116 map__set_pgoff(map, map__map_ip(dest_map, map__pgoff(map)));
1117
1118 map__put(dest_map);
1119 args->found = true;
1120 return 0;
1121 }
1122
1123 /* Map x86_64 PTI entry trampolines */
machine__map_x86_64_entry_trampolines(struct machine * machine,struct dso * kernel)1124 int machine__map_x86_64_entry_trampolines(struct machine *machine,
1125 struct dso *kernel)
1126 {
1127 struct machine__map_x86_64_entry_trampolines_args args = {
1128 .kmaps = machine__kernel_maps(machine),
1129 .found = false,
1130 };
1131 int nr_cpus_avail, cpu;
1132 u64 pgoff;
1133
1134 /*
1135 * In the vmlinux case, pgoff is a virtual address which must now be
1136 * mapped to a vmlinux offset.
1137 */
1138 maps__for_each_map(args.kmaps, machine__map_x86_64_entry_trampolines_cb, &args);
1139
1140 if (args.found || machine->trampolines_mapped)
1141 return 0;
1142
1143 pgoff = find_entry_trampoline(kernel);
1144 if (!pgoff)
1145 return 0;
1146
1147 nr_cpus_avail = machine__nr_cpus_avail(machine);
1148
1149 /* Add a 1 page map for each CPU's entry trampoline */
1150 for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1151 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1152 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1153 X86_64_ENTRY_TRAMPOLINE;
1154 struct extra_kernel_map xm = {
1155 .start = va,
1156 .end = va + page_size,
1157 .pgoff = pgoff,
1158 };
1159
1160 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1161
1162 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1163 return -1;
1164 }
1165
1166 machine->trampolines_mapped = nr_cpus_avail;
1167
1168 return 0;
1169 }
1170
machine__create_extra_kernel_maps(struct machine * machine __maybe_unused,struct dso * kernel __maybe_unused)1171 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1172 struct dso *kernel __maybe_unused)
1173 {
1174 return 0;
1175 }
1176
1177 static int
__machine__create_kernel_maps(struct machine * machine,struct dso * kernel)1178 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1179 {
1180 /* In case of renewal the kernel map, destroy previous one */
1181 machine__destroy_kernel_maps(machine);
1182
1183 map__put(machine->vmlinux_map);
1184 machine->vmlinux_map = map__new2(0, kernel);
1185 if (machine->vmlinux_map == NULL)
1186 return -ENOMEM;
1187
1188 map__set_mapping_type(machine->vmlinux_map, MAPPING_TYPE__IDENTITY);
1189 return maps__insert(machine__kernel_maps(machine), machine->vmlinux_map);
1190 }
1191
machine__destroy_kernel_maps(struct machine * machine)1192 void machine__destroy_kernel_maps(struct machine *machine)
1193 {
1194 struct kmap *kmap;
1195 struct map *map = machine__kernel_map(machine);
1196
1197 if (map == NULL)
1198 return;
1199
1200 kmap = map__kmap(map);
1201 maps__remove(machine__kernel_maps(machine), map);
1202 if (kmap && kmap->ref_reloc_sym) {
1203 zfree((char **)&kmap->ref_reloc_sym->name);
1204 zfree(&kmap->ref_reloc_sym);
1205 }
1206
1207 map__zput(machine->vmlinux_map);
1208 }
1209
machines__create_guest_kernel_maps(struct machines * machines)1210 int machines__create_guest_kernel_maps(struct machines *machines)
1211 {
1212 int ret = 0;
1213 struct dirent **namelist = NULL;
1214 int i, items = 0;
1215 char path[PATH_MAX];
1216 pid_t pid;
1217 char *endp;
1218
1219 if (symbol_conf.default_guest_vmlinux_name ||
1220 symbol_conf.default_guest_modules ||
1221 symbol_conf.default_guest_kallsyms) {
1222 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1223 }
1224
1225 if (symbol_conf.guestmount) {
1226 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1227 if (items <= 0)
1228 return -ENOENT;
1229 for (i = 0; i < items; i++) {
1230 if (!isdigit(namelist[i]->d_name[0])) {
1231 /* Filter out . and .. */
1232 continue;
1233 }
1234 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1235 if ((*endp != '\0') ||
1236 (endp == namelist[i]->d_name) ||
1237 (errno == ERANGE)) {
1238 pr_debug("invalid directory (%s). Skipping.\n",
1239 namelist[i]->d_name);
1240 continue;
1241 }
1242 sprintf(path, "%s/%s/proc/kallsyms",
1243 symbol_conf.guestmount,
1244 namelist[i]->d_name);
1245 ret = access(path, R_OK);
1246 if (ret) {
1247 pr_debug("Can't access file %s\n", path);
1248 goto failure;
1249 }
1250 machines__create_kernel_maps(machines, pid);
1251 }
1252 failure:
1253 free(namelist);
1254 }
1255
1256 return ret;
1257 }
1258
machines__destroy_kernel_maps(struct machines * machines)1259 void machines__destroy_kernel_maps(struct machines *machines)
1260 {
1261 struct rb_node *next = rb_first_cached(&machines->guests);
1262
1263 machine__destroy_kernel_maps(&machines->host);
1264
1265 while (next) {
1266 struct machine *pos = rb_entry(next, struct machine, rb_node);
1267
1268 next = rb_next(&pos->rb_node);
1269 rb_erase_cached(&pos->rb_node, &machines->guests);
1270 machine__delete(pos);
1271 }
1272 }
1273
machines__create_kernel_maps(struct machines * machines,pid_t pid)1274 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1275 {
1276 struct machine *machine = machines__findnew(machines, pid);
1277
1278 if (machine == NULL)
1279 return -1;
1280
1281 return machine__create_kernel_maps(machine);
1282 }
1283
machine__load_kallsyms(struct machine * machine,const char * filename)1284 int machine__load_kallsyms(struct machine *machine, const char *filename)
1285 {
1286 struct map *map = machine__kernel_map(machine);
1287 struct dso *dso = map__dso(map);
1288 int ret = __dso__load_kallsyms(dso, filename, map, true);
1289
1290 if (ret > 0) {
1291 dso__set_loaded(dso);
1292 /*
1293 * Since /proc/kallsyms will have multiple sessions for the
1294 * kernel, with modules between them, fixup the end of all
1295 * sections.
1296 */
1297 maps__fixup_end(machine__kernel_maps(machine));
1298 }
1299
1300 return ret;
1301 }
1302
machine__load_vmlinux_path(struct machine * machine)1303 int machine__load_vmlinux_path(struct machine *machine)
1304 {
1305 struct map *map = machine__kernel_map(machine);
1306 struct dso *dso = map__dso(map);
1307 int ret = dso__load_vmlinux_path(dso, map);
1308
1309 if (ret > 0)
1310 dso__set_loaded(dso);
1311
1312 return ret;
1313 }
1314
get_kernel_version(const char * root_dir)1315 static char *get_kernel_version(const char *root_dir)
1316 {
1317 char version[PATH_MAX];
1318 FILE *file;
1319 char *name, *tmp;
1320 const char *prefix = "Linux version ";
1321
1322 sprintf(version, "%s/proc/version", root_dir);
1323 file = fopen(version, "r");
1324 if (!file)
1325 return NULL;
1326
1327 tmp = fgets(version, sizeof(version), file);
1328 fclose(file);
1329 if (!tmp)
1330 return NULL;
1331
1332 name = strstr(version, prefix);
1333 if (!name)
1334 return NULL;
1335 name += strlen(prefix);
1336 tmp = strchr(name, ' ');
1337 if (tmp)
1338 *tmp = '\0';
1339
1340 return strdup(name);
1341 }
1342
is_kmod_dso(struct dso * dso)1343 static bool is_kmod_dso(struct dso *dso)
1344 {
1345 return dso__symtab_type(dso) == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1346 dso__symtab_type(dso) == DSO_BINARY_TYPE__GUEST_KMODULE;
1347 }
1348
maps__set_module_path(struct maps * maps,const char * path,struct kmod_path * m)1349 static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1350 {
1351 char *long_name;
1352 struct dso *dso;
1353 struct map *map = maps__find_by_name(maps, m->name);
1354
1355 if (map == NULL)
1356 return 0;
1357
1358 long_name = strdup(path);
1359 if (long_name == NULL) {
1360 map__put(map);
1361 return -ENOMEM;
1362 }
1363
1364 dso = map__dso(map);
1365 dso__set_long_name(dso, long_name, true);
1366 dso__kernel_module_get_build_id(dso, "");
1367
1368 /*
1369 * Full name could reveal us kmod compression, so
1370 * we need to update the symtab_type if needed.
1371 */
1372 if (m->comp && is_kmod_dso(dso)) {
1373 dso__set_symtab_type(dso, dso__symtab_type(dso)+1);
1374 dso__set_comp(dso, m->comp);
1375 }
1376 map__put(map);
1377 return 0;
1378 }
1379
maps__set_modules_path_dir(struct maps * maps,char * path,size_t path_size,int depth)1380 static int maps__set_modules_path_dir(struct maps *maps, char *path, size_t path_size, int depth)
1381 {
1382 struct io_dirent64 *dent;
1383 struct io_dir iod;
1384 size_t root_len = strlen(path);
1385 int ret = 0;
1386
1387 io_dir__init(&iod, open(path, O_CLOEXEC | O_DIRECTORY | O_RDONLY));
1388 if (iod.dirfd < 0) {
1389 pr_debug("%s: cannot open %s dir\n", __func__, path);
1390 return -1;
1391 }
1392 /* Bounds check, should never happen. */
1393 if (root_len >= path_size)
1394 return -1;
1395 path[root_len++] = '/';
1396 while ((dent = io_dir__readdir(&iod)) != NULL) {
1397 if (io_dir__is_dir(&iod, dent)) {
1398 if (!strcmp(dent->d_name, ".") ||
1399 !strcmp(dent->d_name, ".."))
