xref: /linux/arch/x86/kernel/cpu/cacheinfo.c (revision a65879b4584f98e6c1b80380f55ca8cfca82cb47)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * x86 CPU caches detection and configuration
4  *
5  * Previous changes
6  * - Venkatesh Pallipadi:		Cache identification through CPUID(0x4)
7  * - Ashok Raj <ashok.raj@intel.com>:	Work with CPU hotplug infrastructure
8  * - Andi Kleen / Andreas Herrmann:	CPUID(0x4) emulation on AMD
9  */
10 
11 #include <linux/cacheinfo.h>
12 #include <linux/cpu.h>
13 #include <linux/cpuhotplug.h>
14 #include <linux/stop_machine.h>
15 
16 #include <asm/amd/nb.h>
17 #include <asm/cacheinfo.h>
18 #include <asm/cpufeature.h>
19 #include <asm/cpuid/api.h>
20 #include <asm/mtrr.h>
21 #include <asm/smp.h>
22 #include <asm/tlbflush.h>
23 
24 #include "cpu.h"
25 
26 /* Shared last level cache maps */
27 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
28 
29 /* Shared L2 cache maps */
30 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_l2c_shared_map);
31 
32 static cpumask_var_t cpu_cacheinfo_mask;
33 
34 /* Kernel controls MTRR and/or PAT MSRs. */
35 unsigned int memory_caching_control __ro_after_init;
36 
37 enum _cache_type {
38 	CTYPE_NULL	= 0,
39 	CTYPE_DATA	= 1,
40 	CTYPE_INST	= 2,
41 	CTYPE_UNIFIED	= 3
42 };
43 
44 union _cpuid4_leaf_eax {
45 	struct {
46 		enum _cache_type	type			:5;
47 		unsigned int		level			:3;
48 		unsigned int		is_self_initializing	:1;
49 		unsigned int		is_fully_associative	:1;
50 		unsigned int		reserved		:4;
51 		unsigned int		num_threads_sharing	:12;
52 		unsigned int		num_cores_on_die	:6;
53 	} split;
54 	u32 full;
55 };
56 
57 union _cpuid4_leaf_ebx {
58 	struct {
59 		unsigned int		coherency_line_size	:12;
60 		unsigned int		physical_line_partition	:10;
61 		unsigned int		ways_of_associativity	:10;
62 	} split;
63 	u32 full;
64 };
65 
66 union _cpuid4_leaf_ecx {
67 	struct {
68 		unsigned int		number_of_sets		:32;
69 	} split;
70 	u32 full;
71 };
72 
73 struct _cpuid4_info {
74 	union _cpuid4_leaf_eax eax;
75 	union _cpuid4_leaf_ebx ebx;
76 	union _cpuid4_leaf_ecx ecx;
77 	unsigned int id;
78 	unsigned long size;
79 };
80 
81 /* Map CPUID(0x4) EAX.cache_type to <linux/cacheinfo.h> types */
82 static const enum cache_type cache_type_map[] = {
83 	[CTYPE_NULL]	= CACHE_TYPE_NOCACHE,
84 	[CTYPE_DATA]	= CACHE_TYPE_DATA,
85 	[CTYPE_INST]	= CACHE_TYPE_INST,
86 	[CTYPE_UNIFIED] = CACHE_TYPE_UNIFIED,
87 };
88 
89 /*
90  * Fallback AMD CPUID(0x4) emulation
91  * AMD CPUs with TOPOEXT can just use CPUID(0x8000001d)
92  *
93  * @AMD_L2_L3_INVALID_ASSOC: cache info for the respective L2/L3 cache should
94  * be determined from CPUID(0x8000001d) instead of CPUID(0x80000006).
