xref: /linux/drivers/md/dm-pcache/cache.c (revision d358e5254674b70f34c847715ca509e46eb81e6f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 #include <linux/blk_types.h>
3 
4 #include "cache.h"
5 #include "cache_dev.h"
6 #include "backing_dev.h"
7 #include "dm_pcache.h"
8 
9 struct kmem_cache *key_cache;
10 
get_cache_info_addr(struct pcache_cache * cache)11 static inline struct pcache_cache_info *get_cache_info_addr(struct pcache_cache *cache)
12 {
13 	return (struct pcache_cache_info *)((char *)cache->cache_info_addr +
14 						(size_t)cache->info_index * PCACHE_CACHE_INFO_SIZE);
15 }
16 
cache_info_write(struct pcache_cache * cache)17 static void cache_info_write(struct pcache_cache *cache)
18 {
19 	struct pcache_cache_info *cache_info = &cache->cache_info;
20 
21 	cache_info->header.seq++;
22 	cache_info->header.crc = pcache_meta_crc(&cache_info->header,
23 						sizeof(struct pcache_cache_info));
24 
25 	cache->info_index = (cache->info_index + 1) % PCACHE_META_INDEX_MAX;
26 	memcpy_flushcache(get_cache_info_addr(cache), cache_info,
27 			sizeof(struct pcache_cache_info));
28 	pmem_wmb();
29 }
30 
31 static void cache_info_init_default(struct pcache_cache *cache);
cache_info_init(struct pcache_cache * cache,struct pcache_cache_options * opts)32 static int cache_info_init(struct pcache_cache *cache, struct pcache_cache_options *opts)
33 {
34 	struct dm_pcache *pcache = CACHE_TO_PCACHE(cache);
35 	struct pcache_cache_info *cache_info_addr;
36 
37 	cache_info_addr = pcache_meta_find_latest(&cache->cache_info_addr->header,
38 						sizeof(struct pcache_cache_info),
39 						PCACHE_CACHE_INFO_SIZE,
40 						&cache->cache_info);
41 	if (IS_ERR(cache_info_addr))
42 		return PTR_ERR(cache_info_addr);
43 
44 	if (cache_info_addr) {
45 		if (opts->data_crc !=
46 				(cache->cache_info.flags & PCACHE_CACHE_FLAGS_DATA_CRC)) {
47 			pcache_dev_err(pcache, "invalid option for data_crc: %s, expected: %s",
48 					opts->data_crc ? "true" : "false",
49 					cache->cache_info.flags & PCACHE_CACHE_FLAGS_DATA_CRC ? "true" : "false");
50 			return -EINVAL;
51 		}
52 
53 		cache->info_index = ((char *)cache_info_addr - (char *)cache->cache_info_addr) / PCACHE_CACHE_INFO_SIZE;
54 
55 		return 0;
56 	}
57 
58 	/* init cache_info for new cache */
59 	cache_info_init_default(cache);
60 	cache_mode_set(cache, opts->cache_mode);
61 	if (opts->data_crc)
62 		cache->cache_info.flags |= PCACHE_CACHE_FLAGS_DATA_CRC;
63 
64 	return 0;
65 }
66 
cache_info_set_gc_percent(struct pcache_cache_info * cache_info,u8 percent)67 static void cache_info_set_gc_percent(struct pcache_cache_info *cache_info, u8 percent)
68 {
69 	cache_info->flags &= ~PCACHE_CACHE_FLAGS_GC_PERCENT_MASK;
70 	cache_info->flags |= FIELD_PREP(PCACHE_CACHE_FLAGS_GC_PERCENT_MASK, percent);
71 }
72 
pcache_cache_set_gc_percent(struct pcache_cache * cache,u8 percent)73 int pcache_cache_set_gc_percent(struct pcache_cache *cache, u8 percent)
