1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4 #include <linux/kernel.h>
5 #include <linux/export.h>
6 #include <media/drv-intf/saa7146_vv.h>
7
calculate_output_format_register(struct saa7146_dev * saa,u32 palette,u32 * clip_format)8 static void calculate_output_format_register(struct saa7146_dev* saa, u32 palette, u32* clip_format)
9 {
10 /* clear out the necessary bits */
11 *clip_format &= 0x0000ffff;
12 /* set these bits new */
13 *clip_format |= (( ((palette&0xf00)>>8) << 30) | ((palette&0x00f) << 24) | (((palette&0x0f0)>>4) << 16));
14 }
15
calculate_hps_source_and_sync(struct saa7146_dev * dev,int source,int sync,u32 * hps_ctrl)16 static void calculate_hps_source_and_sync(struct saa7146_dev *dev, int source, int sync, u32* hps_ctrl)
17 {
18 *hps_ctrl &= ~(MASK_30 | MASK_31 | MASK_28);
19 *hps_ctrl |= (source << 30) | (sync << 28);
20 }
21
calculate_hxo_and_hyo(struct saa7146_vv * vv,u32 * hps_h_scale,u32 * hps_ctrl)22 static void calculate_hxo_and_hyo(struct saa7146_vv *vv, u32* hps_h_scale, u32* hps_ctrl)
23 {
24 int hyo = 0, hxo = 0;
25
26 hyo = vv->standard->v_offset;
27 hxo = vv->standard->h_offset;
28
29 *hps_h_scale &= ~(MASK_B0 | 0xf00);
30 *hps_h_scale |= (hxo << 0);
31
32 *hps_ctrl &= ~(MASK_W0 | MASK_B2);
33 *hps_ctrl |= (hyo << 12);
34 }
35
36 /* helper functions for the calculation of the horizontal- and vertical
37 scaling registers, clip-format-register etc ...
38 these functions take pointers to the (most-likely read-out
39 original-values) and manipulate them according to the requested
40 changes.
41 */
42
43 /* hps_coeff used for CXY and CXUV; scale 1/1 -> scale 1/64 */
44 static struct {
45 u16 hps_coeff;
46 u16 weight_sum;
47 } hps_h_coeff_tab [] = {
48 {0x00, 2}, {0x02, 4}, {0x00, 4}, {0x06, 8}, {0x02, 8},
49 {0x08, 8}, {0x00, 8}, {0x1E, 16}, {0x0E, 8}, {0x26, 8},
50 {0x06, 8}, {0x42, 8}, {0x02, 8}, {0x80, 8}, {0x00, 8},
51 {0xFE, 16}, {0xFE, 8}, {0x7E, 8}, {0x7E, 8}, {0x3E, 8},
52 {0x3E, 8}, {0x1E, 8}, {0x1E, 8}, {0x0E, 8}, {0x0E, 8},
53 {0x06, 8}, {0x06, 8}, {0x02, 8}, {0x02, 8}, {0x00, 8},
54 {0x00, 8}, {0xFE, 16}, {0xFE, 8}, {0xFE, 8}, {0xFE, 8},
55 {0xFE, 8}, {0xFE, 8}, {0xFE, 8}, {0xFE, 8}, {0xFE, 8},
56 {0xFE, 8}, {0xFE, 8}, {0xFE, 8}, {0xFE, 8}, {0xFE, 8},
57 {0xFE, 8}, {0xFE, 8}, {0xFE, 8}, {0xFE, 8}, {0x7E, 8},
58 {0x7E, 8}, {0x3E, 8}, {0x3E, 8}, {0x1E, 8}, {0x1E, 8},
59 {0x0E, 8}, {0x0E, 8}, {0x06, 8}, {0x06, 8}, {0x02, 8},
60 {0x02, 8}, {0x00, 8}, {0x00, 8}, {0xFE, 16}
61 };
62
63 /* table of attenuation values for horizontal scaling */
64 static u8 h_attenuation[] = { 1, 2, 4, 8, 2, 4, 8, 16, 0};
65
66 /* calculate horizontal scale registers */
calculate_h_scale_registers(struct saa7146_dev * dev,int in_x,int out_x,int flip_lr,u32 * hps_ctrl,u32 * hps_v_gain,u32 * hps_h_prescale,u32 * hps_h_scale)67 static int calculate_h_scale_registers(struct saa7146_dev *dev,
68 int in_x, int out_x, int flip_lr,
69 u32* hps_ctrl, u32* hps_v_gain, u32* hps_h_prescale, u32* hps_h_scale)
70 {
71 /* horizontal prescaler */
72 u32 dcgx = 0, xpsc = 0, xacm = 0, cxy = 0, cxuv = 0;
73 /* horizontal scaler */
74 u32 xim = 0, xp = 0, xsci =0;
75 /* vertical scale & gain */
76 u32 pfuv = 0;
77
78 /* helper variables */
79 u32 h_atten = 0, i = 0;
80
81 if ( 0 == out_x ) {
82 return -EINVAL;
