1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/spinlock.h>
4 #include <linux/minmax.h>
5 #include "misc.h"
6 #include "ctree.h"
7 #include "space-info.h"
8 #include "sysfs.h"
9 #include "volumes.h"
10 #include "free-space-cache.h"
11 #include "ordered-data.h"
12 #include "transaction.h"
13 #include "block-group.h"
14 #include "fs.h"
15 #include "accessors.h"
16 #include "extent-tree.h"
17 #include "zoned.h"
18
19 /*
20 * HOW DOES SPACE RESERVATION WORK
21 *
22 * If you want to know about delalloc specifically, there is a separate comment
23 * for that with the delalloc code. This comment is about how the whole system
24 * works generally.
25 *
26 * BASIC CONCEPTS
27 *
28 * 1) space_info. This is the ultimate arbiter of how much space we can use.
29 * There's a description of the bytes_ fields with the struct declaration,
30 * refer to that for specifics on each field. Suffice it to say that for
31 * reservations we care about total_bytes - SUM(space_info->bytes_) when
32 * determining if there is space to make an allocation. There is a space_info
33 * for METADATA, SYSTEM, and DATA areas.
34 *
35 * 2) block_rsv's. These are basically buckets for every different type of
36 * metadata reservation we have. You can see the comment in the block_rsv
37 * code on the rules for each type, but generally block_rsv->reserved is how
38 * much space is accounted for in space_info->bytes_may_use.
39 *
40 * 3) btrfs_calc*_size. These are the worst case calculations we used based
41 * on the number of items we will want to modify. We have one for changing
42 * items, and one for inserting new items. Generally we use these helpers to
43 * determine the size of the block reserves, and then use the actual bytes
44 * values to adjust the space_info counters.
45 *
46 * MAKING RESERVATIONS, THE NORMAL CASE
47 *
48 * We call into either btrfs_reserve_data_bytes() or
49 * btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
50 * num_bytes we want to reserve.
51 *
52 * ->reserve
53 * space_info->bytes_may_use += num_bytes
54 *
55 * ->extent allocation
56 * Call btrfs_add_reserved_bytes() which does
57 * space_info->bytes_may_use -= num_bytes
58 * space_info->bytes_reserved += extent_bytes
59 *
60 * ->insert reference
61 * Call btrfs_update_block_group() which does
62 * space_info->bytes_reserved -= extent_bytes
63 * space_info->bytes_used += extent_bytes
64 *
65 * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
66 *
67 * Assume we are unable to simply make the reservation because we do not have
68 * enough space
69 *
70 * -> __reserve_bytes
71 * create a reserve_ticket with ->bytes set to our reservation, add it to
72 * the tail of space_info->tickets, kick async flush thread
73 *
74 * ->handle_reserve_ticket
75 * wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
76 * on the ticket.
77 *
78 * -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
79 * Flushes various things attempting to free up space.
80 *
81 * -> btrfs_try_granting_tickets()
82 * This is called by anything that either subtracts space from
83 * space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
84 * space_info->total_bytes. This loops through the ->priority_tickets and
85 * then the ->tickets list checking to see if the reservation can be
86 * completed. If it can the space is added to space_info->bytes_may_use and
87 * the ticket is woken up.
88 *
89 * -> ticket wakeup
90 * Check if ->bytes == 0, if it does we got our reservation and we can carry
91 * on, if not return the appropriate error (ENOSPC, but can be EINTR if we
92 * were interrupted.)
93 *
94 * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
95 *
96 * Same as the above, except we add ourselves to the
97 * space_info->priority_tickets, and we do not use ticket->wait, we simply
98 * call flush_space() ourselves for the states that are safe for us to call
99 * without deadlocking and hope for the best.
100 *
101 * THE FLUSHING STATES
102 *
103 * Generally speaking we will have two cases for each state, a "nice" state
104 * and a "ALL THE THINGS" state. In btrfs we delay a lot of work in order to
105 * reduce the locking over head on the various trees, and even to keep from
106 * doing any work at all in the case of delayed refs. Each of these delayed
107 * things however hold reservations, and so letting them run allows us to
108 * reclaim space so we can make new reservations.
109 *
110 * FLUSH_DELAYED_ITEMS
111 * Every inode has a delayed item to update the inode. Take a simple write
112 * for example, we would update the inode item at write time to update the
113 * mtime, and then again at finish_ordered_io() time in order to update the
114 * isize or bytes. We keep these delayed items to coalesce these operations
115 * into a single operation done on demand. These are an easy way to reclaim
116 * metadata space.
117 *
118 * FLUSH_DELALLOC
119 * Look at the delalloc comment to get an idea of how much space is reserved
120 * for delayed allocation. We can reclaim some of this space simply by
121 * running delalloc, but usually we need to wait for ordered extents to
122 * reclaim the bulk of this space.
123 *
124 * FLUSH_DELAYED_REFS
125 * We have a block reserve for the outstanding delayed refs space, and every
126 * delayed ref operation holds a reservation. Running these is a quick way
127 * to reclaim space, but we want to hold this until the end because COW can
128 * churn a lot and we can avoid making some extent tree modifications if we
129 * are able to delay for as long as possible.
130 *
131 * RESET_ZONES
132 * This state works only for the zoned mode. On the zoned mode, we cannot
133 * reuse once allocated then freed region until we reset the zone, due to
134 * the sequential write zone requirement. The RESET_ZONES state resets the
135 * zones of an unused block group and let us reuse the space. The reusing
136 * is faster than removing the block group and allocating another block
137 * group on the zones.
138 *
139 * ALLOC_CHUNK
140 * We will skip this the first time through space reservation, because of
141 * overcommit and we don't want to have a lot of useless metadata space when
142 * our worst case reservations will likely never come true.
143 *
144 * RUN_DELAYED_IPUTS
145 * If we're freeing inodes we're likely freeing checksums, file extent
146 * items, and extent tree items. Loads of space could be freed up by these
147 * operations, however they won't be usable until the transaction commits.
148 *
149 * COMMIT_TRANS
150 * This will commit the transaction. Historically we had a lot of logic
151 * surrounding whether or not we'd commit the transaction, but this waits born
152 * out of a pre-tickets era where we could end up committing the transaction
153 * thousands of times in a row without making progress. Now thanks to our
154 * ticketing system we know if we're not making progress and can error
155 * everybody out after a few commits rather than burning the disk hoping for
156 * a different answer.
157 *
158 * OVERCOMMIT
159 *
160 * Because we hold so many reservations for metadata we will allow you to
161 * reserve more space than is currently free in the currently allocate
162 * metadata space. This only happens with metadata, data does not allow
163 * overcommitting.
164 *
165 * You can see the current logic for when we allow overcommit in
166 * btrfs_can_overcommit(), but it only applies to unallocated space. If there
167 * is no unallocated space to be had, all reservations are kept within the
168 * free space in the allocated metadata chunks.
169 *
170 * Because of overcommitting, you generally want to use the
171 * btrfs_can_overcommit() logic for metadata allocations, as it does the right
172 * thing with or without extra unallocated space.
173 */
174
btrfs_space_info_used(const struct btrfs_space_info * s_info,bool may_use_included)175 u64 __pure btrfs_space_info_used(const struct btrfs_space_info *s_info,
176 bool may_use_included)
177 {
178 ASSERT(s_info);
179 return s_info->bytes_used + s_info->bytes_reserved +
180 s_info->bytes_pinned + s_info->bytes_readonly +
181 s_info->bytes_zone_unusable +
182 (may_use_included ? s_info->bytes_may_use : 0);
183 }
184
185 /*
186 * after adding space to the filesystem, we need to clear the full flags
187 * on all the space infos.
188 */
btrfs_clear_space_info_full(struct btrfs_fs_info * info)189 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
190 {
191 struct list_head *head = &info->space_info;
192 struct btrfs_space_info *found;
193
194 list_for_each_entry(found, head, list)
195 found->full = 0;
196 }
197
198 /*
199 * Block groups with more than this value (percents) of unusable space will be
200 * scheduled for background reclaim.
201 */
202 #define BTRFS_DEFAULT_ZONED_RECLAIM_THRESH (75)
203
204 #define BTRFS_UNALLOC_BLOCK_GROUP_TARGET (10ULL)
205
206 /*
207 * Calculate chunk size depending on volume type (regular or zoned).
208 */
calc_chunk_size(const struct btrfs_fs_info * fs_info,u64 flags)209 static u64 calc_chunk_size(const struct btrfs_fs_info *fs_info, u64 flags)
210 {
211 if (btrfs_is_zoned(fs_info))
212 return fs_info->zone_size;
213
214 ASSERT(flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
215
216 if (flags & BTRFS_BLOCK_GROUP_DATA)
217 return BTRFS_MAX_DATA_CHUNK_SIZE;
218 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
219 return SZ_32M;
220
221 /* Handle BTRFS_BLOCK_GROUP_METADATA */
222 if (fs_info->fs_devices->total_rw_bytes > 50ULL * SZ_1G)
223 return SZ_1G;
224
225 return SZ_256M;
226 }
227
228 /*
229 * Update default chunk size.
