xref: /linux/net/ipv6/ip6_fib.c (revision 8be4d31cb8aaeea27bde4b7ddb26e28a89062ebf)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Linux INET6 implementation
4  *	Forwarding Information Database
5  *
6  *	Authors:
7  *	Pedro Roque		<roque@di.fc.ul.pt>
8  *
9  *	Changes:
10  *	Yuji SEKIYA @USAGI:	Support default route on router node;
11  *				remove ip6_null_entry from the top of
12  *				routing table.
13  *	Ville Nuorvala:		Fixed routing subtrees.
14  */
15 
16 #define pr_fmt(fmt) "IPv6: " fmt
17 
18 #include <linux/bpf.h>
19 #include <linux/errno.h>
20 #include <linux/types.h>
21 #include <linux/net.h>
22 #include <linux/route.h>
23 #include <linux/netdevice.h>
24 #include <linux/in6.h>
25 #include <linux/init.h>
26 #include <linux/list.h>
27 #include <linux/slab.h>
28 
29 #include <net/ip.h>
30 #include <net/ipv6.h>
31 #include <net/ndisc.h>
32 #include <net/addrconf.h>
33 #include <net/lwtunnel.h>
34 #include <net/fib_notifier.h>
35 
36 #include <net/ip_fib.h>
37 #include <net/ip6_fib.h>
38 #include <net/ip6_route.h>
39 
40 static struct kmem_cache *fib6_node_kmem __read_mostly;
41 
42 struct fib6_cleaner {
43 	struct fib6_walker w;
44 	struct net *net;
45 	int (*func)(struct fib6_info *, void *arg);
46 	int sernum;
47 	void *arg;
48 	bool skip_notify;
49 };
50 
51 #ifdef CONFIG_IPV6_SUBTREES
52 #define FWS_INIT FWS_S
53 #else
54 #define FWS_INIT FWS_L
55 #endif
56 
57 static struct fib6_info *fib6_find_prefix(struct net *net,
58 					 struct fib6_table *table,
59 					 struct fib6_node *fn);
60 static struct fib6_node *fib6_repair_tree(struct net *net,
61 					  struct fib6_table *table,
62 					  struct fib6_node *fn);
63 static int fib6_walk(struct net *net, struct fib6_walker *w);
64 static int fib6_walk_continue(struct fib6_walker *w);
65 
66 /*
67  *	A routing update causes an increase of the serial number on the
68  *	affected subtree. This allows for cached routes to be asynchronously
69  *	tested when modifications are made to the destination cache as a
70  *	result of redirects, path MTU changes, etc.
71  */
72 
73 static void fib6_gc_timer_cb(struct timer_list *t);
74 
75 #define FOR_WALKERS(net, w) \
76 	list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh)
77 
fib6_walker_link(struct net * net,struct fib6_walker * w)78 static void fib6_walker_link(struct net *net, struct fib6_walker *w)
79 {
80 	write_lock_bh(&net->ipv6.fib6_walker_lock);
81 	list_add(&w->lh, &net->ipv6.fib6_walkers);
82 	write_unlock_bh(&net->ipv6.fib6_walker_lock);
83 }
84 
fib6_walker_unlink(struct net * net,struct fib6_walker * w)85 static void fib6_walker_unlink(struct net *net, struct fib6_walker *w)
86 {
87 	write_lock_bh(&net->ipv6.fib6_walker_lock);
88 	list_del(&w->lh);
89 	write_unlock_bh(&net->ipv6.fib6_walker_lock);
90 }
91 
fib6_new_sernum(struct net * net)92 static int fib6_new_sernum(struct net *net)
93 {
94 	int new, old = atomic_read(&net->ipv6.fib6_sernum);
95 
96 	do {
97 		new = old < INT_MAX ? old + 1 : 1;
98 	} while (!atomic_try_cmpxchg(&net->ipv6.fib6_sernum, &old, new));
99 
100 	return new;
101 }
102 
103 enum {
104 	FIB6_NO_SERNUM_CHANGE = 0,
105 };
106 
fib6_update_sernum(struct net * net,struct fib6_info * f6i)107 void fib6_update_sernum(struct net *net, struct fib6_info *f6i)
108 {
109 	struct fib6_node *fn;
110 
111 	fn = rcu_dereference_protected(f6i->fib6_node,
112 			lockdep_is_held(&f6i->fib6_table->tb6_lock));
113 	if (fn)
114 		WRITE_ONCE(fn->fn_sernum, fib6_new_sernum(net));
115 }
116 
117 /*
118  *	Auxiliary address test functions for the radix tree.
119  *
120  *	These assume a 32bit processor (although it will work on
121  *	64bit processors)
122  */
123 
124 /*
125  *	test bit
126  */
127 #if defined(__LITTLE_ENDIAN)
128 # define BITOP_BE32_SWIZZLE	(0x1F & ~7)
129 #else
130 # define BITOP_BE32_SWIZZLE	0
131 #endif
132 
addr_bit_set(const void * token,int fn_bit)133 static __be32 addr_bit_set(const void *token, int fn_bit)
134 {
135 	const __be32 *addr = token;
136 	/*
137 	 * Here,
138 	 *	1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
139 	 * is optimized version of
140 	 *	htonl(1 << ((~fn_bit)&0x1F))
141 	 * See include/asm-generic/bitops/le.h.
142 	 */
143 	return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
144 	       addr[fn_bit >> 5];
145 }
146 
fib6_info_alloc(gfp_t gfp_flags,bool with_fib6_nh)147 struct fib6_info *fib6_info_alloc(gfp_t gfp_flags, bool with_fib6_nh)
148 {
149 	struct fib6_info *f6i;
150 	size_t sz = sizeof(*f6i);
151 
152 	if (with_fib6_nh)
153 		sz += sizeof(struct fib6_nh);
154 
155 	f6i = kzalloc(sz, gfp_flags);
156 	if (!f6i)
157 		return NULL;
158 
159 	/* fib6_siblings is a union with nh_list, so this initializes both */
160 	INIT_LIST_HEAD(&f6i->fib6_siblings);
161 	refcount_set(&f6i->fib6_ref, 1);
162 
163 	INIT_HLIST_NODE(&f6i->gc_link);
164 
165 	return f6i;
166 }
167 
fib6_info_destroy_rcu(struct rcu_head * head)168 void fib6_info_destroy_rcu(struct rcu_head *head)
169 {
170 	struct fib6_info *f6i = container_of(head, struct fib6_info, rcu);
171 
172 	WARN_ON(f6i->fib6_node);
173 
174 	if (f6i->nh)
175 		nexthop_put(f6i->nh);
176 	else
177 		fib6_nh_release(f6i->fib6_nh);
178 
179 	ip_fib_metrics_put(f6i->fib6_metrics);
180 	kfree(f6i);
181 }
182 EXPORT_SYMBOL_GPL(fib6_info_destroy_rcu);
183 
node_alloc(struct net * net)184 static struct fib6_node *node_alloc(struct net *net)
185 {
186 	struct fib6_node *fn;
187 
188 	fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
189 	if (fn)
190 		net->ipv6.rt6_stats->fib_nodes++;
191 
192 	return fn;
193 }
194 
node_free_immediate(struct net * net,struct fib6_node * fn)195 static void node_free_immediate(struct net *net, struct fib6_node *fn)
196 {
197 	kmem_cache_free(fib6_node_kmem, fn);
198 	net->ipv6.rt6_stats->fib_nodes--;
199 }
200 
node_free(struct net * net,struct fib6_node * fn)201 static void node_free(struct net *net, struct fib6_node *fn)
202 {
203 	kfree_rcu(fn, rcu);
204 	net->ipv6.rt6_stats->fib_nodes--;
205 }
206 
fib6_free_table(struct fib6_table * table)207 static void fib6_free_table(struct fib6_table *table)
208 {
209 	inetpeer_invalidate_tree(&table->tb6_peers);
210 	kfree(table);
211 }
212 
fib6_link_table(struct net * net,struct fib6_table * tb)213 static void fib6_link_table(struct net *net, struct fib6_table *tb)
214 {
215 	unsigned int h;
216 
217 	/*
218 	 * Initialize table lock at a single place to give lockdep a key,
219 	 * tables aren't visible prior to being linked to the list.
220 	 */
221 	spin_lock_init(&tb->tb6_lock);
222 	h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
223 
224 	/*
225 	 * No protection necessary, this is the only list mutatation
226 	 * operation, tables never disappear once they exist.
227 	 */
228 	hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
229 }
230 
231 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
232 
fib6_alloc_table(struct net * net,u32 id)233 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
234 {
235 	struct fib6_table *table;
236 
237 	table = kzalloc(sizeof(*table), GFP_ATOMIC);
238 	if (table) {
239 		table->tb6_id = id;
240 		rcu_assign_pointer(table->tb6_root.leaf,
241 				   net->ipv6.fib6_null_entry);
242 		table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
243 		inet_peer_base_init(&table->tb6_peers);
244 		INIT_HLIST_HEAD(&table->tb6_gc_hlist);
245 	}
246 
247 	return table;
248 }
249 
fib6_new_table(struct net * net,u32 id)250 struct fib6_table *fib6_new_table(struct net *net, u32 id)
251 {
252 	struct fib6_table *tb, *new_tb;
253 
254 	if (id == 0)
255 		id = RT6_TABLE_MAIN;
256 
257 	tb = fib6_get_table(net, id);
258 	if (tb)
259 		return tb;
260 
261 	new_tb = fib6_alloc_table(net, id);
262 	if (!new_tb)
263 		return NULL;
264 
265 	spin_lock_bh(&net->ipv6.fib_table_hash_lock);
266 
267 	tb = fib6_get_table(net, id);
268 	if (unlikely(tb)) {
269 		spin_unlock_bh(&net->ipv6.fib_table_hash_lock);
270 		kfree(new_tb);
271 		return tb;
272 	}
273 
274 	fib6_link_table(net, new_tb);
275 
276 	spin_unlock_bh(&net->ipv6.fib_table_hash_lock);
277 
278 	return new_tb;
279 }
280 EXPORT_SYMBOL_GPL(fib6_new_table);
281 
fib6_get_table(struct net * net,u32 id)282 struct fib6_table *fib6_get_table(struct net *net, u32 id)
283 {
284 	struct hlist_head *head;
285 	struct fib6_table *tb;
286 
287 	if (!id)
288 		id = RT6_TABLE_MAIN;
289 
290 	head = &net->ipv6.fib_table_hash[id & (FIB6_TABLE_HASHSZ - 1)];
291 
292 	/* See comment in fib6_link_table().  RCU is not required,
293 	 * but rcu_dereference_raw() is used to avoid data-race.