74 {
75 	if (percent > PCACHE_CACHE_GC_PERCENT_MAX || percent < PCACHE_CACHE_GC_PERCENT_MIN)
76 		return -EINVAL;
77 
78 	mutex_lock(&cache->cache_info_lock);
79 	cache_info_set_gc_percent(&cache->cache_info, percent);
80 
81 	cache_info_write(cache);
82 	mutex_unlock(&cache->cache_info_lock);
83 
84 	return 0;
85 }
86 
cache_pos_encode(struct pcache_cache * cache,struct pcache_cache_pos_onmedia * pos_onmedia_base,struct pcache_cache_pos * pos,u64 seq,u32 * index)87 void cache_pos_encode(struct pcache_cache *cache,
88 			     struct pcache_cache_pos_onmedia *pos_onmedia_base,
89 			     struct pcache_cache_pos *pos, u64 seq, u32 *index)
90 {
91 	struct pcache_cache_pos_onmedia pos_onmedia;
92 	struct pcache_cache_pos_onmedia *pos_onmedia_addr = pos_onmedia_base + *index;
93 
94 	pos_onmedia.cache_seg_id = pos->cache_seg->cache_seg_id;
95 	pos_onmedia.seg_off = pos->seg_off;
96 	pos_onmedia.header.seq = seq;
97 	pos_onmedia.header.crc = cache_pos_onmedia_crc(&pos_onmedia);
98 
99 	*index = (*index + 1) % PCACHE_META_INDEX_MAX;
100 
101 	memcpy_flushcache(pos_onmedia_addr, &pos_onmedia, sizeof(struct pcache_cache_pos_onmedia));
102 	pmem_wmb();
103 }
104 
cache_pos_decode(struct pcache_cache * cache,struct pcache_cache_pos_onmedia * pos_onmedia,struct pcache_cache_pos * pos,u64 * seq,u32 * index)105 int cache_pos_decode(struct pcache_cache *cache,
106 			    struct pcache_cache_pos_onmedia *pos_onmedia,
107 			    struct pcache_cache_pos *pos, u64 *seq, u32 *index)
108 {
109 	struct pcache_cache_pos_onmedia latest, *latest_addr;
110 
111 	latest_addr = pcache_meta_find_latest(&pos_onmedia->header,
112 					sizeof(struct pcache_cache_pos_onmedia),
113 					sizeof(struct pcache_cache_pos_onmedia),
114 					&latest);
115 	if (IS_ERR(latest_addr))
116 		return PTR_ERR(latest_addr);
117 
118 	if (!latest_addr)
119 		return -EIO;
120 
121 	pos->cache_seg = &cache->segments[latest.cache_seg_id];
122 	pos->seg_off = latest.seg_off;
123 	*seq = latest.header.seq;
124 	*index = (latest_addr - pos_onmedia);
125 
126 	return 0;
127 }
128 
cache_info_set_seg_id(struct pcache_cache * cache,u32 seg_id)129 static inline void cache_info_set_seg_id(struct pcache_cache *cache, u32 seg_id)
130 {
131 	cache->cache_info.seg_id = seg_id;
132 }
133 
cache_init(struct dm_pcache * pcache)134 static int cache_init(struct dm_pcache *pcache)
135 {
136 	struct pcache_cache *cache = &pcache->cache;
137 	struct pcache_backing_dev *backing_dev = &pcache->backing_dev;
138 	struct pcache_cache_dev *cache_dev = &pcache->cache_dev;
139 	int ret;
140 
141 	cache->segments = kvcalloc(cache_dev->seg_num, sizeof(struct pcache_cache_segment), GFP_KERNEL);
142 	if (!cache->segments) {
143 		ret = -ENOMEM;
144 		goto err;
145 	}
146 
147 	cache->seg_map = kvcalloc(BITS_TO_LONGS(cache_dev->seg_num), sizeof(unsigned long), GFP_KERNEL);
148 	if (!cache->seg_map) {