230 */
btrfs_update_space_info_chunk_size(struct btrfs_space_info * space_info,u64 chunk_size)231 void btrfs_update_space_info_chunk_size(struct btrfs_space_info *space_info,
232 u64 chunk_size)
233 {
234 WRITE_ONCE(space_info->chunk_size, chunk_size);
235 }
236
init_space_info(struct btrfs_fs_info * info,struct btrfs_space_info * space_info,u64 flags)237 static void init_space_info(struct btrfs_fs_info *info,
238 struct btrfs_space_info *space_info, u64 flags)
239 {
240 space_info->fs_info = info;
241 for (int i = 0; i < BTRFS_NR_RAID_TYPES; i++)
242 INIT_LIST_HEAD(&space_info->block_groups[i]);
243 init_rwsem(&space_info->groups_sem);
244 spin_lock_init(&space_info->lock);
245 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
246 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
247 INIT_LIST_HEAD(&space_info->ro_bgs);
248 INIT_LIST_HEAD(&space_info->tickets);
249 INIT_LIST_HEAD(&space_info->priority_tickets);
250 space_info->clamp = 1;
251 btrfs_update_space_info_chunk_size(space_info, calc_chunk_size(info, flags));
252 space_info->subgroup_id = BTRFS_SUB_GROUP_PRIMARY;
253
254 if (btrfs_is_zoned(info))
255 space_info->bg_reclaim_threshold = BTRFS_DEFAULT_ZONED_RECLAIM_THRESH;
256 }
257
create_space_info_sub_group(struct btrfs_space_info * parent,u64 flags,enum btrfs_space_info_sub_group id,int index)258 static int create_space_info_sub_group(struct btrfs_space_info *parent, u64 flags,
259 enum btrfs_space_info_sub_group id, int index)
260 {
261 struct btrfs_fs_info *fs_info = parent->fs_info;
262 struct btrfs_space_info *sub_group;
263 int ret;
264
265 ASSERT(parent->subgroup_id == BTRFS_SUB_GROUP_PRIMARY);
266 ASSERT(id != BTRFS_SUB_GROUP_PRIMARY);
267
268 sub_group = kzalloc(sizeof(*sub_group), GFP_NOFS);
269 if (!sub_group)
270 return -ENOMEM;
271
272 init_space_info(fs_info, sub_group, flags);
273 parent->sub_group[index] = sub_group;
274 sub_group->parent = parent;
275 sub_group->subgroup_id = id;
276
277 ret = btrfs_sysfs_add_space_info_type(fs_info, sub_group);
278 if (ret) {
279 kfree(sub_group);
280 parent->sub_group[index] = NULL;
281 }
282 return ret;
283 }
284
create_space_info(struct btrfs_fs_info * info,u64 flags)285 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
286 {
287
288 struct btrfs_space_info *space_info;
289 int ret = 0;
290
291 space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
292 if (!space_info)
293 return -ENOMEM;
294
295 init_space_info(info, space_info, flags);
296
297 if (btrfs_is_zoned(info)) {
298 if (flags & BTRFS_BLOCK_GROUP_DATA)
299 ret = create_space_info_sub_group(space_info, flags,
300 BTRFS_SUB_GROUP_DATA_RELOC,
301 0);
302 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
303 ret = create_space_info_sub_group(space_info, flags,
304 BTRFS_SUB_GROUP_TREELOG,
305 0);
306
307 if (ret)
308 return ret;
309 }
310
311 ret = btrfs_sysfs_add_space_info_type(info, space_info);
312 if (ret)
313 return ret;
314
315 list_add(&space_info->list, &info->space_info);
316 if (flags & BTRFS_BLOCK_GROUP_DATA)
317 info->data_sinfo = space_info;
318
319 return ret;
320 }
321
btrfs_init_space_info(struct btrfs_fs_info * fs_info)322 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
323 {
324 struct btrfs_super_block *disk_super;
325 u64 features;
326 u64 flags;
327 int mixed = 0;
328 int ret;
329
330 disk_super = fs_info->super_copy;
331 if (!btrfs_super_root(disk_super))
332 return -EINVAL;
333
334 features = btrfs_super_incompat_flags(disk_super);
335 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
336 mixed = 1;
337
338 flags = BTRFS_BLOCK_GROUP_SYSTEM;
339 ret = create_space_info(fs_info, flags);
340 if (ret)
341 goto out;
342
343 if (mixed) {
344 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
345 ret = create_space_info(fs_info, flags);
346 } else {
347 flags = BTRFS_BLOCK_GROUP_METADATA;
348 ret = create_space_info(fs_info, flags);
349 if (ret)
350 goto out;
351
352 flags = BTRFS_BLOCK_GROUP_DATA;
353 ret = create_space_info(fs_info, flags);
354 }
355 out:
356 return ret;
357 }
358
btrfs_add_bg_to_space_info(struct btrfs_fs_info * info,struct btrfs_block_group * block_group)359 void btrfs_add_bg_to_space_info(struct btrfs_fs_info *info,
360 struct btrfs_block_group *block_group)
361 {
362 struct btrfs_space_info *space_info = block_group->space_info;
363 int factor, index;
364
365 factor = btrfs_bg_type_to_factor(block_group->flags);
366
367 spin_lock(&space_info->lock);
368 space_info->total_bytes += block_group->length;
369 space_info->disk_total += block_group->length * factor;
370 space_info->bytes_used += block_group->used;
371 space_info->disk_used += block_group->used * factor;
372 space_info->bytes_readonly += block_group->bytes_super;
373 btrfs_space_info_update_bytes_zone_unusable(space_info, block_group->zone_unusable);
374 if (block_group->length > 0)
375 space_info->full = 0;
376 btrfs_try_granting_tickets(info, space_info);
377 spin_unlock(&space_info->lock);
378
379 block_group->space_info = space_info;
380
381 index = btrfs_bg_flags_to_raid_index(block_group->flags);
382 down_write(&space_info->groups_sem);
383 list_add_tail(&block_group->list, &space_info->block_groups[index]);
384 up_write(&space_info->groups_sem);
385 }
386
btrfs_find_space_info(struct btrfs_fs_info * info,u64 flags)387 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
388 u64 flags)
389 {
390 struct list_head *head = &info->space_info;
391 struct btrfs_space_info *found;
392
393 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
394
395 list_for_each_entry(found, head, list) {
396 if (found->flags & flags)
397 return found;
398 }
399 return NULL;
400 }
401
calc_effective_data_chunk_size(struct btrfs_fs_info * fs_info)402 static u64 calc_effective_data_chunk_size(struct btrfs_fs_info *fs_info)
403 {
404 struct btrfs_space_info *data_sinfo;
405 u64 data_chunk_size;
406
407 /*
408 * Calculate the data_chunk_size, space_info->chunk_size is the
409 * "optimal" chunk size based on the fs size. However when we actually
410 * allocate the chunk we will strip this down further, making it no
411 * more than 10% of the disk or 1G, whichever is smaller.
412 *
413 * On the zoned mode, we need to use zone_size (= data_sinfo->chunk_size)
414 * as it is.
415 */
416 data_sinfo = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
417 if (btrfs_is_zoned(fs_info))
418 return data_sinfo->chunk_size;
419 data_chunk_size = min(data_sinfo->chunk_size,
420 mult_perc(fs_info->fs_devices->total_rw_bytes, 10));
421 return min_t(u64, data_chunk_size, SZ_1G);
422 }
423
calc_available_free_space(struct btrfs_fs_info * fs_info,const struct btrfs_space_info * space_info,enum btrfs_reserve_flush_enum flush)424 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
425 const struct btrfs_space_info *space_info,
426 enum btrfs_reserve_flush_enum flush)
427 {
428 u64 profile;
429 u64 avail;
430 u64 data_chunk_size;
431 int factor;
432
433 if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
434 profile = btrfs_system_alloc_profile(fs_info);
435 else
436 profile = btrfs_metadata_alloc_profile(fs_info);
437
438 avail = atomic64_read(&fs_info->free_chunk_space);
439
440 /*
441 * If we have dup, raid1 or raid10 then only half of the free
442 * space is actually usable. For raid56, the space info used
443 * doesn't include the parity drive, so we don't have to
444 * change the math
445 */
446 factor = btrfs_bg_type_to_factor(profile);
447 avail = div_u64(avail, factor);
448 if (avail == 0)
449 return 0;
450
451 data_chunk_size = calc_effective_data_chunk_size(fs_info);
452
453 /*
454 * Since data allocations immediately use block groups as part of the
455 * reservation, because we assume that data reservations will == actual
456 * usage, we could potentially overcommit and then immediately have that
457 * available space used by a data allocation, which could put us in a
458 * bind when we get close to filling the file system.
459 *
460 * To handle this simply remove the data_chunk_size from the available
461 * space. If we are relatively empty this won't affect our ability to
462 * overcommit much, and if we're very close to full it'll keep us from
463 * getting into a position where we've given ourselves very little
464 * metadata wiggle room.
465 */
466 if (avail <= data_chunk_size)
467 return 0;
468 avail -= data_chunk_size;
469
470 /*
471 * If we aren't flushing all things, let us overcommit up to
472 * 1/2th of the space. If we can flush, don't let us overcommit
473 * too much, let it overcommit up to 1/8 of the space.
474 */
475 if (flush == BTRFS_RESERVE_FLUSH_ALL)
476 avail >>= 3;
477 else
478 avail >>= 1;
479
480 /*
481 * On the zoned mode, we always allocate one zone as one chunk.
482 * Returning non-zone size alingned bytes here will result in
483 * less pressure for the async metadata reclaim process, and it
484 * will over-commit too much leading to ENOSPC. Align down to the
485 * zone size to avoid that.
486 */
487 if (btrfs_is_zoned(fs_info))
488 avail = ALIGN_DOWN(avail, fs_info->zone_size);
489
490 return avail;
491 }
492
btrfs_can_overcommit(struct btrfs_fs_info * fs_info,const struct btrfs_space_info * space_info,u64 bytes,enum btrfs_reserve_flush_enum flush)493 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
494 const struct btrfs_space_info *space_info, u64 bytes,
495 enum btrfs_reserve_flush_enum flush)
496 {
497 u64 avail;
498 u64 used;
499
500 /* Don't overcommit when in mixed mode */
501 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
502 return 0;
503
504 used = btrfs_space_info_used(space_info, true);
505 avail = calc_available_free_space(fs_info, space_info, flush);
506
507 if (used + bytes < space_info->total_bytes + avail)
508 return 1;
509 return 0;
510 }
511
remove_ticket(struct btrfs_space_info * space_info,struct reserve_ticket * ticket)512 static void remove_ticket(struct btrfs_space_info *space_info,
513 struct reserve_ticket *ticket)
514 {
515 if (!list_empty(&ticket->list)) {
516 list_del_init(&ticket->list);
517 ASSERT(space_info->reclaim_size >= ticket->bytes);
518 space_info->reclaim_size -= ticket->bytes;
519 }
520 }
521
522 /*
523 * This is for space we already have accounted in space_info->bytes_may_use, so
524 * basically when we're returning space from block_rsv's.