294 	 */
295 	hlist_for_each_entry_rcu(tb, head, tb6_hlist, true)
296 		if (tb->tb6_id == id)
297 			return tb;
298 
299 	return NULL;
300 }
301 EXPORT_SYMBOL_GPL(fib6_get_table);
302 
fib6_tables_init(struct net * net)303 static void __net_init fib6_tables_init(struct net *net)
304 {
305 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
306 	fib6_link_table(net, net->ipv6.fib6_local_tbl);
307 }
308 #else
309 
fib6_new_table(struct net * net,u32 id)310 struct fib6_table *fib6_new_table(struct net *net, u32 id)
311 {
312 	return fib6_get_table(net, id);
313 }
314 
fib6_get_table(struct net * net,u32 id)315 struct fib6_table *fib6_get_table(struct net *net, u32 id)
316 {
317 	  return net->ipv6.fib6_main_tbl;
318 }
319 
fib6_rule_lookup(struct net * net,struct flowi6 * fl6,const struct sk_buff * skb,int flags,pol_lookup_t lookup)320 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
321 				   const struct sk_buff *skb,
322 				   int flags, pol_lookup_t lookup)
323 {
324 	struct rt6_info *rt;
325 
326 	rt = pol_lookup_func(lookup,
327 			net, net->ipv6.fib6_main_tbl, fl6, skb, flags);
328 	if (rt->dst.error == -EAGAIN) {
329 		ip6_rt_put_flags(rt, flags);
330 		rt = net->ipv6.ip6_null_entry;
331 		if (!(flags & RT6_LOOKUP_F_DST_NOREF))
332 			dst_hold(&rt->dst);
333 	}
334 
335 	return &rt->dst;
336 }
337 
338 /* called with rcu lock held; no reference taken on fib6_info */
fib6_lookup(struct net * net,int oif,struct flowi6 * fl6,struct fib6_result * res,int flags)339 int fib6_lookup(struct net *net, int oif, struct flowi6 *fl6,
340 		struct fib6_result *res, int flags)
341 {
342 	return fib6_table_lookup(net, net->ipv6.fib6_main_tbl, oif, fl6,
343 				 res, flags);
344 }
345 
fib6_tables_init(struct net * net)346 static void __net_init fib6_tables_init(struct net *net)
347 {
348 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
349 }
350 
351 #endif
352 
fib6_tables_seq_read(const struct net * net)353 unsigned int fib6_tables_seq_read(const struct net *net)
354 {
355 	unsigned int h, fib_seq = 0;
356 
357 	rcu_read_lock();
358 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
359 		const struct hlist_head *head = &net->ipv6.fib_table_hash[h];
360 		const struct fib6_table *tb;
361 
362 		hlist_for_each_entry_rcu(tb, head, tb6_hlist)
363 			fib_seq += READ_ONCE(tb->fib_seq);
364 	}
365 	rcu_read_unlock();
366 
367 	return fib_seq;
368 }
369 
call_fib6_entry_notifier(struct notifier_block * nb,enum fib_event_type event_type,struct fib6_info * rt,struct netlink_ext_ack * extack)370 static int call_fib6_entry_notifier(struct notifier_block *nb,
371 				    enum fib_event_type event_type,
372 				    struct fib6_info *rt,
373 				    struct netlink_ext_ack *extack)
374 {
375 	struct fib6_entry_notifier_info info = {
376 		.info.extack = extack,
377 		.rt = rt,
378 	};
379 
380 	return call_fib6_notifier(nb, event_type, &info.info);
381 }
382 
call_fib6_multipath_entry_notifier(struct notifier_block * nb,enum fib_event_type event_type,struct fib6_info * rt,unsigned int nsiblings,struct netlink_ext_ack * extack)383 static int call_fib6_multipath_entry_notifier(struct notifier_block *nb,
384 					      enum fib_event_type event_type,
385 					      struct fib6_info *rt,
386 					      unsigned int nsiblings,
387 					      struct netlink_ext_ack *extack)
388 {
389 	struct fib6_entry_notifier_info info = {
390 		.info.extack = extack,
391 		.rt = rt,
392 		.nsiblings = nsiblings,
393 	};
394 
395 	return call_fib6_notifier(nb, event_type, &info.info);
396 }
397 
call_fib6_entry_notifiers(struct net * net,enum fib_event_type event_type,struct fib6_info * rt,struct netlink_ext_ack * extack)398 int call_fib6_entry_notifiers(struct net *net,
399 			      enum fib_event_type event_type,
400 			      struct fib6_info *rt,
401 			      struct netlink_ext_ack *extack)
402 {
403 	struct fib6_entry_notifier_info info = {
404 		.info.extack = extack,
405 		.rt = rt,
406 	};
407 
408 	WRITE_ONCE(rt->fib6_table->fib_seq, rt->fib6_table->fib_seq + 1);
409 	return call_fib6_notifiers(net, event_type, &info.info);
410 }
411 
call_fib6_multipath_entry_notifiers(struct net * net,enum fib_event_type event_type,struct fib6_info * rt,unsigned int nsiblings,struct netlink_ext_ack * extack)412 int call_fib6_multipath_entry_notifiers(struct net *net,
413 					enum fib_event_type event_type,
414 					struct fib6_info *rt,
415 					unsigned int nsiblings,
416 					struct netlink_ext_ack *extack)
417 {
418 	struct fib6_entry_notifier_info info = {
419 		.info.extack = extack,
420 		.rt = rt,
421 		.nsiblings = nsiblings,
422 	};
423 
424 	WRITE_ONCE(rt->fib6_table->fib_seq, rt->fib6_table->fib_seq + 1);
425 	return call_fib6_notifiers(net, event_type, &info.info);
426 }
427 
call_fib6_entry_notifiers_replace(struct net * net,struct fib6_info * rt)428 int call_fib6_entry_notifiers_replace(struct net *net, struct fib6_info *rt)
429 {
430 	struct fib6_entry_notifier_info info = {
431 		.rt = rt,
432 		.nsiblings = rt->fib6_nsiblings,
433 	};
434 
435 	WRITE_ONCE(rt->fib6_table->fib_seq, rt->fib6_table->fib_seq + 1);
436 	return call_fib6_notifiers(net, FIB_EVENT_ENTRY_REPLACE, &info.info);
437 }
438 
439 struct fib6_dump_arg {
440 	struct net *net;
441 	struct notifier_block *nb;
442 	struct netlink_ext_ack *extack;
443 };
444 
fib6_rt_dump(struct fib6_info * rt,struct fib6_dump_arg * arg)445 static int fib6_rt_dump(struct fib6_info *rt, struct fib6_dump_arg *arg)
446 {
447 	enum fib_event_type fib_event = FIB_EVENT_ENTRY_REPLACE;
448 	unsigned int nsiblings;
449 	int err;
450 
451 	if (!rt || rt == arg->net->ipv6.fib6_null_entry)
452 		return 0;
453 
454 	nsiblings = READ_ONCE(rt->fib6_nsiblings);
455 	if (nsiblings)
456 		err = call_fib6_multipath_entry_notifier(arg->nb, fib_event,
457 							 rt,
458 							 nsiblings,
459 							 arg->extack);
460 	else
461 		err = call_fib6_entry_notifier(arg->nb, fib_event, rt,
462 					       arg->extack);
463 
464 	return err;
465 }
466 
fib6_node_dump(struct fib6_walker * w)467 static int fib6_node_dump(struct fib6_walker *w)
468 {
469 	int err;
470 
471 	err = fib6_rt_dump(w->leaf, w->args);
472 	w->leaf = NULL;
473 	return err;
474 }
475 
fib6_table_dump(struct net * net,struct fib6_table * tb,struct fib6_walker * w)476 static int fib6_table_dump(struct net *net, struct fib6_table *tb,
477 			   struct fib6_walker *w)
478 {
479 	int err;
480 
481 	w->root = &tb->tb6_root;
482 	spin_lock_bh(&tb->tb6_lock);
483 	err = fib6_walk(net, w);
484 	spin_unlock_bh(&tb->tb6_lock);
485 	return err;
486 }
487 
488 /* Called with rcu_read_lock() */
fib6_tables_dump(struct net * net,struct notifier_block * nb,struct netlink_ext_ack * extack)489 int fib6_tables_dump(struct net *net, struct notifier_block *nb,
490 		     struct netlink_ext_ack *extack)
491 {
492 	struct fib6_dump_arg arg;
493 	struct fib6_walker *w;
494 	unsigned int h;
495 	int err = 0;
496 
497 	w = kzalloc(sizeof(*w), GFP_ATOMIC);
498 	if (!w)
499 		return -ENOMEM;
500 
501 	w->func = fib6_node_dump;
502 	arg.net = net;
503 	arg.nb = nb;
504 	arg.extack = extack;
505 	w->args = &arg;
506 
507 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
508 		struct hlist_head *head = &net->ipv6.fib_table_hash[h];
509 		struct fib6_table *tb;
510 
511 		hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
512 			err = fib6_table_dump(net, tb, w);
513 			if (err)
514 				goto out;
515 		}
516 	}
517 
518 out:
519 	kfree(w);
520 
521 	/* The tree traversal function should never return a positive value. */
522 	return err > 0 ? -EINVAL : err;
523 }
524 
fib6_dump_node(struct fib6_walker * w)525 static int fib6_dump_node(struct fib6_walker *w)
526 {
527 	int res;
528 	struct fib6_info *rt;
529 
530 	for_each_fib6_walker_rt(w) {
531 		res = rt6_dump_route(rt, w->args, w->skip_in_node);
532 		if (res >= 0) {
533 			/* Frame is full, suspend walking */
534 			w->leaf = rt;
535 
536 			/* We'll restart from this node, so if some routes were
537 			 * already dumped, skip them next time.
538 			 */
539 			w->skip_in_node += res;
540 
541 			return 1;
542 		}
543 		w->skip_in_node = 0;
544 
545 		/* Multipath routes are dumped in one route with the
546 		 * RTA_MULTIPATH attribute. Jump 'rt' to point to the
547 		 * last sibling of this route (no need to dump the
548 		 * sibling routes again)
549 		 */
550 		if (rt->fib6_nsiblings)
551 			rt = list_last_entry(&rt->fib6_siblings,
552 					     struct fib6_info,
553 					     fib6_siblings);
554 	}
555 	w->leaf = NULL;
556 	return 0;
557 }
558 
fib6_dump_end(struct netlink_callback * cb)559 static void fib6_dump_end(struct netlink_callback *cb)
560 {
561 	struct net *net = sock_net(cb->skb->sk);
562 	struct fib6_walker *w = (void *)cb->args[2];
563 
564 	if (w) {
565 		if (cb->args[4]) {
566 			cb->args[4] = 0;
567 			fib6_walker_unlink(net, w);
568 		}
569 		cb->args[2] = 0;
570 		kfree(w);
571 	}
572 	cb->done = (void *)cb->args[3];
573 	cb->args[1] = 3;
574 }
575 
fib6_dump_done(struct netlink_callback * cb)576 static int fib6_dump_done(struct netlink_callback *cb)
577 {
578 	fib6_dump_end(cb);
579 	return cb->done ? cb->done(cb) : 0;
580 }
581 
fib6_dump_table(struct fib6_table * table,struct sk_buff * skb,struct netlink_callback * cb)582 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
583 			   struct netlink_callback *cb)
584 {
585 	struct net *net = sock_net(skb->sk);
586 	struct fib6_walker *w;
587 	int res;
588 
589 	w = (void *)cb->args[2];
590 	w->root = &table->tb6_root;
591 
592 	if (cb->args[4] == 0) {
593 		w->count = 0;
594 		w->skip = 0;
595 		w->skip_in_node = 0;
596 
597 		spin_lock_bh(&table->tb6_lock);
598 		res = fib6_walk(net, w);
599 		spin_unlock_bh(&table->tb6_lock);
600 		if (res > 0) {
601 			cb->args[4] = 1;
602 			cb->args[5] = READ_ONCE(w->root->fn_sernum);
603 		}
604 	} else {
605 		int sernum = READ_ONCE(w->root->fn_sernum);
606 		if (cb->args[5] != sernum) {
607 			/* Begin at the root if the tree changed */
608 			cb->args[5] = sernum;
609 			w->state = FWS_INIT;
610 			w->node = w->root;
611 			w->skip = w->count;
612 			w->skip_in_node = 0;
613 		} else
614 			w->skip = 0;
615 
616 		spin_lock_bh(&table->tb6_lock);
617 		res = fib6_walk_continue(w);
618 		spin_unlock_bh(&table->tb6_lock);
619 		if (res <= 0) {
620 			fib6_walker_unlink(net, w);
621 			cb->args[4] = 0;
622 		}
623 	}
624 
625 	return res;
626 }
627 
inet6_dump_fib(struct sk_buff * skb,struct netlink_callback * cb)628 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
629 {
630 	struct rt6_rtnl_dump_arg arg = {
631 		.filter.dump_exceptions = true,
632 		.filter.dump_routes = true,
633 		.filter.rtnl_held = false,
634 	};
635 	const struct nlmsghdr *nlh = cb->nlh;
636 	struct net *net = sock_net(skb->sk);
637 	unsigned int e = 0, s_e;
638 	struct hlist_head *head;
639 	struct fib6_walker *w;
640 	struct fib6_table *tb;
641 	unsigned int h, s_h;
642 	int err = 0;
643 
644 	rcu_read_lock();
645 	if (cb->strict_check) {
646 		err = ip_valid_fib_dump_req(net, nlh, &arg.filter, cb);
647 		if (err < 0)
648 			goto unlock;
649 	} else if (nlmsg_len(nlh) >= sizeof(struct rtmsg)) {
650 		struct rtmsg *rtm = nlmsg_data(nlh);
651 
652 		if (rtm->rtm_flags & RTM_F_PREFIX)
653 			arg.filter.flags = RTM_F_PREFIX;
654 	}
655 
656 	w = (void *)cb->args[2];
657 	if (!w) {
658 		/* New dump:
659 		 *
660 		 * 1. allocate and initialize walker.
661 		 */
662 		w = kzalloc(sizeof(*w), GFP_ATOMIC);
663 		if (!w) {
664 			err = -ENOMEM;
665 			goto unlock;
666 		}
667 		w->func = fib6_dump_node;
668 		cb->args[2] = (long)w;
669 
670 		/* 2. hook callback destructor.
671 		 */
672 		cb->args[3] = (long)cb->done;
673 		cb->done = fib6_dump_done;
674 
675 	}
676 
677 	arg.skb = skb;
678 	arg.cb = cb;
679 	arg.net = net;
680 	w->args = &arg;
681 
682 	if (arg.filter.table_id) {
683 		tb = fib6_get_table(net, arg.filter.table_id);
684 		if (!tb) {
685 			if (rtnl_msg_family(cb->nlh) != PF_INET6)
686 				goto unlock;
687 
688 			NL_SET_ERR_MSG_MOD(cb->extack, "FIB table does not exist");
689 			err = -ENOENT;
690 			goto unlock;
691 		}
692 
693 		if (!cb->args[0]) {
694 			err = fib6_dump_table(tb, skb, cb);
695 			if (!err)
696 				cb->args[0] = 1;
697 		}
698 		goto unlock;
699 	}
700 
701 	s_h = cb->args[0];
702 	s_e = cb->args[1];
703 
704 	for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
705 		e = 0;
706 		head = &net->ipv6.fib_table_hash[h];
707 		hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
708 			if (e < s_e)
709 				goto next;
710 			err = fib6_dump_table(tb, skb, cb);
711 			if (err != 0)
712 				goto out;
713 next:
714 			e++;
715 		}
716 	}
717 out:
718 	cb->args[1] = e;
719 	cb->args[0] = h;
720 
721 unlock:
722 	rcu_read_unlock();
723 	if (err <= 0)
724 		fib6_dump_end(cb);
725 	return err;
726 }
727 
fib6_metric_set(struct fib6_info * f6i,int metric,u32 val)728 void fib6_metric_set(struct fib6_info *f6i, int metric, u32 val)
729 {
730 	if (!f6i)
731 		return;
732 
733 	if (f6i->fib6_metrics == &dst_default_metrics) {
734 		struct dst_metrics *p = kzalloc(sizeof(*p), GFP_ATOMIC);
735 
736 		if (!p)
737 			return;
738 
739 		refcount_set(&p->refcnt, 1);
740 		f6i->fib6_metrics = p;
741 	}
742 
743 	f6i->fib6_metrics->metrics[metric - 1] = val;
744 }
745 
746 /*
747  *	Routing Table
748  *
749  *	return the appropriate node for a routing tree "add" operation
750  *	by either creating and inserting or by returning an existing
751  *	node.
