xref: /linux/mm/zsmalloc.c (revision 3881b00a2cead778d070f72aa534f0ed589fb4c3)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 
3 /*
4  * zsmalloc memory allocator
5  *
6  * Copyright (C) 2011  Nitin Gupta
7  * Copyright (C) 2012, 2013 Minchan Kim
8  *
9  * This code is released using a dual license strategy: BSD/GPL
10  * You can choose the license that better fits your requirements.
11  *
12  * Released under the terms of 3-clause BSD License
13  * Released under the terms of GNU General Public License Version 2.0
14  */
15 
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 
18 /*
19  * lock ordering:
20  *	page_lock
21  *	pool->lock
22  *	class->lock
23  *	zspage->lock
24  */
25 
26 #include <linux/module.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/errno.h>
30 #include <linux/highmem.h>
31 #include <linux/string.h>
32 #include <linux/slab.h>
33 #include <linux/scatterlist.h>
34 #include <linux/spinlock.h>
35 #include <linux/sprintf.h>
36 #include <linux/shrinker.h>
37 #include <linux/types.h>
38 #include <linux/debugfs.h>
39 #include <linux/zsmalloc.h>
40 #include <linux/fs.h>
41 #include <linux/workqueue.h>
42 #include "zpdesc.h"
43 
44 #define ZSPAGE_MAGIC	0x58
45 
46 /*
47  * This must be power of 2 and greater than or equal to sizeof(link_free).
48  * These two conditions ensure that any 'struct link_free' itself doesn't
49  * span more than 1 page which avoids complex case of mapping 2 pages simply
50  * to restore link_free pointer values.
51  */
52 #define ZS_ALIGN		8
53 
54 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
55 
56 /*
57  * Object location (<PFN>, <obj_idx>) is encoded as
58  * a single (unsigned long) handle value.
59  *
60  * Note that object index <obj_idx> starts from 0.
61  *
62  * This is made more complicated by various memory models and PAE.
63  */
64 
65 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
66 #ifdef MAX_PHYSMEM_BITS
67 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
68 #else
69 /*
70  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
71  * be PAGE_SHIFT
72  */
73 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
74 #endif
75 #endif
76 
77 #define _PFN_BITS		(MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
78 
79 /*
80  * Head in allocated object should have OBJ_ALLOCATED_TAG
81  * to identify the object was allocated or not.
82  * It's okay to add the status bit in the least bit because
83  * header keeps handle which is 4byte-aligned address so we
84  * have room for two bit at least.
85  */
86 #define OBJ_ALLOCATED_TAG 1
87 
88 #define OBJ_TAG_BITS	1
89 #define OBJ_TAG_MASK	OBJ_ALLOCATED_TAG
90 
91 #define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS)
92 #define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
93 
94 #define HUGE_BITS	1
95 #define FULLNESS_BITS	4
96 #define CLASS_BITS	8
97 #define MAGIC_VAL_BITS	8
98 
99 #define ZS_MAX_PAGES_PER_ZSPAGE	(_AC(CONFIG_ZSMALLOC_CHAIN_SIZE, UL))
100 
101 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
102 #define ZS_MIN_ALLOC_SIZE \
103 	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
104 /* each chunk includes extra space to keep handle */
105 #define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
106 
107 /*
108  * On systems with 4K page size, this gives 255 size classes! There is a
109  * trade-off here:
110  *  - Large number of size classes is potentially wasteful as free page are
111  *    spread across these classes
112  *  - Small number of size classes causes large internal fragmentation
113  *  - Probably its better to use specific size classes (empirically
114  *    determined). NOTE: all those class sizes must be set as multiple of
115  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
116  *
117  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
118  *  (reason above)
119  */
120 #define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> CLASS_BITS)
121 #define ZS_SIZE_CLASSES	(DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
122 				      ZS_SIZE_CLASS_DELTA) + 1)
123 
124 /*
125  * Pages are distinguished by the ratio of used memory (that is the ratio
126  * of ->inuse objects to all objects that page can store). For example,
127  * INUSE_RATIO_10 means that the ratio of used objects is > 0% and <= 10%.
128  *
129  * The number of fullness groups is not random. It allows us to keep
130  * difference between the least busy page in the group (minimum permitted
131  * number of ->inuse objects) and the most busy page (maximum permitted
132  * number of ->inuse objects) at a reasonable value.
133  */
134 enum fullness_group {
135 	ZS_INUSE_RATIO_0,
136 	ZS_INUSE_RATIO_10,
137 	/* NOTE: 8 more fullness groups here */
138 	ZS_INUSE_RATIO_99       = 10,
139 	ZS_INUSE_RATIO_100,
140 	NR_FULLNESS_GROUPS,
141 };
142 
143 enum class_stat_type {
144 	/* NOTE: stats for 12 fullness groups here: from inuse 0 to 100 */
145 	ZS_OBJS_ALLOCATED       = NR_FULLNESS_GROUPS,
146 	ZS_OBJS_INUSE,
147 	NR_CLASS_STAT_TYPES,
148 };
149 
150 struct zs_size_stat {
151 	unsigned long objs[NR_CLASS_STAT_TYPES];
152 };
153 
154 #ifdef CONFIG_ZSMALLOC_STAT
155 static struct dentry *zs_stat_root;
156 #endif
157 
158 static size_t huge_class_size;
159 
160 struct size_class {
161 	spinlock_t lock;
162 	struct list_head fullness_list[NR_FULLNESS_GROUPS];
163 	/*
164 	 * Size of objects stored in this class. Must be multiple
165 	 * of ZS_ALIGN.
166 	 */
167 	int size;
168 	int objs_per_zspage;
169 	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
170 	int pages_per_zspage;
171 
172 	unsigned int index;
173 	struct zs_size_stat stats;
174 };
175 
176 /*
177  * Placed within free objects to form a singly linked list.
178  * For every zspage, zspage->freeobj gives head of this list.
179  *
180  * This must be power of 2 and less than or equal to ZS_ALIGN
181  */
182 struct link_free {
183 	union {
184 		/*
185 		 * Free object index;
186 		 * It's valid for non-allocated object
187 		 */
188 		unsigned long next;
189 		/*
190 		 * Handle of allocated object.
191 		 */
192 		unsigned long handle;
193 	};
194 };
195 
196 static struct kmem_cache *handle_cachep;
197 static struct kmem_cache *zspage_cachep;
198 
199 struct zs_pool {
200 	const char *name;
201 
202 	struct size_class *size_class[ZS_SIZE_CLASSES];
203 
204 	atomic_long_t pages_allocated;
205 
206 	struct zs_pool_stats stats;
207 
208 	/* Compact classes */
209 	struct shrinker *shrinker;
210 
211 #ifdef CONFIG_ZSMALLOC_STAT
212 	struct dentry *stat_dentry;
213 #endif
214 #ifdef CONFIG_COMPACTION
215 	struct work_struct free_work;
216 #endif
217 	/* protect zspage migration/compaction */
218 	rwlock_t lock;
219 	atomic_t compaction_in_progress;
220 };
221 
222 static inline void zpdesc_set_first(struct zpdesc *zpdesc)
223 {
224 	SetPagePrivate(zpdesc_page(zpdesc));
225 }
226 
227 static inline void zpdesc_inc_zone_page_state(struct zpdesc *zpdesc)
228 {
229 	inc_zone_page_state(zpdesc_page(zpdesc), NR_ZSPAGES);
230 }
231 
232 static inline void zpdesc_dec_zone_page_state(struct zpdesc *zpdesc)
233 {
234 	dec_zone_page_state(zpdesc_page(zpdesc), NR_ZSPAGES);
235 }
236 
237 static inline struct zpdesc *alloc_zpdesc(gfp_t gfp, const int nid)
238 {
239 	struct page *page = alloc_pages_node(nid, gfp, 0);
240 
241 	return page_zpdesc(page);
242 }
243 
244 static inline void free_zpdesc(struct zpdesc *zpdesc)
245 {
246 	struct page *page = zpdesc_page(zpdesc);
247 
248 	/* PageZsmalloc is sticky until the page is freed to the buddy. */
249 	__free_page(page);
250 }
251 
252 #define ZS_PAGE_UNLOCKED	0
253 #define ZS_PAGE_WRLOCKED	-1
254 
255 struct zspage_lock {
256 	spinlock_t lock;
257 	int cnt;
258 	struct lockdep_map dep_map;
259 };
260 
261 struct zspage {
262 	struct {
263 		unsigned int huge:HUGE_BITS;
264 		unsigned int fullness:FULLNESS_BITS;
265 		unsigned int class:CLASS_BITS + 1;
266 		unsigned int magic:MAGIC_VAL_BITS;
267 	};
268 	unsigned int inuse;
269 	unsigned int freeobj;
270 	struct zpdesc *first_zpdesc;
271 	struct list_head list; /* fullness list */
272 	struct zs_pool *pool;
273 	struct zspage_lock zsl;
274 };
275 
276 static void zspage_lock_init(struct zspage *zspage)
277 {
278 	static struct lock_class_key __key;
279 	struct zspage_lock *zsl = &zspage->zsl;
280 
281 	lockdep_init_map(&zsl->dep_map, "zspage->lock", &__key, 0);
282 	spin_lock_init(&zsl->lock);
283 	zsl->cnt = ZS_PAGE_UNLOCKED;
284 }
285 
286 /*
287  * The zspage lock can be held from atomic contexts, but it needs to remain
288  * preemptible when held for reading because it remains held outside of those
289  * atomic contexts, otherwise we unnecessarily lose preemptibility.
290  *
291  * To achieve this, the following rules are enforced on readers and writers:
292  *
293  * - Writers are blocked by both writers and readers, while readers are only
294  *   blocked by writers (i.e. normal rwlock semantics).
295  *
296  * - Writers are always atomic (to allow readers to spin waiting for them).
297  *
298  * - Writers always use trylock (as the lock may be held be sleeping readers).
299  *
300  * - Readers may spin on the lock (as they can only wait for atomic writers).