1400 continue;
1401
1402 /* Do not follow top-level source and build symlinks */
1403 if (depth == 0) {
1404 if (!strcmp(dent->d_name, "source") ||
1405 !strcmp(dent->d_name, "build"))
1406 continue;
1407 }
1408
1409 /* Bounds check, should never happen. */
1410 if (root_len + strlen(dent->d_name) >= path_size)
1411 continue;
1412
1413 strcpy(path + root_len, dent->d_name);
1414 ret = maps__set_modules_path_dir(maps, path, path_size, depth + 1);
1415 if (ret < 0)
1416 goto out;
1417 } else {
1418 struct kmod_path m;
1419
1420 ret = kmod_path__parse_name(&m, dent->d_name);
1421 if (ret)
1422 goto out;
1423
1424 if (m.kmod) {
1425 /* Bounds check, should never happen. */
1426 if (root_len + strlen(dent->d_name) < path_size) {
1427 strcpy(path + root_len, dent->d_name);
1428 ret = maps__set_module_path(maps, path, &m);
1429
1430 }
1431 }
1432 zfree(&m.name);
1433
1434 if (ret)
1435 goto out;
1436 }
1437 }
1438
1439 out:
1440 close(iod.dirfd);
1441 return ret;
1442 }
1443
machine__set_modules_path(struct machine * machine)1444 static int machine__set_modules_path(struct machine *machine)
1445 {
1446 char *version;
1447 char modules_path[PATH_MAX];
1448
1449 version = get_kernel_version(machine->root_dir);
1450 if (!version)
1451 return -1;
1452
1453 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1454 machine->root_dir, version);
1455 free(version);
1456
1457 return maps__set_modules_path_dir(machine__kernel_maps(machine),
1458 modules_path, sizeof(modules_path), 0);
1459 }
arch__fix_module_text_start(u64 * start __maybe_unused,u64 * size __maybe_unused,const char * name __maybe_unused)1460 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1461 u64 *size __maybe_unused,
1462 const char *name __maybe_unused)
1463 {
1464 return 0;
1465 }
1466
machine__create_module(void * arg,const char * name,u64 start,u64 size)1467 static int machine__create_module(void *arg, const char *name, u64 start,
1468 u64 size)
1469 {
1470 struct machine *machine = arg;
1471 struct map *map;
1472
1473 if (arch__fix_module_text_start(&start, &size, name) < 0)
1474 return -1;
1475
1476 map = machine__addnew_module_map(machine, start, name);
1477 if (map == NULL)
1478 return -1;
1479 map__set_end(map, start + size);
1480
1481 dso__kernel_module_get_build_id(map__dso(map), machine->root_dir);
1482 map__put(map);
1483 return 0;
1484 }
1485
machine__create_modules(struct machine * machine)1486 static int machine__create_modules(struct machine *machine)
1487 {
1488 const char *modules;
1489 char path[PATH_MAX];
1490
1491 if (machine__is_default_guest(machine)) {
1492 modules = symbol_conf.default_guest_modules;
1493 } else {
1494 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1495 modules = path;
1496 }
1497
1498 if (symbol__restricted_filename(modules, "/proc/modules"))
1499 return -1;
1500
1501 if (modules__parse(modules, machine, machine__create_module))
1502 return -1;
1503
1504 if (!machine__set_modules_path(machine))
1505 return 0;
1506
1507 pr_debug("Problems setting modules path maps, continuing anyway...\n");
1508
1509 return 0;
1510 }
1511
machine__set_kernel_mmap(struct machine * machine,u64 start,u64 end)1512 static void machine__set_kernel_mmap(struct machine *machine,
1513 u64 start, u64 end)
1514 {
1515 map__set_start(machine->vmlinux_map, start);
1516 map__set_end(machine->vmlinux_map, end);
1517 /*
1518 * Be a bit paranoid here, some perf.data file came with
1519 * a zero sized synthesized MMAP event for the kernel.
1520 */
1521 if (start == 0 && end == 0)
1522 map__set_end(machine->vmlinux_map, ~0ULL);
1523 }
1524
machine__update_kernel_mmap(struct machine * machine,u64 start,u64 end)1525 static int machine__update_kernel_mmap(struct machine *machine,
1526 u64 start, u64 end)
1527 {
1528 struct map *orig, *updated;
1529 int err;
1530
1531 orig = machine->vmlinux_map;
1532 updated = map__get(orig);
1533
1534 machine->vmlinux_map = updated;
1535 maps__remove(machine__kernel_maps(machine), orig);
1536 machine__set_kernel_mmap(machine, start, end);
1537 err = maps__insert(machine__kernel_maps(machine), updated);
1538 map__put(orig);
1539
1540 return err;
1541 }
1542
machine__create_kernel_maps(struct machine * machine)1543 int machine__create_kernel_maps(struct machine *machine)
1544 {
1545 struct dso *kernel = machine__get_kernel(machine);
1546 const char *name = NULL;
1547 u64 start = 0, end = ~0ULL;
1548 int ret;
1549
1550 if (kernel == NULL)
1551 return -1;
1552
1553 ret = __machine__create_kernel_maps(machine, kernel);
1554 if (ret < 0)
1555 goto out_put;
1556
1557 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1558 if (machine__is_host(machine))
1559 pr_debug("Problems creating module maps, "
1560 "continuing anyway...\n");
1561 else
1562 pr_debug("Problems creating module maps for guest %d, "
1563 "continuing anyway...\n", machine->pid);
1564 }
1565
1566 if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1567 if (name &&
1568 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1569 machine__destroy_kernel_maps(machine);
1570 ret = -1;
1571 goto out_put;
1572 }
1573
1574 /*
1575 * we have a real start address now, so re-order the kmaps
1576 * assume it's the last in the kmaps
1577 */
1578 ret = machine__update_kernel_mmap(machine, start, end);
1579 if (ret < 0)
1580 goto out_put;
1581 }
1582
1583 if (machine__create_extra_kernel_maps(machine, kernel))
1584 pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1585
1586 if (end == ~0ULL) {
1587 /* update end address of the kernel map using adjacent module address */
1588 struct map *next = maps__find_next_entry(machine__kernel_maps(machine),
1589 machine__kernel_map(machine));
1590
1591 if (next) {
1592 machine__set_kernel_mmap(machine, start, map__start(next));
1593 map__put(next);
1594 }
1595 }
1596
1597 maps__fixup_end(machine__kernel_maps(machine));
1598
1599 out_put:
1600 dso__put(kernel);
1601 return ret;
1602 }
1603
machine__uses_kcore_cb(struct dso * dso,void * data __maybe_unused)1604 static int machine__uses_kcore_cb(struct dso *dso, void *data __maybe_unused)
1605 {
1606 return dso__is_kcore(dso) ? 1 : 0;
1607 }
1608
machine__uses_kcore(struct machine * machine)1609 static bool machine__uses_kcore(struct machine *machine)
1610 {
1611 return dsos__for_each_dso(&machine->dsos, machine__uses_kcore_cb, NULL) != 0 ? true : false;
1612 }
1613
perf_event__is_extra_kernel_mmap(struct machine * machine,struct extra_kernel_map * xm)1614 static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1615 struct extra_kernel_map *xm)
1616 {
1617 return machine__is(machine, "x86_64") &&
1618 is_entry_trampoline(xm->name);
1619 }
1620
machine__process_extra_kernel_map(struct machine * machine,struct extra_kernel_map * xm)1621 static int machine__process_extra_kernel_map(struct machine *machine,
1622 struct extra_kernel_map *xm)
1623 {
1624 struct dso *kernel = machine__kernel_dso(machine);
1625
1626 if (kernel == NULL)
1627 return -1;
1628
1629 return machine__create_extra_kernel_map(machine, kernel, xm);
1630 }
1631
machine__process_kernel_mmap_event(struct machine * machine,struct extra_kernel_map * xm,struct build_id * bid)1632 static int machine__process_kernel_mmap_event(struct machine *machine,
1633 struct extra_kernel_map *xm,
1634 struct build_id *bid)
1635 {
1636 enum dso_space_type dso_space;
1637 bool is_kernel_mmap;
1638 const char *mmap_name = machine->mmap_name;
1639
1640 /* If we have maps from kcore then we do not need or want any others */
1641 if (machine__uses_kcore(machine))
1642 return 0;
1643
1644 if (machine__is_host(machine))
1645 dso_space = DSO_SPACE__KERNEL;
1646 else
1647 dso_space = DSO_SPACE__KERNEL_GUEST;
1648
1649 is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1650 if (!is_kernel_mmap && !machine__is_host(machine)) {
1651 /*
1652 * If the event was recorded inside the guest and injected into
1653 * the host perf.data file, then it will match a host mmap_name,
1654 * so try that - see machine__set_mmap_name().
1655 */
1656 mmap_name = "[kernel.kallsyms]";
1657 is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1658 }
1659 if (xm->name[0] == '/' ||
1660 (!is_kernel_mmap && xm->name[0] == '[')) {
1661 struct map *map = machine__addnew_module_map(machine, xm->start, xm->name);
1662
1663 if (map == NULL)
1664 goto out_problem;
1665
1666 map__set_end(map, map__start(map) + xm->end - xm->start);
1667
1668 if (build_id__is_defined(bid))
1669 dso__set_build_id(map__dso(map), bid);
1670
1671 map__put(map);
1672 } else if (is_kernel_mmap) {
1673 const char *symbol_name = xm->name + strlen(mmap_name);
1674 /*
1675 * Should be there already, from the build-id table in
1676 * the header.