752  */
753 
fib6_add_1(struct net * net,struct fib6_table * table,struct fib6_node * root,struct in6_addr * addr,int plen,int offset,int allow_create,int replace_required,struct netlink_ext_ack * extack)754 static struct fib6_node *fib6_add_1(struct net *net,
755 				    struct fib6_table *table,
756 				    struct fib6_node *root,
757 				    struct in6_addr *addr, int plen,
758 				    int offset, int allow_create,
759 				    int replace_required,
760 				    struct netlink_ext_ack *extack)
761 {
762 	struct fib6_node *fn, *in, *ln;
763 	struct fib6_node *pn = NULL;
764 	struct rt6key *key;
765 	int	bit;
766 	__be32	dir = 0;
767 
768 	/* insert node in tree */
769 
770 	fn = root;
771 
772 	do {
773 		struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
774 					    lockdep_is_held(&table->tb6_lock));
775 		key = (struct rt6key *)((u8 *)leaf + offset);
776 
777 		/*
778 		 *	Prefix match
779 		 */
780 		if (plen < fn->fn_bit ||
781 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
782 			if (!allow_create) {
783 				if (replace_required) {
784 					NL_SET_ERR_MSG(extack,
785 						       "Can not replace route - no match found");
786 					pr_warn("Can't replace route, no match found\n");
787 					return ERR_PTR(-ENOENT);
788 				}
789 				pr_warn("NLM_F_CREATE should be set when creating new route\n");
790 			}
791 			goto insert_above;
792 		}
793 
794 		/*
795 		 *	Exact match ?
796 		 */
797 
798 		if (plen == fn->fn_bit) {
799 			/* clean up an intermediate node */
800 			if (!(fn->fn_flags & RTN_RTINFO)) {
801 				RCU_INIT_POINTER(fn->leaf, NULL);
802 				fib6_info_release(leaf);
803 			/* remove null_entry in the root node */
804 			} else if (fn->fn_flags & RTN_TL_ROOT &&
805 				   rcu_access_pointer(fn->leaf) ==
806 				   net->ipv6.fib6_null_entry) {
807 				RCU_INIT_POINTER(fn->leaf, NULL);
808 			}
809 
810 			return fn;
811 		}
812 
813 		/*
814 		 *	We have more bits to go
815 		 */
816 
817 		/* Try to walk down on tree. */
818 		dir = addr_bit_set(addr, fn->fn_bit);
819 		pn = fn;
820 		fn = dir ?
821 		     rcu_dereference_protected(fn->right,
822 					lockdep_is_held(&table->tb6_lock)) :
823 		     rcu_dereference_protected(fn->left,
824 					lockdep_is_held(&table->tb6_lock));
825 	} while (fn);
826 
827 	if (!allow_create) {
828 		/* We should not create new node because
829 		 * NLM_F_REPLACE was specified without NLM_F_CREATE
830 		 * I assume it is safe to require NLM_F_CREATE when
831 		 * REPLACE flag is used! Later we may want to remove the
832 		 * check for replace_required, because according
833 		 * to netlink specification, NLM_F_CREATE
834 		 * MUST be specified if new route is created.
835 		 * That would keep IPv6 consistent with IPv4
836 		 */
837 		if (replace_required) {
838 			NL_SET_ERR_MSG(extack,
839 				       "Can not replace route - no match found");
840 			pr_warn("Can't replace route, no match found\n");
841 			return ERR_PTR(-ENOENT);
842 		}
843 		pr_warn("NLM_F_CREATE should be set when creating new route\n");
844 	}
845 	/*
846 	 *	We walked to the bottom of tree.
847 	 *	Create new leaf node without children.
848 	 */
849 
850 	ln = node_alloc(net);
851 
852 	if (!ln)
853 		return ERR_PTR(-ENOMEM);
854 	ln->fn_bit = plen;
855 	RCU_INIT_POINTER(ln->parent, pn);
856 
857 	if (dir)
858 		rcu_assign_pointer(pn->right, ln);
859 	else
860 		rcu_assign_pointer(pn->left, ln);
861 
862 	return ln;
863 
864 
865 insert_above:
866 	/*
867 	 * split since we don't have a common prefix anymore or
868 	 * we have a less significant route.
869 	 * we've to insert an intermediate node on the list
870 	 * this new node will point to the one we need to create
871 	 * and the current
872 	 */
873 
874 	pn = rcu_dereference_protected(fn->parent,
875 				       lockdep_is_held(&table->tb6_lock));
876 
877 	/* find 1st bit in difference between the 2 addrs.
878 
879 	   See comment in __ipv6_addr_diff: bit may be an invalid value,
880 	   but if it is >= plen, the value is ignored in any case.
881 	 */
882 
883 	bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
884 
885 	/*
886 	 *		(intermediate)[in]
887 	 *	          /	   \
888 	 *	(new leaf node)[ln] (old node)[fn]
889 	 */
890 	if (plen > bit) {
891 		in = node_alloc(net);
892 		ln = node_alloc(net);
893 
894 		if (!in || !ln) {
895 			if (in)
896 				node_free_immediate(net, in);
897 			if (ln)
898 				node_free_immediate(net, ln);
899 			return ERR_PTR(-ENOMEM);
900 		}
901 
902 		/*
903 		 * new intermediate node.
904 		 * RTN_RTINFO will
905 		 * be off since that an address that chooses one of
906 		 * the branches would not match less specific routes
907 		 * in the other branch
908 		 */
909 
910 		in->fn_bit = bit;
911 
912 		RCU_INIT_POINTER(in->parent, pn);
913 		in->leaf = fn->leaf;
914 		fib6_info_hold(rcu_dereference_protected(in->leaf,
915 				lockdep_is_held(&table->tb6_lock)));
916 
917 		/* update parent pointer */
918 		if (dir)
919 			rcu_assign_pointer(pn->right, in);
920 		else
921 			rcu_assign_pointer(pn->left, in);
922 
923 		ln->fn_bit = plen;
924 
925 		RCU_INIT_POINTER(ln->parent, in);
926 		rcu_assign_pointer(fn->parent, in);
927 
928 		if (addr_bit_set(addr, bit)) {
929 			rcu_assign_pointer(in->right, ln);
930 			rcu_assign_pointer(in->left, fn);
931 		} else {
932 			rcu_assign_pointer(in->left, ln);
933 			rcu_assign_pointer(in->right, fn);
934 		}
935 	} else { /* plen <= bit */
936 
937 		/*
938 		 *		(new leaf node)[ln]
939 		 *	          /	   \
940 		 *	     (old node)[fn] NULL
941 		 */
942 
943 		ln = node_alloc(net);
944 
945 		if (!ln)
946 			return ERR_PTR(-ENOMEM);
947 
948 		ln->fn_bit = plen;
949 
950 		RCU_INIT_POINTER(ln->parent, pn);
951 
952 		if (addr_bit_set(&key->addr, plen))
953 			RCU_INIT_POINTER(ln->right, fn);
954 		else
955 			RCU_INIT_POINTER(ln->left, fn);
956 
957 		rcu_assign_pointer(fn->parent, ln);
958 
959 		if (dir)
960 			rcu_assign_pointer(pn->right, ln);
961 		else
962 			rcu_assign_pointer(pn->left, ln);
963 	}
964 	return ln;
965 }
966 
__fib6_drop_pcpu_from(struct fib6_nh * fib6_nh,const struct fib6_info * match)967 static void __fib6_drop_pcpu_from(struct fib6_nh *fib6_nh,
968 				  const struct fib6_info *match)
969 {
970 	int cpu;
971 
972 	if (!fib6_nh->rt6i_pcpu)
973 		return;
974 
975 	rcu_read_lock();
976 	/* release the reference to this fib entry from
977 	 * all of its cached pcpu routes
978 	 */
979 	for_each_possible_cpu(cpu) {
980 		struct rt6_info **ppcpu_rt;
981 		struct rt6_info *pcpu_rt;
982 
983 		ppcpu_rt = per_cpu_ptr(fib6_nh->rt6i_pcpu, cpu);
984 
985 		/* Paired with xchg() in rt6_get_pcpu_route() */
986 		pcpu_rt = READ_ONCE(*ppcpu_rt);
987 
988 		/* only dropping the 'from' reference if the cached route
989 		 * is using 'match'. The cached pcpu_rt->from only changes
990 		 * from a fib6_info to NULL (ip6_dst_destroy); it can never
991 		 * change from one fib6_info reference to another
992 		 */
993 		if (pcpu_rt && rcu_access_pointer(pcpu_rt->from) == match) {
994 			struct fib6_info *from;
995 
996 			from = unrcu_pointer(xchg(&pcpu_rt->from, NULL));
997 			fib6_info_release(from);
998 		}
999 	}
1000 	rcu_read_unlock();
1001 }
1002 
fib6_nh_drop_pcpu_from(struct fib6_nh * nh,void * _arg)1003 static int fib6_nh_drop_pcpu_from(struct fib6_nh *nh, void *_arg)
1004 {
1005 	struct fib6_info *arg = _arg;
1006 
1007 	__fib6_drop_pcpu_from(nh, arg);
1008 	return 0;
1009 }
1010 
fib6_drop_pcpu_from(struct fib6_info * f6i)1011 static void fib6_drop_pcpu_from(struct fib6_info *f6i)
1012 {
1013 	/* Make sure rt6_make_pcpu_route() wont add other percpu routes
1014 	 * while we are cleaning them here.
1015 	 */
1016 	f6i->fib6_destroying = 1;
1017 	mb(); /* paired with the cmpxchg() in rt6_make_pcpu_route() */
1018 
1019 	if (f6i->nh) {
1020 		rcu_read_lock();
1021 		nexthop_for_each_fib6_nh(f6i->nh, fib6_nh_drop_pcpu_from, f6i);
1022 		rcu_read_unlock();
1023 	} else {
1024 		struct fib6_nh *fib6_nh;
1025 
1026 		fib6_nh = f6i->fib6_nh;
1027 		__fib6_drop_pcpu_from(fib6_nh, f6i);
1028 	}
1029 }
1030 
fib6_purge_rt(struct fib6_info * rt,struct fib6_node * fn,struct net * net)1031 static void fib6_purge_rt(struct fib6_info *rt, struct fib6_node *fn,
1032 			  struct net *net)
1033 {
1034 	struct fib6_table *table = rt->fib6_table;
1035 
1036 	/* Flush all cached dst in exception table */
1037 	rt6_flush_exceptions(rt);
1038 	fib6_drop_pcpu_from(rt);
1039 
1040 	if (rt->nh) {
1041 		spin_lock(&rt->nh->lock);
1042 
1043 		if (!list_empty(&rt->nh_list))
1044 			list_del_init(&rt->nh_list);
1045 
1046 		spin_unlock(&rt->nh->lock);
1047 	}
1048 
1049 	if (refcount_read(&rt->fib6_ref) != 1) {
1050 		/* This route is used as dummy address holder in some split
1051 		 * nodes. It is not leaked, but it still holds other resources,
1052 		 * which must be released in time. So, scan ascendant nodes
1053 		 * and replace dummy references to this route with references
1054 		 * to still alive ones.
1055 		 */
1056 		while (fn) {
1057 			struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
1058 					    lockdep_is_held(&table->tb6_lock));
1059 			struct fib6_info *new_leaf;
1060 			if (!(fn->fn_flags & RTN_RTINFO) && leaf == rt) {
1061 				new_leaf = fib6_find_prefix(net, table, fn);
1062 				fib6_info_hold(new_leaf);
1063 
1064 				rcu_assign_pointer(fn->leaf, new_leaf);
1065 				fib6_info_release(rt);
1066 			}
1067 			fn = rcu_dereference_protected(fn->parent,
1068 				    lockdep_is_held(&table->tb6_lock));
1069 		}
1070 	}
1071 
1072 	fib6_clean_expires(rt);
1073 	fib6_remove_gc_list(rt);
1074 }
1075 
1076 /*
1077  *	Insert routing information in a node.
