1 /* SPDX-License-Identifier: GPL-2.0-only */
2 #ifndef __NET_CFG80211_H
3 #define __NET_CFG80211_H
4 /*
5 * 802.11 device and configuration interface
6 *
7 * Copyright 2006-2010 Johannes Berg <johannes@sipsolutions.net>
8 * Copyright 2013-2014 Intel Mobile Communications GmbH
9 * Copyright 2015-2017 Intel Deutschland GmbH
10 * Copyright (C) 2018-2025 Intel Corporation
11 */
12
13 #include <linux/ethtool.h>
14 #include <uapi/linux/rfkill.h>
15 #include <linux/netdevice.h>
16 #include <linux/debugfs.h>
17 #include <linux/list.h>
18 #include <linux/bug.h>
19 #include <linux/netlink.h>
20 #include <linux/skbuff.h>
21 #include <linux/nl80211.h>
22 #include <linux/if_ether.h>
23 #include <linux/ieee80211.h>
24 #include <linux/net.h>
25 #include <linux/rfkill.h>
26 #include <net/regulatory.h>
27
28 /**
29 * DOC: Introduction
30 *
31 * cfg80211 is the configuration API for 802.11 devices in Linux. It bridges
32 * userspace and drivers, and offers some utility functionality associated
33 * with 802.11. cfg80211 must, directly or indirectly via mac80211, be used
34 * by all modern wireless drivers in Linux, so that they offer a consistent
35 * API through nl80211. For backward compatibility, cfg80211 also offers
36 * wireless extensions to userspace, but hides them from drivers completely.
37 *
38 * Additionally, cfg80211 contains code to help enforce regulatory spectrum
39 * use restrictions.
40 */
41
42
43 /**
44 * DOC: Device registration
45 *
46 * In order for a driver to use cfg80211, it must register the hardware device
47 * with cfg80211. This happens through a number of hardware capability structs
48 * described below.
49 *
50 * The fundamental structure for each device is the 'wiphy', of which each
51 * instance describes a physical wireless device connected to the system. Each
52 * such wiphy can have zero, one, or many virtual interfaces associated with
53 * it, which need to be identified as such by pointing the network interface's
54 * @ieee80211_ptr pointer to a &struct wireless_dev which further describes
55 * the wireless part of the interface. Normally this struct is embedded in the
56 * network interface's private data area. Drivers can optionally allow creating
57 * or destroying virtual interfaces on the fly, but without at least one or the
58 * ability to create some the wireless device isn't useful.
59 *
60 * Each wiphy structure contains device capability information, and also has
61 * a pointer to the various operations the driver offers. The definitions and
62 * structures here describe these capabilities in detail.
63 */
64
65 struct wiphy;
66
67 /*
68 * wireless hardware capability structures
69 */
70
71 /**
72 * enum ieee80211_channel_flags - channel flags
73 *
74 * Channel flags set by the regulatory control code.
75 *
76 * @IEEE80211_CHAN_DISABLED: This channel is disabled.
77 * @IEEE80211_CHAN_NO_IR: do not initiate radiation, this includes
78 * sending probe requests or beaconing.
79 * @IEEE80211_CHAN_PSD: Power spectral density (in dBm) is set for this
80 * channel.
81 * @IEEE80211_CHAN_RADAR: Radar detection is required on this channel.
82 * @IEEE80211_CHAN_NO_HT40PLUS: extension channel above this channel
83 * is not permitted.
84 * @IEEE80211_CHAN_NO_HT40MINUS: extension channel below this channel
85 * is not permitted.
86 * @IEEE80211_CHAN_NO_OFDM: OFDM is not allowed on this channel.
87 * @IEEE80211_CHAN_NO_80MHZ: If the driver supports 80 MHz on the band,
88 * this flag indicates that an 80 MHz channel cannot use this
89 * channel as the control or any of the secondary channels.
90 * This may be due to the driver or due to regulatory bandwidth
91 * restrictions.
92 * @IEEE80211_CHAN_NO_160MHZ: If the driver supports 160 MHz on the band,
93 * this flag indicates that an 160 MHz channel cannot use this
94 * channel as the control or any of the secondary channels.
95 * This may be due to the driver or due to regulatory bandwidth
96 * restrictions.
97 * @IEEE80211_CHAN_INDOOR_ONLY: see %NL80211_FREQUENCY_ATTR_INDOOR_ONLY
98 * @IEEE80211_CHAN_IR_CONCURRENT: see %NL80211_FREQUENCY_ATTR_IR_CONCURRENT
99 * @IEEE80211_CHAN_NO_20MHZ: 20 MHz bandwidth is not permitted
100 * on this channel.
101 * @IEEE80211_CHAN_NO_10MHZ: 10 MHz bandwidth is not permitted
102 * on this channel.
103 * @IEEE80211_CHAN_NO_HE: HE operation is not permitted on this channel.
104 * @IEEE80211_CHAN_NO_320MHZ: If the driver supports 320 MHz on the band,
105 * this flag indicates that a 320 MHz channel cannot use this
106 * channel as the control or any of the secondary channels.
107 * This may be due to the driver or due to regulatory bandwidth
108 * restrictions.
109 * @IEEE80211_CHAN_NO_EHT: EHT operation is not permitted on this channel.
110 * @IEEE80211_CHAN_DFS_CONCURRENT: See %NL80211_RRF_DFS_CONCURRENT
111 * @IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT: Client connection with VLP AP
112 * not permitted using this channel
113 * @IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT: Client connection with AFC AP
114 * not permitted using this channel
115 * @IEEE80211_CHAN_CAN_MONITOR: This channel can be used for monitor
116 * mode even in the presence of other (regulatory) restrictions,
117 * even if it is otherwise disabled.
118 * @IEEE80211_CHAN_ALLOW_6GHZ_VLP_AP: Allow using this channel for AP operation
119 * with very low power (VLP), even if otherwise set to NO_IR.
120 * @IEEE80211_CHAN_ALLOW_20MHZ_ACTIVITY: Allow activity on a 20 MHz channel,
121 * even if otherwise set to NO_IR.
122 * @IEEE80211_CHAN_S1G_NO_PRIMARY: Prevents the channel for use as an S1G
123 * primary channel. Does not prevent the wider operating channel
124 * described by the chandef from being used. In order for a 2MHz primary
125 * to be used, both 1MHz subchannels shall not contain this flag.
126 * @IEEE80211_CHAN_NO_4MHZ: 4 MHz bandwidth is not permitted on this channel.
127 * @IEEE80211_CHAN_NO_8MHZ: 8 MHz bandwidth is not permitted on this channel.
128 * @IEEE80211_CHAN_NO_16MHZ: 16 MHz bandwidth is not permitted on this channel.
129 */
130 enum ieee80211_channel_flags {
131 IEEE80211_CHAN_DISABLED = BIT(0),
132 IEEE80211_CHAN_NO_IR = BIT(1),
133 IEEE80211_CHAN_PSD = BIT(2),
134 IEEE80211_CHAN_RADAR = BIT(3),
135 IEEE80211_CHAN_NO_HT40PLUS = BIT(4),
136 IEEE80211_CHAN_NO_HT40MINUS = BIT(5),
137 IEEE80211_CHAN_NO_OFDM = BIT(6),
138 IEEE80211_CHAN_NO_80MHZ = BIT(7),
139 IEEE80211_CHAN_NO_160MHZ = BIT(8),
140 IEEE80211_CHAN_INDOOR_ONLY = BIT(9),
141 IEEE80211_CHAN_IR_CONCURRENT = BIT(10),
142 IEEE80211_CHAN_NO_20MHZ = BIT(11),
143 IEEE80211_CHAN_NO_10MHZ = BIT(12),
144 IEEE80211_CHAN_NO_HE = BIT(13),
145 /* can use free bits here */
146 IEEE80211_CHAN_NO_320MHZ = BIT(19),
147 IEEE80211_CHAN_NO_EHT = BIT(20),
148 IEEE80211_CHAN_DFS_CONCURRENT = BIT(21),
149 IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT = BIT(22),
150 IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT = BIT(23),
151 IEEE80211_CHAN_CAN_MONITOR = BIT(24),
152 IEEE80211_CHAN_ALLOW_6GHZ_VLP_AP = BIT(25),
153 IEEE80211_CHAN_ALLOW_20MHZ_ACTIVITY = BIT(26),
154 IEEE80211_CHAN_S1G_NO_PRIMARY = BIT(27),
155 IEEE80211_CHAN_NO_4MHZ = BIT(28),
156 IEEE80211_CHAN_NO_8MHZ = BIT(29),
157 IEEE80211_CHAN_NO_16MHZ = BIT(30),
158 };
159
160 #define IEEE80211_CHAN_NO_HT40 \
161 (IEEE80211_CHAN_NO_HT40PLUS | IEEE80211_CHAN_NO_HT40MINUS)
162
163 #define IEEE80211_DFS_MIN_CAC_TIME_MS 60000
164 #define IEEE80211_DFS_MIN_NOP_TIME_MS (30 * 60 * 1000)
165
166 /**
167 * struct ieee80211_channel - channel definition
168 *
169 * This structure describes a single channel for use
170 * with cfg80211.
171 *
172 * @center_freq: center frequency in MHz
173 * @freq_offset: offset from @center_freq, in KHz
174 * @hw_value: hardware-specific value for the channel
175 * @flags: channel flags from &enum ieee80211_channel_flags.
176 * @orig_flags: channel flags at registration time, used by regulatory
177 * code to support devices with additional restrictions
178 * @band: band this channel belongs to.
179 * @max_antenna_gain: maximum antenna gain in dBi
180 * @max_power: maximum transmission power (in dBm)
181 * @max_reg_power: maximum regulatory transmission power (in dBm)
182 * @beacon_found: helper to regulatory code to indicate when a beacon
183 * has been found on this channel. Use regulatory_hint_found_beacon()
184 * to enable this, this is useful only on 5 GHz band.
185 * @orig_mag: internal use
186 * @orig_mpwr: internal use
187 * @dfs_state: current state of this channel. Only relevant if radar is required
188 * on this channel.
189 * @dfs_state_entered: timestamp (jiffies) when the dfs state was entered.
190 * @dfs_cac_ms: DFS CAC time in milliseconds, this is valid for DFS channels.
191 * @psd: power spectral density (in dBm)
192 */
193 struct ieee80211_channel {
194 enum nl80211_band band;
195 u32 center_freq;
196 u16 freq_offset;
197 u16 hw_value;
198 u32 flags;
199 int max_antenna_gain;
200 int max_power;
201 int max_reg_power;
202 bool beacon_found;
203 u32 orig_flags;
204 int orig_mag, orig_mpwr;
205 enum nl80211_dfs_state dfs_state;
206 unsigned long dfs_state_entered;
207 unsigned int dfs_cac_ms;
208 s8 psd;
209 };
210
211 /**
212 * enum ieee80211_rate_flags - rate flags
213 *
214 * Hardware/specification flags for rates. These are structured
215 * in a way that allows using the same bitrate structure for
216 * different bands/PHY modes.
217 *
218 * @IEEE80211_RATE_SHORT_PREAMBLE: Hardware can send with short
219 * preamble on this bitrate; only relevant in 2.4GHz band and
220 * with CCK rates.
221 * @IEEE80211_RATE_MANDATORY_A: This bitrate is a mandatory rate
222 * when used with 802.11a (on the 5 GHz band); filled by the
223 * core code when registering the wiphy.
224 * @IEEE80211_RATE_MANDATORY_B: This bitrate is a mandatory rate
225 * when used with 802.11b (on the 2.4 GHz band); filled by the
226 * core code when registering the wiphy.
227 * @IEEE80211_RATE_MANDATORY_G: This bitrate is a mandatory rate
228 * when used with 802.11g (on the 2.4 GHz band); filled by the
229 * core code when registering the wiphy.
230 * @IEEE80211_RATE_ERP_G: This is an ERP rate in 802.11g mode.
231 * @IEEE80211_RATE_SUPPORTS_5MHZ: Rate can be used in 5 MHz mode
232 * @IEEE80211_RATE_SUPPORTS_10MHZ: Rate can be used in 10 MHz mode
233 */
234 enum ieee80211_rate_flags {
235 IEEE80211_RATE_SHORT_PREAMBLE = BIT(0),
236 IEEE80211_RATE_MANDATORY_A = BIT(1),
237 IEEE80211_RATE_MANDATORY_B = BIT(2),
238 IEEE80211_RATE_MANDATORY_G = BIT(3),
239 IEEE80211_RATE_ERP_G = BIT(4),
240 IEEE80211_RATE_SUPPORTS_5MHZ = BIT(5),
241 IEEE80211_RATE_SUPPORTS_10MHZ = BIT(6),
242 };
243
244 /**
245 * enum ieee80211_bss_type - BSS type filter
246 *
247 * @IEEE80211_BSS_TYPE_ESS: Infrastructure BSS
248 * @IEEE80211_BSS_TYPE_PBSS: Personal BSS
249 * @IEEE80211_BSS_TYPE_IBSS: Independent BSS
250 * @IEEE80211_BSS_TYPE_MBSS: Mesh BSS
251 * @IEEE80211_BSS_TYPE_ANY: Wildcard value for matching any BSS type
252 */
253 enum ieee80211_bss_type {
254 IEEE80211_BSS_TYPE_ESS,
255 IEEE80211_BSS_TYPE_PBSS,
256 IEEE80211_BSS_TYPE_IBSS,
257 IEEE80211_BSS_TYPE_MBSS,
258 IEEE80211_BSS_TYPE_ANY
259 };
260
261 /**
262 * enum ieee80211_privacy - BSS privacy filter
263 *
264 * @IEEE80211_PRIVACY_ON: privacy bit set
265 * @IEEE80211_PRIVACY_OFF: privacy bit clear
266 * @IEEE80211_PRIVACY_ANY: Wildcard value for matching any privacy setting
267 */
268 enum ieee80211_privacy {
269 IEEE80211_PRIVACY_ON,
270 IEEE80211_PRIVACY_OFF,
271 IEEE80211_PRIVACY_ANY
272 };
273
274 #define IEEE80211_PRIVACY(x) \
275 ((x) ? IEEE80211_PRIVACY_ON : IEEE80211_PRIVACY_OFF)
276
277 /**
278 * struct ieee80211_rate - bitrate definition
279 *
280 * This structure describes a bitrate that an 802.11 PHY can
281 * operate with. The two values @hw_value and @hw_value_short
282 * are only for driver use when pointers to this structure are
283 * passed around.
284 *
285 * @flags: rate-specific flags from &enum ieee80211_rate_flags
286 * @bitrate: bitrate in units of 100 Kbps
287 * @hw_value: driver/hardware value for this rate
288 * @hw_value_short: driver/hardware value for this rate when
289 * short preamble is used
290 */
291 struct ieee80211_rate {
292 u32 flags;
293 u16 bitrate;
294 u16 hw_value, hw_value_short;
295 };
296
297 /**
298 * struct ieee80211_he_obss_pd - AP settings for spatial reuse
299 *
300 * @enable: is the feature enabled.
301 * @sr_ctrl: The SR Control field of SRP element.
302 * @non_srg_max_offset: non-SRG maximum tx power offset
303 * @min_offset: minimal tx power offset an associated station shall use
304 * @max_offset: maximum tx power offset an associated station shall use
305 * @bss_color_bitmap: bitmap that indicates the BSS color values used by
306 * members of the SRG
307 * @partial_bssid_bitmap: bitmap that indicates the partial BSSID values
308 * used by members of the SRG
309 */
310 struct ieee80211_he_obss_pd {
311 bool enable;
312 u8 sr_ctrl;
313 u8 non_srg_max_offset;
314 u8 min_offset;
315 u8 max_offset;
316 u8 bss_color_bitmap[8];
317 u8 partial_bssid_bitmap[8];
318 };
319
320 /**
321 * struct cfg80211_he_bss_color - AP settings for BSS coloring
322 *
323 * @color: the current color.
324 * @enabled: HE BSS color is used
325 * @partial: define the AID equation.
326 */
327 struct cfg80211_he_bss_color {
328 u8 color;
329 bool enabled;
330 bool partial;
331 };
332
333 /**
334 * struct ieee80211_sta_ht_cap - STA's HT capabilities
335 *
336 * This structure describes most essential parameters needed
337 * to describe 802.11n HT capabilities for an STA.
338 *
339 * @ht_supported: is HT supported by the STA
340 * @cap: HT capabilities map as described in 802.11n spec
341 * @ampdu_factor: Maximum A-MPDU length factor
342 * @ampdu_density: Minimum A-MPDU spacing
343 * @mcs: Supported MCS rates
344 */
345 struct ieee80211_sta_ht_cap {
346 u16 cap; /* use IEEE80211_HT_CAP_ */
347 bool ht_supported;
348 u8 ampdu_factor;
349 u8 ampdu_density;
350 struct ieee80211_mcs_info mcs;
351 };
352
353 /**
354 * struct ieee80211_sta_vht_cap - STA's VHT capabilities
355 *
356 * This structure describes most essential parameters needed
357 * to describe 802.11ac VHT capabilities for an STA.
358 *
359 * @vht_supported: is VHT supported by the STA
360 * @cap: VHT capabilities map as described in 802.11ac spec
361 * @vht_mcs: Supported VHT MCS rates
362 */
363 struct ieee80211_sta_vht_cap {
364 bool vht_supported;
365 u32 cap; /* use IEEE80211_VHT_CAP_ */
366 struct ieee80211_vht_mcs_info vht_mcs;
367 };
368
369 #define IEEE80211_HE_PPE_THRES_MAX_LEN 25
370
371 /**
372 * struct ieee80211_sta_he_cap - STA's HE capabilities
373 *
374 * This structure describes most essential parameters needed
375 * to describe 802.11ax HE capabilities for a STA.
376 *
377 * @has_he: true iff HE data is valid.
378 * @he_cap_elem: Fixed portion of the HE capabilities element.
379 * @he_mcs_nss_supp: The supported NSS/MCS combinations.
380 * @ppe_thres: Holds the PPE Thresholds data.
381 */
382 struct ieee80211_sta_he_cap {
383 bool has_he;
384 struct ieee80211_he_cap_elem he_cap_elem;
385 struct ieee80211_he_mcs_nss_supp he_mcs_nss_supp;
386 u8 ppe_thres[IEEE80211_HE_PPE_THRES_MAX_LEN];
387 };
388
389 /**
390 * struct ieee80211_eht_mcs_nss_supp - EHT max supported NSS per MCS
391 *
392 * See P802.11be_D1.3 Table 9-401k - "Subfields of the Supported EHT-MCS
393 * and NSS Set field"
394 *
395 * @only_20mhz: MCS/NSS support for 20 MHz-only STA.
396 * @bw: MCS/NSS support for 80, 160 and 320 MHz
397 * @bw._80: MCS/NSS support for BW <= 80 MHz
398 * @bw._160: MCS/NSS support for BW = 160 MHz
399 * @bw._320: MCS/NSS support for BW = 320 MHz
400 */
401 struct ieee80211_eht_mcs_nss_supp {
402 union {
403 struct ieee80211_eht_mcs_nss_supp_20mhz_only only_20mhz;
404 struct {
405 struct ieee80211_eht_mcs_nss_supp_bw _80;
406 struct ieee80211_eht_mcs_nss_supp_bw _160;
407 struct ieee80211_eht_mcs_nss_supp_bw _320;
408 } __packed bw;
409 } __packed;
410 } __packed;
411
412 #define IEEE80211_EHT_PPE_THRES_MAX_LEN 32
413
414 /**
415 * struct ieee80211_sta_eht_cap - STA's EHT capabilities
416 *
417 * This structure describes most essential parameters needed
418 * to describe 802.11be EHT capabilities for a STA.
419 *
420 * @has_eht: true iff EHT data is valid.
421 * @eht_cap_elem: Fixed portion of the eht capabilities element.
422 * @eht_mcs_nss_supp: The supported NSS/MCS combinations.
423 * @eht_ppe_thres: Holds the PPE Thresholds data.
424 */
425 struct ieee80211_sta_eht_cap {
426 bool has_eht;
427 struct ieee80211_eht_cap_elem_fixed eht_cap_elem;
428 struct ieee80211_eht_mcs_nss_supp eht_mcs_nss_supp;
429 u8 eht_ppe_thres[IEEE80211_EHT_PPE_THRES_MAX_LEN];
430 };
431
432 /* sparse defines __CHECKER__; see Documentation/dev-tools/sparse.rst */
433 #ifdef __CHECKER__
434 /*
435 * This is used to mark the sband->iftype_data pointer which is supposed
436 * to be an array with special access semantics (per iftype), but a lot
437 * of code got it wrong in the past, so with this marking sparse will be
438 * noisy when the pointer is used directly.
439 */
440 # define __iftd __attribute__((noderef, address_space(__iftype_data)))
441 #else
442 # define __iftd
443 #endif /* __CHECKER__ */
444
445 /**
446 * struct ieee80211_sband_iftype_data - sband data per interface type
447 *
448 * This structure encapsulates sband data that is relevant for the
449 * interface types defined in @types_mask. Each type in the
450 * @types_mask must be unique across all instances of iftype_data.
451 *
452 * @types_mask: interface types mask
453 * @he_cap: holds the HE capabilities
454 * @he_6ghz_capa: HE 6 GHz capabilities, must be filled in for a
455 * 6 GHz band channel (and 0 may be valid value).
456 * @eht_cap: STA's EHT capabilities
457 * @vendor_elems: vendor element(s) to advertise
458 * @vendor_elems.data: vendor element(s) data
459 * @vendor_elems.len: vendor element(s) length
460 */
461 struct ieee80211_sband_iftype_data {
462 u16 types_mask;
463 struct ieee80211_sta_he_cap he_cap;
464 struct ieee80211_he_6ghz_capa he_6ghz_capa;
465 struct ieee80211_sta_eht_cap eht_cap;
466 struct {
467 const u8 *data;
468 unsigned int len;
469 } vendor_elems;
470 };
471
472 /**
473 * enum ieee80211_edmg_bw_config - allowed channel bandwidth configurations
474 *
475 * @IEEE80211_EDMG_BW_CONFIG_4: 2.16GHz
476 * @IEEE80211_EDMG_BW_CONFIG_5: 2.16GHz and 4.32GHz
477 * @IEEE80211_EDMG_BW_CONFIG_6: 2.16GHz, 4.32GHz and 6.48GHz
478 * @IEEE80211_EDMG_BW_CONFIG_7: 2.16GHz, 4.32GHz, 6.48GHz and 8.64GHz
479 * @IEEE80211_EDMG_BW_CONFIG_8: 2.16GHz and 2.16GHz + 2.16GHz
480 * @IEEE80211_EDMG_BW_CONFIG_9: 2.16GHz, 4.32GHz and 2.16GHz + 2.16GHz
481 * @IEEE80211_EDMG_BW_CONFIG_10: 2.16GHz, 4.32GHz, 6.48GHz and 2.16GHz+2.16GHz
482 * @IEEE80211_EDMG_BW_CONFIG_11: 2.16GHz, 4.32GHz, 6.48GHz, 8.64GHz and
483 * 2.16GHz+2.16GHz
484 * @IEEE80211_EDMG_BW_CONFIG_12: 2.16GHz, 2.16GHz + 2.16GHz and
485 * 4.32GHz + 4.32GHz
486 * @IEEE80211_EDMG_BW_CONFIG_13: 2.16GHz, 4.32GHz, 2.16GHz + 2.16GHz and
487 * 4.32GHz + 4.32GHz
488 * @IEEE80211_EDMG_BW_CONFIG_14: 2.16GHz, 4.32GHz, 6.48GHz, 2.16GHz + 2.16GHz
489 * and 4.32GHz + 4.32GHz
490 * @IEEE80211_EDMG_BW_CONFIG_15: 2.16GHz, 4.32GHz, 6.48GHz, 8.64GHz,
491 * 2.16GHz + 2.16GHz and 4.32GHz + 4.32GHz
492 */
493 enum ieee80211_edmg_bw_config {
494 IEEE80211_EDMG_BW_CONFIG_4 = 4,
495 IEEE80211_EDMG_BW_CONFIG_5 = 5,
496 IEEE80211_EDMG_BW_CONFIG_6 = 6,
497 IEEE80211_EDMG_BW_CONFIG_7 = 7,
498 IEEE80211_EDMG_BW_CONFIG_8 = 8,
499 IEEE80211_EDMG_BW_CONFIG_9 = 9,
500 IEEE80211_EDMG_BW_CONFIG_10 = 10,
501 IEEE80211_EDMG_BW_CONFIG_11 = 11,
502 IEEE80211_EDMG_BW_CONFIG_12 = 12,
503 IEEE80211_EDMG_BW_CONFIG_13 = 13,
504 IEEE80211_EDMG_BW_CONFIG_14 = 14,
505 IEEE80211_EDMG_BW_CONFIG_15 = 15,
506 };
507
508 /**
509 * struct ieee80211_edmg - EDMG configuration
510 *
511 * This structure describes most essential parameters needed
512 * to describe 802.11ay EDMG configuration
513 *
514 * @channels: bitmap that indicates the 2.16 GHz channel(s)
515 * that are allowed to be used for transmissions.
516 * Bit 0 indicates channel 1, bit 1 indicates channel 2, etc.
517 * Set to 0 indicate EDMG not supported.
518 * @bw_config: Channel BW Configuration subfield encodes
519 * the allowed channel bandwidth configurations
520 */
521 struct ieee80211_edmg {
522 u8 channels;
523 enum ieee80211_edmg_bw_config bw_config;
524 };
525
526 /**
527 * struct ieee80211_sta_s1g_cap - STA's S1G capabilities
528 *
529 * This structure describes most essential parameters needed
530 * to describe 802.11ah S1G capabilities for a STA.
531 *
532 * @s1g: is STA an S1G STA
533 * @cap: S1G capabilities information
534 * @nss_mcs: Supported NSS MCS set
535 */
536 struct ieee80211_sta_s1g_cap {
537 bool s1g;
538 u8 cap[10]; /* use S1G_CAPAB_ */
539 u8 nss_mcs[5];
540 };
541
542 /**
543 * struct ieee80211_supported_band - frequency band definition
544 *
545 * This structure describes a frequency band a wiphy
546 * is able to operate in.
547 *
548 * @channels: Array of channels the hardware can operate with
549 * in this band.
550 * @band: the band this structure represents
551 * @n_channels: Number of channels in @channels
552 * @bitrates: Array of bitrates the hardware can operate with
553 * in this band. Must be sorted to give a valid "supported
554 * rates" IE, i.e. CCK rates first, then OFDM.
555 * @n_bitrates: Number of bitrates in @bitrates
556 * @ht_cap: HT capabilities in this band
557 * @vht_cap: VHT capabilities in this band
558 * @s1g_cap: S1G capabilities in this band
559 * @edmg_cap: EDMG capabilities in this band
560 * @s1g_cap: S1G capabilities in this band (S1G band only, of course)
561 * @n_iftype_data: number of iftype data entries
562 * @iftype_data: interface type data entries. Note that the bits in
563 * @types_mask inside this structure cannot overlap (i.e. only
564 * one occurrence of each type is allowed across all instances of
565 * iftype_data).
566 */
567 struct ieee80211_supported_band {
568 struct ieee80211_channel *channels;
569 struct ieee80211_rate *bitrates;
570 enum nl80211_band band;
571 int n_channels;
572 int n_bitrates;
573 struct ieee80211_sta_ht_cap ht_cap;
574 struct ieee80211_sta_vht_cap vht_cap;
575 struct ieee80211_sta_s1g_cap s1g_cap;
576 struct ieee80211_edmg edmg_cap;
577 u16 n_iftype_data;
578 const struct ieee80211_sband_iftype_data __iftd *iftype_data;
579 };
580
581 /**
582 * _ieee80211_set_sband_iftype_data - set sband iftype data array
583 * @sband: the sband to initialize
584 * @iftd: the iftype data array pointer
585 * @n_iftd: the length of the iftype data array
586 *
587 * Set the sband iftype data array; use this where the length cannot
588 * be derived from the ARRAY_SIZE() of the argument, but prefer
589 * ieee80211_set_sband_iftype_data() where it can be used.
590 */
591 static inline void
_ieee80211_set_sband_iftype_data(struct ieee80211_supported_band * sband,const struct ieee80211_sband_iftype_data * iftd,u16 n_iftd)592 _ieee80211_set_sband_iftype_data(struct ieee80211_supported_band *sband,
593 const struct ieee80211_sband_iftype_data *iftd,
594 u16 n_iftd)
595 {
596 sband->iftype_data = (const void __iftd __force *)iftd;
597 sband->n_iftype_data = n_iftd;
598 }
599
600 /**
601 * ieee80211_set_sband_iftype_data - set sband iftype data array
602 * @sband: the sband to initialize
603 * @iftd: the iftype data array
604 */
605 #define ieee80211_set_sband_iftype_data(sband, iftd) \
606 _ieee80211_set_sband_iftype_data(sband, iftd, ARRAY_SIZE(iftd))
607
608 /**
609 * for_each_sband_iftype_data - iterate sband iftype data entries
610 * @sband: the sband whose iftype_data array to iterate
611 * @i: iterator counter
612 * @iftd: iftype data pointer to set
613 */
614 #define for_each_sband_iftype_data(sband, i, iftd) \
615 for (i = 0, iftd = (const void __force *)&(sband)->iftype_data[i]; \
616 i < (sband)->n_iftype_data; \
617 i++, iftd = (const void __force *)&(sband)->iftype_data[i])
618
619 /**
620 * ieee80211_get_sband_iftype_data - return sband data for a given iftype
621 * @sband: the sband to search for the STA on
622 * @iftype: enum nl80211_iftype
623 *
624 * Return: pointer to struct ieee80211_sband_iftype_data, or NULL is none found
625 */
626 static inline const struct ieee80211_sband_iftype_data *
ieee80211_get_sband_iftype_data(const struct ieee80211_supported_band * sband,u8 iftype)627 ieee80211_get_sband_iftype_data(const struct ieee80211_supported_band *sband,
628 u8 iftype)
629 {
630 const struct ieee80211_sband_iftype_data *data;
631 int i;
632
633 if (WARN_ON(iftype >= NUM_NL80211_IFTYPES))
634 return NULL;
635
636 if (iftype == NL80211_IFTYPE_AP_VLAN)
637 iftype = NL80211_IFTYPE_AP;
638
639 for_each_sband_iftype_data(sband, i, data) {
640 if (data->types_mask & BIT(iftype))
641 return data;
642 }
643
644 return NULL;
645 }
646
647 /**
648 * ieee80211_get_he_iftype_cap - return HE capabilities for an sband's iftype
649 * @sband: the sband to search for the iftype on
650 * @iftype: enum nl80211_iftype
651 *
652 * Return: pointer to the struct ieee80211_sta_he_cap, or NULL is none found
653 */
654 static inline const struct ieee80211_sta_he_cap *
ieee80211_get_he_iftype_cap(const struct ieee80211_supported_band * sband,u8 iftype)655 ieee80211_get_he_iftype_cap(const struct ieee80211_supported_band *sband,
656 u8 iftype)
657 {
658 const struct ieee80211_sband_iftype_data *data =
659 ieee80211_get_sband_iftype_data(sband, iftype);
660
661 if (data && data->he_cap.has_he)
662 return &data->he_cap;
663
664 return NULL;
665 }
666
667 /**
668 * ieee80211_get_he_6ghz_capa - return HE 6 GHz capabilities
669 * @sband: the sband to search for the STA on
670 * @iftype: the iftype to search for
671 *
672 * Return: the 6GHz capabilities
673 */
674 static inline __le16
ieee80211_get_he_6ghz_capa(const struct ieee80211_supported_band * sband,enum nl80211_iftype iftype)675 ieee80211_get_he_6ghz_capa(const struct ieee80211_supported_band *sband,
676 enum nl80211_iftype iftype)
677 {
678 const struct ieee80211_sband_iftype_data *data =
679 ieee80211_get_sband_iftype_data(sband, iftype);
680
681 if (WARN_ON(!data || !data->he_cap.has_he))
682 return 0;
683
684 return data->he_6ghz_capa.capa;
685 }
686
687 /**
688 * ieee80211_get_eht_iftype_cap - return EHT capabilities for an sband's iftype
689 * @sband: the sband to search for the iftype on
690 * @iftype: enum nl80211_iftype
691 *
692 * Return: pointer to the struct ieee80211_sta_eht_cap, or NULL is none found
693 */
694 static inline const struct ieee80211_sta_eht_cap *
ieee80211_get_eht_iftype_cap(const struct ieee80211_supported_band * sband,enum nl80211_iftype iftype)695 ieee80211_get_eht_iftype_cap(const struct ieee80211_supported_band *sband,
696 enum nl80211_iftype iftype)
697 {
698 const struct ieee80211_sband_iftype_data *data =
699 ieee80211_get_sband_iftype_data(sband, iftype);
700
701 if (data && data->eht_cap.has_eht)
702 return &data->eht_cap;
703
704 return NULL;
705 }
706
707 /**
708 * wiphy_read_of_freq_limits - read frequency limits from device tree
709 *
710 * @wiphy: the wireless device to get extra limits for
711 *
712 * Some devices may have extra limitations specified in DT. This may be useful
713 * for chipsets that normally support more bands but are limited due to board
714 * design (e.g. by antennas or external power amplifier).
715 *
716 * This function reads info from DT and uses it to *modify* channels (disable
717 * unavailable ones). It's usually a *bad* idea to use it in drivers with
718 * shared channel data as DT limitations are device specific. You should make
719 * sure to call it only if channels in wiphy are copied and can be modified
720 * without affecting other devices.
721 *
722 * As this function access device node it has to be called after set_wiphy_dev.
723 * It also modifies channels so they have to be set first.
724 * If using this helper, call it before wiphy_register().
725 */
726 #ifdef CONFIG_OF
727 void wiphy_read_of_freq_limits(struct wiphy *wiphy);
728 #else /* CONFIG_OF */
wiphy_read_of_freq_limits(struct wiphy * wiphy)729 static inline void wiphy_read_of_freq_limits(struct wiphy *wiphy)
730 {
731 }
732 #endif /* !CONFIG_OF */
733
734
735 /*
736 * Wireless hardware/device configuration structures and methods
737 */
738
739 /**
740 * DOC: Actions and configuration
741 *
742 * Each wireless device and each virtual interface offer a set of configuration
743 * operations and other actions that are invoked by userspace. Each of these
744 * actions is described in the operations structure, and the parameters these
745 * operations use are described separately.
746 *
747 * Additionally, some operations are asynchronous and expect to get status
748 * information via some functions that drivers need to call.
749 *
750 * Scanning and BSS list handling with its associated functionality is described
751 * in a separate chapter.
752 */
753
754 #define VHT_MUMIMO_GROUPS_DATA_LEN (WLAN_MEMBERSHIP_LEN +\
755 WLAN_USER_POSITION_LEN)
756
757 /**
758 * struct vif_params - describes virtual interface parameters
759 * @flags: monitor interface flags, unchanged if 0, otherwise
760 * %MONITOR_FLAG_CHANGED will be set
761 * @use_4addr: use 4-address frames
762 * @macaddr: address to use for this virtual interface.
763 * If this parameter is set to zero address the driver may
764 * determine the address as needed.
765 * This feature is only fully supported by drivers that enable the
766 * %NL80211_FEATURE_MAC_ON_CREATE flag. Others may support creating
767 ** only p2p devices with specified MAC.
768 * @vht_mumimo_groups: MU-MIMO groupID, used for monitoring MU-MIMO packets
769 * belonging to that MU-MIMO groupID; %NULL if not changed
770 * @vht_mumimo_follow_addr: MU-MIMO follow address, used for monitoring
771 * MU-MIMO packets going to the specified station; %NULL if not changed
772 */
773 struct vif_params {
774 u32 flags;
775 int use_4addr;
776 u8 macaddr[ETH_ALEN];
777 const u8 *vht_mumimo_groups;
778 const u8 *vht_mumimo_follow_addr;
779 };
780
781 /**
782 * struct key_params - key information
783 *
784 * Information about a key
785 *
786 * @key: key material
787 * @key_len: length of key material
788 * @cipher: cipher suite selector
789 * @seq: sequence counter (IV/PN), must be in little endian,
790 * length given by @seq_len.
791 * @seq_len: length of @seq.
792 * @vlan_id: vlan_id for VLAN group key (if nonzero)
793 * @mode: key install mode (RX_TX, NO_TX or SET_TX)
794 */
795 struct key_params {
796 const u8 *key;
797 const u8 *seq;
798 int key_len;
799 int seq_len;
800 u16 vlan_id;
801 u32 cipher;
802 enum nl80211_key_mode mode;
803 };
804
805 /**
806 * struct cfg80211_chan_def - channel definition
807 * @chan: the (control) channel
808 * @width: channel width
809 * @center_freq1: center frequency of first segment
810 * @center_freq2: center frequency of second segment
811 * (only with 80+80 MHz)
812 * @edmg: define the EDMG channels configuration.
813 * If edmg is requested (i.e. the .channels member is non-zero),
814 * chan will define the primary channel and all other
815 * parameters are ignored.
816 * @freq1_offset: offset from @center_freq1, in KHz
817 * @punctured: mask of the punctured 20 MHz subchannels, with
818 * bits turned on being disabled (punctured); numbered
819 * from lower to higher frequency (like in the spec)
820 * @s1g_primary_2mhz: Indicates if the control channel pointed to
821 * by 'chan' exists as a 1MHz primary subchannel within an
822 * S1G 2MHz primary channel.
823 */
824 struct cfg80211_chan_def {
825 struct ieee80211_channel *chan;
826 enum nl80211_chan_width width;
827 u32 center_freq1;
828 u32 center_freq2;
829 struct ieee80211_edmg edmg;
830 u16 freq1_offset;
831 u16 punctured;
832 bool s1g_primary_2mhz;
833 };
834
835 /*
836 * cfg80211_bitrate_mask - masks for bitrate control
837 */
838 struct cfg80211_bitrate_mask {
839 struct {
840 u32 legacy;
841 u8 ht_mcs[IEEE80211_HT_MCS_MASK_LEN];
842 u16 vht_mcs[NL80211_VHT_NSS_MAX];
843 u16 he_mcs[NL80211_HE_NSS_MAX];
844 u16 eht_mcs[NL80211_EHT_NSS_MAX];
845 enum nl80211_txrate_gi gi;
846 enum nl80211_he_gi he_gi;
847 enum nl80211_eht_gi eht_gi;
848 enum nl80211_he_ltf he_ltf;
849 enum nl80211_eht_ltf eht_ltf;
850 } control[NUM_NL80211_BANDS];
851 };
852
853
854 /**
855 * struct cfg80211_tid_cfg - TID specific configuration
856 * @config_override: Flag to notify driver to reset TID configuration
857 * of the peer.
858 * @tids: bitmap of TIDs to modify
859 * @mask: bitmap of attributes indicating which parameter changed,
860 * similar to &nl80211_tid_config_supp.
861 * @noack: noack configuration value for the TID
862 * @retry_long: retry count value
863 * @retry_short: retry count value
864 * @ampdu: Enable/Disable MPDU aggregation
865 * @rtscts: Enable/Disable RTS/CTS
866 * @amsdu: Enable/Disable MSDU aggregation
867 * @txrate_type: Tx bitrate mask type
868 * @txrate_mask: Tx bitrate to be applied for the TID
869 */
870 struct cfg80211_tid_cfg {
871 bool config_override;
872 u8 tids;
873 u64 mask;
874 enum nl80211_tid_config noack;
875 u8 retry_long, retry_short;
876 enum nl80211_tid_config ampdu;
877 enum nl80211_tid_config rtscts;
878 enum nl80211_tid_config amsdu;
879 enum nl80211_tx_rate_setting txrate_type;
880 struct cfg80211_bitrate_mask txrate_mask;
881 };
882
883 /**
884 * struct cfg80211_tid_config - TID configuration
885 * @peer: Station's MAC address
886 * @n_tid_conf: Number of TID specific configurations to be applied
887 * @tid_conf: Configuration change info
888 */
889 struct cfg80211_tid_config {
890 const u8 *peer;
891 u32 n_tid_conf;
892 struct cfg80211_tid_cfg tid_conf[] __counted_by(n_tid_conf);
893 };
894
895 /**
896 * struct cfg80211_fils_aad - FILS AAD data
897 * @macaddr: STA MAC address
898 * @kek: FILS KEK
899 * @kek_len: FILS KEK length
900 * @snonce: STA Nonce
901 * @anonce: AP Nonce
902 */
903 struct cfg80211_fils_aad {
904 const u8 *macaddr;
905 const u8 *kek;
906 u8 kek_len;
907 const u8 *snonce;
908 const u8 *anonce;
909 };
910
911 /**
912 * struct cfg80211_set_hw_timestamp - enable/disable HW timestamping
913 * @macaddr: peer MAC address. NULL to enable/disable HW timestamping for all
914 * addresses.
915 * @enable: if set, enable HW timestamping for the specified MAC address.
916 * Otherwise disable HW timestamping for the specified MAC address.
917 */
918 struct cfg80211_set_hw_timestamp {
919 const u8 *macaddr;
920 bool enable;
921 };
922
923 /**
924 * cfg80211_get_chandef_type - return old channel type from chandef
925 * @chandef: the channel definition
926 *
927 * Return: The old channel type (NOHT, HT20, HT40+/-) from a given
928 * chandef, which must have a bandwidth allowing this conversion.
929 */
930 static inline enum nl80211_channel_type
cfg80211_get_chandef_type(const struct cfg80211_chan_def * chandef)931 cfg80211_get_chandef_type(const struct cfg80211_chan_def *chandef)
932 {
933 switch (chandef->width) {
934 case NL80211_CHAN_WIDTH_20_NOHT:
935 return NL80211_CHAN_NO_HT;
936 case NL80211_CHAN_WIDTH_20:
937 return NL80211_CHAN_HT20;
938 case NL80211_CHAN_WIDTH_40:
939 if (chandef->center_freq1 > chandef->chan->center_freq)
940 return NL80211_CHAN_HT40PLUS;
941 return NL80211_CHAN_HT40MINUS;
942 default:
943 WARN_ON(1);
944 return NL80211_CHAN_NO_HT;
945 }
946 }
947
948 /**
949 * cfg80211_chandef_create - create channel definition using channel type
950 * @chandef: the channel definition struct to fill
951 * @channel: the control channel
952 * @chantype: the channel type
953 *
954 * Given a channel type, create a channel definition.
955 */
956 void cfg80211_chandef_create(struct cfg80211_chan_def *chandef,
957 struct ieee80211_channel *channel,
958 enum nl80211_channel_type chantype);
959
960 /**
961 * cfg80211_chandef_identical - check if two channel definitions are identical
962 * @chandef1: first channel definition
963 * @chandef2: second channel definition
964 *
965 * Return: %true if the channels defined by the channel definitions are
966 * identical, %false otherwise.
967 */
968 static inline bool
cfg80211_chandef_identical(const struct cfg80211_chan_def * chandef1,const struct cfg80211_chan_def * chandef2)969 cfg80211_chandef_identical(const struct cfg80211_chan_def *chandef1,
970 const struct cfg80211_chan_def *chandef2)
971 {
972 return (chandef1->chan == chandef2->chan &&
973 chandef1->width == chandef2->width &&
974 chandef1->center_freq1 == chandef2->center_freq1 &&
975 chandef1->freq1_offset == chandef2->freq1_offset &&
976 chandef1->center_freq2 == chandef2->center_freq2 &&
977 chandef1->punctured == chandef2->punctured &&
978 chandef1->s1g_primary_2mhz == chandef2->s1g_primary_2mhz);
979 }
980
981 /**
982 * cfg80211_chandef_is_edmg - check if chandef represents an EDMG channel
983 *
984 * @chandef: the channel definition
985 *
986 * Return: %true if EDMG defined, %false otherwise.
987 */
988 static inline bool
cfg80211_chandef_is_edmg(const struct cfg80211_chan_def * chandef)989 cfg80211_chandef_is_edmg(const struct cfg80211_chan_def *chandef)
990 {
991 return chandef->edmg.channels || chandef->edmg.bw_config;
992 }
993
994 /**
995 * cfg80211_chandef_is_s1g - check if chandef represents an S1G channel
996 * @chandef: the channel definition
997 *
998 * Return: %true if S1G.
999 */
1000 static inline bool
cfg80211_chandef_is_s1g(const struct cfg80211_chan_def * chandef)1001 cfg80211_chandef_is_s1g(const struct cfg80211_chan_def *chandef)
1002 {
1003 return chandef->chan->band == NL80211_BAND_S1GHZ;
1004 }
1005
1006 /**
1007 * cfg80211_chandef_compatible - check if two channel definitions are compatible
1008 * @chandef1: first channel definition
1009 * @chandef2: second channel definition
1010 *
1011 * Return: %NULL if the given channel definitions are incompatible,
1012 * chandef1 or chandef2 otherwise.
1013 */
1014 const struct cfg80211_chan_def *
1015 cfg80211_chandef_compatible(const struct cfg80211_chan_def *chandef1,
1016 const struct cfg80211_chan_def *chandef2);
1017
1018
1019 /**
1020 * nl80211_chan_width_to_mhz - get the channel width in MHz
1021 * @chan_width: the channel width from &enum nl80211_chan_width
1022 *
1023 * Return: channel width in MHz if the chan_width from &enum nl80211_chan_width
1024 * is valid. -1 otherwise.