83 }
84
85 /* mask out vanity-bit */
86 *hps_ctrl &= ~MASK_29;
87
88 /* calculate prescale-(xspc)-value: [n .. 1/2) : 1
89 [1/2 .. 1/3) : 2
90 [1/3 .. 1/4) : 3
91 ... */
92 if (in_x > out_x) {
93 xpsc = in_x / out_x;
94 }
95 else {
96 /* zooming */
97 xpsc = 1;
98 }
99
100 /* if flip_lr-bit is set, number of pixels after
101 horizontal prescaling must be < 384 */
102 if ( 0 != flip_lr ) {
103
104 /* set vanity bit */
105 *hps_ctrl |= MASK_29;
106
107 while (in_x / xpsc >= 384 )
108 xpsc++;
109 }
110 /* if zooming is wanted, number of pixels after
111 horizontal prescaling must be < 768 */
112 else {
113 while ( in_x / xpsc >= 768 )
114 xpsc++;
115 }
116
117 /* maximum prescale is 64 (p.69) */
118 if ( xpsc > 64 )
119 xpsc = 64;
120
121 /* keep xacm clear*/
122 xacm = 0;
123
124 /* set horizontal filter parameters (CXY = CXUV) */
125 cxy = hps_h_coeff_tab[min(xpsc - 1, 63)].hps_coeff;
126 cxuv = cxy;
127
128 /* calculate and set horizontal fine scale (xsci) */
129
130 /* bypass the horizontal scaler ? */
131 if ( (in_x == out_x) && ( 1 == xpsc ) )
132 xsci = 0x400;
133 else
134 xsci = ( (1024 * in_x) / (out_x * xpsc) ) + xpsc;
135
136 /* set start phase for horizontal fine scale (xp) to 0 */
137 xp = 0;
138
139 /* set xim, if we bypass the horizontal scaler */
140 if ( 0x400 == xsci )
141 xim = 1;
142 else
143 xim = 0;
144
145 /* if the prescaler is bypassed, enable horizontal
146 accumulation mode (xacm) and clear dcgx */
147 if( 1 == xpsc ) {
148 xacm = 1;
149 dcgx = 0;
150 } else {
151 xacm = 0;
152 /* get best match in the table of attenuations
153 for horizontal scaling */
154 h_atten = hps_h_coeff_tab[min(xpsc - 1, 63)].weight_sum;
155
156 for (i = 0; h_attenuation[i] != 0; i++) {
157 if (h_attenuation[i] >= h_atten)
158 break;
159 }
160
161 dcgx = i;
162 }
163
164 /* the horizontal scaling increment controls the UV filter
165 to reduce the bandwidth to improve the display quality,
166 so set it ... */
167 if ( xsci == 0x400)
168 pfuv = 0x00;
169 else if ( xsci < 0x600)
170 pfuv = 0x01;
171 else if ( xsci < 0x680)
172 pfuv = 0x11;
173 else if ( xsci < 0x700)
174 pfuv = 0x22;
175 else
176 pfuv = 0x33;
177
178
179 *hps_v_gain &= MASK_W0|MASK_B2;
180 *hps_v_gain |= (pfuv << 24);
181
182 *hps_h_scale &= ~(MASK_W1 | 0xf000);
183 *hps_h_scale |= (xim << 31) | (xp << 24) | (xsci << 12);
184
185 *hps_h_prescale |= (dcgx << 27) | ((xpsc-1) << 18) | (xacm << 17) | (cxy << 8) | (cxuv << 0);
186
187 return 0;
188 }
189
190 static struct {
191 u16 hps_coeff;
192 u16 weight_sum;
193 } hps_v_coeff_tab [] = {
194 {0x0100, 2}, {0x0102, 4}, {0x0300, 4}, {0x0106, 8}, {0x0502, 8},
195 {0x0708, 8}, {0x0F00, 8}, {0x011E, 16}, {0x110E, 16}, {0x1926, 16},
196 {0x3906, 16}, {0x3D42, 16}, {0x7D02, 16}, {0x7F80, 16}, {0xFF00, 16},
197 {0x01FE, 32}, {0x01FE, 32}, {0x817E, 32}, {0x817E, 32}, {0xC13E, 32},
198 {0xC13E, 32}, {0xE11E, 32}, {0xE11E, 32}, {0xF10E, 32}, {0xF10E, 32},
199 {0xF906, 32}, {0xF906, 32}, {0xFD02, 32}, {0xFD02, 32}, {0xFF00, 32},
200 {0xFF00, 32}, {0x01FE, 64}, {0x01FE, 64}, {0x01FE, 64}, {0x01FE, 64},
201 {0x01FE, 64}, {0x01FE, 64}, {0x01FE, 64}, {0x01FE, 64}, {0x01FE, 64},
202 {0x01FE, 64}, {0x01FE, 64}, {0x01FE, 64}, {0x01FE, 64}, {0x01FE, 64},
203 {0x01FE, 64}, {0x01FE, 64}, {0x01FE, 64}, {0x01FE, 64}, {0x817E, 64},