95  */
96 
97 #define AMD_CPUID4_FULLY_ASSOCIATIVE	0xffff
98 #define AMD_L2_L3_INVALID_ASSOC		0x9
99 
100 union l1_cache {
101 	struct {
102 		unsigned line_size	:8;
103 		unsigned lines_per_tag	:8;
104 		unsigned assoc		:8;
105 		unsigned size_in_kb	:8;
106 	};
107 	unsigned int val;
108 };
109 
110 union l2_cache {
111 	struct {
112 		unsigned line_size	:8;
113 		unsigned lines_per_tag	:4;
114 		unsigned assoc		:4;
115 		unsigned size_in_kb	:16;
116 	};
117 	unsigned int val;
118 };
119 
120 union l3_cache {
121 	struct {
122 		unsigned line_size	:8;
123 		unsigned lines_per_tag	:4;
124 		unsigned assoc		:4;
125 		unsigned res		:2;
126 		unsigned size_encoded	:14;
127 	};
128 	unsigned int val;
129 };
130 
131 /* L2/L3 associativity mapping */
132 static const unsigned short assocs[] = {
133 	[1]		= 1,
134 	[2]		= 2,
135 	[3]		= 3,
136 	[4]		= 4,
137 	[5]		= 6,
138 	[6]		= 8,
139 	[8]		= 16,
140 	[0xa]		= 32,
141 	[0xb]		= 48,
142 	[0xc]		= 64,
143 	[0xd]		= 96,
144 	[0xe]		= 128,
145 	[0xf]		= AMD_CPUID4_FULLY_ASSOCIATIVE
146 };
147 
148 static const unsigned char levels[] = { 1, 1, 2, 3 };
149 static const unsigned char types[]  = { 1, 2, 3, 3 };
150 
legacy_amd_cpuid4(int index,union _cpuid4_leaf_eax * eax,union _cpuid4_leaf_ebx * ebx,union _cpuid4_leaf_ecx * ecx)151 static void legacy_amd_cpuid4(int index, union _cpuid4_leaf_eax *eax,
152 			      union _cpuid4_leaf_ebx *ebx, union _cpuid4_leaf_ecx *ecx)
153 {
154 	unsigned int dummy, line_size, lines_per_tag, assoc, size_in_kb;
155 	union l1_cache l1i, l1d, *l1;
156 	union l2_cache l2;
157 	union l3_cache l3;
158 
159 	eax->full = 0;
160 	ebx->full = 0;
161 	ecx->full = 0;
162 
163 	cpuid(0x80000005, &dummy, &dummy, &l1d.val, &l1i.val);
164 	cpuid(0x80000006, &dummy, &dummy, &l2.val, &l3.val);
165 
166 	l1 = &l1d;
167 	switch (index) {
168 	case 1:
169 		l1 = &l1i;
170 		fallthrough;
171 	case 0:
172 		if (!l1->val)
173 			return;
174 
175 		assoc		= (l1->assoc == 0xff) ? AMD_CPUID4_FULLY_ASSOCIATIVE : l1->assoc;
176 		line_size	= l1->line_size;
177 		lines_per_tag	= l1->lines_per_tag;
178 		size_in_kb	= l1->size_in_kb;
179 		break;
180 	case 2:
181 		if (!l2.assoc || l2.assoc == AMD_L2_L3_INVALID_ASSOC)
182 			return;
183 
184 		/* Use x86_cache_size as it might have K7 errata fixes */
185 		assoc		= assocs[l2.assoc];
186 		line_size	= l2.line_size;
187 		lines_per_tag	= l2.lines_per_tag;
188 		size_in_kb	= __this_cpu_read(cpu_info.x86_cache_size);
189 		break;
190 	case 3:
191 		if (!l3.assoc || l3.assoc == AMD_L2_L3_INVALID_ASSOC)
192 			return;
193 
194 		assoc		= assocs[l3.assoc];
195 		line_size	= l3.line_size;
196 		lines_per_tag	= l3.lines_per_tag;
197 		size_in_kb	= l3.size_encoded * 512;
198 		if (boot_cpu_has(X86_FEATURE_AMD_DCM)) {
199 			size_in_kb	= size_in_kb >> 1;
200 			assoc		= assoc >> 1;
201 		}
202 		break;
203 	default:
204 		return;
205 	}
206 
207 	eax->split.is_self_initializing		= 1;
208 	eax->split.type				= types[index];
209 	eax->split.level			= levels[index];
210 	eax->split.num_threads_sharing		= 0;
211 	eax->split.num_cores_on_die		= topology_num_cores_per_package();
212 
213 	if (assoc == AMD_CPUID4_FULLY_ASSOCIATIVE)
214 		eax->split.is_fully_associative = 1;
215 
216 	ebx->split.coherency_line_size		= line_size - 1;
217 	ebx->split.ways_of_associativity	= assoc - 1;
218 	ebx->split.physical_line_partition	= lines_per_tag - 1;