1078  */
1079 
fib6_add_rt2node(struct fib6_node * fn,struct fib6_info * rt,struct nl_info * info,struct netlink_ext_ack * extack,struct list_head * purge_list)1080 static int fib6_add_rt2node(struct fib6_node *fn, struct fib6_info *rt,
1081 			    struct nl_info *info, struct netlink_ext_ack *extack,
1082 			    struct list_head *purge_list)
1083 {
1084 	struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
1085 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1086 	struct fib6_info *iter = NULL;
1087 	struct fib6_info __rcu **ins;
1088 	struct fib6_info __rcu **fallback_ins = NULL;
1089 	int replace = (info->nlh &&
1090 		       (info->nlh->nlmsg_flags & NLM_F_REPLACE));
1091 	int add = (!info->nlh ||
1092 		   (info->nlh->nlmsg_flags & NLM_F_CREATE));
1093 	int found = 0;
1094 	bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
1095 	bool notify_sibling_rt = false;
1096 	u16 nlflags = NLM_F_EXCL;
1097 	int err;
1098 
1099 	if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND))
1100 		nlflags |= NLM_F_APPEND;
1101 
1102 	ins = &fn->leaf;
1103 
1104 	for (iter = leaf; iter;
1105 	     iter = rcu_dereference_protected(iter->fib6_next,
1106 				lockdep_is_held(&rt->fib6_table->tb6_lock))) {
1107 		/*
1108 		 *	Search for duplicates
1109 		 */
1110 
1111 		if (iter->fib6_metric == rt->fib6_metric) {
1112 			/*
1113 			 *	Same priority level
1114 			 */
1115 			if (info->nlh &&
1116 			    (info->nlh->nlmsg_flags & NLM_F_EXCL))
1117 				return -EEXIST;
1118 
1119 			nlflags &= ~NLM_F_EXCL;
1120 			if (replace) {
1121 				if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
1122 					found++;
1123 					break;
1124 				}
1125 				fallback_ins = fallback_ins ?: ins;
1126 				goto next_iter;
1127 			}
1128 
1129 			if (rt6_duplicate_nexthop(iter, rt)) {
1130 				if (rt->fib6_nsiblings)
1131 					WRITE_ONCE(rt->fib6_nsiblings, 0);
1132 				if (!(iter->fib6_flags & RTF_EXPIRES))
1133 					return -EEXIST;
1134 				if (!(rt->fib6_flags & RTF_EXPIRES)) {
1135 					fib6_clean_expires(iter);
1136 					fib6_remove_gc_list(iter);
1137 				} else {
1138 					fib6_set_expires(iter, rt->expires);
1139 					fib6_add_gc_list(iter);
1140 				}
1141 
1142 				if (rt->fib6_pmtu)
1143 					fib6_metric_set(iter, RTAX_MTU,
1144 							rt->fib6_pmtu);
1145 				return -EEXIST;
1146 			}
1147 			/* If we have the same destination and the same metric,
1148 			 * but not the same gateway, then the route we try to
1149 			 * add is sibling to this route, increment our counter
1150 			 * of siblings, and later we will add our route to the
1151 			 * list.
1152 			 * Only static routes (which don't have flag
1153 			 * RTF_EXPIRES) are used for ECMPv6.
1154 			 *
1155 			 * To avoid long list, we only had siblings if the
1156 			 * route have a gateway.
1157 			 */
1158 			if (rt_can_ecmp &&
1159 			    rt6_qualify_for_ecmp(iter))
1160 				WRITE_ONCE(rt->fib6_nsiblings,
1161 					   rt->fib6_nsiblings + 1);
1162 		}
1163 
1164 		if (iter->fib6_metric > rt->fib6_metric)
1165 			break;
1166 
1167 next_iter:
1168 		ins = &iter->fib6_next;
1169 	}
1170 
1171 	if (fallback_ins && !found) {
1172 		/* No matching route with same ecmp-able-ness found, replace
1173 		 * first matching route
1174 		 */
1175 		ins = fallback_ins;
1176 		iter = rcu_dereference_protected(*ins,
1177 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1178 		found++;
1179 	}
1180 
1181 	/* Reset round-robin state, if necessary */
1182 	if (ins == &fn->leaf)
1183 		fn->rr_ptr = NULL;
1184 
1185 	/* Link this route to others same route. */
1186 	if (rt->fib6_nsiblings) {
1187 		unsigned int fib6_nsiblings;
1188 		struct fib6_info *sibling, *temp_sibling;
1189 
1190 		/* Find the first route that have the same metric */
1191 		sibling = leaf;
1192 		notify_sibling_rt = true;
1193 		while (sibling) {
1194 			if (sibling->fib6_metric == rt->fib6_metric &&
1195 			    rt6_qualify_for_ecmp(sibling)) {
1196 				list_add_tail_rcu(&rt->fib6_siblings,
1197 						  &sibling->fib6_siblings);
1198 				break;
1199 			}
1200 			sibling = rcu_dereference_protected(sibling->fib6_next,
1201 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1202 			notify_sibling_rt = false;
1203 		}
1204 		/* For each sibling in the list, increment the counter of
1205 		 * siblings. BUG() if counters does not match, list of siblings
1206 		 * is broken!
1207 		 */
1208 		fib6_nsiblings = 0;
1209 		list_for_each_entry_safe(sibling, temp_sibling,
1210 					 &rt->fib6_siblings, fib6_siblings) {
1211 			WRITE_ONCE(sibling->fib6_nsiblings,
1212 				   sibling->fib6_nsiblings + 1);
1213 			BUG_ON(sibling->fib6_nsiblings != rt->fib6_nsiblings);
1214 			fib6_nsiblings++;
1215 		}
1216 		BUG_ON(fib6_nsiblings != rt->fib6_nsiblings);
1217 		rcu_read_lock();
1218 		rt6_multipath_rebalance(temp_sibling);
1219 		rcu_read_unlock();
1220 	}
1221 
1222 	/*
1223 	 *	insert node
1224 	 */
1225 	if (!replace) {
1226 		if (!add)
1227 			pr_warn("NLM_F_CREATE should be set when creating new route\n");
1228 
1229 add:
1230 		nlflags |= NLM_F_CREATE;
1231 
1232 		/* The route should only be notified if it is the first
1233 		 * route in the node or if it is added as a sibling
1234 		 * route to the first route in the node.
1235 		 */
1236 		if (!info->skip_notify_kernel &&
1237 		    (notify_sibling_rt || ins == &fn->leaf)) {
1238 			enum fib_event_type fib_event;
1239 
1240 			if (notify_sibling_rt)
1241 				fib_event = FIB_EVENT_ENTRY_APPEND;
1242 			else
1243 				fib_event = FIB_EVENT_ENTRY_REPLACE;
1244 			err = call_fib6_entry_notifiers(info->nl_net,
1245 							fib_event, rt,
1246 							extack);
1247 			if (err) {
1248 				struct fib6_info *sibling, *next_sibling;
1249 
1250 				/* If the route has siblings, then it first
1251 				 * needs to be unlinked from them.
1252 				 */
1253 				if (!rt->fib6_nsiblings)
1254 					return err;
1255 
1256 				list_for_each_entry_safe(sibling, next_sibling,
1257 							 &rt->fib6_siblings,
1258 							 fib6_siblings)
1259 					WRITE_ONCE(sibling->fib6_nsiblings,
1260 						   sibling->fib6_nsiblings - 1);
1261 				WRITE_ONCE(rt->fib6_nsiblings, 0);
1262 				list_del_rcu(&rt->fib6_siblings);
1263 				rcu_read_lock();
1264 				rt6_multipath_rebalance(next_sibling);
1265 				rcu_read_unlock();
1266 				return err;
1267 			}
1268 		}
1269 
1270 		rcu_assign_pointer(rt->fib6_next, iter);
1271 		fib6_info_hold(rt);
1272 		rcu_assign_pointer(rt->fib6_node, fn);
1273 		rcu_assign_pointer(*ins, rt);
1274 		if (!info->skip_notify)
1275 			inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags);
1276 		info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
1277 
1278 		if (!(fn->fn_flags & RTN_RTINFO)) {
1279 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1280 			fn->fn_flags |= RTN_RTINFO;
1281 		}
1282 
1283 	} else {
1284 		int nsiblings;
1285 
1286 		if (!found) {
1287 			if (add)
1288 				goto add;
1289 			pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
1290 			return -ENOENT;
1291 		}
1292 
1293 		if (!info->skip_notify_kernel && ins == &fn->leaf) {
1294 			err = call_fib6_entry_notifiers(info->nl_net,
1295 							FIB_EVENT_ENTRY_REPLACE,
1296 							rt, extack);
1297 			if (err)
1298 				return err;
1299 		}
1300 
1301 		fib6_info_hold(rt);
1302 		rcu_assign_pointer(rt->fib6_node, fn);
1303 		rt->fib6_next = iter->fib6_next;
1304 		rcu_assign_pointer(*ins, rt);
1305 		if (!info->skip_notify)
1306 			inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
1307 		if (!(fn->fn_flags & RTN_RTINFO)) {
1308 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1309 			fn->fn_flags |= RTN_RTINFO;
1310 		}
1311 		nsiblings = iter->fib6_nsiblings;
1312 		iter->fib6_node = NULL;
1313 		list_add(&iter->purge_link, purge_list);
1314 		if (rcu_access_pointer(fn->rr_ptr) == iter)
1315 			fn->rr_ptr = NULL;
1316 
1317 		if (nsiblings) {
1318 			/* Replacing an ECMP route, remove all siblings */
1319 			ins = &rt->fib6_next;
1320 			iter = rcu_dereference_protected(*ins,
1321 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1322 			while (iter) {
1323 				if (iter->fib6_metric > rt->fib6_metric)
1324 					break;
1325 				if (rt6_qualify_for_ecmp(iter)) {
1326 					*ins = iter->fib6_next;
1327 					iter->fib6_node = NULL;
1328 					list_add(&iter->purge_link, purge_list);
1329 					if (rcu_access_pointer(fn->rr_ptr) == iter)
1330 						fn->rr_ptr = NULL;
1331 					nsiblings--;
1332 					info->nl_net->ipv6.rt6_stats->fib_rt_entries--;
1333 				} else {
1334 					ins = &iter->fib6_next;
1335 				}
1336 				iter = rcu_dereference_protected(*ins,
1337 					lockdep_is_held(&rt->fib6_table->tb6_lock));
1338 			}
1339 			WARN_ON(nsiblings != 0);
1340 		}
1341 	}
1342 
1343 	return 0;
1344 }
1345 
fib6_add_rt2node_nh(struct fib6_node * fn,struct fib6_info * rt,struct nl_info * info,struct netlink_ext_ack * extack,struct list_head * purge_list)1346 static int fib6_add_rt2node_nh(struct fib6_node *fn, struct fib6_info *rt,
1347 			       struct nl_info *info, struct netlink_ext_ack *extack,
1348 			       struct list_head *purge_list)
1349 {
1350 	int err;
1351 
1352 	spin_lock(&rt->nh->lock);
1353 
1354 	if (rt->nh->dead) {
1355 		NL_SET_ERR_MSG(extack, "Nexthop has been deleted");
1356 		err = -EINVAL;
1357 	} else {
1358 		err = fib6_add_rt2node(fn, rt, info, extack, purge_list);
1359 		if (!err)
1360 			list_add(&rt->nh_list, &rt->nh->f6i_list);
1361 	}
1362 
1363 	spin_unlock(&rt->nh->lock);
1364 
1365 	return err;
1366 }
1367 
fib6_start_gc(struct net * net,struct fib6_info * rt)1368 static void fib6_start_gc(struct net *net, struct fib6_info *rt)
1369 {
1370 	if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
1371 	    (rt->fib6_flags & RTF_EXPIRES))
1372 		mod_timer(&net->ipv6.ip6_fib_timer,
1373 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1374 }
1375 
fib6_force_start_gc(struct net * net)1376 void fib6_force_start_gc(struct net *net)
1377 {
1378 	if (!timer_pending(&net->ipv6.ip6_fib_timer))
1379 		mod_timer(&net->ipv6.ip6_fib_timer,
1380 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1381 }
1382 
__fib6_update_sernum_upto_root(struct fib6_info * rt,int sernum)1383 static void __fib6_update_sernum_upto_root(struct fib6_info *rt,
1384 					   int sernum)
1385 {
1386 	struct fib6_node *fn = rcu_dereference_protected(rt->fib6_node,
1387 				lockdep_is_held(&rt->fib6_table->tb6_lock));
1388 
1389 	/* paired with smp_rmb() in fib6_get_cookie_safe() */
1390 	smp_wmb();
1391 	while (fn) {
1392 		WRITE_ONCE(fn->fn_sernum, sernum);
1393 		fn = rcu_dereference_protected(fn->parent,
1394 				lockdep_is_held(&rt->fib6_table->tb6_lock));
1395 	}
1396 }
1397 
fib6_update_sernum_upto_root(struct net * net,struct fib6_info * rt)1398 void fib6_update_sernum_upto_root(struct net *net, struct fib6_info *rt)
1399 {
1400 	__fib6_update_sernum_upto_root(rt, fib6_new_sernum(net));
1401 }
1402 
1403 /* allow ipv4 to update sernum via ipv6_stub */
fib6_update_sernum_stub(struct net * net,struct fib6_info * f6i)1404 void fib6_update_sernum_stub(struct net *net, struct fib6_info *f6i)
1405 {
1406 	spin_lock_bh(&f6i->fib6_table->tb6_lock);
1407 	fib6_update_sernum_upto_root(net, f6i);
1408 	spin_unlock_bh(&f6i->fib6_table->tb6_lock);
1409 }
1410 
1411 /*
1412  *	Add routing information to the routing tree.