204 {0x817E, 64}, {0xC13E, 64}, {0xC13E, 64}, {0xE11E, 64}, {0xE11E, 64},
205 {0xF10E, 64}, {0xF10E, 64}, {0xF906, 64}, {0xF906, 64}, {0xFD02, 64},
206 {0xFD02, 64}, {0xFF00, 64}, {0xFF00, 64}, {0x01FE, 128}
207 };
208
209 /* table of attenuation values for vertical scaling */
210 static u16 v_attenuation[] = { 2, 4, 8, 16, 32, 64, 128, 256, 0};
211
212 /* calculate vertical scale registers */
calculate_v_scale_registers(struct saa7146_dev * dev,enum v4l2_field field,int in_y,int out_y,u32 * hps_v_scale,u32 * hps_v_gain)213 static int calculate_v_scale_registers(struct saa7146_dev *dev, enum v4l2_field field,
214 int in_y, int out_y, u32* hps_v_scale, u32* hps_v_gain)
215 {
216 int lpi = 0;
217
218 /* vertical scaling */
219 u32 yacm = 0, ysci = 0, yacl = 0, ypo = 0, ype = 0;
220 /* vertical scale & gain */
221 u32 dcgy = 0, cya_cyb = 0;
222
223 /* helper variables */
224 u32 v_atten = 0, i = 0;
225
226 /* error, if vertical zooming */
227 if ( in_y < out_y ) {
228 return -EINVAL;
229 }
230
231 /* linear phase interpolation may be used
232 if scaling is between 1 and 1/2 (both fields used)
233 or scaling is between 1/2 and 1/4 (if only one field is used) */
234
235 if (V4L2_FIELD_HAS_BOTH(field)) {
236 if( 2*out_y >= in_y) {
237 lpi = 1;
238 }
239 } else if (field == V4L2_FIELD_TOP
240 || field == V4L2_FIELD_ALTERNATE
241 || field == V4L2_FIELD_BOTTOM) {
242 if( 4*out_y >= in_y ) {
243 lpi = 1;
244 }
245 out_y *= 2;
246 }
247 if( 0 != lpi ) {
248
249 yacm = 0;
250 yacl = 0;
251 cya_cyb = 0x00ff;
252
253 /* calculate scaling increment */
254 if ( in_y > out_y )
255 ysci = ((1024 * in_y) / (out_y + 1)) - 1024;
256 else
257 ysci = 0;
258
259 dcgy = 0;
260
261 /* calculate ype and ypo */
262 ype = ysci / 16;
263 ypo = ype + (ysci / 64);
264
265 } else {
266 yacm = 1;
267
268 /* calculate scaling increment */
269 ysci = (((10 * 1024 * (in_y - out_y - 1)) / in_y) + 9) / 10;
270
271 /* calculate ype and ypo */
272 ypo = ype = ((ysci + 15) / 16);
273
274 /* the sequence length interval (yacl) has to be set according
275 to the prescale value, e.g. [n .. 1/2) : 0
276 [1/2 .. 1/3) : 1
277 [1/3 .. 1/4) : 2
278 ... */
279 if ( ysci < 512) {
280 yacl = 0;
281 } else {
282 yacl = ( ysci / (1024 - ysci) );
283 }
284
285 /* get filter coefficients for cya, cyb from table hps_v_coeff_tab */
286 cya_cyb = hps_v_coeff_tab[min(yacl, 63)].hps_coeff;
287
288 /* get best match in the table of attenuations for vertical scaling */
289 v_atten = hps_v_coeff_tab[min(yacl, 63)].weight_sum;
290
291 for (i = 0; v_attenuation[i] != 0; i++) {
292 if (v_attenuation[i] >= v_atten)
293 break;
294 }
295
296 dcgy = i;
297 }
298
299 /* ypo and ype swapped in spec ? */
300 *hps_v_scale |= (yacm << 31) | (ysci << 21) | (yacl << 15) | (ypo << 8 ) | (ype << 1);
301
302 *hps_v_gain &= ~(MASK_W0|MASK_B2);
303 *hps_v_gain |= (dcgy << 16) | (cya_cyb << 0);
304
305 return 0;
306 }
307
308 /* simple bubble-sort algorithm with duplicate elimination */
saa7146_set_window(struct saa7146_dev * dev,int width,int height,enum v4l2_field field)309 static void saa7146_set_window(struct saa7146_dev *dev, int width, int height, enum v4l2_field field)
310 {
311 struct saa7146_vv *vv = dev->vv_data;
312
313 int source = vv->current_hps_source;
314 int sync = vv->current_hps_sync;