525 */
btrfs_try_granting_tickets(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info)526 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
527 struct btrfs_space_info *space_info)
528 {
529 struct list_head *head;
530 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
531
532 lockdep_assert_held(&space_info->lock);
533
534 head = &space_info->priority_tickets;
535 again:
536 while (!list_empty(head)) {
537 struct reserve_ticket *ticket;
538 u64 used = btrfs_space_info_used(space_info, true);
539
540 ticket = list_first_entry(head, struct reserve_ticket, list);
541
542 /* Check and see if our ticket can be satisfied now. */
543 if ((used + ticket->bytes <= space_info->total_bytes) ||
544 btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
545 flush)) {
546 btrfs_space_info_update_bytes_may_use(space_info, ticket->bytes);
547 remove_ticket(space_info, ticket);
548 ticket->bytes = 0;
549 space_info->tickets_id++;
550 wake_up(&ticket->wait);
551 } else {
552 break;
553 }
554 }
555
556 if (head == &space_info->priority_tickets) {
557 head = &space_info->tickets;
558 flush = BTRFS_RESERVE_FLUSH_ALL;
559 goto again;
560 }
561 }
562
563 #define DUMP_BLOCK_RSV(fs_info, rsv_name) \
564 do { \
565 struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name; \
566 spin_lock(&__rsv->lock); \
567 btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu", \
568 __rsv->size, __rsv->reserved); \
569 spin_unlock(&__rsv->lock); \
570 } while (0)
571
space_info_flag_to_str(const struct btrfs_space_info * space_info)572 static const char *space_info_flag_to_str(const struct btrfs_space_info *space_info)
573 {
574 switch (space_info->flags) {
575 case BTRFS_BLOCK_GROUP_SYSTEM:
576 return "SYSTEM";
577 case BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA:
578 return "DATA+METADATA";
579 case BTRFS_BLOCK_GROUP_DATA:
580 return "DATA";
581 case BTRFS_BLOCK_GROUP_METADATA:
582 return "METADATA";
583 default:
584 return "UNKNOWN";
585 }
586 }
587
dump_global_block_rsv(struct btrfs_fs_info * fs_info)588 static void dump_global_block_rsv(struct btrfs_fs_info *fs_info)
589 {
590 DUMP_BLOCK_RSV(fs_info, global_block_rsv);
591 DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
592 DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
593 DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
594 DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
595 }
596
__btrfs_dump_space_info(const struct btrfs_fs_info * fs_info,const struct btrfs_space_info * info)597 static void __btrfs_dump_space_info(const struct btrfs_fs_info *fs_info,
598 const struct btrfs_space_info *info)
599 {
600 const char *flag_str = space_info_flag_to_str(info);
601 lockdep_assert_held(&info->lock);
602
603 /* The free space could be negative in case of overcommit */
604 btrfs_info(fs_info,
605 "space_info %s (sub-group id %d) has %lld free, is %sfull",
606 flag_str, info->subgroup_id,
607 (s64)(info->total_bytes - btrfs_space_info_used(info, true)),
608 info->full ? "" : "not ");
609 btrfs_info(fs_info,
610 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu zone_unusable=%llu",
611 info->total_bytes, info->bytes_used, info->bytes_pinned,
612 info->bytes_reserved, info->bytes_may_use,
613 info->bytes_readonly, info->bytes_zone_unusable);
614 }
615
btrfs_dump_space_info(struct btrfs_fs_info * fs_info,struct btrfs_space_info * info,u64 bytes,bool dump_block_groups)616 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
617 struct btrfs_space_info *info, u64 bytes,
618 bool dump_block_groups)
619 {
620 struct btrfs_block_group *cache;
621 u64 total_avail = 0;
622 int index = 0;
623
624 spin_lock(&info->lock);
625 __btrfs_dump_space_info(fs_info, info);
626 dump_global_block_rsv(fs_info);
627 spin_unlock(&info->lock);
628
629 if (!dump_block_groups)
630 return;
631
632 down_read(&info->groups_sem);
633 again:
634 list_for_each_entry(cache, &info->block_groups[index], list) {
635 u64 avail;
636
637 spin_lock(&cache->lock);
638 avail = cache->length - cache->used - cache->pinned -
639 cache->reserved - cache->bytes_super - cache->zone_unusable;
640 btrfs_info(fs_info,
641 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %llu delalloc %llu super %llu zone_unusable (%llu bytes available) %s",
642 cache->start, cache->length, cache->used, cache->pinned,
643 cache->reserved, cache->delalloc_bytes,
644 cache->bytes_super, cache->zone_unusable,
645 avail, cache->ro ? "[readonly]" : "");
646 spin_unlock(&cache->lock);
647 btrfs_dump_free_space(cache, bytes);
648 total_avail += avail;
649 }
650 if (++index < BTRFS_NR_RAID_TYPES)
651 goto again;
652 up_read(&info->groups_sem);
653
654 btrfs_info(fs_info, "%llu bytes available across all block groups", total_avail);
655 }
656
calc_reclaim_items_nr(const struct btrfs_fs_info * fs_info,u64 to_reclaim)657 static inline u64 calc_reclaim_items_nr(const struct btrfs_fs_info *fs_info,
658 u64 to_reclaim)
659 {
660 u64 bytes;
661 u64 nr;
662
663 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
664 nr = div64_u64(to_reclaim, bytes);
665 if (!nr)
666 nr = 1;
667 return nr;
668 }
669
670 /*
671 * shrink metadata reservation for delalloc
672 */
shrink_delalloc(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 to_reclaim,bool wait_ordered,bool for_preempt)673 static void shrink_delalloc(struct btrfs_fs_info *fs_info,
674 struct btrfs_space_info *space_info,
675 u64 to_reclaim, bool wait_ordered,
676 bool for_preempt)
677 {
678 struct btrfs_trans_handle *trans;
679 u64 delalloc_bytes;
680 u64 ordered_bytes;
681 u64 items;
682 long time_left;
683 int loops;
684
685 delalloc_bytes = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
686 ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes);
687 if (delalloc_bytes == 0 && ordered_bytes == 0)
688 return;
689
690 /* Calc the number of the pages we need flush for space reservation */
691 if (to_reclaim == U64_MAX) {
692 items = U64_MAX;
693 } else {
694 /*
695 * to_reclaim is set to however much metadata we need to
696 * reclaim, but reclaiming that much data doesn't really track
697 * exactly. What we really want to do is reclaim full inode's
698 * worth of reservations, however that's not available to us
699 * here. We will take a fraction of the delalloc bytes for our
700 * flushing loops and hope for the best. Delalloc will expand
701 * the amount we write to cover an entire dirty extent, which
702 * will reclaim the metadata reservation for that range. If
703 * it's not enough subsequent flush stages will be more
704 * aggressive.
705 */
706 to_reclaim = max(to_reclaim, delalloc_bytes >> 3);
707 items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2;
708 }
709
710 trans = current->journal_info;
711
712 /*
713 * If we are doing more ordered than delalloc we need to just wait on
714 * ordered extents, otherwise we'll waste time trying to flush delalloc
715 * that likely won't give us the space back we need.
716 */
717 if (ordered_bytes > delalloc_bytes && !for_preempt)
718 wait_ordered = true;
719
720 loops = 0;
721 while ((delalloc_bytes || ordered_bytes) && loops < 3) {
722 u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
723 long nr_pages = min_t(u64, temp, LONG_MAX);
724 int async_pages;
725
726 btrfs_start_delalloc_roots(fs_info, nr_pages, true);
727
728 /*
729 * We need to make sure any outstanding async pages are now
730 * processed before we continue. This is because things like
731 * sync_inode() try to be smart and skip writing if the inode is
732 * marked clean. We don't use filemap_fwrite for flushing
733 * because we want to control how many pages we write out at a
734 * time, thus this is the only safe way to make sure we've
735 * waited for outstanding compressed workers to have started
736 * their jobs and thus have ordered extents set up properly.
737 *
738 * This exists because we do not want to wait for each
739 * individual inode to finish its async work, we simply want to
740 * start the IO on everybody, and then come back here and wait
741 * for all of the async work to catch up. Once we're done with
742 * that we know we'll have ordered extents for everything and we
743 * can decide if we wait for that or not.
744 *
745 * If we choose to replace this in the future, make absolutely
746 * sure that the proper waiting is being done in the async case,
747 * as there have been bugs in that area before.
748 */
749 async_pages = atomic_read(&fs_info->async_delalloc_pages);
750 if (!async_pages)
751 goto skip_async;
752
753 /*
754 * We don't want to wait forever, if we wrote less pages in this
755 * loop than we have outstanding, only wait for that number of
756 * pages, otherwise we can wait for all async pages to finish
757 * before continuing.
758 */
759 if (async_pages > nr_pages)
760 async_pages -= nr_pages;
761 else
762 async_pages = 0;
763 wait_event(fs_info->async_submit_wait,
764 atomic_read(&fs_info->async_delalloc_pages) <=
765 async_pages);
766 skip_async:
767 loops++;
768 if (wait_ordered && !trans) {
769 btrfs_wait_ordered_roots(fs_info, items, NULL);
770 } else {
771 time_left = schedule_timeout_killable(1);
772 if (time_left)
773 break;
774 }
775
776 /*
777 * If we are for preemption we just want a one-shot of delalloc
778 * flushing so we can stop flushing if we decide we don't need
779 * to anymore.
780 */
781 if (for_preempt)
782 break;
783
784 spin_lock(&space_info->lock);
785 if (list_empty(&space_info->tickets) &&
786 list_empty(&space_info->priority_tickets)) {
787 spin_unlock(&space_info->lock);
788 break;
789 }
790 spin_unlock(&space_info->lock);
791
792 delalloc_bytes = percpu_counter_sum_positive(
793 &fs_info->delalloc_bytes);
794 ordered_bytes = percpu_counter_sum_positive(
795 &fs_info->ordered_bytes);
796 }
797 }
798
799 /*
800 * Try to flush some data based on policy set by @state. This is only advisory
801 * and may fail for various reasons. The caller is supposed to examine the
802 * state of @space_info to detect the outcome.
803 */
flush_space(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 num_bytes,enum btrfs_flush_state state,bool for_preempt)804 static void flush_space(struct btrfs_fs_info *fs_info,
805 struct btrfs_space_info *space_info, u64 num_bytes,
806 enum btrfs_flush_state state, bool for_preempt)
807 {
808 struct btrfs_root *root = fs_info->tree_root;
809 struct btrfs_trans_handle *trans;
810 int nr;
811 int ret = 0;
812
813 switch (state) {
814 case FLUSH_DELAYED_ITEMS_NR:
815 case FLUSH_DELAYED_ITEMS:
816 if (state == FLUSH_DELAYED_ITEMS_NR)
817 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
818 else
819 nr = -1;
820
821 trans = btrfs_join_transaction_nostart(root);
822 if (IS_ERR(trans)) {
823 ret = PTR_ERR(trans);
824 if (ret == -ENOENT)
825 ret = 0;
826 break;
827 }
828 ret = btrfs_run_delayed_items_nr(trans, nr);
829 btrfs_end_transaction(trans);
830 break;
831 case FLUSH_DELALLOC:
832 case FLUSH_DELALLOC_WAIT:
833 case FLUSH_DELALLOC_FULL:
834 if (state == FLUSH_DELALLOC_FULL)
835 num_bytes = U64_MAX;
836 shrink_delalloc(fs_info, space_info, num_bytes,
837 state != FLUSH_DELALLOC, for_preempt);
838 break;
839 case FLUSH_DELAYED_REFS_NR:
840 case FLUSH_DELAYED_REFS:
841 trans = btrfs_join_transaction_nostart(root);
842 if (IS_ERR(trans)) {
843 ret = PTR_ERR(trans);
844 if (ret == -ENOENT)
845 ret = 0;
846 break;
847 }
848 if (state == FLUSH_DELAYED_REFS_NR)
849 btrfs_run_delayed_refs(trans, num_bytes);
850 else
851 btrfs_run_delayed_refs(trans, 0);
852 btrfs_end_transaction(trans);
853 break;
854 case ALLOC_CHUNK:
855 case ALLOC_CHUNK_FORCE:
856 trans = btrfs_join_transaction(root);
857 if (IS_ERR(trans)) {
858 ret = PTR_ERR(trans);
859 break;
860 }
861 ret = btrfs_chunk_alloc(trans, space_info,
862 btrfs_get_alloc_profile(fs_info, space_info->flags),
863 (state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
864 CHUNK_ALLOC_FORCE);
865 btrfs_end_transaction(trans);
866
867 if (ret > 0 || ret == -ENOSPC)
868 ret = 0;
869 break;
870 case RUN_DELAYED_IPUTS:
871 /*
872 * If we have pending delayed iputs then we could free up a
873 * bunch of pinned space, so make sure we run the iputs before
874 * we do our pinned bytes check below.
