1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 *
4 * Copyright (C) 2000, 2001 Kanoj Sarcar
5 * Copyright (C) 2000, 2001 Ralf Baechle
6 * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
7 * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
8 */
9 #include <linux/cache.h>
10 #include <linux/delay.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/profile.h>
14 #include <linux/smp.h>
15 #include <linux/spinlock.h>
16 #include <linux/threads.h>
17 #include <linux/export.h>
18 #include <linux/time.h>
19 #include <linux/timex.h>
20 #include <linux/sched/mm.h>
21 #include <linux/cpumask.h>
22 #include <linux/cpu.h>
23 #include <linux/err.h>
24 #include <linux/ftrace.h>
25 #include <linux/irqdomain.h>
26 #include <linux/of.h>
27 #include <linux/of_irq.h>
28
29 #include <linux/atomic.h>
30 #include <asm/cpu.h>
31 #include <asm/ginvt.h>
32 #include <asm/processor.h>
33 #include <asm/idle.h>
34 #include <asm/r4k-timer.h>
35 #include <asm/mips-cps.h>
36 #include <asm/mmu_context.h>
37 #include <asm/time.h>
38 #include <asm/setup.h>
39 #include <asm/maar.h>
40
41 int __cpu_number_map[CONFIG_MIPS_NR_CPU_NR_MAP]; /* Map physical to logical */
42 EXPORT_SYMBOL(__cpu_number_map);
43
44 int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */
45 EXPORT_SYMBOL(__cpu_logical_map);
46
47 /* Number of TCs (or siblings in Intel speak) per CPU core */
48 int smp_num_siblings = 1;
49 EXPORT_SYMBOL(smp_num_siblings);
50
51 /* representing the TCs (or siblings in Intel speak) of each logical CPU */
52 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
53 EXPORT_SYMBOL(cpu_sibling_map);
54
55 /* representing the core map of multi-core chips of each logical CPU */
56 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
57 EXPORT_SYMBOL(cpu_core_map);
58
59 static DECLARE_COMPLETION(cpu_starting);
60 static DECLARE_COMPLETION(cpu_running);
61
62 /*
63 * A logical cpu mask containing only one VPE per core to
64 * reduce the number of IPIs on large MT systems.
65 */
66 cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly;
67 EXPORT_SYMBOL(cpu_foreign_map);
68
69 /* representing cpus for which sibling maps can be computed */
70 static cpumask_t cpu_sibling_setup_map;
71
72 /* representing cpus for which core maps can be computed */
73 static cpumask_t cpu_core_setup_map;
74
75 cpumask_t cpu_coherent_mask;
76
77 unsigned int smp_max_threads __initdata = UINT_MAX;
78
early_nosmt(char * s)79 static int __init early_nosmt(char *s)
80 {
81 smp_max_threads = 1;
82 return 0;
83 }
84 early_param("nosmt", early_nosmt);
85
early_smt(char * s)86 static int __init early_smt(char *s)
87 {
88 get_option(&s, &smp_max_threads);
89 /* Ensure at least one thread is available */
90 smp_max_threads = clamp_val(smp_max_threads, 1U, UINT_MAX);
91 return 0;
92 }
93 early_param("smt", early_smt);
94
95 #ifdef CONFIG_GENERIC_IRQ_IPI
96 static struct irq_desc *call_desc;
97 static struct irq_desc *sched_desc;
98 #endif
99
set_cpu_sibling_map(int cpu)100 static inline void set_cpu_sibling_map(int cpu)
101 {
102 int i;
103
104 cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
105
106 if (smp_num_siblings > 1) {
107 for_each_cpu(i, &cpu_sibling_setup_map) {
108 if (cpus_are_siblings(cpu, i)) {
109 cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
110 cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
111 }
112 }
113 } else
114 cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]);
115 }
116
set_cpu_core_map(int cpu)117 static inline void set_cpu_core_map(int cpu)
118 {
119 int i;
120
121 cpumask_set_cpu(cpu, &cpu_core_setup_map);
122
123 for_each_cpu(i, &cpu_core_setup_map) {
124 if (cpu_data[cpu].package == cpu_data[i].package) {
125 cpumask_set_cpu(i, &cpu_core_map[cpu]);
126 cpumask_set_cpu(cpu, &cpu_core_map[i]);
127 }
128 }
129 }
130
131 /*
132 * Calculate a new cpu_foreign_map mask whenever a
133 * new cpu appears or disappears.