301  *
302  * - Readers may sleep while holding the lock (as writes only use trylock).
303  */
304 static void zspage_read_lock(struct zspage *zspage)
305 {
306 	struct zspage_lock *zsl = &zspage->zsl;
307 
308 	rwsem_acquire_read(&zsl->dep_map, 0, 0, _RET_IP_);
309 
310 	spin_lock(&zsl->lock);
311 	zsl->cnt++;
312 	spin_unlock(&zsl->lock);
313 
314 	lock_acquired(&zsl->dep_map, _RET_IP_);
315 }
316 
317 static void zspage_read_unlock(struct zspage *zspage)
318 {
319 	struct zspage_lock *zsl = &zspage->zsl;
320 
321 	rwsem_release(&zsl->dep_map, _RET_IP_);
322 
323 	spin_lock(&zsl->lock);
324 	zsl->cnt--;
325 	spin_unlock(&zsl->lock);
326 }
327 
328 static __must_check bool zspage_write_trylock(struct zspage *zspage)
329 {
330 	struct zspage_lock *zsl = &zspage->zsl;
331 
332 	spin_lock(&zsl->lock);
333 	if (zsl->cnt == ZS_PAGE_UNLOCKED) {
334 		zsl->cnt = ZS_PAGE_WRLOCKED;
335 		rwsem_acquire(&zsl->dep_map, 0, 1, _RET_IP_);
336 		lock_acquired(&zsl->dep_map, _RET_IP_);
337 		return true;
338 	}
339 
340 	spin_unlock(&zsl->lock);
341 	return false;
342 }
343 
344 static void zspage_write_unlock(struct zspage *zspage)
345 {
346 	struct zspage_lock *zsl = &zspage->zsl;
347 
348 	rwsem_release(&zsl->dep_map, _RET_IP_);
349 
350 	zsl->cnt = ZS_PAGE_UNLOCKED;
351 	spin_unlock(&zsl->lock);
352 }
353 
354 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
355 static void SetZsHugePage(struct zspage *zspage)
356 {
357 	zspage->huge = 1;
358 }
359 
360 static bool ZsHugePage(struct zspage *zspage)
361 {
362 	return zspage->huge;
363 }
364 
365 #ifdef CONFIG_COMPACTION
366 static void kick_deferred_free(struct zs_pool *pool);
367 static void init_deferred_free(struct zs_pool *pool);
368 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
369 #else
370 static void kick_deferred_free(struct zs_pool *pool) {}
371 static void init_deferred_free(struct zs_pool *pool) {}
372 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
373 #endif
374 
375 static unsigned long cache_alloc_handle(gfp_t gfp)
376 {
377 	gfp = gfp & ~(__GFP_HIGHMEM | __GFP_MOVABLE);
378 
379 	return (unsigned long)kmem_cache_alloc(handle_cachep, gfp);
380 }
381 
382 static void cache_free_handle(unsigned long handle)
383 {
384 	kmem_cache_free(handle_cachep, (void *)handle);
385 }
386 
387 static struct zspage *cache_alloc_zspage(gfp_t gfp)
388 {
389 	gfp = gfp & ~(__GFP_HIGHMEM | __GFP_MOVABLE);
390 
391 	return kmem_cache_zalloc(zspage_cachep, gfp);
392 }
393 
394 static void cache_free_zspage(struct zspage *zspage)
395 {
396 	kmem_cache_free(zspage_cachep, zspage);
397 }
398 
399 /* class->lock(which owns the handle) synchronizes races */
400 static void record_obj(unsigned long handle, unsigned long obj)
401 {
402 	*(unsigned long *)handle = obj;
403 }
404 
405 static inline bool __maybe_unused is_first_zpdesc(struct zpdesc *zpdesc)
406 {
407 	return PagePrivate(zpdesc_page(zpdesc));
408 }
409 
410 /* Protected by class->lock */
411 static inline int get_zspage_inuse(struct zspage *zspage)
412 {
413 	return zspage->inuse;
414 }
415 
416 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
417 {
418 	zspage->inuse += val;
419 }
420 
421 static struct zpdesc *get_first_zpdesc(struct zspage *zspage)
422 {
423 	struct zpdesc *first_zpdesc = zspage->first_zpdesc;
424 
425 	VM_BUG_ON_PAGE(!is_first_zpdesc(first_zpdesc), zpdesc_page(first_zpdesc));
426 	return first_zpdesc;
427 }
428 
429 #define FIRST_OBJ_PAGE_TYPE_MASK	0xffffff
430 
431 static inline unsigned int get_first_obj_offset(struct zpdesc *zpdesc)
432 {
433 	VM_WARN_ON_ONCE(!PageZsmalloc(zpdesc_page(zpdesc)));
434 	return zpdesc->first_obj_offset & FIRST_OBJ_PAGE_TYPE_MASK;
435 }
436 
437 static inline void set_first_obj_offset(struct zpdesc *zpdesc, unsigned int offset)
438 {
439 	/* With 24 bits available, we can support offsets into 16 MiB pages. */
440 	BUILD_BUG_ON(PAGE_SIZE > SZ_16M);
441 	VM_WARN_ON_ONCE(!PageZsmalloc(zpdesc_page(zpdesc)));
442 	VM_WARN_ON_ONCE(offset & ~FIRST_OBJ_PAGE_TYPE_MASK);
443 	zpdesc->first_obj_offset &= ~FIRST_OBJ_PAGE_TYPE_MASK;
444 	zpdesc->first_obj_offset |= offset & FIRST_OBJ_PAGE_TYPE_MASK;
445 }
446 
447 static inline unsigned int get_freeobj(struct zspage *zspage)
448 {
449 	return zspage->freeobj;
450 }
451 
452 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
453 {
454 	zspage->freeobj = obj;
455 }
456 
457 static struct size_class *zspage_class(struct zs_pool *pool,
458 				       struct zspage *zspage)
459 {
460 	return pool->size_class[zspage->class];
461 }
462 
463 /*
464  * zsmalloc divides the pool into various size classes where each
465  * class maintains a list of zspages where each zspage is divided
466  * into equal sized chunks. Each allocation falls into one of these
467  * classes depending on its size. This function returns index of the
468  * size class which has chunk size big enough to hold the given size.
469  */
470 static int get_size_class_index(int size)
471 {
472 	int idx = 0;
473 
474 	if (likely(size > ZS_MIN_ALLOC_SIZE))
475 		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
476 				ZS_SIZE_CLASS_DELTA);
477 
478 	return min_t(int, ZS_SIZE_CLASSES - 1, idx);
479 }
480 
481 static inline void class_stat_add(struct size_class *class, int type,
482 				  unsigned long cnt)
483 {
484 	class->stats.objs[type] += cnt;
485 }
486 
487 static inline void class_stat_sub(struct size_class *class, int type,
488 				  unsigned long cnt)
489 {
490 	class->stats.objs[type] -= cnt;
491 }
492 
493 static inline unsigned long class_stat_read(struct size_class *class, int type)
494 {
495 	return class->stats.objs[type];
496 }
497 
498 #ifdef CONFIG_ZSMALLOC_STAT
499 
500 static void __init zs_stat_init(void)
501 {
502 	if (!debugfs_initialized()) {
503 		pr_warn("debugfs not available, stat dir not created\n");
504 		return;
505 	}
506 
507 	zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
508 }
509 
510 static void __exit zs_stat_exit(void)
511 {
512 	debugfs_remove_recursive(zs_stat_root);
513 }
514 
515 static unsigned long zs_can_compact(struct size_class *class);
516 
517 static int zs_stats_size_show(struct seq_file *s, void *v)
518 {
519 	int i, fg;
520 	struct zs_pool *pool = s->private;
521 	struct size_class *class;
522 	int objs_per_zspage;
523 	unsigned long obj_allocated, obj_used, pages_used, freeable;
524 	unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
525 	unsigned long total_freeable = 0;
526 	unsigned long inuse_totals[NR_FULLNESS_GROUPS] = {0, };
527 
528 	seq_printf(s, " %5s %5s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %13s %10s %10s %16s %8s\n",
529 			"class", "size", "10%", "20%", "30%", "40%",
530 			"50%", "60%", "70%", "80%", "90%", "99%", "100%",
531 			"obj_allocated", "obj_used", "pages_used",
532 			"pages_per_zspage", "freeable");
533 
534 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
535 
536 		class = pool->size_class[i];
537 
538 		if (class->index != i)
539 			continue;
540 
541 		spin_lock(&class->lock);
542 
543 		seq_printf(s, " %5u %5u ", i, class->size);
544 		for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) {
545 			inuse_totals[fg] += class_stat_read(class, fg);
546 			seq_printf(s, "%9lu ", class_stat_read(class, fg));
547 		}
548 
549 		obj_allocated = class_stat_read(class, ZS_OBJS_ALLOCATED);
550 		obj_used = class_stat_read(class, ZS_OBJS_INUSE);
551 		freeable = zs_can_compact(class);
552 		spin_unlock(&class->lock);
553 
554 		objs_per_zspage = class->objs_per_zspage;
555 		pages_used = obj_allocated / objs_per_zspage *
556 				class->pages_per_zspage;
557 
558 		seq_printf(s, "%13lu %10lu %10lu %16d %8lu\n",
559 			   obj_allocated, obj_used, pages_used,
560 			   class->pages_per_zspage, freeable);
561 
562 		total_objs += obj_allocated;
563 		total_used_objs += obj_used;
564 		total_pages += pages_used;
565 		total_freeable += freeable;
566 	}
567 
568 	seq_puts(s, "\n");
569 	seq_printf(s, " %5s %5s ", "Total", "");
570 
571 	for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++)
572 		seq_printf(s, "%9lu ", inuse_totals[fg]);
573 
574 	seq_printf(s, "%13lu %10lu %10lu %16s %8lu\n",
575 		   total_objs, total_used_objs, total_pages, "",
576 		   total_freeable);
577 
578 	return 0;
579 }
580 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
581 
582 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
583 {
584 	if (!zs_stat_root) {
585 		pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
586 		return;
587 	}
588 
589 	pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
590 
591 	debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
592 			    &zs_stats_size_fops);
593 }
594 
595 static void zs_pool_stat_destroy(struct zs_pool *pool)
596 {
597 	debugfs_remove_recursive(pool->stat_dentry);
598 }
599 
600 #else /* CONFIG_ZSMALLOC_STAT */
601 static void __init zs_stat_init(void)
602 {
603 }
604 
605 static void __exit zs_stat_exit(void)
606 {
607 }
608 
609 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
610 {
611 }
612 
613 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
614 {
615 }
616 #endif
617 
618 
619 /*
620  * For each size class, zspages are divided into different groups
621  * depending on their usage ratio. This function returns fullness
622  * status of the given page.