315
316 u32 hps_v_scale = 0, hps_v_gain = 0, hps_ctrl = 0, hps_h_prescale = 0, hps_h_scale = 0;
317
318 /* set vertical scale */
319 hps_v_scale = 0; /* all bits get set by the function-call */
320 hps_v_gain = 0; /* fixme: saa7146_read(dev, HPS_V_GAIN);*/
321 calculate_v_scale_registers(dev, field, vv->standard->v_field*2, height, &hps_v_scale, &hps_v_gain);
322
323 /* set horizontal scale */
324 hps_ctrl = 0;
325 hps_h_prescale = 0; /* all bits get set in the function */
326 hps_h_scale = 0;
327 calculate_h_scale_registers(dev, vv->standard->h_pixels, width, vv->hflip, &hps_ctrl, &hps_v_gain, &hps_h_prescale, &hps_h_scale);
328
329 /* set hyo and hxo */
330 calculate_hxo_and_hyo(vv, &hps_h_scale, &hps_ctrl);
331 calculate_hps_source_and_sync(dev, source, sync, &hps_ctrl);
332
333 /* write out new register contents */
334 saa7146_write(dev, HPS_V_SCALE, hps_v_scale);
335 saa7146_write(dev, HPS_V_GAIN, hps_v_gain);
336 saa7146_write(dev, HPS_CTRL, hps_ctrl);
337 saa7146_write(dev, HPS_H_PRESCALE,hps_h_prescale);
338 saa7146_write(dev, HPS_H_SCALE, hps_h_scale);
339
340 /* upload shadow-ram registers */
341 saa7146_write(dev, MC2, (MASK_05 | MASK_06 | MASK_21 | MASK_22) );
342 }
343
saa7146_set_output_format(struct saa7146_dev * dev,unsigned long palette)344 static void saa7146_set_output_format(struct saa7146_dev *dev, unsigned long palette)
345 {
346 u32 clip_format = saa7146_read(dev, CLIP_FORMAT_CTRL);
347
348 /* call helper function */
349 calculate_output_format_register(dev,palette,&clip_format);
350
351 /* update the hps registers */
352 saa7146_write(dev, CLIP_FORMAT_CTRL, clip_format);
353 saa7146_write(dev, MC2, (MASK_05 | MASK_21));
354 }
355
356 /* select input-source */
saa7146_set_hps_source_and_sync(struct saa7146_dev * dev,int source,int sync)357 void saa7146_set_hps_source_and_sync(struct saa7146_dev *dev, int source, int sync)
358 {
359 struct saa7146_vv *vv = dev->vv_data;
360 u32 hps_ctrl = 0;
361
362 /* read old state */
363 hps_ctrl = saa7146_read(dev, HPS_CTRL);
364
365 hps_ctrl &= ~( MASK_31 | MASK_30 | MASK_28 );
366 hps_ctrl |= (source << 30) | (sync << 28);
367
368 /* write back & upload register */
369 saa7146_write(dev, HPS_CTRL, hps_ctrl);
370 saa7146_write(dev, MC2, (MASK_05 | MASK_21));
371
372 vv->current_hps_source = source;
373 vv->current_hps_sync = sync;
374 }
375 EXPORT_SYMBOL_GPL(saa7146_set_hps_source_and_sync);
376
saa7146_write_out_dma(struct saa7146_dev * dev,int which,struct saa7146_video_dma * vdma)377 void saa7146_write_out_dma(struct saa7146_dev* dev, int which, struct saa7146_video_dma* vdma)
378 {
379 int where = 0;
380
381 if( which < 1 || which > 3) {
382 return;
383 }
384
385 /* calculate starting address */
386 where = (which-1)*0x18;
387
388 saa7146_write(dev, where, vdma->base_odd);
389 saa7146_write(dev, where+0x04, vdma->base_even);
390 saa7146_write(dev, where+0x08, vdma->prot_addr);
391 saa7146_write(dev, where+0x0c, vdma->pitch);
392 saa7146_write(dev, where+0x10, vdma->base_page);
393 saa7146_write(dev, where+0x14, vdma->num_line_byte);
394
395 /* upload */
396 saa7146_write(dev, MC2, (MASK_02<<(which-1))|(MASK_18<<(which-1)));
397 /*
398 printk("vdma%d.base_even: 0x%08x\n", which,vdma->base_even);
399 printk("vdma%d.base_odd: 0x%08x\n", which,vdma->base_odd);