219 	ecx->split.number_of_sets		= (size_in_kb * 1024) / line_size /
220 		(ebx->split.ways_of_associativity + 1) - 1;
221 }
222 
cpuid4_info_fill_done(struct _cpuid4_info * id4,union _cpuid4_leaf_eax eax,union _cpuid4_leaf_ebx ebx,union _cpuid4_leaf_ecx ecx)223 static int cpuid4_info_fill_done(struct _cpuid4_info *id4, union _cpuid4_leaf_eax eax,
224 				 union _cpuid4_leaf_ebx ebx, union _cpuid4_leaf_ecx ecx)
225 {
226 	if (eax.split.type == CTYPE_NULL)
227 		return -EIO;
228 
229 	id4->eax = eax;
230 	id4->ebx = ebx;
231 	id4->ecx = ecx;
232 	id4->size = (ecx.split.number_of_sets          + 1) *
233 		    (ebx.split.coherency_line_size     + 1) *
234 		    (ebx.split.physical_line_partition + 1) *
235 		    (ebx.split.ways_of_associativity   + 1);
236 
237 	return 0;
238 }
239 
amd_fill_cpuid4_info(int index,struct _cpuid4_info * id4)240 static int amd_fill_cpuid4_info(int index, struct _cpuid4_info *id4)
241 {
242 	union _cpuid4_leaf_eax eax;
243 	union _cpuid4_leaf_ebx ebx;
244 	union _cpuid4_leaf_ecx ecx;
245 	u32 ignored;
246 
247 	if (boot_cpu_has(X86_FEATURE_TOPOEXT) || boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
248 		cpuid_count(0x8000001d, index, &eax.full, &ebx.full, &ecx.full, &ignored);
249 	else
250 		legacy_amd_cpuid4(index, &eax, &ebx, &ecx);
251 
252 	return cpuid4_info_fill_done(id4, eax, ebx, ecx);
253 }
254 
intel_fill_cpuid4_info(int index,struct _cpuid4_info * id4)255 static int intel_fill_cpuid4_info(int index, struct _cpuid4_info *id4)
256 {
257 	union _cpuid4_leaf_eax eax;
258 	union _cpuid4_leaf_ebx ebx;
259 	union _cpuid4_leaf_ecx ecx;
260 	u32 ignored;
261 
262 	cpuid_count(4, index, &eax.full, &ebx.full, &ecx.full, &ignored);
263 
264 	return cpuid4_info_fill_done(id4, eax, ebx, ecx);
265 }
266 
fill_cpuid4_info(int index,struct _cpuid4_info * id4)267 static int fill_cpuid4_info(int index, struct _cpuid4_info *id4)
268 {
269 	u8 cpu_vendor = boot_cpu_data.x86_vendor;
270 
271 	return (cpu_vendor == X86_VENDOR_AMD || cpu_vendor == X86_VENDOR_HYGON) ?
272 		amd_fill_cpuid4_info(index, id4) :
273 		intel_fill_cpuid4_info(index, id4);
274 }
275 
find_num_cache_leaves(struct cpuinfo_x86 * c)276 static int find_num_cache_leaves(struct cpuinfo_x86 *c)
277 {
278 	unsigned int eax, ebx, ecx, edx, op;
279 	union _cpuid4_leaf_eax cache_eax;
280 	int i = -1;
281 
282 	/* Do a CPUID(op) loop to calculate num_cache_leaves */
283 	op = (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) ? 0x8000001d : 4;
284 	do {
285 		++i;
286 		cpuid_count(op, i, &eax, &ebx, &ecx, &edx);
287 		cache_eax.full = eax;
288 	} while (cache_eax.split.type != CTYPE_NULL);
289 	return i;
290 }
291 
292 /*
293  * The max shared threads number comes from CPUID(0x4) EAX[25-14] with input
294  * ECX as cache index. Then right shift apicid by the number's order to get
295  * cache id for this cache node.
296  */
get_cache_id(u32 apicid,const struct _cpuid4_info * id4)297 static unsigned int get_cache_id(u32 apicid, const struct _cpuid4_info *id4)
298 {
299 	unsigned long num_threads_sharing;
300 	int index_msb;
301 
302 	num_threads_sharing = 1 + id4->eax.split.num_threads_sharing;
303 	index_msb = get_count_order(num_threads_sharing);
304 
305 	return apicid >> index_msb;
306 }
307 
308 /*
309  * AMD/Hygon CPUs may have multiple LLCs if L3 caches exist.