623  */
624 static int get_fullness_group(struct size_class *class, struct zspage *zspage)
625 {
626 	int inuse, objs_per_zspage, ratio;
627 
628 	inuse = get_zspage_inuse(zspage);
629 	objs_per_zspage = class->objs_per_zspage;
630 
631 	if (inuse == 0)
632 		return ZS_INUSE_RATIO_0;
633 	if (inuse == objs_per_zspage)
634 		return ZS_INUSE_RATIO_100;
635 
636 	ratio = 100 * inuse / objs_per_zspage;
637 	/*
638 	 * Take integer division into consideration: a page with one inuse
639 	 * object out of 127 possible, will end up having 0 usage ratio,
640 	 * which is wrong as it belongs in ZS_INUSE_RATIO_10 fullness group.
641 	 */
642 	return ratio / 10 + 1;
643 }
644 
645 /*
646  * Each size class maintains various freelists and zspages are assigned
647  * to one of these freelists based on the number of live objects they
648  * have. This functions inserts the given zspage into the freelist
649  * identified by <class, fullness_group>.
650  */
651 static void insert_zspage(struct size_class *class,
652 				struct zspage *zspage,
653 				int fullness)
654 {
655 	class_stat_add(class, fullness, 1);
656 	list_add(&zspage->list, &class->fullness_list[fullness]);
657 	zspage->fullness = fullness;
658 }
659 
660 /*
661  * This function removes the given zspage from the freelist identified
662  * by <class, fullness_group>.
663  */
664 static void remove_zspage(struct size_class *class, struct zspage *zspage)
665 {
666 	int fullness = zspage->fullness;
667 
668 	VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
669 
670 	list_del_init(&zspage->list);
671 	class_stat_sub(class, fullness, 1);
672 }
673 
674 /*
675  * Each size class maintains zspages in different fullness groups depending
676  * on the number of live objects they contain. When allocating or freeing
677  * objects, the fullness status of the page can change, for instance, from
678  * INUSE_RATIO_80 to INUSE_RATIO_70 when freeing an object. This function
679  * checks if such a status change has occurred for the given page and
680  * accordingly moves the page from the list of the old fullness group to that
681  * of the new fullness group.
682  */
683 static int fix_fullness_group(struct size_class *class, struct zspage *zspage)
684 {
685 	int newfg;
686 
687 	newfg = get_fullness_group(class, zspage);
688 	if (newfg == zspage->fullness)
689 		goto out;
690 
691 	remove_zspage(class, zspage);
692 	insert_zspage(class, zspage, newfg);
693 out:
694 	return newfg;
695 }
696 
697 static struct zspage *get_zspage(struct zpdesc *zpdesc)
698 {
699 	struct zspage *zspage = zpdesc->zspage;
700 
701 	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
702 	return zspage;
703 }
704 
705 static struct zpdesc *get_next_zpdesc(struct zpdesc *zpdesc)
706 {
707 	struct zspage *zspage = get_zspage(zpdesc);
708 
709 	if (unlikely(ZsHugePage(zspage)))
710 		return NULL;
711 
712 	return zpdesc->next;
713 }
714 
715 /**
716  * obj_to_location - get (<zpdesc>, <obj_idx>) from encoded object value
717  * @obj: the encoded object value
718  * @zpdesc: zpdesc object resides in zspage
719  * @obj_idx: object index
720  */
721 static void obj_to_location(unsigned long obj, struct zpdesc **zpdesc,
722 				unsigned int *obj_idx)
723 {
724 	*zpdesc = pfn_zpdesc(obj >> OBJ_INDEX_BITS);
725 	*obj_idx = (obj & OBJ_INDEX_MASK);
726 }
727 
728 static void obj_to_zpdesc(unsigned long obj, struct zpdesc **zpdesc)
729 {
730 	*zpdesc = pfn_zpdesc(obj >> OBJ_INDEX_BITS);
731 }
732 
733 /**
734  * location_to_obj - get obj value encoded from (<zpdesc>, <obj_idx>)
735  * @zpdesc: zpdesc object resides in zspage
736  * @obj_idx: object index
737  */
738 static unsigned long location_to_obj(struct zpdesc *zpdesc, unsigned int obj_idx)
739 {
740 	unsigned long obj;
741 
742 	obj = zpdesc_pfn(zpdesc) << OBJ_INDEX_BITS;
743 	obj |= obj_idx & OBJ_INDEX_MASK;
744 
745 	return obj;
746 }
747 
748 static unsigned long handle_to_obj(unsigned long handle)
749 {
750 	return *(unsigned long *)handle;
751 }
752 
753 static inline bool obj_allocated(struct zpdesc *zpdesc, void *obj,
754 				 unsigned long *phandle)
755 {
756 	unsigned long handle;
757 	struct zspage *zspage = get_zspage(zpdesc);
758 
759 	if (unlikely(ZsHugePage(zspage))) {
760 		VM_BUG_ON_PAGE(!is_first_zpdesc(zpdesc), zpdesc_page(zpdesc));
761 		handle = zpdesc->handle;
762 	} else
763 		handle = *(unsigned long *)obj;
764 
765 	if (!(handle & OBJ_ALLOCATED_TAG))
766 		return false;
767 
768 	/* Clear all tags before returning the handle */
769 	*phandle = handle & ~OBJ_TAG_MASK;
770 	return true;
771 }
772 
773 static void reset_zpdesc(struct zpdesc *zpdesc)
774 {
775 	struct page *page = zpdesc_page(zpdesc);
776 
777 	ClearPagePrivate(page);
778 	zpdesc->zspage = NULL;
779 	zpdesc->next = NULL;
780 	/* PageZsmalloc is sticky until the page is freed to the buddy. */
781 }
782 
783 static int trylock_zspage(struct zspage *zspage)
784 {
785 	struct zpdesc *cursor, *fail;
786 
787 	for (cursor = get_first_zpdesc(zspage); cursor != NULL; cursor =
788 					get_next_zpdesc(cursor)) {
789 		if (!zpdesc_trylock(cursor)) {
790 			fail = cursor;
791 			goto unlock;
792 		}
793 	}
794 
795 	return 1;
796 unlock:
797 	for (cursor = get_first_zpdesc(zspage); cursor != fail; cursor =
798 					get_next_zpdesc(cursor))
799 		zpdesc_unlock(cursor);
800 
801 	return 0;
802 }
803 
804 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
805 				struct zspage *zspage)
806 {
807 	struct zpdesc *zpdesc, *next;
808 
809 	assert_spin_locked(&class->lock);
810 
811 	VM_BUG_ON(get_zspage_inuse(zspage));
812 	VM_BUG_ON(zspage->fullness != ZS_INUSE_RATIO_0);
813 
814 	next = zpdesc = get_first_zpdesc(zspage);
815 	do {
816 		VM_BUG_ON_PAGE(!zpdesc_is_locked(zpdesc), zpdesc_page(zpdesc));
817 		next = get_next_zpdesc(zpdesc);
818 		reset_zpdesc(zpdesc);
819 		zpdesc_unlock(zpdesc);
820 		zpdesc_dec_zone_page_state(zpdesc);
821 		zpdesc_put(zpdesc);
822 		zpdesc = next;
823 	} while (zpdesc != NULL);
824 
825 	cache_free_zspage(zspage);
826 
827 	class_stat_sub(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
828 	atomic_long_sub(class->pages_per_zspage, &pool->pages_allocated);
829 }
830 
831 static void free_zspage(struct zs_pool *pool, struct size_class *class,
832 				struct zspage *zspage)
833 {
834 	VM_BUG_ON(get_zspage_inuse(zspage));
835 	VM_BUG_ON(list_empty(&zspage->list));
836 
837 	/*
838 	 * Since zs_free couldn't be sleepable, this function cannot call
839 	 * lock_page. The page locks trylock_zspage got will be released
840 	 * by __free_zspage.
841 	 */
842 	if (!trylock_zspage(zspage)) {
843 		kick_deferred_free(pool);
844 		return;
845 	}
846 
847 	remove_zspage(class, zspage);
848 	__free_zspage(pool, class, zspage);
849 }
850 
851 /* Initialize a newly allocated zspage */
852 static void init_zspage(struct size_class *class, struct zspage *zspage)
853 {
854 	unsigned int freeobj = 1;
855 	unsigned long off = 0;
856 	struct zpdesc *zpdesc = get_first_zpdesc(zspage);
857 
858 	while (zpdesc) {
859 		struct zpdesc *next_zpdesc;
860 		struct link_free *link;
861 		void *vaddr;
862 
863 		set_first_obj_offset(zpdesc, off);
864 
865 		vaddr = kmap_local_zpdesc(zpdesc);
866 		link = (struct link_free *)vaddr + off / sizeof(*link);
867 
868 		while ((off += class->size) < PAGE_SIZE) {
869 			link->next = freeobj++ << OBJ_TAG_BITS;
870 			link += class->size / sizeof(*link);
871 		}
872 
873 		/*
874 		 * We now come to the last (full or partial) object on this
875 		 * page, which must point to the first object on the next
876 		 * page (if present)
877 		 */
878 		next_zpdesc = get_next_zpdesc(zpdesc);
879 		if (next_zpdesc) {
880 			link->next = freeobj++ << OBJ_TAG_BITS;
881 		} else {
882 			/*
883 			 * Reset OBJ_TAG_BITS bit to last link to tell
884 			 * whether it's allocated object or not.