400 printk("vdma%d.prot_addr: 0x%08x\n", which,vdma->prot_addr);
401 printk("vdma%d.base_page: 0x%08x\n", which,vdma->base_page);
402 printk("vdma%d.pitch: 0x%08x\n", which,vdma->pitch);
403 printk("vdma%d.num_line_byte: 0x%08x\n", which,vdma->num_line_byte);
404 */
405 }
406
calculate_video_dma_grab_packed(struct saa7146_dev * dev,struct saa7146_buf * buf)407 static int calculate_video_dma_grab_packed(struct saa7146_dev* dev, struct saa7146_buf *buf)
408 {
409 struct saa7146_vv *vv = dev->vv_data;
410 struct v4l2_pix_format *pix = &vv->video_fmt;
411 struct saa7146_video_dma vdma1;
412 struct saa7146_format *sfmt = saa7146_format_by_fourcc(dev, pix->pixelformat);
413
414 int width = pix->width;
415 int height = pix->height;
416 int bytesperline = pix->bytesperline;
417 enum v4l2_field field = pix->field;
418
419 int depth = sfmt->depth;
420
421 DEB_CAP("[size=%dx%d,fields=%s]\n",
422 width, height, v4l2_field_names[field]);
423
424 if( bytesperline != 0) {
425 vdma1.pitch = bytesperline*2;
426 } else {
427 vdma1.pitch = (width*depth*2)/8;
428 }
429 vdma1.num_line_byte = ((vv->standard->v_field<<16) + vv->standard->h_pixels);
430 vdma1.base_page = buf->pt[0].dma | ME1 | sfmt->swap;
431
432 if( 0 != vv->vflip ) {
433 vdma1.prot_addr = buf->pt[0].offset;
434 vdma1.base_even = buf->pt[0].offset+(vdma1.pitch/2)*height;
435 vdma1.base_odd = vdma1.base_even - (vdma1.pitch/2);
436 } else {
437 vdma1.base_even = buf->pt[0].offset;
438 vdma1.base_odd = vdma1.base_even + (vdma1.pitch/2);
439 vdma1.prot_addr = buf->pt[0].offset+(vdma1.pitch/2)*height;
440 }
441
442 if (V4L2_FIELD_HAS_BOTH(field)) {
443 } else if (field == V4L2_FIELD_ALTERNATE) {
444 /* fixme */
445 if ( vv->last_field == V4L2_FIELD_TOP ) {
446 vdma1.base_odd = vdma1.prot_addr;
447 vdma1.pitch /= 2;
448 } else if ( vv->last_field == V4L2_FIELD_BOTTOM ) {
449 vdma1.base_odd = vdma1.base_even;
450 vdma1.base_even = vdma1.prot_addr;
451 vdma1.pitch /= 2;
452 }
453 } else if (field == V4L2_FIELD_TOP) {
454 vdma1.base_odd = vdma1.prot_addr;
455 vdma1.pitch /= 2;
456 } else if (field == V4L2_FIELD_BOTTOM) {
457 vdma1.base_odd = vdma1.base_even;
458 vdma1.base_even = vdma1.prot_addr;
459 vdma1.pitch /= 2;
460 }
461
462 if( 0 != vv->vflip ) {
463 vdma1.pitch *= -1;
464 }
465
466 saa7146_write_out_dma(dev, 1, &vdma1);
467 return 0;
468 }
469
calc_planar_422(struct saa7146_vv * vv,struct saa7146_buf * buf,struct saa7146_video_dma * vdma2,struct saa7146_video_dma * vdma3)470 static int calc_planar_422(struct saa7146_vv *vv, struct saa7146_buf *buf, struct saa7146_video_dma *vdma2, struct saa7146_video_dma *vdma3)
471 {
472 struct v4l2_pix_format *pix = &vv->video_fmt;
473 int height = pix->height;
474 int width = pix->width;
475
476 vdma2->pitch = width;
477 vdma3->pitch = width;
478
479 /* fixme: look at bytesperline! */
480
481 if( 0 != vv->vflip ) {
482 vdma2->prot_addr = buf->pt[1].offset;
483 vdma2->base_even = ((vdma2->pitch/2)*height)+buf->pt[1].offset;
484 vdma2->base_odd = vdma2->base_even - (vdma2->pitch/2);
485
486 vdma3->prot_addr = buf->pt[2].offset;
487 vdma3->base_even = ((vdma3->pitch/2)*height)+buf->pt[2].offset;
488 vdma3->base_odd = vdma3->base_even - (vdma3->pitch/2);
489 } else {
490 vdma3->base_even = buf->pt[2].offset;