1677 */
1678 struct dso *kernel = dsos__find_kernel_dso(&machine->dsos);
1679
1680 if (kernel == NULL)
1681 kernel = machine__findnew_dso(machine, machine->mmap_name);
1682 if (kernel == NULL)
1683 goto out_problem;
1684
1685 dso__set_kernel(kernel, dso_space);
1686 if (__machine__create_kernel_maps(machine, kernel) < 0) {
1687 dso__put(kernel);
1688 goto out_problem;
1689 }
1690
1691 if (strstr(dso__long_name(kernel), "vmlinux"))
1692 dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1693
1694 if (machine__update_kernel_mmap(machine, xm->start, xm->end) < 0) {
1695 dso__put(kernel);
1696 goto out_problem;
1697 }
1698
1699 if (build_id__is_defined(bid))
1700 dso__set_build_id(kernel, bid);
1701
1702 /*
1703 * Avoid using a zero address (kptr_restrict) for the ref reloc
1704 * symbol. Effectively having zero here means that at record
1705 * time /proc/sys/kernel/kptr_restrict was non zero.
1706 */
1707 if (xm->pgoff != 0) {
1708 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1709 symbol_name,
1710 xm->pgoff);
1711 }
1712
1713 if (machine__is_default_guest(machine)) {
1714 /*
1715 * preload dso of guest kernel and modules
1716 */
1717 dso__load(kernel, machine__kernel_map(machine));
1718 }
1719 dso__put(kernel);
1720 } else if (perf_event__is_extra_kernel_mmap(machine, xm)) {
1721 return machine__process_extra_kernel_map(machine, xm);
1722 }
1723 return 0;
1724 out_problem:
1725 return -1;
1726 }
1727
machine__process_mmap2_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)1728 int machine__process_mmap2_event(struct machine *machine,
1729 union perf_event *event,
1730 struct perf_sample *sample)
1731 {
1732 struct thread *thread;
1733 struct map *map;
1734 struct dso_id dso_id = dso_id_empty;
1735 int ret = 0;
1736
1737 if (dump_trace)
1738 perf_event__fprintf_mmap2(event, stdout);
1739
1740 if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) {
1741 build_id__init(&dso_id.build_id, event->mmap2.build_id, event->mmap2.build_id_size);
1742 } else {
1743 dso_id.maj = event->mmap2.maj;
1744 dso_id.min = event->mmap2.min;
1745 dso_id.ino = event->mmap2.ino;
1746 dso_id.ino_generation = event->mmap2.ino_generation;
1747 dso_id.mmap2_valid = true;
1748 dso_id.mmap2_ino_generation_valid = true;
1749 }
1750
1751 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1752 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1753 struct extra_kernel_map xm = {
1754 .start = event->mmap2.start,
1755 .end = event->mmap2.start + event->mmap2.len,
1756 .pgoff = event->mmap2.pgoff,
1757 };
1758
1759 strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN);
1760 ret = machine__process_kernel_mmap_event(machine, &xm, &dso_id.build_id);
1761 if (ret < 0)
1762 goto out_problem;
1763 return 0;
1764 }
1765
1766 thread = machine__findnew_thread(machine, event->mmap2.pid,
1767 event->mmap2.tid);
1768 if (thread == NULL)
1769 goto out_problem;
1770
1771 map = map__new(machine, event->mmap2.start,
1772 event->mmap2.len, event->mmap2.pgoff,
1773 &dso_id, event->mmap2.prot,
1774 event->mmap2.flags,
1775 event->mmap2.filename, thread);
1776
1777 if (map == NULL)
1778 goto out_problem_map;
1779
1780 ret = thread__insert_map(thread, map);
1781 if (ret)
1782 goto out_problem_insert;
1783
1784 thread__put(thread);
1785 map__put(map);
1786 return 0;
1787
1788 out_problem_insert:
1789 map__put(map);
1790 out_problem_map:
1791 thread__put(thread);
1792 out_problem:
1793 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1794 return 0;
1795 }
1796
machine__process_mmap_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)1797 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1798 struct perf_sample *sample)
1799 {
1800 struct thread *thread;
1801 struct map *map;
1802 u32 prot = 0;
1803 int ret = 0;
1804
1805 if (dump_trace)
1806 perf_event__fprintf_mmap(event, stdout);
1807
1808 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1809 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1810 struct extra_kernel_map xm = {
1811 .start = event->mmap.start,
1812 .end = event->mmap.start + event->mmap.len,
1813 .pgoff = event->mmap.pgoff,
1814 };
1815
1816 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1817 ret = machine__process_kernel_mmap_event(machine, &xm, NULL);
1818 if (ret < 0)
1819 goto out_problem;
1820 return 0;
1821 }
1822
1823 thread = machine__findnew_thread(machine, event->mmap.pid,
1824 event->mmap.tid);
1825 if (thread == NULL)
1826 goto out_problem;
1827
1828 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1829 prot = PROT_EXEC;
1830
1831 map = map__new(machine, event->mmap.start,
1832 event->mmap.len, event->mmap.pgoff,
1833 &dso_id_empty, prot, /*flags=*/0, event->mmap.filename, thread);
1834
1835 if (map == NULL)
1836 goto out_problem_map;
1837
1838 ret = thread__insert_map(thread, map);
1839 if (ret)
1840 goto out_problem_insert;
1841
1842 thread__put(thread);
1843 map__put(map);
1844 return 0;
1845
1846 out_problem_insert:
1847 map__put(map);
1848 out_problem_map:
1849 thread__put(thread);
1850 out_problem:
1851 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1852 return 0;
1853 }
1854
machine__remove_thread(struct machine * machine,struct thread * th)1855 void machine__remove_thread(struct machine *machine, struct thread *th)
1856 {
1857 return threads__remove(&machine->threads, th);
1858 }
1859
machine__process_fork_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)1860 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1861 struct perf_sample *sample)
1862 {
1863 struct thread *thread = machine__find_thread(machine,
1864 event->fork.pid,
1865 event->fork.tid);
1866 struct thread *parent = machine__findnew_thread(machine,
1867 event->fork.ppid,
1868 event->fork.ptid);
1869 bool do_maps_clone = true;
1870 int err = 0;
1871
1872 if (dump_trace)
1873 perf_event__fprintf_task(event, stdout);
1874
1875 /*
1876 * There may be an existing thread that is not actually the parent,
1877 * either because we are processing events out of order, or because the
1878 * (fork) event that would have removed the thread was lost. Assume the
1879 * latter case and continue on as best we can.
1880 */
1881 if (thread__pid(parent) != (pid_t)event->fork.ppid) {
1882 dump_printf("removing erroneous parent thread %d/%d\n",
1883 thread__pid(parent), thread__tid(parent));
1884 machine__remove_thread(machine, parent);
1885 thread__put(parent);
1886 parent = machine__findnew_thread(machine, event->fork.ppid,
1887 event->fork.ptid);
1888 }
1889
1890 /* if a thread currently exists for the thread id remove it */
1891 if (thread != NULL) {
1892 machine__remove_thread(machine, thread);
1893 thread__put(thread);
1894 }
1895
1896 thread = machine__findnew_thread(machine, event->fork.pid,
1897 event->fork.tid);
1898 /*
1899 * When synthesizing FORK events, we are trying to create thread
1900 * objects for the already running tasks on the machine.
1901 *
1902 * Normally, for a kernel FORK event, we want to clone the parent's
1903 * maps because that is what the kernel just did.
1904 *
1905 * But when synthesizing, this should not be done. If we do, we end up
1906 * with overlapping maps as we process the synthesized MMAP2 events that
1907 * get delivered shortly thereafter.
1908 *
1909 * Use the FORK event misc flags in an internal way to signal this
1910 * situation, so we can elide the map clone when appropriate.
1911 */
1912 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1913 do_maps_clone = false;
1914
1915 if (thread == NULL || parent == NULL ||
1916 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1917 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1918 err = -1;
1919 }
1920 thread__put(thread);
1921 thread__put(parent);
1922
1923 return err;
1924 }
1925
machine__process_exit_event(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)1926 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1927 struct perf_sample *sample __maybe_unused)
1928 {
1929 struct thread *thread = machine__find_thread(machine,
1930 event->fork.pid,
1931 event->fork.tid);
1932
1933 if (dump_trace)
1934 perf_event__fprintf_task(event, stdout);
1935
1936 /* There is no context switch out before exit, so we decrement here. */
1937 machine->parallelism--;
1938 if (thread != NULL) {
1939 if (symbol_conf.keep_exited_threads)
1940 thread__set_exited(thread, /*exited=*/true);
1941 else
1942 machine__remove_thread(machine, thread);
1943 }
1944 thread__put(thread);
1945 return 0;
1946 }
1947
machine__process_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)1948 int machine__process_event(struct machine *machine, union perf_event *event,
1949 struct perf_sample *sample)
1950 {
1951 int ret;
1952
1953 switch (event->header.type) {
1954 case PERF_RECORD_COMM:
1955 ret = machine__process_comm_event(machine, event, sample); break;
1956 case PERF_RECORD_MMAP:
1957 ret = machine__process_mmap_event(machine, event, sample); break;
1958 case PERF_RECORD_NAMESPACES:
1959 ret = machine__process_namespaces_event(machine, event, sample); break;
1960 case PERF_RECORD_CGROUP:
1961 ret = machine__process_cgroup_event(machine, event, sample); break;
1962 case PERF_RECORD_MMAP2:
1963 ret = machine__process_mmap2_event(machine, event, sample); break;
1964 case PERF_RECORD_FORK:
1965 ret = machine__process_fork_event(machine, event, sample); break;
1966 case PERF_RECORD_EXIT:
1967 ret = machine__process_exit_event(machine, event, sample); break;
1968 case PERF_RECORD_LOST:
1969 ret = machine__process_lost_event(machine, event, sample); break;
1970 case PERF_RECORD_AUX:
1971 ret = machine__process_aux_event(machine, event); break;
1972 case PERF_RECORD_ITRACE_START:
1973 ret = machine__process_itrace_start_event(machine, event); break;
1974 case PERF_RECORD_LOST_SAMPLES:
1975 ret = machine__process_lost_samples_event(machine, event, sample); break;
1976 case PERF_RECORD_SWITCH:
1977 case PERF_RECORD_SWITCH_CPU_WIDE:
1978 ret = machine__process_switch_event(machine, event); break;
1979 case PERF_RECORD_KSYMBOL:
1980 ret = machine__process_ksymbol(machine, event, sample); break;
1981 case PERF_RECORD_BPF_EVENT:
1982 ret = machine__process_bpf(machine, event, sample); break;
1983 case PERF_RECORD_TEXT_POKE:
1984 ret = machine__process_text_poke(machine, event, sample); break;
1985 case PERF_RECORD_AUX_OUTPUT_HW_ID:
1986 ret = machine__process_aux_output_hw_id_event(machine, event); break;
1987 default:
1988 ret = -1;
1989 break;
1990 }
1991
1992 return ret;
1993 }
1994
symbol__match_regex(struct symbol * sym,regex_t * regex)1995 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1996 {
1997 return regexec(regex, sym->name, 0, NULL, 0) == 0;
1998 }
1999
ip__resolve_ams(struct thread * thread,struct addr_map_symbol * ams,u64 ip)2000 static void ip__resolve_ams(struct thread *thread,
2001 struct addr_map_symbol *ams,
2002 u64 ip)
2003 {
2004 struct addr_location al;
2005
2006 addr_location__init(&al);
2007 /*
2008 * We cannot use the header.misc hint to determine whether a
2009 * branch stack address is user, kernel, guest, hypervisor.