310  */
311 
cacheinfo_amd_init_llc_id(struct cpuinfo_x86 * c,u16 die_id)312 void cacheinfo_amd_init_llc_id(struct cpuinfo_x86 *c, u16 die_id)
313 {
314 	if (!cpuid_amd_hygon_has_l3_cache())
315 		return;
316 
317 	if (c->x86 < 0x17) {
318 		/* Pre-Zen: LLC is at the node level */
319 		c->topo.llc_id = die_id;
320 	} else if (c->x86 == 0x17 && c->x86_model <= 0x1F) {
321 		/*
322 		 * Family 17h up to 1F models: LLC is at the core
323 		 * complex level.  Core complex ID is ApicId[3].
324 		 */
325 		c->topo.llc_id = c->topo.apicid >> 3;
326 	} else {
327 		/*
328 		 * Newer families: LLC ID is calculated from the number
329 		 * of threads sharing the L3 cache.
330 		 */
331 		u32 llc_index = find_num_cache_leaves(c) - 1;
332 		struct _cpuid4_info id4 = {};
333 
334 		if (!amd_fill_cpuid4_info(llc_index, &id4))
335 			c->topo.llc_id = get_cache_id(c->topo.apicid, &id4);
336 	}
337 }
338 
cacheinfo_hygon_init_llc_id(struct cpuinfo_x86 * c)339 void cacheinfo_hygon_init_llc_id(struct cpuinfo_x86 *c)
340 {
341 	if (!cpuid_amd_hygon_has_l3_cache())
342 		return;
343 
344 	/*
345 	 * Hygons are similar to AMD Family 17h up to 1F models: LLC is
346 	 * at the core complex level.  Core complex ID is ApicId[3].
347 	 */
348 	c->topo.llc_id = c->topo.apicid >> 3;
349 }
350 
init_amd_cacheinfo(struct cpuinfo_x86 * c)351 void init_amd_cacheinfo(struct cpuinfo_x86 *c)
352 {
353 	struct cpu_cacheinfo *ci = get_cpu_cacheinfo(c->cpu_index);
354 
355 	if (boot_cpu_has(X86_FEATURE_TOPOEXT))
356 		ci->num_leaves = find_num_cache_leaves(c);
357 	else if (c->extended_cpuid_level >= 0x80000006)
358 		ci->num_leaves = (cpuid_edx(0x80000006) & 0xf000) ? 4 : 3;
359 }
360 
init_hygon_cacheinfo(struct cpuinfo_x86 * c)361 void init_hygon_cacheinfo(struct cpuinfo_x86 *c)
362 {
363 	struct cpu_cacheinfo *ci = get_cpu_cacheinfo(c->cpu_index);
364 
365 	ci->num_leaves = find_num_cache_leaves(c);
366 }
367 
intel_cacheinfo_done(struct cpuinfo_x86 * c,unsigned int l3,unsigned int l2,unsigned int l1i,unsigned int l1d)368 static void intel_cacheinfo_done(struct cpuinfo_x86 *c, unsigned int l3,
369 				 unsigned int l2, unsigned int l1i, unsigned int l1d)
370 {
371 	/*
372 	 * If llc_id is still unset, then cpuid_level < 4, which implies
373 	 * that the only possibility left is SMT.  Since CPUID(0x2) doesn't
374 	 * specify any shared caches and SMT shares all caches, we can
375 	 * unconditionally set LLC ID to the package ID so that all
376 	 * threads share it.
377 	 */
378 	if (c->topo.llc_id == BAD_APICID)
379 		c->topo.llc_id = c->topo.pkg_id;
380 
381 	c->x86_cache_size = l3 ? l3 : (l2 ? l2 : l1i + l1d);
382 
383 	if (!l2)
384 		cpu_detect_cache_sizes(c);
385 }
386 
387 /*
388  * Legacy Intel CPUID(0x2) path if CPUID(0x4) is not available.