491 vdma3->base_odd = vdma3->base_even + (vdma3->pitch/2);
492 vdma3->prot_addr = (vdma3->pitch/2)*height+buf->pt[2].offset;
493
494 vdma2->base_even = buf->pt[1].offset;
495 vdma2->base_odd = vdma2->base_even + (vdma2->pitch/2);
496 vdma2->prot_addr = (vdma2->pitch/2)*height+buf->pt[1].offset;
497 }
498
499 return 0;
500 }
501
calc_planar_420(struct saa7146_vv * vv,struct saa7146_buf * buf,struct saa7146_video_dma * vdma2,struct saa7146_video_dma * vdma3)502 static int calc_planar_420(struct saa7146_vv *vv, struct saa7146_buf *buf, struct saa7146_video_dma *vdma2, struct saa7146_video_dma *vdma3)
503 {
504 struct v4l2_pix_format *pix = &vv->video_fmt;
505 int height = pix->height;
506 int width = pix->width;
507
508 vdma2->pitch = width/2;
509 vdma3->pitch = width/2;
510
511 if( 0 != vv->vflip ) {
512 vdma2->prot_addr = buf->pt[2].offset;
513 vdma2->base_even = ((vdma2->pitch/2)*height)+buf->pt[2].offset;
514 vdma2->base_odd = vdma2->base_even - (vdma2->pitch/2);
515
516 vdma3->prot_addr = buf->pt[1].offset;
517 vdma3->base_even = ((vdma3->pitch/2)*height)+buf->pt[1].offset;
518 vdma3->base_odd = vdma3->base_even - (vdma3->pitch/2);
519
520 } else {
521 vdma3->base_even = buf->pt[2].offset;
522 vdma3->base_odd = vdma3->base_even + (vdma3->pitch);
523 vdma3->prot_addr = (vdma3->pitch/2)*height+buf->pt[2].offset;
524
525 vdma2->base_even = buf->pt[1].offset;
526 vdma2->base_odd = vdma2->base_even + (vdma2->pitch);
527 vdma2->prot_addr = (vdma2->pitch/2)*height+buf->pt[1].offset;
528 }
529 return 0;
530 }
531
calculate_video_dma_grab_planar(struct saa7146_dev * dev,struct saa7146_buf * buf)532 static int calculate_video_dma_grab_planar(struct saa7146_dev* dev, struct saa7146_buf *buf)
533 {
534 struct saa7146_vv *vv = dev->vv_data;
535 struct v4l2_pix_format *pix = &vv->video_fmt;
536 struct saa7146_video_dma vdma1;
537 struct saa7146_video_dma vdma2;
538 struct saa7146_video_dma vdma3;
539 struct saa7146_format *sfmt = saa7146_format_by_fourcc(dev, pix->pixelformat);
540
541 int width = pix->width;
542 int height = pix->height;
543 enum v4l2_field field = pix->field;
544
545 if (WARN_ON(!buf->pt[0].dma) ||
546 WARN_ON(!buf->pt[1].dma) ||
547 WARN_ON(!buf->pt[2].dma))
548 return -1;
549
550 DEB_CAP("[size=%dx%d,fields=%s]\n",
551 width, height, v4l2_field_names[field]);
552
553 /* fixme: look at bytesperline! */
554
555 /* fixme: what happens for user space buffers here?. The offsets are
556 most likely wrong, this version here only works for page-aligned
557 buffers, modifications to the pagetable-functions are necessary...*/
558
559 vdma1.pitch = width*2;
560 vdma1.num_line_byte = ((vv->standard->v_field<<16) + vv->standard->h_pixels);
561 vdma1.base_page = buf->pt[0].dma | ME1;
562
563 if( 0 != vv->vflip ) {
564 vdma1.prot_addr = buf->pt[0].offset;
565 vdma1.base_even = ((vdma1.pitch/2)*height)+buf->pt[0].offset;
566 vdma1.base_odd = vdma1.base_even - (vdma1.pitch/2);
567 } else {
568 vdma1.base_even = buf->pt[0].offset;
569 vdma1.base_odd = vdma1.base_even + (vdma1.pitch/2);
570 vdma1.prot_addr = (vdma1.pitch/2)*height+buf->pt[0].offset;
571 }
572
573 vdma2.num_line_byte = 0; /* unused */
574 vdma2.base_page = buf->pt[1].dma | ME1;
575
576 vdma3.num_line_byte = 0; /* unused */
577 vdma3.base_page = buf->pt[2].dma | ME1;
578