875 */
876 btrfs_run_delayed_iputs(fs_info);
877 btrfs_wait_on_delayed_iputs(fs_info);
878 break;
879 case COMMIT_TRANS:
880 ASSERT(current->journal_info == NULL);
881 /*
882 * We don't want to start a new transaction, just attach to the
883 * current one or wait it fully commits in case its commit is
884 * happening at the moment. Note: we don't use a nostart join
885 * because that does not wait for a transaction to fully commit
886 * (only for it to be unblocked, state TRANS_STATE_UNBLOCKED).
887 */
888 ret = btrfs_commit_current_transaction(root);
889 break;
890 case RESET_ZONES:
891 ret = btrfs_reset_unused_block_groups(space_info, num_bytes);
892 break;
893 default:
894 ret = -ENOSPC;
895 break;
896 }
897
898 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
899 ret, for_preempt);
900 return;
901 }
902
btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info * fs_info,const struct btrfs_space_info * space_info)903 static u64 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
904 const struct btrfs_space_info *space_info)
905 {
906 u64 used;
907 u64 avail;
908 u64 to_reclaim = space_info->reclaim_size;
909
910 lockdep_assert_held(&space_info->lock);
911
912 avail = calc_available_free_space(fs_info, space_info,
913 BTRFS_RESERVE_FLUSH_ALL);
914 used = btrfs_space_info_used(space_info, true);
915
916 /*
917 * We may be flushing because suddenly we have less space than we had
918 * before, and now we're well over-committed based on our current free
919 * space. If that's the case add in our overage so we make sure to put
920 * appropriate pressure on the flushing state machine.
921 */
922 if (space_info->total_bytes + avail < used)
923 to_reclaim += used - (space_info->total_bytes + avail);
924
925 return to_reclaim;
926 }
927
need_preemptive_reclaim(struct btrfs_fs_info * fs_info,const struct btrfs_space_info * space_info)928 static bool need_preemptive_reclaim(struct btrfs_fs_info *fs_info,
929 const struct btrfs_space_info *space_info)
930 {
931 const u64 global_rsv_size = btrfs_block_rsv_reserved(&fs_info->global_block_rsv);
932 u64 ordered, delalloc;
933 u64 thresh;
934 u64 used;
935
936 thresh = mult_perc(space_info->total_bytes, 90);
937
938 lockdep_assert_held(&space_info->lock);
939
940 /* If we're just plain full then async reclaim just slows us down. */
941 if ((space_info->bytes_used + space_info->bytes_reserved +
942 global_rsv_size) >= thresh)
943 return false;
944
945 used = space_info->bytes_may_use + space_info->bytes_pinned;
946
947 /* The total flushable belongs to the global rsv, don't flush. */
948 if (global_rsv_size >= used)
949 return false;
950
951 /*
952 * 128MiB is 1/4 of the maximum global rsv size. If we have less than
953 * that devoted to other reservations then there's no sense in flushing,
954 * we don't have a lot of things that need flushing.
955 */
956 if (used - global_rsv_size <= SZ_128M)
957 return false;
958
959 /*
960 * We have tickets queued, bail so we don't compete with the async
961 * flushers.
962 */
963 if (space_info->reclaim_size)
964 return false;
965
966 /*
967 * If we have over half of the free space occupied by reservations or
968 * pinned then we want to start flushing.
969 *
970 * We do not do the traditional thing here, which is to say
971 *
972 * if (used >= ((total_bytes + avail) / 2))
973 * return 1;
974 *
975 * because this doesn't quite work how we want. If we had more than 50%
976 * of the space_info used by bytes_used and we had 0 available we'd just
977 * constantly run the background flusher. Instead we want it to kick in
978 * if our reclaimable space exceeds our clamped free space.
979 *
980 * Our clamping range is 2^1 -> 2^8. Practically speaking that means
981 * the following:
982 *
983 * Amount of RAM Minimum threshold Maximum threshold
984 *
985 * 256GiB 1GiB 128GiB
986 * 128GiB 512MiB 64GiB
987 * 64GiB 256MiB 32GiB
988 * 32GiB 128MiB 16GiB
989 * 16GiB 64MiB 8GiB
990 *
991 * These are the range our thresholds will fall in, corresponding to how
992 * much delalloc we need for the background flusher to kick in.
993 */
994
995 thresh = calc_available_free_space(fs_info, space_info,
996 BTRFS_RESERVE_FLUSH_ALL);
997 used = space_info->bytes_used + space_info->bytes_reserved +
998 space_info->bytes_readonly + global_rsv_size;
999 if (used < space_info->total_bytes)
1000 thresh += space_info->total_bytes - used;
1001 thresh >>= space_info->clamp;
1002
1003 used = space_info->bytes_pinned;
1004
1005 /*
1006 * If we have more ordered bytes than delalloc bytes then we're either
1007 * doing a lot of DIO, or we simply don't have a lot of delalloc waiting
1008 * around. Preemptive flushing is only useful in that it can free up
1009 * space before tickets need to wait for things to finish. In the case
1010 * of ordered extents, preemptively waiting on ordered extents gets us
1011 * nothing, if our reservations are tied up in ordered extents we'll
1012 * simply have to slow down writers by forcing them to wait on ordered
1013 * extents.
1014 *
1015 * In the case that ordered is larger than delalloc, only include the
1016 * block reserves that we would actually be able to directly reclaim
1017 * from. In this case if we're heavy on metadata operations this will
1018 * clearly be heavy enough to warrant preemptive flushing. In the case
1019 * of heavy DIO or ordered reservations, preemptive flushing will just
1020 * waste time and cause us to slow down.
1021 *
1022 * We want to make sure we truly are maxed out on ordered however, so
1023 * cut ordered in half, and if it's still higher than delalloc then we
1024 * can keep flushing. This is to avoid the case where we start
1025 * flushing, and now delalloc == ordered and we stop preemptively
1026 * flushing when we could still have several gigs of delalloc to flush.
1027 */
1028 ordered = percpu_counter_read_positive(&fs_info->ordered_bytes) >> 1;
1029 delalloc = percpu_counter_read_positive(&fs_info->delalloc_bytes);
1030 if (ordered >= delalloc)
1031 used += btrfs_block_rsv_reserved(&fs_info->delayed_refs_rsv) +
1032 btrfs_block_rsv_reserved(&fs_info->delayed_block_rsv);
1033 else
1034 used += space_info->bytes_may_use - global_rsv_size;
1035
1036 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
1037 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
1038 }
1039
steal_from_global_rsv(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,struct reserve_ticket * ticket)1040 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info,
1041 struct btrfs_space_info *space_info,
1042 struct reserve_ticket *ticket)
1043 {
1044 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
1045 u64 min_bytes;
1046
1047 if (!ticket->steal)
1048 return false;
1049
1050 if (global_rsv->space_info != space_info)
1051 return false;
1052
1053 spin_lock(&global_rsv->lock);
1054 min_bytes = mult_perc(global_rsv->size, 10);
1055 if (global_rsv->reserved < min_bytes + ticket->bytes) {
1056 spin_unlock(&global_rsv->lock);
1057 return false;
1058 }
1059 global_rsv->reserved -= ticket->bytes;
1060 remove_ticket(space_info, ticket);
1061 ticket->bytes = 0;
1062 wake_up(&ticket->wait);
1063 space_info->tickets_id++;
1064 if (global_rsv->reserved < global_rsv->size)
1065 global_rsv->full = 0;
1066 spin_unlock(&global_rsv->lock);
1067
1068 return true;
1069 }
1070
1071 /*
1072 * We've exhausted our flushing, start failing tickets.
1073 *
1074 * @fs_info - fs_info for this fs
1075 * @space_info - the space info we were flushing
1076 *
1077 * We call this when we've exhausted our flushing ability and haven't made
1078 * progress in satisfying tickets. The reservation code handles tickets in
1079 * order, so if there is a large ticket first and then smaller ones we could
1080 * very well satisfy the smaller tickets. This will attempt to wake up any
1081 * tickets in the list to catch this case.
1082 *
1083 * This function returns true if it was able to make progress by clearing out
1084 * other tickets, or if it stumbles across a ticket that was smaller than the
1085 * first ticket.
1086 */
maybe_fail_all_tickets(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info)1087 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
1088 struct btrfs_space_info *space_info)
1089 {
1090 struct reserve_ticket *ticket;
1091 u64 tickets_id = space_info->tickets_id;
1092 const bool aborted = BTRFS_FS_ERROR(fs_info);
1093
1094 trace_btrfs_fail_all_tickets(fs_info, space_info);
1095
1096 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1097 btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
1098 __btrfs_dump_space_info(fs_info, space_info);
1099 }
1100
1101 while (!list_empty(&space_info->tickets) &&
1102 tickets_id == space_info->tickets_id) {
1103 ticket = list_first_entry(&space_info->tickets,
1104 struct reserve_ticket, list);
1105
1106 if (!aborted && steal_from_global_rsv(fs_info, space_info, ticket))
1107 return true;
1108
1109 if (!aborted && btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1110 btrfs_info(fs_info, "failing ticket with %llu bytes",
1111 ticket->bytes);
1112
1113 remove_ticket(space_info, ticket);
1114 if (aborted)
1115 ticket->error = -EIO;
1116 else
1117 ticket->error = -ENOSPC;
1118 wake_up(&ticket->wait);
1119
1120 /*
1121 * We're just throwing tickets away, so more flushing may not
1122 * trip over btrfs_try_granting_tickets, so we need to call it
1123 * here to see if we can make progress with the next ticket in
1124 * the list.