1025 */
1026 int nl80211_chan_width_to_mhz(enum nl80211_chan_width chan_width);
1027
1028 /**
1029 * cfg80211_chandef_get_width - return chandef width in MHz
1030 * @c: chandef to return bandwidth for
1031 * Return: channel width in MHz for the given chandef; note that it returns
1032 * 80 for 80+80 configurations
1033 */
cfg80211_chandef_get_width(const struct cfg80211_chan_def * c)1034 static inline int cfg80211_chandef_get_width(const struct cfg80211_chan_def *c)
1035 {
1036 return nl80211_chan_width_to_mhz(c->width);
1037 }
1038
1039 /**
1040 * cfg80211_chandef_valid - check if a channel definition is valid
1041 * @chandef: the channel definition to check
1042 * Return: %true if the channel definition is valid. %false otherwise.
1043 */
1044 bool cfg80211_chandef_valid(const struct cfg80211_chan_def *chandef);
1045
1046 /**
1047 * cfg80211_chandef_usable - check if secondary channels can be used
1048 * @wiphy: the wiphy to validate against
1049 * @chandef: the channel definition to check
1050 * @prohibited_flags: the regulatory channel flags that must not be set
1051 * Return: %true if secondary channels are usable. %false otherwise.
1052 */
1053 bool cfg80211_chandef_usable(struct wiphy *wiphy,
1054 const struct cfg80211_chan_def *chandef,
1055 u32 prohibited_flags);
1056
1057 /**
1058 * cfg80211_chandef_dfs_required - checks if radar detection is required
1059 * @wiphy: the wiphy to validate against
1060 * @chandef: the channel definition to check
1061 * @iftype: the interface type as specified in &enum nl80211_iftype
1062 * Returns:
1063 * 1 if radar detection is required, 0 if it is not, < 0 on error
1064 */
1065 int cfg80211_chandef_dfs_required(struct wiphy *wiphy,
1066 const struct cfg80211_chan_def *chandef,
1067 enum nl80211_iftype iftype);
1068
1069 /**
1070 * cfg80211_chandef_dfs_usable - checks if chandef is DFS usable and we
1071 * can/need start CAC on such channel
1072 * @wiphy: the wiphy to validate against
1073 * @chandef: the channel definition to check
1074 *
1075 * Return: true if all channels available and at least
1076 * one channel requires CAC (NL80211_DFS_USABLE)
1077 */
1078 bool cfg80211_chandef_dfs_usable(struct wiphy *wiphy,
1079 const struct cfg80211_chan_def *chandef);
1080
1081 /**
1082 * cfg80211_chandef_dfs_cac_time - get the DFS CAC time (in ms) for given
1083 * channel definition
1084 * @wiphy: the wiphy to validate against
1085 * @chandef: the channel definition to check
1086 *
1087 * Returns: DFS CAC time (in ms) which applies for this channel definition
1088 */
1089 unsigned int
1090 cfg80211_chandef_dfs_cac_time(struct wiphy *wiphy,
1091 const struct cfg80211_chan_def *chandef);
1092
1093 /**
1094 * cfg80211_chandef_primary - calculate primary 40/80/160 MHz freq
1095 * @chandef: chandef to calculate for
1096 * @primary_chan_width: primary channel width to calculate center for
1097 * @punctured: punctured sub-channel bitmap, will be recalculated
1098 * according to the new bandwidth, can be %NULL
1099 *
1100 * Returns: the primary 40/80/160 MHz channel center frequency, or -1
1101 * for errors, updating the punctured bitmap
1102 */
1103 int cfg80211_chandef_primary(const struct cfg80211_chan_def *chandef,
1104 enum nl80211_chan_width primary_chan_width,
1105 u16 *punctured);
1106
1107 /**
1108 * nl80211_send_chandef - sends the channel definition.
1109 * @msg: the msg to send channel definition
1110 * @chandef: the channel definition to check
1111 *
1112 * Returns: 0 if sent the channel definition to msg, < 0 on error
1113 **/
1114 int nl80211_send_chandef(struct sk_buff *msg, const struct cfg80211_chan_def *chandef);
1115
1116 /**
1117 * ieee80211_chandef_max_power - maximum transmission power for the chandef
1118 *
1119 * In some regulations, the transmit power may depend on the configured channel
1120 * bandwidth which may be defined as dBm/MHz. This function returns the actual
1121 * max_power for non-standard (20 MHz) channels.
1122 *
1123 * @chandef: channel definition for the channel
1124 *
1125 * Returns: maximum allowed transmission power in dBm for the chandef
1126 */
1127 static inline int
ieee80211_chandef_max_power(struct cfg80211_chan_def * chandef)1128 ieee80211_chandef_max_power(struct cfg80211_chan_def *chandef)
1129 {
1130 switch (chandef->width) {
1131 case NL80211_CHAN_WIDTH_5:
1132 return min(chandef->chan->max_reg_power - 6,
1133 chandef->chan->max_power);
1134 case NL80211_CHAN_WIDTH_10:
1135 return min(chandef->chan->max_reg_power - 3,
1136 chandef->chan->max_power);
1137 default:
1138 break;
1139 }
1140 return chandef->chan->max_power;
1141 }
1142
1143 /**
1144 * cfg80211_any_usable_channels - check for usable channels
1145 * @wiphy: the wiphy to check for
1146 * @band_mask: which bands to check on
1147 * @prohibited_flags: which channels to not consider usable,
1148 * %IEEE80211_CHAN_DISABLED is always taken into account
1149 *
1150 * Return: %true if usable channels found, %false otherwise
1151 */
1152 bool cfg80211_any_usable_channels(struct wiphy *wiphy,
1153 unsigned long band_mask,
1154 u32 prohibited_flags);
1155
1156 /**
1157 * enum survey_info_flags - survey information flags
1158 *
1159 * @SURVEY_INFO_NOISE_DBM: noise (in dBm) was filled in
1160 * @SURVEY_INFO_IN_USE: channel is currently being used
1161 * @SURVEY_INFO_TIME: active time (in ms) was filled in
1162 * @SURVEY_INFO_TIME_BUSY: busy time was filled in
1163 * @SURVEY_INFO_TIME_EXT_BUSY: extension channel busy time was filled in
1164 * @SURVEY_INFO_TIME_RX: receive time was filled in
1165 * @SURVEY_INFO_TIME_TX: transmit time was filled in
1166 * @SURVEY_INFO_TIME_SCAN: scan time was filled in
1167 * @SURVEY_INFO_TIME_BSS_RX: local BSS receive time was filled in
1168 *
1169 * Used by the driver to indicate which info in &struct survey_info
1170 * it has filled in during the get_survey().
1171 */
1172 enum survey_info_flags {
1173 SURVEY_INFO_NOISE_DBM = BIT(0),
1174 SURVEY_INFO_IN_USE = BIT(1),
1175 SURVEY_INFO_TIME = BIT(2),
1176 SURVEY_INFO_TIME_BUSY = BIT(3),
1177 SURVEY_INFO_TIME_EXT_BUSY = BIT(4),
1178 SURVEY_INFO_TIME_RX = BIT(5),
1179 SURVEY_INFO_TIME_TX = BIT(6),
1180 SURVEY_INFO_TIME_SCAN = BIT(7),
1181 SURVEY_INFO_TIME_BSS_RX = BIT(8),
1182 };
1183
1184 /**
1185 * struct survey_info - channel survey response
1186 *
1187 * @channel: the channel this survey record reports, may be %NULL for a single
1188 * record to report global statistics
1189 * @filled: bitflag of flags from &enum survey_info_flags
1190 * @noise: channel noise in dBm. This and all following fields are
1191 * optional
1192 * @time: amount of time in ms the radio was turn on (on the channel)
1193 * @time_busy: amount of time the primary channel was sensed busy
1194 * @time_ext_busy: amount of time the extension channel was sensed busy
1195 * @time_rx: amount of time the radio spent receiving data
1196 * @time_tx: amount of time the radio spent transmitting data
1197 * @time_scan: amount of time the radio spent for scanning
1198 * @time_bss_rx: amount of time the radio spent receiving data on a local BSS
1199 *
1200 * Used by dump_survey() to report back per-channel survey information.
1201 *
1202 * This structure can later be expanded with things like
1203 * channel duty cycle etc.
1204 */
1205 struct survey_info {
1206 struct ieee80211_channel *channel;
1207 u64 time;
1208 u64 time_busy;
1209 u64 time_ext_busy;
1210 u64 time_rx;
1211 u64 time_tx;
1212 u64 time_scan;
1213 u64 time_bss_rx;
1214 u32 filled;
1215 s8 noise;
1216 };
1217
1218 #define CFG80211_MAX_NUM_AKM_SUITES 10
1219
1220 /**
1221 * struct cfg80211_crypto_settings - Crypto settings
1222 * @wpa_versions: indicates which, if any, WPA versions are enabled
1223 * (from enum nl80211_wpa_versions)
1224 * @cipher_group: group key cipher suite (or 0 if unset)
1225 * @n_ciphers_pairwise: number of AP supported unicast ciphers
1226 * @ciphers_pairwise: unicast key cipher suites
1227 * @n_akm_suites: number of AKM suites
1228 * @akm_suites: AKM suites
1229 * @control_port: Whether user space controls IEEE 802.1X port, i.e.,
1230 * sets/clears %NL80211_STA_FLAG_AUTHORIZED. If true, the driver is
1231 * required to assume that the port is unauthorized until authorized by
1232 * user space. Otherwise, port is marked authorized by default.
1233 * @control_port_ethertype: the control port protocol that should be
1234 * allowed through even on unauthorized ports
1235 * @control_port_no_encrypt: TRUE to prevent encryption of control port
1236 * protocol frames.
1237 * @control_port_over_nl80211: TRUE if userspace expects to exchange control
1238 * port frames over NL80211 instead of the network interface.
1239 * @control_port_no_preauth: disables pre-auth rx over the nl80211 control
1240 * port for mac80211
1241 * @psk: PSK (for devices supporting 4-way-handshake offload)
1242 * @sae_pwd: password for SAE authentication (for devices supporting SAE
1243 * offload)
1244 * @sae_pwd_len: length of SAE password (for devices supporting SAE offload)
1245 * @sae_pwe: The mechanisms allowed for SAE PWE derivation:
1246 *
1247 * NL80211_SAE_PWE_UNSPECIFIED
1248 * Not-specified, used to indicate userspace did not specify any
1249 * preference. The driver should follow its internal policy in
1250 * such a scenario.
1251 *
1252 * NL80211_SAE_PWE_HUNT_AND_PECK
1253 * Allow hunting-and-pecking loop only
1254 *
1255 * NL80211_SAE_PWE_HASH_TO_ELEMENT
1256 * Allow hash-to-element only
1257 *
1258 * NL80211_SAE_PWE_BOTH
1259 * Allow either hunting-and-pecking loop or hash-to-element
1260 */
1261 struct cfg80211_crypto_settings {
1262 u32 wpa_versions;
1263 u32 cipher_group;
1264 int n_ciphers_pairwise;
1265 u32 ciphers_pairwise[NL80211_MAX_NR_CIPHER_SUITES];
1266 int n_akm_suites;
1267 u32 akm_suites[CFG80211_MAX_NUM_AKM_SUITES];
1268 bool control_port;
1269 __be16 control_port_ethertype;
1270 bool control_port_no_encrypt;
1271 bool control_port_over_nl80211;
1272 bool control_port_no_preauth;
1273 const u8 *psk;
1274 const u8 *sae_pwd;
1275 u8 sae_pwd_len;
1276 enum nl80211_sae_pwe_mechanism sae_pwe;
1277 };
1278
1279 /**
1280 * struct cfg80211_mbssid_config - AP settings for multi bssid
1281 *
1282 * @tx_wdev: pointer to the transmitted interface in the MBSSID set
1283 * @tx_link_id: link ID of the transmitted profile in an MLD.
1284 * @index: index of this AP in the multi bssid group.
1285 * @ema: set to true if the beacons should be sent out in EMA mode.
1286 */
1287 struct cfg80211_mbssid_config {
1288 struct wireless_dev *tx_wdev;
1289 u8 tx_link_id;
1290 u8 index;
1291 bool ema;
1292 };
1293
1294 /**
1295 * struct cfg80211_mbssid_elems - Multiple BSSID elements
1296 *
1297 * @cnt: Number of elements in array %elems.
1298 *
1299 * @elem: Array of multiple BSSID element(s) to be added into Beacon frames.
1300 * @elem.data: Data for multiple BSSID elements.
1301 * @elem.len: Length of data.
1302 */
1303 struct cfg80211_mbssid_elems {
1304 u8 cnt;
1305 struct {
1306 const u8 *data;
1307 size_t len;
1308 } elem[] __counted_by(cnt);
1309 };
1310
1311 /**
1312 * struct cfg80211_rnr_elems - Reduced neighbor report (RNR) elements
1313 *
1314 * @cnt: Number of elements in array %elems.
1315 *
1316 * @elem: Array of RNR element(s) to be added into Beacon frames.
1317 * @elem.data: Data for RNR elements.
1318 * @elem.len: Length of data.
1319 */
1320 struct cfg80211_rnr_elems {
1321 u8 cnt;
1322 struct {
1323 const u8 *data;
1324 size_t len;
1325 } elem[] __counted_by(cnt);
1326 };
1327
1328 /**
1329 * struct cfg80211_beacon_data - beacon data
1330 * @link_id: the link ID for the AP MLD link sending this beacon
1331 * @head: head portion of beacon (before TIM IE)
1332 * or %NULL if not changed
1333 * @tail: tail portion of beacon (after TIM IE)
1334 * or %NULL if not changed
1335 * @head_len: length of @head
1336 * @tail_len: length of @tail
1337 * @beacon_ies: extra information element(s) to add into Beacon frames or %NULL
1338 * @beacon_ies_len: length of beacon_ies in octets
1339 * @proberesp_ies: extra information element(s) to add into Probe Response
1340 * frames or %NULL
1341 * @proberesp_ies_len: length of proberesp_ies in octets
1342 * @assocresp_ies: extra information element(s) to add into (Re)Association
1343 * Response frames or %NULL
1344 * @assocresp_ies_len: length of assocresp_ies in octets
1345 * @probe_resp_len: length of probe response template (@probe_resp)
1346 * @probe_resp: probe response template (AP mode only)
1347 * @mbssid_ies: multiple BSSID elements
1348 * @rnr_ies: reduced neighbor report elements
1349 * @ftm_responder: enable FTM responder functionality; -1 for no change
1350 * (which also implies no change in LCI/civic location data)
1351 * @lci: Measurement Report element content, starting with Measurement Token
1352 * (measurement type 8)
1353 * @civicloc: Measurement Report element content, starting with Measurement
1354 * Token (measurement type 11)
1355 * @lci_len: LCI data length
1356 * @civicloc_len: Civic location data length
1357 * @he_bss_color: BSS Color settings
1358 * @he_bss_color_valid: indicates whether bss color
1359 * attribute is present in beacon data or not.
1360 */
1361 struct cfg80211_beacon_data {
1362 unsigned int link_id;
1363
1364 const u8 *head, *tail;
1365 const u8 *beacon_ies;
1366 const u8 *proberesp_ies;
1367 const u8 *assocresp_ies;
1368 const u8 *probe_resp;
1369 const u8 *lci;
1370 const u8 *civicloc;
1371 struct cfg80211_mbssid_elems *mbssid_ies;
1372 struct cfg80211_rnr_elems *rnr_ies;
1373 s8 ftm_responder;
1374
1375 size_t head_len, tail_len;
1376 size_t beacon_ies_len;
1377 size_t proberesp_ies_len;
1378 size_t assocresp_ies_len;
1379 size_t probe_resp_len;
1380 size_t lci_len;
1381 size_t civicloc_len;
1382 struct cfg80211_he_bss_color he_bss_color;
1383 bool he_bss_color_valid;
1384 };
1385
1386 struct mac_address {
1387 u8 addr[ETH_ALEN];
1388 };
1389
1390 /**
1391 * struct cfg80211_acl_data - Access control list data
1392 *
1393 * @acl_policy: ACL policy to be applied on the station's
1394 * entry specified by mac_addr
1395 * @n_acl_entries: Number of MAC address entries passed
1396 * @mac_addrs: List of MAC addresses of stations to be used for ACL
1397 */
1398 struct cfg80211_acl_data {
1399 enum nl80211_acl_policy acl_policy;
1400 int n_acl_entries;
1401
1402 /* Keep it last */
1403 struct mac_address mac_addrs[] __counted_by(n_acl_entries);
1404 };
1405
1406 /**
1407 * struct cfg80211_fils_discovery - FILS discovery parameters from
1408 * IEEE Std 802.11ai-2016, Annex C.3 MIB detail.
1409 *
1410 * @update: Set to true if the feature configuration should be updated.
1411 * @min_interval: Minimum packet interval in TUs (0 - 10000)
1412 * @max_interval: Maximum packet interval in TUs (0 - 10000)
1413 * @tmpl_len: Template length
1414 * @tmpl: Template data for FILS discovery frame including the action
1415 * frame headers.
1416 */
1417 struct cfg80211_fils_discovery {
1418 bool update;
1419 u32 min_interval;
1420 u32 max_interval;
1421 size_t tmpl_len;
1422 const u8 *tmpl;
1423 };
1424
1425 /**
1426 * struct cfg80211_unsol_bcast_probe_resp - Unsolicited broadcast probe
1427 * response parameters in 6GHz.
1428 *
1429 * @update: Set to true if the feature configuration should be updated.
1430 * @interval: Packet interval in TUs. Maximum allowed is 20 TU, as mentioned
1431 * in IEEE P802.11ax/D6.0 26.17.2.3.2 - AP behavior for fast passive
1432 * scanning
1433 * @tmpl_len: Template length
1434 * @tmpl: Template data for probe response
1435 */
1436 struct cfg80211_unsol_bcast_probe_resp {
1437 bool update;
1438 u32 interval;
1439 size_t tmpl_len;
1440 const u8 *tmpl;
1441 };
1442
1443 /**
1444 * struct cfg80211_s1g_short_beacon - S1G short beacon data.
1445 *
1446 * @update: Set to true if the feature configuration should be updated.
1447 * @short_head: Short beacon head.
1448 * @short_tail: Short beacon tail.
1449 * @short_head_len: Short beacon head len.
1450 * @short_tail_len: Short beacon tail len.
1451 */
1452 struct cfg80211_s1g_short_beacon {
1453 bool update;
1454 const u8 *short_head;
1455 const u8 *short_tail;
1456 size_t short_head_len;
1457 size_t short_tail_len;
1458 };
1459
1460 /**
1461 * struct cfg80211_ap_settings - AP configuration
1462 *
1463 * Used to configure an AP interface.
1464 *
1465 * @chandef: defines the channel to use
1466 * @beacon: beacon data
1467 * @beacon_interval: beacon interval
1468 * @dtim_period: DTIM period
1469 * @ssid: SSID to be used in the BSS (note: may be %NULL if not provided from
1470 * user space)
1471 * @ssid_len: length of @ssid
1472 * @hidden_ssid: whether to hide the SSID in Beacon/Probe Response frames
1473 * @crypto: crypto settings
1474 * @privacy: the BSS uses privacy
1475 * @auth_type: Authentication type (algorithm)
1476 * @inactivity_timeout: time in seconds to determine station's inactivity.
1477 * @p2p_ctwindow: P2P CT Window
1478 * @p2p_opp_ps: P2P opportunistic PS
1479 * @acl: ACL configuration used by the drivers which has support for
1480 * MAC address based access control
1481 * @pbss: If set, start as a PCP instead of AP. Relevant for DMG
1482 * networks.
1483 * @beacon_rate: bitrate to be used for beacons
1484 * @ht_cap: HT capabilities (or %NULL if HT isn't enabled)
1485 * @vht_cap: VHT capabilities (or %NULL if VHT isn't enabled)
1486 * @he_cap: HE capabilities (or %NULL if HE isn't enabled)
1487 * @eht_cap: EHT capabilities (or %NULL if EHT isn't enabled)
1488 * @eht_oper: EHT operation IE (or %NULL if EHT isn't enabled)
1489 * @ht_required: stations must support HT
1490 * @vht_required: stations must support VHT
1491 * @twt_responder: Enable Target Wait Time
1492 * @he_required: stations must support HE
1493 * @sae_h2e_required: stations must support direct H2E technique in SAE
1494 * @flags: flags, as defined in &enum nl80211_ap_settings_flags
1495 * @he_obss_pd: OBSS Packet Detection settings
1496 * @he_oper: HE operation IE (or %NULL if HE isn't enabled)
1497 * @fils_discovery: FILS discovery transmission parameters
1498 * @unsol_bcast_probe_resp: Unsolicited broadcast probe response parameters
1499 * @mbssid_config: AP settings for multiple bssid
1500 * @s1g_long_beacon_period: S1G long beacon period
1501 * @s1g_short_beacon: S1G short beacon data
1502 */
1503 struct cfg80211_ap_settings {
1504 struct cfg80211_chan_def chandef;
1505
1506 struct cfg80211_beacon_data beacon;
1507
1508 int beacon_interval, dtim_period;
1509 const u8 *ssid;
1510 size_t ssid_len;
1511 enum nl80211_hidden_ssid hidden_ssid;
1512 struct cfg80211_crypto_settings crypto;
1513 bool privacy;
1514 enum nl80211_auth_type auth_type;
1515 int inactivity_timeout;
1516 u8 p2p_ctwindow;
1517 bool p2p_opp_ps;
1518 const struct cfg80211_acl_data *acl;
1519 bool pbss;
1520 struct cfg80211_bitrate_mask beacon_rate;
1521
1522 const struct ieee80211_ht_cap *ht_cap;
1523 const struct ieee80211_vht_cap *vht_cap;
1524 const struct ieee80211_he_cap_elem *he_cap;
1525 const struct ieee80211_he_operation *he_oper;
1526 const struct ieee80211_eht_cap_elem *eht_cap;
1527 const struct ieee80211_eht_operation *eht_oper;
1528 bool ht_required, vht_required, he_required, sae_h2e_required;
1529 bool twt_responder;
1530 u32 flags;
1531 struct ieee80211_he_obss_pd he_obss_pd;
1532 struct cfg80211_fils_discovery fils_discovery;
1533 struct cfg80211_unsol_bcast_probe_resp unsol_bcast_probe_resp;
1534 struct cfg80211_mbssid_config mbssid_config;
1535 u8 s1g_long_beacon_period;
1536 struct cfg80211_s1g_short_beacon s1g_short_beacon;
1537 };
1538
1539
1540 /**
1541 * struct cfg80211_ap_update - AP configuration update
1542 *
1543 * Subset of &struct cfg80211_ap_settings, for updating a running AP.
1544 *
1545 * @beacon: beacon data
1546 * @fils_discovery: FILS discovery transmission parameters
1547 * @unsol_bcast_probe_resp: Unsolicited broadcast probe response parameters
1548 * @s1g_short_beacon: S1G short beacon data
1549 */
1550 struct cfg80211_ap_update {
1551 struct cfg80211_beacon_data beacon;
1552 struct cfg80211_fils_discovery fils_discovery;
1553 struct cfg80211_unsol_bcast_probe_resp unsol_bcast_probe_resp;
1554 struct cfg80211_s1g_short_beacon s1g_short_beacon;
1555 };
1556
1557 /**
1558 * struct cfg80211_csa_settings - channel switch settings
1559 *
1560 * Used for channel switch
1561 *
1562 * @chandef: defines the channel to use after the switch
1563 * @beacon_csa: beacon data while performing the switch
1564 * @counter_offsets_beacon: offsets of the counters within the beacon (tail)
1565 * @counter_offsets_presp: offsets of the counters within the probe response
1566 * @n_counter_offsets_beacon: number of csa counters the beacon (tail)
1567 * @n_counter_offsets_presp: number of csa counters in the probe response
1568 * @beacon_after: beacon data to be used on the new channel
1569 * @unsol_bcast_probe_resp: Unsolicited broadcast probe response parameters
1570 * @radar_required: whether radar detection is required on the new channel
1571 * @block_tx: whether transmissions should be blocked while changing
1572 * @count: number of beacons until switch
1573 * @link_id: defines the link on which channel switch is expected during
1574 * MLO. 0 in case of non-MLO.
1575 */
1576 struct cfg80211_csa_settings {
1577 struct cfg80211_chan_def chandef;
1578 struct cfg80211_beacon_data beacon_csa;
1579 const u16 *counter_offsets_beacon;
1580 const u16 *counter_offsets_presp;
1581 unsigned int n_counter_offsets_beacon;
1582 unsigned int n_counter_offsets_presp;
1583 struct cfg80211_beacon_data beacon_after;
1584 struct cfg80211_unsol_bcast_probe_resp unsol_bcast_probe_resp;
1585 bool radar_required;
1586 bool block_tx;
1587 u8 count;
1588 u8 link_id;
1589 };
1590
1591 /**
1592 * struct cfg80211_color_change_settings - color change settings
1593 *
1594 * Used for bss color change
1595 *
1596 * @beacon_color_change: beacon data while performing the color countdown
1597 * @counter_offset_beacon: offsets of the counters within the beacon (tail)
1598 * @counter_offset_presp: offsets of the counters within the probe response
1599 * @beacon_next: beacon data to be used after the color change
1600 * @unsol_bcast_probe_resp: Unsolicited broadcast probe response parameters
1601 * @count: number of beacons until the color change
1602 * @color: the color used after the change
1603 * @link_id: defines the link on which color change is expected during MLO.
1604 * 0 in case of non-MLO.
1605 */
1606 struct cfg80211_color_change_settings {
1607 struct cfg80211_beacon_data beacon_color_change;
1608 u16 counter_offset_beacon;
1609 u16 counter_offset_presp;
1610 struct cfg80211_beacon_data beacon_next;
1611 struct cfg80211_unsol_bcast_probe_resp unsol_bcast_probe_resp;
1612 u8 count;
1613 u8 color;
1614 u8 link_id;
1615 };
1616
1617 /**
1618 * struct iface_combination_params - input parameters for interface combinations
1619 *
1620 * Used to pass interface combination parameters
1621 *
1622 * @radio_idx: wiphy radio index or -1 for global
1623 * @num_different_channels: the number of different channels we want
1624 * to use for verification
1625 * @radar_detect: a bitmap where each bit corresponds to a channel
1626 * width where radar detection is needed, as in the definition of
1627 * &struct ieee80211_iface_combination.@radar_detect_widths
1628 * @iftype_num: array with the number of interfaces of each interface
1629 * type. The index is the interface type as specified in &enum
1630 * nl80211_iftype.
1631 * @new_beacon_int: set this to the beacon interval of a new interface
1632 * that's not operating yet, if such is to be checked as part of
1633 * the verification
1634 */
1635 struct iface_combination_params {
1636 int radio_idx;
1637 int num_different_channels;
1638 u8 radar_detect;
1639 int iftype_num[NUM_NL80211_IFTYPES];
1640 u32 new_beacon_int;
1641 };
1642
1643 /**
1644 * enum station_parameters_apply_mask - station parameter values to apply
1645 * @STATION_PARAM_APPLY_UAPSD: apply new uAPSD parameters (uapsd_queues, max_sp)
1646 * @STATION_PARAM_APPLY_CAPABILITY: apply new capability
1647 * @STATION_PARAM_APPLY_PLINK_STATE: apply new plink state
1648 *
1649 * Not all station parameters have in-band "no change" signalling,
1650 * for those that don't these flags will are used.
1651 */
1652 enum station_parameters_apply_mask {
1653 STATION_PARAM_APPLY_UAPSD = BIT(0),
1654 STATION_PARAM_APPLY_CAPABILITY = BIT(1),
1655 STATION_PARAM_APPLY_PLINK_STATE = BIT(2),
1656 };
1657
1658 /**
1659 * struct sta_txpwr - station txpower configuration
1660 *
1661 * Used to configure txpower for station.
1662 *
1663 * @power: tx power (in dBm) to be used for sending data traffic. If tx power
1664 * is not provided, the default per-interface tx power setting will be
1665 * overriding. Driver should be picking up the lowest tx power, either tx
1666 * power per-interface or per-station.
1667 * @type: In particular if TPC %type is NL80211_TX_POWER_LIMITED then tx power
1668 * will be less than or equal to specified from userspace, whereas if TPC
1669 * %type is NL80211_TX_POWER_AUTOMATIC then it indicates default tx power.
1670 * NL80211_TX_POWER_FIXED is not a valid configuration option for
1671 * per peer TPC.
1672 */
1673 struct sta_txpwr {
1674 s16 power;
1675 enum nl80211_tx_power_setting type;
1676 };
1677
1678 /**
1679 * struct link_station_parameters - link station parameters
1680 *
1681 * Used to change and create a new link station.
1682 *
1683 * @mld_mac: MAC address of the station
1684 * @link_id: the link id (-1 for non-MLD station)
1685 * @link_mac: MAC address of the link
1686 * @supported_rates: supported rates in IEEE 802.11 format
1687 * (or NULL for no change)
1688 * @supported_rates_len: number of supported rates
1689 * @ht_capa: HT capabilities of station
1690 * @vht_capa: VHT capabilities of station
1691 * @opmode_notif: operating mode field from Operating Mode Notification
1692 * @opmode_notif_used: information if operating mode field is used
1693 * @he_capa: HE capabilities of station
1694 * @he_capa_len: the length of the HE capabilities
1695 * @txpwr: transmit power for an associated station
1696 * @txpwr_set: txpwr field is set
1697 * @he_6ghz_capa: HE 6 GHz Band capabilities of station
1698 * @eht_capa: EHT capabilities of station
1699 * @eht_capa_len: the length of the EHT capabilities
1700 * @s1g_capa: S1G capabilities of station
1701 */
1702 struct link_station_parameters {
1703 const u8 *mld_mac;
1704 int link_id;
1705 const u8 *link_mac;
1706 const u8 *supported_rates;
1707 u8 supported_rates_len;
1708 const struct ieee80211_ht_cap *ht_capa;
1709 const struct ieee80211_vht_cap *vht_capa;
1710 u8 opmode_notif;
1711 bool opmode_notif_used;
1712 const struct ieee80211_he_cap_elem *he_capa;
1713 u8 he_capa_len;
1714 struct sta_txpwr txpwr;
1715 bool txpwr_set;
1716 const struct ieee80211_he_6ghz_capa *he_6ghz_capa;
1717 const struct ieee80211_eht_cap_elem *eht_capa;
1718 u8 eht_capa_len;
1719 const struct ieee80211_s1g_cap *s1g_capa;
1720 };
1721
1722 /**
1723 * struct link_station_del_parameters - link station deletion parameters
1724 *
1725 * Used to delete a link station entry (or all stations).
1726 *
1727 * @mld_mac: MAC address of the station
1728 * @link_id: the link id
1729 */
1730 struct link_station_del_parameters {
1731 const u8 *mld_mac;
1732 u32 link_id;
1733 };
1734
1735 /**
1736 * struct cfg80211_ttlm_params: TID to link mapping parameters
1737 *
1738 * Used for setting a TID to link mapping.
1739 *
1740 * @dlink: Downlink TID to link mapping, as defined in section 9.4.2.314
1741 * (TID-To-Link Mapping element) in Draft P802.11be_D4.0.
1742 * @ulink: Uplink TID to link mapping, as defined in section 9.4.2.314
1743 * (TID-To-Link Mapping element) in Draft P802.11be_D4.0.
1744 */
1745 struct cfg80211_ttlm_params {
1746 u16 dlink[8];
1747 u16 ulink[8];
1748 };
1749
1750 /**
1751 * struct station_parameters - station parameters
1752 *
1753 * Used to change and create a new station.
1754 *
1755 * @vlan: vlan interface station should belong to
1756 * @sta_flags_mask: station flags that changed
1757 * (bitmask of BIT(%NL80211_STA_FLAG_...))
1758 * @sta_flags_set: station flags values
1759 * (bitmask of BIT(%NL80211_STA_FLAG_...))
1760 * @listen_interval: listen interval or -1 for no change
1761 * @aid: AID or zero for no change
1762 * @vlan_id: VLAN ID for station (if nonzero)
1763 * @peer_aid: mesh peer AID or zero for no change
1764 * @plink_action: plink action to take
1765 * @plink_state: set the peer link state for a station
1766 * @uapsd_queues: bitmap of queues configured for uapsd. same format
1767 * as the AC bitmap in the QoS info field
1768 * @max_sp: max Service Period. same format as the MAX_SP in the
1769 * QoS info field (but already shifted down)
1770 * @sta_modify_mask: bitmap indicating which parameters changed
1771 * (for those that don't have a natural "no change" value),
1772 * see &enum station_parameters_apply_mask
1773 * @local_pm: local link-specific mesh power save mode (no change when set
1774 * to unknown)
1775 * @capability: station capability
1776 * @ext_capab: extended capabilities of the station
1777 * @ext_capab_len: number of extended capabilities
1778 * @supported_channels: supported channels in IEEE 802.11 format
1779 * @supported_channels_len: number of supported channels
1780 * @supported_oper_classes: supported oper classes in IEEE 802.11 format
1781 * @supported_oper_classes_len: number of supported operating classes
1782 * @support_p2p_ps: information if station supports P2P PS mechanism
1783 * @airtime_weight: airtime scheduler weight for this station
1784 * @eml_cap_present: Specifies if EML capabilities field (@eml_cap) is
1785 * present/updated
1786 * @eml_cap: EML capabilities of this station
1787 * @link_sta_params: link related params.
1788 */
1789 struct station_parameters {
1790 struct net_device *vlan;
1791 u32 sta_flags_mask, sta_flags_set;
1792 u32 sta_modify_mask;
1793 int listen_interval;
1794 u16 aid;
1795 u16 vlan_id;
1796 u16 peer_aid;
1797 u8 plink_action;
1798 u8 plink_state;
1799 u8 uapsd_queues;
1800 u8 max_sp;
1801 enum nl80211_mesh_power_mode local_pm;
1802 u16 capability;
1803 const u8 *ext_capab;
1804 u8 ext_capab_len;
1805 const u8 *supported_channels;
1806 u8 supported_channels_len;
1807 const u8 *supported_oper_classes;
1808 u8 supported_oper_classes_len;
1809 int support_p2p_ps;
1810 u16 airtime_weight;
1811 bool eml_cap_present;
1812 u16 eml_cap;
1813 struct link_station_parameters link_sta_params;
1814 };
1815
1816 /**
1817 * struct station_del_parameters - station deletion parameters
1818 *
1819 * Used to delete a station entry (or all stations).
1820 *
1821 * @mac: MAC address of the station to remove or NULL to remove all stations
1822 * @subtype: Management frame subtype to use for indicating removal
1823 * (10 = Disassociation, 12 = Deauthentication)
1824 * @reason_code: Reason code for the Disassociation/Deauthentication frame
1825 * @link_id: Link ID indicating a link that stations to be flushed must be
1826 * using; valid only for MLO, but can also be -1 for MLO to really
1827 * remove all stations.
1828 */
1829 struct station_del_parameters {
1830 const u8 *mac;
1831 u8 subtype;
1832 u16 reason_code;
1833 int link_id;
1834 };
1835
1836 /**
1837 * enum cfg80211_station_type - the type of station being modified
1838 * @CFG80211_STA_AP_CLIENT: client of an AP interface
1839 * @CFG80211_STA_AP_CLIENT_UNASSOC: client of an AP interface that is still
1840 * unassociated (update properties for this type of client is permitted)
1841 * @CFG80211_STA_AP_MLME_CLIENT: client of an AP interface that has
1842 * the AP MLME in the device
1843 * @CFG80211_STA_AP_STA: AP station on managed interface
1844 * @CFG80211_STA_IBSS: IBSS station
1845 * @CFG80211_STA_TDLS_PEER_SETUP: TDLS peer on managed interface (dummy entry
1846 * while TDLS setup is in progress, it moves out of this state when
1847 * being marked authorized; use this only if TDLS with external setup is
1848 * supported/used)
1849 * @CFG80211_STA_TDLS_PEER_ACTIVE: TDLS peer on managed interface (active
1850 * entry that is operating, has been marked authorized by userspace)
1851 * @CFG80211_STA_MESH_PEER_KERNEL: peer on mesh interface (kernel managed)
1852 * @CFG80211_STA_MESH_PEER_USER: peer on mesh interface (user managed)
1853 */
1854 enum cfg80211_station_type {
1855 CFG80211_STA_AP_CLIENT,
1856 CFG80211_STA_AP_CLIENT_UNASSOC,
1857 CFG80211_STA_AP_MLME_CLIENT,
1858 CFG80211_STA_AP_STA,
1859 CFG80211_STA_IBSS,
1860 CFG80211_STA_TDLS_PEER_SETUP,
1861 CFG80211_STA_TDLS_PEER_ACTIVE,
1862 CFG80211_STA_MESH_PEER_KERNEL,
1863 CFG80211_STA_MESH_PEER_USER,
1864 };
1865
1866 /**
1867 * cfg80211_check_station_change - validate parameter changes
1868 * @wiphy: the wiphy this operates on
1869 * @params: the new parameters for a station
1870 * @statype: the type of station being modified
1871 *
1872 * Utility function for the @change_station driver method. Call this function
1873 * with the appropriate station type looking up the station (and checking that
1874 * it exists). It will verify whether the station change is acceptable.
1875 *
1876 * Return: 0 if the change is acceptable, otherwise an error code. Note that
1877 * it may modify the parameters for backward compatibility reasons, so don't
1878 * use them before calling this.
1879 */
1880 int cfg80211_check_station_change(struct wiphy *wiphy,
1881 struct station_parameters *params,
1882 enum cfg80211_station_type statype);
1883
1884 /**
1885 * enum rate_info_flags - bitrate info flags
1886 *
1887 * Used by the driver to indicate the specific rate transmission
1888 * type for 802.11n transmissions.
1889 *
1890 * @RATE_INFO_FLAGS_MCS: mcs field filled with HT MCS
1891 * @RATE_INFO_FLAGS_VHT_MCS: mcs field filled with VHT MCS
1892 * @RATE_INFO_FLAGS_SHORT_GI: 400ns guard interval
1893 * @RATE_INFO_FLAGS_DMG: 60GHz MCS
1894 * @RATE_INFO_FLAGS_HE_MCS: HE MCS information
1895 * @RATE_INFO_FLAGS_EDMG: 60GHz MCS in EDMG mode
1896 * @RATE_INFO_FLAGS_EXTENDED_SC_DMG: 60GHz extended SC MCS
1897 * @RATE_INFO_FLAGS_EHT_MCS: EHT MCS information
1898 * @RATE_INFO_FLAGS_S1G_MCS: MCS field filled with S1G MCS
1899 */
1900 enum rate_info_flags {
1901 RATE_INFO_FLAGS_MCS = BIT(0),
1902 RATE_INFO_FLAGS_VHT_MCS = BIT(1),
1903 RATE_INFO_FLAGS_SHORT_GI = BIT(2),
1904 RATE_INFO_FLAGS_DMG = BIT(3),
1905 RATE_INFO_FLAGS_HE_MCS = BIT(4),
1906 RATE_INFO_FLAGS_EDMG = BIT(5),
1907 RATE_INFO_FLAGS_EXTENDED_SC_DMG = BIT(6),
1908 RATE_INFO_FLAGS_EHT_MCS = BIT(7),
1909 RATE_INFO_FLAGS_S1G_MCS = BIT(8),
1910 };
1911
1912 /**
1913 * enum rate_info_bw - rate bandwidth information
1914 *
1915 * Used by the driver to indicate the rate bandwidth.
1916 *
1917 * @RATE_INFO_BW_5: 5 MHz bandwidth
1918 * @RATE_INFO_BW_10: 10 MHz bandwidth
1919 * @RATE_INFO_BW_20: 20 MHz bandwidth
1920 * @RATE_INFO_BW_40: 40 MHz bandwidth
1921 * @RATE_INFO_BW_80: 80 MHz bandwidth
1922 * @RATE_INFO_BW_160: 160 MHz bandwidth
1923 * @RATE_INFO_BW_HE_RU: bandwidth determined by HE RU allocation
1924 * @RATE_INFO_BW_320: 320 MHz bandwidth
1925 * @RATE_INFO_BW_EHT_RU: bandwidth determined by EHT RU allocation
1926 * @RATE_INFO_BW_1: 1 MHz bandwidth
1927 * @RATE_INFO_BW_2: 2 MHz bandwidth
1928 * @RATE_INFO_BW_4: 4 MHz bandwidth
1929 * @RATE_INFO_BW_8: 8 MHz bandwidth
1930 * @RATE_INFO_BW_16: 16 MHz bandwidth
1931 */
1932 enum rate_info_bw {
1933 RATE_INFO_BW_20 = 0,
1934 RATE_INFO_BW_5,
1935 RATE_INFO_BW_10,
1936 RATE_INFO_BW_40,
1937 RATE_INFO_BW_80,
1938 RATE_INFO_BW_160,
1939 RATE_INFO_BW_HE_RU,
1940 RATE_INFO_BW_320,
1941 RATE_INFO_BW_EHT_RU,
1942 RATE_INFO_BW_1,
1943 RATE_INFO_BW_2,
1944 RATE_INFO_BW_4,
1945 RATE_INFO_BW_8,
1946 RATE_INFO_BW_16,
1947 };
1948
1949 /**
1950 * struct rate_info - bitrate information
1951 *
1952 * Information about a receiving or transmitting bitrate
1953 *
1954 * @flags: bitflag of flags from &enum rate_info_flags
1955 * @legacy: bitrate in 100kbit/s for 802.11abg
1956 * @mcs: mcs index if struct describes an HT/VHT/HE/EHT/S1G rate
1957 * @nss: number of streams (VHT & HE only)
1958 * @bw: bandwidth (from &enum rate_info_bw)
1959 * @he_gi: HE guard interval (from &enum nl80211_he_gi)
1960 * @he_dcm: HE DCM value
1961 * @he_ru_alloc: HE RU allocation (from &enum nl80211_he_ru_alloc,
1962 * only valid if bw is %RATE_INFO_BW_HE_RU)
1963 * @n_bonded_ch: In case of EDMG the number of bonded channels (1-4)
1964 * @eht_gi: EHT guard interval (from &enum nl80211_eht_gi)
1965 * @eht_ru_alloc: EHT RU allocation (from &enum nl80211_eht_ru_alloc,
1966 * only valid if bw is %RATE_INFO_BW_EHT_RU)
1967 */
1968 struct rate_info {
1969 u16 flags;
1970 u16 legacy;
1971 u8 mcs;
1972 u8 nss;
1973 u8 bw;
1974 u8 he_gi;
1975 u8 he_dcm;
1976 u8 he_ru_alloc;
1977 u8 n_bonded_ch;
1978 u8 eht_gi;
1979 u8 eht_ru_alloc;
1980 };
1981
1982 /**
1983 * enum bss_param_flags - bitrate info flags
1984 *
1985 * Used by the driver to indicate the specific rate transmission
1986 * type for 802.11n transmissions.
1987 *
1988 * @BSS_PARAM_FLAGS_CTS_PROT: whether CTS protection is enabled
1989 * @BSS_PARAM_FLAGS_SHORT_PREAMBLE: whether short preamble is enabled
1990 * @BSS_PARAM_FLAGS_SHORT_SLOT_TIME: whether short slot time is enabled
1991 */
1992 enum bss_param_flags {
1993 BSS_PARAM_FLAGS_CTS_PROT = BIT(0),
1994 BSS_PARAM_FLAGS_SHORT_PREAMBLE = BIT(1),
1995 BSS_PARAM_FLAGS_SHORT_SLOT_TIME = BIT(2),
1996 };
1997
1998 /**
1999 * struct sta_bss_parameters - BSS parameters for the attached station
2000 *
2001 * Information about the currently associated BSS
2002 *
2003 * @flags: bitflag of flags from &enum bss_param_flags
2004 * @dtim_period: DTIM period for the BSS
2005 * @beacon_interval: beacon interval
2006 */
2007 struct sta_bss_parameters {
2008 u8 flags;
2009 u8 dtim_period;
2010 u16 beacon_interval;
2011 };
2012
2013 /**
2014 * struct cfg80211_txq_stats - TXQ statistics for this TID
2015 * @filled: bitmap of flags using the bits of &enum nl80211_txq_stats to
2016 * indicate the relevant values in this struct are filled
2017 * @backlog_bytes: total number of bytes currently backlogged
2018 * @backlog_packets: total number of packets currently backlogged
2019 * @flows: number of new flows seen
2020 * @drops: total number of packets dropped
2021 * @ecn_marks: total number of packets marked with ECN CE
2022 * @overlimit: number of drops due to queue space overflow
2023 * @overmemory: number of drops due to memory limit overflow
2024 * @collisions: number of hash collisions
2025 * @tx_bytes: total number of bytes dequeued
2026 * @tx_packets: total number of packets dequeued
2027 * @max_flows: maximum number of flows supported
2028 */
2029 struct cfg80211_txq_stats {
2030 u32 filled;
2031 u32 backlog_bytes;
2032 u32 backlog_packets;
2033 u32 flows;
2034 u32 drops;
2035 u32 ecn_marks;
2036 u32 overlimit;
2037 u32 overmemory;
2038 u32 collisions;
2039 u32 tx_bytes;
2040 u32 tx_packets;
2041 u32 max_flows;
2042 };
2043
2044 /**
2045 * struct cfg80211_tid_stats - per-TID statistics
2046 * @filled: bitmap of flags using the bits of &enum nl80211_tid_stats to
2047 * indicate the relevant values in this struct are filled
2048 * @rx_msdu: number of received MSDUs
2049 * @tx_msdu: number of (attempted) transmitted MSDUs
2050 * @tx_msdu_retries: number of retries (not counting the first) for
2051 * transmitted MSDUs
2052 * @tx_msdu_failed: number of failed transmitted MSDUs
2053 * @txq_stats: TXQ statistics
2054 */
2055 struct cfg80211_tid_stats {
2056 u32 filled;
2057 u64 rx_msdu;
2058 u64 tx_msdu;
2059 u64 tx_msdu_retries;
2060 u64 tx_msdu_failed;
2061 struct cfg80211_txq_stats txq_stats;
2062 };
2063
2064 #define IEEE80211_MAX_CHAINS 4
2065
2066 /**
2067 * struct link_station_info - link station information
2068 *
2069 * Link station information filled by driver for get_station() and
2070 * dump_station().