149 		ret = -ENOMEM;
150 		goto free_segments;
151 	}
152 
153 	cache->backing_dev = backing_dev;
154 	cache->cache_dev = &pcache->cache_dev;
155 	cache->n_segs = cache_dev->seg_num;
156 	atomic_set(&cache->gc_errors, 0);
157 	spin_lock_init(&cache->seg_map_lock);
158 	spin_lock_init(&cache->key_head_lock);
159 
160 	mutex_init(&cache->cache_info_lock);
161 	mutex_init(&cache->key_tail_lock);
162 	mutex_init(&cache->dirty_tail_lock);
163 	mutex_init(&cache->writeback_lock);
164 
165 	INIT_DELAYED_WORK(&cache->writeback_work, cache_writeback_fn);
166 	INIT_DELAYED_WORK(&cache->gc_work, pcache_cache_gc_fn);
167 	INIT_WORK(&cache->clean_work, clean_fn);
168 
169 	return 0;
170 
171 free_segments:
172 	kvfree(cache->segments);
173 err:
174 	return ret;
175 }
176 
cache_exit(struct pcache_cache * cache)177 static void cache_exit(struct pcache_cache *cache)
178 {
179 	kvfree(cache->seg_map);
180 	kvfree(cache->segments);
181 }
182 
cache_info_init_default(struct pcache_cache * cache)183 static void cache_info_init_default(struct pcache_cache *cache)
184 {
185 	struct pcache_cache_info *cache_info = &cache->cache_info;
186 
187 	memset(cache_info, 0, sizeof(*cache_info));
188 	cache_info->n_segs = cache->cache_dev->seg_num;
189 	cache_info_set_gc_percent(cache_info, PCACHE_CACHE_GC_PERCENT_DEFAULT);
190 }
191 
cache_tail_init(struct pcache_cache * cache)192 static int cache_tail_init(struct pcache_cache *cache)
193 {
194 	struct dm_pcache *pcache = CACHE_TO_PCACHE(cache);
195 	bool new_cache = !(cache->cache_info.flags & PCACHE_CACHE_FLAGS_INIT_DONE);
196 
197 	if (new_cache) {
198 		__set_bit(0, cache->seg_map);
199 
200 		cache->key_head.cache_seg = &cache->segments[0];
201 		cache->key_head.seg_off = 0;
202 		cache_pos_copy(&cache->key_tail, &cache->key_head);
203 		cache_pos_copy(&cache->dirty_tail, &cache->key_head);
204 
205 		cache_encode_dirty_tail(cache);
206 		cache_encode_key_tail(cache);
207 	} else {
208 		if (cache_decode_key_tail(cache) || cache_decode_dirty_tail(cache)) {
209 			pcache_dev_err(pcache, "Corrupted key tail or dirty tail.\n");
210 			return -EIO;
211 		}
212 	}
213 
214 	return 0;
215 }
216 
get_seg_id(struct pcache_cache * cache,struct pcache_cache_segment * prev_cache_seg,bool new_cache,u32 * seg_id)217 static int get_seg_id(struct pcache_cache *cache,
218 		      struct pcache_cache_segment *prev_cache_seg,
219 		      bool new_cache, u32 *seg_id)
220 {
221 	struct dm_pcache *pcache = CACHE_TO_PCACHE(cache);
222 	struct pcache_cache_dev *cache_dev = cache->cache_dev;
223 	int ret;
224 
225 	if (new_cache) {
226 		ret = cache_dev_get_empty_segment_id(cache_dev, seg_id);
227 		if (ret) {
228 			pcache_dev_err(pcache, "no available segment\n");
229 			goto err;
230 		}
231 
232 		if (prev_cache_seg)
233 			cache_seg_set_next_seg(prev_cache_seg, *seg_id);
234 		else
235 			cache_info_set_seg_id(cache, *seg_id);