1125 */
1126 if (!aborted)
1127 btrfs_try_granting_tickets(fs_info, space_info);
1128 }
1129 return (tickets_id != space_info->tickets_id);
1130 }
1131
do_async_reclaim_metadata_space(struct btrfs_space_info * space_info)1132 static void do_async_reclaim_metadata_space(struct btrfs_space_info *space_info)
1133 {
1134 struct btrfs_fs_info *fs_info = space_info->fs_info;
1135 u64 to_reclaim;
1136 enum btrfs_flush_state flush_state;
1137 int commit_cycles = 0;
1138 u64 last_tickets_id;
1139 enum btrfs_flush_state final_state;
1140
1141 if (btrfs_is_zoned(fs_info))
1142 final_state = RESET_ZONES;
1143 else
1144 final_state = COMMIT_TRANS;
1145
1146 spin_lock(&space_info->lock);
1147 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1148 if (!to_reclaim) {
1149 space_info->flush = 0;
1150 spin_unlock(&space_info->lock);
1151 return;
1152 }
1153 last_tickets_id = space_info->tickets_id;
1154 spin_unlock(&space_info->lock);
1155
1156 flush_state = FLUSH_DELAYED_ITEMS_NR;
1157 do {
1158 flush_space(fs_info, space_info, to_reclaim, flush_state, false);
1159 spin_lock(&space_info->lock);
1160 if (list_empty(&space_info->tickets)) {
1161 space_info->flush = 0;
1162 spin_unlock(&space_info->lock);
1163 return;
1164 }
1165 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
1166 space_info);
1167 if (last_tickets_id == space_info->tickets_id) {
1168 flush_state++;
1169 } else {
1170 last_tickets_id = space_info->tickets_id;
1171 flush_state = FLUSH_DELAYED_ITEMS_NR;
1172 if (commit_cycles)
1173 commit_cycles--;
1174 }
1175
1176 /*
1177 * We do not want to empty the system of delalloc unless we're
1178 * under heavy pressure, so allow one trip through the flushing
1179 * logic before we start doing a FLUSH_DELALLOC_FULL.
1180 */
1181 if (flush_state == FLUSH_DELALLOC_FULL && !commit_cycles)
1182 flush_state++;
1183
1184 /*
1185 * We don't want to force a chunk allocation until we've tried
1186 * pretty hard to reclaim space. Think of the case where we
1187 * freed up a bunch of space and so have a lot of pinned space
1188 * to reclaim. We would rather use that than possibly create a
1189 * underutilized metadata chunk. So if this is our first run
1190 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
1191 * commit the transaction. If nothing has changed the next go
1192 * around then we can force a chunk allocation.
1193 */
1194 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
1195 flush_state++;
1196
1197 if (flush_state > final_state) {
1198 commit_cycles++;
1199 if (commit_cycles > 2) {
1200 if (maybe_fail_all_tickets(fs_info, space_info)) {
1201 flush_state = FLUSH_DELAYED_ITEMS_NR;
1202 commit_cycles--;
1203 } else {
1204 space_info->flush = 0;
1205 }
1206 } else {
1207 flush_state = FLUSH_DELAYED_ITEMS_NR;
1208 }
1209 }
1210 spin_unlock(&space_info->lock);
1211 } while (flush_state <= final_state);
1212 }
1213
1214 /*
1215 * This is for normal flushers, it can wait as much time as needed. We will
1216 * loop and continuously try to flush as long as we are making progress. We
1217 * count progress as clearing off tickets each time we have to loop.
1218 */
btrfs_async_reclaim_metadata_space(struct work_struct * work)1219 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
1220 {
1221 struct btrfs_fs_info *fs_info;
1222 struct btrfs_space_info *space_info;
1223
1224 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
1225 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1226 do_async_reclaim_metadata_space(space_info);
1227 for (int i = 0; i < BTRFS_SPACE_INFO_SUB_GROUP_MAX; i++) {
1228 if (space_info->sub_group[i])
1229 do_async_reclaim_metadata_space(space_info->sub_group[i]);
1230 }
1231 }
1232
1233 /*
1234 * This handles pre-flushing of metadata space before we get to the point that
1235 * we need to start blocking threads on tickets. The logic here is different
1236 * from the other flush paths because it doesn't rely on tickets to tell us how
1237 * much we need to flush, instead it attempts to keep us below the 80% full
1238 * watermark of space by flushing whichever reservation pool is currently the
1239 * largest.
1240 */
btrfs_preempt_reclaim_metadata_space(struct work_struct * work)1241 static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work)
1242 {
1243 struct btrfs_fs_info *fs_info;
1244 struct btrfs_space_info *space_info;
1245 struct btrfs_block_rsv *delayed_block_rsv;
1246 struct btrfs_block_rsv *delayed_refs_rsv;
1247 struct btrfs_block_rsv *global_rsv;
1248 struct btrfs_block_rsv *trans_rsv;
1249 int loops = 0;
1250
1251 fs_info = container_of(work, struct btrfs_fs_info,
1252 preempt_reclaim_work);
1253 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1254 delayed_block_rsv = &fs_info->delayed_block_rsv;
1255 delayed_refs_rsv = &fs_info->delayed_refs_rsv;
1256 global_rsv = &fs_info->global_block_rsv;
1257 trans_rsv = &fs_info->trans_block_rsv;
1258
1259 spin_lock(&space_info->lock);
1260 while (need_preemptive_reclaim(fs_info, space_info)) {
1261 enum btrfs_flush_state flush;
1262 u64 delalloc_size = 0;
1263 u64 to_reclaim, block_rsv_size;
1264 const u64 global_rsv_size = btrfs_block_rsv_reserved(global_rsv);
1265
1266 loops++;
1267
1268 /*
1269 * We don't have a precise counter for the metadata being
1270 * reserved for delalloc, so we'll approximate it by subtracting
1271 * out the block rsv's space from the bytes_may_use. If that
1272 * amount is higher than the individual reserves, then we can
1273 * assume it's tied up in delalloc reservations.
1274 */
1275 block_rsv_size = global_rsv_size +
1276 btrfs_block_rsv_reserved(delayed_block_rsv) +
1277 btrfs_block_rsv_reserved(delayed_refs_rsv) +
1278 btrfs_block_rsv_reserved(trans_rsv);
1279 if (block_rsv_size < space_info->bytes_may_use)
1280 delalloc_size = space_info->bytes_may_use - block_rsv_size;
1281
1282 /*
1283 * We don't want to include the global_rsv in our calculation,
1284 * because that's space we can't touch. Subtract it from the
1285 * block_rsv_size for the next checks.
1286 */
1287 block_rsv_size -= global_rsv_size;
1288
1289 /*
1290 * We really want to avoid flushing delalloc too much, as it
1291 * could result in poor allocation patterns, so only flush it if
1292 * it's larger than the rest of the pools combined.
1293 */
1294 if (delalloc_size > block_rsv_size) {
1295 to_reclaim = delalloc_size;
1296 flush = FLUSH_DELALLOC;
1297 } else if (space_info->bytes_pinned >
1298 (btrfs_block_rsv_reserved(delayed_block_rsv) +
1299 btrfs_block_rsv_reserved(delayed_refs_rsv))) {
1300 to_reclaim = space_info->bytes_pinned;
1301 flush = COMMIT_TRANS;
1302 } else if (btrfs_block_rsv_reserved(delayed_block_rsv) >
1303 btrfs_block_rsv_reserved(delayed_refs_rsv)) {
1304 to_reclaim = btrfs_block_rsv_reserved(delayed_block_rsv);
1305 flush = FLUSH_DELAYED_ITEMS_NR;
1306 } else {
1307 to_reclaim = btrfs_block_rsv_reserved(delayed_refs_rsv);
1308 flush = FLUSH_DELAYED_REFS_NR;
1309 }
1310
1311 spin_unlock(&space_info->lock);
1312
1313 /*
1314 * We don't want to reclaim everything, just a portion, so scale
1315 * down the to_reclaim by 1/4. If it takes us down to 0,
1316 * reclaim 1 items worth.
1317 */
1318 to_reclaim >>= 2;
1319 if (!to_reclaim)
1320 to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1);
1321 flush_space(fs_info, space_info, to_reclaim, flush, true);
1322 cond_resched();
1323 spin_lock(&space_info->lock);
1324 }
1325
1326 /* We only went through once, back off our clamping. */
1327 if (loops == 1 && !space_info->reclaim_size)
1328 space_info->clamp = max(1, space_info->clamp - 1);
1329 trace_btrfs_done_preemptive_reclaim(fs_info, space_info);
1330 spin_unlock(&space_info->lock);
1331 }
1332
1333 /*
1334 * FLUSH_DELALLOC_WAIT:
1335 * Space is freed from flushing delalloc in one of two ways.
1336 *
1337 * 1) compression is on and we allocate less space than we reserved
1338 * 2) we are overwriting existing space
1339 *
1340 * For #1 that extra space is reclaimed as soon as the delalloc pages are
1341 * COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent
1342 * length to ->bytes_reserved, and subtracts the reserved space from
1343 * ->bytes_may_use.
1344 *
1345 * For #2 this is trickier. Once the ordered extent runs we will drop the
1346 * extent in the range we are overwriting, which creates a delayed ref for
1347 * that freed extent. This however is not reclaimed until the transaction
1348 * commits, thus the next stages.
1349 *
1350 * RUN_DELAYED_IPUTS
1351 * If we are freeing inodes, we want to make sure all delayed iputs have
1352 * completed, because they could have been on an inode with i_nlink == 0, and
1353 * thus have been truncated and freed up space. But again this space is not
1354 * immediately reusable, it comes in the form of a delayed ref, which must be
1355 * run and then the transaction must be committed.
1356 *
1357 * COMMIT_TRANS
1358 * This is where we reclaim all of the pinned space generated by running the
1359 * iputs
1360 *
1361 * RESET_ZONES
1362 * This state works only for the zoned mode. We scan the unused block group
1363 * list and reset the zones and reuse the block group.
1364 *
1365 * ALLOC_CHUNK_FORCE
1366 * For data we start with alloc chunk force, however we could have been full
1367 * before, and then the transaction commit could have freed new block groups,
1368 * so if we now have space to allocate do the force chunk allocation.