579 switch( sfmt->depth ) {
580 case 12: {
581 calc_planar_420(vv,buf,&vdma2,&vdma3);
582 break;
583 }
584 case 16: {
585 calc_planar_422(vv,buf,&vdma2,&vdma3);
586 break;
587 }
588 default: {
589 return -1;
590 }
591 }
592
593 if (V4L2_FIELD_HAS_BOTH(field)) {
594 } else if (field == V4L2_FIELD_ALTERNATE) {
595 /* fixme */
596 vdma1.base_odd = vdma1.prot_addr;
597 vdma1.pitch /= 2;
598 vdma2.base_odd = vdma2.prot_addr;
599 vdma2.pitch /= 2;
600 vdma3.base_odd = vdma3.prot_addr;
601 vdma3.pitch /= 2;
602 } else if (field == V4L2_FIELD_TOP) {
603 vdma1.base_odd = vdma1.prot_addr;
604 vdma1.pitch /= 2;
605 vdma2.base_odd = vdma2.prot_addr;
606 vdma2.pitch /= 2;
607 vdma3.base_odd = vdma3.prot_addr;
608 vdma3.pitch /= 2;
609 } else if (field == V4L2_FIELD_BOTTOM) {
610 vdma1.base_odd = vdma1.base_even;
611 vdma1.base_even = vdma1.prot_addr;
612 vdma1.pitch /= 2;
613 vdma2.base_odd = vdma2.base_even;
614 vdma2.base_even = vdma2.prot_addr;
615 vdma2.pitch /= 2;
616 vdma3.base_odd = vdma3.base_even;
617 vdma3.base_even = vdma3.prot_addr;
618 vdma3.pitch /= 2;
619 }
620
621 if( 0 != vv->vflip ) {
622 vdma1.pitch *= -1;
623 vdma2.pitch *= -1;
624 vdma3.pitch *= -1;
625 }
626
627 saa7146_write_out_dma(dev, 1, &vdma1);
628 if( (sfmt->flags & FORMAT_BYTE_SWAP) != 0 ) {
629 saa7146_write_out_dma(dev, 3, &vdma2);
630 saa7146_write_out_dma(dev, 2, &vdma3);
631 } else {
632 saa7146_write_out_dma(dev, 2, &vdma2);
633 saa7146_write_out_dma(dev, 3, &vdma3);
634 }
635 return 0;
636 }
637
program_capture_engine(struct saa7146_dev * dev,int planar)638 static void program_capture_engine(struct saa7146_dev *dev, int planar)
639 {
640 struct saa7146_vv *vv = dev->vv_data;
641 int count = 0;
642
643 unsigned long e_wait = vv->current_hps_sync == SAA7146_HPS_SYNC_PORT_A ? CMD_E_FID_A : CMD_E_FID_B;
644 unsigned long o_wait = vv->current_hps_sync == SAA7146_HPS_SYNC_PORT_A ? CMD_O_FID_A : CMD_O_FID_B;
645
646 /* wait for o_fid_a/b / e_fid_a/b toggle only if rps register 0 is not set*/
647 WRITE_RPS0(CMD_PAUSE | CMD_OAN | CMD_SIG0 | o_wait);
648 WRITE_RPS0(CMD_PAUSE | CMD_OAN | CMD_SIG0 | e_wait);
649
650 /* set rps register 0 */
651 WRITE_RPS0(CMD_WR_REG | (1 << 8) | (MC2/4));
652 WRITE_RPS0(MASK_27 | MASK_11);
653
654 /* turn on video-dma1 */
655 WRITE_RPS0(CMD_WR_REG_MASK | (MC1/4));
656 WRITE_RPS0(MASK_06 | MASK_22); /* => mask */
657 WRITE_RPS0(MASK_06 | MASK_22); /* => values */
658 if( 0 != planar ) {
659 /* turn on video-dma2 */
660 WRITE_RPS0(CMD_WR_REG_MASK | (MC1/4));
661 WRITE_RPS0(MASK_05 | MASK_21); /* => mask */
662 WRITE_RPS0(MASK_05 | MASK_21); /* => values */
663
664 /* turn on video-dma3 */
665 WRITE_RPS0(CMD_WR_REG_MASK | (MC1/4));
666 WRITE_RPS0(MASK_04 | MASK_20); /* => mask */
667 WRITE_RPS0(MASK_04 | MASK_20); /* => values */
668 }
669
670 /* wait for o_fid_a/b / e_fid_a/b toggle */
671 if ( vv->last_field == V4L2_FIELD_INTERLACED ) {
672 WRITE_RPS0(CMD_PAUSE | o_wait);
673 WRITE_RPS0(CMD_PAUSE | e_wait);
674 } else if ( vv->last_field == V4L2_FIELD_TOP ) {
675 WRITE_RPS0(CMD_PAUSE | (vv->current_hps_sync == SAA7146_HPS_SYNC_PORT_A ? MASK_10 : MASK_09));
676 WRITE_RPS0(CMD_PAUSE | o_wait);
677 } else if ( vv->last_field == V4L2_FIELD_BOTTOM ) {
678 WRITE_RPS0(CMD_PAUSE | (vv->current_hps_sync == SAA7146_HPS_SYNC_PORT_A ? MASK_10 : MASK_09));