389  */
intel_cacheinfo_0x2(struct cpuinfo_x86 * c)390 static void intel_cacheinfo_0x2(struct cpuinfo_x86 *c)
391 {
392 	unsigned int l1i = 0, l1d = 0, l2 = 0, l3 = 0;
393 	const struct leaf_0x2_table *desc;
394 	union leaf_0x2_regs regs;
395 	u8 *ptr;
396 
397 	if (c->cpuid_level < 2)
398 		return;
399 
400 	cpuid_leaf_0x2(&regs);
401 	for_each_cpuid_0x2_desc(regs, ptr, desc) {
402 		switch (desc->c_type) {
403 		case CACHE_L1_INST:	l1i += desc->c_size; break;
404 		case CACHE_L1_DATA:	l1d += desc->c_size; break;
405 		case CACHE_L2:		l2  += desc->c_size; break;
406 		case CACHE_L3:		l3  += desc->c_size; break;
407 		}
408 	}
409 
410 	intel_cacheinfo_done(c, l3, l2, l1i, l1d);
411 }
412 
calc_cache_topo_id(struct cpuinfo_x86 * c,const struct _cpuid4_info * id4)413 static unsigned int calc_cache_topo_id(struct cpuinfo_x86 *c, const struct _cpuid4_info *id4)
414 {
415 	unsigned int num_threads_sharing;
416 	int index_msb;
417 
418 	num_threads_sharing = 1 + id4->eax.split.num_threads_sharing;
419 	index_msb = get_count_order(num_threads_sharing);
420 	return c->topo.apicid & ~((1 << index_msb) - 1);
421 }
422 
intel_cacheinfo_0x4(struct cpuinfo_x86 * c)423 static bool intel_cacheinfo_0x4(struct cpuinfo_x86 *c)
424 {
425 	struct cpu_cacheinfo *ci = get_cpu_cacheinfo(c->cpu_index);
426 	unsigned int l2_id = BAD_APICID, l3_id = BAD_APICID;
427 	unsigned int l1d = 0, l1i = 0, l2 = 0, l3 = 0;
428 
429 	if (c->cpuid_level < 4)
430 		return false;
431 
432 	/*
433 	 * There should be at least one leaf. A non-zero value means
434 	 * that the number of leaves has been previously initialized.
435 	 */
436 	if (!ci->num_leaves)
437 		ci->num_leaves = find_num_cache_leaves(c);
438 
439 	if (!ci->num_leaves)
440 		return false;
441 
442 	for (int i = 0; i < ci->num_leaves; i++) {
443 		struct _cpuid4_info id4 = {};
444 		int ret;
445 
446 		ret = intel_fill_cpuid4_info(i, &id4);
447 		if (ret < 0)
448 			continue;
449 
450 		switch (id4.eax.split.level) {
451 		case 1:
452 			if (id4.eax.split.type == CTYPE_DATA)
453 				l1d = id4.size / 1024;
454 			else if (id4.eax.split.type == CTYPE_INST)
455 				l1i = id4.size / 1024;
456 			break;
457 		case 2:
458 			l2 = id4.size / 1024;
459 			l2_id = calc_cache_topo_id(c, &id4);
460 			break;
461 		case 3:
462 			l3 = id4.size / 1024;
463 			l3_id = calc_cache_topo_id(c, &id4);
464 			break;
465 		default:
466 			break;
467 		}
468 	}
469 
470 	c->topo.l2c_id = l2_id;
471 	c->topo.llc_id = (l3_id == BAD_APICID) ? l2_id : l3_id;
472 	intel_cacheinfo_done(c, l3, l2, l1i, l1d);
473 	return true;
474 }
475 
init_intel_cacheinfo(struct cpuinfo_x86 * c)476 void init_intel_cacheinfo(struct cpuinfo_x86 *c)
477 {
478 	/* Don't use CPUID(0x2) if CPUID(0x4) is supported. */
479 	if (intel_cacheinfo_0x4(c))
480 		return;
481 
482 	intel_cacheinfo_0x2(c);
483 }
484 
485 /*
486  * <linux/cacheinfo.h> shared_cpu_map setup, AMD/Hygon
487  */
__cache_amd_cpumap_setup(unsigned int cpu,int index,const struct _cpuid4_info * id4)488 static int __cache_amd_cpumap_setup(unsigned int cpu, int index,
489 				    const struct _cpuid4_info *id4)
490 {
491 	struct cpu_cacheinfo *this_cpu_ci;
492 	struct cacheinfo *ci;
493 	int i, sibling;
494 
495 	/*
496 	 * For L3, always use the pre-calculated cpu_llc_shared_mask
497 	 * to derive shared_cpu_map.