2071 * @filled: bit flag of flags using the bits of &enum nl80211_sta_info to
2072 * indicate the relevant values in this struct for them
2073 * @connected_time: time(in secs) since a link of station is last connected
2074 * @inactive_time: time since last activity for link station(tx/rx)
2075 * in milliseconds
2076 * @assoc_at: bootime (ns) of the last association of link of station
2077 * @rx_bytes: bytes (size of MPDUs) received from this link of station
2078 * @tx_bytes: bytes (size of MPDUs) transmitted to this link of station
2079 * @signal: The signal strength, type depends on the wiphy's signal_type.
2080 * For CFG80211_SIGNAL_TYPE_MBM, value is expressed in _dBm_.
2081 * @signal_avg: Average signal strength, type depends on the wiphy's
2082 * signal_type. For CFG80211_SIGNAL_TYPE_MBM, value is expressed in _dBm_
2083 * @chains: bitmask for filled values in @chain_signal, @chain_signal_avg
2084 * @chain_signal: per-chain signal strength of last received packet in dBm
2085 * @chain_signal_avg: per-chain signal strength average in dBm
2086 * @txrate: current unicast bitrate from this link of station
2087 * @rxrate: current unicast bitrate to this link of station
2088 * @rx_packets: packets (MSDUs & MMPDUs) received from this link of station
2089 * @tx_packets: packets (MSDUs & MMPDUs) transmitted to this link of station
2090 * @tx_retries: cumulative retry counts (MPDUs) for this link of station
2091 * @tx_failed: number of failed transmissions (MPDUs) (retries exceeded, no ACK)
2092 * @rx_dropped_misc: Dropped for un-specified reason.
2093 * @bss_param: current BSS parameters
2094 * @beacon_loss_count: Number of times beacon loss event has triggered.
2095 * @expected_throughput: expected throughput in kbps (including 802.11 headers)
2096 * towards this station.
2097 * @rx_beacon: number of beacons received from this peer
2098 * @rx_beacon_signal_avg: signal strength average (in dBm) for beacons received
2099 * from this peer
2100 * @rx_duration: aggregate PPDU duration(usecs) for all the frames from a peer
2101 * @tx_duration: aggregate PPDU duration(usecs) for all the frames to a peer
2102 * @airtime_weight: current airtime scheduling weight
2103 * @pertid: per-TID statistics, see &struct cfg80211_tid_stats, using the last
2104 * (IEEE80211_NUM_TIDS) index for MSDUs not encapsulated in QoS-MPDUs.
2105 * Note that this doesn't use the @filled bit, but is used if non-NULL.
2106 * @ack_signal: signal strength (in dBm) of the last ACK frame.
2107 * @avg_ack_signal: average rssi value of ack packet for the no of msdu's has
2108 * been sent.
2109 * @rx_mpdu_count: number of MPDUs received from this station
2110 * @fcs_err_count: number of packets (MPDUs) received from this station with
2111 * an FCS error. This counter should be incremented only when TA of the
2112 * received packet with an FCS error matches the peer MAC address.
2113 * @addr: For MLO STA connection, filled with address of the link of station.
2114 */
2115 struct link_station_info {
2116 u64 filled;
2117 u32 connected_time;
2118 u32 inactive_time;
2119 u64 assoc_at;
2120 u64 rx_bytes;
2121 u64 tx_bytes;
2122 s8 signal;
2123 s8 signal_avg;
2124
2125 u8 chains;
2126 s8 chain_signal[IEEE80211_MAX_CHAINS];
2127 s8 chain_signal_avg[IEEE80211_MAX_CHAINS];
2128
2129 struct rate_info txrate;
2130 struct rate_info rxrate;
2131 u32 rx_packets;
2132 u32 tx_packets;
2133 u32 tx_retries;
2134 u32 tx_failed;
2135 u32 rx_dropped_misc;
2136 struct sta_bss_parameters bss_param;
2137
2138 u32 beacon_loss_count;
2139
2140 u32 expected_throughput;
2141
2142 u64 tx_duration;
2143 u64 rx_duration;
2144 u64 rx_beacon;
2145 u8 rx_beacon_signal_avg;
2146
2147 u16 airtime_weight;
2148
2149 s8 ack_signal;
2150 s8 avg_ack_signal;
2151 struct cfg80211_tid_stats *pertid;
2152
2153 u32 rx_mpdu_count;
2154 u32 fcs_err_count;
2155
2156 u8 addr[ETH_ALEN] __aligned(2);
2157 };
2158
2159 /**
2160 * struct station_info - station information
2161 *
2162 * Station information filled by driver for get_station() and dump_station.
2163 *
2164 * @filled: bitflag of flags using the bits of &enum nl80211_sta_info to
2165 * indicate the relevant values in this struct for them
2166 * @connected_time: time(in secs) since a station is last connected
2167 * @inactive_time: time since last station activity (tx/rx) in milliseconds
2168 * @assoc_at: bootime (ns) of the last association
2169 * @rx_bytes: bytes (size of MPDUs) received from this station
2170 * @tx_bytes: bytes (size of MPDUs) transmitted to this station
2171 * @signal: The signal strength, type depends on the wiphy's signal_type.
2172 * For CFG80211_SIGNAL_TYPE_MBM, value is expressed in _dBm_.
2173 * @signal_avg: Average signal strength, type depends on the wiphy's signal_type.
2174 * For CFG80211_SIGNAL_TYPE_MBM, value is expressed in _dBm_.
2175 * @chains: bitmask for filled values in @chain_signal, @chain_signal_avg
2176 * @chain_signal: per-chain signal strength of last received packet in dBm
2177 * @chain_signal_avg: per-chain signal strength average in dBm
2178 * @txrate: current unicast bitrate from this station
2179 * @rxrate: current unicast bitrate to this station
2180 * @rx_packets: packets (MSDUs & MMPDUs) received from this station
2181 * @tx_packets: packets (MSDUs & MMPDUs) transmitted to this station
2182 * @tx_retries: cumulative retry counts (MPDUs)
2183 * @tx_failed: number of failed transmissions (MPDUs) (retries exceeded, no ACK)
2184 * @rx_dropped_misc: Dropped for un-specified reason.
2185 * @bss_param: current BSS parameters
2186 * @generation: generation number for nl80211 dumps.
2187 * This number should increase every time the list of stations
2188 * changes, i.e. when a station is added or removed, so that
2189 * userspace can tell whether it got a consistent snapshot.
2190 * @beacon_loss_count: Number of times beacon loss event has triggered.
2191 * @assoc_req_ies: IEs from (Re)Association Request.
2192 * This is used only when in AP mode with drivers that do not use
2193 * user space MLME/SME implementation. The information is provided for
2194 * the cfg80211_new_sta() calls to notify user space of the IEs.
2195 * @assoc_req_ies_len: Length of assoc_req_ies buffer in octets.
2196 * @sta_flags: station flags mask & values
2197 * @t_offset: Time offset of the station relative to this host.
2198 * @llid: mesh local link id
2199 * @plid: mesh peer link id
2200 * @plink_state: mesh peer link state
2201 * @connected_to_gate: true if mesh STA has a path to mesh gate
2202 * @connected_to_as: true if mesh STA has a path to authentication server
2203 * @airtime_link_metric: mesh airtime link metric.
2204 * @local_pm: local mesh STA power save mode
2205 * @peer_pm: peer mesh STA power save mode
2206 * @nonpeer_pm: non-peer mesh STA power save mode
2207 * @expected_throughput: expected throughput in kbps (including 802.11 headers)
2208 * towards this station.
2209 * @rx_beacon: number of beacons received from this peer
2210 * @rx_beacon_signal_avg: signal strength average (in dBm) for beacons received
2211 * from this peer
2212 * @rx_duration: aggregate PPDU duration(usecs) for all the frames from a peer
2213 * @tx_duration: aggregate PPDU duration(usecs) for all the frames to a peer
2214 * @airtime_weight: current airtime scheduling weight
2215 * @pertid: per-TID statistics, see &struct cfg80211_tid_stats, using the last
2216 * (IEEE80211_NUM_TIDS) index for MSDUs not encapsulated in QoS-MPDUs.
2217 * Note that this doesn't use the @filled bit, but is used if non-NULL.
2218 * @ack_signal: signal strength (in dBm) of the last ACK frame.
2219 * @avg_ack_signal: average rssi value of ack packet for the no of msdu's has
2220 * been sent.
2221 * @rx_mpdu_count: number of MPDUs received from this station
2222 * @fcs_err_count: number of packets (MPDUs) received from this station with
2223 * an FCS error. This counter should be incremented only when TA of the
2224 * received packet with an FCS error matches the peer MAC address.
2225 * @mlo_params_valid: Indicates @assoc_link_id and @mld_addr fields are filled
2226 * by driver. Drivers use this only in cfg80211_new_sta() calls when AP
2227 * MLD's MLME/SME is offload to driver. Drivers won't fill this
2228 * information in cfg80211_del_sta_sinfo(), get_station() and
2229 * dump_station() callbacks.
2230 * @assoc_link_id: Indicates MLO link ID of the AP, with which the station
2231 * completed (re)association. This information filled for both MLO
2232 * and non-MLO STA connections when the AP affiliated with an MLD.
2233 * @mld_addr: For MLO STA connection, filled with MLD address of the station.
2234 * For non-MLO STA connection, filled with all zeros.
2235 * @assoc_resp_ies: IEs from (Re)Association Response.
2236 * This is used only when in AP mode with drivers that do not use user
2237 * space MLME/SME implementation. The information is provided only for the
2238 * cfg80211_new_sta() calls to notify user space of the IEs. Drivers won't
2239 * fill this information in cfg80211_del_sta_sinfo(), get_station() and
2240 * dump_station() callbacks. User space needs this information to determine
2241 * the accepted and rejected affiliated links of the connected station.
2242 * @assoc_resp_ies_len: Length of @assoc_resp_ies buffer in octets.
2243 * @valid_links: bitmap of valid links, or 0 for non-MLO. Drivers fill this
2244 * information in cfg80211_new_sta(), cfg80211_del_sta_sinfo(),
2245 * get_station() and dump_station() callbacks.
2246 * @links: reference to Link sta entries for MLO STA, all link specific
2247 * information is accessed through links[link_id].
2248 */
2249 struct station_info {
2250 u64 filled;
2251 u32 connected_time;
2252 u32 inactive_time;
2253 u64 assoc_at;
2254 u64 rx_bytes;
2255 u64 tx_bytes;
2256 s8 signal;
2257 s8 signal_avg;
2258
2259 u8 chains;
2260 s8 chain_signal[IEEE80211_MAX_CHAINS];
2261 s8 chain_signal_avg[IEEE80211_MAX_CHAINS];
2262
2263 struct rate_info txrate;
2264 struct rate_info rxrate;
2265 u32 rx_packets;
2266 u32 tx_packets;
2267 u32 tx_retries;
2268 u32 tx_failed;
2269 u32 rx_dropped_misc;
2270 struct sta_bss_parameters bss_param;
2271 struct nl80211_sta_flag_update sta_flags;
2272
2273 int generation;
2274
2275 u32 beacon_loss_count;
2276
2277 const u8 *assoc_req_ies;
2278 size_t assoc_req_ies_len;
2279
2280 s64 t_offset;
2281 u16 llid;
2282 u16 plid;
2283 u8 plink_state;
2284 u8 connected_to_gate;
2285 u8 connected_to_as;
2286 u32 airtime_link_metric;
2287 enum nl80211_mesh_power_mode local_pm;
2288 enum nl80211_mesh_power_mode peer_pm;
2289 enum nl80211_mesh_power_mode nonpeer_pm;
2290
2291 u32 expected_throughput;
2292
2293 u16 airtime_weight;
2294
2295 s8 ack_signal;
2296 s8 avg_ack_signal;
2297 struct cfg80211_tid_stats *pertid;
2298
2299 u64 tx_duration;
2300 u64 rx_duration;
2301 u64 rx_beacon;
2302 u8 rx_beacon_signal_avg;
2303
2304 u32 rx_mpdu_count;
2305 u32 fcs_err_count;
2306
2307 bool mlo_params_valid;
2308 u8 assoc_link_id;
2309 u8 mld_addr[ETH_ALEN] __aligned(2);
2310 const u8 *assoc_resp_ies;
2311 size_t assoc_resp_ies_len;
2312
2313 u16 valid_links;
2314 struct link_station_info *links[IEEE80211_MLD_MAX_NUM_LINKS];
2315 };
2316
2317 /**
2318 * struct cfg80211_sar_sub_specs - sub specs limit
2319 * @power: power limitation in 0.25dbm
2320 * @freq_range_index: index the power limitation applies to
2321 */
2322 struct cfg80211_sar_sub_specs {
2323 s32 power;
2324 u32 freq_range_index;
2325 };
2326
2327 /**
2328 * struct cfg80211_sar_specs - sar limit specs
2329 * @type: it's set with power in 0.25dbm or other types
2330 * @num_sub_specs: number of sar sub specs
2331 * @sub_specs: memory to hold the sar sub specs
2332 */
2333 struct cfg80211_sar_specs {
2334 enum nl80211_sar_type type;
2335 u32 num_sub_specs;
2336 struct cfg80211_sar_sub_specs sub_specs[] __counted_by(num_sub_specs);
2337 };
2338
2339
2340 /**
2341 * struct cfg80211_sar_freq_ranges - sar frequency ranges
2342 * @start_freq: start range edge frequency
2343 * @end_freq: end range edge frequency
2344 */
2345 struct cfg80211_sar_freq_ranges {
2346 u32 start_freq;
2347 u32 end_freq;
2348 };
2349
2350 /**
2351 * struct cfg80211_sar_capa - sar limit capability
2352 * @type: it's set via power in 0.25dbm or other types
2353 * @num_freq_ranges: number of frequency ranges
2354 * @freq_ranges: memory to hold the freq ranges.
2355 *
2356 * Note: WLAN driver may append new ranges or split an existing
2357 * range to small ones and then append them.
2358 */
2359 struct cfg80211_sar_capa {
2360 enum nl80211_sar_type type;
2361 u32 num_freq_ranges;
2362 const struct cfg80211_sar_freq_ranges *freq_ranges;
2363 };
2364
2365 #if IS_ENABLED(CONFIG_CFG80211)
2366 /**
2367 * cfg80211_get_station - retrieve information about a given station
2368 * @dev: the device where the station is supposed to be connected to
2369 * @mac_addr: the mac address of the station of interest
2370 * @sinfo: pointer to the structure to fill with the information
2371 *
2372 * Return: 0 on success and sinfo is filled with the available information
2373 * otherwise returns a negative error code and the content of sinfo has to be
2374 * considered undefined.
2375 */
2376 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
2377 struct station_info *sinfo);
2378 #else
cfg80211_get_station(struct net_device * dev,const u8 * mac_addr,struct station_info * sinfo)2379 static inline int cfg80211_get_station(struct net_device *dev,
2380 const u8 *mac_addr,
2381 struct station_info *sinfo)
2382 {
2383 return -ENOENT;
2384 }
2385 #endif
2386
2387 /**
2388 * enum monitor_flags - monitor flags
2389 *
2390 * Monitor interface configuration flags. Note that these must be the bits
2391 * according to the nl80211 flags.
2392 *
2393 * @MONITOR_FLAG_CHANGED: set if the flags were changed
2394 * @MONITOR_FLAG_FCSFAIL: pass frames with bad FCS
2395 * @MONITOR_FLAG_PLCPFAIL: pass frames with bad PLCP
2396 * @MONITOR_FLAG_CONTROL: pass control frames
2397 * @MONITOR_FLAG_OTHER_BSS: disable BSSID filtering
2398 * @MONITOR_FLAG_COOK_FRAMES: deprecated, will unconditionally be refused
2399 * @MONITOR_FLAG_ACTIVE: active monitor, ACKs frames on its MAC address
2400 * @MONITOR_FLAG_SKIP_TX: do not pass locally transmitted frames
2401 */
2402 enum monitor_flags {
2403 MONITOR_FLAG_CHANGED = BIT(__NL80211_MNTR_FLAG_INVALID),
2404 MONITOR_FLAG_FCSFAIL = BIT(NL80211_MNTR_FLAG_FCSFAIL),
2405 MONITOR_FLAG_PLCPFAIL = BIT(NL80211_MNTR_FLAG_PLCPFAIL),
2406 MONITOR_FLAG_CONTROL = BIT(NL80211_MNTR_FLAG_CONTROL),
2407 MONITOR_FLAG_OTHER_BSS = BIT(NL80211_MNTR_FLAG_OTHER_BSS),
2408 MONITOR_FLAG_COOK_FRAMES = BIT(NL80211_MNTR_FLAG_COOK_FRAMES),
2409 MONITOR_FLAG_ACTIVE = BIT(NL80211_MNTR_FLAG_ACTIVE),
2410 MONITOR_FLAG_SKIP_TX = BIT(NL80211_MNTR_FLAG_SKIP_TX),
2411 };
2412
2413 /**
2414 * enum mpath_info_flags - mesh path information flags
2415 *
2416 * Used by the driver to indicate which info in &struct mpath_info it has filled
2417 * in during get_station() or dump_station().
2418 *
2419 * @MPATH_INFO_FRAME_QLEN: @frame_qlen filled
2420 * @MPATH_INFO_SN: @sn filled
2421 * @MPATH_INFO_METRIC: @metric filled
2422 * @MPATH_INFO_EXPTIME: @exptime filled
2423 * @MPATH_INFO_DISCOVERY_TIMEOUT: @discovery_timeout filled
2424 * @MPATH_INFO_DISCOVERY_RETRIES: @discovery_retries filled
2425 * @MPATH_INFO_FLAGS: @flags filled
2426 * @MPATH_INFO_HOP_COUNT: @hop_count filled
2427 * @MPATH_INFO_PATH_CHANGE: @path_change_count filled
2428 */
2429 enum mpath_info_flags {
2430 MPATH_INFO_FRAME_QLEN = BIT(0),
2431 MPATH_INFO_SN = BIT(1),
2432 MPATH_INFO_METRIC = BIT(2),
2433 MPATH_INFO_EXPTIME = BIT(3),
2434 MPATH_INFO_DISCOVERY_TIMEOUT = BIT(4),
2435 MPATH_INFO_DISCOVERY_RETRIES = BIT(5),
2436 MPATH_INFO_FLAGS = BIT(6),
2437 MPATH_INFO_HOP_COUNT = BIT(7),
2438 MPATH_INFO_PATH_CHANGE = BIT(8),
2439 };
2440
2441 /**
2442 * struct mpath_info - mesh path information
2443 *
2444 * Mesh path information filled by driver for get_mpath() and dump_mpath().
2445 *
2446 * @filled: bitfield of flags from &enum mpath_info_flags
2447 * @frame_qlen: number of queued frames for this destination
2448 * @sn: target sequence number
2449 * @metric: metric (cost) of this mesh path
2450 * @exptime: expiration time for the mesh path from now, in msecs
2451 * @flags: mesh path flags from &enum mesh_path_flags
2452 * @discovery_timeout: total mesh path discovery timeout, in msecs
2453 * @discovery_retries: mesh path discovery retries
2454 * @generation: generation number for nl80211 dumps.
2455 * This number should increase every time the list of mesh paths
2456 * changes, i.e. when a station is added or removed, so that
2457 * userspace can tell whether it got a consistent snapshot.
2458 * @hop_count: hops to destination
2459 * @path_change_count: total number of path changes to destination
2460 */
2461 struct mpath_info {
2462 u32 filled;
2463 u32 frame_qlen;
2464 u32 sn;
2465 u32 metric;
2466 u32 exptime;
2467 u32 discovery_timeout;
2468 u8 discovery_retries;
2469 u8 flags;
2470 u8 hop_count;
2471 u32 path_change_count;
2472
2473 int generation;
2474 };
2475
2476 /**
2477 * enum wiphy_bss_param_flags - bit positions for supported bss parameters.
2478 *
2479 * @WIPHY_BSS_PARAM_CTS_PROT: support changing CTS protection.
2480 * @WIPHY_BSS_PARAM_SHORT_PREAMBLE: support changing short preamble usage.
2481 * @WIPHY_BSS_PARAM_SHORT_SLOT_TIME: support changing short slot time usage.
2482 * @WIPHY_BSS_PARAM_BASIC_RATES: support reconfiguring basic rates.
2483 * @WIPHY_BSS_PARAM_AP_ISOLATE: support changing AP isolation.
2484 * @WIPHY_BSS_PARAM_HT_OPMODE: support changing HT operating mode.
2485 * @WIPHY_BSS_PARAM_P2P_CTWINDOW: support reconfiguring ctwindow.
2486 * @WIPHY_BSS_PARAM_P2P_OPPPS: support changing P2P opportunistic power-save.
2487 */
2488 enum wiphy_bss_param_flags {
2489 WIPHY_BSS_PARAM_CTS_PROT = BIT(0),
2490 WIPHY_BSS_PARAM_SHORT_PREAMBLE = BIT(1),
2491 WIPHY_BSS_PARAM_SHORT_SLOT_TIME = BIT(2),
2492 WIPHY_BSS_PARAM_BASIC_RATES = BIT(3),
2493 WIPHY_BSS_PARAM_AP_ISOLATE = BIT(4),
2494 WIPHY_BSS_PARAM_HT_OPMODE = BIT(5),
2495 WIPHY_BSS_PARAM_P2P_CTWINDOW = BIT(6),
2496 WIPHY_BSS_PARAM_P2P_OPPPS = BIT(7),
2497 };
2498
2499 /**
2500 * struct bss_parameters - BSS parameters
2501 *
2502 * Used to change BSS parameters (mainly for AP mode).
2503 *
2504 * @link_id: link_id or -1 for non-MLD
2505 * @use_cts_prot: Whether to use CTS protection
2506 * (0 = no, 1 = yes, -1 = do not change)
2507 * @use_short_preamble: Whether the use of short preambles is allowed
2508 * (0 = no, 1 = yes, -1 = do not change)
2509 * @use_short_slot_time: Whether the use of short slot time is allowed
2510 * (0 = no, 1 = yes, -1 = do not change)
2511 * @basic_rates: basic rates in IEEE 802.11 format
2512 * (or NULL for no change)
2513 * @basic_rates_len: number of basic rates
2514 * @ap_isolate: do not forward packets between connected stations
2515 * (0 = no, 1 = yes, -1 = do not change)
2516 * @ht_opmode: HT Operation mode
2517 * (u16 = opmode, -1 = do not change)
2518 * @p2p_ctwindow: P2P CT Window (-1 = no change)
2519 * @p2p_opp_ps: P2P opportunistic PS (-1 = no change)
2520 */
2521 struct bss_parameters {
2522 int link_id;
2523 int use_cts_prot;
2524 int use_short_preamble;
2525 int use_short_slot_time;
2526 const u8 *basic_rates;
2527 u8 basic_rates_len;
2528 int ap_isolate;
2529 int ht_opmode;
2530 s8 p2p_ctwindow, p2p_opp_ps;
2531 };
2532
2533 /**
2534 * struct mesh_config - 802.11s mesh configuration
2535 *
2536 * These parameters can be changed while the mesh is active.
2537 *
2538 * @dot11MeshRetryTimeout: the initial retry timeout in millisecond units used
2539 * by the Mesh Peering Open message
2540 * @dot11MeshConfirmTimeout: the initial retry timeout in millisecond units
2541 * used by the Mesh Peering Open message
2542 * @dot11MeshHoldingTimeout: the confirm timeout in millisecond units used by
2543 * the mesh peering management to close a mesh peering
2544 * @dot11MeshMaxPeerLinks: the maximum number of peer links allowed on this
2545 * mesh interface
2546 * @dot11MeshMaxRetries: the maximum number of peer link open retries that can
2547 * be sent to establish a new peer link instance in a mesh
2548 * @dot11MeshTTL: the value of TTL field set at a source mesh STA
2549 * @element_ttl: the value of TTL field set at a mesh STA for path selection
2550 * elements
2551 * @auto_open_plinks: whether we should automatically open peer links when we
2552 * detect compatible mesh peers
2553 * @dot11MeshNbrOffsetMaxNeighbor: the maximum number of neighbors to
2554 * synchronize to for 11s default synchronization method
2555 * @dot11MeshHWMPmaxPREQretries: the number of action frames containing a PREQ
2556 * that an originator mesh STA can send to a particular path target
2557 * @path_refresh_time: how frequently to refresh mesh paths in milliseconds
2558 * @min_discovery_timeout: the minimum length of time to wait until giving up on
2559 * a path discovery in milliseconds
2560 * @dot11MeshHWMPactivePathTimeout: the time (in TUs) for which mesh STAs
2561 * receiving a PREQ shall consider the forwarding information from the
2562 * root to be valid. (TU = time unit)
2563 * @dot11MeshHWMPpreqMinInterval: the minimum interval of time (in TUs) during
2564 * which a mesh STA can send only one action frame containing a PREQ
2565 * element
2566 * @dot11MeshHWMPperrMinInterval: the minimum interval of time (in TUs) during
2567 * which a mesh STA can send only one Action frame containing a PERR
2568 * element
2569 * @dot11MeshHWMPnetDiameterTraversalTime: the interval of time (in TUs) that
2570 * it takes for an HWMP information element to propagate across the mesh
2571 * @dot11MeshHWMPRootMode: the configuration of a mesh STA as root mesh STA
2572 * @dot11MeshHWMPRannInterval: the interval of time (in TUs) between root
2573 * announcements are transmitted
2574 * @dot11MeshGateAnnouncementProtocol: whether to advertise that this mesh
2575 * station has access to a broader network beyond the MBSS. (This is
2576 * missnamed in draft 12.0: dot11MeshGateAnnouncementProtocol set to true
2577 * only means that the station will announce others it's a mesh gate, but
2578 * not necessarily using the gate announcement protocol. Still keeping the
2579 * same nomenclature to be in sync with the spec)
2580 * @dot11MeshForwarding: whether the Mesh STA is forwarding or non-forwarding
2581 * entity (default is TRUE - forwarding entity)
2582 * @rssi_threshold: the threshold for average signal strength of candidate
2583 * station to establish a peer link
2584 * @ht_opmode: mesh HT protection mode
2585 *
2586 * @dot11MeshHWMPactivePathToRootTimeout: The time (in TUs) for which mesh STAs
2587 * receiving a proactive PREQ shall consider the forwarding information to
2588 * the root mesh STA to be valid.
2589 *
2590 * @dot11MeshHWMProotInterval: The interval of time (in TUs) between proactive
2591 * PREQs are transmitted.
2592 * @dot11MeshHWMPconfirmationInterval: The minimum interval of time (in TUs)
2593 * during which a mesh STA can send only one Action frame containing
2594 * a PREQ element for root path confirmation.
2595 * @power_mode: The default mesh power save mode which will be the initial
2596 * setting for new peer links.
2597 * @dot11MeshAwakeWindowDuration: The duration in TUs the STA will remain awake
2598 * after transmitting its beacon.
2599 * @plink_timeout: If no tx activity is seen from a STA we've established
2600 * peering with for longer than this time (in seconds), then remove it
2601 * from the STA's list of peers. Default is 30 minutes.
2602 * @dot11MeshConnectedToAuthServer: if set to true then this mesh STA
2603 * will advertise that it is connected to a authentication server
2604 * in the mesh formation field.
2605 * @dot11MeshConnectedToMeshGate: if set to true, advertise that this STA is
2606 * connected to a mesh gate in mesh formation info. If false, the
2607 * value in mesh formation is determined by the presence of root paths
2608 * in the mesh path table
2609 * @dot11MeshNolearn: Try to avoid multi-hop path discovery (e.g. PREQ/PREP
2610 * for HWMP) if the destination is a direct neighbor. Note that this might
2611 * not be the optimal decision as a multi-hop route might be better. So
2612 * if using this setting you will likely also want to disable
2613 * dot11MeshForwarding and use another mesh routing protocol on top.
2614 */
2615 struct mesh_config {
2616 u16 dot11MeshRetryTimeout;
2617 u16 dot11MeshConfirmTimeout;
2618 u16 dot11MeshHoldingTimeout;
2619 u16 dot11MeshMaxPeerLinks;
2620 u8 dot11MeshMaxRetries;
2621 u8 dot11MeshTTL;
2622 u8 element_ttl;
2623 bool auto_open_plinks;
2624 u32 dot11MeshNbrOffsetMaxNeighbor;
2625 u8 dot11MeshHWMPmaxPREQretries;
2626 u32 path_refresh_time;
2627 u16 min_discovery_timeout;
2628 u32 dot11MeshHWMPactivePathTimeout;
2629 u16 dot11MeshHWMPpreqMinInterval;
2630 u16 dot11MeshHWMPperrMinInterval;
2631 u16 dot11MeshHWMPnetDiameterTraversalTime;
2632 u8 dot11MeshHWMPRootMode;
2633 bool dot11MeshConnectedToMeshGate;
2634 bool dot11MeshConnectedToAuthServer;
2635 u16 dot11MeshHWMPRannInterval;
2636 bool dot11MeshGateAnnouncementProtocol;
2637 bool dot11MeshForwarding;
2638 s32 rssi_threshold;
2639 u16 ht_opmode;
2640 u32 dot11MeshHWMPactivePathToRootTimeout;
2641 u16 dot11MeshHWMProotInterval;
2642 u16 dot11MeshHWMPconfirmationInterval;
2643 enum nl80211_mesh_power_mode power_mode;
2644 u16 dot11MeshAwakeWindowDuration;
2645 u32 plink_timeout;
2646 bool dot11MeshNolearn;
2647 };
2648
2649 /**
2650 * struct mesh_setup - 802.11s mesh setup configuration
2651 * @chandef: defines the channel to use
2652 * @mesh_id: the mesh ID
2653 * @mesh_id_len: length of the mesh ID, at least 1 and at most 32 bytes
2654 * @sync_method: which synchronization method to use
2655 * @path_sel_proto: which path selection protocol to use
2656 * @path_metric: which metric to use
2657 * @auth_id: which authentication method this mesh is using
2658 * @ie: vendor information elements (optional)
2659 * @ie_len: length of vendor information elements
2660 * @is_authenticated: this mesh requires authentication
2661 * @is_secure: this mesh uses security
2662 * @user_mpm: userspace handles all MPM functions
2663 * @dtim_period: DTIM period to use
2664 * @beacon_interval: beacon interval to use
2665 * @mcast_rate: multicast rate for Mesh Node [6Mbps is the default for 802.11a]
2666 * @basic_rates: basic rates to use when creating the mesh
2667 * @beacon_rate: bitrate to be used for beacons
2668 * @userspace_handles_dfs: whether user space controls DFS operation, i.e.
2669 * changes the channel when a radar is detected. This is required
2670 * to operate on DFS channels.
2671 * @control_port_over_nl80211: TRUE if userspace expects to exchange control
2672 * port frames over NL80211 instead of the network interface.
2673 *
2674 * These parameters are fixed when the mesh is created.
2675 */
2676 struct mesh_setup {
2677 struct cfg80211_chan_def chandef;
2678 const u8 *mesh_id;
2679 u8 mesh_id_len;
2680 u8 sync_method;
2681 u8 path_sel_proto;
2682 u8 path_metric;
2683 u8 auth_id;
2684 const u8 *ie;
2685 u8 ie_len;
2686 bool is_authenticated;
2687 bool is_secure;
2688 bool user_mpm;
2689 u8 dtim_period;
2690 u16 beacon_interval;
2691 int mcast_rate[NUM_NL80211_BANDS];
2692 u32 basic_rates;
2693 struct cfg80211_bitrate_mask beacon_rate;
2694 bool userspace_handles_dfs;
2695 bool control_port_over_nl80211;
2696 };
2697
2698 /**
2699 * struct ocb_setup - 802.11p OCB mode setup configuration
2700 * @chandef: defines the channel to use
2701 *
2702 * These parameters are fixed when connecting to the network
2703 */
2704 struct ocb_setup {
2705 struct cfg80211_chan_def chandef;
2706 };
2707
2708 /**
2709 * struct ieee80211_txq_params - TX queue parameters
2710 * @ac: AC identifier
2711 * @txop: Maximum burst time in units of 32 usecs, 0 meaning disabled
2712 * @cwmin: Minimum contention window [a value of the form 2^n-1 in the range
2713 * 1..32767]
2714 * @cwmax: Maximum contention window [a value of the form 2^n-1 in the range
2715 * 1..32767]
2716 * @aifs: Arbitration interframe space [0..255]
2717 * @link_id: link_id or -1 for non-MLD
2718 */
2719 struct ieee80211_txq_params {
2720 enum nl80211_ac ac;
2721 u16 txop;
2722 u16 cwmin;
2723 u16 cwmax;
2724 u8 aifs;
2725 int link_id;
2726 };
2727
2728 /**
2729 * DOC: Scanning and BSS list handling
2730 *
2731 * The scanning process itself is fairly simple, but cfg80211 offers quite
2732 * a bit of helper functionality. To start a scan, the scan operation will
2733 * be invoked with a scan definition. This scan definition contains the
2734 * channels to scan, and the SSIDs to send probe requests for (including the
2735 * wildcard, if desired). A passive scan is indicated by having no SSIDs to
2736 * probe. Additionally, a scan request may contain extra information elements
2737 * that should be added to the probe request. The IEs are guaranteed to be
2738 * well-formed, and will not exceed the maximum length the driver advertised
2739 * in the wiphy structure.
2740 *
2741 * When scanning finds a BSS, cfg80211 needs to be notified of that, because
2742 * it is responsible for maintaining the BSS list; the driver should not
2743 * maintain a list itself. For this notification, various functions exist.
2744 *
2745 * Since drivers do not maintain a BSS list, there are also a number of
2746 * functions to search for a BSS and obtain information about it from the
2747 * BSS structure cfg80211 maintains. The BSS list is also made available
2748 * to userspace.
2749 */
2750
2751 /**
2752 * struct cfg80211_ssid - SSID description
2753 * @ssid: the SSID
2754 * @ssid_len: length of the ssid
2755 */
2756 struct cfg80211_ssid {
2757 u8 ssid[IEEE80211_MAX_SSID_LEN];
2758 u8 ssid_len;
2759 };
2760
2761 /**
2762 * struct cfg80211_scan_info - information about completed scan
2763 * @scan_start_tsf: scan start time in terms of the TSF of the BSS that the
2764 * wireless device that requested the scan is connected to. If this
2765 * information is not available, this field is left zero.
2766 * @tsf_bssid: the BSSID according to which %scan_start_tsf is set.
2767 * @aborted: set to true if the scan was aborted for any reason,
2768 * userspace will be notified of that
2769 */
2770 struct cfg80211_scan_info {
2771 u64 scan_start_tsf;
2772 u8 tsf_bssid[ETH_ALEN] __aligned(2);
2773 bool aborted;
2774 };
2775
2776 /**
2777 * struct cfg80211_scan_6ghz_params - relevant for 6 GHz only
2778 *
2779 * @short_ssid: short ssid to scan for
2780 * @bssid: bssid to scan for
2781 * @channel_idx: idx of the channel in the channel array in the scan request
2782 * which the above info is relevant to
2783 * @unsolicited_probe: the AP transmits unsolicited probe response every 20 TU
2784 * @short_ssid_valid: @short_ssid is valid and can be used
2785 * @psc_no_listen: when set, and the channel is a PSC channel, no need to wait
2786 * 20 TUs before starting to send probe requests.
2787 * @psd_20: The AP's 20 MHz PSD value.
2788 */
2789 struct cfg80211_scan_6ghz_params {
2790 u32 short_ssid;
2791 u32 channel_idx;
2792 u8 bssid[ETH_ALEN];
2793 bool unsolicited_probe;
2794 bool short_ssid_valid;
2795 bool psc_no_listen;
2796 s8 psd_20;
2797 };
2798
2799 /**
2800 * struct cfg80211_scan_request - scan request description
2801 *
2802 * @ssids: SSIDs to scan for (active scan only)
2803 * @n_ssids: number of SSIDs
2804 * @channels: channels to scan on.
2805 * @n_channels: total number of channels to scan
2806 * @ie: optional information element(s) to add into Probe Request or %NULL
2807 * @ie_len: length of ie in octets
2808 * @duration: how long to listen on each channel, in TUs. If
2809 * %duration_mandatory is not set, this is the maximum dwell time and
2810 * the actual dwell time may be shorter.
2811 * @duration_mandatory: if set, the scan duration must be as specified by the
2812 * %duration field.
2813 * @flags: control flags from &enum nl80211_scan_flags
2814 * @rates: bitmap of rates to advertise for each band
2815 * @wiphy: the wiphy this was for
2816 * @scan_start: time (in jiffies) when the scan started
2817 * @wdev: the wireless device to scan for
2818 * @no_cck: used to send probe requests at non CCK rate in 2GHz band
2819 * @mac_addr: MAC address used with randomisation
2820 * @mac_addr_mask: MAC address mask used with randomisation, bits that
2821 * are 0 in the mask should be randomised, bits that are 1 should
2822 * be taken from the @mac_addr
2823 * @scan_6ghz: relevant for split scan request only,
2824 * true if this is a 6 GHz scan request
2825 * @first_part: %true if this is the first part of a split scan request or a
2826 * scan that was not split. May be %true for a @scan_6ghz scan if no other
2827 * channels were requested
2828 * @n_6ghz_params: number of 6 GHz params
2829 * @scan_6ghz_params: 6 GHz params
2830 * @bssid: BSSID to scan for (most commonly, the wildcard BSSID)
2831 * @tsf_report_link_id: for MLO, indicates the link ID of the BSS that should be
2832 * used for TSF reporting. Can be set to -1 to indicate no preference.
2833 */
2834 struct cfg80211_scan_request {
2835 struct cfg80211_ssid *ssids;
2836 int n_ssids;
2837 u32 n_channels;
2838 const u8 *ie;
2839 size_t ie_len;
2840 u16 duration;
2841 bool duration_mandatory;
2842 u32 flags;
2843
2844 u32 rates[NUM_NL80211_BANDS];
2845
2846 struct wireless_dev *wdev;
2847
2848 u8 mac_addr[ETH_ALEN] __aligned(2);
2849 u8 mac_addr_mask[ETH_ALEN] __aligned(2);
2850 u8 bssid[ETH_ALEN] __aligned(2);
2851 struct wiphy *wiphy;
2852 unsigned long scan_start;
2853 bool no_cck;
2854 bool scan_6ghz;
2855 bool first_part;
2856 u32 n_6ghz_params;
2857 struct cfg80211_scan_6ghz_params *scan_6ghz_params;
2858 s8 tsf_report_link_id;
2859
2860 /* keep last */
2861 struct ieee80211_channel *channels[];
2862 };
2863
get_random_mask_addr(u8 * buf,const u8 * addr,const u8 * mask)2864 static inline void get_random_mask_addr(u8 *buf, const u8 *addr, const u8 *mask)
2865 {
2866 int i;
2867
2868 get_random_bytes(buf, ETH_ALEN);
2869 for (i = 0; i < ETH_ALEN; i++) {
2870 buf[i] &= ~mask[i];
2871 buf[i] |= addr[i] & mask[i];
2872 }
2873 }
2874
2875 /**
2876 * struct cfg80211_match_set - sets of attributes to match
2877 *
2878 * @ssid: SSID to be matched; may be zero-length in case of BSSID match
2879 * or no match (RSSI only)
2880 * @bssid: BSSID to be matched; may be all-zero BSSID in case of SSID match
2881 * or no match (RSSI only)
2882 * @rssi_thold: don't report scan results below this threshold (in s32 dBm)
2883 */
2884 struct cfg80211_match_set {
2885 struct cfg80211_ssid ssid;
2886 u8 bssid[ETH_ALEN];
2887 s32 rssi_thold;
2888 };
2889
2890 /**
2891 * struct cfg80211_sched_scan_plan - scan plan for scheduled scan
2892 *
2893 * @interval: interval between scheduled scan iterations. In seconds.
2894 * @iterations: number of scan iterations in this scan plan. Zero means
2895 * infinite loop.
2896 * The last scan plan will always have this parameter set to zero,
2897 * all other scan plans will have a finite number of iterations.
2898 */
2899 struct cfg80211_sched_scan_plan {
2900 u32 interval;
2901 u32 iterations;
2902 };
2903
2904 /**
2905 * struct cfg80211_bss_select_adjust - BSS selection with RSSI adjustment.
2906 *
2907 * @band: band of BSS which should match for RSSI level adjustment.
2908 * @delta: value of RSSI level adjustment.
2909 */
2910 struct cfg80211_bss_select_adjust {
2911 enum nl80211_band band;
2912 s8 delta;
2913 };
2914
2915 /**
2916 * struct cfg80211_sched_scan_request - scheduled scan request description
2917 *
2918 * @reqid: identifies this request.
2919 * @ssids: SSIDs to scan for (passed in the probe_reqs in active scans)
2920 * @n_ssids: number of SSIDs
2921 * @n_channels: total number of channels to scan
2922 * @ie: optional information element(s) to add into Probe Request or %NULL
2923 * @ie_len: length of ie in octets
2924 * @flags: control flags from &enum nl80211_scan_flags
2925 * @match_sets: sets of parameters to be matched for a scan result
2926 * entry to be considered valid and to be passed to the host
2927 * (others are filtered out).
2928 * If omitted, all results are passed.
2929 * @n_match_sets: number of match sets
2930 * @report_results: indicates that results were reported for this request
2931 * @wiphy: the wiphy this was for
2932 * @dev: the interface
2933 * @scan_start: start time of the scheduled scan
2934 * @channels: channels to scan
2935 * @min_rssi_thold: for drivers only supporting a single threshold, this
2936 * contains the minimum over all matchsets
2937 * @mac_addr: MAC address used with randomisation
2938 * @mac_addr_mask: MAC address mask used with randomisation, bits that
2939 * are 0 in the mask should be randomised, bits that are 1 should
2940 * be taken from the @mac_addr
2941 * @scan_plans: scan plans to be executed in this scheduled scan. Lowest
2942 * index must be executed first.
2943 * @n_scan_plans: number of scan plans, at least 1.
2944 * @rcu_head: RCU callback used to free the struct
2945 * @owner_nlportid: netlink portid of owner (if this should is a request
2946 * owned by a particular socket)
2947 * @nl_owner_dead: netlink owner socket was closed - this request be freed
2948 * @list: for keeping list of requests.
2949 * @delay: delay in seconds to use before starting the first scan
2950 * cycle. The driver may ignore this parameter and start
2951 * immediately (or at any other time), if this feature is not
2952 * supported.
2953 * @relative_rssi_set: Indicates whether @relative_rssi is set or not.
2954 * @relative_rssi: Relative RSSI threshold in dB to restrict scan result
2955 * reporting in connected state to cases where a matching BSS is determined
2956 * to have better or slightly worse RSSI than the current connected BSS.
2957 * The relative RSSI threshold values are ignored in disconnected state.
2958 * @rssi_adjust: delta dB of RSSI preference to be given to the BSSs that belong
2959 * to the specified band while deciding whether a better BSS is reported
2960 * using @relative_rssi. If delta is a negative number, the BSSs that
2961 * belong to the specified band will be penalized by delta dB in relative
2962 * comparisons.
2963 */
2964 struct cfg80211_sched_scan_request {
2965 u64 reqid;
2966 struct cfg80211_ssid *ssids;
2967 int n_ssids;
2968 u32 n_channels;
2969 const u8 *ie;
2970 size_t ie_len;
2971 u32 flags;
2972 struct cfg80211_match_set *match_sets;
2973 int n_match_sets;
2974 s32 min_rssi_thold;
2975 u32 delay;
2976 struct cfg80211_sched_scan_plan *scan_plans;
2977 int n_scan_plans;
2978
2979 u8 mac_addr[ETH_ALEN] __aligned(2);
2980 u8 mac_addr_mask[ETH_ALEN] __aligned(2);
2981
2982 bool relative_rssi_set;
2983 s8 relative_rssi;
2984 struct cfg80211_bss_select_adjust rssi_adjust;
2985
2986 /* internal */
2987 struct wiphy *wiphy;
2988 struct net_device *dev;
2989 unsigned long scan_start;
2990 bool report_results;
2991 struct rcu_head rcu_head;
2992 u32 owner_nlportid;
2993 bool nl_owner_dead;
2994 struct list_head list;
2995
2996 /* keep last */
2997 struct ieee80211_channel *channels[] __counted_by(n_channels);
2998 };
2999
3000 /**
3001 * enum cfg80211_signal_type - signal type
3002 *
3003 * @CFG80211_SIGNAL_TYPE_NONE: no signal strength information available
3004 * @CFG80211_SIGNAL_TYPE_MBM: signal strength in mBm (100*dBm)
3005 * @CFG80211_SIGNAL_TYPE_UNSPEC: signal strength, increasing from 0 through 100
3006 */
3007 enum cfg80211_signal_type {
3008 CFG80211_SIGNAL_TYPE_NONE,
3009 CFG80211_SIGNAL_TYPE_MBM,
3010 CFG80211_SIGNAL_TYPE_UNSPEC,
3011 };
3012
3013 /**
3014 * struct cfg80211_inform_bss - BSS inform data
3015 * @chan: channel the frame was received on
3016 * @signal: signal strength value, according to the wiphy's
3017 * signal type
3018 * @boottime_ns: timestamp (CLOCK_BOOTTIME) when the information was
3019 * received; should match the time when the frame was actually
3020 * received by the device (not just by the host, in case it was
3021 * buffered on the device) and be accurate to about 10ms.