2010 * Branches may straddle the kernel/user/hypervisor boundaries.
2011 * Thus, we have to try consecutively until we find a match
2012 * or else, the symbol is unknown
2013 */
2014 thread__find_cpumode_addr_location(thread, ip, /*symbols=*/true, &al);
2015
2016 ams->addr = ip;
2017 ams->al_addr = al.addr;
2018 ams->al_level = al.level;
2019 ams->ms.maps = maps__get(al.maps);
2020 ams->ms.sym = al.sym;
2021 ams->ms.map = map__get(al.map);
2022 ams->phys_addr = 0;
2023 ams->data_page_size = 0;
2024 addr_location__exit(&al);
2025 }
2026
ip__resolve_data(struct thread * thread,u8 m,struct addr_map_symbol * ams,u64 addr,u64 phys_addr,u64 daddr_page_size)2027 static void ip__resolve_data(struct thread *thread,
2028 u8 m, struct addr_map_symbol *ams,
2029 u64 addr, u64 phys_addr, u64 daddr_page_size)
2030 {
2031 struct addr_location al;
2032
2033 addr_location__init(&al);
2034
2035 thread__find_symbol(thread, m, addr, &al);
2036
2037 ams->addr = addr;
2038 ams->al_addr = al.addr;
2039 ams->al_level = al.level;
2040 ams->ms.maps = maps__get(al.maps);
2041 ams->ms.sym = al.sym;
2042 ams->ms.map = map__get(al.map);
2043 ams->phys_addr = phys_addr;
2044 ams->data_page_size = daddr_page_size;
2045 addr_location__exit(&al);
2046 }
2047
sample__resolve_mem(struct perf_sample * sample,struct addr_location * al)2048 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
2049 struct addr_location *al)
2050 {
2051 struct mem_info *mi = mem_info__new();
2052
2053 if (!mi)
2054 return NULL;
2055
2056 ip__resolve_ams(al->thread, mem_info__iaddr(mi), sample->ip);
2057 ip__resolve_data(al->thread, al->cpumode, mem_info__daddr(mi),
2058 sample->addr, sample->phys_addr,
2059 sample->data_page_size);
2060 mem_info__data_src(mi)->val = sample->data_src;
2061
2062 return mi;
2063 }
2064
callchain_srcline(struct map_symbol * ms,u64 ip)2065 static char *callchain_srcline(struct map_symbol *ms, u64 ip)
2066 {
2067 struct map *map = ms->map;
2068 char *srcline = NULL;
2069 struct dso *dso;
2070
2071 if (!map || callchain_param.key == CCKEY_FUNCTION)
2072 return srcline;
2073
2074 dso = map__dso(map);
2075 srcline = srcline__tree_find(dso__srclines(dso), ip);
2076 if (!srcline) {
2077 bool show_sym = false;
2078 bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2079
2080 srcline = get_srcline(dso, map__rip_2objdump(map, ip),
2081 ms->sym, show_sym, show_addr, ip);
2082 srcline__tree_insert(dso__srclines(dso), ip, srcline);
2083 }
2084
2085 return srcline;
2086 }
2087
2088 struct iterations {
2089 int nr_loop_iter;
2090 u64 cycles;
2091 };
2092
add_callchain_ip(struct thread * thread,struct callchain_cursor * cursor,struct symbol ** parent,struct addr_location * root_al,u8 * cpumode,u64 ip,bool branch,struct branch_flags * flags,struct iterations * iter,u64 branch_from,bool symbols)2093 static int add_callchain_ip(struct thread *thread,
2094 struct callchain_cursor *cursor,
2095 struct symbol **parent,
2096 struct addr_location *root_al,
2097 u8 *cpumode,
2098 u64 ip,
2099 bool branch,
2100 struct branch_flags *flags,
2101 struct iterations *iter,
2102 u64 branch_from,
2103 bool symbols)
2104 {
2105 struct map_symbol ms = {};
2106 struct addr_location al;
2107 int nr_loop_iter = 0, err = 0;
2108 u64 iter_cycles = 0;
2109 const char *srcline = NULL;
2110
2111 addr_location__init(&al);
2112 al.filtered = 0;
2113 al.sym = NULL;
2114 al.srcline = NULL;
2115 if (!cpumode) {
2116 thread__find_cpumode_addr_location(thread, ip, symbols, &al);
2117 } else {
2118 if (ip >= PERF_CONTEXT_MAX) {
2119 switch (ip) {
2120 case PERF_CONTEXT_HV:
2121 *cpumode = PERF_RECORD_MISC_HYPERVISOR;
2122 break;
2123 case PERF_CONTEXT_KERNEL:
2124 *cpumode = PERF_RECORD_MISC_KERNEL;
2125 break;
2126 case PERF_CONTEXT_USER:
2127 *cpumode = PERF_RECORD_MISC_USER;
2128 break;
2129 default:
2130 pr_debug("invalid callchain context: "
2131 "%"PRId64"\n", (s64) ip);
2132 /*
2133 * It seems the callchain is corrupted.
2134 * Discard all.
2135 */
2136 callchain_cursor_reset(cursor);
2137 err = 1;
2138 goto out;
2139 }
2140 goto out;
2141 }
2142 if (symbols)
2143 thread__find_symbol(thread, *cpumode, ip, &al);
2144 else
2145 thread__find_map(thread, *cpumode, ip, &al);
2146 }
2147
2148 if (al.sym != NULL) {
2149 if (perf_hpp_list.parent && !*parent &&
2150 symbol__match_regex(al.sym, &parent_regex))
2151 *parent = al.sym;
2152 else if (have_ignore_callees && root_al &&
2153 symbol__match_regex(al.sym, &ignore_callees_regex)) {
2154 /* Treat this symbol as the root,
2155 forgetting its callees. */
2156 addr_location__copy(root_al, &al);
2157 callchain_cursor_reset(cursor);
2158 }
2159 }
2160
2161 if (symbol_conf.hide_unresolved && al.sym == NULL)
2162 goto out;
2163
2164 if (iter) {
2165 nr_loop_iter = iter->nr_loop_iter;
2166 iter_cycles = iter->cycles;
2167 }
2168
2169 ms.maps = maps__get(al.maps);
2170 ms.map = map__get(al.map);
2171 ms.sym = al.sym;
2172 srcline = callchain_srcline(&ms, al.addr);
2173 err = callchain_cursor_append(cursor, ip, &ms,
2174 branch, flags, nr_loop_iter,
2175 iter_cycles, branch_from, srcline);
2176 out:
2177 addr_location__exit(&al);
2178 map_symbol__exit(&ms);
2179 return err;
2180 }
2181
sample__resolve_bstack(struct perf_sample * sample,struct addr_location * al)2182 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2183 struct addr_location *al)
2184 {
2185 unsigned int i;
2186 const struct branch_stack *bs = sample->branch_stack;
2187 struct branch_entry *entries = perf_sample__branch_entries(sample);
2188 u64 *branch_stack_cntr = sample->branch_stack_cntr;
2189 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2190
2191 if (!bi)
2192 return NULL;
2193
2194 for (i = 0; i < bs->nr; i++) {
2195 ip__resolve_ams(al->thread, &bi[i].to, entries[i].to);
2196 ip__resolve_ams(al->thread, &bi[i].from, entries[i].from);
2197 bi[i].flags = entries[i].flags;
2198 if (branch_stack_cntr)
2199 bi[i].branch_stack_cntr = branch_stack_cntr[i];
2200 }
2201 return bi;
2202 }
2203
save_iterations(struct iterations * iter,struct branch_entry * be,int nr)2204 static void save_iterations(struct iterations *iter,
2205 struct branch_entry *be, int nr)
2206 {
2207 int i;
2208
2209 iter->nr_loop_iter++;
2210 iter->cycles = 0;
2211
2212 for (i = 0; i < nr; i++)
2213 iter->cycles += be[i].flags.cycles;
2214 }
2215
2216 #define CHASHSZ 127
2217 #define CHASHBITS 7
2218 #define NO_ENTRY 0xff
2219
2220 #define PERF_MAX_BRANCH_DEPTH 127
2221
2222 /* Remove loops. */
remove_loops(struct branch_entry * l,int nr,struct iterations * iter)2223 static int remove_loops(struct branch_entry *l, int nr,
2224 struct iterations *iter)
2225 {
2226 int i, j, off;
2227 unsigned char chash[CHASHSZ];
2228
2229 memset(chash, NO_ENTRY, sizeof(chash));
2230
2231 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2232
2233 for (i = 0; i < nr; i++) {
2234 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2235
2236 /* no collision handling for now */
2237 if (chash[h] == NO_ENTRY) {
2238 chash[h] = i;
2239 } else if (l[chash[h]].from == l[i].from) {
2240 bool is_loop = true;
2241 /* check if it is a real loop */
2242 off = 0;
2243 for (j = chash[h]; j < i && i + off < nr; j++, off++)
2244 if (l[j].from != l[i + off].from) {
2245 is_loop = false;
2246 break;
2247 }
2248 if (is_loop) {
2249 j = nr - (i + off);
2250 if (j > 0) {
2251 save_iterations(iter + i + off,
2252 l + i, off);
2253
2254 memmove(iter + i, iter + i + off,
2255 j * sizeof(*iter));
2256
2257 memmove(l + i, l + i + off,
2258 j * sizeof(*l));
2259 }
2260
2261 nr -= off;
2262 }
2263 }
2264 }
2265 return nr;
2266 }
2267