1369 */
1370 static const enum btrfs_flush_state data_flush_states[] = {
1371 FLUSH_DELALLOC_FULL,
1372 RUN_DELAYED_IPUTS,
1373 COMMIT_TRANS,
1374 RESET_ZONES,
1375 ALLOC_CHUNK_FORCE,
1376 };
1377
do_async_reclaim_data_space(struct btrfs_space_info * space_info)1378 static void do_async_reclaim_data_space(struct btrfs_space_info *space_info)
1379 {
1380 struct btrfs_fs_info *fs_info = space_info->fs_info;
1381 u64 last_tickets_id;
1382 enum btrfs_flush_state flush_state = 0;
1383
1384 spin_lock(&space_info->lock);
1385 if (list_empty(&space_info->tickets)) {
1386 space_info->flush = 0;
1387 spin_unlock(&space_info->lock);
1388 return;
1389 }
1390 last_tickets_id = space_info->tickets_id;
1391 spin_unlock(&space_info->lock);
1392
1393 while (!space_info->full) {
1394 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1395 spin_lock(&space_info->lock);
1396 if (list_empty(&space_info->tickets)) {
1397 space_info->flush = 0;
1398 spin_unlock(&space_info->lock);
1399 return;
1400 }
1401
1402 /* Something happened, fail everything and bail. */
1403 if (BTRFS_FS_ERROR(fs_info))
1404 goto aborted_fs;
1405 last_tickets_id = space_info->tickets_id;
1406 spin_unlock(&space_info->lock);
1407 }
1408
1409 while (flush_state < ARRAY_SIZE(data_flush_states)) {
1410 flush_space(fs_info, space_info, U64_MAX,
1411 data_flush_states[flush_state], false);
1412 spin_lock(&space_info->lock);
1413 if (list_empty(&space_info->tickets)) {
1414 space_info->flush = 0;
1415 spin_unlock(&space_info->lock);
1416 return;
1417 }
1418
1419 if (last_tickets_id == space_info->tickets_id) {
1420 flush_state++;
1421 } else {
1422 last_tickets_id = space_info->tickets_id;
1423 flush_state = 0;
1424 }
1425
1426 if (flush_state >= ARRAY_SIZE(data_flush_states)) {
1427 if (space_info->full) {
1428 if (maybe_fail_all_tickets(fs_info, space_info))
1429 flush_state = 0;
1430 else
1431 space_info->flush = 0;
1432 } else {
1433 flush_state = 0;
1434 }
1435
1436 /* Something happened, fail everything and bail. */
1437 if (BTRFS_FS_ERROR(fs_info))
1438 goto aborted_fs;
1439
1440 }
1441 spin_unlock(&space_info->lock);
1442 }
1443 return;
1444
1445 aborted_fs:
1446 maybe_fail_all_tickets(fs_info, space_info);
1447 space_info->flush = 0;
1448 spin_unlock(&space_info->lock);
1449 }
1450
btrfs_async_reclaim_data_space(struct work_struct * work)1451 static void btrfs_async_reclaim_data_space(struct work_struct *work)
1452 {
1453 struct btrfs_fs_info *fs_info;
1454 struct btrfs_space_info *space_info;
1455
1456 fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work);
1457 space_info = fs_info->data_sinfo;
1458 do_async_reclaim_data_space(space_info);
1459 for (int i = 0; i < BTRFS_SPACE_INFO_SUB_GROUP_MAX; i++)
1460 if (space_info->sub_group[i])
1461 do_async_reclaim_data_space(space_info->sub_group[i]);
1462 }
1463
btrfs_init_async_reclaim_work(struct btrfs_fs_info * fs_info)1464 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info)
1465 {
1466 INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space);
1467 INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space);
1468 INIT_WORK(&fs_info->preempt_reclaim_work,
1469 btrfs_preempt_reclaim_metadata_space);
1470 }
1471
1472 static const enum btrfs_flush_state priority_flush_states[] = {
1473 FLUSH_DELAYED_ITEMS_NR,
1474 FLUSH_DELAYED_ITEMS,
1475 RESET_ZONES,
1476 ALLOC_CHUNK,
1477 };
1478
1479 static const enum btrfs_flush_state evict_flush_states[] = {
1480 FLUSH_DELAYED_ITEMS_NR,
1481 FLUSH_DELAYED_ITEMS,
1482 FLUSH_DELAYED_REFS_NR,
1483 FLUSH_DELAYED_REFS,
1484 FLUSH_DELALLOC,
1485 FLUSH_DELALLOC_WAIT,
1486 FLUSH_DELALLOC_FULL,
1487 ALLOC_CHUNK,
1488 COMMIT_TRANS,
1489 RESET_ZONES,
1490 };
1491
priority_reclaim_metadata_space(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,struct reserve_ticket * ticket,const enum btrfs_flush_state * states,int states_nr)1492 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
1493 struct btrfs_space_info *space_info,
1494 struct reserve_ticket *ticket,
1495 const enum btrfs_flush_state *states,
1496 int states_nr)
1497 {
1498 u64 to_reclaim;
1499 int flush_state = 0;
1500
1501 spin_lock(&space_info->lock);
1502 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1503 /*
1504 * This is the priority reclaim path, so to_reclaim could be >0 still
1505 * because we may have only satisfied the priority tickets and still
1506 * left non priority tickets on the list. We would then have
1507 * to_reclaim but ->bytes == 0.
1508 */
1509 if (ticket->bytes == 0) {
1510 spin_unlock(&space_info->lock);
1511 return;
1512 }
1513
1514 while (flush_state < states_nr) {
1515 spin_unlock(&space_info->lock);
1516 flush_space(fs_info, space_info, to_reclaim, states[flush_state],
1517 false);
1518 flush_state++;
1519 spin_lock(&space_info->lock);
1520 if (ticket->bytes == 0) {
1521 spin_unlock(&space_info->lock);
1522 return;
1523 }
1524 }
1525
1526 /*
1527 * Attempt to steal from the global rsv if we can, except if the fs was
1528 * turned into error mode due to a transaction abort when flushing space
1529 * above, in that case fail with the abort error instead of returning
1530 * success to the caller if we can steal from the global rsv - this is
1531 * just to have caller fail immeditelly instead of later when trying to
1532 * modify the fs, making it easier to debug -ENOSPC problems.
1533 */
1534 if (BTRFS_FS_ERROR(fs_info)) {
1535 ticket->error = BTRFS_FS_ERROR(fs_info);
1536 remove_ticket(space_info, ticket);
1537 } else if (!steal_from_global_rsv(fs_info, space_info, ticket)) {
1538 ticket->error = -ENOSPC;
1539 remove_ticket(space_info, ticket);
1540 }
1541
1542 /*
1543 * We must run try_granting_tickets here because we could be a large
1544 * ticket in front of a smaller ticket that can now be satisfied with
1545 * the available space.
1546 */
1547 btrfs_try_granting_tickets(fs_info, space_info);
1548 spin_unlock(&space_info->lock);
1549 }
1550
priority_reclaim_data_space(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,struct reserve_ticket * ticket)1551 static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info,
1552 struct btrfs_space_info *space_info,
1553 struct reserve_ticket *ticket)
1554 {
1555 spin_lock(&space_info->lock);
1556
1557 /* We could have been granted before we got here. */
1558 if (ticket->bytes == 0) {
1559 spin_unlock(&space_info->lock);
1560 return;
1561 }
1562
1563 while (!space_info->full) {
1564 spin_unlock(&space_info->lock);
1565 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1566 spin_lock(&space_info->lock);
1567 if (ticket->bytes == 0) {
1568 spin_unlock(&space_info->lock);
1569 return;
1570 }
1571 }
1572
1573 ticket->error = -ENOSPC;
1574 remove_ticket(space_info, ticket);
1575 btrfs_try_granting_tickets(fs_info, space_info);
1576 spin_unlock(&space_info->lock);
1577 }
1578
wait_reserve_ticket(struct btrfs_space_info * space_info,struct reserve_ticket * ticket)1579 static void wait_reserve_ticket(struct btrfs_space_info *space_info,
1580 struct reserve_ticket *ticket)
1581
1582 {
1583 DEFINE_WAIT(wait);
1584 int ret = 0;
1585
1586 spin_lock(&space_info->lock);
1587 while (ticket->bytes > 0 && ticket->error == 0) {
1588 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1589 if (ret) {
1590 /*
1591 * Delete us from the list. After we unlock the space
1592 * info, we don't want the async reclaim job to reserve
1593 * space for this ticket. If that would happen, then the
1594 * ticket's task would not known that space was reserved
1595 * despite getting an error, resulting in a space leak
1596 * (bytes_may_use counter of our space_info).
1597 */
1598 remove_ticket(space_info, ticket);
1599 ticket->error = -EINTR;
1600 break;
1601 }
1602 spin_unlock(&space_info->lock);
1603
1604 schedule();
1605
1606 finish_wait(&ticket->wait, &wait);
1607 spin_lock(&space_info->lock);
1608 }
1609 spin_unlock(&space_info->lock);
1610 }
1611
1612 /*
1613 * Do the appropriate flushing and waiting for a ticket.
1614 *
1615 * @fs_info: the filesystem
1616 * @space_info: space info for the reservation
1617 * @ticket: ticket for the reservation
1618 * @start_ns: timestamp when the reservation started
1619 * @orig_bytes: amount of bytes originally reserved
1620 * @flush: how much we can flush
1621 *
1622 * This does the work of figuring out how to flush for the ticket, waiting for
1623 * the reservation, and returning the appropriate error if there is one.
1624 */
handle_reserve_ticket(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,struct reserve_ticket * ticket,u64 start_ns,u64 orig_bytes,enum btrfs_reserve_flush_enum flush)1625 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1626 struct btrfs_space_info *space_info,
1627 struct reserve_ticket *ticket,
1628 u64 start_ns, u64 orig_bytes,
1629 enum btrfs_reserve_flush_enum flush)
1630 {
1631 int ret;
1632
1633 switch (flush) {
1634 case BTRFS_RESERVE_FLUSH_DATA:
1635 case BTRFS_RESERVE_FLUSH_ALL:
1636 case BTRFS_RESERVE_FLUSH_ALL_STEAL:
1637 wait_reserve_ticket(space_info, ticket);
1638 break;
1639 case BTRFS_RESERVE_FLUSH_LIMIT:
1640 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1641 priority_flush_states,
1642 ARRAY_SIZE(priority_flush_states));
1643 break;
1644 case BTRFS_RESERVE_FLUSH_EVICT:
1645 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1646 evict_flush_states,
1647 ARRAY_SIZE(evict_flush_states));
1648 break;
1649 case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE:
1650 priority_reclaim_data_space(fs_info, space_info, ticket);
1651 break;
1652 default:
1653 ASSERT(0);
1654 break;
1655 }
1656
1657 ret = ticket->error;
1658 ASSERT(list_empty(&ticket->list));
1659 /*
1660 * Check that we can't have an error set if the reservation succeeded,
1661 * as that would confuse tasks and lead them to error out without
1662 * releasing reserved space (if an error happens the expectation is that
1663 * space wasn't reserved at all).
1664 */
1665 ASSERT(!(ticket->bytes == 0 && ticket->error));
1666 trace_btrfs_reserve_ticket(fs_info, space_info->flags, orig_bytes,
1667 start_ns, flush, ticket->error);
1668 return ret;
1669 }
1670
1671 /*
1672 * This returns true if this flush state will go through the ordinary flushing
1673 * code.