3022 * If the frame isn't buffered, just passing the return value of
3023 * ktime_get_boottime_ns() is likely appropriate.
3024 * @parent_tsf: the time at the start of reception of the first octet of the
3025 * timestamp field of the frame. The time is the TSF of the BSS specified
3026 * by %parent_bssid.
3027 * @parent_bssid: the BSS according to which %parent_tsf is set. This is set to
3028 * the BSS that requested the scan in which the beacon/probe was received.
3029 * @chains: bitmask for filled values in @chain_signal.
3030 * @chain_signal: per-chain signal strength of last received BSS in dBm.
3031 * @restrict_use: restrict usage, if not set, assume @use_for is
3032 * %NL80211_BSS_USE_FOR_NORMAL.
3033 * @use_for: bitmap of possible usage for this BSS, see
3034 * &enum nl80211_bss_use_for
3035 * @cannot_use_reasons: the reasons (bitmap) for not being able to connect,
3036 * if @restrict_use is set and @use_for is zero (empty); may be 0 for
3037 * unspecified reasons; see &enum nl80211_bss_cannot_use_reasons
3038 * @drv_data: Data to be passed through to @inform_bss
3039 */
3040 struct cfg80211_inform_bss {
3041 struct ieee80211_channel *chan;
3042 s32 signal;
3043 u64 boottime_ns;
3044 u64 parent_tsf;
3045 u8 parent_bssid[ETH_ALEN] __aligned(2);
3046 u8 chains;
3047 s8 chain_signal[IEEE80211_MAX_CHAINS];
3048
3049 u8 restrict_use:1, use_for:7;
3050 u8 cannot_use_reasons;
3051
3052 void *drv_data;
3053 };
3054
3055 /**
3056 * struct cfg80211_bss_ies - BSS entry IE data
3057 * @tsf: TSF contained in the frame that carried these IEs
3058 * @rcu_head: internal use, for freeing
3059 * @len: length of the IEs
3060 * @from_beacon: these IEs are known to come from a beacon
3061 * @data: IE data
3062 */
3063 struct cfg80211_bss_ies {
3064 u64 tsf;
3065 struct rcu_head rcu_head;
3066 int len;
3067 bool from_beacon;
3068 u8 data[];
3069 };
3070
3071 /**
3072 * struct cfg80211_bss - BSS description
3073 *
3074 * This structure describes a BSS (which may also be a mesh network)
3075 * for use in scan results and similar.
3076 *
3077 * @channel: channel this BSS is on
3078 * @bssid: BSSID of the BSS
3079 * @beacon_interval: the beacon interval as from the frame
3080 * @capability: the capability field in host byte order
3081 * @ies: the information elements (Note that there is no guarantee that these
3082 * are well-formed!); this is a pointer to either the beacon_ies or
3083 * proberesp_ies depending on whether Probe Response frame has been
3084 * received. It is always non-%NULL.
3085 * @beacon_ies: the information elements from the last Beacon frame
3086 * (implementation note: if @hidden_beacon_bss is set this struct doesn't
3087 * own the beacon_ies, but they're just pointers to the ones from the
3088 * @hidden_beacon_bss struct)
3089 * @proberesp_ies: the information elements from the last Probe Response frame
3090 * @proberesp_ecsa_stuck: ECSA element is stuck in the Probe Response frame,
3091 * cannot rely on it having valid data
3092 * @hidden_beacon_bss: in case this BSS struct represents a probe response from
3093 * a BSS that hides the SSID in its beacon, this points to the BSS struct
3094 * that holds the beacon data. @beacon_ies is still valid, of course, and
3095 * points to the same data as hidden_beacon_bss->beacon_ies in that case.
3096 * @transmitted_bss: pointer to the transmitted BSS, if this is a
3097 * non-transmitted one (multi-BSSID support)
3098 * @nontrans_list: list of non-transmitted BSS, if this is a transmitted one
3099 * (multi-BSSID support)
3100 * @signal: signal strength value (type depends on the wiphy's signal_type)
3101 * @ts_boottime: timestamp of the last BSS update in nanoseconds since boot
3102 * @chains: bitmask for filled values in @chain_signal.
3103 * @chain_signal: per-chain signal strength of last received BSS in dBm.
3104 * @bssid_index: index in the multiple BSS set
3105 * @max_bssid_indicator: max number of members in the BSS set
3106 * @use_for: bitmap of possible usage for this BSS, see
3107 * &enum nl80211_bss_use_for
3108 * @cannot_use_reasons: the reasons (bitmap) for not being able to connect,
3109 * if @restrict_use is set and @use_for is zero (empty); may be 0 for
3110 * unspecified reasons; see &enum nl80211_bss_cannot_use_reasons
3111 * @priv: private area for driver use, has at least wiphy->bss_priv_size bytes
3112 */
3113 struct cfg80211_bss {
3114 struct ieee80211_channel *channel;
3115
3116 const struct cfg80211_bss_ies __rcu *ies;
3117 const struct cfg80211_bss_ies __rcu *beacon_ies;
3118 const struct cfg80211_bss_ies __rcu *proberesp_ies;
3119
3120 struct cfg80211_bss *hidden_beacon_bss;
3121 struct cfg80211_bss *transmitted_bss;
3122 struct list_head nontrans_list;
3123
3124 s32 signal;
3125
3126 u64 ts_boottime;
3127
3128 u16 beacon_interval;
3129 u16 capability;
3130
3131 u8 bssid[ETH_ALEN];
3132 u8 chains;
3133 s8 chain_signal[IEEE80211_MAX_CHAINS];
3134
3135 u8 proberesp_ecsa_stuck:1;
3136
3137 u8 bssid_index;
3138 u8 max_bssid_indicator;
3139
3140 u8 use_for;
3141 u8 cannot_use_reasons;
3142
3143 u8 priv[] __aligned(sizeof(void *));
3144 };
3145
3146 /**
3147 * ieee80211_bss_get_elem - find element with given ID
3148 * @bss: the bss to search
3149 * @id: the element ID
3150 *
3151 * Note that the return value is an RCU-protected pointer, so
3152 * rcu_read_lock() must be held when calling this function.
3153 * Return: %NULL if not found.
3154 */
3155 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id);
3156
3157 /**
3158 * ieee80211_bss_get_ie - find IE with given ID
3159 * @bss: the bss to search
3160 * @id: the element ID
3161 *
3162 * Note that the return value is an RCU-protected pointer, so
3163 * rcu_read_lock() must be held when calling this function.
3164 * Return: %NULL if not found.
3165 */
ieee80211_bss_get_ie(struct cfg80211_bss * bss,u8 id)3166 static inline const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 id)
3167 {
3168 return (const void *)ieee80211_bss_get_elem(bss, id);
3169 }
3170
3171
3172 /**
3173 * struct cfg80211_auth_request - Authentication request data
3174 *
3175 * This structure provides information needed to complete IEEE 802.11
3176 * authentication.
3177 *
3178 * @bss: The BSS to authenticate with, the callee must obtain a reference
3179 * to it if it needs to keep it.
3180 * @supported_selectors: List of selectors that should be assumed to be
3181 * supported by the station.
3182 * SAE_H2E must be assumed supported if set to %NULL.
3183 * @supported_selectors_len: Length of supported_selectors in octets.
3184 * @auth_type: Authentication type (algorithm)
3185 * @ie: Extra IEs to add to Authentication frame or %NULL
3186 * @ie_len: Length of ie buffer in octets
3187 * @key_len: length of WEP key for shared key authentication
3188 * @key_idx: index of WEP key for shared key authentication
3189 * @key: WEP key for shared key authentication
3190 * @auth_data: Fields and elements in Authentication frames. This contains
3191 * the authentication frame body (non-IE and IE data), excluding the
3192 * Authentication algorithm number, i.e., starting at the Authentication
3193 * transaction sequence number field.
3194 * @auth_data_len: Length of auth_data buffer in octets
3195 * @link_id: if >= 0, indicates authentication should be done as an MLD,
3196 * the interface address is included as the MLD address and the
3197 * necessary link (with the given link_id) will be created (and
3198 * given an MLD address) by the driver
3199 * @ap_mld_addr: AP MLD address in case of authentication request with
3200 * an AP MLD, valid iff @link_id >= 0
3201 */
3202 struct cfg80211_auth_request {
3203 struct cfg80211_bss *bss;
3204 const u8 *ie;
3205 size_t ie_len;
3206 const u8 *supported_selectors;
3207 u8 supported_selectors_len;
3208 enum nl80211_auth_type auth_type;
3209 const u8 *key;
3210 u8 key_len;
3211 s8 key_idx;
3212 const u8 *auth_data;
3213 size_t auth_data_len;
3214 s8 link_id;
3215 const u8 *ap_mld_addr;
3216 };
3217
3218 /**
3219 * struct cfg80211_assoc_link - per-link information for MLO association
3220 * @bss: the BSS pointer, see also &struct cfg80211_assoc_request::bss;
3221 * if this is %NULL for a link, that link is not requested
3222 * @elems: extra elements for the per-STA profile for this link
3223 * @elems_len: length of the elements
3224 * @disabled: If set this link should be included during association etc. but it
3225 * should not be used until enabled by the AP MLD.
3226 * @error: per-link error code, must be <= 0. If there is an error, then the
3227 * operation as a whole must fail.
3228 */
3229 struct cfg80211_assoc_link {
3230 struct cfg80211_bss *bss;
3231 const u8 *elems;
3232 size_t elems_len;
3233 bool disabled;
3234 int error;
3235 };
3236
3237 /**
3238 * struct cfg80211_ml_reconf_req - MLO link reconfiguration request
3239 * @add_links: data for links to add, see &struct cfg80211_assoc_link
3240 * @rem_links: bitmap of links to remove
3241 * @ext_mld_capa_ops: extended MLD capabilities and operations set by
3242 * userspace for the ML reconfiguration action frame
3243 */
3244 struct cfg80211_ml_reconf_req {
3245 struct cfg80211_assoc_link add_links[IEEE80211_MLD_MAX_NUM_LINKS];
3246 u16 rem_links;
3247 u16 ext_mld_capa_ops;
3248 };
3249
3250 /**
3251 * enum cfg80211_assoc_req_flags - Over-ride default behaviour in association.
3252 *
3253 * @ASSOC_REQ_DISABLE_HT: Disable HT (802.11n)
3254 * @ASSOC_REQ_DISABLE_VHT: Disable VHT
3255 * @ASSOC_REQ_USE_RRM: Declare RRM capability in this association
3256 * @CONNECT_REQ_EXTERNAL_AUTH_SUPPORT: User space indicates external
3257 * authentication capability. Drivers can offload authentication to
3258 * userspace if this flag is set. Only applicable for cfg80211_connect()
3259 * request (connect callback).
3260 * @ASSOC_REQ_DISABLE_HE: Disable HE
3261 * @ASSOC_REQ_DISABLE_EHT: Disable EHT
3262 * @CONNECT_REQ_MLO_SUPPORT: Userspace indicates support for handling MLD links.
3263 * Drivers shall disable MLO features for the current association if this
3264 * flag is not set.
3265 * @ASSOC_REQ_SPP_AMSDU: SPP A-MSDUs will be used on this connection (if any)
3266 */
3267 enum cfg80211_assoc_req_flags {
3268 ASSOC_REQ_DISABLE_HT = BIT(0),
3269 ASSOC_REQ_DISABLE_VHT = BIT(1),
3270 ASSOC_REQ_USE_RRM = BIT(2),
3271 CONNECT_REQ_EXTERNAL_AUTH_SUPPORT = BIT(3),
3272 ASSOC_REQ_DISABLE_HE = BIT(4),
3273 ASSOC_REQ_DISABLE_EHT = BIT(5),
3274 CONNECT_REQ_MLO_SUPPORT = BIT(6),
3275 ASSOC_REQ_SPP_AMSDU = BIT(7),
3276 };
3277
3278 /**
3279 * struct cfg80211_assoc_request - (Re)Association request data
3280 *
3281 * This structure provides information needed to complete IEEE 802.11
3282 * (re)association.
3283 * @bss: The BSS to associate with. If the call is successful the driver is
3284 * given a reference that it must give back to cfg80211_send_rx_assoc()
3285 * or to cfg80211_assoc_timeout(). To ensure proper refcounting, new
3286 * association requests while already associating must be rejected.
3287 * This also applies to the @links.bss parameter, which is used instead
3288 * of this one (it is %NULL) for MLO associations.
3289 * @ie: Extra IEs to add to (Re)Association Request frame or %NULL
3290 * @ie_len: Length of ie buffer in octets
3291 * @use_mfp: Use management frame protection (IEEE 802.11w) in this association
3292 * @crypto: crypto settings
3293 * @prev_bssid: previous BSSID, if not %NULL use reassociate frame. This is used
3294 * to indicate a request to reassociate within the ESS instead of a request
3295 * do the initial association with the ESS. When included, this is set to
3296 * the BSSID of the current association, i.e., to the value that is
3297 * included in the Current AP address field of the Reassociation Request
3298 * frame.
3299 * @flags: See &enum cfg80211_assoc_req_flags
3300 * @supported_selectors: supported BSS selectors in IEEE 802.11 format
3301 * (or %NULL for no change).
3302 * If %NULL, then support for SAE_H2E should be assumed.
3303 * @supported_selectors_len: number of supported BSS selectors
3304 * @ht_capa: HT Capabilities over-rides. Values set in ht_capa_mask
3305 * will be used in ht_capa. Un-supported values will be ignored.
3306 * @ht_capa_mask: The bits of ht_capa which are to be used.
3307 * @vht_capa: VHT capability override
3308 * @vht_capa_mask: VHT capability mask indicating which fields to use
3309 * @fils_kek: FILS KEK for protecting (Re)Association Request/Response frame or
3310 * %NULL if FILS is not used.
3311 * @fils_kek_len: Length of fils_kek in octets
3312 * @fils_nonces: FILS nonces (part of AAD) for protecting (Re)Association
3313 * Request/Response frame or %NULL if FILS is not used. This field starts
3314 * with 16 octets of STA Nonce followed by 16 octets of AP Nonce.
3315 * @s1g_capa: S1G capability override
3316 * @s1g_capa_mask: S1G capability override mask
3317 * @links: per-link information for MLO connections
3318 * @link_id: >= 0 for MLO connections, where links are given, and indicates
3319 * the link on which the association request should be sent
3320 * @ap_mld_addr: AP MLD address in case of MLO association request,
3321 * valid iff @link_id >= 0
3322 * @ext_mld_capa_ops: extended MLD capabilities and operations set by
3323 * userspace for the association
3324 */
3325 struct cfg80211_assoc_request {
3326 struct cfg80211_bss *bss;
3327 const u8 *ie, *prev_bssid;
3328 size_t ie_len;
3329 struct cfg80211_crypto_settings crypto;
3330 bool use_mfp;
3331 u32 flags;
3332 const u8 *supported_selectors;
3333 u8 supported_selectors_len;
3334 struct ieee80211_ht_cap ht_capa;
3335 struct ieee80211_ht_cap ht_capa_mask;
3336 struct ieee80211_vht_cap vht_capa, vht_capa_mask;
3337 const u8 *fils_kek;
3338 size_t fils_kek_len;
3339 const u8 *fils_nonces;
3340 struct ieee80211_s1g_cap s1g_capa, s1g_capa_mask;
3341 struct cfg80211_assoc_link links[IEEE80211_MLD_MAX_NUM_LINKS];
3342 const u8 *ap_mld_addr;
3343 s8 link_id;
3344 u16 ext_mld_capa_ops;
3345 };
3346
3347 /**
3348 * struct cfg80211_deauth_request - Deauthentication request data
3349 *
3350 * This structure provides information needed to complete IEEE 802.11
3351 * deauthentication.
3352 *
3353 * @bssid: the BSSID or AP MLD address to deauthenticate from
3354 * @ie: Extra IEs to add to Deauthentication frame or %NULL
3355 * @ie_len: Length of ie buffer in octets
3356 * @reason_code: The reason code for the deauthentication
3357 * @local_state_change: if set, change local state only and
3358 * do not set a deauth frame
3359 */
3360 struct cfg80211_deauth_request {
3361 const u8 *bssid;
3362 const u8 *ie;
3363 size_t ie_len;
3364 u16 reason_code;
3365 bool local_state_change;
3366 };
3367
3368 /**
3369 * struct cfg80211_disassoc_request - Disassociation request data
3370 *
3371 * This structure provides information needed to complete IEEE 802.11
3372 * disassociation.
3373 *
3374 * @ap_addr: the BSSID or AP MLD address to disassociate from
3375 * @ie: Extra IEs to add to Disassociation frame or %NULL
3376 * @ie_len: Length of ie buffer in octets
3377 * @reason_code: The reason code for the disassociation
3378 * @local_state_change: This is a request for a local state only, i.e., no
3379 * Disassociation frame is to be transmitted.
3380 */
3381 struct cfg80211_disassoc_request {
3382 const u8 *ap_addr;
3383 const u8 *ie;
3384 size_t ie_len;
3385 u16 reason_code;
3386 bool local_state_change;
3387 };
3388
3389 /**
3390 * struct cfg80211_ibss_params - IBSS parameters
3391 *
3392 * This structure defines the IBSS parameters for the join_ibss()
3393 * method.
3394 *
3395 * @ssid: The SSID, will always be non-null.
3396 * @ssid_len: The length of the SSID, will always be non-zero.
3397 * @bssid: Fixed BSSID requested, maybe be %NULL, if set do not
3398 * search for IBSSs with a different BSSID.
3399 * @chandef: defines the channel to use if no other IBSS to join can be found
3400 * @channel_fixed: The channel should be fixed -- do not search for
3401 * IBSSs to join on other channels.
3402 * @ie: information element(s) to include in the beacon
3403 * @ie_len: length of that
3404 * @beacon_interval: beacon interval to use
3405 * @privacy: this is a protected network, keys will be configured
3406 * after joining
3407 * @control_port: whether user space controls IEEE 802.1X port, i.e.,
3408 * sets/clears %NL80211_STA_FLAG_AUTHORIZED. If true, the driver is
3409 * required to assume that the port is unauthorized until authorized by
3410 * user space. Otherwise, port is marked authorized by default.
3411 * @control_port_over_nl80211: TRUE if userspace expects to exchange control
3412 * port frames over NL80211 instead of the network interface.
3413 * @userspace_handles_dfs: whether user space controls DFS operation, i.e.
3414 * changes the channel when a radar is detected. This is required
3415 * to operate on DFS channels.
3416 * @basic_rates: bitmap of basic rates to use when creating the IBSS
3417 * @mcast_rate: per-band multicast rate index + 1 (0: disabled)
3418 * @ht_capa: HT Capabilities over-rides. Values set in ht_capa_mask
3419 * will be used in ht_capa. Un-supported values will be ignored.
3420 * @ht_capa_mask: The bits of ht_capa which are to be used.
3421 * @wep_keys: static WEP keys, if not NULL points to an array of
3422 * CFG80211_MAX_WEP_KEYS WEP keys
3423 * @wep_tx_key: key index (0..3) of the default TX static WEP key
3424 */
3425 struct cfg80211_ibss_params {
3426 const u8 *ssid;
3427 const u8 *bssid;
3428 struct cfg80211_chan_def chandef;
3429 const u8 *ie;
3430 u8 ssid_len, ie_len;
3431 u16 beacon_interval;
3432 u32 basic_rates;
3433 bool channel_fixed;
3434 bool privacy;
3435 bool control_port;
3436 bool control_port_over_nl80211;
3437 bool userspace_handles_dfs;
3438 int mcast_rate[NUM_NL80211_BANDS];
3439 struct ieee80211_ht_cap ht_capa;
3440 struct ieee80211_ht_cap ht_capa_mask;
3441 struct key_params *wep_keys;
3442 int wep_tx_key;
3443 };
3444
3445 /**
3446 * struct cfg80211_bss_selection - connection parameters for BSS selection.
3447 *
3448 * @behaviour: requested BSS selection behaviour.
3449 * @param: parameters for requestion behaviour.
3450 * @param.band_pref: preferred band for %NL80211_BSS_SELECT_ATTR_BAND_PREF.
3451 * @param.adjust: parameters for %NL80211_BSS_SELECT_ATTR_RSSI_ADJUST.
3452 */
3453 struct cfg80211_bss_selection {
3454 enum nl80211_bss_select_attr behaviour;
3455 union {
3456 enum nl80211_band band_pref;
3457 struct cfg80211_bss_select_adjust adjust;
3458 } param;
3459 };
3460
3461 /**
3462 * struct cfg80211_connect_params - Connection parameters
3463 *
3464 * This structure provides information needed to complete IEEE 802.11
3465 * authentication and association.
3466 *
3467 * @channel: The channel to use or %NULL if not specified (auto-select based
3468 * on scan results)
3469 * @channel_hint: The channel of the recommended BSS for initial connection or
3470 * %NULL if not specified
3471 * @bssid: The AP BSSID or %NULL if not specified (auto-select based on scan
3472 * results)
3473 * @bssid_hint: The recommended AP BSSID for initial connection to the BSS or
3474 * %NULL if not specified. Unlike the @bssid parameter, the driver is
3475 * allowed to ignore this @bssid_hint if it has knowledge of a better BSS
3476 * to use.
3477 * @ssid: SSID
3478 * @ssid_len: Length of ssid in octets
3479 * @auth_type: Authentication type (algorithm)
3480 * @ie: IEs for association request
3481 * @ie_len: Length of assoc_ie in octets
3482 * @privacy: indicates whether privacy-enabled APs should be used
3483 * @mfp: indicate whether management frame protection is used
3484 * @crypto: crypto settings
3485 * @key_len: length of WEP key for shared key authentication
3486 * @key_idx: index of WEP key for shared key authentication
3487 * @key: WEP key for shared key authentication
3488 * @flags: See &enum cfg80211_assoc_req_flags
3489 * @bg_scan_period: Background scan period in seconds
3490 * or -1 to indicate that default value is to be used.
3491 * @ht_capa: HT Capabilities over-rides. Values set in ht_capa_mask
3492 * will be used in ht_capa. Un-supported values will be ignored.
3493 * @ht_capa_mask: The bits of ht_capa which are to be used.
3494 * @vht_capa: VHT Capability overrides
3495 * @vht_capa_mask: The bits of vht_capa which are to be used.
3496 * @pbss: if set, connect to a PCP instead of AP. Valid for DMG
3497 * networks.
3498 * @bss_select: criteria to be used for BSS selection.
3499 * @prev_bssid: previous BSSID, if not %NULL use reassociate frame. This is used
3500 * to indicate a request to reassociate within the ESS instead of a request
3501 * do the initial association with the ESS. When included, this is set to
3502 * the BSSID of the current association, i.e., to the value that is
3503 * included in the Current AP address field of the Reassociation Request
3504 * frame.
3505 * @fils_erp_username: EAP re-authentication protocol (ERP) username part of the
3506 * NAI or %NULL if not specified. This is used to construct FILS wrapped
3507 * data IE.
3508 * @fils_erp_username_len: Length of @fils_erp_username in octets.
3509 * @fils_erp_realm: EAP re-authentication protocol (ERP) realm part of NAI or
3510 * %NULL if not specified. This specifies the domain name of ER server and
3511 * is used to construct FILS wrapped data IE.
3512 * @fils_erp_realm_len: Length of @fils_erp_realm in octets.
3513 * @fils_erp_next_seq_num: The next sequence number to use in the FILS ERP
3514 * messages. This is also used to construct FILS wrapped data IE.
3515 * @fils_erp_rrk: ERP re-authentication Root Key (rRK) used to derive additional
3516 * keys in FILS or %NULL if not specified.
3517 * @fils_erp_rrk_len: Length of @fils_erp_rrk in octets.
3518 * @want_1x: indicates user-space supports and wants to use 802.1X driver
3519 * offload of 4-way handshake.
3520 * @edmg: define the EDMG channels.
3521 * This may specify multiple channels and bonding options for the driver
3522 * to choose from, based on BSS configuration.
3523 */
3524 struct cfg80211_connect_params {
3525 struct ieee80211_channel *channel;
3526 struct ieee80211_channel *channel_hint;
3527 const u8 *bssid;
3528 const u8 *bssid_hint;
3529 const u8 *ssid;
3530 size_t ssid_len;
3531 enum nl80211_auth_type auth_type;
3532 const u8 *ie;
3533 size_t ie_len;
3534 bool privacy;
3535 enum nl80211_mfp mfp;
3536 struct cfg80211_crypto_settings crypto;
3537 const u8 *key;
3538 u8 key_len, key_idx;
3539 u32 flags;
3540 int bg_scan_period;
3541 struct ieee80211_ht_cap ht_capa;
3542 struct ieee80211_ht_cap ht_capa_mask;
3543 struct ieee80211_vht_cap vht_capa;
3544 struct ieee80211_vht_cap vht_capa_mask;
3545 bool pbss;
3546 struct cfg80211_bss_selection bss_select;
3547 const u8 *prev_bssid;
3548 const u8 *fils_erp_username;
3549 size_t fils_erp_username_len;
3550 const u8 *fils_erp_realm;
3551 size_t fils_erp_realm_len;
3552 u16 fils_erp_next_seq_num;
3553 const u8 *fils_erp_rrk;
3554 size_t fils_erp_rrk_len;
3555 bool want_1x;
3556 struct ieee80211_edmg edmg;
3557 };
3558
3559 /**
3560 * enum cfg80211_connect_params_changed - Connection parameters being updated
3561 *
3562 * This enum provides information of all connect parameters that
3563 * have to be updated as part of update_connect_params() call.
3564 *
3565 * @UPDATE_ASSOC_IES: Indicates whether association request IEs are updated
3566 * @UPDATE_FILS_ERP_INFO: Indicates that FILS connection parameters (realm,
3567 * username, erp sequence number and rrk) are updated
3568 * @UPDATE_AUTH_TYPE: Indicates that authentication type is updated
3569 */
3570 enum cfg80211_connect_params_changed {
3571 UPDATE_ASSOC_IES = BIT(0),
3572 UPDATE_FILS_ERP_INFO = BIT(1),
3573 UPDATE_AUTH_TYPE = BIT(2),
3574 };
3575
3576 /**
3577 * enum wiphy_params_flags - set_wiphy_params bitfield values
3578 * @WIPHY_PARAM_RETRY_SHORT: wiphy->retry_short has changed
3579 * @WIPHY_PARAM_RETRY_LONG: wiphy->retry_long has changed
3580 * @WIPHY_PARAM_FRAG_THRESHOLD: wiphy->frag_threshold has changed
3581 * @WIPHY_PARAM_RTS_THRESHOLD: wiphy->rts_threshold has changed
3582 * @WIPHY_PARAM_COVERAGE_CLASS: coverage class changed
3583 * @WIPHY_PARAM_DYN_ACK: dynack has been enabled
3584 * @WIPHY_PARAM_TXQ_LIMIT: TXQ packet limit has been changed
3585 * @WIPHY_PARAM_TXQ_MEMORY_LIMIT: TXQ memory limit has been changed
3586 * @WIPHY_PARAM_TXQ_QUANTUM: TXQ scheduler quantum
3587 */
3588 enum wiphy_params_flags {
3589 WIPHY_PARAM_RETRY_SHORT = BIT(0),
3590 WIPHY_PARAM_RETRY_LONG = BIT(1),
3591 WIPHY_PARAM_FRAG_THRESHOLD = BIT(2),
3592 WIPHY_PARAM_RTS_THRESHOLD = BIT(3),
3593 WIPHY_PARAM_COVERAGE_CLASS = BIT(4),
3594 WIPHY_PARAM_DYN_ACK = BIT(5),
3595 WIPHY_PARAM_TXQ_LIMIT = BIT(6),
3596 WIPHY_PARAM_TXQ_MEMORY_LIMIT = BIT(7),
3597 WIPHY_PARAM_TXQ_QUANTUM = BIT(8),
3598 };
3599
3600 #define IEEE80211_DEFAULT_AIRTIME_WEIGHT 256
3601
3602 /* The per TXQ device queue limit in airtime */
3603 #define IEEE80211_DEFAULT_AQL_TXQ_LIMIT_L 5000
3604 #define IEEE80211_DEFAULT_AQL_TXQ_LIMIT_H 12000
3605
3606 /* The per interface airtime threshold to switch to lower queue limit */
3607 #define IEEE80211_AQL_THRESHOLD 24000
3608
3609 /**
3610 * struct cfg80211_pmksa - PMK Security Association
3611 *
3612 * This structure is passed to the set/del_pmksa() method for PMKSA
3613 * caching.
3614 *
3615 * @bssid: The AP's BSSID (may be %NULL).
3616 * @pmkid: The identifier to refer a PMKSA.
3617 * @pmk: The PMK for the PMKSA identified by @pmkid. This is used for key
3618 * derivation by a FILS STA. Otherwise, %NULL.
3619 * @pmk_len: Length of the @pmk. The length of @pmk can differ depending on
3620 * the hash algorithm used to generate this.
3621 * @ssid: SSID to specify the ESS within which a PMKSA is valid when using FILS
3622 * cache identifier (may be %NULL).
3623 * @ssid_len: Length of the @ssid in octets.
3624 * @cache_id: 2-octet cache identifier advertized by a FILS AP identifying the
3625 * scope of PMKSA. This is valid only if @ssid_len is non-zero (may be
3626 * %NULL).
3627 * @pmk_lifetime: Maximum lifetime for PMKSA in seconds
3628 * (dot11RSNAConfigPMKLifetime) or 0 if not specified.
3629 * The configured PMKSA must not be used for PMKSA caching after
3630 * expiration and any keys derived from this PMK become invalid on
3631 * expiration, i.e., the current association must be dropped if the PMK
3632 * used for it expires.
3633 * @pmk_reauth_threshold: Threshold time for reauthentication (percentage of
3634 * PMK lifetime, dot11RSNAConfigPMKReauthThreshold) or 0 if not specified.
3635 * Drivers are expected to trigger a full authentication instead of using
3636 * this PMKSA for caching when reassociating to a new BSS after this
3637 * threshold to generate a new PMK before the current one expires.
3638 */
3639 struct cfg80211_pmksa {
3640 const u8 *bssid;
3641 const u8 *pmkid;
3642 const u8 *pmk;
3643 size_t pmk_len;
3644 const u8 *ssid;
3645 size_t ssid_len;
3646 const u8 *cache_id;
3647 u32 pmk_lifetime;
3648 u8 pmk_reauth_threshold;
3649 };
3650
3651 /**
3652 * struct cfg80211_pkt_pattern - packet pattern
3653 * @mask: bitmask where to match pattern and where to ignore bytes,
3654 * one bit per byte, in same format as nl80211
3655 * @pattern: bytes to match where bitmask is 1
3656 * @pattern_len: length of pattern (in bytes)
3657 * @pkt_offset: packet offset (in bytes)
3658 *
3659 * Internal note: @mask and @pattern are allocated in one chunk of
3660 * memory, free @mask only!
3661 */
3662 struct cfg80211_pkt_pattern {
3663 const u8 *mask, *pattern;
3664 int pattern_len;
3665 int pkt_offset;
3666 };
3667
3668 /**
3669 * struct cfg80211_wowlan_tcp - TCP connection parameters
3670 *
3671 * @sock: (internal) socket for source port allocation
3672 * @src: source IP address
3673 * @dst: destination IP address
3674 * @dst_mac: destination MAC address
3675 * @src_port: source port
3676 * @dst_port: destination port
3677 * @payload_len: data payload length
3678 * @payload: data payload buffer
3679 * @payload_seq: payload sequence stamping configuration
3680 * @data_interval: interval at which to send data packets
3681 * @wake_len: wakeup payload match length
3682 * @wake_data: wakeup payload match data
3683 * @wake_mask: wakeup payload match mask
3684 * @tokens_size: length of the tokens buffer
3685 * @payload_tok: payload token usage configuration
3686 */
3687 struct cfg80211_wowlan_tcp {
3688 struct socket *sock;
3689 __be32 src, dst;
3690 u16 src_port, dst_port;
3691 u8 dst_mac[ETH_ALEN];
3692 int payload_len;
3693 const u8 *payload;
3694 struct nl80211_wowlan_tcp_data_seq payload_seq;
3695 u32 data_interval;
3696 u32 wake_len;
3697 const u8 *wake_data, *wake_mask;
3698 u32 tokens_size;
3699 /* must be last, variable member */
3700 struct nl80211_wowlan_tcp_data_token payload_tok;
3701 };
3702
3703 /**
3704 * struct cfg80211_wowlan - Wake on Wireless-LAN support info
3705 *
3706 * This structure defines the enabled WoWLAN triggers for the device.
3707 * @any: wake up on any activity -- special trigger if device continues
3708 * operating as normal during suspend
3709 * @disconnect: wake up if getting disconnected
3710 * @magic_pkt: wake up on receiving magic packet
3711 * @patterns: wake up on receiving packet matching a pattern
3712 * @n_patterns: number of patterns
3713 * @gtk_rekey_failure: wake up on GTK rekey failure
3714 * @eap_identity_req: wake up on EAP identity request packet
3715 * @four_way_handshake: wake up on 4-way handshake
3716 * @rfkill_release: wake up when rfkill is released
3717 * @tcp: TCP connection establishment/wakeup parameters, see nl80211.h.
3718 * NULL if not configured.
3719 * @nd_config: configuration for the scan to be used for net detect wake.
3720 */
3721 struct cfg80211_wowlan {
3722 bool any, disconnect, magic_pkt, gtk_rekey_failure,
3723 eap_identity_req, four_way_handshake,
3724 rfkill_release;
3725 struct cfg80211_pkt_pattern *patterns;
3726 struct cfg80211_wowlan_tcp *tcp;
3727 int n_patterns;
3728 struct cfg80211_sched_scan_request *nd_config;
3729 };
3730
3731 /**
3732 * struct cfg80211_coalesce_rules - Coalesce rule parameters
3733 *
3734 * This structure defines coalesce rule for the device.
3735 * @delay: maximum coalescing delay in msecs.
3736 * @condition: condition for packet coalescence.
3737 * see &enum nl80211_coalesce_condition.
3738 * @patterns: array of packet patterns
3739 * @n_patterns: number of patterns
3740 */
3741 struct cfg80211_coalesce_rules {
3742 int delay;
3743 enum nl80211_coalesce_condition condition;
3744 struct cfg80211_pkt_pattern *patterns;
3745 int n_patterns;
3746 };
3747
3748 /**
3749 * struct cfg80211_coalesce - Packet coalescing settings
3750 *
3751 * This structure defines coalescing settings.
3752 * @rules: array of coalesce rules
3753 * @n_rules: number of rules
3754 */
3755 struct cfg80211_coalesce {
3756 int n_rules;
3757 struct cfg80211_coalesce_rules rules[] __counted_by(n_rules);
3758 };
3759
3760 /**
3761 * struct cfg80211_wowlan_nd_match - information about the match
3762 *
3763 * @ssid: SSID of the match that triggered the wake up
3764 * @n_channels: Number of channels where the match occurred. This
3765 * value may be zero if the driver can't report the channels.
3766 * @channels: center frequencies of the channels where a match
3767 * occurred (in MHz)
3768 */
3769 struct cfg80211_wowlan_nd_match {
3770 struct cfg80211_ssid ssid;
3771 int n_channels;
3772 u32 channels[] __counted_by(n_channels);
3773 };
3774
3775 /**
3776 * struct cfg80211_wowlan_nd_info - net detect wake up information
3777 *
3778 * @n_matches: Number of match information instances provided in
3779 * @matches. This value may be zero if the driver can't provide
3780 * match information.
3781 * @matches: Array of pointers to matches containing information about
3782 * the matches that triggered the wake up.
3783 */
3784 struct cfg80211_wowlan_nd_info {
3785 int n_matches;
3786 struct cfg80211_wowlan_nd_match *matches[] __counted_by(n_matches);
3787 };
3788
3789 /**
3790 * struct cfg80211_wowlan_wakeup - wakeup report
3791 * @disconnect: woke up by getting disconnected
3792 * @magic_pkt: woke up by receiving magic packet
3793 * @gtk_rekey_failure: woke up by GTK rekey failure
3794 * @eap_identity_req: woke up by EAP identity request packet
3795 * @four_way_handshake: woke up by 4-way handshake
3796 * @rfkill_release: woke up by rfkill being released
3797 * @pattern_idx: pattern that caused wakeup, -1 if not due to pattern
3798 * @packet_present_len: copied wakeup packet data
3799 * @packet_len: original wakeup packet length
3800 * @packet: The packet causing the wakeup, if any.
3801 * @packet_80211: For pattern match, magic packet and other data
3802 * frame triggers an 802.3 frame should be reported, for
3803 * disconnect due to deauth 802.11 frame. This indicates which
3804 * it is.
3805 * @tcp_match: TCP wakeup packet received
3806 * @tcp_connlost: TCP connection lost or failed to establish
3807 * @tcp_nomoretokens: TCP data ran out of tokens
3808 * @net_detect: if not %NULL, woke up because of net detect
3809 * @unprot_deauth_disassoc: woke up due to unprotected deauth or
3810 * disassoc frame (in MFP).
3811 */
3812 struct cfg80211_wowlan_wakeup {
3813 bool disconnect, magic_pkt, gtk_rekey_failure,
3814 eap_identity_req, four_way_handshake,
3815 rfkill_release, packet_80211,
3816 tcp_match, tcp_connlost, tcp_nomoretokens,
3817 unprot_deauth_disassoc;
3818 s32 pattern_idx;
3819 u32 packet_present_len, packet_len;
3820 const void *packet;
3821 struct cfg80211_wowlan_nd_info *net_detect;
3822 };
3823
3824 /**
3825 * struct cfg80211_gtk_rekey_data - rekey data
3826 * @kek: key encryption key (@kek_len bytes)
3827 * @kck: key confirmation key (@kck_len bytes)
3828 * @replay_ctr: replay counter (NL80211_REPLAY_CTR_LEN bytes)
3829 * @kek_len: length of kek
3830 * @kck_len: length of kck
3831 * @akm: akm (oui, id)
3832 */
3833 struct cfg80211_gtk_rekey_data {
3834 const u8 *kek, *kck, *replay_ctr;
3835 u32 akm;
3836 u8 kek_len, kck_len;
3837 };
3838
3839 /**
3840 * struct cfg80211_update_ft_ies_params - FT IE Information
3841 *
3842 * This structure provides information needed to update the fast transition IE
3843 *
3844 * @md: The Mobility Domain ID, 2 Octet value
3845 * @ie: Fast Transition IEs
3846 * @ie_len: Length of ft_ie in octets
3847 */
3848 struct cfg80211_update_ft_ies_params {
3849 u16 md;
3850 const u8 *ie;
3851 size_t ie_len;
3852 };
3853
3854 /**
3855 * struct cfg80211_mgmt_tx_params - mgmt tx parameters
3856 *
3857 * This structure provides information needed to transmit a mgmt frame
3858 *
3859 * @chan: channel to use
3860 * @offchan: indicates whether off channel operation is required
3861 * @wait: duration for ROC
3862 * @buf: buffer to transmit
3863 * @len: buffer length
3864 * @no_cck: don't use cck rates for this frame
3865 * @dont_wait_for_ack: tells the low level not to wait for an ack
3866 * @n_csa_offsets: length of csa_offsets array
3867 * @csa_offsets: array of all the csa offsets in the frame
3868 * @link_id: for MLO, the link ID to transmit on, -1 if not given; note
3869 * that the link ID isn't validated (much), it's in range but the
3870 * link might not exist (or be used by the receiver STA)
3871 */
3872 struct cfg80211_mgmt_tx_params {
3873 struct ieee80211_channel *chan;
3874 bool offchan;
3875 unsigned int wait;
3876 const u8 *buf;
3877 size_t len;
3878 bool no_cck;
3879 bool dont_wait_for_ack;
3880 int n_csa_offsets;
3881 const u16 *csa_offsets;
3882 int link_id;
3883 };
3884
3885 /**
3886 * struct cfg80211_dscp_exception - DSCP exception
3887 *
3888 * @dscp: DSCP value that does not adhere to the user priority range definition
3889 * @up: user priority value to which the corresponding DSCP value belongs
3890 */
3891 struct cfg80211_dscp_exception {
3892 u8 dscp;
3893 u8 up;
3894 };
3895
3896 /**
3897 * struct cfg80211_dscp_range - DSCP range definition for user priority
3898 *
3899 * @low: lowest DSCP value of this user priority range, inclusive
3900 * @high: highest DSCP value of this user priority range, inclusive
3901 */
3902 struct cfg80211_dscp_range {
3903 u8 low;
3904 u8 high;
3905 };
3906
3907 /* QoS Map Set element length defined in IEEE Std 802.11-2012, 8.4.2.97 */
3908 #define IEEE80211_QOS_MAP_MAX_EX 21
3909 #define IEEE80211_QOS_MAP_LEN_MIN 16
3910 #define IEEE80211_QOS_MAP_LEN_MAX \
3911 (IEEE80211_QOS_MAP_LEN_MIN + 2 * IEEE80211_QOS_MAP_MAX_EX)
3912
3913 /**
3914 * struct cfg80211_qos_map - QoS Map Information
3915 *
3916 * This struct defines the Interworking QoS map setting for DSCP values
3917 *
3918 * @num_des: number of DSCP exceptions (0..21)
3919 * @dscp_exception: optionally up to maximum of 21 DSCP exceptions from
3920 * the user priority DSCP range definition
3921 * @up: DSCP range definition for a particular user priority
3922 */
3923 struct cfg80211_qos_map {
3924 u8 num_des;
3925 struct cfg80211_dscp_exception dscp_exception[IEEE80211_QOS_MAP_MAX_EX];
3926 struct cfg80211_dscp_range up[8];
3927 };
3928
3929 /**
3930 * struct cfg80211_nan_band_config - NAN band specific configuration
3931 *
3932 * @chan: Pointer to the IEEE 802.11 channel structure. The channel to be used
3933 * for NAN operations on this band. For 2.4 GHz band, this is always
3934 * channel 6. For 5 GHz band, the channel is either 44 or 149, according
3935 * to the regulatory constraints. If chan pointer is NULL the entire band
3936 * configuration entry is considered invalid and should not be used.
3937 * @rssi_close: RSSI close threshold used for NAN state transition algorithm
3938 * as described in chapters 3.3.6 and 3.3.7 "NAN Device Role and State
3939 * Transition" of Wi-Fi Aware Specification v4.0. If not
3940 * specified (set to 0), default device value is used. The value should
3941 * be greater than -60 dBm.
3942 * @rssi_middle: RSSI middle threshold used for NAN state transition algorithm.
3943 * as described in chapters 3.3.6 and 3.3.7 "NAN Device Role and State
3944 * Transition" of Wi-Fi Aware Specification v4.0. If not
3945 * specified (set to 0), default device value is used. The value should be
3946 * greater than -75 dBm and less than rssi_close.
3947 * @awake_dw_interval: Committed DW interval. Valid values range: 0-5. 0
3948 * indicates no wakeup for DW and can't be used on 2.4GHz band, otherwise
3949 * 2^(n-1).
3950 * @disable_scan: If true, the device will not scan this band for cluster
3951 * merge. Disabling scan on 2.4 GHz band is not allowed.
3952 */
3953 struct cfg80211_nan_band_config {
3954 struct ieee80211_channel *chan;
3955 s8 rssi_close;
3956 s8 rssi_middle;
3957 u8 awake_dw_interval;
3958 bool disable_scan;
3959 };
3960
3961 /**
3962 * struct cfg80211_nan_conf - NAN configuration
3963 *
3964 * This struct defines NAN configuration parameters
3965 *
3966 * @master_pref: master preference (1 - 255)
3967 * @bands: operating bands, a bitmap of &enum nl80211_band values.
3968 * For instance, for NL80211_BAND_2GHZ, bit 0 would be set
3969 * (i.e. BIT(NL80211_BAND_2GHZ)).
3970 * @cluster_id: cluster ID used for NAN synchronization. This is a MAC address
3971 * that can take a value from 50-6F-9A-01-00-00 to 50-6F-9A-01-FF-FF.
3972 * If NULL, the device will pick a random Cluster ID.
3973 * @scan_period: period (in seconds) between NAN scans.
3974 * @scan_dwell_time: dwell time (in milliseconds) for NAN scans.
3975 * @discovery_beacon_interval: interval (in TUs) for discovery beacons.
3976 * @enable_dw_notification: flag to enable/disable discovery window
3977 * notifications.
3978 * @band_cfgs: array of band specific configurations, indexed by
3979 * &enum nl80211_band values.
3980 * @extra_nan_attrs: pointer to additional NAN attributes.
3981 * @extra_nan_attrs_len: length of the additional NAN attributes.