885 			 */
886 			link->next = -1UL << OBJ_TAG_BITS;
887 		}
888 		kunmap_local(vaddr);
889 		zpdesc = next_zpdesc;
890 		off %= PAGE_SIZE;
891 	}
892 
893 	set_freeobj(zspage, 0);
894 }
895 
896 static void create_page_chain(struct size_class *class, struct zspage *zspage,
897 				struct zpdesc *zpdescs[])
898 {
899 	int i;
900 	struct zpdesc *zpdesc;
901 	struct zpdesc *prev_zpdesc = NULL;
902 	int nr_zpdescs = class->pages_per_zspage;
903 
904 	/*
905 	 * Allocate individual pages and link them together as:
906 	 * 1. all pages are linked together using zpdesc->next
907 	 * 2. each sub-page point to zspage using zpdesc->zspage
908 	 *
909 	 * we set PG_private to identify the first zpdesc (i.e. no other zpdesc
910 	 * has this flag set).
911 	 */
912 	for (i = 0; i < nr_zpdescs; i++) {
913 		zpdesc = zpdescs[i];
914 		zpdesc->zspage = zspage;
915 		zpdesc->next = NULL;
916 		if (i == 0) {
917 			zspage->first_zpdesc = zpdesc;
918 			zpdesc_set_first(zpdesc);
919 			if (unlikely(class->objs_per_zspage == 1 &&
920 					class->pages_per_zspage == 1))
921 				SetZsHugePage(zspage);
922 		} else {
923 			prev_zpdesc->next = zpdesc;
924 		}
925 		prev_zpdesc = zpdesc;
926 	}
927 }
928 
929 /*
930  * Allocate a zspage for the given size class
931  */
932 static struct zspage *alloc_zspage(struct zs_pool *pool,
933 				   struct size_class *class,
934 				   gfp_t gfp, const int nid)
935 {
936 	int i;
937 	struct zpdesc *zpdescs[ZS_MAX_PAGES_PER_ZSPAGE];
938 	struct zspage *zspage = cache_alloc_zspage(gfp);
939 
940 	if (!zspage)
941 		return NULL;
942 
943 	if (!IS_ENABLED(CONFIG_COMPACTION))
944 		gfp &= ~__GFP_MOVABLE;
945 
946 	zspage->magic = ZSPAGE_MAGIC;
947 	zspage->pool = pool;
948 	zspage->class = class->index;
949 	zspage_lock_init(zspage);
950 
951 	for (i = 0; i < class->pages_per_zspage; i++) {
952 		struct zpdesc *zpdesc;
953 
954 		zpdesc = alloc_zpdesc(gfp, nid);
955 		if (!zpdesc) {
956 			while (--i >= 0) {
957 				zpdesc_dec_zone_page_state(zpdescs[i]);
958 				free_zpdesc(zpdescs[i]);
959 			}
960 			cache_free_zspage(zspage);
961 			return NULL;
962 		}
963 		__zpdesc_set_zsmalloc(zpdesc);
964 
965 		zpdesc_inc_zone_page_state(zpdesc);
966 		zpdescs[i] = zpdesc;
967 	}
968 
969 	create_page_chain(class, zspage, zpdescs);
970 	init_zspage(class, zspage);
971 
972 	return zspage;
973 }
974 
975 static struct zspage *find_get_zspage(struct size_class *class)
976 {
977 	int i;
978 	struct zspage *zspage;
979 
980 	for (i = ZS_INUSE_RATIO_99; i >= ZS_INUSE_RATIO_0; i--) {
981 		zspage = list_first_entry_or_null(&class->fullness_list[i],
982 						  struct zspage, list);
983 		if (zspage)
984 			break;
985 	}
986 
987 	return zspage;
988 }
989 
990 static bool can_merge(struct size_class *prev, int pages_per_zspage,
991 					int objs_per_zspage)
992 {
993 	if (prev->pages_per_zspage == pages_per_zspage &&
994 		prev->objs_per_zspage == objs_per_zspage)
995 		return true;
996 
997 	return false;
998 }
999 
1000 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1001 {
1002 	return get_zspage_inuse(zspage) == class->objs_per_zspage;
1003 }
1004 
1005 static bool zspage_empty(struct zspage *zspage)
1006 {
1007 	return get_zspage_inuse(zspage) == 0;
1008 }
1009 
1010 /**
1011  * zs_lookup_class_index() - Returns index of the zsmalloc &size_class
1012  * that hold objects of the provided size.
1013  * @pool: zsmalloc pool to use
1014  * @size: object size
1015  *
1016  * Context: Any context.
1017  *
1018  * Return: the index of the zsmalloc &size_class that hold objects of the
1019  * provided size.
1020  */
1021 unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size)
1022 {
1023 	struct size_class *class;
1024 
1025 	class = pool->size_class[get_size_class_index(size)];
1026 
1027 	return class->index;
1028 }
1029 EXPORT_SYMBOL_GPL(zs_lookup_class_index);
1030 
1031 unsigned long zs_get_total_pages(struct zs_pool *pool)
1032 {
1033 	return atomic_long_read(&pool->pages_allocated);
1034 }
1035 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1036 
1037 void *zs_obj_read_begin(struct zs_pool *pool, unsigned long handle,
1038 			size_t mem_len, void *local_copy)
1039 {
1040 	struct zspage *zspage;
1041 	struct zpdesc *zpdesc;
1042 	unsigned long obj, off;
1043 	unsigned int obj_idx;
1044 	struct size_class *class;
1045 	void *addr;
1046 
1047 	/* Guarantee we can get zspage from handle safely */
1048 	read_lock(&pool->lock);
1049 	obj = handle_to_obj(handle);
1050 	obj_to_location(obj, &zpdesc, &obj_idx);
1051 	zspage = get_zspage(zpdesc);
1052 
1053 	/* Make sure migration doesn't move any pages in this zspage */
1054 	zspage_read_lock(zspage);
1055 	read_unlock(&pool->lock);
1056 
1057 	class = zspage_class(pool, zspage);
1058 	off = offset_in_page(class->size * obj_idx);
1059 
1060 	if (!ZsHugePage(zspage))
1061 		off += ZS_HANDLE_SIZE;
1062 
1063 	if (off + mem_len <= PAGE_SIZE) {
1064 		/* this object is contained entirely within a page */
1065 		addr = kmap_local_zpdesc(zpdesc);
1066 		addr += off;
1067 	} else {
1068 		size_t sizes[2];
1069 
1070 		/* this object spans two pages */
1071 		sizes[0] = PAGE_SIZE - off;
1072 		sizes[1] = mem_len - sizes[0];
1073 		addr = local_copy;
1074 
1075 		memcpy_from_page(addr, zpdesc_page(zpdesc),
1076 				 off, sizes[0]);
1077 		zpdesc = get_next_zpdesc(zpdesc);
1078 		memcpy_from_page(addr + sizes[0],
1079 				 zpdesc_page(zpdesc),
1080 				 0, sizes[1]);
1081 	}
1082 
1083 	return addr;
1084 }
1085 EXPORT_SYMBOL_GPL(zs_obj_read_begin);
1086 
1087 void zs_obj_read_end(struct zs_pool *pool, unsigned long handle,
1088 		     size_t mem_len, void *handle_mem)
1089 {
1090 	struct zspage *zspage;
1091 	struct zpdesc *zpdesc;
1092 	unsigned long obj, off;
1093 	unsigned int obj_idx;
1094 	struct size_class *class;
1095 
1096 	obj = handle_to_obj(handle);
1097 	obj_to_location(obj, &zpdesc, &obj_idx);
1098 	zspage = get_zspage(zpdesc);
1099 	class = zspage_class(pool, zspage);
1100 	off = offset_in_page(class->size * obj_idx);
1101 
1102 	if (!ZsHugePage(zspage))
1103 		off += ZS_HANDLE_SIZE;
1104 
1105 	if (off + mem_len <= PAGE_SIZE) {
1106 		handle_mem -= off;
1107 		kunmap_local(handle_mem);
1108 	}
1109 
1110 	zspage_read_unlock(zspage);
1111 }
1112 EXPORT_SYMBOL_GPL(zs_obj_read_end);
1113 
1114 void zs_obj_read_sg_begin(struct zs_pool *pool, unsigned long handle,
1115 			  struct scatterlist *sg, size_t mem_len)
1116 {
1117 	struct zspage *zspage;
1118 	struct zpdesc *zpdesc;
1119 	unsigned long obj, off;
1120 	unsigned int obj_idx;
1121 	struct size_class *class;
1122 
1123 	/* Guarantee we can get zspage from handle safely */
1124 	read_lock(&pool->lock);
1125 	obj = handle_to_obj(handle);
1126 	obj_to_location(obj, &zpdesc, &obj_idx);
1127 	zspage = get_zspage(zpdesc);
1128 
1129 	/* Make sure migration doesn't move any pages in this zspage */
1130 	zspage_read_lock(zspage);
1131 	read_unlock(&pool->lock);
1132 
1133 	class = zspage_class(pool, zspage);
1134 	off = offset_in_page(class->size * obj_idx);
1135 
1136 	if (!ZsHugePage(zspage))
1137 		off += ZS_HANDLE_SIZE;
1138 
1139 	if (off + mem_len <= PAGE_SIZE) {
1140 		/* this object is contained entirely within a page */
1141 		sg_init_table(sg, 1);
1142 		sg_set_page(sg, zpdesc_page(zpdesc), mem_len, off);
1143 	} else {
1144 		size_t sizes[2];
1145 
1146 		/* this object spans two pages */
1147 		sizes[0] = PAGE_SIZE - off;
1148 		sizes[1] = mem_len - sizes[0];
1149 
1150 		sg_init_table(sg, 2);
1151 		sg_set_page(sg, zpdesc_page(zpdesc), sizes[0], off);