498 	 */
499 	if (index == 3) {
500 		for_each_cpu(i, cpu_llc_shared_mask(cpu)) {
501 			this_cpu_ci = get_cpu_cacheinfo(i);
502 			if (!this_cpu_ci->info_list)
503 				continue;
504 
505 			ci = this_cpu_ci->info_list + index;
506 			for_each_cpu(sibling, cpu_llc_shared_mask(cpu)) {
507 				if (!cpu_online(sibling))
508 					continue;
509 				cpumask_set_cpu(sibling, &ci->shared_cpu_map);
510 			}
511 		}
512 	} else if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
513 		unsigned int apicid, nshared, first, last;
514 
515 		nshared = id4->eax.split.num_threads_sharing + 1;
516 		apicid = cpu_data(cpu).topo.apicid;
517 		first = apicid - (apicid % nshared);
518 		last = first + nshared - 1;
519 
520 		for_each_online_cpu(i) {
521 			this_cpu_ci = get_cpu_cacheinfo(i);
522 			if (!this_cpu_ci->info_list)
523 				continue;
524 
525 			apicid = cpu_data(i).topo.apicid;
526 			if ((apicid < first) || (apicid > last))
527 				continue;
528 
529 			ci = this_cpu_ci->info_list + index;
530 
531 			for_each_online_cpu(sibling) {
532 				apicid = cpu_data(sibling).topo.apicid;
533 				if ((apicid < first) || (apicid > last))
534 					continue;
535 				cpumask_set_cpu(sibling, &ci->shared_cpu_map);
536 			}
537 		}
538 	} else
539 		return 0;
540 
541 	return 1;
542 }
543 
544 /*
545  * <linux/cacheinfo.h> shared_cpu_map setup, Intel + fallback AMD/Hygon
546  */
__cache_cpumap_setup(unsigned int cpu,int index,const struct _cpuid4_info * id4)547 static void __cache_cpumap_setup(unsigned int cpu, int index,
548 				 const struct _cpuid4_info *id4)
549 {
550 	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
551 	struct cpuinfo_x86 *c = &cpu_data(cpu);
552 	struct cacheinfo *ci, *sibling_ci;
553 	unsigned long num_threads_sharing;
554 	int index_msb, i;
555 
556 	if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) {
557 		if (__cache_amd_cpumap_setup(cpu, index, id4))
558 			return;
559 	}
560 
561 	ci = this_cpu_ci->info_list + index;
562 	num_threads_sharing = 1 + id4->eax.split.num_threads_sharing;
563 
564 	cpumask_set_cpu(cpu, &ci->shared_cpu_map);
565 	if (num_threads_sharing == 1)
566 		return;
567 
568 	index_msb = get_count_order(num_threads_sharing);
569 
570 	for_each_online_cpu(i)
571 		if (cpu_data(i).topo.apicid >> index_msb == c->topo.apicid >> index_msb) {
572 			struct cpu_cacheinfo *sib_cpu_ci = get_cpu_cacheinfo(i);
573 
574 			/* Skip if itself or no cacheinfo */
575 			if (i == cpu || !sib_cpu_ci->info_list)
576 				continue;
577 
578 			sibling_ci = sib_cpu_ci->info_list + index;
579 			cpumask_set_cpu(i, &ci->shared_cpu_map);
580 			cpumask_set_cpu(cpu, &sibling_ci->shared_cpu_map);
581 		}
582 }
583 
ci_info_init(struct cacheinfo * ci,const struct _cpuid4_info * id4,struct amd_northbridge * nb)584 static void ci_info_init(struct cacheinfo *ci, const struct _cpuid4_info *id4,