3982 * @vendor_elems: pointer to vendor-specific elements.
3983 * @vendor_elems_len: length of the vendor-specific elements.
3984 */
3985 struct cfg80211_nan_conf {
3986 u8 master_pref;
3987 u8 bands;
3988 const u8 *cluster_id;
3989 u16 scan_period;
3990 u16 scan_dwell_time;
3991 u8 discovery_beacon_interval;
3992 bool enable_dw_notification;
3993 struct cfg80211_nan_band_config band_cfgs[NUM_NL80211_BANDS];
3994 const u8 *extra_nan_attrs;
3995 u16 extra_nan_attrs_len;
3996 const u8 *vendor_elems;
3997 u16 vendor_elems_len;
3998 };
3999
4000 /**
4001 * enum cfg80211_nan_conf_changes - indicates changed fields in NAN
4002 * configuration
4003 *
4004 * @CFG80211_NAN_CONF_CHANGED_PREF: master preference
4005 * @CFG80211_NAN_CONF_CHANGED_BANDS: operating bands
4006 * @CFG80211_NAN_CONF_CHANGED_CONFIG: changed additional configuration.
4007 * When this flag is set, it indicates that some additional attribute(s)
4008 * (other then master_pref and bands) have been changed. In this case,
4009 * all the unchanged attributes will be properly configured to their
4010 * previous values. The driver doesn't need to store any
4011 * previous configuration besides master_pref and bands.
4012 */
4013 enum cfg80211_nan_conf_changes {
4014 CFG80211_NAN_CONF_CHANGED_PREF = BIT(0),
4015 CFG80211_NAN_CONF_CHANGED_BANDS = BIT(1),
4016 CFG80211_NAN_CONF_CHANGED_CONFIG = BIT(2),
4017 };
4018
4019 /**
4020 * struct cfg80211_nan_func_filter - a NAN function Rx / Tx filter
4021 *
4022 * @filter: the content of the filter
4023 * @len: the length of the filter
4024 */
4025 struct cfg80211_nan_func_filter {
4026 const u8 *filter;
4027 u8 len;
4028 };
4029
4030 /**
4031 * struct cfg80211_nan_func - a NAN function
4032 *
4033 * @type: &enum nl80211_nan_function_type
4034 * @service_id: the service ID of the function
4035 * @publish_type: &nl80211_nan_publish_type
4036 * @close_range: if true, the range should be limited. Threshold is
4037 * implementation specific.
4038 * @publish_bcast: if true, the solicited publish should be broadcasted
4039 * @subscribe_active: if true, the subscribe is active
4040 * @followup_id: the instance ID for follow up
4041 * @followup_reqid: the requester instance ID for follow up
4042 * @followup_dest: MAC address of the recipient of the follow up
4043 * @ttl: time to live counter in DW.
4044 * @serv_spec_info: Service Specific Info
4045 * @serv_spec_info_len: Service Specific Info length
4046 * @srf_include: if true, SRF is inclusive
4047 * @srf_bf: Bloom Filter
4048 * @srf_bf_len: Bloom Filter length
4049 * @srf_bf_idx: Bloom Filter index
4050 * @srf_macs: SRF MAC addresses
4051 * @srf_num_macs: number of MAC addresses in SRF
4052 * @rx_filters: rx filters that are matched with corresponding peer's tx_filter
4053 * @tx_filters: filters that should be transmitted in the SDF.
4054 * @num_rx_filters: length of &rx_filters.
4055 * @num_tx_filters: length of &tx_filters.
4056 * @instance_id: driver allocated id of the function.
4057 * @cookie: unique NAN function identifier.
4058 */
4059 struct cfg80211_nan_func {
4060 enum nl80211_nan_function_type type;
4061 u8 service_id[NL80211_NAN_FUNC_SERVICE_ID_LEN];
4062 u8 publish_type;
4063 bool close_range;
4064 bool publish_bcast;
4065 bool subscribe_active;
4066 u8 followup_id;
4067 u8 followup_reqid;
4068 struct mac_address followup_dest;
4069 u32 ttl;
4070 const u8 *serv_spec_info;
4071 u8 serv_spec_info_len;
4072 bool srf_include;
4073 const u8 *srf_bf;
4074 u8 srf_bf_len;
4075 u8 srf_bf_idx;
4076 struct mac_address *srf_macs;
4077 int srf_num_macs;
4078 struct cfg80211_nan_func_filter *rx_filters;
4079 struct cfg80211_nan_func_filter *tx_filters;
4080 u8 num_tx_filters;
4081 u8 num_rx_filters;
4082 u8 instance_id;
4083 u64 cookie;
4084 };
4085
4086 /**
4087 * struct cfg80211_pmk_conf - PMK configuration
4088 *
4089 * @aa: authenticator address
4090 * @pmk_len: PMK length in bytes.
4091 * @pmk: the PMK material
4092 * @pmk_r0_name: PMK-R0 Name. NULL if not applicable (i.e., the PMK
4093 * is not PMK-R0). When pmk_r0_name is not NULL, the pmk field
4094 * holds PMK-R0.
4095 */
4096 struct cfg80211_pmk_conf {
4097 const u8 *aa;
4098 u8 pmk_len;
4099 const u8 *pmk;
4100 const u8 *pmk_r0_name;
4101 };
4102
4103 /**
4104 * struct cfg80211_external_auth_params - Trigger External authentication.
4105 *
4106 * Commonly used across the external auth request and event interfaces.
4107 *
4108 * @action: action type / trigger for external authentication. Only significant
4109 * for the authentication request event interface (driver to user space).
4110 * @bssid: BSSID of the peer with which the authentication has
4111 * to happen. Used by both the authentication request event and
4112 * authentication response command interface.
4113 * @ssid: SSID of the AP. Used by both the authentication request event and
4114 * authentication response command interface.
4115 * @key_mgmt_suite: AKM suite of the respective authentication. Used by the
4116 * authentication request event interface.
4117 * @status: status code, %WLAN_STATUS_SUCCESS for successful authentication,
4118 * use %WLAN_STATUS_UNSPECIFIED_FAILURE if user space cannot give you
4119 * the real status code for failures. Used only for the authentication
4120 * response command interface (user space to driver).
4121 * @pmkid: The identifier to refer a PMKSA.
4122 * @mld_addr: MLD address of the peer. Used by the authentication request event
4123 * interface. Driver indicates this to enable MLO during the authentication
4124 * offload to user space. Driver shall look at %NL80211_ATTR_MLO_SUPPORT
4125 * flag capability in NL80211_CMD_CONNECT to know whether the user space
4126 * supports enabling MLO during the authentication offload.
4127 * User space should use the address of the interface (on which the
4128 * authentication request event reported) as self MLD address. User space
4129 * and driver should use MLD addresses in RA, TA and BSSID fields of
4130 * authentication frames sent or received via cfg80211. The driver
4131 * translates the MLD addresses to/from link addresses based on the link
4132 * chosen for the authentication.
4133 */
4134 struct cfg80211_external_auth_params {
4135 enum nl80211_external_auth_action action;
4136 u8 bssid[ETH_ALEN] __aligned(2);
4137 struct cfg80211_ssid ssid;
4138 unsigned int key_mgmt_suite;
4139 u16 status;
4140 const u8 *pmkid;
4141 u8 mld_addr[ETH_ALEN] __aligned(2);
4142 };
4143
4144 /**
4145 * struct cfg80211_ftm_responder_stats - FTM responder statistics
4146 *
4147 * @filled: bitflag of flags using the bits of &enum nl80211_ftm_stats to
4148 * indicate the relevant values in this struct for them
4149 * @success_num: number of FTM sessions in which all frames were successfully
4150 * answered
4151 * @partial_num: number of FTM sessions in which part of frames were
4152 * successfully answered
4153 * @failed_num: number of failed FTM sessions
4154 * @asap_num: number of ASAP FTM sessions
4155 * @non_asap_num: number of non-ASAP FTM sessions
4156 * @total_duration_ms: total sessions durations - gives an indication
4157 * of how much time the responder was busy
4158 * @unknown_triggers_num: number of unknown FTM triggers - triggers from
4159 * initiators that didn't finish successfully the negotiation phase with
4160 * the responder
4161 * @reschedule_requests_num: number of FTM reschedule requests - initiator asks
4162 * for a new scheduling although it already has scheduled FTM slot
4163 * @out_of_window_triggers_num: total FTM triggers out of scheduled window
4164 */
4165 struct cfg80211_ftm_responder_stats {
4166 u32 filled;
4167 u32 success_num;
4168 u32 partial_num;
4169 u32 failed_num;
4170 u32 asap_num;
4171 u32 non_asap_num;
4172 u64 total_duration_ms;
4173 u32 unknown_triggers_num;
4174 u32 reschedule_requests_num;
4175 u32 out_of_window_triggers_num;
4176 };
4177
4178 /**
4179 * struct cfg80211_pmsr_ftm_result - FTM result
4180 * @failure_reason: if this measurement failed (PMSR status is
4181 * %NL80211_PMSR_STATUS_FAILURE), this gives a more precise
4182 * reason than just "failure"
4183 * @burst_index: if reporting partial results, this is the index
4184 * in [0 .. num_bursts-1] of the burst that's being reported
4185 * @num_ftmr_attempts: number of FTM request frames transmitted
4186 * @num_ftmr_successes: number of FTM request frames acked
4187 * @busy_retry_time: if failure_reason is %NL80211_PMSR_FTM_FAILURE_PEER_BUSY,
4188 * fill this to indicate in how many seconds a retry is deemed possible
4189 * by the responder
4190 * @num_bursts_exp: actual number of bursts exponent negotiated
4191 * @burst_duration: actual burst duration negotiated
4192 * @ftms_per_burst: actual FTMs per burst negotiated
4193 * @lci_len: length of LCI information (if present)
4194 * @civicloc_len: length of civic location information (if present)
4195 * @lci: LCI data (may be %NULL)
4196 * @civicloc: civic location data (may be %NULL)
4197 * @rssi_avg: average RSSI over FTM action frames reported
4198 * @rssi_spread: spread of the RSSI over FTM action frames reported
4199 * @tx_rate: bitrate for transmitted FTM action frame response
4200 * @rx_rate: bitrate of received FTM action frame
4201 * @rtt_avg: average of RTTs measured (must have either this or @dist_avg)
4202 * @rtt_variance: variance of RTTs measured (note that standard deviation is
4203 * the square root of the variance)
4204 * @rtt_spread: spread of the RTTs measured
4205 * @dist_avg: average of distances (mm) measured
4206 * (must have either this or @rtt_avg)
4207 * @dist_variance: variance of distances measured (see also @rtt_variance)
4208 * @dist_spread: spread of distances measured (see also @rtt_spread)
4209 * @num_ftmr_attempts_valid: @num_ftmr_attempts is valid
4210 * @num_ftmr_successes_valid: @num_ftmr_successes is valid
4211 * @rssi_avg_valid: @rssi_avg is valid
4212 * @rssi_spread_valid: @rssi_spread is valid
4213 * @tx_rate_valid: @tx_rate is valid
4214 * @rx_rate_valid: @rx_rate is valid
4215 * @rtt_avg_valid: @rtt_avg is valid
4216 * @rtt_variance_valid: @rtt_variance is valid
4217 * @rtt_spread_valid: @rtt_spread is valid
4218 * @dist_avg_valid: @dist_avg is valid
4219 * @dist_variance_valid: @dist_variance is valid
4220 * @dist_spread_valid: @dist_spread is valid
4221 */
4222 struct cfg80211_pmsr_ftm_result {
4223 const u8 *lci;
4224 const u8 *civicloc;
4225 unsigned int lci_len;
4226 unsigned int civicloc_len;
4227 enum nl80211_peer_measurement_ftm_failure_reasons failure_reason;
4228 u32 num_ftmr_attempts, num_ftmr_successes;
4229 s16 burst_index;
4230 u8 busy_retry_time;
4231 u8 num_bursts_exp;
4232 u8 burst_duration;
4233 u8 ftms_per_burst;
4234 s32 rssi_avg;
4235 s32 rssi_spread;
4236 struct rate_info tx_rate, rx_rate;
4237 s64 rtt_avg;
4238 s64 rtt_variance;
4239 s64 rtt_spread;
4240 s64 dist_avg;
4241 s64 dist_variance;
4242 s64 dist_spread;
4243
4244 u16 num_ftmr_attempts_valid:1,
4245 num_ftmr_successes_valid:1,
4246 rssi_avg_valid:1,
4247 rssi_spread_valid:1,
4248 tx_rate_valid:1,
4249 rx_rate_valid:1,
4250 rtt_avg_valid:1,
4251 rtt_variance_valid:1,
4252 rtt_spread_valid:1,
4253 dist_avg_valid:1,
4254 dist_variance_valid:1,
4255 dist_spread_valid:1;
4256 };
4257
4258 /**
4259 * struct cfg80211_pmsr_result - peer measurement result
4260 * @addr: address of the peer
4261 * @host_time: host time (use ktime_get_boottime() adjust to the time when the
4262 * measurement was made)
4263 * @ap_tsf: AP's TSF at measurement time
4264 * @status: status of the measurement
4265 * @final: if reporting partial results, mark this as the last one; if not
4266 * reporting partial results always set this flag
4267 * @ap_tsf_valid: indicates the @ap_tsf value is valid
4268 * @type: type of the measurement reported, note that we only support reporting
4269 * one type at a time, but you can report multiple results separately and
4270 * they're all aggregated for userspace.
4271 * @ftm: FTM result
4272 */
4273 struct cfg80211_pmsr_result {
4274 u64 host_time, ap_tsf;
4275 enum nl80211_peer_measurement_status status;
4276
4277 u8 addr[ETH_ALEN];
4278
4279 u8 final:1,
4280 ap_tsf_valid:1;
4281
4282 enum nl80211_peer_measurement_type type;
4283
4284 union {
4285 struct cfg80211_pmsr_ftm_result ftm;
4286 };
4287 };
4288
4289 /**
4290 * struct cfg80211_pmsr_ftm_request_peer - FTM request data
4291 * @requested: indicates FTM is requested
4292 * @preamble: frame preamble to use
4293 * @burst_period: burst period to use
4294 * @asap: indicates to use ASAP mode
4295 * @num_bursts_exp: number of bursts exponent
4296 * @burst_duration: burst duration
4297 * @ftms_per_burst: number of FTMs per burst
4298 * @ftmr_retries: number of retries for FTM request
4299 * @request_lci: request LCI information
4300 * @request_civicloc: request civic location information
4301 * @trigger_based: use trigger based ranging for the measurement
4302 * If neither @trigger_based nor @non_trigger_based is set,
4303 * EDCA based ranging will be used.
4304 * @non_trigger_based: use non trigger based ranging for the measurement
4305 * If neither @trigger_based nor @non_trigger_based is set,
4306 * EDCA based ranging will be used.
4307 * @lmr_feedback: negotiate for I2R LMR feedback. Only valid if either
4308 * @trigger_based or @non_trigger_based is set.
4309 * @bss_color: the bss color of the responder. Optional. Set to zero to
4310 * indicate the driver should set the BSS color. Only valid if
4311 * @non_trigger_based or @trigger_based is set.
4312 *
4313 * See also nl80211 for the respective attribute documentation.
4314 */
4315 struct cfg80211_pmsr_ftm_request_peer {
4316 enum nl80211_preamble preamble;
4317 u16 burst_period;
4318 u8 requested:1,
4319 asap:1,
4320 request_lci:1,
4321 request_civicloc:1,
4322 trigger_based:1,
4323 non_trigger_based:1,
4324 lmr_feedback:1;
4325 u8 num_bursts_exp;
4326 u8 burst_duration;
4327 u8 ftms_per_burst;
4328 u8 ftmr_retries;
4329 u8 bss_color;
4330 };
4331
4332 /**
4333 * struct cfg80211_pmsr_request_peer - peer data for a peer measurement request
4334 * @addr: MAC address
4335 * @chandef: channel to use
4336 * @report_ap_tsf: report the associated AP's TSF
4337 * @ftm: FTM data, see &struct cfg80211_pmsr_ftm_request_peer
4338 */
4339 struct cfg80211_pmsr_request_peer {
4340 u8 addr[ETH_ALEN];
4341 struct cfg80211_chan_def chandef;
4342 u8 report_ap_tsf:1;
4343 struct cfg80211_pmsr_ftm_request_peer ftm;
4344 };
4345
4346 /**
4347 * struct cfg80211_pmsr_request - peer measurement request
4348 * @cookie: cookie, set by cfg80211
4349 * @nl_portid: netlink portid - used by cfg80211
4350 * @drv_data: driver data for this request, if required for aborting,
4351 * not otherwise freed or anything by cfg80211
4352 * @mac_addr: MAC address used for (randomised) request
4353 * @mac_addr_mask: MAC address mask used for randomisation, bits that
4354 * are 0 in the mask should be randomised, bits that are 1 should
4355 * be taken from the @mac_addr
4356 * @list: used by cfg80211 to hold on to the request
4357 * @timeout: timeout (in milliseconds) for the whole operation, if
4358 * zero it means there's no timeout
4359 * @n_peers: number of peers to do measurements with
4360 * @peers: per-peer measurement request data
4361 */
4362 struct cfg80211_pmsr_request {
4363 u64 cookie;
4364 void *drv_data;
4365 u32 n_peers;
4366 u32 nl_portid;
4367
4368 u32 timeout;
4369
4370 u8 mac_addr[ETH_ALEN] __aligned(2);
4371 u8 mac_addr_mask[ETH_ALEN] __aligned(2);
4372
4373 struct list_head list;
4374
4375 struct cfg80211_pmsr_request_peer peers[] __counted_by(n_peers);
4376 };
4377
4378 /**
4379 * struct cfg80211_update_owe_info - OWE Information
4380 *
4381 * This structure provides information needed for the drivers to offload OWE
4382 * (Opportunistic Wireless Encryption) processing to the user space.
4383 *
4384 * Commonly used across update_owe_info request and event interfaces.
4385 *
4386 * @peer: MAC address of the peer device for which the OWE processing
4387 * has to be done.
4388 * @status: status code, %WLAN_STATUS_SUCCESS for successful OWE info
4389 * processing, use %WLAN_STATUS_UNSPECIFIED_FAILURE if user space
4390 * cannot give you the real status code for failures. Used only for
4391 * OWE update request command interface (user space to driver).
4392 * @ie: IEs obtained from the peer or constructed by the user space. These are
4393 * the IEs of the remote peer in the event from the host driver and
4394 * the constructed IEs by the user space in the request interface.
4395 * @ie_len: Length of IEs in octets.
4396 * @assoc_link_id: MLO link ID of the AP, with which (re)association requested
4397 * by peer. This will be filled by driver for both MLO and non-MLO station
4398 * connections when the AP affiliated with an MLD. For non-MLD AP mode, it
4399 * will be -1. Used only with OWE update event (driver to user space).
4400 * @peer_mld_addr: For MLO connection, MLD address of the peer. For non-MLO
4401 * connection, it will be all zeros. This is applicable only when
4402 * @assoc_link_id is not -1, i.e., the AP affiliated with an MLD. Used only
4403 * with OWE update event (driver to user space).
4404 */
4405 struct cfg80211_update_owe_info {
4406 u8 peer[ETH_ALEN] __aligned(2);
4407 u16 status;
4408 const u8 *ie;
4409 size_t ie_len;
4410 int assoc_link_id;
4411 u8 peer_mld_addr[ETH_ALEN] __aligned(2);
4412 };
4413
4414 /**
4415 * struct mgmt_frame_regs - management frame registrations data
4416 * @global_stypes: bitmap of management frame subtypes registered
4417 * for the entire device
4418 * @interface_stypes: bitmap of management frame subtypes registered
4419 * for the given interface
4420 * @global_mcast_stypes: mcast RX is needed globally for these subtypes
4421 * @interface_mcast_stypes: mcast RX is needed on this interface
4422 * for these subtypes
4423 */
4424 struct mgmt_frame_regs {
4425 u32 global_stypes, interface_stypes;
4426 u32 global_mcast_stypes, interface_mcast_stypes;
4427 };
4428
4429 /**
4430 * struct cfg80211_ops - backend description for wireless configuration
4431 *
4432 * This struct is registered by fullmac card drivers and/or wireless stacks
4433 * in order to handle configuration requests on their interfaces.
4434 *
4435 * All callbacks except where otherwise noted should return 0
4436 * on success or a negative error code.
4437 *
4438 * All operations are invoked with the wiphy mutex held. The RTNL may be
4439 * held in addition (due to wireless extensions) but this cannot be relied
4440 * upon except in cases where documented below. Note that due to ordering,
4441 * the RTNL also cannot be acquired in any handlers.
4442 *
4443 * @suspend: wiphy device needs to be suspended. The variable @wow will
4444 * be %NULL or contain the enabled Wake-on-Wireless triggers that are
4445 * configured for the device.
4446 * @resume: wiphy device needs to be resumed
4447 * @set_wakeup: Called when WoWLAN is enabled/disabled, use this callback
4448 * to call device_set_wakeup_enable() to enable/disable wakeup from
4449 * the device.
4450 *
4451 * @add_virtual_intf: create a new virtual interface with the given name,
4452 * must set the struct wireless_dev's iftype. Beware: You must create
4453 * the new netdev in the wiphy's network namespace! Returns the struct
4454 * wireless_dev, or an ERR_PTR. For P2P device wdevs, the driver must
4455 * also set the address member in the wdev.
4456 * This additionally holds the RTNL to be able to do netdev changes.
4457 *
4458 * @del_virtual_intf: remove the virtual interface
4459 * This additionally holds the RTNL to be able to do netdev changes.
4460 *
4461 * @change_virtual_intf: change type/configuration of virtual interface,
4462 * keep the struct wireless_dev's iftype updated.
4463 * This additionally holds the RTNL to be able to do netdev changes.
4464 *
4465 * @add_intf_link: Add a new MLO link to the given interface. Note that
4466 * the wdev->link[] data structure has been updated, so the new link
4467 * address is available.
4468 * @del_intf_link: Remove an MLO link from the given interface.
4469 *
4470 * @add_key: add a key with the given parameters. @mac_addr will be %NULL
4471 * when adding a group key. @link_id will be -1 for non-MLO connection.
4472 * For MLO connection, @link_id will be >= 0 for group key and -1 for
4473 * pairwise key, @mac_addr will be peer's MLD address for MLO pairwise key.
4474 *
4475 * @get_key: get information about the key with the given parameters.
4476 * @mac_addr will be %NULL when requesting information for a group
4477 * key. All pointers given to the @callback function need not be valid
4478 * after it returns. This function should return an error if it is
4479 * not possible to retrieve the key, -ENOENT if it doesn't exist.
4480 * @link_id will be -1 for non-MLO connection. For MLO connection,
4481 * @link_id will be >= 0 for group key and -1 for pairwise key, @mac_addr
4482 * will be peer's MLD address for MLO pairwise key.
4483 *
4484 * @del_key: remove a key given the @mac_addr (%NULL for a group key)
4485 * and @key_index, return -ENOENT if the key doesn't exist. @link_id will
4486 * be -1 for non-MLO connection. For MLO connection, @link_id will be >= 0
4487 * for group key and -1 for pairwise key, @mac_addr will be peer's MLD
4488 * address for MLO pairwise key.
4489 *
4490 * @set_default_key: set the default key on an interface. @link_id will be >= 0
4491 * for MLO connection and -1 for non-MLO connection.
4492 *
4493 * @set_default_mgmt_key: set the default management frame key on an interface.
4494 * @link_id will be >= 0 for MLO connection and -1 for non-MLO connection.
4495 *
4496 * @set_default_beacon_key: set the default Beacon frame key on an interface.
4497 * @link_id will be >= 0 for MLO connection and -1 for non-MLO connection.
4498 *
4499 * @set_rekey_data: give the data necessary for GTK rekeying to the driver
4500 *
4501 * @start_ap: Start acting in AP mode defined by the parameters.
4502 * @change_beacon: Change the beacon parameters for an access point mode
4503 * interface. This should reject the call when AP mode wasn't started.
4504 * @stop_ap: Stop being an AP, including stopping beaconing.
4505 *
4506 * @add_station: Add a new station.
4507 * @del_station: Remove a station
4508 * @change_station: Modify a given station. Note that flags changes are not much
4509 * validated in cfg80211, in particular the auth/assoc/authorized flags
4510 * might come to the driver in invalid combinations -- make sure to check
4511 * them, also against the existing state! Drivers must call
4512 * cfg80211_check_station_change() to validate the information.
4513 * @get_station: get station information for the station identified by @mac
4514 * @dump_station: dump station callback -- resume dump at index @idx
4515 *
4516 * @add_mpath: add a fixed mesh path
4517 * @del_mpath: delete a given mesh path
4518 * @change_mpath: change a given mesh path
4519 * @get_mpath: get a mesh path for the given parameters
4520 * @dump_mpath: dump mesh path callback -- resume dump at index @idx
4521 * @get_mpp: get a mesh proxy path for the given parameters
4522 * @dump_mpp: dump mesh proxy path callback -- resume dump at index @idx
4523 * @join_mesh: join the mesh network with the specified parameters
4524 * (invoked with the wireless_dev mutex held)
4525 * @leave_mesh: leave the current mesh network
4526 * (invoked with the wireless_dev mutex held)
4527 *
4528 * @get_mesh_config: Get the current mesh configuration
4529 *
4530 * @update_mesh_config: Update mesh parameters on a running mesh.
4531 * The mask is a bitfield which tells us which parameters to
4532 * set, and which to leave alone.
4533 *
4534 * @change_bss: Modify parameters for a given BSS.
4535 *
4536 * @inform_bss: Called by cfg80211 while being informed about new BSS data
4537 * for every BSS found within the reported data or frame. This is called
4538 * from within the cfg8011 inform_bss handlers while holding the bss_lock.
4539 * The data parameter is passed through from drv_data inside
4540 * struct cfg80211_inform_bss.
4541 * The new IE data for the BSS is explicitly passed.
4542 *
4543 * @set_txq_params: Set TX queue parameters
4544 *
4545 * @libertas_set_mesh_channel: Only for backward compatibility for libertas,
4546 * as it doesn't implement join_mesh and needs to set the channel to
4547 * join the mesh instead.
4548 *
4549 * @set_monitor_channel: Set the monitor mode channel for the device. If other
4550 * interfaces are active this callback should reject the configuration.
4551 * If no interfaces are active or the device is down, the channel should
4552 * be stored for when a monitor interface becomes active.
4553 *
4554 * @scan: Request to do a scan. If returning zero, the scan request is given
4555 * the driver, and will be valid until passed to cfg80211_scan_done().
4556 * For scan results, call cfg80211_inform_bss(); you can call this outside
4557 * the scan/scan_done bracket too.
4558 * @abort_scan: Tell the driver to abort an ongoing scan. The driver shall
4559 * indicate the status of the scan through cfg80211_scan_done().
4560 *
4561 * @auth: Request to authenticate with the specified peer
4562 * (invoked with the wireless_dev mutex held)
4563 * @assoc: Request to (re)associate with the specified peer
4564 * (invoked with the wireless_dev mutex held)
4565 * @deauth: Request to deauthenticate from the specified peer
4566 * (invoked with the wireless_dev mutex held)
4567 * @disassoc: Request to disassociate from the specified peer
4568 * (invoked with the wireless_dev mutex held)
4569 *
4570 * @connect: Connect to the ESS with the specified parameters. When connected,
4571 * call cfg80211_connect_result()/cfg80211_connect_bss() with status code
4572 * %WLAN_STATUS_SUCCESS. If the connection fails for some reason, call
4573 * cfg80211_connect_result()/cfg80211_connect_bss() with the status code
4574 * from the AP or cfg80211_connect_timeout() if no frame with status code
4575 * was received.
4576 * The driver is allowed to roam to other BSSes within the ESS when the
4577 * other BSS matches the connect parameters. When such roaming is initiated
4578 * by the driver, the driver is expected to verify that the target matches
4579 * the configured security parameters and to use Reassociation Request
4580 * frame instead of Association Request frame.
4581 * The connect function can also be used to request the driver to perform a
4582 * specific roam when connected to an ESS. In that case, the prev_bssid
4583 * parameter is set to the BSSID of the currently associated BSS as an
4584 * indication of requesting reassociation.
4585 * In both the driver-initiated and new connect() call initiated roaming
4586 * cases, the result of roaming is indicated with a call to
4587 * cfg80211_roamed(). (invoked with the wireless_dev mutex held)
4588 * @update_connect_params: Update the connect parameters while connected to a
4589 * BSS. The updated parameters can be used by driver/firmware for
4590 * subsequent BSS selection (roaming) decisions and to form the
4591 * Authentication/(Re)Association Request frames. This call does not
4592 * request an immediate disassociation or reassociation with the current
4593 * BSS, i.e., this impacts only subsequent (re)associations. The bits in
4594 * changed are defined in &enum cfg80211_connect_params_changed.
4595 * (invoked with the wireless_dev mutex held)
4596 * @disconnect: Disconnect from the BSS/ESS or stop connection attempts if
4597 * connection is in progress. Once done, call cfg80211_disconnected() in
4598 * case connection was already established (invoked with the
4599 * wireless_dev mutex held), otherwise call cfg80211_connect_timeout().
4600 *
4601 * @join_ibss: Join the specified IBSS (or create if necessary). Once done, call
4602 * cfg80211_ibss_joined(), also call that function when changing BSSID due
4603 * to a merge.
4604 * (invoked with the wireless_dev mutex held)
4605 * @leave_ibss: Leave the IBSS.
4606 * (invoked with the wireless_dev mutex held)
4607 *
4608 * @set_mcast_rate: Set the specified multicast rate (only if vif is in ADHOC or
4609 * MESH mode)
4610 *
4611 * @set_wiphy_params: Notify that wiphy parameters have changed;
4612 * @changed bitfield (see &enum wiphy_params_flags) describes which values
4613 * have changed. The actual parameter values are available in
4614 * struct wiphy. If returning an error, no value should be changed.
4615 *
4616 * @set_tx_power: set the transmit power according to the parameters,
4617 * the power passed is in mBm, to get dBm use MBM_TO_DBM(). The
4618 * wdev may be %NULL if power was set for the wiphy, and will
4619 * always be %NULL unless the driver supports per-vif TX power
4620 * (as advertised by the nl80211 feature flag.)
4621 * @get_tx_power: store the current TX power into the dbm variable;
4622 * return 0 if successful
4623 *
4624 * @rfkill_poll: polls the hw rfkill line, use cfg80211 reporting
4625 * functions to adjust rfkill hw state
4626 *
4627 * @dump_survey: get site survey information.
4628 *
4629 * @remain_on_channel: Request the driver to remain awake on the specified
4630 * channel for the specified duration to complete an off-channel
4631 * operation (e.g., public action frame exchange). When the driver is
4632 * ready on the requested channel, it must indicate this with an event
4633 * notification by calling cfg80211_ready_on_channel().
4634 * @cancel_remain_on_channel: Cancel an on-going remain-on-channel operation.
4635 * This allows the operation to be terminated prior to timeout based on
4636 * the duration value.
4637 * @mgmt_tx: Transmit a management frame.
4638 * @mgmt_tx_cancel_wait: Cancel the wait time from transmitting a management
4639 * frame on another channel
4640 *
4641 * @testmode_cmd: run a test mode command; @wdev may be %NULL
4642 * @testmode_dump: Implement a test mode dump. The cb->args[2] and up may be
4643 * used by the function, but 0 and 1 must not be touched. Additionally,
4644 * return error codes other than -ENOBUFS and -ENOENT will terminate the
4645 * dump and return to userspace with an error, so be careful. If any data
4646 * was passed in from userspace then the data/len arguments will be present
4647 * and point to the data contained in %NL80211_ATTR_TESTDATA.
4648 *
4649 * @set_bitrate_mask: set the bitrate mask configuration
4650 *
4651 * @set_pmksa: Cache a PMKID for a BSSID. This is mostly useful for fullmac
4652 * devices running firmwares capable of generating the (re) association
4653 * RSN IE. It allows for faster roaming between WPA2 BSSIDs.
4654 * @del_pmksa: Delete a cached PMKID.
4655 * @flush_pmksa: Flush all cached PMKIDs.
4656 * @set_power_mgmt: Configure WLAN power management. A timeout value of -1
4657 * allows the driver to adjust the dynamic ps timeout value.
4658 * @set_cqm_rssi_config: Configure connection quality monitor RSSI threshold.
4659 * After configuration, the driver should (soon) send an event indicating
4660 * the current level is above/below the configured threshold; this may
4661 * need some care when the configuration is changed (without first being
4662 * disabled.)
4663 * @set_cqm_rssi_range_config: Configure two RSSI thresholds in the
4664 * connection quality monitor. An event is to be sent only when the
4665 * signal level is found to be outside the two values. The driver should
4666 * set %NL80211_EXT_FEATURE_CQM_RSSI_LIST if this method is implemented.
4667 * If it is provided then there's no point providing @set_cqm_rssi_config.
4668 * @set_cqm_txe_config: Configure connection quality monitor TX error
4669 * thresholds.
4670 * @sched_scan_start: Tell the driver to start a scheduled scan.
4671 * @sched_scan_stop: Tell the driver to stop an ongoing scheduled scan with
4672 * given request id. This call must stop the scheduled scan and be ready
4673 * for starting a new one before it returns, i.e. @sched_scan_start may be
4674 * called immediately after that again and should not fail in that case.
4675 * The driver should not call cfg80211_sched_scan_stopped() for a requested
4676 * stop (when this method returns 0).
4677 *
4678 * @update_mgmt_frame_registrations: Notify the driver that management frame
4679 * registrations were updated. The callback is allowed to sleep.
4680 *
4681 * @set_antenna: Set antenna configuration (tx_ant, rx_ant) on the device.
4682 * Parameters are bitmaps of allowed antennas to use for TX/RX. Drivers may
4683 * reject TX/RX mask combinations they cannot support by returning -EINVAL
4684 * (also see nl80211.h @NL80211_ATTR_WIPHY_ANTENNA_TX).
4685 *
4686 * @get_antenna: Get current antenna configuration from device (tx_ant, rx_ant).
4687 *
4688 * @tdls_mgmt: Transmit a TDLS management frame.
4689 * @tdls_oper: Perform a high-level TDLS operation (e.g. TDLS link setup).
4690 *
4691 * @probe_client: probe an associated client, must return a cookie that it
4692 * later passes to cfg80211_probe_status().
4693 *
4694 * @set_noack_map: Set the NoAck Map for the TIDs.
4695 *
4696 * @get_channel: Get the current operating channel for the virtual interface.
4697 * For monitor interfaces, it should return %NULL unless there's a single
4698 * current monitoring channel.
4699 *
4700 * @start_p2p_device: Start the given P2P device.
4701 * @stop_p2p_device: Stop the given P2P device.
4702 *
4703 * @set_mac_acl: Sets MAC address control list in AP and P2P GO mode.
4704 * Parameters include ACL policy, an array of MAC address of stations
4705 * and the number of MAC addresses. If there is already a list in driver
4706 * this new list replaces the existing one. Driver has to clear its ACL
4707 * when number of MAC addresses entries is passed as 0. Drivers which
4708 * advertise the support for MAC based ACL have to implement this callback.
4709 *
4710 * @start_radar_detection: Start radar detection in the driver.
4711 *
4712 * @end_cac: End running CAC, probably because a related CAC
4713 * was finished on another phy.
4714 *
4715 * @update_ft_ies: Provide updated Fast BSS Transition information to the
4716 * driver. If the SME is in the driver/firmware, this information can be
4717 * used in building Authentication and Reassociation Request frames.
4718 *
4719 * @crit_proto_start: Indicates a critical protocol needs more link reliability
4720 * for a given duration (milliseconds). The protocol is provided so the
4721 * driver can take the most appropriate actions.
4722 * @crit_proto_stop: Indicates critical protocol no longer needs increased link
4723 * reliability. This operation can not fail.
4724 * @set_coalesce: Set coalesce parameters.
4725 *
4726 * @channel_switch: initiate channel-switch procedure (with CSA). Driver is
4727 * responsible for veryfing if the switch is possible. Since this is
4728 * inherently tricky driver may decide to disconnect an interface later
4729 * with cfg80211_stop_iface(). This doesn't mean driver can accept
4730 * everything. It should do it's best to verify requests and reject them
4731 * as soon as possible.
4732 *
4733 * @set_qos_map: Set QoS mapping information to the driver
4734 *
4735 * @set_ap_chanwidth: Set the AP (including P2P GO) mode channel width for the
4736 * given interface This is used e.g. for dynamic HT 20/40 MHz channel width
4737 * changes during the lifetime of the BSS.
4738 *
4739 * @add_tx_ts: validate (if admitted_time is 0) or add a TX TS to the device
4740 * with the given parameters; action frame exchange has been handled by
4741 * userspace so this just has to modify the TX path to take the TS into
4742 * account.
4743 * If the admitted time is 0 just validate the parameters to make sure
4744 * the session can be created at all; it is valid to just always return
4745 * success for that but that may result in inefficient behaviour (handshake
4746 * with the peer followed by immediate teardown when the addition is later
4747 * rejected)
4748 * @del_tx_ts: remove an existing TX TS
4749 *
4750 * @join_ocb: join the OCB network with the specified parameters
4751 * (invoked with the wireless_dev mutex held)
4752 * @leave_ocb: leave the current OCB network
4753 * (invoked with the wireless_dev mutex held)
4754 *
4755 * @tdls_channel_switch: Start channel-switching with a TDLS peer. The driver
4756 * is responsible for continually initiating channel-switching operations
4757 * and returning to the base channel for communication with the AP.
4758 * @tdls_cancel_channel_switch: Stop channel-switching with a TDLS peer. Both
4759 * peers must be on the base channel when the call completes.
4760 * @start_nan: Start the NAN interface.
4761 * @stop_nan: Stop the NAN interface.
4762 * @add_nan_func: Add a NAN function. Returns negative value on failure.
4763 * On success @nan_func ownership is transferred to the driver and
4764 * it may access it outside of the scope of this function. The driver
4765 * should free the @nan_func when no longer needed by calling
4766 * cfg80211_free_nan_func().
4767 * On success the driver should assign an instance_id in the
4768 * provided @nan_func.
4769 * @del_nan_func: Delete a NAN function.
4770 * @nan_change_conf: changes NAN configuration. The changed parameters must
4771 * be specified in @changes (using &enum cfg80211_nan_conf_changes);
4772 * All other parameters must be ignored.
4773 *
4774 * @set_multicast_to_unicast: configure multicast to unicast conversion for BSS
4775 *
4776 * @get_txq_stats: Get TXQ stats for interface or phy. If wdev is %NULL, this
4777 * function should return phy stats, and interface stats otherwise.
4778 *
4779 * @set_pmk: configure the PMK to be used for offloaded 802.1X 4-Way handshake.
4780 * If not deleted through @del_pmk the PMK remains valid until disconnect
4781 * upon which the driver should clear it.
4782 * (invoked with the wireless_dev mutex held)
4783 * @del_pmk: delete the previously configured PMK for the given authenticator.
4784 * (invoked with the wireless_dev mutex held)
4785 *
4786 * @external_auth: indicates result of offloaded authentication processing from
4787 * user space
4788 *
4789 * @tx_control_port: TX a control port frame (EAPoL). The noencrypt parameter
4790 * tells the driver that the frame should not be encrypted.
4791 *
4792 * @get_ftm_responder_stats: Retrieve FTM responder statistics, if available.
4793 * Statistics should be cumulative, currently no way to reset is provided.
4794 * @start_pmsr: start peer measurement (e.g. FTM)
4795 * @abort_pmsr: abort peer measurement
4796 *
4797 * @update_owe_info: Provide updated OWE info to driver. Driver implementing SME
4798 * but offloading OWE processing to the user space will get the updated
4799 * DH IE through this interface.
4800 *
4801 * @probe_mesh_link: Probe direct Mesh peer's link quality by sending data frame
4802 * and overrule HWMP path selection algorithm.
4803 * @set_tid_config: TID specific configuration, this can be peer or BSS specific
4804 * This callback may sleep.
4805 * @reset_tid_config: Reset TID specific configuration for the peer, for the
4806 * given TIDs. This callback may sleep.
4807 *
4808 * @set_sar_specs: Update the SAR (TX power) settings.
4809 *
4810 * @color_change: Initiate a color change.
4811 *
4812 * @set_fils_aad: Set FILS AAD data to the AP driver so that the driver can use
4813 * those to decrypt (Re)Association Request and encrypt (Re)Association
4814 * Response frame.
4815 *
4816 * @set_radar_background: Configure dedicated offchannel chain available for
4817 * radar/CAC detection on some hw. This chain can't be used to transmit
4818 * or receive frames and it is bounded to a running wdev.
4819 * Background radar/CAC detection allows to avoid the CAC downtime
4820 * switching to a different channel during CAC detection on the selected
4821 * radar channel.
4822 * The caller is expected to set chandef pointer to NULL in order to
4823 * disable background CAC/radar detection.
4824 * @add_link_station: Add a link to a station.
4825 * @mod_link_station: Modify a link of a station.
4826 * @del_link_station: Remove a link of a station.
4827 *
4828 * @set_hw_timestamp: Enable/disable HW timestamping of TM/FTM frames.
4829 * @set_ttlm: set the TID to link mapping.
4830 * @set_epcs: Enable/Disable EPCS for station mode.
4831 * @get_radio_mask: get bitmask of radios in use.
4832 * (invoked with the wiphy mutex held)
4833 * @assoc_ml_reconf: Request a non-AP MLO connection to perform ML
4834 * reconfiguration, i.e., add and/or remove links to/from the
4835 * association using ML reconfiguration action frames. Successfully added
4836 * links will be added to the set of valid links. Successfully removed
4837 * links will be removed from the set of valid links. The driver must
4838 * indicate removed links by calling cfg80211_links_removed() and added
4839 * links by calling cfg80211_mlo_reconf_add_done(). When calling
4840 * cfg80211_mlo_reconf_add_done() the bss pointer must be given for each
4841 * link for which MLO reconfiguration 'add' operation was requested.