236 	} else {
237 		if (prev_cache_seg) {
238 			struct pcache_segment_info *prev_seg_info;
239 
240 			prev_seg_info = &prev_cache_seg->cache_seg_info;
241 			if (!segment_info_has_next(prev_seg_info)) {
242 				ret = -EFAULT;
243 				goto err;
244 			}
245 			*seg_id = prev_cache_seg->cache_seg_info.next_seg;
246 		} else {
247 			*seg_id = cache->cache_info.seg_id;
248 		}
249 	}
250 	return 0;
251 err:
252 	return ret;
253 }
254 
cache_segs_init(struct pcache_cache * cache)255 static int cache_segs_init(struct pcache_cache *cache)
256 {
257 	struct pcache_cache_segment *prev_cache_seg = NULL;
258 	struct pcache_cache_info *cache_info = &cache->cache_info;
259 	bool new_cache = !(cache->cache_info.flags & PCACHE_CACHE_FLAGS_INIT_DONE);
260 	u32 seg_id;
261 	int ret;
262 	u32 i;
263 
264 	for (i = 0; i < cache_info->n_segs; i++) {
265 		ret = get_seg_id(cache, prev_cache_seg, new_cache, &seg_id);
266 		if (ret)
267 			goto err;
268 
269 		ret = cache_seg_init(cache, seg_id, i, new_cache);
270 		if (ret)
271 			goto err;
272 
273 		prev_cache_seg = &cache->segments[i];
274 	}
275 	return 0;
276 err:
277 	return ret;
278 }
279 
cache_init_req_keys(struct pcache_cache * cache,u32 n_paral)280 static int cache_init_req_keys(struct pcache_cache *cache, u32 n_paral)
281 {
282 	struct dm_pcache *pcache = CACHE_TO_PCACHE(cache);
283 	u32 n_subtrees;
284 	int ret;
285 	u32 i, cpu;
286 
287 	/* Calculate number of cache trees based on the device size */
288 	n_subtrees = DIV_ROUND_UP(cache->dev_size << SECTOR_SHIFT, PCACHE_CACHE_SUBTREE_SIZE);
289 	ret = cache_tree_init(cache, &cache->req_key_tree, n_subtrees);
290 	if (ret)
291 		goto err;
292 
293 	cache->n_ksets = n_paral;
294 	cache->ksets = kvcalloc(cache->n_ksets, PCACHE_KSET_SIZE, GFP_KERNEL);
295 	if (!cache->ksets) {
296 		ret = -ENOMEM;
297 		goto req_tree_exit;
298 	}
299 
300 	/*
301 	 * Initialize each kset with a spinlock and delayed work for flushing.
302 	 * Each kset is associated with one queue to ensure independent handling
303 	 * of cache keys across multiple queues, maximizing multiqueue concurrency.
304 	 */
305 	for (i = 0; i < cache->n_ksets; i++) {
306 		struct pcache_cache_kset *kset = get_kset(cache, i);
307 
308 		kset->cache = cache;
309 		spin_lock_init(&kset->kset_lock);
310 		INIT_DELAYED_WORK(&kset->flush_work, kset_flush_fn);
311 	}
312 
313 	cache->data_heads = alloc_percpu(struct pcache_cache_data_head);
314 	if (!cache->data_heads) {
315 		ret = -ENOMEM;
316 		goto free_kset;
317 	}
318 
319 	for_each_possible_cpu(cpu) {
320 		struct pcache_cache_data_head *h =
321 			per_cpu_ptr(cache->data_heads, cpu);
322 		h->head_pos.cache_seg = NULL;
323 	}
324 
325 	/*
326 	 * Replay persisted cache keys using cache_replay.
327 	 * This function loads and replays cache keys from previously stored
328 	 * ksets, allowing the cache to restore its state after a restart.