585 			 struct amd_northbridge *nb)
586 {
587 	ci->id				= id4->id;
588 	ci->attributes			= CACHE_ID;
589 	ci->level			= id4->eax.split.level;
590 	ci->type			= cache_type_map[id4->eax.split.type];
591 	ci->coherency_line_size		= id4->ebx.split.coherency_line_size + 1;
592 	ci->ways_of_associativity	= id4->ebx.split.ways_of_associativity + 1;
593 	ci->size			= id4->size;
594 	ci->number_of_sets		= id4->ecx.split.number_of_sets + 1;
595 	ci->physical_line_partition	= id4->ebx.split.physical_line_partition + 1;
596 	ci->priv			= nb;
597 }
598 
init_cache_level(unsigned int cpu)599 int init_cache_level(unsigned int cpu)
600 {
601 	struct cpu_cacheinfo *ci = get_cpu_cacheinfo(cpu);
602 
603 	/* There should be at least one leaf. */
604 	if (!ci->num_leaves)
605 		return -ENOENT;
606 
607 	return 0;
608 }
609 
populate_cache_leaves(unsigned int cpu)610 int populate_cache_leaves(unsigned int cpu)
611 {
612 	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
613 	struct cacheinfo *ci = this_cpu_ci->info_list;
614 	u8 cpu_vendor = boot_cpu_data.x86_vendor;
615 	u32 apicid = cpu_data(cpu).topo.apicid;
616 	struct amd_northbridge *nb = NULL;
617 	struct _cpuid4_info id4 = {};
618 	int idx, ret;
619 
620 	for (idx = 0; idx < this_cpu_ci->num_leaves; idx++) {
621 		ret = fill_cpuid4_info(idx, &id4);
622 		if (ret)
623 			return ret;
624 
625 		id4.id = get_cache_id(apicid, &id4);
626 
627 		if (cpu_vendor == X86_VENDOR_AMD || cpu_vendor == X86_VENDOR_HYGON)
628 			nb = amd_init_l3_cache(idx);
629 
630 		ci_info_init(ci++, &id4, nb);
631 		__cache_cpumap_setup(cpu, idx, &id4);
632 	}
633 
634 	this_cpu_ci->cpu_map_populated = true;
635 	return 0;
636 }
637 
638 /*
639  * Disable and enable caches. Needed for changing MTRRs and the PAT MSR.
640  *
641  * Since we are disabling the cache don't allow any interrupts,
642  * they would run extremely slow and would only increase the pain.
643  *
644  * The caller must ensure that local interrupts are disabled and
645  * are reenabled after cache_enable() has been called.
646  */
647 static unsigned long saved_cr4;
648 static DEFINE_RAW_SPINLOCK(cache_disable_lock);
649 
650 /*
651  * Cache flushing is the most time-consuming step when programming the
652  * MTRRs.  On many Intel CPUs without known erratas, it can be skipped
653  * if the CPU declares cache self-snooping support.
654  */
maybe_flush_caches(void)655 static void maybe_flush_caches(void)
656 {
657 	if (!static_cpu_has(X86_FEATURE_SELFSNOOP))
658 		wbinvd();
659 }
660 
cache_disable(void)661 void cache_disable(void) __acquires(cache_disable_lock)
662 {
663 	unsigned long cr0;
664 
665 	/*
666 	 * This is not ideal since the cache is only flushed/disabled
667 	 * for this CPU while the MTRRs are changed, but changing this
668 	 * requires more invasive changes to the way the kernel boots.