4842 */
4843 struct cfg80211_ops {
4844 int (*suspend)(struct wiphy *wiphy, struct cfg80211_wowlan *wow);
4845 int (*resume)(struct wiphy *wiphy);
4846 void (*set_wakeup)(struct wiphy *wiphy, bool enabled);
4847
4848 struct wireless_dev * (*add_virtual_intf)(struct wiphy *wiphy,
4849 const char *name,
4850 unsigned char name_assign_type,
4851 enum nl80211_iftype type,
4852 struct vif_params *params);
4853 int (*del_virtual_intf)(struct wiphy *wiphy,
4854 struct wireless_dev *wdev);
4855 int (*change_virtual_intf)(struct wiphy *wiphy,
4856 struct net_device *dev,
4857 enum nl80211_iftype type,
4858 struct vif_params *params);
4859
4860 int (*add_intf_link)(struct wiphy *wiphy,
4861 struct wireless_dev *wdev,
4862 unsigned int link_id);
4863 void (*del_intf_link)(struct wiphy *wiphy,
4864 struct wireless_dev *wdev,
4865 unsigned int link_id);
4866
4867 int (*add_key)(struct wiphy *wiphy, struct net_device *netdev,
4868 int link_id, u8 key_index, bool pairwise,
4869 const u8 *mac_addr, struct key_params *params);
4870 int (*get_key)(struct wiphy *wiphy, struct net_device *netdev,
4871 int link_id, u8 key_index, bool pairwise,
4872 const u8 *mac_addr, void *cookie,
4873 void (*callback)(void *cookie, struct key_params*));
4874 int (*del_key)(struct wiphy *wiphy, struct net_device *netdev,
4875 int link_id, u8 key_index, bool pairwise,
4876 const u8 *mac_addr);
4877 int (*set_default_key)(struct wiphy *wiphy,
4878 struct net_device *netdev, int link_id,
4879 u8 key_index, bool unicast, bool multicast);
4880 int (*set_default_mgmt_key)(struct wiphy *wiphy,
4881 struct net_device *netdev, int link_id,
4882 u8 key_index);
4883 int (*set_default_beacon_key)(struct wiphy *wiphy,
4884 struct net_device *netdev,
4885 int link_id,
4886 u8 key_index);
4887
4888 int (*start_ap)(struct wiphy *wiphy, struct net_device *dev,
4889 struct cfg80211_ap_settings *settings);
4890 int (*change_beacon)(struct wiphy *wiphy, struct net_device *dev,
4891 struct cfg80211_ap_update *info);
4892 int (*stop_ap)(struct wiphy *wiphy, struct net_device *dev,
4893 unsigned int link_id);
4894
4895
4896 int (*add_station)(struct wiphy *wiphy, struct net_device *dev,
4897 const u8 *mac,
4898 struct station_parameters *params);
4899 int (*del_station)(struct wiphy *wiphy, struct net_device *dev,
4900 struct station_del_parameters *params);
4901 int (*change_station)(struct wiphy *wiphy, struct net_device *dev,
4902 const u8 *mac,
4903 struct station_parameters *params);
4904 int (*get_station)(struct wiphy *wiphy, struct net_device *dev,
4905 const u8 *mac, struct station_info *sinfo);
4906 int (*dump_station)(struct wiphy *wiphy, struct net_device *dev,
4907 int idx, u8 *mac, struct station_info *sinfo);
4908
4909 int (*add_mpath)(struct wiphy *wiphy, struct net_device *dev,
4910 const u8 *dst, const u8 *next_hop);
4911 int (*del_mpath)(struct wiphy *wiphy, struct net_device *dev,
4912 const u8 *dst);
4913 int (*change_mpath)(struct wiphy *wiphy, struct net_device *dev,
4914 const u8 *dst, const u8 *next_hop);
4915 int (*get_mpath)(struct wiphy *wiphy, struct net_device *dev,
4916 u8 *dst, u8 *next_hop, struct mpath_info *pinfo);
4917 int (*dump_mpath)(struct wiphy *wiphy, struct net_device *dev,
4918 int idx, u8 *dst, u8 *next_hop,
4919 struct mpath_info *pinfo);
4920 int (*get_mpp)(struct wiphy *wiphy, struct net_device *dev,
4921 u8 *dst, u8 *mpp, struct mpath_info *pinfo);
4922 int (*dump_mpp)(struct wiphy *wiphy, struct net_device *dev,
4923 int idx, u8 *dst, u8 *mpp,
4924 struct mpath_info *pinfo);
4925 int (*get_mesh_config)(struct wiphy *wiphy,
4926 struct net_device *dev,
4927 struct mesh_config *conf);
4928 int (*update_mesh_config)(struct wiphy *wiphy,
4929 struct net_device *dev, u32 mask,
4930 const struct mesh_config *nconf);
4931 int (*join_mesh)(struct wiphy *wiphy, struct net_device *dev,
4932 const struct mesh_config *conf,
4933 const struct mesh_setup *setup);
4934 int (*leave_mesh)(struct wiphy *wiphy, struct net_device *dev);
4935
4936 int (*join_ocb)(struct wiphy *wiphy, struct net_device *dev,
4937 struct ocb_setup *setup);
4938 int (*leave_ocb)(struct wiphy *wiphy, struct net_device *dev);
4939
4940 int (*change_bss)(struct wiphy *wiphy, struct net_device *dev,
4941 struct bss_parameters *params);
4942
4943 void (*inform_bss)(struct wiphy *wiphy, struct cfg80211_bss *bss,
4944 const struct cfg80211_bss_ies *ies, void *data);
4945
4946 int (*set_txq_params)(struct wiphy *wiphy, struct net_device *dev,
4947 struct ieee80211_txq_params *params);
4948
4949 int (*libertas_set_mesh_channel)(struct wiphy *wiphy,
4950 struct net_device *dev,
4951 struct ieee80211_channel *chan);
4952
4953 int (*set_monitor_channel)(struct wiphy *wiphy,
4954 struct net_device *dev,
4955 struct cfg80211_chan_def *chandef);
4956
4957 int (*scan)(struct wiphy *wiphy,
4958 struct cfg80211_scan_request *request);
4959 void (*abort_scan)(struct wiphy *wiphy, struct wireless_dev *wdev);
4960
4961 int (*auth)(struct wiphy *wiphy, struct net_device *dev,
4962 struct cfg80211_auth_request *req);
4963 int (*assoc)(struct wiphy *wiphy, struct net_device *dev,
4964 struct cfg80211_assoc_request *req);
4965 int (*deauth)(struct wiphy *wiphy, struct net_device *dev,
4966 struct cfg80211_deauth_request *req);
4967 int (*disassoc)(struct wiphy *wiphy, struct net_device *dev,
4968 struct cfg80211_disassoc_request *req);
4969
4970 int (*connect)(struct wiphy *wiphy, struct net_device *dev,
4971 struct cfg80211_connect_params *sme);
4972 int (*update_connect_params)(struct wiphy *wiphy,
4973 struct net_device *dev,
4974 struct cfg80211_connect_params *sme,
4975 u32 changed);
4976 int (*disconnect)(struct wiphy *wiphy, struct net_device *dev,
4977 u16 reason_code);
4978
4979 int (*join_ibss)(struct wiphy *wiphy, struct net_device *dev,
4980 struct cfg80211_ibss_params *params);
4981 int (*leave_ibss)(struct wiphy *wiphy, struct net_device *dev);
4982
4983 int (*set_mcast_rate)(struct wiphy *wiphy, struct net_device *dev,
4984 int rate[NUM_NL80211_BANDS]);
4985
4986 int (*set_wiphy_params)(struct wiphy *wiphy, int radio_idx,
4987 u32 changed);
4988
4989 int (*set_tx_power)(struct wiphy *wiphy, struct wireless_dev *wdev,
4990 int radio_idx,
4991 enum nl80211_tx_power_setting type, int mbm);
4992 int (*get_tx_power)(struct wiphy *wiphy, struct wireless_dev *wdev,
4993 int radio_idx, unsigned int link_id, int *dbm);
4994
4995 void (*rfkill_poll)(struct wiphy *wiphy);
4996
4997 #ifdef CONFIG_NL80211_TESTMODE
4998 int (*testmode_cmd)(struct wiphy *wiphy, struct wireless_dev *wdev,
4999 void *data, int len);
5000 int (*testmode_dump)(struct wiphy *wiphy, struct sk_buff *skb,
5001 struct netlink_callback *cb,
5002 void *data, int len);
5003 #endif
5004
5005 int (*set_bitrate_mask)(struct wiphy *wiphy,
5006 struct net_device *dev,
5007 unsigned int link_id,
5008 const u8 *peer,
5009 const struct cfg80211_bitrate_mask *mask);
5010
5011 int (*dump_survey)(struct wiphy *wiphy, struct net_device *netdev,
5012 int idx, struct survey_info *info);
5013
5014 int (*set_pmksa)(struct wiphy *wiphy, struct net_device *netdev,
5015 struct cfg80211_pmksa *pmksa);
5016 int (*del_pmksa)(struct wiphy *wiphy, struct net_device *netdev,
5017 struct cfg80211_pmksa *pmksa);
5018 int (*flush_pmksa)(struct wiphy *wiphy, struct net_device *netdev);
5019
5020 int (*remain_on_channel)(struct wiphy *wiphy,
5021 struct wireless_dev *wdev,
5022 struct ieee80211_channel *chan,
5023 unsigned int duration,
5024 u64 *cookie);
5025 int (*cancel_remain_on_channel)(struct wiphy *wiphy,
5026 struct wireless_dev *wdev,
5027 u64 cookie);
5028
5029 int (*mgmt_tx)(struct wiphy *wiphy, struct wireless_dev *wdev,
5030 struct cfg80211_mgmt_tx_params *params,
5031 u64 *cookie);
5032 int (*mgmt_tx_cancel_wait)(struct wiphy *wiphy,
5033 struct wireless_dev *wdev,
5034 u64 cookie);
5035
5036 int (*set_power_mgmt)(struct wiphy *wiphy, struct net_device *dev,
5037 bool enabled, int timeout);
5038
5039 int (*set_cqm_rssi_config)(struct wiphy *wiphy,
5040 struct net_device *dev,
5041 s32 rssi_thold, u32 rssi_hyst);
5042
5043 int (*set_cqm_rssi_range_config)(struct wiphy *wiphy,
5044 struct net_device *dev,
5045 s32 rssi_low, s32 rssi_high);
5046
5047 int (*set_cqm_txe_config)(struct wiphy *wiphy,
5048 struct net_device *dev,
5049 u32 rate, u32 pkts, u32 intvl);
5050
5051 void (*update_mgmt_frame_registrations)(struct wiphy *wiphy,
5052 struct wireless_dev *wdev,
5053 struct mgmt_frame_regs *upd);
5054
5055 int (*set_antenna)(struct wiphy *wiphy, int radio_idx,
5056 u32 tx_ant, u32 rx_ant);
5057 int (*get_antenna)(struct wiphy *wiphy, int radio_idx,
5058 u32 *tx_ant, u32 *rx_ant);
5059
5060 int (*sched_scan_start)(struct wiphy *wiphy,
5061 struct net_device *dev,
5062 struct cfg80211_sched_scan_request *request);
5063 int (*sched_scan_stop)(struct wiphy *wiphy, struct net_device *dev,
5064 u64 reqid);
5065
5066 int (*set_rekey_data)(struct wiphy *wiphy, struct net_device *dev,
5067 struct cfg80211_gtk_rekey_data *data);
5068
5069 int (*tdls_mgmt)(struct wiphy *wiphy, struct net_device *dev,
5070 const u8 *peer, int link_id,
5071 u8 action_code, u8 dialog_token, u16 status_code,
5072 u32 peer_capability, bool initiator,
5073 const u8 *buf, size_t len);
5074 int (*tdls_oper)(struct wiphy *wiphy, struct net_device *dev,
5075 const u8 *peer, enum nl80211_tdls_operation oper);
5076
5077 int (*probe_client)(struct wiphy *wiphy, struct net_device *dev,
5078 const u8 *peer, u64 *cookie);
5079
5080 int (*set_noack_map)(struct wiphy *wiphy,
5081 struct net_device *dev,
5082 u16 noack_map);
5083
5084 int (*get_channel)(struct wiphy *wiphy,
5085 struct wireless_dev *wdev,
5086 unsigned int link_id,
5087 struct cfg80211_chan_def *chandef);
5088
5089 int (*start_p2p_device)(struct wiphy *wiphy,
5090 struct wireless_dev *wdev);
5091 void (*stop_p2p_device)(struct wiphy *wiphy,
5092 struct wireless_dev *wdev);
5093
5094 int (*set_mac_acl)(struct wiphy *wiphy, struct net_device *dev,
5095 const struct cfg80211_acl_data *params);
5096
5097 int (*start_radar_detection)(struct wiphy *wiphy,
5098 struct net_device *dev,
5099 struct cfg80211_chan_def *chandef,
5100 u32 cac_time_ms, int link_id);
5101 void (*end_cac)(struct wiphy *wiphy,
5102 struct net_device *dev, unsigned int link_id);
5103 int (*update_ft_ies)(struct wiphy *wiphy, struct net_device *dev,
5104 struct cfg80211_update_ft_ies_params *ftie);
5105 int (*crit_proto_start)(struct wiphy *wiphy,
5106 struct wireless_dev *wdev,
5107 enum nl80211_crit_proto_id protocol,
5108 u16 duration);
5109 void (*crit_proto_stop)(struct wiphy *wiphy,
5110 struct wireless_dev *wdev);
5111 int (*set_coalesce)(struct wiphy *wiphy,
5112 struct cfg80211_coalesce *coalesce);
5113
5114 int (*channel_switch)(struct wiphy *wiphy,
5115 struct net_device *dev,
5116 struct cfg80211_csa_settings *params);
5117
5118 int (*set_qos_map)(struct wiphy *wiphy,
5119 struct net_device *dev,
5120 struct cfg80211_qos_map *qos_map);
5121
5122 int (*set_ap_chanwidth)(struct wiphy *wiphy, struct net_device *dev,
5123 unsigned int link_id,
5124 struct cfg80211_chan_def *chandef);
5125
5126 int (*add_tx_ts)(struct wiphy *wiphy, struct net_device *dev,
5127 u8 tsid, const u8 *peer, u8 user_prio,
5128 u16 admitted_time);
5129 int (*del_tx_ts)(struct wiphy *wiphy, struct net_device *dev,
5130 u8 tsid, const u8 *peer);
5131
5132 int (*tdls_channel_switch)(struct wiphy *wiphy,
5133 struct net_device *dev,
5134 const u8 *addr, u8 oper_class,
5135 struct cfg80211_chan_def *chandef);
5136 void (*tdls_cancel_channel_switch)(struct wiphy *wiphy,
5137 struct net_device *dev,
5138 const u8 *addr);
5139 int (*start_nan)(struct wiphy *wiphy, struct wireless_dev *wdev,
5140 struct cfg80211_nan_conf *conf);
5141 void (*stop_nan)(struct wiphy *wiphy, struct wireless_dev *wdev);
5142 int (*add_nan_func)(struct wiphy *wiphy, struct wireless_dev *wdev,
5143 struct cfg80211_nan_func *nan_func);
5144 void (*del_nan_func)(struct wiphy *wiphy, struct wireless_dev *wdev,
5145 u64 cookie);
5146 int (*nan_change_conf)(struct wiphy *wiphy,
5147 struct wireless_dev *wdev,
5148 struct cfg80211_nan_conf *conf,
5149 u32 changes);
5150
5151 int (*set_multicast_to_unicast)(struct wiphy *wiphy,
5152 struct net_device *dev,
5153 const bool enabled);
5154
5155 int (*get_txq_stats)(struct wiphy *wiphy,
5156 struct wireless_dev *wdev,
5157 struct cfg80211_txq_stats *txqstats);
5158
5159 int (*set_pmk)(struct wiphy *wiphy, struct net_device *dev,
5160 const struct cfg80211_pmk_conf *conf);
5161 int (*del_pmk)(struct wiphy *wiphy, struct net_device *dev,
5162 const u8 *aa);
5163 int (*external_auth)(struct wiphy *wiphy, struct net_device *dev,
5164 struct cfg80211_external_auth_params *params);
5165
5166 int (*tx_control_port)(struct wiphy *wiphy,
5167 struct net_device *dev,
5168 const u8 *buf, size_t len,
5169 const u8 *dest, const __be16 proto,
5170 const bool noencrypt, int link_id,
5171 u64 *cookie);
5172
5173 int (*get_ftm_responder_stats)(struct wiphy *wiphy,
5174 struct net_device *dev,
5175 struct cfg80211_ftm_responder_stats *ftm_stats);
5176
5177 int (*start_pmsr)(struct wiphy *wiphy, struct wireless_dev *wdev,
5178 struct cfg80211_pmsr_request *request);
5179 void (*abort_pmsr)(struct wiphy *wiphy, struct wireless_dev *wdev,
5180 struct cfg80211_pmsr_request *request);
5181 int (*update_owe_info)(struct wiphy *wiphy, struct net_device *dev,
5182 struct cfg80211_update_owe_info *owe_info);
5183 int (*probe_mesh_link)(struct wiphy *wiphy, struct net_device *dev,
5184 const u8 *buf, size_t len);
5185 int (*set_tid_config)(struct wiphy *wiphy, struct net_device *dev,
5186 struct cfg80211_tid_config *tid_conf);
5187 int (*reset_tid_config)(struct wiphy *wiphy, struct net_device *dev,
5188 const u8 *peer, u8 tids);
5189 int (*set_sar_specs)(struct wiphy *wiphy,
5190 struct cfg80211_sar_specs *sar);
5191 int (*color_change)(struct wiphy *wiphy,
5192 struct net_device *dev,
5193 struct cfg80211_color_change_settings *params);
5194 int (*set_fils_aad)(struct wiphy *wiphy, struct net_device *dev,
5195 struct cfg80211_fils_aad *fils_aad);
5196 int (*set_radar_background)(struct wiphy *wiphy,
5197 struct cfg80211_chan_def *chandef);
5198 int (*add_link_station)(struct wiphy *wiphy, struct net_device *dev,
5199 struct link_station_parameters *params);
5200 int (*mod_link_station)(struct wiphy *wiphy, struct net_device *dev,
5201 struct link_station_parameters *params);
5202 int (*del_link_station)(struct wiphy *wiphy, struct net_device *dev,
5203 struct link_station_del_parameters *params);
5204 int (*set_hw_timestamp)(struct wiphy *wiphy, struct net_device *dev,
5205 struct cfg80211_set_hw_timestamp *hwts);
5206 int (*set_ttlm)(struct wiphy *wiphy, struct net_device *dev,
5207 struct cfg80211_ttlm_params *params);
5208 u32 (*get_radio_mask)(struct wiphy *wiphy, struct net_device *dev);
5209 int (*assoc_ml_reconf)(struct wiphy *wiphy, struct net_device *dev,
5210 struct cfg80211_ml_reconf_req *req);
5211 int (*set_epcs)(struct wiphy *wiphy, struct net_device *dev,
5212 bool val);
5213 };
5214
5215 /*
5216 * wireless hardware and networking interfaces structures
5217 * and registration/helper functions
5218 */
5219
5220 /**
5221 * enum wiphy_flags - wiphy capability flags
5222 *
5223 * @WIPHY_FLAG_SPLIT_SCAN_6GHZ: if set to true, the scan request will be split
5224 * into two, first for legacy bands and second for 6 GHz.
5225 * @WIPHY_FLAG_NETNS_OK: if not set, do not allow changing the netns of this
5226 * wiphy at all
5227 * @WIPHY_FLAG_PS_ON_BY_DEFAULT: if set to true, powersave will be enabled
5228 * by default -- this flag will be set depending on the kernel's default
5229 * on wiphy_new(), but can be changed by the driver if it has a good
5230 * reason to override the default
5231 * @WIPHY_FLAG_4ADDR_AP: supports 4addr mode even on AP (with a single station
5232 * on a VLAN interface). This flag also serves an extra purpose of
5233 * supporting 4ADDR AP mode on devices which do not support AP/VLAN iftype.
5234 * @WIPHY_FLAG_4ADDR_STATION: supports 4addr mode even as a station
5235 * @WIPHY_FLAG_CONTROL_PORT_PROTOCOL: This device supports setting the
5236 * control port protocol ethertype. The device also honours the
5237 * control_port_no_encrypt flag.
5238 * @WIPHY_FLAG_IBSS_RSN: The device supports IBSS RSN.
5239 * @WIPHY_FLAG_MESH_AUTH: The device supports mesh authentication by routing
5240 * auth frames to userspace. See @NL80211_MESH_SETUP_USERSPACE_AUTH.
5241 * @WIPHY_FLAG_SUPPORTS_FW_ROAM: The device supports roaming feature in the
5242 * firmware.
5243 * @WIPHY_FLAG_AP_UAPSD: The device supports uapsd on AP.
5244 * @WIPHY_FLAG_SUPPORTS_TDLS: The device supports TDLS (802.11z) operation.
5245 * @WIPHY_FLAG_TDLS_EXTERNAL_SETUP: The device does not handle TDLS (802.11z)
5246 * link setup/discovery operations internally. Setup, discovery and
5247 * teardown packets should be sent through the @NL80211_CMD_TDLS_MGMT
5248 * command. When this flag is not set, @NL80211_CMD_TDLS_OPER should be
5249 * used for asking the driver/firmware to perform a TDLS operation.
5250 * @WIPHY_FLAG_HAVE_AP_SME: device integrates AP SME
5251 * @WIPHY_FLAG_REPORTS_OBSS: the device will report beacons from other BSSes
5252 * when there are virtual interfaces in AP mode by calling
5253 * cfg80211_report_obss_beacon().
5254 * @WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD: When operating as an AP, the device
5255 * responds to probe-requests in hardware.
5256 * @WIPHY_FLAG_OFFCHAN_TX: Device supports direct off-channel TX.
5257 * @WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL: Device supports remain-on-channel call.
5258 * @WIPHY_FLAG_SUPPORTS_5_10_MHZ: Device supports 5 MHz and 10 MHz channels.
5259 * @WIPHY_FLAG_HAS_CHANNEL_SWITCH: Device supports channel switch in
5260 * beaconing mode (AP, IBSS, Mesh, ...).
5261 * @WIPHY_FLAG_SUPPORTS_EXT_KEK_KCK: The device supports bigger kek and kck keys
5262 * @WIPHY_FLAG_SUPPORTS_MLO: This is a temporary flag gating the MLO APIs,
5263 * in order to not have them reachable in normal drivers, until we have
5264 * complete feature/interface combinations/etc. advertisement. No driver
5265 * should set this flag for now.
5266 * @WIPHY_FLAG_SUPPORTS_EXT_KCK_32: The device supports 32-byte KCK keys.
5267 * @WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER: The device could handle reg notify for
5268 * NL80211_REGDOM_SET_BY_DRIVER.
5269 * @WIPHY_FLAG_CHANNEL_CHANGE_ON_BEACON: reg_call_notifier() is called if driver
5270 * set this flag to update channels on beacon hints.
5271 * @WIPHY_FLAG_SUPPORTS_NSTR_NONPRIMARY: support connection to non-primary link
5272 * of an NSTR mobile AP MLD.
5273 * @WIPHY_FLAG_DISABLE_WEXT: disable wireless extensions for this device
5274 */
5275 enum wiphy_flags {
5276 WIPHY_FLAG_SUPPORTS_EXT_KEK_KCK = BIT(0),
5277 WIPHY_FLAG_SUPPORTS_MLO = BIT(1),
5278 WIPHY_FLAG_SPLIT_SCAN_6GHZ = BIT(2),
5279 WIPHY_FLAG_NETNS_OK = BIT(3),
5280 WIPHY_FLAG_PS_ON_BY_DEFAULT = BIT(4),
5281 WIPHY_FLAG_4ADDR_AP = BIT(5),
5282 WIPHY_FLAG_4ADDR_STATION = BIT(6),
5283 WIPHY_FLAG_CONTROL_PORT_PROTOCOL = BIT(7),
5284 WIPHY_FLAG_IBSS_RSN = BIT(8),
5285 WIPHY_FLAG_DISABLE_WEXT = BIT(9),
5286 WIPHY_FLAG_MESH_AUTH = BIT(10),
5287 WIPHY_FLAG_SUPPORTS_EXT_KCK_32 = BIT(11),
5288 WIPHY_FLAG_SUPPORTS_NSTR_NONPRIMARY = BIT(12),
5289 WIPHY_FLAG_SUPPORTS_FW_ROAM = BIT(13),
5290 WIPHY_FLAG_AP_UAPSD = BIT(14),
5291 WIPHY_FLAG_SUPPORTS_TDLS = BIT(15),
5292 WIPHY_FLAG_TDLS_EXTERNAL_SETUP = BIT(16),
5293 WIPHY_FLAG_HAVE_AP_SME = BIT(17),
5294 WIPHY_FLAG_REPORTS_OBSS = BIT(18),
5295 WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD = BIT(19),
5296 WIPHY_FLAG_OFFCHAN_TX = BIT(20),
5297 WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL = BIT(21),
5298 WIPHY_FLAG_SUPPORTS_5_10_MHZ = BIT(22),
5299 WIPHY_FLAG_HAS_CHANNEL_SWITCH = BIT(23),
5300 WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER = BIT(24),
5301 WIPHY_FLAG_CHANNEL_CHANGE_ON_BEACON = BIT(25),
5302 };
5303
5304 /**
5305 * struct ieee80211_iface_limit - limit on certain interface types
5306 * @max: maximum number of interfaces of these types
5307 * @types: interface types (bits)
5308 */
5309 struct ieee80211_iface_limit {
5310 u16 max;
5311 u16 types;
5312 };
5313
5314 /**
5315 * struct ieee80211_iface_combination - possible interface combination
5316 *
5317 * With this structure the driver can describe which interface
5318 * combinations it supports concurrently. When set in a struct wiphy_radio,
5319 * the combinations refer to combinations of interfaces currently active on
5320 * that radio.
5321 *
5322 * Examples:
5323 *
5324 * 1. Allow #STA <= 1, #AP <= 1, matching BI, channels = 1, 2 total:
5325 *
5326 * .. code-block:: c
5327 *
5328 * struct ieee80211_iface_limit limits1[] = {
5329 * { .max = 1, .types = BIT(NL80211_IFTYPE_STATION), },
5330 * { .max = 1, .types = BIT(NL80211_IFTYPE_AP), },
5331 * };
5332 * struct ieee80211_iface_combination combination1 = {
5333 * .limits = limits1,
5334 * .n_limits = ARRAY_SIZE(limits1),
5335 * .max_interfaces = 2,
5336 * .beacon_int_infra_match = true,
5337 * };
5338 *
5339 *
5340 * 2. Allow #{AP, P2P-GO} <= 8, channels = 1, 8 total:
5341 *
5342 * .. code-block:: c
5343 *
5344 * struct ieee80211_iface_limit limits2[] = {
5345 * { .max = 8, .types = BIT(NL80211_IFTYPE_AP) |
5346 * BIT(NL80211_IFTYPE_P2P_GO), },
5347 * };
5348 * struct ieee80211_iface_combination combination2 = {
5349 * .limits = limits2,
5350 * .n_limits = ARRAY_SIZE(limits2),
5351 * .max_interfaces = 8,
5352 * .num_different_channels = 1,
5353 * };
5354 *
5355 *
5356 * 3. Allow #STA <= 1, #{P2P-client,P2P-GO} <= 3 on two channels, 4 total.
5357 *
5358 * This allows for an infrastructure connection and three P2P connections.
5359 *
5360 * .. code-block:: c
5361 *
5362 * struct ieee80211_iface_limit limits3[] = {
5363 * { .max = 1, .types = BIT(NL80211_IFTYPE_STATION), },
5364 * { .max = 3, .types = BIT(NL80211_IFTYPE_P2P_GO) |
5365 * BIT(NL80211_IFTYPE_P2P_CLIENT), },
5366 * };
5367 * struct ieee80211_iface_combination combination3 = {
5368 * .limits = limits3,
5369 * .n_limits = ARRAY_SIZE(limits3),
5370 * .max_interfaces = 4,
5371 * .num_different_channels = 2,
5372 * };
5373 *
5374 */
5375 struct ieee80211_iface_combination {
5376 /**
5377 * @limits:
5378 * limits for the given interface types
5379 */
5380 const struct ieee80211_iface_limit *limits;
5381
5382 /**
5383 * @num_different_channels:
5384 * can use up to this many different channels
5385 */
5386 u32 num_different_channels;
5387
5388 /**
5389 * @max_interfaces:
5390 * maximum number of interfaces in total allowed in this group
5391 */
5392 u16 max_interfaces;
5393
5394 /**
5395 * @n_limits:
5396 * number of limitations
5397 */
5398 u8 n_limits;
5399
5400 /**
5401 * @beacon_int_infra_match:
5402 * In this combination, the beacon intervals between infrastructure
5403 * and AP types must match. This is required only in special cases.
5404 */
5405 bool beacon_int_infra_match;
5406
5407 /**
5408 * @radar_detect_widths:
5409 * bitmap of channel widths supported for radar detection
5410 */
5411 u8 radar_detect_widths;
5412
5413 /**
5414 * @radar_detect_regions:
5415 * bitmap of regions supported for radar detection
5416 */
5417 u8 radar_detect_regions;
5418
5419 /**
5420 * @beacon_int_min_gcd:
5421 * This interface combination supports different beacon intervals.
5422 *
5423 * = 0
5424 * all beacon intervals for different interface must be same.
5425 * > 0
5426 * any beacon interval for the interface part of this combination AND
5427 * GCD of all beacon intervals from beaconing interfaces of this
5428 * combination must be greater or equal to this value.
5429 */
5430 u32 beacon_int_min_gcd;
5431 };
5432
5433 struct ieee80211_txrx_stypes {
5434 u16 tx, rx;
5435 };
5436
5437 /**
5438 * enum wiphy_wowlan_support_flags - WoWLAN support flags
5439 * @WIPHY_WOWLAN_ANY: supports wakeup for the special "any"
5440 * trigger that keeps the device operating as-is and
5441 * wakes up the host on any activity, for example a
5442 * received packet that passed filtering; note that the
5443 * packet should be preserved in that case
5444 * @WIPHY_WOWLAN_MAGIC_PKT: supports wakeup on magic packet
5445 * (see nl80211.h)
5446 * @WIPHY_WOWLAN_DISCONNECT: supports wakeup on disconnect
5447 * @WIPHY_WOWLAN_SUPPORTS_GTK_REKEY: supports GTK rekeying while asleep
5448 * @WIPHY_WOWLAN_GTK_REKEY_FAILURE: supports wakeup on GTK rekey failure
5449 * @WIPHY_WOWLAN_EAP_IDENTITY_REQ: supports wakeup on EAP identity request
5450 * @WIPHY_WOWLAN_4WAY_HANDSHAKE: supports wakeup on 4-way handshake failure
5451 * @WIPHY_WOWLAN_RFKILL_RELEASE: supports wakeup on RF-kill release
5452 * @WIPHY_WOWLAN_NET_DETECT: supports wakeup on network detection
5453 */
5454 enum wiphy_wowlan_support_flags {
5455 WIPHY_WOWLAN_ANY = BIT(0),
5456 WIPHY_WOWLAN_MAGIC_PKT = BIT(1),
5457 WIPHY_WOWLAN_DISCONNECT = BIT(2),
5458 WIPHY_WOWLAN_SUPPORTS_GTK_REKEY = BIT(3),
5459 WIPHY_WOWLAN_GTK_REKEY_FAILURE = BIT(4),
5460 WIPHY_WOWLAN_EAP_IDENTITY_REQ = BIT(5),
5461 WIPHY_WOWLAN_4WAY_HANDSHAKE = BIT(6),
5462 WIPHY_WOWLAN_RFKILL_RELEASE = BIT(7),
5463 WIPHY_WOWLAN_NET_DETECT = BIT(8),
5464 };
5465
5466 struct wiphy_wowlan_tcp_support {
5467 const struct nl80211_wowlan_tcp_data_token_feature *tok;
5468 u32 data_payload_max;
5469 u32 data_interval_max;
5470 u32 wake_payload_max;
5471 bool seq;
5472 };
5473
5474 /**
5475 * struct wiphy_wowlan_support - WoWLAN support data
5476 * @flags: see &enum wiphy_wowlan_support_flags
5477 * @n_patterns: number of supported wakeup patterns
5478 * (see nl80211.h for the pattern definition)
5479 * @pattern_max_len: maximum length of each pattern
5480 * @pattern_min_len: minimum length of each pattern
5481 * @max_pkt_offset: maximum Rx packet offset
5482 * @max_nd_match_sets: maximum number of matchsets for net-detect,
5483 * similar, but not necessarily identical, to max_match_sets for
5484 * scheduled scans.
5485 * See &struct cfg80211_sched_scan_request.@match_sets for more
5486 * details.
5487 * @tcp: TCP wakeup support information
5488 */
5489 struct wiphy_wowlan_support {
5490 u32 flags;
5491 int n_patterns;
5492 int pattern_max_len;
5493 int pattern_min_len;
5494 int max_pkt_offset;
5495 int max_nd_match_sets;
5496 const struct wiphy_wowlan_tcp_support *tcp;
5497 };
5498
5499 /**
5500 * struct wiphy_coalesce_support - coalesce support data
5501 * @n_rules: maximum number of coalesce rules
5502 * @max_delay: maximum supported coalescing delay in msecs
5503 * @n_patterns: number of supported patterns in a rule
5504 * (see nl80211.h for the pattern definition)
5505 * @pattern_max_len: maximum length of each pattern
5506 * @pattern_min_len: minimum length of each pattern
5507 * @max_pkt_offset: maximum Rx packet offset
5508 */
5509 struct wiphy_coalesce_support {
5510 int n_rules;
5511 int max_delay;
5512 int n_patterns;
5513 int pattern_max_len;
5514 int pattern_min_len;
5515 int max_pkt_offset;
5516 };
5517
5518 /**
5519 * enum wiphy_vendor_command_flags - validation flags for vendor commands
5520 * @WIPHY_VENDOR_CMD_NEED_WDEV: vendor command requires wdev
5521 * @WIPHY_VENDOR_CMD_NEED_NETDEV: vendor command requires netdev
5522 * @WIPHY_VENDOR_CMD_NEED_RUNNING: interface/wdev must be up & running
5523 * (must be combined with %_WDEV or %_NETDEV)
5524 */
5525 enum wiphy_vendor_command_flags {
5526 WIPHY_VENDOR_CMD_NEED_WDEV = BIT(0),
5527 WIPHY_VENDOR_CMD_NEED_NETDEV = BIT(1),
5528 WIPHY_VENDOR_CMD_NEED_RUNNING = BIT(2),
5529 };
5530
5531 /**
5532 * enum wiphy_opmode_flag - Station's ht/vht operation mode information flags
5533 *
5534 * @STA_OPMODE_MAX_BW_CHANGED: Max Bandwidth changed
5535 * @STA_OPMODE_SMPS_MODE_CHANGED: SMPS mode changed
5536 * @STA_OPMODE_N_SS_CHANGED: max N_SS (number of spatial streams) changed
5537 *
5538 */
5539 enum wiphy_opmode_flag {
5540 STA_OPMODE_MAX_BW_CHANGED = BIT(0),
5541 STA_OPMODE_SMPS_MODE_CHANGED = BIT(1),
5542 STA_OPMODE_N_SS_CHANGED = BIT(2),
5543 };
5544
5545 /**
5546 * struct sta_opmode_info - Station's ht/vht operation mode information
5547 * @changed: contains value from &enum wiphy_opmode_flag
5548 * @smps_mode: New SMPS mode value from &enum nl80211_smps_mode of a station
5549 * @bw: new max bandwidth value from &enum nl80211_chan_width of a station
5550 * @rx_nss: new rx_nss value of a station
5551 */
5552
5553 struct sta_opmode_info {
5554 u32 changed;
5555 enum nl80211_smps_mode smps_mode;
5556 enum nl80211_chan_width bw;
5557 u8 rx_nss;
5558 };
5559
5560 #define VENDOR_CMD_RAW_DATA ((const struct nla_policy *)(long)(-ENODATA))
5561
5562 /**
5563 * struct wiphy_vendor_command - vendor command definition
5564 * @info: vendor command identifying information, as used in nl80211
5565 * @flags: flags, see &enum wiphy_vendor_command_flags
5566 * @doit: callback for the operation, note that wdev is %NULL if the
5567 * flags didn't ask for a wdev and non-%NULL otherwise; the data
5568 * pointer may be %NULL if userspace provided no data at all
5569 * @dumpit: dump callback, for transferring bigger/multiple items. The
5570 * @storage points to cb->args[5], ie. is preserved over the multiple
5571 * dumpit calls.
5572 * @policy: policy pointer for attributes within %NL80211_ATTR_VENDOR_DATA.
5573 * Set this to %VENDOR_CMD_RAW_DATA if no policy can be given and the
5574 * attribute is just raw data (e.g. a firmware command).
5575 * @maxattr: highest attribute number in policy
5576 * It's recommended to not have the same sub command with both @doit and
5577 * @dumpit, so that userspace can assume certain ones are get and others
5578 * are used with dump requests.
5579 */
5580 struct wiphy_vendor_command {
5581 struct nl80211_vendor_cmd_info info;
5582 u32 flags;
5583 int (*doit)(struct wiphy *wiphy, struct wireless_dev *wdev,
5584 const void *data, int data_len);
5585 int (*dumpit)(struct wiphy *wiphy, struct wireless_dev *wdev,
5586 struct sk_buff *skb, const void *data, int data_len,
5587 unsigned long *storage);
5588 const struct nla_policy *policy;
5589 unsigned int maxattr;
5590 };
5591
5592 /**
5593 * struct wiphy_iftype_ext_capab - extended capabilities per interface type
5594 * @iftype: interface type
5595 * @extended_capabilities: extended capabilities supported by the driver,
5596 * additional capabilities might be supported by userspace; these are the
5597 * 802.11 extended capabilities ("Extended Capabilities element") and are
5598 * in the same format as in the information element. See IEEE Std
5599 * 802.11-2012 8.4.2.29 for the defined fields.
5600 * @extended_capabilities_mask: mask of the valid values
5601 * @extended_capabilities_len: length of the extended capabilities
5602 * @eml_capabilities: EML capabilities (for MLO)
5603 * @mld_capa_and_ops: MLD capabilities and operations (for MLO)
5604 */
5605 struct wiphy_iftype_ext_capab {
5606 enum nl80211_iftype iftype;
5607 const u8 *extended_capabilities;
5608 const u8 *extended_capabilities_mask;
5609 u8 extended_capabilities_len;
5610 u16 eml_capabilities;
5611 u16 mld_capa_and_ops;
5612 };
5613
5614 /**
5615 * cfg80211_get_iftype_ext_capa - lookup interface type extended capability
5616 * @wiphy: the wiphy to look up from
5617 * @type: the interface type to look up
5618 *
5619 * Return: The extended capability for the given interface @type, may be %NULL
5620 */
5621 const struct wiphy_iftype_ext_capab *
5622 cfg80211_get_iftype_ext_capa(struct wiphy *wiphy, enum nl80211_iftype type);
5623
5624 /**
5625 * struct cfg80211_pmsr_capabilities - cfg80211 peer measurement capabilities
5626 * @max_peers: maximum number of peers in a single measurement
5627 * @report_ap_tsf: can report assoc AP's TSF for radio resource measurement
5628 * @randomize_mac_addr: can randomize MAC address for measurement
5629 * @ftm: FTM measurement data
5630 * @ftm.supported: FTM measurement is supported
5631 * @ftm.asap: ASAP-mode is supported
5632 * @ftm.non_asap: non-ASAP-mode is supported
5633 * @ftm.request_lci: can request LCI data
5634 * @ftm.request_civicloc: can request civic location data
5635 * @ftm.preambles: bitmap of preambles supported (&enum nl80211_preamble)
5636 * @ftm.bandwidths: bitmap of bandwidths supported (&enum nl80211_chan_width)
5637 * @ftm.max_bursts_exponent: maximum burst exponent supported
5638 * (set to -1 if not limited; note that setting this will necessarily
5639 * forbid using the value 15 to let the responder pick)
5640 * @ftm.max_ftms_per_burst: maximum FTMs per burst supported (set to 0 if
5641 * not limited)
5642 * @ftm.trigger_based: trigger based ranging measurement is supported
5643 * @ftm.non_trigger_based: non trigger based ranging measurement is supported
5644 */
5645 struct cfg80211_pmsr_capabilities {
5646 unsigned int max_peers;
5647 u8 report_ap_tsf:1,
5648 randomize_mac_addr:1;
5649
5650 struct {
5651 u32 preambles;
5652 u32 bandwidths;
5653 s8 max_bursts_exponent;
5654 u8 max_ftms_per_burst;
5655 u8 supported:1,
5656 asap:1,
5657 non_asap:1,
5658 request_lci:1,
5659 request_civicloc:1,
5660 trigger_based:1,
5661 non_trigger_based:1;
5662 } ftm;
5663 };
5664
5665 /**
5666 * struct wiphy_iftype_akm_suites - This structure encapsulates supported akm
5667 * suites for interface types defined in @iftypes_mask. Each type in the
5668 * @iftypes_mask must be unique across all instances of iftype_akm_suites.
5669 *
5670 * @iftypes_mask: bitmask of interfaces types
5671 * @akm_suites: points to an array of supported akm suites
5672 * @n_akm_suites: number of supported AKM suites
5673 */
5674 struct wiphy_iftype_akm_suites {
5675 u16 iftypes_mask;
5676 const u32 *akm_suites;
5677 int n_akm_suites;
5678 };
5679
5680 /**
5681 * struct wiphy_radio_cfg - physical radio config of a wiphy
5682 * This structure describes the configurations of a physical radio in a
5683 * wiphy. It is used to denote per-radio attributes belonging to a wiphy.
5684 *
5685 * @rts_threshold: RTS threshold (dot11RTSThreshold);
5686 * -1 (default) = RTS/CTS disabled
5687 * @radio_debugfsdir: Pointer to debugfs directory containing the radio-
5688 * specific parameters.
5689 * NULL (default) = Debugfs directory not created
5690 */
5691 struct wiphy_radio_cfg {
5692 u32 rts_threshold;
5693 struct dentry *radio_debugfsdir;
5694 };
5695
5696 /**
5697 * struct wiphy_radio_freq_range - wiphy frequency range
5698 * @start_freq: start range edge frequency (kHz)
5699 * @end_freq: end range edge frequency (kHz)
5700 */
5701 struct wiphy_radio_freq_range {
5702 u32 start_freq;
5703 u32 end_freq;
5704 };
5705
5706
5707 /**
5708 * struct wiphy_radio - physical radio of a wiphy
5709 * This structure describes a physical radio belonging to a wiphy.
5710 * It is used to describe concurrent-channel capabilities. Only one channel
5711 * can be active on the radio described by struct wiphy_radio.
5712 *
5713 * @freq_range: frequency range that the radio can operate on.
5714 * @n_freq_range: number of elements in @freq_range
5715 *
5716 * @iface_combinations: Valid interface combinations array, should not
5717 * list single interface types.
5718 * @n_iface_combinations: number of entries in @iface_combinations array.
5719 *
5720 * @antenna_mask: bitmask of antennas connected to this radio.
5721 */
5722 struct wiphy_radio {
5723 const struct wiphy_radio_freq_range *freq_range;
5724 int n_freq_range;
5725
5726 const struct ieee80211_iface_combination *iface_combinations;
5727 int n_iface_combinations;
5728
5729 u32 antenna_mask;
5730 };
5731
5732 /**
5733 * enum wiphy_nan_flags - NAN capabilities
5734 *
5735 * @WIPHY_NAN_FLAGS_CONFIGURABLE_SYNC: Device supports NAN configurable
5736 * synchronization.
5737 * @WIPHY_NAN_FLAGS_USERSPACE_DE: Device doesn't support DE offload.
5738 */
5739 enum wiphy_nan_flags {
5740 WIPHY_NAN_FLAGS_CONFIGURABLE_SYNC = BIT(0),
5741 WIPHY_NAN_FLAGS_USERSPACE_DE = BIT(1),
5742 };
5743
5744 /**
5745 * struct wiphy_nan_capa - NAN capabilities
5746 *
5747 * This structure describes the NAN capabilities of a wiphy.
5748 *
5749 * @flags: NAN capabilities flags, see &enum wiphy_nan_flags
5750 * @op_mode: NAN operation mode, as defined in Wi-Fi Aware (TM) specification
5751 * Table 81.
5752 * @n_antennas: number of antennas supported by the device for Tx/Rx. Lower
5753 * nibble indicates the number of TX antennas and upper nibble indicates the
5754 * number of RX antennas. Value 0 indicates the information is not
5755 * available.
5756 * @max_channel_switch_time: maximum channel switch time in milliseconds.
5757 * @dev_capabilities: NAN device capabilities as defined in Wi-Fi Aware (TM)
5758 * specification Table 79 (Capabilities field).
5759 */
5760 struct wiphy_nan_capa {
5761 u32 flags;
5762 u8 op_mode;
5763 u8 n_antennas;
5764 u16 max_channel_switch_time;
5765 u8 dev_capabilities;
5766 };
5767
5768 #define CFG80211_HW_TIMESTAMP_ALL_PEERS 0xffff
5769
5770 /**
5771 * struct wiphy - wireless hardware description
5772 * @mtx: mutex for the data (structures) of this device
5773 * @reg_notifier: the driver's regulatory notification callback,
5774 * note that if your driver uses wiphy_apply_custom_regulatory()
5775 * the reg_notifier's request can be passed as NULL
5776 * @regd: the driver's regulatory domain, if one was requested via
5777 * the regulatory_hint() API. This can be used by the driver
5778 * on the reg_notifier() if it chooses to ignore future
5779 * regulatory domain changes caused by other drivers.
5780 * @signal_type: signal type reported in &struct cfg80211_bss.
5781 * @cipher_suites: supported cipher suites
5782 * @n_cipher_suites: number of supported cipher suites
5783 * @akm_suites: supported AKM suites. These are the default AKMs supported if
5784 * the supported AKMs not advertized for a specific interface type in
5785 * iftype_akm_suites.
5786 * @n_akm_suites: number of supported AKM suites
5787 * @iftype_akm_suites: array of supported akm suites info per interface type.
5788 * Note that the bits in @iftypes_mask inside this structure cannot
5789 * overlap (i.e. only one occurrence of each type is allowed across all
5790 * instances of iftype_akm_suites).
5791 * @num_iftype_akm_suites: number of interface types for which supported akm
5792 * suites are specified separately.
5793 * @retry_short: Retry limit for short frames (dot11ShortRetryLimit)
5794 * @retry_long: Retry limit for long frames (dot11LongRetryLimit)
5795 * @frag_threshold: Fragmentation threshold (dot11FragmentationThreshold);
5796 * -1 = fragmentation disabled, only odd values >= 256 used
5797 * @rts_threshold: RTS threshold (dot11RTSThreshold); -1 = RTS/CTS disabled
5798 * @_net: the network namespace this wiphy currently lives in
5799 * @perm_addr: permanent MAC address of this device
5800 * @addr_mask: If the device supports multiple MAC addresses by masking,
5801 * set this to a mask with variable bits set to 1, e.g. if the last
5802 * four bits are variable then set it to 00-00-00-00-00-0f. The actual
5803 * variable bits shall be determined by the interfaces added, with
5804 * interfaces not matching the mask being rejected to be brought up.
5805 * @n_addresses: number of addresses in @addresses.
5806 * @addresses: If the device has more than one address, set this pointer
5807 * to a list of addresses (6 bytes each). The first one will be used
5808 * by default for perm_addr. In this case, the mask should be set to
5809 * all-zeroes. In this case it is assumed that the device can handle
5810 * the same number of arbitrary MAC addresses.
5811 * @registered: protects ->resume and ->suspend sysfs callbacks against
5812 * unregister hardware
5813 * @debugfsdir: debugfs directory used for this wiphy (ieee80211/<wiphyname>).
5814 * It will be renamed automatically on wiphy renames
5815 * @dev: (virtual) struct device for this wiphy. The item in
5816 * /sys/class/ieee80211/ points to this. You need use set_wiphy_dev()
5817 * (see below).
5818 * @wext: wireless extension handlers
5819 * @priv: driver private data (sized according to wiphy_new() parameter)
5820 * @interface_modes: bitmask of interfaces types valid for this wiphy,
5821 * must be set by driver
5822 * @iface_combinations: Valid interface combinations array, should not
5823 * list single interface types.
5824 * @n_iface_combinations: number of entries in @iface_combinations array.
5825 * @software_iftypes: bitmask of software interface types, these are not
5826 * subject to any restrictions since they are purely managed in SW.