679 WRITE_RPS0(CMD_PAUSE | e_wait);
680 }
681
682 /* turn off video-dma1 */
683 WRITE_RPS0(CMD_WR_REG_MASK | (MC1/4));
684 WRITE_RPS0(MASK_22 | MASK_06); /* => mask */
685 WRITE_RPS0(MASK_22); /* => values */
686 if( 0 != planar ) {
687 /* turn off video-dma2 */
688 WRITE_RPS0(CMD_WR_REG_MASK | (MC1/4));
689 WRITE_RPS0(MASK_05 | MASK_21); /* => mask */
690 WRITE_RPS0(MASK_21); /* => values */
691
692 /* turn off video-dma3 */
693 WRITE_RPS0(CMD_WR_REG_MASK | (MC1/4));
694 WRITE_RPS0(MASK_04 | MASK_20); /* => mask */
695 WRITE_RPS0(MASK_20); /* => values */
696 }
697
698 /* generate interrupt */
699 WRITE_RPS0(CMD_INTERRUPT);
700
701 /* stop */
702 WRITE_RPS0(CMD_STOP);
703 }
704
705 /* disable clipping */
saa7146_disable_clipping(struct saa7146_dev * dev)706 static void saa7146_disable_clipping(struct saa7146_dev *dev)
707 {
708 u32 clip_format = saa7146_read(dev, CLIP_FORMAT_CTRL);
709
710 /* mask out relevant bits (=lower word)*/
711 clip_format &= MASK_W1;
712
713 /* upload clipping-registers*/
714 saa7146_write(dev, CLIP_FORMAT_CTRL, clip_format);
715 saa7146_write(dev, MC2, (MASK_05 | MASK_21));
716
717 /* disable video dma2 */
718 saa7146_write(dev, MC1, MASK_21);
719 }
720
saa7146_set_capture(struct saa7146_dev * dev,struct saa7146_buf * buf,struct saa7146_buf * next)721 void saa7146_set_capture(struct saa7146_dev *dev, struct saa7146_buf *buf, struct saa7146_buf *next)
722 {
723 struct saa7146_vv *vv = dev->vv_data;
724 struct v4l2_pix_format *pix = &vv->video_fmt;
725 struct saa7146_format *sfmt = saa7146_format_by_fourcc(dev, pix->pixelformat);
726 u32 vdma1_prot_addr;
727
728 DEB_CAP("buf:%p, next:%p\n", buf, next);
729
730 vdma1_prot_addr = saa7146_read(dev, PROT_ADDR1);
731 if( 0 == vdma1_prot_addr ) {
732 /* clear out beginning of streaming bit (rps register 0)*/
733 DEB_CAP("forcing sync to new frame\n");
734 saa7146_write(dev, MC2, MASK_27 );
735 }
736
737 saa7146_set_window(dev, pix->width, pix->height, pix->field);
738 saa7146_set_output_format(dev, sfmt->trans);
739 saa7146_disable_clipping(dev);
740
741 if ( vv->last_field == V4L2_FIELD_INTERLACED ) {
742 } else if ( vv->last_field == V4L2_FIELD_TOP ) {
743 vv->last_field = V4L2_FIELD_BOTTOM;
744 } else if ( vv->last_field == V4L2_FIELD_BOTTOM ) {
745 vv->last_field = V4L2_FIELD_TOP;
746 }
747
748 if( 0 != IS_PLANAR(sfmt->trans)) {
749 calculate_video_dma_grab_planar(dev, buf);
750 program_capture_engine(dev,1);
751 } else {
752 calculate_video_dma_grab_packed(dev, buf);
753 program_capture_engine(dev,0);
754 }
755
756 /*
757 printk("vdma%d.base_even: 0x%08x\n", 1,saa7146_read(dev,BASE_EVEN1));
758 printk("vdma%d.base_odd: 0x%08x\n", 1,saa7146_read(dev,BASE_ODD1));
759 printk("vdma%d.prot_addr: 0x%08x\n", 1,saa7146_read(dev,PROT_ADDR1));
760 printk("vdma%d.base_page: 0x%08x\n", 1,saa7146_read(dev,BASE_PAGE1));
761 printk("vdma%d.pitch: 0x%08x\n", 1,saa7146_read(dev,PITCH1));
762 printk("vdma%d.num_line_byte: 0x%08x\n", 1,saa7146_read(dev,NUM_LINE_BYTE1));
763 printk("vdma%d => vptr : 0x%08x\n", 1,saa7146_read(dev,PCI_VDP1));
764 */
765
766 /* write the address of the rps-program */
767 saa7146_write(dev, RPS_ADDR0, dev->d_rps0.dma_handle);
768
769 /* turn on rps */
770 saa7146_write(dev, MC1, (MASK_12 | MASK_28));
771 }
772