134 */
calculate_cpu_foreign_map(void)135 void calculate_cpu_foreign_map(void)
136 {
137 int i, k, core_present;
138 cpumask_t temp_foreign_map;
139
140 /* Re-calculate the mask */
141 cpumask_clear(&temp_foreign_map);
142 for_each_online_cpu(i) {
143 core_present = 0;
144 for_each_cpu(k, &temp_foreign_map)
145 if (cpus_are_siblings(i, k))
146 core_present = 1;
147 if (!core_present)
148 cpumask_set_cpu(i, &temp_foreign_map);
149 }
150
151 for_each_online_cpu(i)
152 cpumask_andnot(&cpu_foreign_map[i],
153 &temp_foreign_map, &cpu_sibling_map[i]);
154 }
155
156 const struct plat_smp_ops *mp_ops;
157 EXPORT_SYMBOL(mp_ops);
158
register_smp_ops(const struct plat_smp_ops * ops)159 void register_smp_ops(const struct plat_smp_ops *ops)
160 {
161 if (mp_ops)
162 printk(KERN_WARNING "Overriding previously set SMP ops\n");
163
164 mp_ops = ops;
165 }
166
167 #ifdef CONFIG_GENERIC_IRQ_IPI
mips_smp_send_ipi_single(int cpu,unsigned int action)168 void mips_smp_send_ipi_single(int cpu, unsigned int action)
169 {
170 mips_smp_send_ipi_mask(cpumask_of(cpu), action);
171 }
172
mips_smp_send_ipi_mask(const struct cpumask * mask,unsigned int action)173 void mips_smp_send_ipi_mask(const struct cpumask *mask, unsigned int action)
174 {
175 unsigned long flags;
176 unsigned int core;
177 int cpu;
178
179 local_irq_save(flags);
180
181 switch (action) {
182 case SMP_CALL_FUNCTION:
183 __ipi_send_mask(call_desc, mask);
184 break;
185
186 case SMP_RESCHEDULE_YOURSELF:
187 __ipi_send_mask(sched_desc, mask);
188 break;
189
190 default:
191 BUG();
192 }
193
194 if (mips_cpc_present()) {
195 for_each_cpu(cpu, mask) {
196 if (cpus_are_siblings(cpu, smp_processor_id()))
197 continue;
198
199 core = cpu_core(&cpu_data[cpu]);
200
201 while (!cpumask_test_cpu(cpu, &cpu_coherent_mask)) {
202 mips_cm_lock_other_cpu(cpu, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
203 mips_cpc_lock_other(core);
204 write_cpc_co_cmd(CPC_Cx_CMD_PWRUP);
205 mips_cpc_unlock_other();
206 mips_cm_unlock_other();
207 }
208 }
209 }
210
211 local_irq_restore(flags);
212 }
213
214
ipi_resched_interrupt(int irq,void * dev_id)215 static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id)
216 {
217 scheduler_ipi();
218
219 return IRQ_HANDLED;
220 }
221
ipi_call_interrupt(int irq,void * dev_id)222 static irqreturn_t ipi_call_interrupt(int irq, void *dev_id)
223 {
224 generic_smp_call_function_interrupt();
225
226 return IRQ_HANDLED;
227 }
228
smp_ipi_init_one(unsigned int virq,const char * name,irq_handler_t handler)229 static void smp_ipi_init_one(unsigned int virq, const char *name,
230 irq_handler_t handler)
231 {
232 int ret;
233
234 irq_set_handler(virq, handle_percpu_irq);
235 ret = request_irq(virq, handler, IRQF_PERCPU, name, NULL);
236 BUG_ON(ret);
237 }
238
239 static unsigned int call_virq, sched_virq;
240
mips_smp_ipi_allocate(const struct cpumask * mask)241 int mips_smp_ipi_allocate(const struct cpumask *mask)
242 {
243 int virq;
244 struct irq_domain *ipidomain;
245 struct device_node *node;
246
247 node = of_irq_find_parent(of_root);
248 ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
249
250 /*
251 * Some platforms have half DT setup. So if we found irq node but
252 * didn't find an ipidomain, try to search for one that is not in the
253 * DT.