5827 * @flags: wiphy flags, see &enum wiphy_flags
5828 * @regulatory_flags: wiphy regulatory flags, see
5829 * &enum ieee80211_regulatory_flags
5830 * @features: features advertised to nl80211, see &enum nl80211_feature_flags.
5831 * @ext_features: extended features advertised to nl80211, see
5832 * &enum nl80211_ext_feature_index.
5833 * @bss_priv_size: each BSS struct has private data allocated with it,
5834 * this variable determines its size
5835 * @max_scan_ssids: maximum number of SSIDs the device can scan for in
5836 * any given scan
5837 * @max_sched_scan_reqs: maximum number of scheduled scan requests that
5838 * the device can run concurrently.
5839 * @max_sched_scan_ssids: maximum number of SSIDs the device can scan
5840 * for in any given scheduled scan
5841 * @max_match_sets: maximum number of match sets the device can handle
5842 * when performing a scheduled scan, 0 if filtering is not
5843 * supported.
5844 * @max_scan_ie_len: maximum length of user-controlled IEs device can
5845 * add to probe request frames transmitted during a scan, must not
5846 * include fixed IEs like supported rates
5847 * @max_sched_scan_ie_len: same as max_scan_ie_len, but for scheduled
5848 * scans
5849 * @max_sched_scan_plans: maximum number of scan plans (scan interval and number
5850 * of iterations) for scheduled scan supported by the device.
5851 * @max_sched_scan_plan_interval: maximum interval (in seconds) for a
5852 * single scan plan supported by the device.
5853 * @max_sched_scan_plan_iterations: maximum number of iterations for a single
5854 * scan plan supported by the device.
5855 * @coverage_class: current coverage class
5856 * @fw_version: firmware version for ethtool reporting
5857 * @hw_version: hardware version for ethtool reporting
5858 * @max_num_pmkids: maximum number of PMKIDs supported by device
5859 * @privid: a pointer that drivers can use to identify if an arbitrary
5860 * wiphy is theirs, e.g. in global notifiers
5861 * @bands: information about bands/channels supported by this device
5862 *
5863 * @mgmt_stypes: bitmasks of frame subtypes that can be subscribed to or
5864 * transmitted through nl80211, points to an array indexed by interface
5865 * type
5866 *
5867 * @available_antennas_tx: bitmap of antennas which are available to be
5868 * configured as TX antennas. Antenna configuration commands will be
5869 * rejected unless this or @available_antennas_rx is set.
5870 *
5871 * @available_antennas_rx: bitmap of antennas which are available to be
5872 * configured as RX antennas. Antenna configuration commands will be
5873 * rejected unless this or @available_antennas_tx is set.
5874 *
5875 * @probe_resp_offload:
5876 * Bitmap of supported protocols for probe response offloading.
5877 * See &enum nl80211_probe_resp_offload_support_attr. Only valid
5878 * when the wiphy flag @WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD is set.
5879 *
5880 * @max_remain_on_channel_duration: Maximum time a remain-on-channel operation
5881 * may request, if implemented.
5882 *
5883 * @wowlan: WoWLAN support information
5884 * @wowlan_config: current WoWLAN configuration; this should usually not be
5885 * used since access to it is necessarily racy, use the parameter passed
5886 * to the suspend() operation instead.
5887 *
5888 * @ap_sme_capa: AP SME capabilities, flags from &enum nl80211_ap_sme_features.
5889 * @ht_capa_mod_mask: Specify what ht_cap values can be over-ridden.
5890 * If null, then none can be over-ridden.
5891 * @vht_capa_mod_mask: Specify what VHT capabilities can be over-ridden.
5892 * If null, then none can be over-ridden.
5893 *
5894 * @wdev_list: the list of associated (virtual) interfaces; this list must
5895 * not be modified by the driver, but can be read with RTNL/RCU protection.
5896 *
5897 * @max_acl_mac_addrs: Maximum number of MAC addresses that the device
5898 * supports for ACL.
5899 *
5900 * @extended_capabilities: extended capabilities supported by the driver,
5901 * additional capabilities might be supported by userspace; these are
5902 * the 802.11 extended capabilities ("Extended Capabilities element")
5903 * and are in the same format as in the information element. See
5904 * 802.11-2012 8.4.2.29 for the defined fields. These are the default
5905 * extended capabilities to be used if the capabilities are not specified
5906 * for a specific interface type in iftype_ext_capab.
5907 * @extended_capabilities_mask: mask of the valid values
5908 * @extended_capabilities_len: length of the extended capabilities
5909 * @iftype_ext_capab: array of extended capabilities per interface type
5910 * @num_iftype_ext_capab: number of interface types for which extended
5911 * capabilities are specified separately.
5912 * @coalesce: packet coalescing support information
5913 *
5914 * @vendor_commands: array of vendor commands supported by the hardware
5915 * @n_vendor_commands: number of vendor commands
5916 * @vendor_events: array of vendor events supported by the hardware
5917 * @n_vendor_events: number of vendor events
5918 *
5919 * @max_ap_assoc_sta: maximum number of associated stations supported in AP mode
5920 * (including P2P GO) or 0 to indicate no such limit is advertised. The
5921 * driver is allowed to advertise a theoretical limit that it can reach in
5922 * some cases, but may not always reach.
5923 *
5924 * @max_num_csa_counters: Number of supported csa_counters in beacons
5925 * and probe responses. This value should be set if the driver
5926 * wishes to limit the number of csa counters. Default (0) means
5927 * infinite.
5928 * @bss_param_support: bitmask indicating which bss_parameters as defined in
5929 * &struct bss_parameters the driver can actually handle in the
5930 * .change_bss() callback. The bit positions are defined in &enum
5931 * wiphy_bss_param_flags.
5932 *
5933 * @bss_select_support: bitmask indicating the BSS selection criteria supported
5934 * by the driver in the .connect() callback. The bit position maps to the
5935 * attribute indices defined in &enum nl80211_bss_select_attr.
5936 *
5937 * @nan_supported_bands: bands supported by the device in NAN mode, a
5938 * bitmap of &enum nl80211_band values. For instance, for
5939 * NL80211_BAND_2GHZ, bit 0 would be set
5940 * (i.e. BIT(NL80211_BAND_2GHZ)).
5941 * @nan_capa: NAN capabilities
5942 *
5943 * @txq_limit: configuration of internal TX queue frame limit
5944 * @txq_memory_limit: configuration internal TX queue memory limit
5945 * @txq_quantum: configuration of internal TX queue scheduler quantum
5946 *
5947 * @tx_queue_len: allow setting transmit queue len for drivers not using
5948 * wake_tx_queue
5949 *
5950 * @support_mbssid: can HW support association with nontransmitted AP
5951 * @support_only_he_mbssid: don't parse MBSSID elements if it is not
5952 * HE AP, in order to avoid compatibility issues.
5953 * @support_mbssid must be set for this to have any effect.
5954 *
5955 * @pmsr_capa: peer measurement capabilities
5956 *
5957 * @tid_config_support: describes the per-TID config support that the
5958 * device has
5959 * @tid_config_support.vif: bitmap of attributes (configurations)
5960 * supported by the driver for each vif
5961 * @tid_config_support.peer: bitmap of attributes (configurations)
5962 * supported by the driver for each peer
5963 * @tid_config_support.max_retry: maximum supported retry count for
5964 * long/short retry configuration
5965 *
5966 * @max_data_retry_count: maximum supported per TID retry count for
5967 * configuration through the %NL80211_TID_CONFIG_ATTR_RETRY_SHORT and
5968 * %NL80211_TID_CONFIG_ATTR_RETRY_LONG attributes
5969 * @sar_capa: SAR control capabilities
5970 * @rfkill: a pointer to the rfkill structure
5971 *
5972 * @mbssid_max_interfaces: maximum number of interfaces supported by the driver
5973 * in a multiple BSSID set. This field must be set to a non-zero value
5974 * by the driver to advertise MBSSID support.
5975 * @ema_max_profile_periodicity: maximum profile periodicity supported by
5976 * the driver. Setting this field to a non-zero value indicates that the
5977 * driver supports enhanced multi-BSSID advertisements (EMA AP).
5978 * @max_num_akm_suites: maximum number of AKM suites allowed for
5979 * configuration through %NL80211_CMD_CONNECT, %NL80211_CMD_ASSOCIATE and
5980 * %NL80211_CMD_START_AP. Set to NL80211_MAX_NR_AKM_SUITES if not set by
5981 * driver. If set by driver minimum allowed value is
5982 * NL80211_MAX_NR_AKM_SUITES in order to avoid compatibility issues with
5983 * legacy userspace and maximum allowed value is
5984 * CFG80211_MAX_NUM_AKM_SUITES.
5985 *
5986 * @hw_timestamp_max_peers: maximum number of peers that the driver supports
5987 * enabling HW timestamping for concurrently. Setting this field to a
5988 * non-zero value indicates that the driver supports HW timestamping.
5989 * A value of %CFG80211_HW_TIMESTAMP_ALL_PEERS indicates the driver
5990 * supports enabling HW timestamping for all peers (i.e. no need to
5991 * specify a mac address).
5992 *
5993 * @radio_cfg: configuration of radios belonging to a muli-radio wiphy. This
5994 * struct contains a list of all radio specific attributes and should be
5995 * used only for multi-radio wiphy.
5996 *
5997 * @radio: radios belonging to this wiphy
5998 * @n_radio: number of radios
5999 */
6000 struct wiphy {
6001 struct mutex mtx;
6002
6003 /* assign these fields before you register the wiphy */
6004
6005 u8 perm_addr[ETH_ALEN];
6006 u8 addr_mask[ETH_ALEN];
6007
6008 struct mac_address *addresses;
6009
6010 const struct ieee80211_txrx_stypes *mgmt_stypes;
6011
6012 const struct ieee80211_iface_combination *iface_combinations;
6013 int n_iface_combinations;
6014 u16 software_iftypes;
6015
6016 u16 n_addresses;
6017
6018 /* Supported interface modes, OR together BIT(NL80211_IFTYPE_...) */
6019 u16 interface_modes;
6020
6021 u16 max_acl_mac_addrs;
6022
6023 u32 flags, regulatory_flags, features;
6024 u8 ext_features[DIV_ROUND_UP(NUM_NL80211_EXT_FEATURES, 8)];
6025
6026 u32 ap_sme_capa;
6027
6028 enum cfg80211_signal_type signal_type;
6029
6030 int bss_priv_size;
6031 u8 max_scan_ssids;
6032 u8 max_sched_scan_reqs;
6033 u8 max_sched_scan_ssids;
6034 u8 max_match_sets;
6035 u16 max_scan_ie_len;
6036 u16 max_sched_scan_ie_len;
6037 u32 max_sched_scan_plans;
6038 u32 max_sched_scan_plan_interval;
6039 u32 max_sched_scan_plan_iterations;
6040
6041 int n_cipher_suites;
6042 const u32 *cipher_suites;
6043
6044 int n_akm_suites;
6045 const u32 *akm_suites;
6046
6047 const struct wiphy_iftype_akm_suites *iftype_akm_suites;
6048 unsigned int num_iftype_akm_suites;
6049
6050 u8 retry_short;
6051 u8 retry_long;
6052 u32 frag_threshold;
6053 u32 rts_threshold;
6054 u8 coverage_class;
6055
6056 char fw_version[ETHTOOL_FWVERS_LEN];
6057 u32 hw_version;
6058
6059 #ifdef CONFIG_PM
6060 const struct wiphy_wowlan_support *wowlan;
6061 struct cfg80211_wowlan *wowlan_config;
6062 #endif
6063
6064 u16 max_remain_on_channel_duration;
6065
6066 u8 max_num_pmkids;
6067
6068 u32 available_antennas_tx;
6069 u32 available_antennas_rx;
6070
6071 u32 probe_resp_offload;
6072
6073 const u8 *extended_capabilities, *extended_capabilities_mask;
6074 u8 extended_capabilities_len;
6075
6076 const struct wiphy_iftype_ext_capab *iftype_ext_capab;
6077 unsigned int num_iftype_ext_capab;
6078
6079 const void *privid;
6080
6081 struct ieee80211_supported_band *bands[NUM_NL80211_BANDS];
6082
6083 void (*reg_notifier)(struct wiphy *wiphy,
6084 struct regulatory_request *request);
6085
6086 struct wiphy_radio_cfg *radio_cfg;
6087
6088 /* fields below are read-only, assigned by cfg80211 */
6089
6090 const struct ieee80211_regdomain __rcu *regd;
6091
6092 struct device dev;
6093
6094 bool registered;
6095
6096 struct dentry *debugfsdir;
6097
6098 const struct ieee80211_ht_cap *ht_capa_mod_mask;
6099 const struct ieee80211_vht_cap *vht_capa_mod_mask;
6100
6101 struct list_head wdev_list;
6102
6103 possible_net_t _net;
6104
6105 #ifdef CONFIG_CFG80211_WEXT
6106 const struct iw_handler_def *wext;
6107 #endif
6108
6109 const struct wiphy_coalesce_support *coalesce;
6110
6111 const struct wiphy_vendor_command *vendor_commands;
6112 const struct nl80211_vendor_cmd_info *vendor_events;
6113 int n_vendor_commands, n_vendor_events;
6114
6115 u16 max_ap_assoc_sta;
6116
6117 u8 max_num_csa_counters;
6118
6119 u32 bss_param_support;
6120 u32 bss_select_support;
6121
6122 u8 nan_supported_bands;
6123 struct wiphy_nan_capa nan_capa;
6124
6125 u32 txq_limit;
6126 u32 txq_memory_limit;
6127 u32 txq_quantum;
6128
6129 unsigned long tx_queue_len;
6130
6131 u8 support_mbssid:1,
6132 support_only_he_mbssid:1;
6133
6134 const struct cfg80211_pmsr_capabilities *pmsr_capa;
6135
6136 struct {
6137 u64 peer, vif;
6138 u8 max_retry;
6139 } tid_config_support;
6140
6141 u8 max_data_retry_count;
6142
6143 const struct cfg80211_sar_capa *sar_capa;
6144
6145 struct rfkill *rfkill;
6146
6147 u8 mbssid_max_interfaces;
6148 u8 ema_max_profile_periodicity;
6149 u16 max_num_akm_suites;
6150
6151 u16 hw_timestamp_max_peers;
6152
6153 int n_radio;
6154 const struct wiphy_radio *radio;
6155
6156 char priv[] __aligned(NETDEV_ALIGN);
6157 };
6158
wiphy_net(struct wiphy * wiphy)6159 static inline struct net *wiphy_net(struct wiphy *wiphy)
6160 {
6161 return read_pnet(&wiphy->_net);
6162 }
6163
wiphy_net_set(struct wiphy * wiphy,struct net * net)6164 static inline void wiphy_net_set(struct wiphy *wiphy, struct net *net)
6165 {
6166 write_pnet(&wiphy->_net, net);
6167 }
6168
6169 /**
6170 * wiphy_priv - return priv from wiphy
6171 *
6172 * @wiphy: the wiphy whose priv pointer to return
6173 * Return: The priv of @wiphy.
6174 */
wiphy_priv(struct wiphy * wiphy)6175 static inline void *wiphy_priv(struct wiphy *wiphy)
6176 {
6177 BUG_ON(!wiphy);
6178 return &wiphy->priv;
6179 }
6180
6181 /**
6182 * priv_to_wiphy - return the wiphy containing the priv
6183 *
6184 * @priv: a pointer previously returned by wiphy_priv
6185 * Return: The wiphy of @priv.
6186 */
priv_to_wiphy(void * priv)6187 static inline struct wiphy *priv_to_wiphy(void *priv)
6188 {
6189 BUG_ON(!priv);
6190 return container_of(priv, struct wiphy, priv);
6191 }
6192
6193 /**
6194 * set_wiphy_dev - set device pointer for wiphy
6195 *
6196 * @wiphy: The wiphy whose device to bind
6197 * @dev: The device to parent it to
6198 */
set_wiphy_dev(struct wiphy * wiphy,struct device * dev)6199 static inline void set_wiphy_dev(struct wiphy *wiphy, struct device *dev)
6200 {
6201 wiphy->dev.parent = dev;
6202 }
6203
6204 /**
6205 * wiphy_dev - get wiphy dev pointer
6206 *
6207 * @wiphy: The wiphy whose device struct to look up
6208 * Return: The dev of @wiphy.
6209 */
wiphy_dev(struct wiphy * wiphy)6210 static inline struct device *wiphy_dev(struct wiphy *wiphy)
6211 {
6212 return wiphy->dev.parent;
6213 }
6214
6215 /**
6216 * wiphy_name - get wiphy name
6217 *
6218 * @wiphy: The wiphy whose name to return
6219 * Return: The name of @wiphy.
6220 */
wiphy_name(const struct wiphy * wiphy)6221 static inline const char *wiphy_name(const struct wiphy *wiphy)
6222 {
6223 return dev_name(&wiphy->dev);
6224 }
6225
6226 /**
6227 * wiphy_new_nm - create a new wiphy for use with cfg80211
6228 *
6229 * @ops: The configuration operations for this device
6230 * @sizeof_priv: The size of the private area to allocate
6231 * @requested_name: Request a particular name.
6232 * NULL is valid value, and means use the default phy%d naming.
6233 *
6234 * Create a new wiphy and associate the given operations with it.
6235 * @sizeof_priv bytes are allocated for private use.
6236 *
6237 * Return: A pointer to the new wiphy. This pointer must be
6238 * assigned to each netdev's ieee80211_ptr for proper operation.
6239 */
6240 struct wiphy *wiphy_new_nm(const struct cfg80211_ops *ops, int sizeof_priv,
6241 const char *requested_name);
6242
6243 /**
6244 * wiphy_new - create a new wiphy for use with cfg80211
6245 *
6246 * @ops: The configuration operations for this device
6247 * @sizeof_priv: The size of the private area to allocate
6248 *
6249 * Create a new wiphy and associate the given operations with it.
6250 * @sizeof_priv bytes are allocated for private use.
6251 *
6252 * Return: A pointer to the new wiphy. This pointer must be
6253 * assigned to each netdev's ieee80211_ptr for proper operation.
6254 */
wiphy_new(const struct cfg80211_ops * ops,int sizeof_priv)6255 static inline struct wiphy *wiphy_new(const struct cfg80211_ops *ops,
6256 int sizeof_priv)
6257 {
6258 return wiphy_new_nm(ops, sizeof_priv, NULL);
6259 }
6260
6261 /**
6262 * wiphy_register - register a wiphy with cfg80211
6263 *
6264 * @wiphy: The wiphy to register.
6265 *
6266 * Return: A non-negative wiphy index or a negative error code.
6267 */
6268 int wiphy_register(struct wiphy *wiphy);
6269
6270 /* this is a define for better error reporting (file/line) */
6271 #define lockdep_assert_wiphy(wiphy) lockdep_assert_held(&(wiphy)->mtx)
6272
6273 /**
6274 * rcu_dereference_wiphy - rcu_dereference with debug checking
6275 * @wiphy: the wiphy to check the locking on
6276 * @p: The pointer to read, prior to dereferencing
6277 *
6278 * Do an rcu_dereference(p), but check caller either holds rcu_read_lock()
6279 * or RTNL. Note: Please prefer wiphy_dereference() or rcu_dereference().
6280 */
6281 #define rcu_dereference_wiphy(wiphy, p) \
6282 rcu_dereference_check(p, lockdep_is_held(&wiphy->mtx))
6283
6284 /**
6285 * wiphy_dereference - fetch RCU pointer when updates are prevented by wiphy mtx
6286 * @wiphy: the wiphy to check the locking on
6287 * @p: The pointer to read, prior to dereferencing
6288 *
6289 * Return: the value of the specified RCU-protected pointer, but omit the
6290 * READ_ONCE(), because caller holds the wiphy mutex used for updates.
6291 */
6292 #define wiphy_dereference(wiphy, p) \
6293 rcu_dereference_protected(p, lockdep_is_held(&wiphy->mtx))
6294
6295 /**
6296 * get_wiphy_regdom - get custom regdomain for the given wiphy
6297 * @wiphy: the wiphy to get the regdomain from
6298 *
6299 * Context: Requires any of RTNL, wiphy mutex or RCU protection.
6300 *
6301 * Return: pointer to the regulatory domain associated with the wiphy
6302 */
6303 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy);
6304
6305 /**
6306 * wiphy_unregister - deregister a wiphy from cfg80211
6307 *
6308 * @wiphy: The wiphy to unregister.
6309 *
6310 * After this call, no more requests can be made with this priv
6311 * pointer, but the call may sleep to wait for an outstanding
6312 * request that is being handled.
6313 */
6314 void wiphy_unregister(struct wiphy *wiphy);
6315
6316 /**
6317 * wiphy_free - free wiphy
6318 *
6319 * @wiphy: The wiphy to free
6320 */
6321 void wiphy_free(struct wiphy *wiphy);
6322
6323 /* internal structs */
6324 struct cfg80211_conn;
6325 struct cfg80211_internal_bss;
6326 struct cfg80211_cached_keys;
6327 struct cfg80211_cqm_config;
6328
6329 /**
6330 * wiphy_lock - lock the wiphy
6331 * @wiphy: the wiphy to lock
6332 *
6333 * This is needed around registering and unregistering netdevs that
6334 * aren't created through cfg80211 calls, since that requires locking
6335 * in cfg80211 when the notifiers is called, but that cannot
6336 * differentiate which way it's called.
6337 *
6338 * It can also be used by drivers for their own purposes.
6339 *
6340 * When cfg80211 ops are called, the wiphy is already locked.
6341 *
6342 * Note that this makes sure that no workers that have been queued
6343 * with wiphy_queue_work() are running.
6344 */
wiphy_lock(struct wiphy * wiphy)6345 static inline void wiphy_lock(struct wiphy *wiphy)
6346 __acquires(&wiphy->mtx)
6347 {
6348 mutex_lock(&wiphy->mtx);
6349 __acquire(&wiphy->mtx);
6350 }
6351
6352 /**
6353 * wiphy_unlock - unlock the wiphy again
6354 * @wiphy: the wiphy to unlock
6355 */
wiphy_unlock(struct wiphy * wiphy)6356 static inline void wiphy_unlock(struct wiphy *wiphy)
6357 __releases(&wiphy->mtx)
6358 {
6359 __release(&wiphy->mtx);
6360 mutex_unlock(&wiphy->mtx);
6361 }
6362
6363 DEFINE_GUARD(wiphy, struct wiphy *,
6364 mutex_lock(&_T->mtx),
6365 mutex_unlock(&_T->mtx))
6366
6367 struct wiphy_work;
6368 typedef void (*wiphy_work_func_t)(struct wiphy *, struct wiphy_work *);
6369
6370 struct wiphy_work {
6371 struct list_head entry;
6372 wiphy_work_func_t func;
6373 };
6374
wiphy_work_init(struct wiphy_work * work,wiphy_work_func_t func)6375 static inline void wiphy_work_init(struct wiphy_work *work,
6376 wiphy_work_func_t func)
6377 {
6378 INIT_LIST_HEAD(&work->entry);
6379 work->func = func;
6380 }
6381
6382 /**
6383 * wiphy_work_queue - queue work for the wiphy
6384 * @wiphy: the wiphy to queue for
6385 * @work: the work item
6386 *
6387 * This is useful for work that must be done asynchronously, and work
6388 * queued here has the special property that the wiphy mutex will be
6389 * held as if wiphy_lock() was called, and that it cannot be running
6390 * after wiphy_lock() was called. Therefore, wiphy_cancel_work() can
6391 * use just cancel_work() instead of cancel_work_sync(), it requires
6392 * being in a section protected by wiphy_lock().
6393 */
6394 void wiphy_work_queue(struct wiphy *wiphy, struct wiphy_work *work);
6395
6396 /**
6397 * wiphy_work_cancel - cancel previously queued work
6398 * @wiphy: the wiphy, for debug purposes
6399 * @work: the work to cancel
6400 *
6401 * Cancel the work *without* waiting for it, this assumes being
6402 * called under the wiphy mutex acquired by wiphy_lock().
6403 */
6404 void wiphy_work_cancel(struct wiphy *wiphy, struct wiphy_work *work);
6405
6406 /**
6407 * wiphy_work_flush - flush previously queued work
6408 * @wiphy: the wiphy, for debug purposes
6409 * @work: the work to flush, this can be %NULL to flush all work
6410 *
6411 * Flush the work (i.e. run it if pending). This must be called
6412 * under the wiphy mutex acquired by wiphy_lock().
6413 */
6414 void wiphy_work_flush(struct wiphy *wiphy, struct wiphy_work *work);
6415
6416 struct wiphy_delayed_work {
6417 struct wiphy_work work;
6418 struct wiphy *wiphy;
6419 struct timer_list timer;
6420 };
6421
6422 void wiphy_delayed_work_timer(struct timer_list *t);
6423
wiphy_delayed_work_init(struct wiphy_delayed_work * dwork,wiphy_work_func_t func)6424 static inline void wiphy_delayed_work_init(struct wiphy_delayed_work *dwork,
6425 wiphy_work_func_t func)
6426 {
6427 timer_setup(&dwork->timer, wiphy_delayed_work_timer, 0);
6428 wiphy_work_init(&dwork->work, func);
6429 }
6430
6431 /**
6432 * wiphy_delayed_work_queue - queue delayed work for the wiphy
6433 * @wiphy: the wiphy to queue for
6434 * @dwork: the delayable worker
6435 * @delay: number of jiffies to wait before queueing
6436 *
6437 * This is useful for work that must be done asynchronously, and work
6438 * queued here has the special property that the wiphy mutex will be
6439 * held as if wiphy_lock() was called, and that it cannot be running
6440 * after wiphy_lock() was called. Therefore, wiphy_cancel_work() can
6441 * use just cancel_work() instead of cancel_work_sync(), it requires
6442 * being in a section protected by wiphy_lock().
6443 *
6444 * Note that these are scheduled with a timer where the accuracy
6445 * becomes less the longer in the future the scheduled timer is. Use
6446 * wiphy_hrtimer_work_queue() if the timer must be not be late by more
6447 * than approximately 10 percent.
6448 */
6449 void wiphy_delayed_work_queue(struct wiphy *wiphy,
6450 struct wiphy_delayed_work *dwork,
6451 unsigned long delay);
6452
6453 /**
6454 * wiphy_delayed_work_cancel - cancel previously queued delayed work
6455 * @wiphy: the wiphy, for debug purposes
6456 * @dwork: the delayed work to cancel
6457 *
6458 * Cancel the work *without* waiting for it, this assumes being
6459 * called under the wiphy mutex acquired by wiphy_lock().
6460 */
6461 void wiphy_delayed_work_cancel(struct wiphy *wiphy,
6462 struct wiphy_delayed_work *dwork);
6463
6464 /**
6465 * wiphy_delayed_work_flush - flush previously queued delayed work
6466 * @wiphy: the wiphy, for debug purposes
6467 * @dwork: the delayed work to flush
6468 *
6469 * Flush the work (i.e. run it if pending). This must be called
6470 * under the wiphy mutex acquired by wiphy_lock().
6471 */
6472 void wiphy_delayed_work_flush(struct wiphy *wiphy,
6473 struct wiphy_delayed_work *dwork);
6474
6475 /**
6476 * wiphy_delayed_work_pending - Find out whether a wiphy delayable
6477 * work item is currently pending.
6478 *
6479 * @wiphy: the wiphy, for debug purposes
6480 * @dwork: the delayed work in question
6481 *
6482 * Return: true if timer is pending, false otherwise
6483 *
6484 * How wiphy_delayed_work_queue() works is by setting a timer which
6485 * when it expires calls wiphy_work_queue() to queue the wiphy work.
6486 * Because wiphy_delayed_work_queue() uses mod_timer(), if it is
6487 * called twice and the second call happens before the first call
6488 * deadline, the work will rescheduled for the second deadline and
6489 * won't run before that.
6490 *
6491 * wiphy_delayed_work_pending() can be used to detect if calling
6492 * wiphy_work_delayed_work_queue() would start a new work schedule
6493 * or delayed a previous one. As seen below it cannot be used to
6494 * detect precisely if the work has finished to execute nor if it
6495 * is currently executing.
6496 *
6497 * CPU0 CPU1
6498 * wiphy_delayed_work_queue(wk)
6499 * mod_timer(wk->timer)
6500 * wiphy_delayed_work_pending(wk) -> true
6501 *
6502 * [...]
6503 * expire_timers(wk->timer)
6504 * detach_timer(wk->timer)
6505 * wiphy_delayed_work_pending(wk) -> false
6506 * wk->timer->function() |
6507 * wiphy_work_queue(wk) | delayed work pending
6508 * list_add_tail() | returns false but
6509 * queue_work(cfg80211_wiphy_work) | wk->func() has not
6510 * | been run yet
6511 * [...] |
6512 * cfg80211_wiphy_work() |
6513 * wk->func() V
6514 *
6515 */
6516 bool wiphy_delayed_work_pending(struct wiphy *wiphy,
6517 struct wiphy_delayed_work *dwork);
6518
6519 struct wiphy_hrtimer_work {
6520 struct wiphy_work work;
6521 struct wiphy *wiphy;
6522 struct hrtimer timer;
6523 };
6524
6525 enum hrtimer_restart wiphy_hrtimer_work_timer(struct hrtimer *t);
6526
wiphy_hrtimer_work_init(struct wiphy_hrtimer_work * hrwork,wiphy_work_func_t func)6527 static inline void wiphy_hrtimer_work_init(struct wiphy_hrtimer_work *hrwork,
6528 wiphy_work_func_t func)
6529 {
6530 hrtimer_setup(&hrwork->timer, wiphy_hrtimer_work_timer,
6531 CLOCK_BOOTTIME, HRTIMER_MODE_REL);
6532 wiphy_work_init(&hrwork->work, func);
6533 }
6534
6535 /**
6536 * wiphy_hrtimer_work_queue - queue hrtimer work for the wiphy
6537 * @wiphy: the wiphy to queue for
6538 * @hrwork: the high resolution timer worker
6539 * @delay: the delay given as a ktime_t
6540 *
6541 * Please refer to wiphy_delayed_work_queue(). The difference is that
6542 * the hrtimer work uses a high resolution timer for scheduling. This
6543 * may be needed if timeouts might be scheduled further in the future
6544 * and the accuracy of the normal timer is not sufficient.
6545 *
6546 * Expect a delay of a few milliseconds as the timer is scheduled
6547 * with some slack and some more time may pass between queueing the
6548 * work and its start.
6549 */
6550 void wiphy_hrtimer_work_queue(struct wiphy *wiphy,
6551 struct wiphy_hrtimer_work *hrwork,
6552 ktime_t delay);
6553
6554 /**
6555 * wiphy_hrtimer_work_cancel - cancel previously queued hrtimer work
6556 * @wiphy: the wiphy, for debug purposes
6557 * @hrtimer: the hrtimer work to cancel
6558 *
6559 * Cancel the work *without* waiting for it, this assumes being
6560 * called under the wiphy mutex acquired by wiphy_lock().
6561 */
6562 void wiphy_hrtimer_work_cancel(struct wiphy *wiphy,
6563 struct wiphy_hrtimer_work *hrtimer);
6564
6565 /**
6566 * wiphy_hrtimer_work_flush - flush previously queued hrtimer work
6567 * @wiphy: the wiphy, for debug purposes
6568 * @hrwork: the hrtimer work to flush
6569 *
6570 * Flush the work (i.e. run it if pending). This must be called
6571 * under the wiphy mutex acquired by wiphy_lock().
6572 */
6573 void wiphy_hrtimer_work_flush(struct wiphy *wiphy,
6574 struct wiphy_hrtimer_work *hrwork);
6575
6576 /**
6577 * wiphy_hrtimer_work_pending - Find out whether a wiphy hrtimer
6578 * work item is currently pending.
6579 *
6580 * @wiphy: the wiphy, for debug purposes
6581 * @hrwork: the hrtimer work in question
6582 *
6583 * Return: true if timer is pending, false otherwise
6584 *
6585 * Please refer to the wiphy_delayed_work_pending() documentation as
6586 * this is the equivalent function for hrtimer based delayed work
6587 * items.
6588 */
6589 bool wiphy_hrtimer_work_pending(struct wiphy *wiphy,
6590 struct wiphy_hrtimer_work *hrwork);
6591
6592 /**
6593 * enum ieee80211_ap_reg_power - regulatory power for an Access Point
6594 *
6595 * @IEEE80211_REG_UNSET_AP: Access Point has no regulatory power mode
6596 * @IEEE80211_REG_LPI_AP: Indoor Access Point
6597 * @IEEE80211_REG_SP_AP: Standard power Access Point
6598 * @IEEE80211_REG_VLP_AP: Very low power Access Point
6599 */
6600 enum ieee80211_ap_reg_power {
6601 IEEE80211_REG_UNSET_AP,
6602 IEEE80211_REG_LPI_AP,
6603 IEEE80211_REG_SP_AP,
6604 IEEE80211_REG_VLP_AP,
6605 };
6606
6607 /**
6608 * struct wireless_dev - wireless device state
6609 *
6610 * For netdevs, this structure must be allocated by the driver
6611 * that uses the ieee80211_ptr field in struct net_device (this
6612 * is intentional so it can be allocated along with the netdev.)
6613 * It need not be registered then as netdev registration will
6614 * be intercepted by cfg80211 to see the new wireless device,
6615 * however, drivers must lock the wiphy before registering or
6616 * unregistering netdevs if they pre-create any netdevs (in ops
6617 * called from cfg80211, the wiphy is already locked.)
6618 *
6619 * For non-netdev uses, it must also be allocated by the driver
6620 * in response to the cfg80211 callbacks that require it, as
6621 * there's no netdev registration in that case it may not be
6622 * allocated outside of callback operations that return it.
6623 *
6624 * @wiphy: pointer to hardware description
6625 * @iftype: interface type
6626 * @registered: is this wdev already registered with cfg80211
6627 * @registering: indicates we're doing registration under wiphy lock
6628 * for the notifier
6629 * @list: (private) Used to collect the interfaces
6630 * @netdev: (private) Used to reference back to the netdev, may be %NULL
6631 * @identifier: (private) Identifier used in nl80211 to identify this
6632 * wireless device if it has no netdev
6633 * @u: union containing data specific to @iftype
6634 * @connected: indicates if connected or not (STA mode)
6635 * @wext: (private) Used by the internal wireless extensions compat code
6636 * @wext.ibss: (private) IBSS data part of wext handling
6637 * @wext.connect: (private) connection handling data
6638 * @wext.keys: (private) (WEP) key data
6639 * @wext.ie: (private) extra elements for association
6640 * @wext.ie_len: (private) length of extra elements
6641 * @wext.bssid: (private) selected network BSSID
6642 * @wext.ssid: (private) selected network SSID
6643 * @wext.default_key: (private) selected default key index
6644 * @wext.default_mgmt_key: (private) selected default management key index
6645 * @wext.prev_bssid: (private) previous BSSID for reassociation
6646 * @wext.prev_bssid_valid: (private) previous BSSID validity
6647 * @use_4addr: indicates 4addr mode is used on this interface, must be
6648 * set by driver (if supported) on add_interface BEFORE registering the
6649 * netdev and may otherwise be used by driver read-only, will be update
6650 * by cfg80211 on change_interface
6651 * @mgmt_registrations: list of registrations for management frames
6652 * @mgmt_registrations_need_update: mgmt registrations were updated,
6653 * need to propagate the update to the driver
6654 * @address: The address for this device, valid only if @netdev is %NULL
6655 * @is_running: true if this is a non-netdev device that has been started, e.g.
6656 * the P2P Device.
6657 * @ps: powersave mode is enabled
6658 * @ps_timeout: dynamic powersave timeout
6659 * @ap_unexpected_nlportid: (private) netlink port ID of application
6660 * registered for unexpected class 3 frames (AP mode)
6661 * @conn: (private) cfg80211 software SME connection state machine data
6662 * @connect_keys: (private) keys to set after connection is established
6663 * @conn_bss_type: connecting/connected BSS type
6664 * @conn_owner_nlportid: (private) connection owner socket port ID
6665 * @disconnect_wk: (private) auto-disconnect work
6666 * @disconnect_bssid: (private) the BSSID to use for auto-disconnect
6667 * @event_list: (private) list for internal event processing
6668 * @event_lock: (private) lock for event list
6669 * @owner_nlportid: (private) owner socket port ID
6670 * @nl_owner_dead: (private) owner socket went away
6671 * @cqm_rssi_work: (private) CQM RSSI reporting work
6672 * @cqm_config: (private) nl80211 RSSI monitor state
6673 * @pmsr_list: (private) peer measurement requests
6674 * @pmsr_lock: (private) peer measurements requests/results lock
6675 * @pmsr_free_wk: (private) peer measurements cleanup work
6676 * @unprot_beacon_reported: (private) timestamp of last
6677 * unprotected beacon report
6678 * @links: array of %IEEE80211_MLD_MAX_NUM_LINKS elements containing @addr
6679 * @ap and @client for each link
6680 * @links.cac_started: true if DFS channel availability check has been
6681 * started
6682 * @links.cac_start_time: timestamp (jiffies) when the dfs state was
6683 * entered.
6684 * @links.cac_time_ms: CAC time in ms
6685 * @valid_links: bitmap describing what elements of @links are valid
6686 * @radio_mask: Bitmask of radios that this interface is allowed to operate on.
6687 */
6688 struct wireless_dev {
6689 struct wiphy *wiphy;
6690 enum nl80211_iftype iftype;
6691
6692 /* the remainder of this struct should be private to cfg80211 */
6693 struct list_head list;
6694 struct net_device *netdev;
6695
6696 u32 identifier;
6697
6698 struct list_head mgmt_registrations;
6699 u8 mgmt_registrations_need_update:1;
6700
6701 bool use_4addr, is_running, registered, registering;
6702
6703 u8 address[ETH_ALEN] __aligned(sizeof(u16));
6704
6705 /* currently used for IBSS and SME - might be rearranged later */
6706 struct cfg80211_conn *conn;
6707 struct cfg80211_cached_keys *connect_keys;
6708 enum ieee80211_bss_type conn_bss_type;
6709 u32 conn_owner_nlportid;
6710
6711 struct work_struct disconnect_wk;
6712 u8 disconnect_bssid[ETH_ALEN];
6713
6714 struct list_head event_list;
6715 spinlock_t event_lock;
6716
6717 u8 connected:1;
6718
6719 bool ps;
6720 int ps_timeout;
6721
6722 u32 ap_unexpected_nlportid;
6723
6724 u32 owner_nlportid;
6725 bool nl_owner_dead;
6726
6727 #ifdef CONFIG_CFG80211_WEXT
6728 /* wext data */
6729 struct {
6730 struct cfg80211_ibss_params ibss;
6731 struct cfg80211_connect_params connect;
6732 struct cfg80211_cached_keys *keys;
6733 const u8 *ie;
6734 size_t ie_len;
6735 u8 bssid[ETH_ALEN];
6736 u8 prev_bssid[ETH_ALEN];
6737 u8 ssid[IEEE80211_MAX_SSID_LEN];
6738 s8 default_key, default_mgmt_key;
6739 bool prev_bssid_valid;
6740 } wext;
6741 #endif
6742
6743 struct wiphy_work cqm_rssi_work;
6744 struct cfg80211_cqm_config __rcu *cqm_config;
6745
6746 struct list_head pmsr_list;
6747 spinlock_t pmsr_lock;
6748 struct work_struct pmsr_free_wk;
6749
6750 unsigned long unprot_beacon_reported;
6751
6752 union {
6753 struct {
6754 u8 connected_addr[ETH_ALEN] __aligned(2);
6755 u8 ssid[IEEE80211_MAX_SSID_LEN];
6756 u8 ssid_len;
6757 } client;
6758 struct {
6759 int beacon_interval;
6760 struct cfg80211_chan_def preset_chandef;
6761 struct cfg80211_chan_def chandef;
6762 u8 id[IEEE80211_MAX_MESH_ID_LEN];
6763 u8 id_len, id_up_len;
6764 } mesh;
6765 struct {
6766 struct cfg80211_chan_def preset_chandef;
6767 u8 ssid[IEEE80211_MAX_SSID_LEN];
6768 u8 ssid_len;
6769 } ap;
6770 struct {
6771 struct cfg80211_internal_bss *current_bss;
6772 struct cfg80211_chan_def chandef;
6773 int beacon_interval;
6774 u8 ssid[IEEE80211_MAX_SSID_LEN];
6775 u8 ssid_len;
6776 } ibss;
6777 struct {
6778 struct cfg80211_chan_def chandef;
6779 } ocb;
6780 struct {
6781 u8 cluster_id[ETH_ALEN] __aligned(2);
6782 } nan;
6783 } u;
6784
6785 struct {
6786 u8 addr[ETH_ALEN] __aligned(2);
6787 union {
6788 struct {
6789 unsigned int beacon_interval;
6790 struct cfg80211_chan_def chandef;
6791 } ap;
6792 struct {
6793 struct cfg80211_internal_bss *current_bss;
6794 } client;
6795 };
6796
6797 bool cac_started;
6798 unsigned long cac_start_time;
6799 unsigned int cac_time_ms;
6800 } links[IEEE80211_MLD_MAX_NUM_LINKS];
6801 u16 valid_links;
6802
6803 u32 radio_mask;
6804 };
6805
wdev_address(struct wireless_dev * wdev)6806 static inline const u8 *wdev_address(struct wireless_dev *wdev)
6807 {
6808 if (wdev->netdev)
6809 return wdev->netdev->dev_addr;
6810 return wdev->address;
6811 }
6812
wdev_running(struct wireless_dev * wdev)6813 static inline bool wdev_running(struct wireless_dev *wdev)
6814 {
6815 if (wdev->netdev)
6816 return netif_running(wdev->netdev);
6817 return wdev->is_running;
6818 }
6819
6820 /**
6821 * wdev_priv - return wiphy priv from wireless_dev
6822 *
6823 * @wdev: The wireless device whose wiphy's priv pointer to return
6824 * Return: The wiphy priv of @wdev.
6825 */
wdev_priv(struct wireless_dev * wdev)6826 static inline void *wdev_priv(struct wireless_dev *wdev)
6827 {
6828 BUG_ON(!wdev);
6829 return wiphy_priv(wdev->wiphy);
6830 }
6831
6832 /**
6833 * wdev_chandef - return chandef pointer from wireless_dev
6834 * @wdev: the wdev
6835 * @link_id: the link ID for MLO
6836 *
6837 * Return: The chandef depending on the mode, or %NULL.
6838 */
6839 struct cfg80211_chan_def *wdev_chandef(struct wireless_dev *wdev,
6840 unsigned int link_id);
6841
WARN_INVALID_LINK_ID(struct wireless_dev * wdev,unsigned int link_id)6842 static inline void WARN_INVALID_LINK_ID(struct wireless_dev *wdev,
6843 unsigned int link_id)
6844 {
6845 WARN_ON(link_id && !wdev->valid_links);
6846 WARN_ON(wdev->valid_links &&
6847 !(wdev->valid_links & BIT(link_id)));
6848 }
6849
6850 #define for_each_valid_link(link_info, link_id) \
6851 for (link_id = 0; \
6852 link_id < ((link_info)->valid_links ? \
6853 ARRAY_SIZE((link_info)->links) : 1); \
6854 link_id++) \
6855 if (!(link_info)->valid_links || \
6856 ((link_info)->valid_links & BIT(link_id)))
6857
6858 /**
6859 * DOC: Utility functions
6860 *
6861 * cfg80211 offers a number of utility functions that can be useful.
6862 */
6863
6864 /**
6865 * ieee80211_channel_equal - compare two struct ieee80211_channel
6866 *
6867 * @a: 1st struct ieee80211_channel
6868 * @b: 2nd struct ieee80211_channel
6869 * Return: true if center frequency of @a == @b
6870 */
6871 static inline bool
ieee80211_channel_equal(struct ieee80211_channel * a,struct ieee80211_channel * b)6872 ieee80211_channel_equal(struct ieee80211_channel *a,
6873 struct ieee80211_channel *b)
6874 {
6875 return (a->center_freq == b->center_freq &&
6876 a->freq_offset == b->freq_offset);
6877 }
6878
6879 /**
6880 * ieee80211_channel_to_khz - convert ieee80211_channel to frequency in KHz
6881 * @chan: struct ieee80211_channel to convert
6882 * Return: The corresponding frequency (in KHz)
6883 */
6884 static inline u32
ieee80211_channel_to_khz(const struct ieee80211_channel * chan)6885 ieee80211_channel_to_khz(const struct ieee80211_channel *chan)
6886 {
6887 return MHZ_TO_KHZ(chan->center_freq) + chan->freq_offset;
6888 }
6889
6890 /**
6891 * ieee80211_channel_to_freq_khz - convert channel number to frequency
6892 * @chan: channel number
6893 * @band: band, necessary due to channel number overlap
6894 * Return: The corresponding frequency (in KHz), or 0 if the conversion failed.
6895 */
6896 u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band);
6897
6898 /**
6899 * ieee80211_channel_to_frequency - convert channel number to frequency
6900 * @chan: channel number
6901 * @band: band, necessary due to channel number overlap
6902 * Return: The corresponding frequency (in MHz), or 0 if the conversion failed.
6903 */
6904 static inline int
ieee80211_channel_to_frequency(int chan,enum nl80211_band band)6905 ieee80211_channel_to_frequency(int chan, enum nl80211_band band)
6906 {
6907 return KHZ_TO_MHZ(ieee80211_channel_to_freq_khz(chan, band));
6908 }
6909
6910 /**
6911 * ieee80211_freq_khz_to_channel - convert frequency to channel number
6912 * @freq: center frequency in KHz
6913 * Return: The corresponding channel, or 0 if the conversion failed.