1413  *	<destination addr>/<source addr>
1414  *	with source addr info in sub-trees
1415  *	Need to own table->tb6_lock
1416  */
1417 
fib6_add(struct fib6_node * root,struct fib6_info * rt,struct nl_info * info,struct netlink_ext_ack * extack)1418 int fib6_add(struct fib6_node *root, struct fib6_info *rt,
1419 	     struct nl_info *info, struct netlink_ext_ack *extack)
1420 {
1421 	struct fib6_table *table = rt->fib6_table;
1422 	LIST_HEAD(purge_list);
1423 	struct fib6_node *fn;
1424 #ifdef CONFIG_IPV6_SUBTREES
1425 	struct fib6_node *pn = NULL;
1426 #endif
1427 	int err = -ENOMEM;
1428 	int allow_create = 1;
1429 	int replace_required = 0;
1430 
1431 	if (info->nlh) {
1432 		if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
1433 			allow_create = 0;
1434 		if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
1435 			replace_required = 1;
1436 	}
1437 	if (!allow_create && !replace_required)
1438 		pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
1439 
1440 	fn = fib6_add_1(info->nl_net, table, root,
1441 			&rt->fib6_dst.addr, rt->fib6_dst.plen,
1442 			offsetof(struct fib6_info, fib6_dst), allow_create,
1443 			replace_required, extack);
1444 	if (IS_ERR(fn)) {
1445 		err = PTR_ERR(fn);
1446 		fn = NULL;
1447 		goto out;
1448 	}
1449 
1450 #ifdef CONFIG_IPV6_SUBTREES
1451 	pn = fn;
1452 
1453 	if (rt->fib6_src.plen) {
1454 		struct fib6_node *sn;
1455 
1456 		if (!rcu_access_pointer(fn->subtree)) {
1457 			struct fib6_node *sfn;
1458 
1459 			/*
1460 			 * Create subtree.
1461 			 *
1462 			 *		fn[main tree]
1463 			 *		|
1464 			 *		sfn[subtree root]
1465 			 *		   \
1466 			 *		    sn[new leaf node]
1467 			 */
1468 
1469 			/* Create subtree root node */
1470 			sfn = node_alloc(info->nl_net);
1471 			if (!sfn)
1472 				goto failure;
1473 
1474 			fib6_info_hold(info->nl_net->ipv6.fib6_null_entry);
1475 			rcu_assign_pointer(sfn->leaf,
1476 					   info->nl_net->ipv6.fib6_null_entry);
1477 			sfn->fn_flags = RTN_ROOT;
1478 
1479 			/* Now add the first leaf node to new subtree */
1480 
1481 			sn = fib6_add_1(info->nl_net, table, sfn,
1482 					&rt->fib6_src.addr, rt->fib6_src.plen,
1483 					offsetof(struct fib6_info, fib6_src),
1484 					allow_create, replace_required, extack);
1485 
1486 			if (IS_ERR(sn)) {
1487 				/* If it is failed, discard just allocated
1488 				   root, and then (in failure) stale node
1489 				   in main tree.
1490 				 */
1491 				node_free_immediate(info->nl_net, sfn);
1492 				err = PTR_ERR(sn);
1493 				goto failure;
1494 			}
1495 
1496 			/* Now link new subtree to main tree */
1497 			rcu_assign_pointer(sfn->parent, fn);
1498 			rcu_assign_pointer(fn->subtree, sfn);
1499 		} else {
1500 			sn = fib6_add_1(info->nl_net, table, FIB6_SUBTREE(fn),
1501 					&rt->fib6_src.addr, rt->fib6_src.plen,
1502 					offsetof(struct fib6_info, fib6_src),
1503 					allow_create, replace_required, extack);
1504 
1505 			if (IS_ERR(sn)) {
1506 				err = PTR_ERR(sn);
1507 				goto failure;
1508 			}
1509 		}
1510 
1511 		if (!rcu_access_pointer(fn->leaf)) {
1512 			if (fn->fn_flags & RTN_TL_ROOT) {
1513 				/* put back null_entry for root node */
1514 				rcu_assign_pointer(fn->leaf,
1515 					    info->nl_net->ipv6.fib6_null_entry);
1516 			} else {
1517 				fib6_info_hold(rt);
1518 				rcu_assign_pointer(fn->leaf, rt);
1519 			}
1520 		}
1521 		fn = sn;
1522 	}
1523 #endif
1524 
1525 	if (rt->nh)
1526 		err = fib6_add_rt2node_nh(fn, rt, info, extack, &purge_list);
1527 	else
1528 		err = fib6_add_rt2node(fn, rt, info, extack, &purge_list);
1529 	if (!err) {
1530 		struct fib6_info *iter, *next;
1531 
1532 		list_for_each_entry_safe(iter, next, &purge_list, purge_link) {
1533 			list_del(&iter->purge_link);
1534 			fib6_purge_rt(iter, fn, info->nl_net);
1535 			fib6_info_release(iter);
1536 		}
1537 
1538 		__fib6_update_sernum_upto_root(rt, fib6_new_sernum(info->nl_net));
1539 
1540 		if (rt->fib6_flags & RTF_EXPIRES)
1541 			fib6_add_gc_list(rt);
1542 
1543 		fib6_start_gc(info->nl_net, rt);
1544 	}
1545 
1546 out:
1547 	if (err) {
1548 #ifdef CONFIG_IPV6_SUBTREES
1549 		/*
1550 		 * If fib6_add_1 has cleared the old leaf pointer in the
1551 		 * super-tree leaf node we have to find a new one for it.
1552 		 */
1553 		if (pn != fn) {
1554 			struct fib6_info *pn_leaf =
1555 				rcu_dereference_protected(pn->leaf,
1556 				    lockdep_is_held(&table->tb6_lock));
1557 			if (pn_leaf == rt) {
1558 				pn_leaf = NULL;
1559 				RCU_INIT_POINTER(pn->leaf, NULL);
1560 				fib6_info_release(rt);
1561 			}
1562 			if (!pn_leaf && !(pn->fn_flags & RTN_RTINFO)) {
1563 				pn_leaf = fib6_find_prefix(info->nl_net, table,
1564 							   pn);
1565 				if (!pn_leaf)
1566 					pn_leaf =
1567 					    info->nl_net->ipv6.fib6_null_entry;
1568 				fib6_info_hold(pn_leaf);
1569 				rcu_assign_pointer(pn->leaf, pn_leaf);
1570 			}
1571 		}
1572 #endif
1573 		goto failure;
1574 	} else if (fib6_requires_src(rt)) {
1575 		fib6_routes_require_src_inc(info->nl_net);
1576 	}
1577 	return err;
1578 
1579 failure:
1580 	/* fn->leaf could be NULL and fib6_repair_tree() needs to be called if:
1581 	 * 1. fn is an intermediate node and we failed to add the new
1582 	 * route to it in both subtree creation failure and fib6_add_rt2node()
1583 	 * failure case.
1584 	 * 2. fn is the root node in the table and we fail to add the first
1585 	 * default route to it.
1586 	 */
1587 	if (fn &&
1588 	    (!(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)) ||
1589 	     (fn->fn_flags & RTN_TL_ROOT &&
1590 	      !rcu_access_pointer(fn->leaf))))
1591 		fib6_repair_tree(info->nl_net, table, fn);
1592 	return err;
1593 }
1594 
1595 /*
1596  *	Routing tree lookup
1597  *
1598  */
1599 
1600 struct lookup_args {
1601 	int			offset;		/* key offset on fib6_info */
1602 	const struct in6_addr	*addr;		/* search key			*/
1603 };
1604 
fib6_node_lookup_1(struct fib6_node * root,struct lookup_args * args)1605 static struct fib6_node *fib6_node_lookup_1(struct fib6_node *root,
1606 					    struct lookup_args *args)
1607 {
1608 	struct fib6_node *fn;
1609 	__be32 dir;
1610 
1611 	if (unlikely(args->offset == 0))
1612 		return NULL;
1613 
1614 	/*
1615 	 *	Descend on a tree
1616 	 */
1617 
1618 	fn = root;
1619 
1620 	for (;;) {
1621 		struct fib6_node *next;
1622 
1623 		dir = addr_bit_set(args->addr, fn->fn_bit);
1624 
1625 		next = dir ? rcu_dereference(fn->right) :
1626 			     rcu_dereference(fn->left);
1627 
1628 		if (next) {
1629 			fn = next;
1630 			continue;
1631 		}
1632 		break;
1633 	}
1634 
1635 	while (fn) {
1636 		struct fib6_node *subtree = FIB6_SUBTREE(fn);
1637 
1638 		if (subtree || fn->fn_flags & RTN_RTINFO) {
1639 			struct fib6_info *leaf = rcu_dereference(fn->leaf);
1640 			struct rt6key *key;
1641 
1642 			if (!leaf)
1643 				goto backtrack;
1644 
1645 			key = (struct rt6key *) ((u8 *)leaf + args->offset);
1646 
1647 			if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1648 #ifdef CONFIG_IPV6_SUBTREES
1649 				if (subtree) {
1650 					struct fib6_node *sfn;
1651 					sfn = fib6_node_lookup_1(subtree,
1652 								 args + 1);
1653 					if (!sfn)
1654 						goto backtrack;
1655 					fn = sfn;
1656 				}
1657 #endif
1658 				if (fn->fn_flags & RTN_RTINFO)
1659 					return fn;
1660 			}
1661 		}
1662 backtrack:
1663 		if (fn->fn_flags & RTN_ROOT)
1664 			break;
1665 
1666 		fn = rcu_dereference(fn->parent);
1667 	}
1668 
1669 	return NULL;
1670 }
1671 
1672 /* called with rcu_read_lock() held
1673  */
fib6_node_lookup(struct fib6_node * root,const struct in6_addr * daddr,const struct in6_addr * saddr)1674 struct fib6_node *fib6_node_lookup(struct fib6_node *root,
1675 				   const struct in6_addr *daddr,
1676 				   const struct in6_addr *saddr)
1677 {
1678 	struct fib6_node *fn;
1679 	struct lookup_args args[] = {
1680 		{
1681 			.offset = offsetof(struct fib6_info, fib6_dst),
1682 			.addr = daddr,
1683 		},
1684 #ifdef CONFIG_IPV6_SUBTREES
1685 		{
1686 			.offset = offsetof(struct fib6_info, fib6_src),
1687 			.addr = saddr,
1688 		},
1689 #endif
1690 		{
1691 			.offset = 0,	/* sentinel */
1692 		}
1693 	};
1694 
1695 	fn = fib6_node_lookup_1(root, daddr ? args : args + 1);
1696 	if (!fn || fn->fn_flags & RTN_TL_ROOT)
1697 		fn = root;
1698 
1699 	return fn;
1700 }
1701 
1702 /*
1703  *	Get node with specified destination prefix (and source prefix,
1704  *	if subtrees are used)
1705  *	exact_match == true means we try to find fn with exact match of
1706  *	the passed in prefix addr
1707  *	exact_match == false means we try to find fn with longest prefix
1708  *	match of the passed in prefix addr. This is useful for finding fn
1709  *	for cached route as it will be stored in the exception table under
1710  *	the node with longest prefix length.
1711  */
1712 
1713 
fib6_locate_1(struct fib6_node * root,const struct in6_addr * addr,int plen,int offset,bool exact_match)1714 static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1715 				       const struct in6_addr *addr,
1716 				       int plen, int offset,
1717 				       bool exact_match)
1718 {
1719 	struct fib6_node *fn, *prev = NULL;
1720 
1721 	for (fn = root; fn ; ) {
1722 		struct fib6_info *leaf = rcu_dereference(fn->leaf);
1723 		struct rt6key *key;
1724 
1725 		/* This node is being deleted */
1726 		if (!leaf) {
1727 			if (plen <= fn->fn_bit)
1728 				goto out;
1729 			else
1730 				goto next;
1731 		}
1732 
1733 		key = (struct rt6key *)((u8 *)leaf + offset);
1734 
1735 		/*
1736 		 *	Prefix match
1737 		 */
1738 		if (plen < fn->fn_bit ||
1739 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1740 			goto out;
1741 
1742 		if (plen == fn->fn_bit)
1743 			return fn;
1744 
1745 		if (fn->fn_flags & RTN_RTINFO)
1746 			prev = fn;
1747 
1748 next:
1749 		/*
1750 		 *	We have more bits to go
1751 		 */
1752 		if (addr_bit_set(addr, fn->fn_bit))
1753 			fn = rcu_dereference(fn->right);
1754 		else
1755 			fn = rcu_dereference(fn->left);
1756 	}
1757 out:
1758 	if (exact_match)
1759 		return NULL;
1760 	else
1761 		return prev;
1762 }
1763 
fib6_locate(struct fib6_node * root,const struct in6_addr * daddr,int dst_len,const struct in6_addr * saddr,int src_len,bool exact_match)1764 struct fib6_node *fib6_locate(struct fib6_node *root,
1765 			      const struct in6_addr *daddr, int dst_len,
1766 			      const struct in6_addr *saddr, int src_len,
1767 			      bool exact_match)
1768 {
1769 	struct fib6_node *fn;
1770 
1771 	fn = fib6_locate_1(root, daddr, dst_len,
1772 			   offsetof(struct fib6_info, fib6_dst),
1773 			   exact_match);
1774 
1775 #ifdef CONFIG_IPV6_SUBTREES
1776 	if (src_len) {
1777 		WARN_ON(saddr == NULL);
1778 		if (fn) {
1779 			struct fib6_node *subtree = FIB6_SUBTREE(fn);
1780 
1781 			if (subtree) {
1782 				fn = fib6_locate_1(subtree, saddr, src_len,
1783 					   offsetof(struct fib6_info, fib6_src),
1784 					   exact_match);
1785 			}
1786 		}
1787 	}
1788 #endif
1789 
1790 	if (fn && fn->fn_flags & RTN_RTINFO)
1791 		return fn;
1792 
1793 	return NULL;
1794 }
1795 
1796 
1797 /*
1798  *	Deletion
1799  *
1800  */
1801 
fib6_find_prefix(struct net * net,struct fib6_table * table,struct fib6_node * fn)1802 static struct fib6_info *fib6_find_prefix(struct net *net,
1803 					 struct fib6_table *table,
1804 					 struct fib6_node *fn)
1805 {
1806 	struct fib6_node *child_left, *child_right;
1807 
1808 	if (fn->fn_flags & RTN_ROOT)
1809 		return net->ipv6.fib6_null_entry;
1810 
1811 	while (fn) {
1812 		child_left = rcu_dereference_protected(fn->left,
1813 				    lockdep_is_held(&table->tb6_lock));
1814 		child_right = rcu_dereference_protected(fn->right,
1815 				    lockdep_is_held(&table->tb6_lock));
1816 		if (child_left)
1817 			return rcu_dereference_protected(child_left->leaf,
1818 					lockdep_is_held(&table->tb6_lock));
1819 		if (child_right)
1820 			return rcu_dereference_protected(child_right->leaf,
1821 					lockdep_is_held(&table->tb6_lock));
1822 
1823 		fn = FIB6_SUBTREE(fn);
1824 	}
1825 	return NULL;
1826 }
1827 
1828 /*
1829  *	Called to trim the tree of intermediate nodes when possible. "fn"
1830  *	is the node we want to try and remove.