254 */
255 if (node && !ipidomain)
256 ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
257
258 /*
259 * There are systems which use IPI IRQ domains, but only have one
260 * registered when some runtime condition is met. For example a Malta
261 * kernel may include support for GIC & CPU interrupt controller IPI
262 * IRQ domains, but if run on a system with no GIC & no MT ASE then
263 * neither will be supported or registered.
264 *
265 * We only have a problem if we're actually using multiple CPUs so fail
266 * loudly if that is the case. Otherwise simply return, skipping IPI
267 * setup, if we're running with only a single CPU.
268 */
269 if (!ipidomain) {
270 BUG_ON(num_present_cpus() > 1);
271 return 0;
272 }
273
274 virq = irq_reserve_ipi(ipidomain, mask);
275 BUG_ON(!virq);
276 if (!call_virq)
277 call_virq = virq;
278
279 virq = irq_reserve_ipi(ipidomain, mask);
280 BUG_ON(!virq);
281 if (!sched_virq)
282 sched_virq = virq;
283
284 if (irq_domain_is_ipi_per_cpu(ipidomain)) {
285 int cpu;
286
287 for_each_cpu(cpu, mask) {
288 smp_ipi_init_one(call_virq + cpu, "IPI call",
289 ipi_call_interrupt);
290 smp_ipi_init_one(sched_virq + cpu, "IPI resched",
291 ipi_resched_interrupt);
292 }
293 } else {
294 smp_ipi_init_one(call_virq, "IPI call", ipi_call_interrupt);
295 smp_ipi_init_one(sched_virq, "IPI resched",
296 ipi_resched_interrupt);
297 }
298
299 return 0;
300 }
301
mips_smp_ipi_free(const struct cpumask * mask)302 int mips_smp_ipi_free(const struct cpumask *mask)
303 {
304 struct irq_domain *ipidomain;
305 struct device_node *node;
306
307 node = of_irq_find_parent(of_root);
308 ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
309
310 /*
311 * Some platforms have half DT setup. So if we found irq node but
312 * didn't find an ipidomain, try to search for one that is not in the
313 * DT.
314 */
315 if (node && !ipidomain)
316 ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
317
318 BUG_ON(!ipidomain);
319
320 if (irq_domain_is_ipi_per_cpu(ipidomain)) {
321 int cpu;
322
323 for_each_cpu(cpu, mask) {
324 free_irq(call_virq + cpu, NULL);
325 free_irq(sched_virq + cpu, NULL);
326 }
327 }
328 irq_destroy_ipi(call_virq, mask);
329 irq_destroy_ipi(sched_virq, mask);
330 return 0;
331 }
332
333
mips_smp_ipi_init(void)334 static int __init mips_smp_ipi_init(void)
335 {
336 if (num_possible_cpus() == 1)
337 return 0;
338
339 mips_smp_ipi_allocate(cpu_possible_mask);
340
341 call_desc = irq_to_desc(call_virq);
342 sched_desc = irq_to_desc(sched_virq);
343
344 return 0;
345 }
346 early_initcall(mips_smp_ipi_init);
347 #endif
348
349 /*
350 * First C code run on the secondary CPUs after being started up by
351 * the master.