1152 
1153 		zpdesc = get_next_zpdesc(zpdesc);
1154 		sg = sg_next(sg);
1155 
1156 		sg_set_page(sg, zpdesc_page(zpdesc), sizes[1], 0);
1157 	}
1158 }
1159 EXPORT_SYMBOL_GPL(zs_obj_read_sg_begin);
1160 
1161 void zs_obj_read_sg_end(struct zs_pool *pool, unsigned long handle)
1162 {
1163 	struct zspage *zspage;
1164 	struct zpdesc *zpdesc;
1165 	unsigned long obj;
1166 	unsigned int obj_idx;
1167 
1168 	obj = handle_to_obj(handle);
1169 	obj_to_location(obj, &zpdesc, &obj_idx);
1170 	zspage = get_zspage(zpdesc);
1171 
1172 	zspage_read_unlock(zspage);
1173 }
1174 EXPORT_SYMBOL_GPL(zs_obj_read_sg_end);
1175 
1176 void zs_obj_write(struct zs_pool *pool, unsigned long handle,
1177 		  void *handle_mem, size_t mem_len)
1178 {
1179 	struct zspage *zspage;
1180 	struct zpdesc *zpdesc;
1181 	unsigned long obj, off;
1182 	unsigned int obj_idx;
1183 	struct size_class *class;
1184 
1185 	/* Guarantee we can get zspage from handle safely */
1186 	read_lock(&pool->lock);
1187 	obj = handle_to_obj(handle);
1188 	obj_to_location(obj, &zpdesc, &obj_idx);
1189 	zspage = get_zspage(zpdesc);
1190 
1191 	/* Make sure migration doesn't move any pages in this zspage */
1192 	zspage_read_lock(zspage);
1193 	read_unlock(&pool->lock);
1194 
1195 	class = zspage_class(pool, zspage);
1196 	off = offset_in_page(class->size * obj_idx);
1197 
1198 	if (!ZsHugePage(zspage))
1199 		off += ZS_HANDLE_SIZE;
1200 
1201 	if (off + mem_len <= PAGE_SIZE) {
1202 		/* this object is contained entirely within a page */
1203 		void *dst = kmap_local_zpdesc(zpdesc);
1204 
1205 		memcpy(dst + off, handle_mem, mem_len);
1206 		kunmap_local(dst);
1207 	} else {
1208 		/* this object spans two pages */
1209 		size_t sizes[2];
1210 
1211 		sizes[0] = PAGE_SIZE - off;
1212 		sizes[1] = mem_len - sizes[0];
1213 
1214 		memcpy_to_page(zpdesc_page(zpdesc), off,
1215 			       handle_mem, sizes[0]);
1216 		zpdesc = get_next_zpdesc(zpdesc);
1217 		memcpy_to_page(zpdesc_page(zpdesc), 0,
1218 			       handle_mem + sizes[0], sizes[1]);
1219 	}
1220 
1221 	zspage_read_unlock(zspage);
1222 }
1223 EXPORT_SYMBOL_GPL(zs_obj_write);
1224 
1225 /**
1226  * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1227  *                        zsmalloc &size_class.
1228  * @pool: zsmalloc pool to use
1229  *
1230  * The function returns the size of the first huge class - any object of equal
1231  * or bigger size will be stored in zspage consisting of a single physical
1232  * page.
1233  *
1234  * Context: Any context.
1235  *
1236  * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1237  */
1238 size_t zs_huge_class_size(struct zs_pool *pool)
1239 {
1240 	return huge_class_size;
1241 }
1242 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1243 
1244 static unsigned long obj_malloc(struct zs_pool *pool,
1245 				struct zspage *zspage, unsigned long handle)
1246 {
1247 	int i, nr_zpdesc, offset;
1248 	unsigned long obj;
1249 	struct link_free *link;
1250 	struct size_class *class;
1251 
1252 	struct zpdesc *m_zpdesc;
1253 	unsigned long m_offset;
1254 	void *vaddr;
1255 
1256 	class = pool->size_class[zspage->class];
1257 	obj = get_freeobj(zspage);
1258 
1259 	offset = obj * class->size;
1260 	nr_zpdesc = offset >> PAGE_SHIFT;
1261 	m_offset = offset_in_page(offset);
1262 	m_zpdesc = get_first_zpdesc(zspage);
1263 
1264 	for (i = 0; i < nr_zpdesc; i++)
1265 		m_zpdesc = get_next_zpdesc(m_zpdesc);
1266 
1267 	vaddr = kmap_local_zpdesc(m_zpdesc);
1268 	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1269 	set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1270 	if (likely(!ZsHugePage(zspage)))
1271 		/* record handle in the header of allocated chunk */
1272 		link->handle = handle | OBJ_ALLOCATED_TAG;
1273 	else
1274 		zspage->first_zpdesc->handle = handle | OBJ_ALLOCATED_TAG;
1275 
1276 	kunmap_local(vaddr);
1277 	mod_zspage_inuse(zspage, 1);
1278 
1279 	obj = location_to_obj(m_zpdesc, obj);
1280 	record_obj(handle, obj);
1281 
1282 	return obj;
1283 }
1284 
1285 
1286 /**
1287  * zs_malloc - Allocate block of given size from pool.
1288  * @pool: pool to allocate from
1289  * @size: size of block to allocate
1290  * @gfp: gfp flags when allocating object
1291  * @nid: The preferred node id to allocate new zspage (if needed)
1292  *
1293  * On success, handle to the allocated object is returned,
1294  * otherwise an ERR_PTR().
1295  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1296  */
1297 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp,
1298 			const int nid)
1299 {
1300 	unsigned long handle;
1301 	struct size_class *class;
1302 	int newfg;
1303 	struct zspage *zspage;
1304 
1305 	if (unlikely(!size))
1306 		return (unsigned long)ERR_PTR(-EINVAL);
1307 
1308 	if (unlikely(size > ZS_MAX_ALLOC_SIZE))
1309 		return (unsigned long)ERR_PTR(-ENOSPC);
1310 
1311 	handle = cache_alloc_handle(gfp);
1312 	if (!handle)
1313 		return (unsigned long)ERR_PTR(-ENOMEM);
1314 
1315 	/* extra space in chunk to keep the handle */
1316 	size += ZS_HANDLE_SIZE;
1317 	class = pool->size_class[get_size_class_index(size)];
1318 
1319 	/* class->lock effectively protects the zpage migration */
1320 	spin_lock(&class->lock);
1321 	zspage = find_get_zspage(class);
1322 	if (likely(zspage)) {
1323 		obj_malloc(pool, zspage, handle);
1324 		/* Now move the zspage to another fullness group, if required */
1325 		fix_fullness_group(class, zspage);
1326 		class_stat_add(class, ZS_OBJS_INUSE, 1);
1327 
1328 		goto out;
1329 	}
1330 
1331 	spin_unlock(&class->lock);
1332 
1333 	zspage = alloc_zspage(pool, class, gfp, nid);
1334 	if (!zspage) {
1335 		cache_free_handle(handle);
1336 		return (unsigned long)ERR_PTR(-ENOMEM);
1337 	}
1338 
1339 	spin_lock(&class->lock);
1340 	obj_malloc(pool, zspage, handle);
1341 	newfg = get_fullness_group(class, zspage);
1342 	insert_zspage(class, zspage, newfg);
1343 	atomic_long_add(class->pages_per_zspage, &pool->pages_allocated);
1344 	class_stat_add(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
1345 	class_stat_add(class, ZS_OBJS_INUSE, 1);
1346 
1347 	/* We completely set up zspage so mark them as movable */
1348 	SetZsPageMovable(pool, zspage);
1349 out:
1350 	spin_unlock(&class->lock);
1351 
1352 	return handle;
1353 }
1354 EXPORT_SYMBOL_GPL(zs_malloc);
1355 
1356 static void obj_free(int class_size, unsigned long obj)
1357 {
1358 	struct link_free *link;
1359 	struct zspage *zspage;
1360 	struct zpdesc *f_zpdesc;
1361 	unsigned long f_offset;
1362 	unsigned int f_objidx;
1363 	void *vaddr;
1364 
1365 
1366 	obj_to_location(obj, &f_zpdesc, &f_objidx);
1367 	f_offset = offset_in_page(class_size * f_objidx);
1368 	zspage = get_zspage(f_zpdesc);
1369 
1370 	vaddr = kmap_local_zpdesc(f_zpdesc);
1371 	link = (struct link_free *)(vaddr + f_offset);
1372 
1373 	/* Insert this object in containing zspage's freelist */
1374 	if (likely(!ZsHugePage(zspage)))
1375 		link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1376 	else
1377 		f_zpdesc->handle = 0;
1378 	set_freeobj(zspage, f_objidx);
1379 
1380 	kunmap_local(vaddr);
1381 	mod_zspage_inuse(zspage, -1);
1382 }
1383 
1384 void zs_free(struct zs_pool *pool, unsigned long handle)
1385 {
1386 	struct zspage *zspage;
1387 	struct zpdesc *f_zpdesc;
1388 	unsigned long obj;
1389 	struct size_class *class;
1390 	int fullness;
1391 
1392 	if (IS_ERR_OR_NULL((void *)handle))
1393 		return;
1394 
1395 	/*
1396 	 * The pool->lock protects the race with zpage's migration
1397 	 * so it's safe to get the page from handle.