1831  *	Need to own table->tb6_lock
1832  */
1833 
fib6_repair_tree(struct net * net,struct fib6_table * table,struct fib6_node * fn)1834 static struct fib6_node *fib6_repair_tree(struct net *net,
1835 					  struct fib6_table *table,
1836 					  struct fib6_node *fn)
1837 {
1838 	int children;
1839 	int nstate;
1840 	struct fib6_node *child;
1841 	struct fib6_walker *w;
1842 	int iter = 0;
1843 
1844 	/* Set fn->leaf to null_entry for root node. */
1845 	if (fn->fn_flags & RTN_TL_ROOT) {
1846 		rcu_assign_pointer(fn->leaf, net->ipv6.fib6_null_entry);
1847 		return fn;
1848 	}
1849 
1850 	for (;;) {
1851 		struct fib6_node *fn_r = rcu_dereference_protected(fn->right,
1852 					    lockdep_is_held(&table->tb6_lock));
1853 		struct fib6_node *fn_l = rcu_dereference_protected(fn->left,
1854 					    lockdep_is_held(&table->tb6_lock));
1855 		struct fib6_node *pn = rcu_dereference_protected(fn->parent,
1856 					    lockdep_is_held(&table->tb6_lock));
1857 		struct fib6_node *pn_r = rcu_dereference_protected(pn->right,
1858 					    lockdep_is_held(&table->tb6_lock));
1859 		struct fib6_node *pn_l = rcu_dereference_protected(pn->left,
1860 					    lockdep_is_held(&table->tb6_lock));
1861 		struct fib6_info *fn_leaf = rcu_dereference_protected(fn->leaf,
1862 					    lockdep_is_held(&table->tb6_lock));
1863 		struct fib6_info *pn_leaf = rcu_dereference_protected(pn->leaf,
1864 					    lockdep_is_held(&table->tb6_lock));
1865 		struct fib6_info *new_fn_leaf;
1866 
1867 		pr_debug("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1868 		iter++;
1869 
1870 		WARN_ON(fn->fn_flags & RTN_RTINFO);
1871 		WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1872 		WARN_ON(fn_leaf);
1873 
1874 		children = 0;
1875 		child = NULL;
1876 		if (fn_r) {
1877 			child = fn_r;
1878 			children |= 1;
1879 		}
1880 		if (fn_l) {
1881 			child = fn_l;
1882 			children |= 2;
1883 		}
1884 
1885 		if (children == 3 || FIB6_SUBTREE(fn)
1886 #ifdef CONFIG_IPV6_SUBTREES
1887 		    /* Subtree root (i.e. fn) may have one child */
1888 		    || (children && fn->fn_flags & RTN_ROOT)
1889 #endif
1890 		    ) {
1891 			new_fn_leaf = fib6_find_prefix(net, table, fn);
1892 #if RT6_DEBUG >= 2
1893 			if (!new_fn_leaf) {
1894 				WARN_ON(!new_fn_leaf);
1895 				new_fn_leaf = net->ipv6.fib6_null_entry;
1896 			}
1897 #endif
1898 			fib6_info_hold(new_fn_leaf);
1899 			rcu_assign_pointer(fn->leaf, new_fn_leaf);
1900 			return pn;
1901 		}
1902 
1903 #ifdef CONFIG_IPV6_SUBTREES
1904 		if (FIB6_SUBTREE(pn) == fn) {
1905 			WARN_ON(!(fn->fn_flags & RTN_ROOT));
1906 			RCU_INIT_POINTER(pn->subtree, NULL);
1907 			nstate = FWS_L;
1908 		} else {
1909 			WARN_ON(fn->fn_flags & RTN_ROOT);
1910 #endif
1911 			if (pn_r == fn)
1912 				rcu_assign_pointer(pn->right, child);
1913 			else if (pn_l == fn)
1914 				rcu_assign_pointer(pn->left, child);
1915 #if RT6_DEBUG >= 2
1916 			else
1917 				WARN_ON(1);
1918 #endif
1919 			if (child)
1920 				rcu_assign_pointer(child->parent, pn);
1921 			nstate = FWS_R;
1922 #ifdef CONFIG_IPV6_SUBTREES
1923 		}
1924 #endif
1925 
1926 		read_lock(&net->ipv6.fib6_walker_lock);
1927 		FOR_WALKERS(net, w) {
1928 			if (!child) {
1929 				if (w->node == fn) {
1930 					pr_debug("W %p adjusted by delnode 1, s=%d/%d\n",
1931 						 w, w->state, nstate);
1932 					w->node = pn;
1933 					w->state = nstate;
1934 				}
1935 			} else {
1936 				if (w->node == fn) {
1937 					w->node = child;
1938 					if (children&2) {
1939 						pr_debug("W %p adjusted by delnode 2, s=%d\n",
1940 							 w, w->state);
1941 						w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1942 					} else {
1943 						pr_debug("W %p adjusted by delnode 2, s=%d\n",
1944 							 w, w->state);
1945 						w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1946 					}
1947 				}
1948 			}
1949 		}
1950 		read_unlock(&net->ipv6.fib6_walker_lock);
1951 
1952 		node_free(net, fn);
1953 		if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1954 			return pn;
1955 
1956 		RCU_INIT_POINTER(pn->leaf, NULL);
1957 		fib6_info_release(pn_leaf);
1958 		fn = pn;
1959 	}
1960 }
1961 
fib6_del_route(struct fib6_table * table,struct fib6_node * fn,struct fib6_info __rcu ** rtp,struct nl_info * info)1962 static void fib6_del_route(struct fib6_table *table, struct fib6_node *fn,
1963 			   struct fib6_info __rcu **rtp, struct nl_info *info)
1964 {
1965 	struct fib6_info *leaf, *replace_rt = NULL;
1966 	struct fib6_walker *w;
1967 	struct fib6_info *rt = rcu_dereference_protected(*rtp,
1968 				    lockdep_is_held(&table->tb6_lock));
1969 	struct net *net = info->nl_net;
1970 	bool notify_del = false;
1971 
1972 	/* If the deleted route is the first in the node and it is not part of
1973 	 * a multipath route, then we need to replace it with the next route
1974 	 * in the node, if exists.
1975 	 */
1976 	leaf = rcu_dereference_protected(fn->leaf,
1977 					 lockdep_is_held(&table->tb6_lock));
1978 	if (leaf == rt && !rt->fib6_nsiblings) {
1979 		if (rcu_access_pointer(rt->fib6_next))
1980 			replace_rt = rcu_dereference_protected(rt->fib6_next,
1981 					    lockdep_is_held(&table->tb6_lock));
1982 		else
1983 			notify_del = true;
1984 	}
1985 
1986 	/* Unlink it */
1987 	*rtp = rt->fib6_next;
1988 	rt->fib6_node = NULL;
1989 	net->ipv6.rt6_stats->fib_rt_entries--;
1990 	net->ipv6.rt6_stats->fib_discarded_routes++;
1991 
1992 	/* Reset round-robin state, if necessary */
1993 	if (rcu_access_pointer(fn->rr_ptr) == rt)
1994 		fn->rr_ptr = NULL;
1995 
1996 	/* Remove this entry from other siblings */
1997 	if (rt->fib6_nsiblings) {
1998 		struct fib6_info *sibling, *next_sibling;
1999 
2000 		/* The route is deleted from a multipath route. If this
2001 		 * multipath route is the first route in the node, then we need
2002 		 * to emit a delete notification. Otherwise, we need to skip
2003 		 * the notification.
2004 		 */
2005 		if (rt->fib6_metric == leaf->fib6_metric &&
2006 		    rt6_qualify_for_ecmp(leaf))
2007 			notify_del = true;
2008 		list_for_each_entry_safe(sibling, next_sibling,
2009 					 &rt->fib6_siblings, fib6_siblings)
2010 			WRITE_ONCE(sibling->fib6_nsiblings,
2011 				   sibling->fib6_nsiblings - 1);
2012 		WRITE_ONCE(rt->fib6_nsiblings, 0);
2013 		list_del_rcu(&rt->fib6_siblings);
2014 		rt6_multipath_rebalance(next_sibling);
2015 	}
2016 
2017 	/* Adjust walkers */
2018 	read_lock(&net->ipv6.fib6_walker_lock);
2019 	FOR_WALKERS(net, w) {
2020 		if (w->state == FWS_C && w->leaf == rt) {
2021 			pr_debug("walker %p adjusted by delroute\n", w);
2022 			w->leaf = rcu_dereference_protected(rt->fib6_next,
2023 					    lockdep_is_held(&table->tb6_lock));
2024 			if (!w->leaf)
2025 				w->state = FWS_U;
2026 		}
2027 	}
2028 	read_unlock(&net->ipv6.fib6_walker_lock);
2029 
2030 	/* If it was last route, call fib6_repair_tree() to:
2031 	 * 1. For root node, put back null_entry as how the table was created.
2032 	 * 2. For other nodes, expunge its radix tree node.
2033 	 */
2034 	if (!rcu_access_pointer(fn->leaf)) {
2035 		if (!(fn->fn_flags & RTN_TL_ROOT)) {
2036 			fn->fn_flags &= ~RTN_RTINFO;
2037 			net->ipv6.rt6_stats->fib_route_nodes--;
2038 		}
2039 		fn = fib6_repair_tree(net, table, fn);
2040 	}
2041 
2042 	fib6_purge_rt(rt, fn, net);
2043 
2044 	if (!info->skip_notify_kernel) {
2045 		if (notify_del)
2046 			call_fib6_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
2047 						  rt, NULL);
2048 		else if (replace_rt)
2049 			call_fib6_entry_notifiers_replace(net, replace_rt);
2050 	}
2051 	if (!info->skip_notify)
2052 		inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
2053 
2054 	fib6_info_release(rt);
2055 }
2056 
2057 /* Need to own table->tb6_lock */
fib6_del(struct fib6_info * rt,struct nl_info * info)2058 int fib6_del(struct fib6_info *rt, struct nl_info *info)
2059 {
2060 	struct net *net = info->nl_net;
2061 	struct fib6_info __rcu **rtp;
2062 	struct fib6_info __rcu **rtp_next;
2063 	struct fib6_table *table;
2064 	struct fib6_node *fn;
2065 
2066 	if (rt == net->ipv6.fib6_null_entry)
2067 		return -ENOENT;
2068 
2069 	table = rt->fib6_table;
2070 	fn = rcu_dereference_protected(rt->fib6_node,
2071 				       lockdep_is_held(&table->tb6_lock));
2072 	if (!fn)
2073 		return -ENOENT;
2074 
2075 	WARN_ON(!(fn->fn_flags & RTN_RTINFO));
2076 
2077 	/*
2078 	 *	Walk the leaf entries looking for ourself
2079 	 */
2080 
2081 	for (rtp = &fn->leaf; *rtp; rtp = rtp_next) {
2082 		struct fib6_info *cur = rcu_dereference_protected(*rtp,
2083 					lockdep_is_held(&table->tb6_lock));
2084 		if (rt == cur) {
2085 			if (fib6_requires_src(cur))
2086 				fib6_routes_require_src_dec(info->nl_net);
2087 			fib6_del_route(table, fn, rtp, info);
2088 			return 0;
2089 		}
2090 		rtp_next = &cur->fib6_next;
2091 	}
2092 	return -ENOENT;
2093 }
2094 
2095 /*
2096  *	Tree traversal function.
2097  *
2098  *	Certainly, it is not interrupt safe.
2099  *	However, it is internally reenterable wrt itself and fib6_add/fib6_del.
2100  *	It means, that we can modify tree during walking
2101  *	and use this function for garbage collection, clone pruning,
2102  *	cleaning tree when a device goes down etc. etc.
2103  *
2104  *	It guarantees that every node will be traversed,
2105  *	and that it will be traversed only once.
2106  *
2107  *	Callback function w->func may return:
2108  *	0 -> continue walking.
2109  *	positive value -> walking is suspended (used by tree dumps,
2110  *	and probably by gc, if it will be split to several slices)
2111  *	negative value -> terminate walking.
2112  *
2113  *	The function itself returns:
2114  *	0   -> walk is complete.
2115  *	>0  -> walk is incomplete (i.e. suspended)
2116  *	<0  -> walk is terminated by an error.
2117  *
2118  *	This function is called with tb6_lock held.