352 */
start_secondary(void)353 asmlinkage void start_secondary(void)
354 {
355 unsigned int cpu = raw_smp_processor_id();
356
357 cpu_probe();
358 per_cpu_trap_init(false);
359 rcutree_report_cpu_starting(cpu);
360 mips_clockevent_init();
361 mp_ops->init_secondary();
362 cpu_report();
363 maar_init();
364
365 /*
366 * XXX parity protection should be folded in here when it's converted
367 * to an option instead of something based on .cputype
368 */
369
370 calibrate_delay();
371 cpu_data[cpu].udelay_val = loops_per_jiffy;
372
373 set_cpu_sibling_map(cpu);
374 set_cpu_core_map(cpu);
375
376 cpumask_set_cpu(cpu, &cpu_coherent_mask);
377 notify_cpu_starting(cpu);
378
379 /* Notify boot CPU that we're starting & ready to sync counters */
380 complete(&cpu_starting);
381
382 synchronise_count_slave(cpu);
383
384 /* The CPU is running and counters synchronised, now mark it online */
385 set_cpu_online(cpu, true);
386
387 calculate_cpu_foreign_map();
388
389 /*
390 * Notify boot CPU that we're up & online and it can safely return
391 * from __cpu_up
392 */
393 complete(&cpu_running);
394
395 /*
396 * irq will be enabled in ->smp_finish(), enabling it too early
397 * is dangerous.
398 */
399 WARN_ON_ONCE(!irqs_disabled());
400 mp_ops->smp_finish();
401
402 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
403 }
404
stop_this_cpu(void * dummy)405 static void stop_this_cpu(void *dummy)
406 {
407 /*
408 * Remove this CPU:
409 */
410
411 set_cpu_online(smp_processor_id(), false);
412 calculate_cpu_foreign_map();
413 local_irq_disable();
414 while (1);
415 }
416
smp_send_stop(void)417 void smp_send_stop(void)
418 {
419 smp_call_function(stop_this_cpu, NULL, 0);
420 }
421
smp_cpus_done(unsigned int max_cpus)422 void __init smp_cpus_done(unsigned int max_cpus)
423 {
424 }
425
426 /* called from main before smp_init() */
smp_prepare_cpus(unsigned int max_cpus)427 void __init smp_prepare_cpus(unsigned int max_cpus)
428 {
429 init_new_context(current, &init_mm);
430 current_thread_info()->cpu = 0;
431 mp_ops->prepare_cpus(max_cpus);
432 set_cpu_sibling_map(0);
433 set_cpu_core_map(0);
434 calculate_cpu_foreign_map();
435 #ifndef CONFIG_HOTPLUG_CPU
436 init_cpu_present(cpu_possible_mask);
437 #endif
438 cpumask_copy(&cpu_coherent_mask, cpu_possible_mask);
439 }
440
441 /* preload SMP state for boot cpu */
smp_prepare_boot_cpu(void)442 void __init smp_prepare_boot_cpu(void)
443 {
444 if (mp_ops->prepare_boot_cpu)
445 mp_ops->prepare_boot_cpu();
446 set_cpu_possible(0, true);
447 set_cpu_online(0, true);
448 }
449
__cpu_up(unsigned int cpu,struct task_struct * tidle)450 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
451 {
452 int err;
453
454 err = mp_ops->boot_secondary(cpu, tidle);
455 if (err)
456 return err;
457
458 /* Wait for CPU to start and be ready to sync counters */
459 if (!wait_for_completion_timeout(&cpu_starting,
460 msecs_to_jiffies(1000))) {
461 pr_crit("CPU%u: failed to start\n", cpu);
462 return -EIO;
463 }
464
465 /* Wait for CPU to finish startup & mark itself online before return */
466 wait_for_completion(&cpu_running);
467 return 0;
468 }
469
470 #ifdef CONFIG_PROFILING
471 /* Not really SMP stuff ... */
setup_profiling_timer(unsigned int multiplier)472 int setup_profiling_timer(unsigned int multiplier)
473 {
474 return 0;
475 }
476 #endif
477
flush_tlb_all_ipi(void * info)478 static void flush_tlb_all_ipi(void *info)
479 {
480 local_flush_tlb_all();
481 }
482
flush_tlb_all(void)483 void flush_tlb_all(void)
484 {
485 if (cpu_has_mmid) {
486 htw_stop();
487 ginvt_full();
488 sync_ginv();
489 instruction_hazard();
490 htw_start();
491 return;
492 }
493
494 on_each_cpu(flush_tlb_all_ipi, NULL, 1);
495 }
496
flush_tlb_mm_ipi(void * mm)497 static void flush_tlb_mm_ipi(void *mm)
498 {
499 drop_mmu_context((struct mm_struct *)mm);
500 }
501
502 /*
503 * Special Variant of smp_call_function for use by TLB functions:
504 *
505 * o No return value
506 * o collapses to normal function call on UP kernels
507 * o collapses to normal function call on systems with a single shared
508 * primary cache.