lbr_callchain_add_kernel_ip(struct thread * thread,struct callchain_cursor * cursor,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,u64 branch_from,bool callee,int end,bool symbols)2268 static int lbr_callchain_add_kernel_ip(struct thread *thread,
2269 struct callchain_cursor *cursor,
2270 struct perf_sample *sample,
2271 struct symbol **parent,
2272 struct addr_location *root_al,
2273 u64 branch_from,
2274 bool callee, int end,
2275 bool symbols)
2276 {
2277 struct ip_callchain *chain = sample->callchain;
2278 u8 cpumode = PERF_RECORD_MISC_USER;
2279 int err, i;
2280
2281 if (callee) {
2282 for (i = 0; i < end + 1; i++) {
2283 err = add_callchain_ip(thread, cursor, parent,
2284 root_al, &cpumode, chain->ips[i],
2285 false, NULL, NULL, branch_from,
2286 symbols);
2287 if (err)
2288 return err;
2289 }
2290 return 0;
2291 }
2292
2293 for (i = end; i >= 0; i--) {
2294 err = add_callchain_ip(thread, cursor, parent,
2295 root_al, &cpumode, chain->ips[i],
2296 false, NULL, NULL, branch_from,
2297 symbols);
2298 if (err)
2299 return err;
2300 }
2301
2302 return 0;
2303 }
2304
save_lbr_cursor_node(struct thread * thread,struct callchain_cursor * cursor,int idx)2305 static void save_lbr_cursor_node(struct thread *thread,
2306 struct callchain_cursor *cursor,
2307 int idx)
2308 {
2309 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2310
2311 if (!lbr_stitch)
2312 return;
2313
2314 if (cursor->pos == cursor->nr) {
2315 lbr_stitch->prev_lbr_cursor[idx].valid = false;
2316 return;
2317 }
2318
2319 if (!cursor->curr)
2320 cursor->curr = cursor->first;
2321 else
2322 cursor->curr = cursor->curr->next;
2323
2324 map_symbol__exit(&lbr_stitch->prev_lbr_cursor[idx].ms);
2325 memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr,
2326 sizeof(struct callchain_cursor_node));
2327 lbr_stitch->prev_lbr_cursor[idx].ms.maps = maps__get(cursor->curr->ms.maps);
2328 lbr_stitch->prev_lbr_cursor[idx].ms.map = map__get(cursor->curr->ms.map);
2329
2330 lbr_stitch->prev_lbr_cursor[idx].valid = true;
2331 cursor->pos++;
2332 }
2333
lbr_callchain_add_lbr_ip(struct thread * thread,struct callchain_cursor * cursor,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,u64 * branch_from,bool callee,bool symbols)2334 static int lbr_callchain_add_lbr_ip(struct thread *thread,
2335 struct callchain_cursor *cursor,
2336 struct perf_sample *sample,
2337 struct symbol **parent,
2338 struct addr_location *root_al,
2339 u64 *branch_from,
2340 bool callee,
2341 bool symbols)
2342 {
2343 struct branch_stack *lbr_stack = sample->branch_stack;
2344 struct branch_entry *entries = perf_sample__branch_entries(sample);
2345 u8 cpumode = PERF_RECORD_MISC_USER;
2346 int lbr_nr = lbr_stack->nr;
2347 struct branch_flags *flags;
2348 int err, i;
2349 u64 ip;
2350
2351 /*
2352 * The curr and pos are not used in writing session. They are cleared
2353 * in callchain_cursor_commit() when the writing session is closed.
2354 * Using curr and pos to track the current cursor node.
2355 */
2356 if (thread__lbr_stitch(thread)) {
2357 cursor->curr = NULL;
2358 cursor->pos = cursor->nr;
2359 if (cursor->nr) {
2360 cursor->curr = cursor->first;
2361 for (i = 0; i < (int)(cursor->nr - 1); i++)
2362 cursor->curr = cursor->curr->next;
2363 }
2364 }
2365
2366 if (callee) {
2367 /* Add LBR ip from first entries.to */
2368 ip = entries[0].to;
2369 flags = &entries[0].flags;
2370 *branch_from = entries[0].from;
2371 err = add_callchain_ip(thread, cursor, parent,
2372 root_al, &cpumode, ip,
2373 true, flags, NULL,
2374 *branch_from, symbols);
2375 if (err)
2376 return err;
2377
2378 /*
2379 * The number of cursor node increases.
2380 * Move the current cursor node.
2381 * But does not need to save current cursor node for entry 0.
2382 * It's impossible to stitch the whole LBRs of previous sample.
2383 */
2384 if (thread__lbr_stitch(thread) && (cursor->pos != cursor->nr)) {
2385 if (!cursor->curr)
2386 cursor->curr = cursor->first;
2387 else
2388 cursor->curr = cursor->curr->next;
2389 cursor->pos++;
2390 }
2391
2392 /* Add LBR ip from entries.from one by one. */
2393 for (i = 0; i < lbr_nr; i++) {
2394 ip = entries[i].from;
2395 flags = &entries[i].flags;
2396 err = add_callchain_ip(thread, cursor, parent,
2397 root_al, &cpumode, ip,
2398 true, flags, NULL,
2399 *branch_from, symbols);
2400 if (err)
2401 return err;
2402 save_lbr_cursor_node(thread, cursor, i);
2403 }
2404 return 0;
2405 }
2406
2407 /* Add LBR ip from entries.from one by one. */
2408 for (i = lbr_nr - 1; i >= 0; i--) {
2409 ip = entries[i].from;
2410 flags = &entries[i].flags;
2411 err = add_callchain_ip(thread, cursor, parent,
2412 root_al, &cpumode, ip,
2413 true, flags, NULL,
2414 *branch_from, symbols);
2415 if (err)
2416 return err;
2417 save_lbr_cursor_node(thread, cursor, i);
2418 }
2419
2420 if (lbr_nr > 0) {
2421 /* Add LBR ip from first entries.to */
2422 ip = entries[0].to;
2423 flags = &entries[0].flags;
2424 *branch_from = entries[0].from;
2425 err = add_callchain_ip(thread, cursor, parent,
2426 root_al, &cpumode, ip,
2427 true, flags, NULL,
2428 *branch_from, symbols);
2429 if (err)
2430 return err;
2431 }
2432
2433 return 0;
2434 }
2435
lbr_callchain_add_stitched_lbr_ip(struct thread * thread,struct callchain_cursor * cursor)2436 static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread,
2437 struct callchain_cursor *cursor)
2438 {
2439 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2440 struct callchain_cursor_node *cnode;
2441 struct stitch_list *stitch_node;
2442 int err;
2443
2444 list_for_each_entry(stitch_node, &lbr_stitch->lists, node) {
2445 cnode = &stitch_node->cursor;
2446
2447 err = callchain_cursor_append(cursor, cnode->ip,
2448 &cnode->ms,
2449 cnode->branch,
2450 &cnode->branch_flags,
2451 cnode->nr_loop_iter,
2452 cnode->iter_cycles,
2453 cnode->branch_from,
2454 cnode->srcline);
2455 if (err)
2456 return err;
2457 }
2458 return 0;
2459 }
2460
get_stitch_node(struct thread * thread)2461 static struct stitch_list *get_stitch_node(struct thread *thread)
2462 {
2463 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2464 struct stitch_list *stitch_node;
2465
2466 if (!list_empty(&lbr_stitch->free_lists)) {
2467 stitch_node = list_first_entry(&lbr_stitch->free_lists,
2468 struct stitch_list, node);
2469 list_del(&stitch_node->node);
2470
2471 return stitch_node;
2472 }
2473
2474 return malloc(sizeof(struct stitch_list));
2475 }
2476
has_stitched_lbr(struct thread * thread,struct perf_sample * cur,struct perf_sample * prev,unsigned int max_lbr,bool callee)2477 static bool has_stitched_lbr(struct thread *thread,
2478 struct perf_sample *cur,
2479 struct perf_sample *prev,
2480 unsigned int max_lbr,
2481 bool callee)
2482 {
2483 struct branch_stack *cur_stack = cur->branch_stack;
2484 struct branch_entry *cur_entries = perf_sample__branch_entries(cur);
2485 struct branch_stack *prev_stack = prev->branch_stack;
2486 struct branch_entry *prev_entries = perf_sample__branch_entries(prev);
2487 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2488 int i, j, nr_identical_branches = 0;
2489 struct stitch_list *stitch_node;
2490 u64 cur_base, distance;
2491
2492 if (!cur_stack || !prev_stack)
2493 return false;
2494
2495 /* Find the physical index of the base-of-stack for current sample. */
2496 cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1;
2497
2498 distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) :
2499 (max_lbr + prev_stack->hw_idx - cur_base);
2500 /* Previous sample has shorter stack. Nothing can be stitched. */
2501 if (distance + 1 > prev_stack->nr)
2502 return false;
2503
2504 /*
2505 * Check if there are identical LBRs between two samples.