2119  */
2120 
fib6_walk_continue(struct fib6_walker * w)2121 static int fib6_walk_continue(struct fib6_walker *w)
2122 {
2123 	struct fib6_node *fn, *pn, *left, *right;
2124 
2125 	/* w->root should always be table->tb6_root */
2126 	WARN_ON_ONCE(!(w->root->fn_flags & RTN_TL_ROOT));
2127 
2128 	for (;;) {
2129 		fn = w->node;
2130 		if (!fn)
2131 			return 0;
2132 
2133 		switch (w->state) {
2134 #ifdef CONFIG_IPV6_SUBTREES
2135 		case FWS_S:
2136 			if (FIB6_SUBTREE(fn)) {
2137 				w->node = FIB6_SUBTREE(fn);
2138 				continue;
2139 			}
2140 			w->state = FWS_L;
2141 			fallthrough;
2142 #endif
2143 		case FWS_L:
2144 			left = rcu_dereference_protected(fn->left, 1);
2145 			if (left) {
2146 				w->node = left;
2147 				w->state = FWS_INIT;
2148 				continue;
2149 			}
2150 			w->state = FWS_R;
2151 			fallthrough;
2152 		case FWS_R:
2153 			right = rcu_dereference_protected(fn->right, 1);
2154 			if (right) {
2155 				w->node = right;
2156 				w->state = FWS_INIT;
2157 				continue;
2158 			}
2159 			w->state = FWS_C;
2160 			w->leaf = rcu_dereference_protected(fn->leaf, 1);
2161 			fallthrough;
2162 		case FWS_C:
2163 			if (w->leaf && fn->fn_flags & RTN_RTINFO) {
2164 				int err;
2165 
2166 				if (w->skip) {
2167 					w->skip--;
2168 					goto skip;
2169 				}
2170 
2171 				err = w->func(w);
2172 				if (err)
2173 					return err;
2174 
2175 				w->count++;
2176 				continue;
2177 			}
2178 skip:
2179 			w->state = FWS_U;
2180 			fallthrough;
2181 		case FWS_U:
2182 			if (fn == w->root)
2183 				return 0;
2184 			pn = rcu_dereference_protected(fn->parent, 1);
2185 			left = rcu_dereference_protected(pn->left, 1);
2186 			right = rcu_dereference_protected(pn->right, 1);
2187 			w->node = pn;
2188 #ifdef CONFIG_IPV6_SUBTREES
2189 			if (FIB6_SUBTREE(pn) == fn) {
2190 				WARN_ON(!(fn->fn_flags & RTN_ROOT));
2191 				w->state = FWS_L;
2192 				continue;
2193 			}
2194 #endif
2195 			if (left == fn) {
2196 				w->state = FWS_R;
2197 				continue;
2198 			}
2199 			if (right == fn) {
2200 				w->state = FWS_C;
2201 				w->leaf = rcu_dereference_protected(w->node->leaf, 1);
2202 				continue;
2203 			}
2204 #if RT6_DEBUG >= 2
2205 			WARN_ON(1);
2206 #endif
2207 		}
2208 	}
2209 }
2210 
fib6_walk(struct net * net,struct fib6_walker * w)2211 static int fib6_walk(struct net *net, struct fib6_walker *w)
2212 {
2213 	int res;
2214 
2215 	w->state = FWS_INIT;
2216 	w->node = w->root;
2217 
2218 	fib6_walker_link(net, w);
2219 	res = fib6_walk_continue(w);
2220 	if (res <= 0)
2221 		fib6_walker_unlink(net, w);
2222 	return res;
2223 }
2224 
fib6_clean_node(struct fib6_walker * w)2225 static int fib6_clean_node(struct fib6_walker *w)
2226 {
2227 	int res;
2228 	struct fib6_info *rt;
2229 	struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
2230 	struct nl_info info = {
2231 		.nl_net = c->net,
2232 		.skip_notify = c->skip_notify,
2233 	};
2234 
2235 	if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
2236 	    READ_ONCE(w->node->fn_sernum) != c->sernum)
2237 		WRITE_ONCE(w->node->fn_sernum, c->sernum);
2238 
2239 	if (!c->func) {
2240 		WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
2241 		w->leaf = NULL;
2242 		return 0;
2243 	}
2244 
2245 	for_each_fib6_walker_rt(w) {
2246 		res = c->func(rt, c->arg);
2247 		if (res == -1) {
2248 			w->leaf = rt;
2249 			res = fib6_del(rt, &info);
2250 			if (res) {
2251 #if RT6_DEBUG >= 2
2252 				pr_debug("%s: del failed: rt=%p@%p err=%d\n",
2253 					 __func__, rt,
2254 					 rcu_access_pointer(rt->fib6_node),
2255 					 res);
2256 #endif
2257 				continue;
2258 			}
2259 			return 0;
2260 		} else if (res == -2) {
2261 			if (WARN_ON(!rt->fib6_nsiblings))
2262 				continue;
2263 			rt = list_last_entry(&rt->fib6_siblings,
2264 					     struct fib6_info, fib6_siblings);
2265 			continue;
2266 		}
2267 		WARN_ON(res != 0);
2268 	}
2269 	w->leaf = rt;
2270 	return 0;
2271 }
2272 
2273 /*
2274  *	Convenient frontend to tree walker.
2275  *
2276  *	func is called on each route.
2277  *		It may return -2 -> skip multipath route.
2278  *			      -1 -> delete this route.
2279  *		              0  -> continue walking
2280  */
2281 
fib6_clean_tree(struct net * net,struct fib6_node * root,int (* func)(struct fib6_info *,void * arg),int sernum,void * arg,bool skip_notify)2282 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
2283 			    int (*func)(struct fib6_info *, void *arg),
2284 			    int sernum, void *arg, bool skip_notify)
2285 {
2286 	struct fib6_cleaner c;
2287 
2288 	c.w.root = root;
2289 	c.w.func = fib6_clean_node;
2290 	c.w.count = 0;
2291 	c.w.skip = 0;
2292 	c.w.skip_in_node = 0;
2293 	c.func = func;
2294 	c.sernum = sernum;
2295 	c.arg = arg;
2296 	c.net = net;
2297 	c.skip_notify = skip_notify;
2298 
2299 	fib6_walk(net, &c.w);
2300 }
2301 
__fib6_clean_all(struct net * net,int (* func)(struct fib6_info *,void *),int sernum,void * arg,bool skip_notify)2302 static void __fib6_clean_all(struct net *net,
2303 			     int (*func)(struct fib6_info *, void *),
2304 			     int sernum, void *arg, bool skip_notify)
2305 {
2306 	struct fib6_table *table;
2307 	struct hlist_head *head;
2308 	unsigned int h;
2309 
2310 	rcu_read_lock();
2311 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
2312 		head = &net->ipv6.fib_table_hash[h];
2313 		hlist_for_each_entry_rcu(table, head, tb6_hlist) {
2314 			spin_lock_bh(&table->tb6_lock);
2315 			fib6_clean_tree(net, &table->tb6_root,
2316 					func, sernum, arg, skip_notify);
2317 			spin_unlock_bh(&table->tb6_lock);
2318 		}
2319 	}
2320 	rcu_read_unlock();
2321 }
2322 
fib6_clean_all(struct net * net,int (* func)(struct fib6_info *,void *),void * arg)2323 void fib6_clean_all(struct net *net, int (*func)(struct fib6_info *, void *),
2324 		    void *arg)
2325 {
2326 	__fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, false);
2327 }
2328 
fib6_clean_all_skip_notify(struct net * net,int (* func)(struct fib6_info *,void *),void * arg)2329 void fib6_clean_all_skip_notify(struct net *net,
2330 				int (*func)(struct fib6_info *, void *),
2331 				void *arg)
2332 {
2333 	__fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, true);
2334 }
2335 
fib6_flush_trees(struct net * net)2336 static void fib6_flush_trees(struct net *net)
2337 {
2338 	int new_sernum = fib6_new_sernum(net);
2339 
2340 	__fib6_clean_all(net, NULL, new_sernum, NULL, false);
2341 }
2342 
2343 /*
2344  *	Garbage collection
2345  */
2346 
fib6_age(struct fib6_info * rt,struct fib6_gc_args * gc_args)2347 static int fib6_age(struct fib6_info *rt, struct fib6_gc_args *gc_args)
2348 {
2349 	unsigned long now = jiffies;
2350 
2351 	/*
2352 	 *	check addrconf expiration here.
2353 	 *	Routes are expired even if they are in use.
2354 	 */
2355 
2356 	if (rt->fib6_flags & RTF_EXPIRES && rt->expires) {
2357 		if (time_after(now, rt->expires)) {
2358 			pr_debug("expiring %p\n", rt);
2359 			return -1;
2360 		}
2361 		gc_args->more++;
2362 	}
2363 
2364 	/*	Also age clones in the exception table.
2365 	 *	Note, that clones are aged out
2366 	 *	only if they are not in use now.
2367 	 */
2368 	rt6_age_exceptions(rt, gc_args, now);
2369 
2370 	return 0;
2371 }
2372 
fib6_gc_table(struct net * net,struct fib6_table * tb6,struct fib6_gc_args * gc_args)2373 static void fib6_gc_table(struct net *net,
2374 			  struct fib6_table *tb6,
2375 			  struct fib6_gc_args *gc_args)
2376 {
2377 	struct fib6_info *rt;
2378 	struct hlist_node *n;
2379 	struct nl_info info = {
2380 		.nl_net = net,
2381 		.skip_notify = false,
2382 	};
2383 
2384 	hlist_for_each_entry_safe(rt, n, &tb6->tb6_gc_hlist, gc_link)
2385 		if (fib6_age(rt, gc_args) == -1)
2386 			fib6_del(rt, &info);
2387 }
2388 
fib6_gc_all(struct net * net,struct fib6_gc_args * gc_args)2389 static void fib6_gc_all(struct net *net, struct fib6_gc_args *gc_args)
2390 {
2391 	struct fib6_table *table;
2392 	struct hlist_head *head;
2393 	unsigned int h;
2394 
2395 	rcu_read_lock();
2396 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
2397 		head = &net->ipv6.fib_table_hash[h];
2398 		hlist_for_each_entry_rcu(table, head, tb6_hlist) {
2399 			spin_lock_bh(&table->tb6_lock);
2400 
2401 			fib6_gc_table(net, table, gc_args);
2402 
2403 			spin_unlock_bh(&table->tb6_lock);
2404 		}
2405 	}
2406 	rcu_read_unlock();
2407 }
2408 
fib6_run_gc(unsigned long expires,struct net * net,bool force)2409 void fib6_run_gc(unsigned long expires, struct net *net, bool force)
2410 {
2411 	struct fib6_gc_args gc_args;
2412 	unsigned long now;
2413 
2414 	if (force) {
2415 		spin_lock_bh(&net->ipv6.fib6_gc_lock);
2416 	} else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) {
2417 		mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
2418 		return;
2419 	}
2420 	gc_args.timeout = expires ? (int)expires :
2421 			  net->ipv6.sysctl.ip6_rt_gc_interval;
2422 	gc_args.more = 0;
2423 
2424 	fib6_gc_all(net, &gc_args);
2425 	now = jiffies;
2426 	net->ipv6.ip6_rt_last_gc = now;
2427 
2428 	if (gc_args.more)
2429 		mod_timer(&net->ipv6.ip6_fib_timer,
2430 			  round_jiffies(now
2431 					+ net->ipv6.sysctl.ip6_rt_gc_interval));
2432 	else
2433 		timer_delete(&net->ipv6.ip6_fib_timer);
2434 	spin_unlock_bh(&net->ipv6.fib6_gc_lock);
2435 }
2436 
fib6_gc_timer_cb(struct timer_list * t)2437 static void fib6_gc_timer_cb(struct timer_list *t)
2438 {
2439 	struct net *arg = timer_container_of(arg, t, ipv6.ip6_fib_timer);
2440 
2441 	fib6_run_gc(0, arg, true);
2442 }
2443 
fib6_net_init(struct net * net)2444 static int __net_init fib6_net_init(struct net *net)
2445 {
2446 	size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
2447 	int err;
2448 
2449 	err = fib6_notifier_init(net);
2450 	if (err)
2451 		return err;
2452 
2453 	/* Default to 3-tuple */
2454 	net->ipv6.sysctl.multipath_hash_fields =
2455 		FIB_MULTIPATH_HASH_FIELD_DEFAULT_MASK;
2456 
2457 	spin_lock_init(&net->ipv6.fib6_gc_lock);
2458 	rwlock_init(&net->ipv6.fib6_walker_lock);
2459 	INIT_LIST_HEAD(&net->ipv6.fib6_walkers);
2460 	timer_setup(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, 0);
2461 
2462 	net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
2463 	if (!net->ipv6.rt6_stats)
2464 		goto out_notifier;
2465 
2466 	/* Avoid false sharing : Use at least a full cache line */
2467 	size = max_t(size_t, size, L1_CACHE_BYTES);
2468 
2469 	net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
2470 	if (!net->ipv6.fib_table_hash)
2471 		goto out_rt6_stats;
2472 
2473 	spin_lock_init(&net->ipv6.fib_table_hash_lock);
2474 
2475 	net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
2476 					  GFP_KERNEL);
2477 	if (!net->ipv6.fib6_main_tbl)
2478 		goto out_fib_table_hash;
2479 
2480 	net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