669 	 */
670 	raw_spin_lock(&cache_disable_lock);
671 
672 	/* Enter the no-fill (CD=1, NW=0) cache mode and flush caches. */
673 	cr0 = read_cr0() | X86_CR0_CD;
674 	write_cr0(cr0);
675 
676 	maybe_flush_caches();
677 
678 	/* Save value of CR4 and clear Page Global Enable (bit 7) */
679 	if (cpu_feature_enabled(X86_FEATURE_PGE)) {
680 		saved_cr4 = __read_cr4();
681 		__write_cr4(saved_cr4 & ~X86_CR4_PGE);
682 	}
683 
684 	/* Flush all TLBs via a mov %cr3, %reg; mov %reg, %cr3 */
685 	count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
686 	flush_tlb_local();
687 
688 	if (cpu_feature_enabled(X86_FEATURE_MTRR))
689 		mtrr_disable();
690 
691 	maybe_flush_caches();
692 }
693 
cache_enable(void)694 void cache_enable(void) __releases(cache_disable_lock)
695 {
696 	/* Flush TLBs (no need to flush caches - they are disabled) */
697 	count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
698 	flush_tlb_local();
699 
700 	if (cpu_feature_enabled(X86_FEATURE_MTRR))
701 		mtrr_enable();
702 
703 	/* Enable caches */
704 	write_cr0(read_cr0() & ~X86_CR0_CD);
705 
706 	/* Restore value of CR4 */
707 	if (cpu_feature_enabled(X86_FEATURE_PGE))
708 		__write_cr4(saved_cr4);
709 
710 	raw_spin_unlock(&cache_disable_lock);
711 }
712 
cache_cpu_init(void)713 static void cache_cpu_init(void)
714 {
715 	unsigned long flags;
716 
717 	local_irq_save(flags);
718 
719 	if (memory_caching_control & CACHE_MTRR) {
720 		cache_disable();
721 		mtrr_generic_set_state();
722 		cache_enable();
723 	}
724 
725 	if (memory_caching_control & CACHE_PAT)
726 		pat_cpu_init();
727 
728 	local_irq_restore(flags);
729 }
730 
731 static bool cache_aps_delayed_init = true;
732 
set_cache_aps_delayed_init(bool val)733 void set_cache_aps_delayed_init(bool val)
734 {
735 	cache_aps_delayed_init = val;
736 }
737 
get_cache_aps_delayed_init(void)738 bool get_cache_aps_delayed_init(void)
739 {
740 	return cache_aps_delayed_init;
741 }
742 
cache_rendezvous_handler(void * unused)743 static int cache_rendezvous_handler(void *unused)
744 {
745 	if (get_cache_aps_delayed_init() || !cpu_online(smp_processor_id()))
746 		cache_cpu_init();
747 
748 	return 0;
749 }
750 
cache_bp_init(void)751 void __init cache_bp_init(void)
752 {
753 	mtrr_bp_init();
754 	pat_bp_init();
755 
756 	if (memory_caching_control)
757 		cache_cpu_init();
758 }
759 
cache_bp_restore(void)760 void cache_bp_restore(void)
761 {
762 	if (memory_caching_control)
763 		cache_cpu_init();
764 }
765 
cache_ap_online(unsigned int cpu)766 static int cache_ap_online(unsigned int cpu)
767 {
768 	cpumask_set_cpu(cpu, cpu_cacheinfo_mask);
769 
770 	if (!memory_caching_control || get_cache_aps_delayed_init())
771 		return 0;
772 
773 	/*
774 	 * Ideally we should hold mtrr_mutex here to avoid MTRR entries
775 	 * changed, but this routine will be called in CPU boot time,
776 	 * holding the lock breaks it.
777 	 *
778 	 * This routine is called in two cases:
779 	 *
780 	 *   1. very early time of software resume, when there absolutely
781 	 *      isn't MTRR entry changes;
782 	 *
783 	 *   2. CPU hotadd time. We let mtrr_add/del_page hold cpuhotplug
784 	 *      lock to prevent MTRR entry changes
785 	 */
786 	stop_machine_from_inactive_cpu(cache_rendezvous_handler, NULL,
787 				       cpu_cacheinfo_mask);
788 
789 	return 0;
790 }
791 
cache_ap_offline(unsigned int cpu)792 static int cache_ap_offline(unsigned int cpu)
793 {
794 	cpumask_clear_cpu(cpu, cpu_cacheinfo_mask);
795 	return 0;
796 }
797 
798 /*
799  * Delayed cache initialization for all AP's
800  */
cache_aps_init(void)801 void cache_aps_init(void)
802 {
803 	if (!memory_caching_control || !get_cache_aps_delayed_init())
804 		return;
805 
806 	stop_machine(cache_rendezvous_handler, NULL, cpu_online_mask);
807 	set_cache_aps_delayed_init(false);
808 }
809 
cache_ap_register(void)810 static int __init cache_ap_register(void)
811 {
812 	zalloc_cpumask_var(&cpu_cacheinfo_mask, GFP_KERNEL);
813 	cpumask_set_cpu(smp_processor_id(), cpu_cacheinfo_mask);
814 
815 	cpuhp_setup_state_nocalls(CPUHP_AP_CACHECTRL_STARTING,
816 				  "x86/cachectrl:starting",
817 				  cache_ap_online, cache_ap_offline);
818 	return 0;
819 }
820 early_initcall(cache_ap_register);
821