2506 * Identical LBRs must have same from, to and flags values. Also,
2507 * they have to be saved in the same LBR registers (same physical
2508 * index).
2509 *
2510 * Starts from the base-of-stack of current sample.
2511 */
2512 for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) {
2513 if ((prev_entries[i].from != cur_entries[j].from) ||
2514 (prev_entries[i].to != cur_entries[j].to) ||
2515 (prev_entries[i].flags.value != cur_entries[j].flags.value))
2516 break;
2517 nr_identical_branches++;
2518 }
2519
2520 if (!nr_identical_branches)
2521 return false;
2522
2523 /*
2524 * Save the LBRs between the base-of-stack of previous sample
2525 * and the base-of-stack of current sample into lbr_stitch->lists.
2526 * These LBRs will be stitched later.
2527 */
2528 for (i = prev_stack->nr - 1; i > (int)distance; i--) {
2529
2530 if (!lbr_stitch->prev_lbr_cursor[i].valid)
2531 continue;
2532
2533 stitch_node = get_stitch_node(thread);
2534 if (!stitch_node)
2535 return false;
2536
2537 memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i],
2538 sizeof(struct callchain_cursor_node));
2539
2540 stitch_node->cursor.ms.maps = maps__get(lbr_stitch->prev_lbr_cursor[i].ms.maps);
2541 stitch_node->cursor.ms.map = map__get(lbr_stitch->prev_lbr_cursor[i].ms.map);
2542
2543 if (callee)
2544 list_add(&stitch_node->node, &lbr_stitch->lists);
2545 else
2546 list_add_tail(&stitch_node->node, &lbr_stitch->lists);
2547 }
2548
2549 return true;
2550 }
2551
alloc_lbr_stitch(struct thread * thread,unsigned int max_lbr)2552 static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr)
2553 {
2554 if (thread__lbr_stitch(thread))
2555 return true;
2556
2557 thread__set_lbr_stitch(thread, zalloc(sizeof(struct lbr_stitch)));
2558 if (!thread__lbr_stitch(thread))
2559 goto err;
2560
2561 thread__lbr_stitch(thread)->prev_lbr_cursor =
2562 calloc(max_lbr + 1, sizeof(struct callchain_cursor_node));
2563 if (!thread__lbr_stitch(thread)->prev_lbr_cursor)
2564 goto free_lbr_stitch;
2565
2566 thread__lbr_stitch(thread)->prev_lbr_cursor_size = max_lbr + 1;
2567
2568 INIT_LIST_HEAD(&thread__lbr_stitch(thread)->lists);
2569 INIT_LIST_HEAD(&thread__lbr_stitch(thread)->free_lists);
2570
2571 return true;
2572
2573 free_lbr_stitch:
2574 free(thread__lbr_stitch(thread));
2575 thread__set_lbr_stitch(thread, NULL);
2576 err:
2577 pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n");
2578 thread__set_lbr_stitch_enable(thread, false);
2579 return false;
2580 }
2581
2582 /*
2583 * Resolve LBR callstack chain sample
2584 * Return:
2585 * 1 on success get LBR callchain information
2586 * 0 no available LBR callchain information, should try fp
2587 * negative error code on other errors.
2588 */
resolve_lbr_callchain_sample(struct thread * thread,struct callchain_cursor * cursor,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,int max_stack,unsigned int max_lbr,bool symbols)2589 static int resolve_lbr_callchain_sample(struct thread *thread,
2590 struct callchain_cursor *cursor,
2591 struct perf_sample *sample,
2592 struct symbol **parent,
2593 struct addr_location *root_al,
2594 int max_stack,
2595 unsigned int max_lbr,
2596 bool symbols)
2597 {
2598 bool callee = (callchain_param.order == ORDER_CALLEE);
2599 struct ip_callchain *chain = sample->callchain;
2600 int chain_nr = min(max_stack, (int)chain->nr), i;
2601 struct lbr_stitch *lbr_stitch;
2602 bool stitched_lbr = false;
2603 u64 branch_from = 0;
2604 int err;
2605
2606 for (i = 0; i < chain_nr; i++) {
2607 if (chain->ips[i] == PERF_CONTEXT_USER)
2608 break;
2609 }
2610
2611 /* LBR only affects the user callchain */
2612 if (i == chain_nr)
2613 return 0;
2614
2615 if (thread__lbr_stitch_enable(thread) && !sample->no_hw_idx &&
2616 (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) {
2617 lbr_stitch = thread__lbr_stitch(thread);
2618
2619 stitched_lbr = has_stitched_lbr(thread, sample,
2620 &lbr_stitch->prev_sample,
2621 max_lbr, callee);
2622
2623 if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) {
2624 struct stitch_list *stitch_node;
2625
2626 list_for_each_entry(stitch_node, &lbr_stitch->lists, node)
2627 map_symbol__exit(&stitch_node->cursor.ms);
2628
2629 list_splice_init(&lbr_stitch->lists, &lbr_stitch->free_lists);
2630 }
2631 memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample));
2632 }
2633
2634 if (callee) {
2635 /* Add kernel ip */
2636 err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2637 parent, root_al, branch_from,
2638 true, i, symbols);
2639 if (err)
2640 goto error;
2641
2642 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2643 root_al, &branch_from, true, symbols);
2644 if (err)
2645 goto error;
2646
2647 if (stitched_lbr) {
2648 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2649 if (err)
2650 goto error;
2651 }
2652
2653 } else {
2654 if (stitched_lbr) {
2655 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2656 if (err)
2657 goto error;
2658 }
2659 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2660 root_al, &branch_from, false, symbols);
2661 if (err)
2662 goto error;
2663
2664 /* Add kernel ip */
2665 err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2666 parent, root_al, branch_from,
2667 false, i, symbols);
2668 if (err)
2669 goto error;
2670 }
2671 return 1;
2672
2673 error:
2674 return (err < 0) ? err : 0;
2675 }
2676
find_prev_cpumode(struct ip_callchain * chain,struct thread * thread,struct callchain_cursor * cursor,struct symbol ** parent,struct addr_location * root_al,u8 * cpumode,int ent,bool symbols)2677 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2678 struct callchain_cursor *cursor,
2679 struct symbol **parent,
2680 struct addr_location *root_al,
2681 u8 *cpumode, int ent, bool symbols)
2682 {
2683 int err = 0;
2684
2685 while (--ent >= 0) {
2686 u64 ip = chain->ips[ent];
2687
2688 if (ip >= PERF_CONTEXT_MAX) {
2689 err = add_callchain_ip(thread, cursor, parent,
2690 root_al, cpumode, ip,
2691 false, NULL, NULL, 0, symbols);
2692 break;
2693 }
2694 }
2695 return err;
2696 }
2697
get_leaf_frame_caller(struct perf_sample * sample,struct thread * thread,int usr_idx)2698 static u64 get_leaf_frame_caller(struct perf_sample *sample,
2699 struct thread *thread, int usr_idx)
2700 {
2701 if (machine__normalized_is(maps__machine(thread__maps(thread)), "arm64"))
2702 return get_leaf_frame_caller_aarch64(sample, thread, usr_idx);
2703 else
2704 return 0;
2705 }
2706
thread__resolve_callchain_sample(struct thread * thread,struct callchain_cursor * cursor,struct evsel * evsel,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,int max_stack,bool symbols)2707 static int thread__resolve_callchain_sample(struct thread *thread,
2708 struct callchain_cursor *cursor,
2709 struct evsel *evsel,
2710 struct perf_sample *sample,
2711 struct symbol **parent,
2712 struct addr_location *root_al,
2713 int max_stack,
2714 bool symbols)
2715 {
2716 struct branch_stack *branch = sample->branch_stack;
2717 struct branch_entry *entries = perf_sample__branch_entries(sample);
2718 struct ip_callchain *chain = sample->callchain;
2719 int chain_nr = 0;
2720 u8 cpumode = PERF_RECORD_MISC_USER;
2721 int i, j, err, nr_entries, usr_idx;
2722 int skip_idx = -1;
2723 int first_call = 0;
2724 u64 leaf_frame_caller;
2725
2726 if (chain)
2727 chain_nr = chain->nr;
2728
2729 if (evsel__has_branch_callstack(evsel)) {
2730 struct perf_env *env = evsel__env(evsel);
2731
2732 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2733 root_al, max_stack,
2734 !env ? 0 : env->max_branches,
2735 symbols);
2736 if (err)
2737 return (err < 0) ? err : 0;
2738 }
2739
2740 /*
2741 * Based on DWARF debug information, some architectures skip
2742 * a callchain entry saved by the kernel.
2743 */
2744 skip_idx = arch_skip_callchain_idx(thread, chain);
2745
2746 /*
2747 * Add branches to call stack for easier browsing. This gives
2748 * more context for a sample than just the callers.
2749 *
2750 * This uses individual histograms of paths compared to the
2751 * aggregated histograms the normal LBR mode uses.