1674 */
is_normal_flushing(enum btrfs_reserve_flush_enum flush)1675 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush)
1676 {
1677 return (flush == BTRFS_RESERVE_FLUSH_ALL) ||
1678 (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1679 }
1680
maybe_clamp_preempt(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info)1681 static inline void maybe_clamp_preempt(struct btrfs_fs_info *fs_info,
1682 struct btrfs_space_info *space_info)
1683 {
1684 u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes);
1685 u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
1686
1687 /*
1688 * If we're heavy on ordered operations then clamping won't help us. We
1689 * need to clamp specifically to keep up with dirty'ing buffered
1690 * writers, because there's not a 1:1 correlation of writing delalloc
1691 * and freeing space, like there is with flushing delayed refs or
1692 * delayed nodes. If we're already more ordered than delalloc then
1693 * we're keeping up, otherwise we aren't and should probably clamp.
1694 */
1695 if (ordered < delalloc)
1696 space_info->clamp = min(space_info->clamp + 1, 8);
1697 }
1698
can_steal(enum btrfs_reserve_flush_enum flush)1699 static inline bool can_steal(enum btrfs_reserve_flush_enum flush)
1700 {
1701 return (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1702 flush == BTRFS_RESERVE_FLUSH_EVICT);
1703 }
1704
1705 /*
1706 * NO_FLUSH and FLUSH_EMERGENCY don't want to create a ticket, they just want to
1707 * fail as quickly as possible.
1708 */
can_ticket(enum btrfs_reserve_flush_enum flush)1709 static inline bool can_ticket(enum btrfs_reserve_flush_enum flush)
1710 {
1711 return (flush != BTRFS_RESERVE_NO_FLUSH &&
1712 flush != BTRFS_RESERVE_FLUSH_EMERGENCY);
1713 }
1714
1715 /*
1716 * Try to reserve bytes from the block_rsv's space.
1717 *
1718 * @fs_info: the filesystem
1719 * @space_info: space info we want to allocate from
1720 * @orig_bytes: number of bytes we want
1721 * @flush: whether or not we can flush to make our reservation
1722 *
1723 * This will reserve orig_bytes number of bytes from the space info associated
1724 * with the block_rsv. If there is not enough space it will make an attempt to
1725 * flush out space to make room. It will do this by flushing delalloc if
1726 * possible or committing the transaction. If flush is 0 then no attempts to
1727 * regain reservations will be made and this will fail if there is not enough
1728 * space already.
1729 */
__reserve_bytes(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 orig_bytes,enum btrfs_reserve_flush_enum flush)1730 static int __reserve_bytes(struct btrfs_fs_info *fs_info,
1731 struct btrfs_space_info *space_info, u64 orig_bytes,
1732 enum btrfs_reserve_flush_enum flush)
1733 {
1734 struct work_struct *async_work;
1735 struct reserve_ticket ticket;
1736 u64 start_ns = 0;
1737 u64 used;
1738 int ret = -ENOSPC;
1739 bool pending_tickets;
1740
1741 ASSERT(orig_bytes);
1742 /*
1743 * If have a transaction handle (current->journal_info != NULL), then
1744 * the flush method can not be neither BTRFS_RESERVE_FLUSH_ALL* nor
1745 * BTRFS_RESERVE_FLUSH_EVICT, as we could deadlock because those
1746 * flushing methods can trigger transaction commits.
1747 */
1748 if (current->journal_info) {
1749 /* One assert per line for easier debugging. */
1750 ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL);
1751 ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL_STEAL);
1752 ASSERT(flush != BTRFS_RESERVE_FLUSH_EVICT);
1753 }
1754
1755 if (flush == BTRFS_RESERVE_FLUSH_DATA)
1756 async_work = &fs_info->async_data_reclaim_work;
1757 else
1758 async_work = &fs_info->async_reclaim_work;
1759
1760 spin_lock(&space_info->lock);
1761 used = btrfs_space_info_used(space_info, true);
1762
1763 /*
1764 * We don't want NO_FLUSH allocations to jump everybody, they can
1765 * generally handle ENOSPC in a different way, so treat them the same as
1766 * normal flushers when it comes to skipping pending tickets.
1767 */
1768 if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH))
1769 pending_tickets = !list_empty(&space_info->tickets) ||
1770 !list_empty(&space_info->priority_tickets);
1771 else
1772 pending_tickets = !list_empty(&space_info->priority_tickets);
1773
1774 /*
1775 * Carry on if we have enough space (short-circuit) OR call
1776 * can_overcommit() to ensure we can overcommit to continue.
1777 */
1778 if (!pending_tickets &&
1779 ((used + orig_bytes <= space_info->total_bytes) ||
1780 btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1781 btrfs_space_info_update_bytes_may_use(space_info, orig_bytes);
1782 ret = 0;
1783 }
1784
1785 /*
1786 * Things are dire, we need to make a reservation so we don't abort. We
1787 * will let this reservation go through as long as we have actual space
1788 * left to allocate for the block.
1789 */
1790 if (ret && unlikely(flush == BTRFS_RESERVE_FLUSH_EMERGENCY)) {
1791 used = btrfs_space_info_used(space_info, false);
1792 if (used + orig_bytes <= space_info->total_bytes) {
1793 btrfs_space_info_update_bytes_may_use(space_info, orig_bytes);
1794 ret = 0;
1795 }
1796 }
1797
1798 /*
1799 * If we couldn't make a reservation then setup our reservation ticket
1800 * and kick the async worker if it's not already running.
1801 *
1802 * If we are a priority flusher then we just need to add our ticket to
1803 * the list and we will do our own flushing further down.
1804 */
1805 if (ret && can_ticket(flush)) {
1806 ticket.bytes = orig_bytes;
1807 ticket.error = 0;
1808 space_info->reclaim_size += ticket.bytes;
1809 init_waitqueue_head(&ticket.wait);
1810 ticket.steal = can_steal(flush);
1811 if (trace_btrfs_reserve_ticket_enabled())
1812 start_ns = ktime_get_ns();
1813
1814 if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1815 flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1816 flush == BTRFS_RESERVE_FLUSH_DATA) {
1817 list_add_tail(&ticket.list, &space_info->tickets);
1818 if (!space_info->flush) {
1819 /*
1820 * We were forced to add a reserve ticket, so
1821 * our preemptive flushing is unable to keep
1822 * up. Clamp down on the threshold for the
1823 * preemptive flushing in order to keep up with
1824 * the workload.
1825 */
1826 maybe_clamp_preempt(fs_info, space_info);
1827
1828 space_info->flush = 1;
1829 trace_btrfs_trigger_flush(fs_info,
1830 space_info->flags,
1831 orig_bytes, flush,
1832 "enospc");
1833 queue_work(system_unbound_wq, async_work);
1834 }
1835 } else {
1836 list_add_tail(&ticket.list,
1837 &space_info->priority_tickets);
1838 }
1839 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1840 /*
1841 * We will do the space reservation dance during log replay,
1842 * which means we won't have fs_info->fs_root set, so don't do
1843 * the async reclaim as we will panic.
1844 */
1845 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1846 !work_busy(&fs_info->preempt_reclaim_work) &&
1847 need_preemptive_reclaim(fs_info, space_info)) {
1848 trace_btrfs_trigger_flush(fs_info, space_info->flags,
1849 orig_bytes, flush, "preempt");
1850 queue_work(system_unbound_wq,
1851 &fs_info->preempt_reclaim_work);
1852 }
1853 }
1854 spin_unlock(&space_info->lock);
1855 if (!ret || !can_ticket(flush))
1856 return ret;
1857
1858 return handle_reserve_ticket(fs_info, space_info, &ticket, start_ns,
1859 orig_bytes, flush);
1860 }
1861
1862 /*
1863 * Try to reserve metadata bytes from the block_rsv's space.
1864 *
1865 * @fs_info: the filesystem
1866 * @space_info: the space_info we're allocating for
1867 * @orig_bytes: number of bytes we want
1868 * @flush: whether or not we can flush to make our reservation
1869 *
1870 * This will reserve orig_bytes number of bytes from the space info associated
1871 * with the block_rsv. If there is not enough space it will make an attempt to
1872 * flush out space to make room. It will do this by flushing delalloc if
1873 * possible or committing the transaction. If flush is 0 then no attempts to
1874 * regain reservations will be made and this will fail if there is not enough
1875 * space already.
1876 */
btrfs_reserve_metadata_bytes(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 orig_bytes,enum btrfs_reserve_flush_enum flush)1877 int btrfs_reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
1878 struct btrfs_space_info *space_info,
1879 u64 orig_bytes,
1880 enum btrfs_reserve_flush_enum flush)
1881 {
1882 int ret;
1883
1884 ret = __reserve_bytes(fs_info, space_info, orig_bytes, flush);
1885 if (ret == -ENOSPC) {
1886 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1887 space_info->flags, orig_bytes, 1);
1888
1889 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1890 btrfs_dump_space_info(fs_info, space_info, orig_bytes, false);
1891 }
1892 return ret;
1893 }
1894
1895 /*
1896 * Try to reserve data bytes for an allocation.
1897 *
1898 * @fs_info: the filesystem
1899 * @bytes: number of bytes we need
1900 * @flush: how we are allowed to flush
1901 *
1902 * This will reserve bytes from the data space info. If there is not enough
1903 * space then we will attempt to flush space as specified by flush.
1904 */
btrfs_reserve_data_bytes(struct btrfs_space_info * space_info,u64 bytes,enum btrfs_reserve_flush_enum flush)1905 int btrfs_reserve_data_bytes(struct btrfs_space_info *space_info, u64 bytes,
1906 enum btrfs_reserve_flush_enum flush)
1907 {
1908 struct btrfs_fs_info *fs_info = space_info->fs_info;
1909 int ret;
1910
1911 ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA ||
1912 flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE ||
1913 flush == BTRFS_RESERVE_NO_FLUSH);
1914 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA);
1915
1916 ret = __reserve_bytes(fs_info, space_info, bytes, flush);
1917 if (ret == -ENOSPC) {
1918 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1919 space_info->flags, bytes, 1);
1920 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1921 btrfs_dump_space_info(fs_info, space_info, bytes, false);
1922 }
1923 return ret;
1924 }
1925
1926 /* Dump all the space infos when we abort a transaction due to ENOSPC. */
btrfs_dump_space_info_for_trans_abort(struct btrfs_fs_info * fs_info)1927 __cold void btrfs_dump_space_info_for_trans_abort(struct btrfs_fs_info *fs_info)
1928 {
1929 struct btrfs_space_info *space_info;
1930
1931 btrfs_info(fs_info, "dumping space info:");
1932 list_for_each_entry(space_info, &fs_info->space_info, list) {
1933 spin_lock(&space_info->lock);
1934 __btrfs_dump_space_info(fs_info, space_info);
1935 spin_unlock(&space_info->lock);
1936 }
1937 dump_global_block_rsv(fs_info);
1938 }
1939
1940 /*
1941 * Account the unused space of all the readonly block group in the space_info.