1398 	 */
1399 	read_lock(&pool->lock);
1400 	obj = handle_to_obj(handle);
1401 	obj_to_zpdesc(obj, &f_zpdesc);
1402 	zspage = get_zspage(f_zpdesc);
1403 	class = zspage_class(pool, zspage);
1404 	spin_lock(&class->lock);
1405 	read_unlock(&pool->lock);
1406 
1407 	class_stat_sub(class, ZS_OBJS_INUSE, 1);
1408 	obj_free(class->size, obj);
1409 
1410 	fullness = fix_fullness_group(class, zspage);
1411 	if (fullness == ZS_INUSE_RATIO_0)
1412 		free_zspage(pool, class, zspage);
1413 
1414 	spin_unlock(&class->lock);
1415 	cache_free_handle(handle);
1416 }
1417 EXPORT_SYMBOL_GPL(zs_free);
1418 
1419 static void zs_object_copy(struct size_class *class, unsigned long dst,
1420 				unsigned long src)
1421 {
1422 	struct zpdesc *s_zpdesc, *d_zpdesc;
1423 	unsigned int s_objidx, d_objidx;
1424 	unsigned long s_off, d_off;
1425 	void *s_addr, *d_addr;
1426 	int s_size, d_size, size;
1427 	int written = 0;
1428 
1429 	s_size = d_size = class->size;
1430 
1431 	obj_to_location(src, &s_zpdesc, &s_objidx);
1432 	obj_to_location(dst, &d_zpdesc, &d_objidx);
1433 
1434 	s_off = offset_in_page(class->size * s_objidx);
1435 	d_off = offset_in_page(class->size * d_objidx);
1436 
1437 	if (s_off + class->size > PAGE_SIZE)
1438 		s_size = PAGE_SIZE - s_off;
1439 
1440 	if (d_off + class->size > PAGE_SIZE)
1441 		d_size = PAGE_SIZE - d_off;
1442 
1443 	s_addr = kmap_local_zpdesc(s_zpdesc);
1444 	d_addr = kmap_local_zpdesc(d_zpdesc);
1445 
1446 	while (1) {
1447 		size = min(s_size, d_size);
1448 		memcpy(d_addr + d_off, s_addr + s_off, size);
1449 		written += size;
1450 
1451 		if (written == class->size)
1452 			break;
1453 
1454 		s_off += size;
1455 		s_size -= size;
1456 		d_off += size;
1457 		d_size -= size;
1458 
1459 		/*
1460 		 * Calling kunmap_local(d_addr) is necessary. kunmap_local()
1461 		 * calls must occurs in reverse order of calls to kmap_local_page().
1462 		 * So, to call kunmap_local(s_addr) we should first call
1463 		 * kunmap_local(d_addr). For more details see
1464 		 * Documentation/mm/highmem.rst.
1465 		 */
1466 		if (s_off >= PAGE_SIZE) {
1467 			kunmap_local(d_addr);
1468 			kunmap_local(s_addr);
1469 			s_zpdesc = get_next_zpdesc(s_zpdesc);
1470 			s_addr = kmap_local_zpdesc(s_zpdesc);
1471 			d_addr = kmap_local_zpdesc(d_zpdesc);
1472 			s_size = class->size - written;
1473 			s_off = 0;
1474 		}
1475 
1476 		if (d_off >= PAGE_SIZE) {
1477 			kunmap_local(d_addr);
1478 			d_zpdesc = get_next_zpdesc(d_zpdesc);
1479 			d_addr = kmap_local_zpdesc(d_zpdesc);
1480 			d_size = class->size - written;
1481 			d_off = 0;
1482 		}
1483 	}
1484 
1485 	kunmap_local(d_addr);
1486 	kunmap_local(s_addr);
1487 }
1488 
1489 /*
1490  * Find alloced object in zspage from index object and
1491  * return handle.
1492  */
1493 static unsigned long find_alloced_obj(struct size_class *class,
1494 				      struct zpdesc *zpdesc, int *obj_idx)
1495 {
1496 	unsigned int offset;
1497 	int index = *obj_idx;
1498 	unsigned long handle = 0;
1499 	void *addr = kmap_local_zpdesc(zpdesc);
1500 
1501 	offset = get_first_obj_offset(zpdesc);
1502 	offset += class->size * index;
1503 
1504 	while (offset < PAGE_SIZE) {
1505 		if (obj_allocated(zpdesc, addr + offset, &handle))
1506 			break;
1507 
1508 		offset += class->size;
1509 		index++;
1510 	}
1511 
1512 	kunmap_local(addr);
1513 
1514 	*obj_idx = index;
1515 
1516 	return handle;
1517 }
1518 
1519 static void migrate_zspage(struct zs_pool *pool, struct zspage *src_zspage,
1520 			   struct zspage *dst_zspage)
1521 {
1522 	unsigned long used_obj, free_obj;
1523 	unsigned long handle;
1524 	int obj_idx = 0;
1525 	struct zpdesc *s_zpdesc = get_first_zpdesc(src_zspage);
1526 	struct size_class *class = pool->size_class[src_zspage->class];
1527 
1528 	while (1) {
1529 		handle = find_alloced_obj(class, s_zpdesc, &obj_idx);
1530 		if (!handle) {
1531 			s_zpdesc = get_next_zpdesc(s_zpdesc);
1532 			if (!s_zpdesc)
1533 				break;
1534 			obj_idx = 0;
1535 			continue;
1536 		}
1537 
1538 		used_obj = handle_to_obj(handle);
1539 		free_obj = obj_malloc(pool, dst_zspage, handle);
1540 		zs_object_copy(class, free_obj, used_obj);
1541 		obj_idx++;
1542 		obj_free(class->size, used_obj);
1543 
1544 		/* Stop if there is no more space */
1545 		if (zspage_full(class, dst_zspage))
1546 			break;
1547 
1548 		/* Stop if there are no more objects to migrate */
1549 		if (zspage_empty(src_zspage))
1550 			break;
1551 	}
1552 }
1553 
1554 static struct zspage *isolate_src_zspage(struct size_class *class)
1555 {
1556 	struct zspage *zspage;
1557 	int fg;
1558 
1559 	for (fg = ZS_INUSE_RATIO_10; fg <= ZS_INUSE_RATIO_99; fg++) {
1560 		zspage = list_first_entry_or_null(&class->fullness_list[fg],
1561 						  struct zspage, list);
1562 		if (zspage) {
1563 			remove_zspage(class, zspage);
1564 			return zspage;
1565 		}
1566 	}
1567 
1568 	return zspage;
1569 }
1570 
1571 static struct zspage *isolate_dst_zspage(struct size_class *class)
1572 {
1573 	struct zspage *zspage;
1574 	int fg;
1575 
1576 	for (fg = ZS_INUSE_RATIO_99; fg >= ZS_INUSE_RATIO_10; fg--) {
1577 		zspage = list_first_entry_or_null(&class->fullness_list[fg],
1578 						  struct zspage, list);
1579 		if (zspage) {
1580 			remove_zspage(class, zspage);
1581 			return zspage;
1582 		}
1583 	}
1584 
1585 	return zspage;
1586 }
1587 
1588 /*
1589  * putback_zspage - add @zspage into right class's fullness list
1590  * @class: destination class
1591  * @zspage: target page
1592  *
1593  * Return @zspage's fullness status
1594  */
1595 static int putback_zspage(struct size_class *class, struct zspage *zspage)
1596 {
1597 	int fullness;
1598 
1599 	fullness = get_fullness_group(class, zspage);
1600 	insert_zspage(class, zspage, fullness);
1601 
1602 	return fullness;
1603 }
1604 
1605 #ifdef CONFIG_COMPACTION
1606 /*
1607  * To prevent zspage destroy during migration, zspage freeing should
1608  * hold locks of all pages in the zspage.
1609  */
1610 static void lock_zspage(struct zspage *zspage)
1611 {
1612 	struct zpdesc *curr_zpdesc, *zpdesc;
1613 
1614 	/*
1615 	 * Pages we haven't locked yet can be migrated off the list while we're
1616 	 * trying to lock them, so we need to be careful and only attempt to
1617 	 * lock each page under zspage_read_lock(). Otherwise, the page we lock
1618 	 * may no longer belong to the zspage. This means that we may wait for
1619 	 * the wrong page to unlock, so we must take a reference to the page
1620 	 * prior to waiting for it to unlock outside zspage_read_lock().
1621 	 */
1622 	while (1) {
1623 		zspage_read_lock(zspage);
1624 		zpdesc = get_first_zpdesc(zspage);
1625 		if (zpdesc_trylock(zpdesc))
1626 			break;
1627 		zpdesc_get(zpdesc);
1628 		zspage_read_unlock(zspage);
1629 		zpdesc_wait_locked(zpdesc);
1630 		zpdesc_put(zpdesc);
1631 	}
1632 
1633 	curr_zpdesc = zpdesc;
1634 	while ((zpdesc = get_next_zpdesc(curr_zpdesc))) {
1635 		if (zpdesc_trylock(zpdesc)) {
1636 			curr_zpdesc = zpdesc;
1637 		} else {
1638 			zpdesc_get(zpdesc);
1639 			zspage_read_unlock(zspage);
1640 			zpdesc_wait_locked(zpdesc);
1641 			zpdesc_put(zpdesc);
1642 			zspage_read_lock(zspage);
1643 		}
1644 	}
1645 	zspage_read_unlock(zspage);
1646 }
1647 #endif /* CONFIG_COMPACTION */
1648 
1649 #ifdef CONFIG_COMPACTION
1650 
1651 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1652 				struct zpdesc *newzpdesc, struct zpdesc *oldzpdesc)
1653 {
1654 	struct zpdesc *zpdesc;
1655 	struct zpdesc *zpdescs[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1656 	unsigned int first_obj_offset;
1657 	int idx = 0;
1658 
1659 	zpdesc = get_first_zpdesc(zspage);
1660 	do {
1661 		if (zpdesc == oldzpdesc)
1662 			zpdescs[idx] = newzpdesc;
1663 		else
1664 			zpdescs[idx] = zpdesc;
1665 		idx++;
1666 	} while ((zpdesc = get_next_zpdesc(zpdesc)) != NULL);
1667 
1668 	create_page_chain(class, zspage, zpdescs);
1669 	first_obj_offset = get_first_obj_offset(oldzpdesc);
1670 	set_first_obj_offset(newzpdesc, first_obj_offset);
1671 	if (unlikely(ZsHugePage(zspage)))
1672 		newzpdesc->handle = oldzpdesc->handle;
1673 	__zpdesc_set_movable(newzpdesc);
1674 }
1675 
1676 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1677 {
1678 	/*
1679 	 * Page is locked so zspage can't be destroyed concurrently
1680 	 * (see free_zspage()). But if the page was already destroyed
1681 	 * (see reset_zpdesc()), refuse isolation here.