509 */
smp_on_other_tlbs(void (* func)(void * info),void * info)510 static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
511 {
512 smp_call_function(func, info, 1);
513 }
514
smp_on_each_tlb(void (* func)(void * info),void * info)515 static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
516 {
517 preempt_disable();
518
519 smp_on_other_tlbs(func, info);
520 func(info);
521
522 preempt_enable();
523 }
524
525 /*
526 * The following tlb flush calls are invoked when old translations are
527 * being torn down, or pte attributes are changing. For single threaded
528 * address spaces, a new context is obtained on the current cpu, and tlb
529 * context on other cpus are invalidated to force a new context allocation
530 * at switch_mm time, should the mm ever be used on other cpus. For
531 * multithreaded address spaces, inter-CPU interrupts have to be sent.
532 * Another case where inter-CPU interrupts are required is when the target
533 * mm might be active on another cpu (eg debuggers doing the flushes on
534 * behalf of debugees, kswapd stealing pages from another process etc).
535 * Kanoj 07/00.
536 */
537
flush_tlb_mm(struct mm_struct * mm)538 void flush_tlb_mm(struct mm_struct *mm)
539 {
540 if (!mm)
541 return;
542
543 if (atomic_read(&mm->mm_users) == 0)
544 return; /* happens as a result of exit_mmap() */
545
546 preempt_disable();
547
548 if (cpu_has_mmid) {
549 /*
550 * No need to worry about other CPUs - the ginvt in
551 * drop_mmu_context() will be globalized.
552 */
553 } else if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
554 smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
555 } else {
556 unsigned int cpu;
557
558 for_each_online_cpu(cpu) {
559 if (cpu != smp_processor_id() && cpu_context(cpu, mm))
560 set_cpu_context(cpu, mm, 0);
561 }
562 }
563 drop_mmu_context(mm);
564
565 preempt_enable();
566 }
567
568 struct flush_tlb_data {
569 struct vm_area_struct *vma;
570 unsigned long addr1;
571 unsigned long addr2;
572 };
573
flush_tlb_range_ipi(void * info)574 static void flush_tlb_range_ipi(void *info)
575 {
576 struct flush_tlb_data *fd = info;
577
578 local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
579 }
580
flush_tlb_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)581 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
582 {
583 struct mm_struct *mm = vma->vm_mm;
584 unsigned long addr;
585 u32 old_mmid;
586
587 preempt_disable();
588 if (cpu_has_mmid) {
589 htw_stop();
590 old_mmid = read_c0_memorymapid();
591 write_c0_memorymapid(cpu_asid(0, mm));
592 mtc0_tlbw_hazard();
593 addr = round_down(start, PAGE_SIZE * 2);
594 end = round_up(end, PAGE_SIZE * 2);
595 do {
596 ginvt_va_mmid(addr);
597 sync_ginv();
598 addr += PAGE_SIZE * 2;
599 } while (addr < end);
600 write_c0_memorymapid(old_mmid);
601 instruction_hazard();
602 htw_start();
603 } else if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
604 struct flush_tlb_data fd = {
605 .vma = vma,
606 .addr1 = start,
607 .addr2 = end,
608 };
609
610 smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
611 local_flush_tlb_range(vma, start, end);
612 } else {
613 unsigned int cpu;
614 int exec = vma->vm_flags & VM_EXEC;
615
616 for_each_online_cpu(cpu) {
617 /*
618 * flush_cache_range() will only fully flush icache if
619 * the VMA is executable, otherwise we must invalidate
620 * ASID without it appearing to has_valid_asid() as if
621 * mm has been completely unused by that CPU.