1942 * takes mirrors into account.
1943 */
btrfs_account_ro_block_groups_free_space(struct btrfs_space_info * sinfo)1944 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
1945 {
1946 struct btrfs_block_group *block_group;
1947 u64 free_bytes = 0;
1948 int factor;
1949
1950 /* It's df, we don't care if it's racy */
1951 if (list_empty(&sinfo->ro_bgs))
1952 return 0;
1953
1954 spin_lock(&sinfo->lock);
1955 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
1956 spin_lock(&block_group->lock);
1957
1958 if (!block_group->ro) {
1959 spin_unlock(&block_group->lock);
1960 continue;
1961 }
1962
1963 factor = btrfs_bg_type_to_factor(block_group->flags);
1964 free_bytes += (block_group->length -
1965 block_group->used) * factor;
1966
1967 spin_unlock(&block_group->lock);
1968 }
1969 spin_unlock(&sinfo->lock);
1970
1971 return free_bytes;
1972 }
1973
calc_pct_ratio(u64 x,u64 y)1974 static u64 calc_pct_ratio(u64 x, u64 y)
1975 {
1976 int ret;
1977
1978 if (!y)
1979 return 0;
1980 again:
1981 ret = check_mul_overflow(100, x, &x);
1982 if (ret)
1983 goto lose_precision;
1984 return div64_u64(x, y);
1985 lose_precision:
1986 x >>= 10;
1987 y >>= 10;
1988 if (!y)
1989 y = 1;
1990 goto again;
1991 }
1992
1993 /*
1994 * A reasonable buffer for unallocated space is 10 data block_groups.
1995 * If we claw this back repeatedly, we can still achieve efficient
1996 * utilization when near full, and not do too much reclaim while
1997 * always maintaining a solid buffer for workloads that quickly
1998 * allocate and pressure the unallocated space.
1999 */
calc_unalloc_target(struct btrfs_fs_info * fs_info)2000 static u64 calc_unalloc_target(struct btrfs_fs_info *fs_info)
2001 {
2002 u64 chunk_sz = calc_effective_data_chunk_size(fs_info);
2003
2004 return BTRFS_UNALLOC_BLOCK_GROUP_TARGET * chunk_sz;
2005 }
2006
2007 /*
2008 * The fundamental goal of automatic reclaim is to protect the filesystem's
2009 * unallocated space and thus minimize the probability of the filesystem going
2010 * read only when a metadata allocation failure causes a transaction abort.
2011 *
2012 * However, relocations happen into the space_info's unused space, therefore
2013 * automatic reclaim must also back off as that space runs low. There is no
2014 * value in doing trivial "relocations" of re-writing the same block group
2015 * into a fresh one.
2016 *
2017 * Furthermore, we want to avoid doing too much reclaim even if there are good
2018 * candidates. This is because the allocator is pretty good at filling up the
2019 * holes with writes. So we want to do just enough reclaim to try and stay
2020 * safe from running out of unallocated space but not be wasteful about it.
2021 *
2022 * Therefore, the dynamic reclaim threshold is calculated as follows:
2023 * - calculate a target unallocated amount of 5 block group sized chunks
2024 * - ratchet up the intensity of reclaim depending on how far we are from
2025 * that target by using a formula of unalloc / target to set the threshold.
2026 *
2027 * Typically with 10 block groups as the target, the discrete values this comes
2028 * out to are 0, 10, 20, ... , 80, 90, and 99.
2029 */
calc_dynamic_reclaim_threshold(const struct btrfs_space_info * space_info)2030 static int calc_dynamic_reclaim_threshold(const struct btrfs_space_info *space_info)
2031 {
2032 struct btrfs_fs_info *fs_info = space_info->fs_info;
2033 u64 unalloc = atomic64_read(&fs_info->free_chunk_space);
2034 u64 target = calc_unalloc_target(fs_info);
2035 u64 alloc = space_info->total_bytes;
2036 u64 used = btrfs_space_info_used(space_info, false);
2037 u64 unused = alloc - used;
2038 u64 want = target > unalloc ? target - unalloc : 0;
2039 u64 data_chunk_size = calc_effective_data_chunk_size(fs_info);
2040
2041 /* If we have no unused space, don't bother, it won't work anyway. */
2042 if (unused < data_chunk_size)
2043 return 0;
2044
2045 /* Cast to int is OK because want <= target. */
2046 return calc_pct_ratio(want, target);
2047 }
2048
btrfs_calc_reclaim_threshold(const struct btrfs_space_info * space_info)2049 int btrfs_calc_reclaim_threshold(const struct btrfs_space_info *space_info)
2050 {
2051 lockdep_assert_held(&space_info->lock);
2052
2053 if (READ_ONCE(space_info->dynamic_reclaim))
2054 return calc_dynamic_reclaim_threshold(space_info);
2055 return READ_ONCE(space_info->bg_reclaim_threshold);
2056 }
2057
2058 /*
2059 * Under "urgent" reclaim, we will reclaim even fresh block groups that have
2060 * recently seen successful allocations, as we are desperate to reclaim
2061 * whatever we can to avoid ENOSPC in a transaction leading to a readonly fs.
2062 */
is_reclaim_urgent(struct btrfs_space_info * space_info)2063 static bool is_reclaim_urgent(struct btrfs_space_info *space_info)
2064 {
2065 struct btrfs_fs_info *fs_info = space_info->fs_info;
2066 u64 unalloc = atomic64_read(&fs_info->free_chunk_space);
2067 u64 data_chunk_size = calc_effective_data_chunk_size(fs_info);
2068
2069 return unalloc < data_chunk_size;
2070 }
2071
do_reclaim_sweep(struct btrfs_space_info * space_info,int raid)2072 static void do_reclaim_sweep(struct btrfs_space_info *space_info, int raid)
2073 {
2074 struct btrfs_block_group *bg;
2075 int thresh_pct;
2076 bool try_again = true;
2077 bool urgent;
2078
2079 spin_lock(&space_info->lock);
2080 urgent = is_reclaim_urgent(space_info);
2081 thresh_pct = btrfs_calc_reclaim_threshold(space_info);
2082 spin_unlock(&space_info->lock);
2083
2084 down_read(&space_info->groups_sem);
2085 again:
2086 list_for_each_entry(bg, &space_info->block_groups[raid], list) {
2087 u64 thresh;
2088 bool reclaim = false;
2089
2090 btrfs_get_block_group(bg);
2091 spin_lock(&bg->lock);
2092 thresh = mult_perc(bg->length, thresh_pct);
2093 if (bg->used < thresh && bg->reclaim_mark) {
2094 try_again = false;
2095 reclaim = true;
2096 }
2097 bg->reclaim_mark++;
2098 spin_unlock(&bg->lock);
2099 if (reclaim)
2100 btrfs_mark_bg_to_reclaim(bg);
2101 btrfs_put_block_group(bg);
2102 }
2103
2104 /*
2105 * In situations where we are very motivated to reclaim (low unalloc)
2106 * use two passes to make the reclaim mark check best effort.
2107 *
2108 * If we have any staler groups, we don't touch the fresher ones, but if we
2109 * really need a block group, do take a fresh one.
2110 */
2111 if (try_again && urgent) {
2112 try_again = false;
2113 goto again;
2114 }
2115
2116 up_read(&space_info->groups_sem);
2117 }
2118
btrfs_space_info_update_reclaimable(struct btrfs_space_info * space_info,s64 bytes)2119 void btrfs_space_info_update_reclaimable(struct btrfs_space_info *space_info, s64 bytes)
2120 {
2121 u64 chunk_sz = calc_effective_data_chunk_size(space_info->fs_info);
2122
2123 lockdep_assert_held(&space_info->lock);
2124 space_info->reclaimable_bytes += bytes;
2125
2126 if (space_info->reclaimable_bytes >= chunk_sz)
2127 btrfs_set_periodic_reclaim_ready(space_info, true);
2128 }
2129
btrfs_set_periodic_reclaim_ready(struct btrfs_space_info * space_info,bool ready)2130 void btrfs_set_periodic_reclaim_ready(struct btrfs_space_info *space_info, bool ready)
2131 {
2132 lockdep_assert_held(&space_info->lock);
2133 if (!READ_ONCE(space_info->periodic_reclaim))
2134 return;
2135 if (ready != space_info->periodic_reclaim_ready) {
2136 space_info->periodic_reclaim_ready = ready;
2137 if (!ready)
2138 space_info->reclaimable_bytes = 0;
2139 }
2140 }
2141
btrfs_should_periodic_reclaim(struct btrfs_space_info * space_info)2142 static bool btrfs_should_periodic_reclaim(struct btrfs_space_info *space_info)
2143 {
2144 bool ret;
2145
2146 if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
2147 return false;
2148 if (!READ_ONCE(space_info->periodic_reclaim))
2149 return false;
2150
2151 spin_lock(&space_info->lock);
2152 ret = space_info->periodic_reclaim_ready;
2153 btrfs_set_periodic_reclaim_ready(space_info, false);
2154 spin_unlock(&space_info->lock);
2155
2156 return ret;
2157 }
2158
btrfs_reclaim_sweep(const struct btrfs_fs_info * fs_info)2159 void btrfs_reclaim_sweep(const struct btrfs_fs_info *fs_info)
2160 {
2161 int raid;
2162 struct btrfs_space_info *space_info;
2163
2164 list_for_each_entry(space_info, &fs_info->space_info, list) {
2165 if (!btrfs_should_periodic_reclaim(space_info))
2166 continue;
2167 for (raid = 0; raid < BTRFS_NR_RAID_TYPES; raid++)
2168 do_reclaim_sweep(space_info, raid);
2169 }
2170 }
2171
btrfs_return_free_space(struct btrfs_space_info * space_info,u64 len)2172 void btrfs_return_free_space(struct btrfs_space_info *space_info, u64 len)
2173 {
2174 struct btrfs_fs_info *fs_info = space_info->fs_info;
2175 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2176
2177 lockdep_assert_held(&space_info->lock);
2178
2179 /* Prioritize the global reservation to receive the freed space. */
2180 if (global_rsv->space_info != space_info)
2181 goto grant;
2182
2183 spin_lock(&global_rsv->lock);
2184 if (!global_rsv->full) {
2185 u64 to_add = min(len, global_rsv->size - global_rsv->reserved);
2186
2187 global_rsv->reserved += to_add;
2188 btrfs_space_info_update_bytes_may_use(space_info, to_add);
2189 if (global_rsv->reserved >= global_rsv->size)
2190 global_rsv->full = 1;
2191 len -= to_add;
2192 }
2193 spin_unlock(&global_rsv->lock);
2194
2195 grant:
2196 /* Add to any tickets we may have. */
2197 if (len)
2198 btrfs_try_granting_tickets(fs_info, space_info);
2199 }
2200