2752 *
2753 * Limitations for now:
2754 * - No extra filters
2755 * - No annotations (should annotate somehow)
2756 */
2757
2758 if (branch && callchain_param.branch_callstack) {
2759 int nr = min(max_stack, (int)branch->nr);
2760 struct branch_entry be[nr];
2761 struct iterations iter[nr];
2762
2763 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2764 pr_warning("corrupted branch chain. skipping...\n");
2765 goto check_calls;
2766 }
2767
2768 for (i = 0; i < nr; i++) {
2769 if (callchain_param.order == ORDER_CALLEE) {
2770 be[i] = entries[i];
2771
2772 if (chain == NULL)
2773 continue;
2774
2775 /*
2776 * Check for overlap into the callchain.
2777 * The return address is one off compared to
2778 * the branch entry. To adjust for this
2779 * assume the calling instruction is not longer
2780 * than 8 bytes.
2781 */
2782 if (i == skip_idx ||
2783 chain->ips[first_call] >= PERF_CONTEXT_MAX)
2784 first_call++;
2785 else if (be[i].from < chain->ips[first_call] &&
2786 be[i].from >= chain->ips[first_call] - 8)
2787 first_call++;
2788 } else
2789 be[i] = entries[branch->nr - i - 1];
2790 }
2791
2792 memset(iter, 0, sizeof(struct iterations) * nr);
2793 nr = remove_loops(be, nr, iter);
2794
2795 for (i = 0; i < nr; i++) {
2796 err = add_callchain_ip(thread, cursor, parent,
2797 root_al,
2798 NULL, be[i].to,
2799 true, &be[i].flags,
2800 NULL, be[i].from, symbols);
2801
2802 if (!err) {
2803 err = add_callchain_ip(thread, cursor, parent, root_al,
2804 NULL, be[i].from,
2805 true, &be[i].flags,
2806 &iter[i], 0, symbols);
2807 }
2808 if (err == -EINVAL)
2809 break;
2810 if (err)
2811 return err;
2812 }
2813
2814 if (chain_nr == 0)
2815 return 0;
2816
2817 chain_nr -= nr;
2818 }
2819
2820 check_calls:
2821 if (chain && callchain_param.order != ORDER_CALLEE) {
2822 err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2823 &cpumode, chain->nr - first_call, symbols);
2824 if (err)
2825 return (err < 0) ? err : 0;
2826 }
2827 for (i = first_call, nr_entries = 0;
2828 i < chain_nr && nr_entries < max_stack; i++) {
2829 u64 ip;
2830
2831 if (callchain_param.order == ORDER_CALLEE)
2832 j = i;
2833 else
2834 j = chain->nr - i - 1;
2835
2836 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2837 if (j == skip_idx)
2838 continue;
2839 #endif
2840 ip = chain->ips[j];
2841 if (ip < PERF_CONTEXT_MAX)
2842 ++nr_entries;
2843 else if (callchain_param.order != ORDER_CALLEE) {
2844 err = find_prev_cpumode(chain, thread, cursor, parent,
2845 root_al, &cpumode, j, symbols);
2846 if (err)
2847 return (err < 0) ? err : 0;
2848 continue;
2849 }
2850
2851 /*
2852 * PERF_CONTEXT_USER allows us to locate where the user stack ends.
2853 * Depending on callchain_param.order and the position of PERF_CONTEXT_USER,
2854 * the index will be different in order to add the missing frame
2855 * at the right place.
2856 */
2857
2858 usr_idx = callchain_param.order == ORDER_CALLEE ? j-2 : j-1;
2859
2860 if (usr_idx >= 0 && chain->ips[usr_idx] == PERF_CONTEXT_USER) {
2861
2862 leaf_frame_caller = get_leaf_frame_caller(sample, thread, usr_idx);
2863
2864 /*
2865 * check if leaf_frame_Caller != ip to not add the same
2866 * value twice.
2867 */
2868
2869 if (leaf_frame_caller && leaf_frame_caller != ip) {
2870
2871 err = add_callchain_ip(thread, cursor, parent,
2872 root_al, &cpumode, leaf_frame_caller,
2873 false, NULL, NULL, 0, symbols);
2874 if (err)
2875 return (err < 0) ? err : 0;
2876 }
2877 }
2878
2879 err = add_callchain_ip(thread, cursor, parent,
2880 root_al, &cpumode, ip,
2881 false, NULL, NULL, 0, symbols);
2882
2883 if (err)
2884 return (err < 0) ? err : 0;
2885 }
2886
2887 return 0;
2888 }
2889
append_inlines(struct callchain_cursor * cursor,struct map_symbol * ms,u64 ip)2890 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
2891 {
2892 struct symbol *sym = ms->sym;
2893 struct map *map = ms->map;
2894 struct inline_node *inline_node;
2895 struct inline_list *ilist;
2896 struct dso *dso;
2897 u64 addr;
2898 int ret = 1;
2899 struct map_symbol ilist_ms;
2900
2901 if (!symbol_conf.inline_name || !map || !sym)
2902 return ret;
2903
2904 addr = map__dso_map_ip(map, ip);
2905 addr = map__rip_2objdump(map, addr);
2906 dso = map__dso(map);
2907
2908 inline_node = inlines__tree_find(dso__inlined_nodes(dso), addr);
2909 if (!inline_node) {
2910 inline_node = dso__parse_addr_inlines(dso, addr, sym);
2911 if (!inline_node)
2912 return ret;
2913 inlines__tree_insert(dso__inlined_nodes(dso), inline_node);
2914 }
2915
2916 ilist_ms = (struct map_symbol) {
2917 .maps = maps__get(ms->maps),
2918 .map = map__get(map),
2919 };
2920 list_for_each_entry(ilist, &inline_node->val, list) {
2921 ilist_ms.sym = ilist->symbol;
2922 ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
2923 NULL, 0, 0, 0, ilist->srcline);
2924
2925 if (ret != 0)
2926 return ret;
2927 }
2928 map_symbol__exit(&ilist_ms);
2929
2930 return ret;
2931 }
2932
unwind_entry(struct unwind_entry * entry,void * arg)2933 static int unwind_entry(struct unwind_entry *entry, void *arg)
2934 {
2935 struct callchain_cursor *cursor = arg;
2936 const char *srcline = NULL;
2937 u64 addr = entry->ip;
2938
2939 if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
2940 return 0;
2941
2942 if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
2943 return 0;
2944
2945 /*
2946 * Convert entry->ip from a virtual address to an offset in
2947 * its corresponding binary.
2948 */
2949 if (entry->ms.map)
2950 addr = map__dso_map_ip(entry->ms.map, entry->ip);
2951
2952 srcline = callchain_srcline(&entry->ms, addr);
2953 return callchain_cursor_append(cursor, entry->ip, &entry->ms,
2954 false, NULL, 0, 0, 0, srcline);
2955 }
2956
thread__resolve_callchain_unwind(struct thread * thread,struct callchain_cursor * cursor,struct evsel * evsel,struct perf_sample * sample,int max_stack,bool symbols)2957 static int thread__resolve_callchain_unwind(struct thread *thread,
2958 struct callchain_cursor *cursor,
2959 struct evsel *evsel,
2960 struct perf_sample *sample,
2961 int max_stack, bool symbols)
2962 {
2963 /* Can we do dwarf post unwind? */
2964 if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2965 (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2966 return 0;
2967
2968 /* Bail out if nothing was captured. */
2969 if (!sample->user_regs || !sample->user_regs->regs ||
2970 !sample->user_stack.size)
2971 return 0;
2972
2973 if (!symbols)
2974 pr_debug("Not resolving symbols with an unwinder isn't currently supported\n");
2975
2976 return unwind__get_entries(unwind_entry, cursor,
2977 thread, sample, max_stack, false);
2978 }
2979
__thread__resolve_callchain(struct thread * thread,struct callchain_cursor * cursor,struct evsel * evsel,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,int max_stack,bool symbols)2980 int __thread__resolve_callchain(struct thread *thread,
2981 struct callchain_cursor *cursor,
2982 struct evsel *evsel,
2983 struct perf_sample *sample,
2984 struct symbol **parent,
2985 struct addr_location *root_al,
2986 int max_stack,
2987 bool symbols)
2988 {
2989 int ret = 0;
2990
2991 if (cursor == NULL)
2992 return -ENOMEM;
2993
2994 callchain_cursor_reset(cursor);
2995
2996 if (callchain_param.order == ORDER_CALLEE) {
2997 ret = thread__resolve_callchain_sample(thread, cursor,
2998 evsel, sample,
2999 parent, root_al,
3000 max_stack, symbols);
3001 if (ret)
3002 return ret;
3003 ret = thread__resolve_callchain_unwind(thread, cursor,
3004 evsel, sample,
3005 max_stack, symbols);
3006 } else {
3007 ret = thread__resolve_callchain_unwind(thread, cursor,
3008 evsel, sample,
3009 max_stack, symbols);
3010 if (ret)
3011 return ret;
3012 ret = thread__resolve_callchain_sample(thread, cursor,
3013 evsel, sample,
3014 parent, root_al,
3015 max_stack, symbols);
3016 }
3017
3018 return ret;
3019 }
3020
machine__for_each_thread(struct machine * machine,int (* fn)(struct thread * thread,void * p),void * priv)3021 int machine__for_each_thread(struct machine *machine,
3022 int (*fn)(struct thread *thread, void *p),
3023 void *priv)
3024 {
3025 return threads__for_each_thread(&machine->threads, fn, priv);
3026 }
3027
machines__for_each_thread(struct machines * machines,int (* fn)(struct thread * thread,void * p),void * priv)3028 int machines__for_each_thread(struct machines *machines,
3029 int (*fn)(struct thread *thread, void *p),
3030 void *priv)
3031 {
3032 struct rb_node *nd;
3033 int rc = 0;
3034
3035 rc = machine__for_each_thread(&machines->host, fn, priv);
3036 if (rc != 0)
3037 return rc;
3038
3039 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
3040 struct machine *machine = rb_entry(nd, struct machine, rb_node);
3041
3042 rc = machine__for_each_thread(machine, fn, priv);
3043 if (rc != 0)
3044 return rc;
3045 }
3046 return rc;
3047 }
3048
3049
thread_list_cb(struct thread * thread,void * data)3050 static int thread_list_cb(struct thread *thread, void *data)
3051 {
3052 struct list_head *list = data;
3053 struct thread_list *entry = malloc(sizeof(*entry));
3054
3055 if (!entry)
3056 return -ENOMEM;
3057
3058 entry->thread = thread__get(thread);
3059 list_add_tail(&entry->list, list);
3060 return 0;
3061 }
3062
machine__thread_list(struct machine * machine,struct list_head * list)3063 int machine__thread_list(struct machine *machine, struct list_head *list)
3064 {
3065 return machine__for_each_thread(machine, thread_list_cb, list);
3066 }
3067
thread_list__delete(struct list_head * list)3068 void thread_list__delete(struct list_head *list)
3069 {
3070 struct thread_list *pos, *next;
3071
3072 list_for_each_entry_safe(pos, next, list, list) {
3073 thread__zput(pos->thread);
3074 list_del(&pos->list);
3075 free(pos);
3076 }
3077 }
3078
machine__get_current_tid(struct machine * machine,int cpu)3079 pid_t machine__get_current_tid(struct machine *machine, int cpu)
3080 {
3081 if (cpu < 0 || (size_t)cpu >= machine->current_tid_sz)
3082 return -1;
3083
3084 return machine->current_tid[cpu];
3085 }
3086
machine__set_current_tid(struct machine * machine,int cpu,pid_t pid,pid_t tid)3087 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
3088 pid_t tid)
3089 {
3090 struct thread *thread;
3091 const pid_t init_val = -1;
3092
3093 if (cpu < 0)
3094 return -EINVAL;
3095
3096 if (realloc_array_as_needed(machine->current_tid,
3097 machine->current_tid_sz,
3098 (unsigned int)cpu,
3099 &init_val))
3100 return -ENOMEM;
3101
3102 machine->current_tid[cpu] = tid;
3103
3104 thread = machine__findnew_thread(machine, pid, tid);
3105 if (!thread)
3106 return -ENOMEM;
3107
3108 thread__set_cpu(thread, cpu);
3109 thread__put(thread);
3110
3111 return 0;
3112 }
3113
3114 /*
3115 * Compares the raw arch string. N.B. see instead perf_env__arch() or
3116 * machine__normalized_is() if a normalized arch is needed.