329 	 */
330 	ret = cache_replay(cache);
331 	if (ret) {
332 		pcache_dev_err(pcache, "failed to replay keys\n");
333 		goto free_heads;
334 	}
335 
336 	return 0;
337 
338 free_heads:
339 	free_percpu(cache->data_heads);
340 free_kset:
341 	kvfree(cache->ksets);
342 req_tree_exit:
343 	cache_tree_exit(&cache->req_key_tree);
344 err:
345 	return ret;
346 }
347 
cache_destroy_req_keys(struct pcache_cache * cache)348 static void cache_destroy_req_keys(struct pcache_cache *cache)
349 {
350 	u32 i;
351 
352 	for (i = 0; i < cache->n_ksets; i++) {
353 		struct pcache_cache_kset *kset = get_kset(cache, i);
354 
355 		cancel_delayed_work_sync(&kset->flush_work);
356 	}
357 
358 	free_percpu(cache->data_heads);
359 	kvfree(cache->ksets);
360 	cache_tree_exit(&cache->req_key_tree);
361 }
362 
pcache_cache_start(struct dm_pcache * pcache)363 int pcache_cache_start(struct dm_pcache *pcache)
364 {
365 	struct pcache_backing_dev *backing_dev = &pcache->backing_dev;
366 	struct pcache_cache *cache = &pcache->cache;
367 	struct pcache_cache_options *opts = &pcache->opts;
368 	int ret;
369 
370 	ret = cache_init(pcache);
371 	if (ret)
372 		return ret;
373 
374 	cache->cache_info_addr = CACHE_DEV_CACHE_INFO(cache->cache_dev);
375 	cache->cache_ctrl = CACHE_DEV_CACHE_CTRL(cache->cache_dev);
376 	backing_dev->cache = cache;
377 	cache->dev_size = backing_dev->dev_size;
378 
379 	ret = cache_info_init(cache, opts);
380 	if (ret)
381 		goto cache_exit;
382 
383 	ret = cache_segs_init(cache);
384 	if (ret)
385 		goto cache_exit;
386 
387 	ret = cache_tail_init(cache);
388 	if (ret)
389 		goto cache_exit;
390 
391 	ret = cache_init_req_keys(cache, num_online_cpus());
392 	if (ret)
393 		goto cache_exit;
394 
395 	ret = cache_writeback_init(cache);
396 	if (ret)
397 		goto destroy_keys;
398 
399 	cache->cache_info.flags |= PCACHE_CACHE_FLAGS_INIT_DONE;
400 	cache_info_write(cache);
401 	queue_delayed_work(cache_get_wq(cache), &cache->gc_work, 0);
402 
403 	return 0;
404 
405 destroy_keys:
406 	cache_destroy_req_keys(cache);
407 cache_exit:
408 	cache_exit(cache);
409 
410 	return ret;
411 }
412 
pcache_cache_stop(struct dm_pcache * pcache)413 void pcache_cache_stop(struct dm_pcache *pcache)
414 {
415 	struct pcache_cache *cache = &pcache->cache;
416 
417 	pcache_cache_flush(cache);
418 
419 	cancel_delayed_work_sync(&cache->gc_work);
420 	flush_work(&cache->clean_work);
421 	cache_writeback_exit(cache);
422 
423 	if (cache->req_key_tree.n_subtrees)
424 		cache_destroy_req_keys(cache);
425 
426 	cache_exit(cache);
427 }
428 
cache_get_wq(struct pcache_cache * cache)429 struct workqueue_struct *cache_get_wq(struct pcache_cache *cache)
430 {
431 	struct dm_pcache *pcache = CACHE_TO_PCACHE(cache);
432 
433 	return pcache->task_wq;
434 }
435 
pcache_cache_init(void)436 int pcache_cache_init(void)
437 {
438 	key_cache = KMEM_CACHE(pcache_cache_key, 0);
439 	if (!key_cache)
440 		return -ENOMEM;
441 
442 	return 0;
443 }
444 
pcache_cache_exit(void)445 void pcache_cache_exit(void)
446 {
447 	kmem_cache_destroy(key_cache);
448 }
449