622 */
623 if (cpu != smp_processor_id() && cpu_context(cpu, mm))
624 set_cpu_context(cpu, mm, !exec);
625 }
626 local_flush_tlb_range(vma, start, end);
627 }
628 preempt_enable();
629 }
630
flush_tlb_kernel_range_ipi(void * info)631 static void flush_tlb_kernel_range_ipi(void *info)
632 {
633 struct flush_tlb_data *fd = info;
634
635 local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
636 }
637
flush_tlb_kernel_range(unsigned long start,unsigned long end)638 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
639 {
640 struct flush_tlb_data fd = {
641 .addr1 = start,
642 .addr2 = end,
643 };
644
645 on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
646 }
647
flush_tlb_page_ipi(void * info)648 static void flush_tlb_page_ipi(void *info)
649 {
650 struct flush_tlb_data *fd = info;
651
652 local_flush_tlb_page(fd->vma, fd->addr1);
653 }
654
flush_tlb_page(struct vm_area_struct * vma,unsigned long page)655 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
656 {
657 u32 old_mmid;
658
659 preempt_disable();
660 if (cpu_has_mmid) {
661 htw_stop();
662 old_mmid = read_c0_memorymapid();
663 write_c0_memorymapid(cpu_asid(0, vma->vm_mm));
664 mtc0_tlbw_hazard();
665 ginvt_va_mmid(page);
666 sync_ginv();
667 write_c0_memorymapid(old_mmid);
668 instruction_hazard();
669 htw_start();
670 } else if ((atomic_read(&vma->vm_mm->mm_users) != 1) ||
671 (current->mm != vma->vm_mm)) {
672 struct flush_tlb_data fd = {
673 .vma = vma,
674 .addr1 = page,
675 };
676
677 smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
678 local_flush_tlb_page(vma, page);
679 } else {
680 unsigned int cpu;
681
682 for_each_online_cpu(cpu) {
683 /*
684 * flush_cache_page() only does partial flushes, so
685 * invalidate ASID without it appearing to
686 * has_valid_asid() as if mm has been completely unused
687 * by that CPU.
688 */
689 if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
690 set_cpu_context(cpu, vma->vm_mm, 1);
691 }
692 local_flush_tlb_page(vma, page);
693 }
694 preempt_enable();
695 }
696
flush_tlb_one_ipi(void * info)697 static void flush_tlb_one_ipi(void *info)
698 {
699 unsigned long vaddr = (unsigned long) info;
700
701 local_flush_tlb_one(vaddr);
702 }
703
flush_tlb_one(unsigned long vaddr)704 void flush_tlb_one(unsigned long vaddr)
705 {
706 smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
707 }
708
709 EXPORT_SYMBOL(flush_tlb_page);
710 EXPORT_SYMBOL(flush_tlb_one);
711
712 #ifdef CONFIG_HOTPLUG_CORE_SYNC_DEAD
arch_cpuhp_cleanup_dead_cpu(unsigned int cpu)713 void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu)
714 {
715 if (mp_ops->cleanup_dead_cpu)
716 mp_ops->cleanup_dead_cpu(cpu);
717 }
718 #endif
719
720 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
721
tick_broadcast_callee(void * info)722 static void tick_broadcast_callee(void *info)
723 {
724 tick_receive_broadcast();
725 }
726
727 static DEFINE_PER_CPU(call_single_data_t, tick_broadcast_csd) =
728 CSD_INIT(tick_broadcast_callee, NULL);
729
tick_broadcast(const struct cpumask * mask)730 void tick_broadcast(const struct cpumask *mask)
731 {
732 call_single_data_t *csd;
733 int cpu;
734
735 for_each_cpu(cpu, mask) {
736 csd = &per_cpu(tick_broadcast_csd, cpu);
737 smp_call_function_single_async(cpu, csd);
738 }
739 }
740
741 #endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */
742