2481 	rcu_assign_pointer(net->ipv6.fib6_main_tbl->tb6_root.leaf,
2482 			   net->ipv6.fib6_null_entry);
2483 	net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
2484 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2485 	inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
2486 	INIT_HLIST_HEAD(&net->ipv6.fib6_main_tbl->tb6_gc_hlist);
2487 
2488 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2489 	net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
2490 					   GFP_KERNEL);
2491 	if (!net->ipv6.fib6_local_tbl)
2492 		goto out_fib6_main_tbl;
2493 	net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
2494 	rcu_assign_pointer(net->ipv6.fib6_local_tbl->tb6_root.leaf,
2495 			   net->ipv6.fib6_null_entry);
2496 	net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
2497 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2498 	inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
2499 	INIT_HLIST_HEAD(&net->ipv6.fib6_local_tbl->tb6_gc_hlist);
2500 #endif
2501 	fib6_tables_init(net);
2502 
2503 	return 0;
2504 
2505 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2506 out_fib6_main_tbl:
2507 	kfree(net->ipv6.fib6_main_tbl);
2508 #endif
2509 out_fib_table_hash:
2510 	kfree(net->ipv6.fib_table_hash);
2511 out_rt6_stats:
2512 	kfree(net->ipv6.rt6_stats);
2513 out_notifier:
2514 	fib6_notifier_exit(net);
2515 	return -ENOMEM;
2516 }
2517 
fib6_net_exit(struct net * net)2518 static void fib6_net_exit(struct net *net)
2519 {
2520 	unsigned int i;
2521 
2522 	timer_delete_sync(&net->ipv6.ip6_fib_timer);
2523 
2524 	for (i = 0; i < FIB6_TABLE_HASHSZ; i++) {
2525 		struct hlist_head *head = &net->ipv6.fib_table_hash[i];
2526 		struct hlist_node *tmp;
2527 		struct fib6_table *tb;
2528 
2529 		hlist_for_each_entry_safe(tb, tmp, head, tb6_hlist) {
2530 			hlist_del(&tb->tb6_hlist);
2531 			fib6_free_table(tb);
2532 		}
2533 	}
2534 
2535 	kfree(net->ipv6.fib_table_hash);
2536 	kfree(net->ipv6.rt6_stats);
2537 	fib6_notifier_exit(net);
2538 }
2539 
2540 static struct pernet_operations fib6_net_ops = {
2541 	.init = fib6_net_init,
2542 	.exit = fib6_net_exit,
2543 };
2544 
2545 static const struct rtnl_msg_handler fib6_rtnl_msg_handlers[] __initconst_or_module = {
2546 	{.owner = THIS_MODULE, .protocol = PF_INET6, .msgtype = RTM_GETROUTE,
2547 	 .dumpit = inet6_dump_fib,
2548 	 .flags = RTNL_FLAG_DUMP_UNLOCKED | RTNL_FLAG_DUMP_SPLIT_NLM_DONE},
2549 };
2550 
fib6_init(void)2551 int __init fib6_init(void)
2552 {
2553 	int ret = -ENOMEM;
2554 
2555 	fib6_node_kmem = KMEM_CACHE(fib6_node,
2556 				    SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT);
2557 	if (!fib6_node_kmem)
2558 		goto out;
2559 
2560 	ret = register_pernet_subsys(&fib6_net_ops);
2561 	if (ret)
2562 		goto out_kmem_cache_create;
2563 
2564 	ret = rtnl_register_many(fib6_rtnl_msg_handlers);
2565 	if (ret)
2566 		goto out_unregister_subsys;
2567 
2568 	__fib6_flush_trees = fib6_flush_trees;
2569 out:
2570 	return ret;
2571 
2572 out_unregister_subsys:
2573 	unregister_pernet_subsys(&fib6_net_ops);
2574 out_kmem_cache_create:
2575 	kmem_cache_destroy(fib6_node_kmem);
2576 	goto out;
2577 }
2578 
fib6_gc_cleanup(void)2579 void fib6_gc_cleanup(void)
2580 {
2581 	unregister_pernet_subsys(&fib6_net_ops);
2582 	kmem_cache_destroy(fib6_node_kmem);
2583 }
2584 
2585 #ifdef CONFIG_PROC_FS
ipv6_route_native_seq_show(struct seq_file * seq,void * v)2586 static int ipv6_route_native_seq_show(struct seq_file *seq, void *v)
2587 {
2588 	struct fib6_info *rt = v;
2589 	struct ipv6_route_iter *iter = seq->private;
2590 	struct fib6_nh *fib6_nh = rt->fib6_nh;
2591 	unsigned int flags = rt->fib6_flags;
2592 	const struct net_device *dev;
2593 
2594 	if (rt->nh)
2595 		fib6_nh = nexthop_fib6_nh(rt->nh);
2596 
2597 	seq_printf(seq, "%pi6 %02x ", &rt->fib6_dst.addr, rt->fib6_dst.plen);
2598 
2599 #ifdef CONFIG_IPV6_SUBTREES
2600 	seq_printf(seq, "%pi6 %02x ", &rt->fib6_src.addr, rt->fib6_src.plen);
2601 #else
2602 	seq_puts(seq, "00000000000000000000000000000000 00 ");
2603 #endif
2604 	if (fib6_nh->fib_nh_gw_family) {
2605 		flags |= RTF_GATEWAY;
2606 		seq_printf(seq, "%pi6", &fib6_nh->fib_nh_gw6);
2607 	} else {
2608 		seq_puts(seq, "00000000000000000000000000000000");
2609 	}
2610 
2611 	dev = fib6_nh->fib_nh_dev;
2612 	seq_printf(seq, " %08x %08x %08x %08x %8s\n",
2613 		   rt->fib6_metric, refcount_read(&rt->fib6_ref), 0,
2614 		   flags, dev ? dev->name : "");
2615 	iter->w.leaf = NULL;
2616 	return 0;
2617 }
2618 
ipv6_route_yield(struct fib6_walker * w)2619 static int ipv6_route_yield(struct fib6_walker *w)
2620 {
2621 	struct ipv6_route_iter *iter = w->args;
2622 
2623 	if (!iter->skip)
2624 		return 1;
2625 
2626 	do {
2627 		iter->w.leaf = rcu_dereference_protected(
2628 				iter->w.leaf->fib6_next,
2629 				lockdep_is_held(&iter->tbl->tb6_lock));
2630 		iter->skip--;
2631 		if (!iter->skip && iter->w.leaf)
2632 			return 1;
2633 	} while (iter->w.leaf);
2634 
2635 	return 0;
2636 }
2637 
ipv6_route_seq_setup_walk(struct ipv6_route_iter * iter,struct net * net)2638 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter,
2639 				      struct net *net)
2640 {
2641 	memset(&iter->w, 0, sizeof(iter->w));
2642 	iter->w.func = ipv6_route_yield;
2643 	iter->w.root = &iter->tbl->tb6_root;
2644 	iter->w.state = FWS_INIT;
2645 	iter->w.node = iter->w.root;
2646 	iter->w.args = iter;
2647 	iter->sernum = READ_ONCE(iter->w.root->fn_sernum);
2648 	INIT_LIST_HEAD(&iter->w.lh);
2649 	fib6_walker_link(net, &iter->w);
2650 }
2651 
ipv6_route_seq_next_table(struct fib6_table * tbl,struct net * net)2652 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
2653 						    struct net *net)
2654 {
2655 	unsigned int h;
2656 	struct hlist_node *node;
2657 
2658 	if (tbl) {
2659 		h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
2660 		node = rcu_dereference(hlist_next_rcu(&tbl->tb6_hlist));
2661 	} else {
2662 		h = 0;
2663 		node = NULL;
2664 	}
2665 
2666 	while (!node && h < FIB6_TABLE_HASHSZ) {
2667 		node = rcu_dereference(
2668 			hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
2669 	}
2670 	return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
2671 }
2672 
ipv6_route_check_sernum(struct ipv6_route_iter * iter)2673 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2674 {
2675 	int sernum = READ_ONCE(iter->w.root->fn_sernum);
2676 
2677 	if (iter->sernum != sernum) {
2678 		iter->sernum = sernum;
2679 		iter->w.state = FWS_INIT;
2680 		iter->w.node = iter->w.root;
2681 		WARN_ON(iter->w.skip);
2682 		iter->w.skip = iter->w.count;
2683 	}
2684 }
2685 
ipv6_route_seq_next(struct seq_file * seq,void * v,loff_t * pos)2686 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2687 {
2688 	int r;
2689 	struct fib6_info *n;
2690 	struct net *net = seq_file_net(seq);
2691 	struct ipv6_route_iter *iter = seq->private;
2692 
2693 	++(*pos);
2694 	if (!v)
2695 		goto iter_table;
2696 
2697 	n = rcu_dereference(((struct fib6_info *)v)->fib6_next);
2698 	if (n)
2699 		return n;
2700 
2701 iter_table:
2702 	ipv6_route_check_sernum(iter);
2703 	spin_lock_bh(&iter->tbl->tb6_lock);
2704 	r = fib6_walk_continue(&iter->w);
2705 	spin_unlock_bh(&iter->tbl->tb6_lock);
2706 	if (r > 0) {
2707 		return iter->w.leaf;
2708 	} else if (r < 0) {
2709 		fib6_walker_unlink(net, &iter->w);
2710 		return NULL;
2711 	}
2712 	fib6_walker_unlink(net, &iter->w);
2713 
2714 	iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2715 	if (!iter->tbl)
2716 		return NULL;
2717 
2718 	ipv6_route_seq_setup_walk(iter, net);
2719 	goto iter_table;
2720 }
2721 
ipv6_route_seq_start(struct seq_file * seq,loff_t * pos)2722 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2723 	__acquires(RCU)
2724 {
2725 	struct net *net = seq_file_net(seq);
2726 	struct ipv6_route_iter *iter = seq->private;
2727 
2728 	rcu_read_lock();
2729 	iter->tbl = ipv6_route_seq_next_table(NULL, net);
2730 	iter->skip = *pos;
2731 
2732 	if (iter->tbl) {
2733 		loff_t p = 0;
2734 
2735 		ipv6_route_seq_setup_walk(iter, net);
2736 		return ipv6_route_seq_next(seq, NULL, &p);
2737 	} else {
2738 		return NULL;
2739 	}
2740 }
2741 
ipv6_route_iter_active(struct ipv6_route_iter * iter)2742 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2743 {
2744 	struct fib6_walker *w = &iter->w;
2745 	return w->node && !(w->state == FWS_U && w->node == w->root);
2746 }
2747 
ipv6_route_native_seq_stop(struct seq_file * seq,void * v)2748 static void ipv6_route_native_seq_stop(struct seq_file *seq, void *v)
2749 	__releases(RCU)
2750 {
2751 	struct net *net = seq_file_net(seq);
2752 	struct ipv6_route_iter *iter = seq->private;
2753 
2754 	if (ipv6_route_iter_active(iter))
2755 		fib6_walker_unlink(net, &iter->w);
2756 
2757 	rcu_read_unlock();
2758 }
2759 
2760 #if IS_BUILTIN(CONFIG_IPV6) && defined(CONFIG_BPF_SYSCALL)
ipv6_route_prog_seq_show(struct bpf_prog * prog,struct bpf_iter_meta * meta,void * v)2761 static int ipv6_route_prog_seq_show(struct bpf_prog *prog,
2762 				    struct bpf_iter_meta *meta,
2763 				    void *v)
2764 {
2765 	struct bpf_iter__ipv6_route ctx;
2766 
2767 	ctx.meta = meta;
2768 	ctx.rt = v;
2769 	return bpf_iter_run_prog(prog, &ctx);
2770 }
2771 
ipv6_route_seq_show(struct seq_file * seq,void * v)2772 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2773 {
2774 	struct ipv6_route_iter *iter = seq->private;
2775 	struct bpf_iter_meta meta;
2776 	struct bpf_prog *prog;
2777 	int ret;
2778 
2779 	meta.seq = seq;
2780 	prog = bpf_iter_get_info(&meta, false);
2781 	if (!prog)
2782 		return ipv6_route_native_seq_show(seq, v);
2783 
2784 	ret = ipv6_route_prog_seq_show(prog, &meta, v);
2785 	iter->w.leaf = NULL;
2786 
2787 	return ret;
2788 }
2789 
ipv6_route_seq_stop(struct seq_file * seq,void * v)2790 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2791 {
2792 	struct bpf_iter_meta meta;
2793 	struct bpf_prog *prog;
2794 
2795 	if (!v) {
2796 		meta.seq = seq;
2797 		prog = bpf_iter_get_info(&meta, true);
2798 		if (prog)
2799 			(void)ipv6_route_prog_seq_show(prog, &meta, v);
2800 	}
2801 
2802 	ipv6_route_native_seq_stop(seq, v);
2803 }
2804 #else
ipv6_route_seq_show(struct seq_file * seq,void * v)2805 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2806 {
2807 	return ipv6_route_native_seq_show(seq, v);
2808 }
2809 
ipv6_route_seq_stop(struct seq_file * seq,void * v)2810 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2811 {
2812 	ipv6_route_native_seq_stop(seq, v);
2813 }
2814 #endif
2815 
2816 const struct seq_operations ipv6_route_seq_ops = {
2817 	.start	= ipv6_route_seq_start,
2818 	.next	= ipv6_route_seq_next,
2819 	.stop	= ipv6_route_seq_stop,
2820 	.show	= ipv6_route_seq_show
2821 };
2822 #endif /* CONFIG_PROC_FS */
2823