1682 	 */
1683 	return page_zpdesc(page)->zspage;
1684 }
1685 
1686 static int zs_page_migrate(struct page *newpage, struct page *page,
1687 		enum migrate_mode mode)
1688 {
1689 	struct zs_pool *pool;
1690 	struct size_class *class;
1691 	struct zspage *zspage;
1692 	struct zpdesc *dummy;
1693 	struct zpdesc *newzpdesc = page_zpdesc(newpage);
1694 	struct zpdesc *zpdesc = page_zpdesc(page);
1695 	void *s_addr, *d_addr, *addr;
1696 	unsigned int offset;
1697 	unsigned long handle;
1698 	unsigned long old_obj, new_obj;
1699 	unsigned int obj_idx;
1700 
1701 	/*
1702 	 * TODO: nothing prevents a zspage from getting destroyed while
1703 	 * it is isolated for migration, as the page lock is temporarily
1704 	 * dropped after zs_page_isolate() succeeded: we should rework that
1705 	 * and defer destroying such pages once they are un-isolated (putback)
1706 	 * instead.
1707 	 */
1708 	if (!zpdesc->zspage)
1709 		return 0;
1710 
1711 	/* The page is locked, so this pointer must remain valid */
1712 	zspage = get_zspage(zpdesc);
1713 	pool = zspage->pool;
1714 
1715 	/*
1716 	 * The pool migrate_lock protects the race between zpage migration
1717 	 * and zs_free.
1718 	 */
1719 	write_lock(&pool->lock);
1720 	class = zspage_class(pool, zspage);
1721 
1722 	/*
1723 	 * the class lock protects zpage alloc/free in the zspage.
1724 	 */
1725 	spin_lock(&class->lock);
1726 	/* the zspage write_lock protects zpage access via zs_obj_read/write() */
1727 	if (!zspage_write_trylock(zspage)) {
1728 		spin_unlock(&class->lock);
1729 		write_unlock(&pool->lock);
1730 		return -EINVAL;
1731 	}
1732 
1733 	/* We're committed, tell the world that this is a Zsmalloc page. */
1734 	__zpdesc_set_zsmalloc(newzpdesc);
1735 
1736 	offset = get_first_obj_offset(zpdesc);
1737 	s_addr = kmap_local_zpdesc(zpdesc);
1738 
1739 	/*
1740 	 * Here, any user cannot access all objects in the zspage so let's move.
1741 	 */
1742 	d_addr = kmap_local_zpdesc(newzpdesc);
1743 	copy_page(d_addr, s_addr);
1744 	kunmap_local(d_addr);
1745 
1746 	for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
1747 					addr += class->size) {
1748 		if (obj_allocated(zpdesc, addr, &handle)) {
1749 
1750 			old_obj = handle_to_obj(handle);
1751 			obj_to_location(old_obj, &dummy, &obj_idx);
1752 			new_obj = (unsigned long)location_to_obj(newzpdesc, obj_idx);
1753 			record_obj(handle, new_obj);
1754 		}
1755 	}
1756 	kunmap_local(s_addr);
1757 
1758 	replace_sub_page(class, zspage, newzpdesc, zpdesc);
1759 	/*
1760 	 * Since we complete the data copy and set up new zspage structure,
1761 	 * it's okay to release migration_lock.
1762 	 */
1763 	write_unlock(&pool->lock);
1764 	spin_unlock(&class->lock);
1765 	zspage_write_unlock(zspage);
1766 
1767 	zpdesc_get(newzpdesc);
1768 	if (zpdesc_zone(newzpdesc) != zpdesc_zone(zpdesc)) {
1769 		zpdesc_dec_zone_page_state(zpdesc);
1770 		zpdesc_inc_zone_page_state(newzpdesc);
1771 	}
1772 
1773 	reset_zpdesc(zpdesc);
1774 	zpdesc_put(zpdesc);
1775 
1776 	return 0;
1777 }
1778 
1779 static void zs_page_putback(struct page *page)
1780 {
1781 }
1782 
1783 const struct movable_operations zsmalloc_mops = {
1784 	.isolate_page = zs_page_isolate,
1785 	.migrate_page = zs_page_migrate,
1786 	.putback_page = zs_page_putback,
1787 };
1788 
1789 /*
1790  * Caller should hold page_lock of all pages in the zspage
1791  * In here, we cannot use zspage meta data.
1792  */
1793 static void async_free_zspage(struct work_struct *work)
1794 {
1795 	int i;
1796 	struct size_class *class;
1797 	struct zspage *zspage, *tmp;
1798 	LIST_HEAD(free_pages);
1799 	struct zs_pool *pool = container_of(work, struct zs_pool,
1800 					free_work);
1801 
1802 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
1803 		class = pool->size_class[i];
1804 		if (class->index != i)
1805 			continue;
1806 
1807 		spin_lock(&class->lock);
1808 		list_splice_init(&class->fullness_list[ZS_INUSE_RATIO_0],
1809 				 &free_pages);
1810 		spin_unlock(&class->lock);
1811 	}
1812 
1813 	list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
1814 		list_del(&zspage->list);
1815 		lock_zspage(zspage);
1816 
1817 		class = zspage_class(pool, zspage);
1818 		spin_lock(&class->lock);
1819 		class_stat_sub(class, ZS_INUSE_RATIO_0, 1);
1820 		__free_zspage(pool, class, zspage);
1821 		spin_unlock(&class->lock);
1822 	}
1823 };
1824 
1825 static void kick_deferred_free(struct zs_pool *pool)
1826 {
1827 	schedule_work(&pool->free_work);
1828 }
1829 
1830 static void zs_flush_migration(struct zs_pool *pool)
1831 {
1832 	flush_work(&pool->free_work);
1833 }
1834 
1835 static void init_deferred_free(struct zs_pool *pool)
1836 {
1837 	INIT_WORK(&pool->free_work, async_free_zspage);
1838 }
1839 
1840 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
1841 {
1842 	struct zpdesc *zpdesc = get_first_zpdesc(zspage);
1843 
1844 	do {
1845 		WARN_ON(!zpdesc_trylock(zpdesc));
1846 		__zpdesc_set_movable(zpdesc);
1847 		zpdesc_unlock(zpdesc);
1848 	} while ((zpdesc = get_next_zpdesc(zpdesc)) != NULL);
1849 }
1850 #else
1851 static inline void zs_flush_migration(struct zs_pool *pool) { }
1852 #endif
1853 
1854 /*
1855  *
1856  * Based on the number of unused allocated objects calculate
1857  * and return the number of pages that we can free.
1858  */
1859 static unsigned long zs_can_compact(struct size_class *class)
1860 {
1861 	unsigned long obj_wasted;
1862 	unsigned long obj_allocated = class_stat_read(class, ZS_OBJS_ALLOCATED);
1863 	unsigned long obj_used = class_stat_read(class, ZS_OBJS_INUSE);
1864 
1865 	if (obj_allocated <= obj_used)
1866 		return 0;
1867 
1868 	obj_wasted = obj_allocated - obj_used;
1869 	obj_wasted /= class->objs_per_zspage;
1870 
1871 	return obj_wasted * class->pages_per_zspage;
1872 }
1873 
1874 static unsigned long __zs_compact(struct zs_pool *pool,
1875 				  struct size_class *class)
1876 {
1877 	struct zspage *src_zspage = NULL;
1878 	struct zspage *dst_zspage = NULL;
1879 	unsigned long pages_freed = 0;
1880 
1881 	/*
1882 	 * protect the race between zpage migration and zs_free
1883 	 * as well as zpage allocation/free
1884 	 */
1885 	write_lock(&pool->lock);
1886 	spin_lock(&class->lock);
1887 	while (zs_can_compact(class)) {
1888 		int fg;
1889 
1890 		if (!dst_zspage) {
1891 			dst_zspage = isolate_dst_zspage(class);
1892 			if (!dst_zspage)
1893 				break;
1894 		}
1895 
1896 		src_zspage = isolate_src_zspage(class);
1897 		if (!src_zspage)
1898 			break;
1899 
1900 		if (!zspage_write_trylock(src_zspage))
1901 			break;
1902 
1903 		migrate_zspage(pool, src_zspage, dst_zspage);
1904 		zspage_write_unlock(src_zspage);
1905 
1906 		fg = putback_zspage(class, src_zspage);
1907 		if (fg == ZS_INUSE_RATIO_0) {
1908 			free_zspage(pool, class, src_zspage);
1909 			pages_freed += class->pages_per_zspage;
1910 		}
1911 		src_zspage = NULL;
1912 
1913 		if (get_fullness_group(class, dst_zspage) == ZS_INUSE_RATIO_100
1914 		    || rwlock_is_contended(&pool->lock)) {
1915 			putback_zspage(class, dst_zspage);
1916 			dst_zspage = NULL;
1917 
1918 			spin_unlock(&class->lock);
1919 			write_unlock(&pool->lock);
1920 			cond_resched();
1921 			write_lock(&pool->lock);
1922 			spin_lock(&class->lock);
1923 		}
1924 	}
1925 
1926 	if (src_zspage)
1927 		putback_zspage(class, src_zspage);
1928 
1929 	if (dst_zspage)
1930 		putback_zspage(class, dst_zspage);
1931 
1932 	spin_unlock(&class->lock);
1933 	write_unlock(&pool->lock);
1934 
1935 	return pages_freed;
1936 }
1937 
1938 unsigned long zs_compact(struct zs_pool *pool)
1939 {
1940 	int i;
1941 	struct size_class *class;
1942 	unsigned long pages_freed = 0;
1943 
1944 	/*
1945 	 * Pool compaction is performed under pool->lock so it is basically
1946 	 * single-threaded. Having more than one thread in __zs_compact()
1947 	 * will increase pool->lock contention, which will impact other
1948 	 * zsmalloc operations that need pool->lock.