3117 */
machine__is(struct machine * machine,const char * arch)3118 bool machine__is(struct machine *machine, const char *arch)
3119 {
3120 return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
3121 }
3122
machine__normalized_is(struct machine * machine,const char * arch)3123 bool machine__normalized_is(struct machine *machine, const char *arch)
3124 {
3125 return machine && !strcmp(perf_env__arch(machine->env), arch);
3126 }
3127
machine__nr_cpus_avail(struct machine * machine)3128 int machine__nr_cpus_avail(struct machine *machine)
3129 {
3130 return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
3131 }
3132
machine__get_kernel_start(struct machine * machine)3133 int machine__get_kernel_start(struct machine *machine)
3134 {
3135 struct map *map = machine__kernel_map(machine);
3136 int err = 0;
3137
3138 /*
3139 * The only addresses above 2^63 are kernel addresses of a 64-bit
3140 * kernel. Note that addresses are unsigned so that on a 32-bit system
3141 * all addresses including kernel addresses are less than 2^32. In
3142 * that case (32-bit system), if the kernel mapping is unknown, all
3143 * addresses will be assumed to be in user space - see
3144 * machine__kernel_ip().
3145 */
3146 machine->kernel_start = 1ULL << 63;
3147 if (map) {
3148 err = map__load(map);
3149 /*
3150 * On x86_64, PTI entry trampolines are less than the
3151 * start of kernel text, but still above 2^63. So leave
3152 * kernel_start = 1ULL << 63 for x86_64.
3153 */
3154 if (!err && !machine__is(machine, "x86_64"))
3155 machine->kernel_start = map__start(map);
3156 }
3157 return err;
3158 }
3159
machine__addr_cpumode(struct machine * machine,u8 cpumode,u64 addr)3160 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
3161 {
3162 u8 addr_cpumode = cpumode;
3163 bool kernel_ip;
3164
3165 if (!machine->single_address_space)
3166 goto out;
3167
3168 kernel_ip = machine__kernel_ip(machine, addr);
3169 switch (cpumode) {
3170 case PERF_RECORD_MISC_KERNEL:
3171 case PERF_RECORD_MISC_USER:
3172 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
3173 PERF_RECORD_MISC_USER;
3174 break;
3175 case PERF_RECORD_MISC_GUEST_KERNEL:
3176 case PERF_RECORD_MISC_GUEST_USER:
3177 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
3178 PERF_RECORD_MISC_GUEST_USER;
3179 break;
3180 default:
3181 break;
3182 }
3183 out:
3184 return addr_cpumode;
3185 }
3186
machine__findnew_dso_id(struct machine * machine,const char * filename,const struct dso_id * id)3187 struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename,
3188 const struct dso_id *id)
3189 {
3190 return dsos__findnew_id(&machine->dsos, filename, id);
3191 }
3192
machine__findnew_dso(struct machine * machine,const char * filename)3193 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
3194 {
3195 return machine__findnew_dso_id(machine, filename, &dso_id_empty);
3196 }
3197
machine__resolve_kernel_addr(void * vmachine,unsigned long long * addrp,char ** modp)3198 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
3199 {
3200 struct machine *machine = vmachine;
3201 struct map *map;
3202 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
3203
3204 if (sym == NULL)
3205 return NULL;
3206
3207 *modp = __map__is_kmodule(map) ? (char *)dso__short_name(map__dso(map)) : NULL;
3208 *addrp = map__unmap_ip(map, sym->start);
3209 return sym->name;
3210 }
3211
3212 struct machine__for_each_dso_cb_args {
3213 struct machine *machine;
3214 machine__dso_t fn;
3215 void *priv;
3216 };
3217
machine__for_each_dso_cb(struct dso * dso,void * data)3218 static int machine__for_each_dso_cb(struct dso *dso, void *data)
3219 {
3220 struct machine__for_each_dso_cb_args *args = data;
3221
3222 return args->fn(dso, args->machine, args->priv);
3223 }
3224
machine__for_each_dso(struct machine * machine,machine__dso_t fn,void * priv)3225 int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv)
3226 {
3227 struct machine__for_each_dso_cb_args args = {
3228 .machine = machine,
3229 .fn = fn,
3230 .priv = priv,
3231 };
3232
3233 return dsos__for_each_dso(&machine->dsos, machine__for_each_dso_cb, &args);
3234 }
3235
machine__for_each_kernel_map(struct machine * machine,machine__map_t fn,void * priv)3236 int machine__for_each_kernel_map(struct machine *machine, machine__map_t fn, void *priv)
3237 {
3238 struct maps *maps = machine__kernel_maps(machine);
3239
3240 return maps__for_each_map(maps, fn, priv);
3241 }
3242
machine__is_lock_function(struct machine * machine,u64 addr)3243 bool machine__is_lock_function(struct machine *machine, u64 addr)
3244 {
3245 if (!machine->sched.text_start) {
3246 struct map *kmap;
3247 struct symbol *sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_start", &kmap);
3248
3249 if (!sym) {
3250 /* to avoid retry */
3251 machine->sched.text_start = 1;
3252 return false;
3253 }
3254
3255 machine->sched.text_start = map__unmap_ip(kmap, sym->start);
3256
3257 /* should not fail from here */
3258 sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_end", &kmap);
3259 machine->sched.text_end = map__unmap_ip(kmap, sym->start);
3260
3261 sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_start", &kmap);
3262 machine->lock.text_start = map__unmap_ip(kmap, sym->start);
3263
3264 sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_end", &kmap);
3265 machine->lock.text_end = map__unmap_ip(kmap, sym->start);
3266
3267 sym = machine__find_kernel_symbol_by_name(machine, "__traceiter_contention_begin", &kmap);
3268 if (sym) {
3269 machine->traceiter.text_start = map__unmap_ip(kmap, sym->start);
3270 machine->traceiter.text_end = map__unmap_ip(kmap, sym->end);
3271 }
3272 sym = machine__find_kernel_symbol_by_name(machine, "trace_contention_begin", &kmap);
3273 if (sym) {
3274 machine->trace.text_start = map__unmap_ip(kmap, sym->start);
3275 machine->trace.text_end = map__unmap_ip(kmap, sym->end);
3276 }
3277 }
3278
3279 /* failed to get kernel symbols */
3280 if (machine->sched.text_start == 1)
3281 return false;
3282
3283 /* mutex and rwsem functions are in sched text section */
3284 if (machine->sched.text_start <= addr && addr < machine->sched.text_end)
3285 return true;
3286
3287 /* spinlock functions are in lock text section */
3288 if (machine->lock.text_start <= addr && addr < machine->lock.text_end)
3289 return true;
3290
3291 /* traceiter functions currently don't have their own section
3292 * but we consider them lock functions
3293 */
3294 if (machine->traceiter.text_start != 0) {
3295 if (machine->traceiter.text_start <= addr && addr < machine->traceiter.text_end)
3296 return true;
3297 }
3298
3299 if (machine->trace.text_start != 0) {
3300 if (machine->trace.text_start <= addr && addr < machine->trace.text_end)
3301 return true;
3302 }
3303
3304 return false;
3305 }
3306
machine__hit_all_dsos(struct machine * machine)3307 int machine__hit_all_dsos(struct machine *machine)
3308 {
3309 return dsos__hit_all(&machine->dsos);
3310 }
3311