1949 	 */
1950 	if (atomic_xchg(&pool->compaction_in_progress, 1))
1951 		return 0;
1952 
1953 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
1954 		class = pool->size_class[i];
1955 		if (class->index != i)
1956 			continue;
1957 		pages_freed += __zs_compact(pool, class);
1958 	}
1959 	atomic_long_add(pages_freed, &pool->stats.pages_compacted);
1960 	atomic_set(&pool->compaction_in_progress, 0);
1961 
1962 	return pages_freed;
1963 }
1964 EXPORT_SYMBOL_GPL(zs_compact);
1965 
1966 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
1967 {
1968 	memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
1969 }
1970 EXPORT_SYMBOL_GPL(zs_pool_stats);
1971 
1972 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
1973 		struct shrink_control *sc)
1974 {
1975 	unsigned long pages_freed;
1976 	struct zs_pool *pool = shrinker->private_data;
1977 
1978 	/*
1979 	 * Compact classes and calculate compaction delta.
1980 	 * Can run concurrently with a manually triggered
1981 	 * (by user) compaction.
1982 	 */
1983 	pages_freed = zs_compact(pool);
1984 
1985 	return pages_freed ? pages_freed : SHRINK_STOP;
1986 }
1987 
1988 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
1989 		struct shrink_control *sc)
1990 {
1991 	int i;
1992 	struct size_class *class;
1993 	unsigned long pages_to_free = 0;
1994 	struct zs_pool *pool = shrinker->private_data;
1995 
1996 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
1997 		class = pool->size_class[i];
1998 		if (class->index != i)
1999 			continue;
2000 
2001 		pages_to_free += zs_can_compact(class);
2002 	}
2003 
2004 	return pages_to_free;
2005 }
2006 
2007 static void zs_unregister_shrinker(struct zs_pool *pool)
2008 {
2009 	shrinker_free(pool->shrinker);
2010 }
2011 
2012 static int zs_register_shrinker(struct zs_pool *pool)
2013 {
2014 	pool->shrinker = shrinker_alloc(0, "mm-zspool:%s", pool->name);
2015 	if (!pool->shrinker)
2016 		return -ENOMEM;
2017 
2018 	pool->shrinker->scan_objects = zs_shrinker_scan;
2019 	pool->shrinker->count_objects = zs_shrinker_count;
2020 	pool->shrinker->batch = 0;
2021 	pool->shrinker->private_data = pool;
2022 
2023 	shrinker_register(pool->shrinker);
2024 
2025 	return 0;
2026 }
2027 
2028 static int calculate_zspage_chain_size(int class_size)
2029 {
2030 	int i, min_waste = INT_MAX;
2031 	int chain_size = 1;
2032 
2033 	if (is_power_of_2(class_size))
2034 		return chain_size;
2035 
2036 	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
2037 		int waste;
2038 
2039 		waste = (i * PAGE_SIZE) % class_size;
2040 		if (waste < min_waste) {
2041 			min_waste = waste;
2042 			chain_size = i;
2043 		}
2044 	}
2045 
2046 	return chain_size;
2047 }
2048 
2049 /**
2050  * zs_create_pool - Creates an allocation pool to work from.
2051  * @name: pool name to be created
2052  *
2053  * This function must be called before anything when using
2054  * the zsmalloc allocator.
2055  *
2056  * On success, a pointer to the newly created pool is returned,
2057  * otherwise NULL.
2058  */
2059 struct zs_pool *zs_create_pool(const char *name)
2060 {
2061 	int i;
2062 	struct zs_pool *pool;
2063 	struct size_class *prev_class = NULL;
2064 
2065 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2066 	if (!pool)
2067 		return NULL;
2068 
2069 	init_deferred_free(pool);
2070 	rwlock_init(&pool->lock);
2071 	atomic_set(&pool->compaction_in_progress, 0);
2072 
2073 	pool->name = kstrdup(name, GFP_KERNEL);
2074 	if (!pool->name)
2075 		goto err;
2076 
2077 	/*
2078 	 * Iterate reversely, because, size of size_class that we want to use
2079 	 * for merging should be larger or equal to current size.
2080 	 */
2081 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2082 		int size;
2083 		int pages_per_zspage;
2084 		int objs_per_zspage;
2085 		struct size_class *class;
2086 		int fullness;
2087 
2088 		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2089 		if (size > ZS_MAX_ALLOC_SIZE)
2090 			size = ZS_MAX_ALLOC_SIZE;
2091 		pages_per_zspage = calculate_zspage_chain_size(size);
2092 		objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2093 
2094 		/*
2095 		 * We iterate from biggest down to smallest classes,
2096 		 * so huge_class_size holds the size of the first huge
2097 		 * class. Any object bigger than or equal to that will
2098 		 * endup in the huge class.
2099 		 */
2100 		if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2101 				!huge_class_size) {
2102 			huge_class_size = size;
2103 			/*
2104 			 * The object uses ZS_HANDLE_SIZE bytes to store the
2105 			 * handle. We need to subtract it, because zs_malloc()
2106 			 * unconditionally adds handle size before it performs
2107 			 * size class search - so object may be smaller than
2108 			 * huge class size, yet it still can end up in the huge
2109 			 * class because it grows by ZS_HANDLE_SIZE extra bytes
2110 			 * right before class lookup.
2111 			 */
2112 			huge_class_size -= (ZS_HANDLE_SIZE - 1);
2113 		}
2114 
2115 		/*
2116 		 * size_class is used for normal zsmalloc operation such
2117 		 * as alloc/free for that size. Although it is natural that we
2118 		 * have one size_class for each size, there is a chance that we
2119 		 * can get more memory utilization if we use one size_class for
2120 		 * many different sizes whose size_class have same
2121 		 * characteristics. So, we makes size_class point to
2122 		 * previous size_class if possible.
2123 		 */
2124 		if (prev_class) {
2125 			if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2126 				pool->size_class[i] = prev_class;
2127 				continue;
2128 			}
2129 		}
2130 
2131 		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2132 		if (!class)
2133 			goto err;
2134 
2135 		class->size = size;
2136 		class->index = i;
2137 		class->pages_per_zspage = pages_per_zspage;
2138 		class->objs_per_zspage = objs_per_zspage;
2139 		spin_lock_init(&class->lock);
2140 		pool->size_class[i] = class;
2141 
2142 		fullness = ZS_INUSE_RATIO_0;
2143 		while (fullness < NR_FULLNESS_GROUPS) {
2144 			INIT_LIST_HEAD(&class->fullness_list[fullness]);
2145 			fullness++;
2146 		}
2147 
2148 		prev_class = class;
2149 	}
2150 
2151 	/* debug only, don't abort if it fails */
2152 	zs_pool_stat_create(pool, name);
2153 
2154 	/*
2155 	 * Not critical since shrinker is only used to trigger internal
2156 	 * defragmentation of the pool which is pretty optional thing.  If
2157 	 * registration fails we still can use the pool normally and user can
2158 	 * trigger compaction manually. Thus, ignore return code.
2159 	 */
2160 	zs_register_shrinker(pool);
2161 
2162 	return pool;
2163 
2164 err:
2165 	zs_destroy_pool(pool);
2166 	return NULL;
2167 }
2168 EXPORT_SYMBOL_GPL(zs_create_pool);
2169 
2170 void zs_destroy_pool(struct zs_pool *pool)
2171 {
2172 	int i;
2173 
2174 	zs_unregister_shrinker(pool);
2175 	zs_flush_migration(pool);
2176 	zs_pool_stat_destroy(pool);
2177 
2178 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2179 		int fg;
2180 		struct size_class *class = pool->size_class[i];
2181 
2182 		if (!class)
2183 			continue;
2184 
2185 		if (class->index != i)
2186 			continue;
2187 
2188 		for (fg = ZS_INUSE_RATIO_0; fg < NR_FULLNESS_GROUPS; fg++) {
2189 			if (list_empty(&class->fullness_list[fg]))
2190 				continue;
2191 
2192 			pr_err("Class-%d fullness group %d is not empty\n",
2193 			       class->size, fg);
2194 		}
2195 		kfree(class);
2196 	}
2197 
2198 	kfree(pool->name);
2199 	kfree(pool);
2200 }
2201 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2202 
2203 static void zs_destroy_caches(void)
2204 {
2205 	kmem_cache_destroy(handle_cachep);
2206 	handle_cachep = NULL;
2207 	kmem_cache_destroy(zspage_cachep);
2208 	zspage_cachep = NULL;
2209 }
2210 
2211 static int __init zs_init_caches(void)
2212 {
2213 	handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
2214 					  0, 0, NULL);
2215 	zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
2216 					  0, 0, NULL);
2217 
2218 	if (!handle_cachep || !zspage_cachep) {
2219 		zs_destroy_caches();
2220 		return -ENOMEM;
2221 	}
2222 	return 0;
2223 }
2224 
2225 static int __init zs_init(void)
2226 {
2227 	int rc;
2228 
2229 	rc = zs_init_caches();
2230 	if (rc)
2231 		return rc;
2232 
2233 #ifdef CONFIG_COMPACTION
2234 	rc = set_movable_ops(&zsmalloc_mops, PGTY_zsmalloc);
2235 	if (rc) {
2236 		zs_destroy_caches();
2237 		return rc;
2238 	}
2239 #endif
2240 	zs_stat_init();
2241 	return 0;
2242 }
2243 
2244 static void __exit zs_exit(void)
2245 {
2246 #ifdef CONFIG_COMPACTION
2247 	set_movable_ops(NULL, PGTY_zsmalloc);
2248 #endif
2249 	zs_stat_exit();
2250 	zs_destroy_caches();
2251 }
2252 
2253 module_init(zs_init);
2254 module_exit(zs_exit);
2255 
2256 MODULE_LICENSE("Dual BSD/GPL");
2257 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2258 MODULE_DESCRIPTION("zsmalloc memory allocator");
2259