6914 */
6915 int ieee80211_freq_khz_to_channel(u32 freq);
6916
6917 /**
6918 * ieee80211_frequency_to_channel - convert frequency to channel number
6919 * @freq: center frequency in MHz
6920 * Return: The corresponding channel, or 0 if the conversion failed.
6921 */
6922 static inline int
ieee80211_frequency_to_channel(int freq)6923 ieee80211_frequency_to_channel(int freq)
6924 {
6925 return ieee80211_freq_khz_to_channel(MHZ_TO_KHZ(freq));
6926 }
6927
6928 /**
6929 * ieee80211_get_channel_khz - get channel struct from wiphy for specified
6930 * frequency
6931 * @wiphy: the struct wiphy to get the channel for
6932 * @freq: the center frequency (in KHz) of the channel
6933 * Return: The channel struct from @wiphy at @freq.
6934 */
6935 struct ieee80211_channel *
6936 ieee80211_get_channel_khz(struct wiphy *wiphy, u32 freq);
6937
6938 /**
6939 * ieee80211_get_channel - get channel struct from wiphy for specified frequency
6940 *
6941 * @wiphy: the struct wiphy to get the channel for
6942 * @freq: the center frequency (in MHz) of the channel
6943 * Return: The channel struct from @wiphy at @freq.
6944 */
6945 static inline struct ieee80211_channel *
ieee80211_get_channel(struct wiphy * wiphy,int freq)6946 ieee80211_get_channel(struct wiphy *wiphy, int freq)
6947 {
6948 return ieee80211_get_channel_khz(wiphy, MHZ_TO_KHZ(freq));
6949 }
6950
6951 /**
6952 * cfg80211_channel_is_psc - Check if the channel is a 6 GHz PSC
6953 * @chan: control channel to check
6954 *
6955 * The Preferred Scanning Channels (PSC) are defined in
6956 * Draft IEEE P802.11ax/D5.0, 26.17.2.3.3
6957 *
6958 * Return: %true if channel is a PSC, %false otherwise
6959 */
cfg80211_channel_is_psc(struct ieee80211_channel * chan)6960 static inline bool cfg80211_channel_is_psc(struct ieee80211_channel *chan)
6961 {
6962 if (chan->band != NL80211_BAND_6GHZ)
6963 return false;
6964
6965 return ieee80211_frequency_to_channel(chan->center_freq) % 16 == 5;
6966 }
6967
6968 /**
6969 * ieee80211_radio_freq_range_valid - Check if the radio supports the
6970 * specified frequency range
6971 *
6972 * @radio: wiphy radio
6973 * @freq: the frequency (in KHz) to be queried
6974 * @width: the bandwidth (in KHz) to be queried
6975 *
6976 * Return: whether or not the given frequency range is valid for the given radio
6977 */
6978 bool ieee80211_radio_freq_range_valid(const struct wiphy_radio *radio,
6979 u32 freq, u32 width);
6980
6981 /**
6982 * cfg80211_radio_chandef_valid - Check if the radio supports the chandef
6983 *
6984 * @radio: wiphy radio
6985 * @chandef: chandef for current channel
6986 *
6987 * Return: whether or not the given chandef is valid for the given radio
6988 */
6989 bool cfg80211_radio_chandef_valid(const struct wiphy_radio *radio,
6990 const struct cfg80211_chan_def *chandef);
6991
6992 /**
6993 * cfg80211_wdev_channel_allowed - Check if the wdev may use the channel
6994 *
6995 * @wdev: the wireless device
6996 * @chan: channel to check
6997 *
6998 * Return: whether or not the wdev may use the channel
6999 */
7000 bool cfg80211_wdev_channel_allowed(struct wireless_dev *wdev,
7001 struct ieee80211_channel *chan);
7002
7003 /**
7004 * ieee80211_get_response_rate - get basic rate for a given rate
7005 *
7006 * @sband: the band to look for rates in
7007 * @basic_rates: bitmap of basic rates
7008 * @bitrate: the bitrate for which to find the basic rate
7009 *
7010 * Return: The basic rate corresponding to a given bitrate, that
7011 * is the next lower bitrate contained in the basic rate map,
7012 * which is, for this function, given as a bitmap of indices of
7013 * rates in the band's bitrate table.
7014 */
7015 const struct ieee80211_rate *
7016 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
7017 u32 basic_rates, int bitrate);
7018
7019 /**
7020 * ieee80211_mandatory_rates - get mandatory rates for a given band
7021 * @sband: the band to look for rates in
7022 *
7023 * Return: a bitmap of the mandatory rates for the given band, bits
7024 * are set according to the rate position in the bitrates array.
7025 */
7026 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband);
7027
7028 /*
7029 * Radiotap parsing functions -- for controlled injection support
7030 *
7031 * Implemented in net/wireless/radiotap.c
7032 * Documentation in Documentation/networking/radiotap-headers.rst
7033 */
7034
7035 struct radiotap_align_size {
7036 uint8_t align:4, size:4;
7037 };
7038
7039 struct ieee80211_radiotap_namespace {
7040 const struct radiotap_align_size *align_size;
7041 int n_bits;
7042 uint32_t oui;
7043 uint8_t subns;
7044 };
7045
7046 struct ieee80211_radiotap_vendor_namespaces {
7047 const struct ieee80211_radiotap_namespace *ns;
7048 int n_ns;
7049 };
7050
7051 /**
7052 * struct ieee80211_radiotap_iterator - tracks walk thru present radiotap args
7053 * @this_arg_index: index of current arg, valid after each successful call
7054 * to ieee80211_radiotap_iterator_next()
7055 * @this_arg: pointer to current radiotap arg; it is valid after each
7056 * call to ieee80211_radiotap_iterator_next() but also after
7057 * ieee80211_radiotap_iterator_init() where it will point to
7058 * the beginning of the actual data portion
7059 * @this_arg_size: length of the current arg, for convenience
7060 * @current_namespace: pointer to the current namespace definition
7061 * (or internally %NULL if the current namespace is unknown)
7062 * @is_radiotap_ns: indicates whether the current namespace is the default
7063 * radiotap namespace or not
7064 *
7065 * @_rtheader: pointer to the radiotap header we are walking through
7066 * @_max_length: length of radiotap header in cpu byte ordering
7067 * @_arg_index: next argument index
7068 * @_arg: next argument pointer
7069 * @_next_bitmap: internal pointer to next present u32
7070 * @_bitmap_shifter: internal shifter for curr u32 bitmap, b0 set == arg present
7071 * @_vns: vendor namespace definitions
7072 * @_next_ns_data: beginning of the next namespace's data
7073 * @_reset_on_ext: internal; reset the arg index to 0 when going to the
7074 * next bitmap word
7075 *
7076 * Describes the radiotap parser state. Fields prefixed with an underscore
7077 * must not be used by users of the parser, only by the parser internally.
7078 */
7079
7080 struct ieee80211_radiotap_iterator {
7081 struct ieee80211_radiotap_header *_rtheader;
7082 const struct ieee80211_radiotap_vendor_namespaces *_vns;
7083 const struct ieee80211_radiotap_namespace *current_namespace;
7084
7085 unsigned char *_arg, *_next_ns_data;
7086 __le32 *_next_bitmap;
7087
7088 unsigned char *this_arg;
7089 int this_arg_index;
7090 int this_arg_size;
7091
7092 int is_radiotap_ns;
7093
7094 int _max_length;
7095 int _arg_index;
7096 uint32_t _bitmap_shifter;
7097 int _reset_on_ext;
7098 };
7099
7100 int
7101 ieee80211_radiotap_iterator_init(struct ieee80211_radiotap_iterator *iterator,
7102 struct ieee80211_radiotap_header *radiotap_header,
7103 int max_length,
7104 const struct ieee80211_radiotap_vendor_namespaces *vns);
7105
7106 int
7107 ieee80211_radiotap_iterator_next(struct ieee80211_radiotap_iterator *iterator);
7108
7109
7110 extern const unsigned char rfc1042_header[6];
7111 extern const unsigned char bridge_tunnel_header[6];
7112
7113 /**
7114 * ieee80211_get_hdrlen_from_skb - get header length from data
7115 *
7116 * @skb: the frame
7117 *
7118 * Given an skb with a raw 802.11 header at the data pointer this function
7119 * returns the 802.11 header length.
7120 *
7121 * Return: The 802.11 header length in bytes (not including encryption
7122 * headers). Or 0 if the data in the sk_buff is too short to contain a valid
7123 * 802.11 header.
7124 */
7125 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb);
7126
7127 /**
7128 * ieee80211_hdrlen - get header length in bytes from frame control
7129 * @fc: frame control field in little-endian format
7130 * Return: The header length in bytes.
7131 */
7132 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc);
7133
7134 /**
7135 * ieee80211_get_mesh_hdrlen - get mesh extension header length
7136 * @meshhdr: the mesh extension header, only the flags field
7137 * (first byte) will be accessed
7138 * Return: The length of the extension header, which is always at
7139 * least 6 bytes and at most 18 if address 5 and 6 are present.
7140 */
7141 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr);
7142
7143 /**
7144 * DOC: Data path helpers
7145 *
7146 * In addition to generic utilities, cfg80211 also offers
7147 * functions that help implement the data path for devices
7148 * that do not do the 802.11/802.3 conversion on the device.
7149 */
7150
7151 /**
7152 * ieee80211_data_to_8023_exthdr - convert an 802.11 data frame to 802.3
7153 * @skb: the 802.11 data frame
7154 * @ehdr: pointer to a &struct ethhdr that will get the header, instead
7155 * of it being pushed into the SKB
7156 * @addr: the device MAC address
7157 * @iftype: the virtual interface type
7158 * @data_offset: offset of payload after the 802.11 header
7159 * @is_amsdu: true if the 802.11 header is A-MSDU
7160 * Return: 0 on success. Non-zero on error.
7161 */
7162 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
7163 const u8 *addr, enum nl80211_iftype iftype,
7164 u8 data_offset, bool is_amsdu);
7165
7166 /**
7167 * ieee80211_data_to_8023 - convert an 802.11 data frame to 802.3
7168 * @skb: the 802.11 data frame
7169 * @addr: the device MAC address
7170 * @iftype: the virtual interface type
7171 * Return: 0 on success. Non-zero on error.
7172 */
ieee80211_data_to_8023(struct sk_buff * skb,const u8 * addr,enum nl80211_iftype iftype)7173 static inline int ieee80211_data_to_8023(struct sk_buff *skb, const u8 *addr,
7174 enum nl80211_iftype iftype)
7175 {
7176 return ieee80211_data_to_8023_exthdr(skb, NULL, addr, iftype, 0, false);
7177 }
7178
7179 /**
7180 * ieee80211_is_valid_amsdu - check if subframe lengths of an A-MSDU are valid
7181 *
7182 * This is used to detect non-standard A-MSDU frames, e.g. the ones generated
7183 * by ath10k and ath11k, where the subframe length includes the length of the
7184 * mesh control field.
7185 *
7186 * @skb: The input A-MSDU frame without any headers.
7187 * @mesh_hdr: the type of mesh header to test
7188 * 0: non-mesh A-MSDU length field
7189 * 1: big-endian mesh A-MSDU length field
7190 * 2: little-endian mesh A-MSDU length field
7191 * Returns: true if subframe header lengths are valid for the @mesh_hdr mode
7192 */
7193 bool ieee80211_is_valid_amsdu(struct sk_buff *skb, u8 mesh_hdr);
7194
7195 /**
7196 * ieee80211_amsdu_to_8023s - decode an IEEE 802.11n A-MSDU frame
7197 *
7198 * Decode an IEEE 802.11 A-MSDU and convert it to a list of 802.3 frames.
7199 * The @list will be empty if the decode fails. The @skb must be fully
7200 * header-less before being passed in here; it is freed in this function.
7201 *
7202 * @skb: The input A-MSDU frame without any headers.
7203 * @list: The output list of 802.3 frames. It must be allocated and
7204 * initialized by the caller.
7205 * @addr: The device MAC address.
7206 * @iftype: The device interface type.
7207 * @extra_headroom: The hardware extra headroom for SKBs in the @list.
7208 * @check_da: DA to check in the inner ethernet header, or NULL
7209 * @check_sa: SA to check in the inner ethernet header, or NULL
7210 * @mesh_control: see mesh_hdr in ieee80211_is_valid_amsdu
7211 */
7212 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
7213 const u8 *addr, enum nl80211_iftype iftype,
7214 const unsigned int extra_headroom,
7215 const u8 *check_da, const u8 *check_sa,
7216 u8 mesh_control);
7217
7218 /**
7219 * ieee80211_get_8023_tunnel_proto - get RFC1042 or bridge tunnel encap protocol
7220 *
7221 * Check for RFC1042 or bridge tunnel header and fetch the encapsulated
7222 * protocol.
7223 *
7224 * @hdr: pointer to the MSDU payload
7225 * @proto: destination pointer to store the protocol
7226 * Return: true if encapsulation was found
7227 */
7228 bool ieee80211_get_8023_tunnel_proto(const void *hdr, __be16 *proto);
7229
7230 /**
7231 * ieee80211_strip_8023_mesh_hdr - strip mesh header from converted 802.3 frames
7232 *
7233 * Strip the mesh header, which was left in by ieee80211_data_to_8023 as part
7234 * of the MSDU data. Also move any source/destination addresses from the mesh
7235 * header to the ethernet header (if present).
7236 *
7237 * @skb: The 802.3 frame with embedded mesh header
7238 *
7239 * Return: 0 on success. Non-zero on error.
7240 */
7241 int ieee80211_strip_8023_mesh_hdr(struct sk_buff *skb);
7242
7243 /**
7244 * cfg80211_classify8021d - determine the 802.1p/1d tag for a data frame
7245 * @skb: the data frame
7246 * @qos_map: Interworking QoS mapping or %NULL if not in use
7247 * Return: The 802.1p/1d tag.
7248 */
7249 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
7250 struct cfg80211_qos_map *qos_map);
7251
7252 /**
7253 * cfg80211_find_elem_match - match information element and byte array in data
7254 *
7255 * @eid: element ID
7256 * @ies: data consisting of IEs
7257 * @len: length of data
7258 * @match: byte array to match
7259 * @match_len: number of bytes in the match array
7260 * @match_offset: offset in the IE data where the byte array should match.
7261 * Note the difference to cfg80211_find_ie_match() which considers
7262 * the offset to start from the element ID byte, but here we take
7263 * the data portion instead.
7264 *
7265 * Return: %NULL if the element ID could not be found or if
7266 * the element is invalid (claims to be longer than the given
7267 * data) or if the byte array doesn't match; otherwise return the
7268 * requested element struct.
7269 *
7270 * Note: There are no checks on the element length other than
7271 * having to fit into the given data and being large enough for the
7272 * byte array to match.
7273 */
7274 const struct element *
7275 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
7276 const u8 *match, unsigned int match_len,
7277 unsigned int match_offset);
7278
7279 /**
7280 * cfg80211_find_ie_match - match information element and byte array in data
7281 *
7282 * @eid: element ID
7283 * @ies: data consisting of IEs
7284 * @len: length of data
7285 * @match: byte array to match
7286 * @match_len: number of bytes in the match array
7287 * @match_offset: offset in the IE where the byte array should match.
7288 * If match_len is zero, this must also be set to zero.
7289 * Otherwise this must be set to 2 or more, because the first
7290 * byte is the element id, which is already compared to eid, and
7291 * the second byte is the IE length.
7292 *
7293 * Return: %NULL if the element ID could not be found or if
7294 * the element is invalid (claims to be longer than the given
7295 * data) or if the byte array doesn't match, or a pointer to the first
7296 * byte of the requested element, that is the byte containing the
7297 * element ID.
7298 *
7299 * Note: There are no checks on the element length other than
7300 * having to fit into the given data and being large enough for the
7301 * byte array to match.
7302 */
7303 static inline const u8 *
cfg80211_find_ie_match(u8 eid,const u8 * ies,unsigned int len,const u8 * match,unsigned int match_len,unsigned int match_offset)7304 cfg80211_find_ie_match(u8 eid, const u8 *ies, unsigned int len,
7305 const u8 *match, unsigned int match_len,
7306 unsigned int match_offset)
7307 {
7308 /* match_offset can't be smaller than 2, unless match_len is
7309 * zero, in which case match_offset must be zero as well.
7310 */
7311 if (WARN_ON((match_len && match_offset < 2) ||
7312 (!match_len && match_offset)))
7313 return NULL;
7314
7315 return (const void *)cfg80211_find_elem_match(eid, ies, len,
7316 match, match_len,
7317 match_offset ?
7318 match_offset - 2 : 0);
7319 }
7320
7321 /**
7322 * cfg80211_find_elem - find information element in data
7323 *
7324 * @eid: element ID
7325 * @ies: data consisting of IEs
7326 * @len: length of data
7327 *
7328 * Return: %NULL if the element ID could not be found or if
7329 * the element is invalid (claims to be longer than the given
7330 * data) or if the byte array doesn't match; otherwise return the
7331 * requested element struct.
7332 *
7333 * Note: There are no checks on the element length other than
7334 * having to fit into the given data.
7335 */
7336 static inline const struct element *
cfg80211_find_elem(u8 eid,const u8 * ies,int len)7337 cfg80211_find_elem(u8 eid, const u8 *ies, int len)
7338 {
7339 return cfg80211_find_elem_match(eid, ies, len, NULL, 0, 0);
7340 }
7341
7342 /**
7343 * cfg80211_find_ie - find information element in data
7344 *
7345 * @eid: element ID
7346 * @ies: data consisting of IEs
7347 * @len: length of data
7348 *
7349 * Return: %NULL if the element ID could not be found or if
7350 * the element is invalid (claims to be longer than the given
7351 * data), or a pointer to the first byte of the requested
7352 * element, that is the byte containing the element ID.
7353 *
7354 * Note: There are no checks on the element length other than
7355 * having to fit into the given data.
7356 */
cfg80211_find_ie(u8 eid,const u8 * ies,int len)7357 static inline const u8 *cfg80211_find_ie(u8 eid, const u8 *ies, int len)
7358 {
7359 return cfg80211_find_ie_match(eid, ies, len, NULL, 0, 0);
7360 }
7361
7362 /**
7363 * cfg80211_find_ext_elem - find information element with EID Extension in data
7364 *
7365 * @ext_eid: element ID Extension
7366 * @ies: data consisting of IEs
7367 * @len: length of data
7368 *
7369 * Return: %NULL if the extended element could not be found or if
7370 * the element is invalid (claims to be longer than the given
7371 * data) or if the byte array doesn't match; otherwise return the
7372 * requested element struct.
7373 *
7374 * Note: There are no checks on the element length other than
7375 * having to fit into the given data.
7376 */
7377 static inline const struct element *
cfg80211_find_ext_elem(u8 ext_eid,const u8 * ies,int len)7378 cfg80211_find_ext_elem(u8 ext_eid, const u8 *ies, int len)
7379 {
7380 return cfg80211_find_elem_match(WLAN_EID_EXTENSION, ies, len,
7381 &ext_eid, 1, 0);
7382 }
7383
7384 /**
7385 * cfg80211_find_ext_ie - find information element with EID Extension in data
7386 *
7387 * @ext_eid: element ID Extension
7388 * @ies: data consisting of IEs
7389 * @len: length of data
7390 *
7391 * Return: %NULL if the extended element ID could not be found or if
7392 * the element is invalid (claims to be longer than the given
7393 * data), or a pointer to the first byte of the requested
7394 * element, that is the byte containing the element ID.
7395 *
7396 * Note: There are no checks on the element length other than
7397 * having to fit into the given data.
7398 */
cfg80211_find_ext_ie(u8 ext_eid,const u8 * ies,int len)7399 static inline const u8 *cfg80211_find_ext_ie(u8 ext_eid, const u8 *ies, int len)
7400 {
7401 return cfg80211_find_ie_match(WLAN_EID_EXTENSION, ies, len,
7402 &ext_eid, 1, 2);
7403 }
7404
7405 /**
7406 * cfg80211_find_vendor_elem - find vendor specific information element in data
7407 *
7408 * @oui: vendor OUI
7409 * @oui_type: vendor-specific OUI type (must be < 0xff), negative means any
7410 * @ies: data consisting of IEs
7411 * @len: length of data
7412 *
7413 * Return: %NULL if the vendor specific element ID could not be found or if the
7414 * element is invalid (claims to be longer than the given data); otherwise
7415 * return the element structure for the requested element.
7416 *
7417 * Note: There are no checks on the element length other than having to fit into
7418 * the given data.
7419 */
7420 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
7421 const u8 *ies,
7422 unsigned int len);
7423
7424 /**
7425 * cfg80211_find_vendor_ie - find vendor specific information element in data
7426 *
7427 * @oui: vendor OUI
7428 * @oui_type: vendor-specific OUI type (must be < 0xff), negative means any
7429 * @ies: data consisting of IEs
7430 * @len: length of data
7431 *
7432 * Return: %NULL if the vendor specific element ID could not be found or if the
7433 * element is invalid (claims to be longer than the given data), or a pointer to
7434 * the first byte of the requested element, that is the byte containing the
7435 * element ID.
7436 *
7437 * Note: There are no checks on the element length other than having to fit into
7438 * the given data.
7439 */
7440 static inline const u8 *
cfg80211_find_vendor_ie(unsigned int oui,int oui_type,const u8 * ies,unsigned int len)7441 cfg80211_find_vendor_ie(unsigned int oui, int oui_type,
7442 const u8 *ies, unsigned int len)
7443 {
7444 return (const void *)cfg80211_find_vendor_elem(oui, oui_type, ies, len);
7445 }
7446
7447 /**
7448 * enum cfg80211_rnr_iter_ret - reduced neighbor report iteration state
7449 * @RNR_ITER_CONTINUE: continue iterating with the next entry
7450 * @RNR_ITER_BREAK: break iteration and return success
7451 * @RNR_ITER_ERROR: break iteration and return error
7452 */
7453 enum cfg80211_rnr_iter_ret {
7454 RNR_ITER_CONTINUE,
7455 RNR_ITER_BREAK,
7456 RNR_ITER_ERROR,
7457 };
7458
7459 /**
7460 * cfg80211_iter_rnr - iterate reduced neighbor report entries
7461 * @elems: the frame elements to iterate RNR elements and then
7462 * their entries in
7463 * @elems_len: length of the elements
7464 * @iter: iteration function, see also &enum cfg80211_rnr_iter_ret
7465 * for the return value
7466 * @iter_data: additional data passed to the iteration function
7467 * Return: %true on success (after successfully iterating all entries
7468 * or if the iteration function returned %RNR_ITER_BREAK),
7469 * %false on error (iteration function returned %RNR_ITER_ERROR
7470 * or elements were malformed.)
7471 */
7472 bool cfg80211_iter_rnr(const u8 *elems, size_t elems_len,
7473 enum cfg80211_rnr_iter_ret
7474 (*iter)(void *data, u8 type,
7475 const struct ieee80211_neighbor_ap_info *info,
7476 const u8 *tbtt_info, u8 tbtt_info_len),
7477 void *iter_data);
7478
7479 /**
7480 * cfg80211_defragment_element - Defrag the given element data into a buffer
7481 *
7482 * @elem: the element to defragment
7483 * @ies: elements where @elem is contained
7484 * @ieslen: length of @ies
7485 * @data: buffer to store element data, or %NULL to just determine size
7486 * @data_len: length of @data, or 0
7487 * @frag_id: the element ID of fragments
7488 *
7489 * Return: length of @data, or -EINVAL on error
7490 *
7491 * Copy out all data from an element that may be fragmented into @data, while
7492 * skipping all headers.
7493 *
7494 * The function uses memmove() internally. It is acceptable to defragment an
7495 * element in-place.
7496 */
7497 ssize_t cfg80211_defragment_element(const struct element *elem, const u8 *ies,
7498 size_t ieslen, u8 *data, size_t data_len,
7499 u8 frag_id);
7500
7501 /**
7502 * cfg80211_send_layer2_update - send layer 2 update frame
7503 *
7504 * @dev: network device
7505 * @addr: STA MAC address
7506 *
7507 * Wireless drivers can use this function to update forwarding tables in bridge
7508 * devices upon STA association.
7509 */
7510 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr);
7511
7512 /**
7513 * DOC: Regulatory enforcement infrastructure
7514 *
7515 * TODO
7516 */
7517
7518 /**
7519 * regulatory_hint - driver hint to the wireless core a regulatory domain
7520 * @wiphy: the wireless device giving the hint (used only for reporting
7521 * conflicts)
7522 * @alpha2: the ISO/IEC 3166 alpha2 the driver claims its regulatory domain
7523 * should be in. If @rd is set this should be NULL. Note that if you
7524 * set this to NULL you should still set rd->alpha2 to some accepted
7525 * alpha2.
7526 *
7527 * Wireless drivers can use this function to hint to the wireless core
7528 * what it believes should be the current regulatory domain by
7529 * giving it an ISO/IEC 3166 alpha2 country code it knows its regulatory
7530 * domain should be in or by providing a completely build regulatory domain.
7531 * If the driver provides an ISO/IEC 3166 alpha2 userspace will be queried
7532 * for a regulatory domain structure for the respective country.
7533 *
7534 * The wiphy must have been registered to cfg80211 prior to this call.
7535 * For cfg80211 drivers this means you must first use wiphy_register(),
7536 * for mac80211 drivers you must first use ieee80211_register_hw().
7537 *
7538 * Drivers should check the return value, its possible you can get
7539 * an -ENOMEM.
7540 *
7541 * Return: 0 on success. -ENOMEM.
7542 */
7543 int regulatory_hint(struct wiphy *wiphy, const char *alpha2);
7544
7545 /**
7546 * regulatory_set_wiphy_regd - set regdom info for self managed drivers
7547 * @wiphy: the wireless device we want to process the regulatory domain on
7548 * @rd: the regulatory domain information to use for this wiphy
7549 *
7550 * Set the regulatory domain information for self-managed wiphys, only they
7551 * may use this function. See %REGULATORY_WIPHY_SELF_MANAGED for more
7552 * information.
7553 *
7554 * Return: 0 on success. -EINVAL, -EPERM
7555 */
7556 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
7557 struct ieee80211_regdomain *rd);
7558
7559 /**
7560 * regulatory_set_wiphy_regd_sync - set regdom for self-managed drivers
7561 * @wiphy: the wireless device we want to process the regulatory domain on
7562 * @rd: the regulatory domain information to use for this wiphy
7563 *
7564 * This functions requires the RTNL and the wiphy mutex to be held and
7565 * applies the new regdomain synchronously to this wiphy. For more details
7566 * see regulatory_set_wiphy_regd().
7567 *
7568 * Return: 0 on success. -EINVAL, -EPERM
7569 */
7570 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
7571 struct ieee80211_regdomain *rd);
7572
7573 /**
7574 * wiphy_apply_custom_regulatory - apply a custom driver regulatory domain
7575 * @wiphy: the wireless device we want to process the regulatory domain on
7576 * @regd: the custom regulatory domain to use for this wiphy
7577 *
7578 * Drivers can sometimes have custom regulatory domains which do not apply
7579 * to a specific country. Drivers can use this to apply such custom regulatory
7580 * domains. This routine must be called prior to wiphy registration. The
7581 * custom regulatory domain will be trusted completely and as such previous
7582 * default channel settings will be disregarded. If no rule is found for a
7583 * channel on the regulatory domain the channel will be disabled.
7584 * Drivers using this for a wiphy should also set the wiphy flag
7585 * REGULATORY_CUSTOM_REG or cfg80211 will set it for the wiphy
7586 * that called this helper.
7587 */
7588 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
7589 const struct ieee80211_regdomain *regd);
7590
7591 /**
7592 * freq_reg_info - get regulatory information for the given frequency
7593 * @wiphy: the wiphy for which we want to process this rule for
7594 * @center_freq: Frequency in KHz for which we want regulatory information for
7595 *
7596 * Use this function to get the regulatory rule for a specific frequency on
7597 * a given wireless device. If the device has a specific regulatory domain
7598 * it wants to follow we respect that unless a country IE has been received
7599 * and processed already.
7600 *
7601 * Return: A valid pointer, or, when an error occurs, for example if no rule
7602 * can be found, the return value is encoded using ERR_PTR(). Use IS_ERR() to
7603 * check and PTR_ERR() to obtain the numeric return value. The numeric return
7604 * value will be -ERANGE if we determine the given center_freq does not even
7605 * have a regulatory rule for a frequency range in the center_freq's band.
7606 * See freq_in_rule_band() for our current definition of a band -- this is
7607 * purely subjective and right now it's 802.11 specific.
7608 */
7609 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
7610 u32 center_freq);
7611
7612 /**
7613 * reg_initiator_name - map regulatory request initiator enum to name
7614 * @initiator: the regulatory request initiator
7615 *
7616 * You can use this to map the regulatory request initiator enum to a
7617 * proper string representation.
7618 *
7619 * Return: pointer to string representation of the initiator
7620 */
7621 const char *reg_initiator_name(enum nl80211_reg_initiator initiator);
7622
7623 /**
7624 * regulatory_pre_cac_allowed - check if pre-CAC allowed in the current regdom
7625 * @wiphy: wiphy for which pre-CAC capability is checked.
7626 *
7627 * Pre-CAC is allowed only in some regdomains (notable ETSI).
7628 *
7629 * Return: %true if allowed, %false otherwise
7630 */
7631 bool regulatory_pre_cac_allowed(struct wiphy *wiphy);
7632
7633 /**
7634 * DOC: Internal regulatory db functions
7635 *
7636 */
7637
7638 /**
7639 * reg_query_regdb_wmm - Query internal regulatory db for wmm rule
7640 * Regulatory self-managed driver can use it to proactively
7641 *
7642 * @alpha2: the ISO/IEC 3166 alpha2 wmm rule to be queried.
7643 * @freq: the frequency (in MHz) to be queried.
7644 * @rule: pointer to store the wmm rule from the regulatory db.
7645 *
7646 * Self-managed wireless drivers can use this function to query
7647 * the internal regulatory database to check whether the given
7648 * ISO/IEC 3166 alpha2 country and freq have wmm rule limitations.
7649 *
7650 * Drivers should check the return value, its possible you can get
7651 * an -ENODATA.
7652 *
7653 * Return: 0 on success. -ENODATA.
7654 */
7655 int reg_query_regdb_wmm(char *alpha2, int freq,
7656 struct ieee80211_reg_rule *rule);
7657
7658 /*
7659 * callbacks for asynchronous cfg80211 methods, notification
7660 * functions and BSS handling helpers
7661 */
7662
7663 /**
7664 * cfg80211_scan_done - notify that scan finished
7665 *
7666 * @request: the corresponding scan request
7667 * @info: information about the completed scan
7668 */
7669 void cfg80211_scan_done(struct cfg80211_scan_request *request,
7670 struct cfg80211_scan_info *info);
7671
7672 /**
7673 * cfg80211_sched_scan_results - notify that new scan results are available
7674 *
7675 * @wiphy: the wiphy which got scheduled scan results
7676 * @reqid: identifier for the related scheduled scan request
7677 */
7678 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid);
7679
7680 /**
7681 * cfg80211_sched_scan_stopped - notify that the scheduled scan has stopped
7682 *
7683 * @wiphy: the wiphy on which the scheduled scan stopped
7684 * @reqid: identifier for the related scheduled scan request
7685 *
7686 * The driver can call this function to inform cfg80211 that the
7687 * scheduled scan had to be stopped, for whatever reason. The driver
7688 * is then called back via the sched_scan_stop operation when done.
7689 */
7690 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid);
7691
7692 /**
7693 * cfg80211_sched_scan_stopped_locked - notify that the scheduled scan has stopped
7694 *
7695 * @wiphy: the wiphy on which the scheduled scan stopped
7696 * @reqid: identifier for the related scheduled scan request
7697 *
7698 * The driver can call this function to inform cfg80211 that the
7699 * scheduled scan had to be stopped, for whatever reason. The driver
7700 * is then called back via the sched_scan_stop operation when done.
7701 * This function should be called with the wiphy mutex held.
7702 */
7703 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid);
7704
7705 /**
7706 * cfg80211_inform_bss_frame_data - inform cfg80211 of a received BSS frame
7707 * @wiphy: the wiphy reporting the BSS
7708 * @data: the BSS metadata
7709 * @mgmt: the management frame (probe response or beacon)
7710 * @len: length of the management frame
7711 * @gfp: context flags
7712 *
7713 * This informs cfg80211 that BSS information was found and
7714 * the BSS should be updated/added.
7715 *
7716 * Return: A referenced struct, must be released with cfg80211_put_bss()!
7717 * Or %NULL on error.
7718 */
7719 struct cfg80211_bss * __must_check
7720 cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
7721 struct cfg80211_inform_bss *data,
7722 struct ieee80211_mgmt *mgmt, size_t len,
7723 gfp_t gfp);
7724
7725 static inline struct cfg80211_bss * __must_check
cfg80211_inform_bss_frame(struct wiphy * wiphy,struct ieee80211_channel * rx_channel,struct ieee80211_mgmt * mgmt,size_t len,s32 signal,gfp_t gfp)7726 cfg80211_inform_bss_frame(struct wiphy *wiphy,
7727 struct ieee80211_channel *rx_channel,
7728 struct ieee80211_mgmt *mgmt, size_t len,
7729 s32 signal, gfp_t gfp)
7730 {
7731 struct cfg80211_inform_bss data = {
7732 .chan = rx_channel,
7733 .signal = signal,
7734 };
7735
7736 return cfg80211_inform_bss_frame_data(wiphy, &data, mgmt, len, gfp);
7737 }
7738
7739 /**
7740 * cfg80211_gen_new_bssid - generate a nontransmitted BSSID for multi-BSSID
7741 * @bssid: transmitter BSSID
7742 * @max_bssid: max BSSID indicator, taken from Multiple BSSID element
7743 * @mbssid_index: BSSID index, taken from Multiple BSSID index element
7744 * @new_bssid: calculated nontransmitted BSSID
7745 */
cfg80211_gen_new_bssid(const u8 * bssid,u8 max_bssid,u8 mbssid_index,u8 * new_bssid)7746 static inline void cfg80211_gen_new_bssid(const u8 *bssid, u8 max_bssid,
7747 u8 mbssid_index, u8 *new_bssid)
7748 {
7749 u64 bssid_u64 = ether_addr_to_u64(bssid);
7750 u64 mask = GENMASK_ULL(max_bssid - 1, 0);
7751 u64 new_bssid_u64;
7752
7753 new_bssid_u64 = bssid_u64 & ~mask;
7754
7755 new_bssid_u64 |= ((bssid_u64 & mask) + mbssid_index) & mask;
7756
7757 u64_to_ether_addr(new_bssid_u64, new_bssid);
7758 }
7759
7760 /**
7761 * cfg80211_is_element_inherited - returns if element ID should be inherited
7762 * @element: element to check
7763 * @non_inherit_element: non inheritance element
7764 *
7765 * Return: %true if should be inherited, %false otherwise
7766 */
7767 bool cfg80211_is_element_inherited(const struct element *element,
7768 const struct element *non_inherit_element);
7769
7770 /**
7771 * cfg80211_merge_profile - merges a MBSSID profile if it is split between IEs
7772 * @ie: ies
7773 * @ielen: length of IEs
7774 * @mbssid_elem: current MBSSID element
7775 * @sub_elem: current MBSSID subelement (profile)
7776 * @merged_ie: location of the merged profile
7777 * @max_copy_len: max merged profile length
7778 *
7779 * Return: the number of bytes merged
7780 */
7781 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
7782 const struct element *mbssid_elem,
7783 const struct element *sub_elem,
7784 u8 *merged_ie, size_t max_copy_len);
7785
7786 /**
7787 * enum cfg80211_bss_frame_type - frame type that the BSS data came from
7788 * @CFG80211_BSS_FTYPE_UNKNOWN: driver doesn't know whether the data is
7789 * from a beacon or probe response
7790 * @CFG80211_BSS_FTYPE_BEACON: data comes from a beacon
7791 * @CFG80211_BSS_FTYPE_PRESP: data comes from a probe response
7792 * @CFG80211_BSS_FTYPE_S1G_BEACON: data comes from an S1G beacon
7793 */
7794 enum cfg80211_bss_frame_type {
7795 CFG80211_BSS_FTYPE_UNKNOWN,
7796 CFG80211_BSS_FTYPE_BEACON,
7797 CFG80211_BSS_FTYPE_PRESP,
7798 CFG80211_BSS_FTYPE_S1G_BEACON,
7799 };
7800
7801 /**
7802 * cfg80211_get_ies_channel_number - returns the channel number from ies
7803 * @ie: IEs
7804 * @ielen: length of IEs
7805 * @band: enum nl80211_band of the channel
7806 *
7807 * Return: the channel number, or -1 if none could be determined.
7808 */
7809 int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen,
7810 enum nl80211_band band);
7811
7812 /**
7813 * cfg80211_ssid_eq - compare two SSIDs
7814 * @a: first SSID
7815 * @b: second SSID
7816 *
7817 * Return: %true if SSIDs are equal, %false otherwise.
7818 */
7819 static inline bool
cfg80211_ssid_eq(struct cfg80211_ssid * a,struct cfg80211_ssid * b)7820 cfg80211_ssid_eq(struct cfg80211_ssid *a, struct cfg80211_ssid *b)
7821 {
7822 if (WARN_ON(!a || !b))
7823 return false;
7824 if (a->ssid_len != b->ssid_len)
7825 return false;
7826 return memcmp(a->ssid, b->ssid, a->ssid_len) ? false : true;
7827 }
7828
7829 /**
7830 * cfg80211_inform_bss_data - inform cfg80211 of a new BSS
7831 *
7832 * @wiphy: the wiphy reporting the BSS
7833 * @data: the BSS metadata
7834 * @ftype: frame type (if known)
7835 * @bssid: the BSSID of the BSS
7836 * @tsf: the TSF sent by the peer in the beacon/probe response (or 0)
7837 * @capability: the capability field sent by the peer
7838 * @beacon_interval: the beacon interval announced by the peer
7839 * @ie: additional IEs sent by the peer
7840 * @ielen: length of the additional IEs
7841 * @gfp: context flags
7842 *
7843 * This informs cfg80211 that BSS information was found and
7844 * the BSS should be updated/added.
7845 *
7846 * Return: A referenced struct, must be released with cfg80211_put_bss()!
7847 * Or %NULL on error.
7848 */
7849 struct cfg80211_bss * __must_check
7850 cfg80211_inform_bss_data(struct wiphy *wiphy,
7851 struct cfg80211_inform_bss *data,
7852 enum cfg80211_bss_frame_type ftype,
7853 const u8 *bssid, u64 tsf, u16 capability,
7854 u16 beacon_interval, const u8 *ie, size_t ielen,
7855 gfp_t gfp);
7856
7857 static inline struct cfg80211_bss * __must_check
cfg80211_inform_bss(struct wiphy * wiphy,struct ieee80211_channel * rx_channel,enum cfg80211_bss_frame_type ftype,const u8 * bssid,u64 tsf,u16 capability,u16 beacon_interval,const u8 * ie,size_t ielen,s32 signal,gfp_t gfp)7858 cfg80211_inform_bss(struct wiphy *wiphy,
7859 struct ieee80211_channel *rx_channel,
7860 enum cfg80211_bss_frame_type ftype,
7861 const u8 *bssid, u64 tsf, u16 capability,
7862 u16 beacon_interval, const u8 *ie, size_t ielen,
7863 s32 signal, gfp_t gfp)
7864 {
7865 struct cfg80211_inform_bss data = {
7866 .chan = rx_channel,
7867 .signal = signal,
7868 };
7869
7870 return cfg80211_inform_bss_data(wiphy, &data, ftype, bssid, tsf,
7871 capability, beacon_interval, ie, ielen,
7872 gfp);
7873 }
7874
7875 /**
7876 * __cfg80211_get_bss - get a BSS reference
7877 * @wiphy: the wiphy this BSS struct belongs to
7878 * @channel: the channel to search on (or %NULL)
7879 * @bssid: the desired BSSID (or %NULL)
7880 * @ssid: the desired SSID (or %NULL)
7881 * @ssid_len: length of the SSID (or 0)
7882 * @bss_type: type of BSS, see &enum ieee80211_bss_type
7883 * @privacy: privacy filter, see &enum ieee80211_privacy
7884 * @use_for: indicates which use is intended
7885 *
7886 * Return: Reference-counted BSS on success. %NULL on error.
7887 */
7888 struct cfg80211_bss *__cfg80211_get_bss(struct wiphy *wiphy,
7889 struct ieee80211_channel *channel,
7890 const u8 *bssid,
7891 const u8 *ssid, size_t ssid_len,
7892 enum ieee80211_bss_type bss_type,
7893 enum ieee80211_privacy privacy,
7894 u32 use_for);
7895
7896 /**
7897 * cfg80211_get_bss - get a BSS reference
7898 * @wiphy: the wiphy this BSS struct belongs to
7899 * @channel: the channel to search on (or %NULL)
7900 * @bssid: the desired BSSID (or %NULL)
7901 * @ssid: the desired SSID (or %NULL)
7902 * @ssid_len: length of the SSID (or 0)
7903 * @bss_type: type of BSS, see &enum ieee80211_bss_type
7904 * @privacy: privacy filter, see &enum ieee80211_privacy
7905 *
7906 * This version implies regular usage, %NL80211_BSS_USE_FOR_NORMAL.
7907 *
7908 * Return: Reference-counted BSS on success. %NULL on error.
7909 */
7910 static inline struct cfg80211_bss *
cfg80211_get_bss(struct wiphy * wiphy,struct ieee80211_channel * channel,const u8 * bssid,const u8 * ssid,size_t ssid_len,enum ieee80211_bss_type bss_type,enum ieee80211_privacy privacy)7911 cfg80211_get_bss(struct wiphy *wiphy, struct ieee80211_channel *channel,
7912 const u8 *bssid, const u8 *ssid, size_t ssid_len,
7913 enum ieee80211_bss_type bss_type,
7914 enum ieee80211_privacy privacy)
7915 {
7916 return __cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len,
7917 bss_type, privacy,
7918 NL80211_BSS_USE_FOR_NORMAL);
7919 }
7920
7921 static inline struct cfg80211_bss *
cfg80211_get_ibss(struct wiphy * wiphy,struct ieee80211_channel * channel,const u8 * ssid,size_t ssid_len)7922 cfg80211_get_ibss(struct wiphy *wiphy,
7923 struct ieee80211_channel *channel,
7924 const u8 *ssid, size_t ssid_len)
7925 {
7926 return cfg80211_get_bss(wiphy, channel, NULL, ssid, ssid_len,
7927 IEEE80211_BSS_TYPE_IBSS,
7928 IEEE80211_PRIVACY_ANY);
7929 }
7930
7931 /**
7932 * cfg80211_ref_bss - reference BSS struct
7933 * @wiphy: the wiphy this BSS struct belongs to
7934 * @bss: the BSS struct to reference
7935 *
7936 * Increments the refcount of the given BSS struct.
7937 */
7938 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *bss);
7939
7940 /**
7941 * cfg80211_put_bss - unref BSS struct
7942 * @wiphy: the wiphy this BSS struct belongs to
7943 * @bss: the BSS struct
7944 *
7945 * Decrements the refcount of the given BSS struct.
7946 */
7947 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *bss);
7948
7949 /**
7950 * cfg80211_unlink_bss - unlink BSS from internal data structures
7951 * @wiphy: the wiphy
7952 * @bss: the bss to remove
7953 *
7954 * This function removes the given BSS from the internal data structures
7955 * thereby making it no longer show up in scan results etc. Use this
7956 * function when you detect a BSS is gone. Normally BSSes will also time
7957 * out, so it is not necessary to use this function at all.
7958 */
7959 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *bss);
7960
7961 /**
7962 * cfg80211_bss_iter - iterate all BSS entries
7963 *
7964 * This function iterates over the BSS entries associated with the given wiphy
7965 * and calls the callback for the iterated BSS. The iterator function is not
7966 * allowed to call functions that might modify the internal state of the BSS DB.
7967 *
7968 * @wiphy: the wiphy
7969 * @chandef: if given, the iterator function will be called only if the channel
7970 * of the currently iterated BSS is a subset of the given channel.
7971 * @iter: the iterator function to call
7972 * @iter_data: an argument to the iterator function
7973 */
7974 void cfg80211_bss_iter(struct wiphy *wiphy,
7975 struct cfg80211_chan_def *chandef,
7976 void (*iter)(struct wiphy *wiphy,
7977 struct cfg80211_bss *bss,
7978 void *data),
7979 void *iter_data);
7980
7981 /**
7982 * cfg80211_rx_mlme_mgmt - notification of processed MLME management frame
7983 * @dev: network device
7984 * @buf: authentication frame (header + body)
7985 * @len: length of the frame data
7986 *
7987 * This function is called whenever an authentication, disassociation or
7988 * deauthentication frame has been received and processed in station mode.
7989 * After being asked to authenticate via cfg80211_ops::auth() the driver must
7990 * call either this function or cfg80211_auth_timeout().
7991 * After being asked to associate via cfg80211_ops::assoc() the driver must
7992 * call either this function or cfg80211_auth_timeout().
7993 * While connected, the driver must calls this for received and processed
7994 * disassociation and deauthentication frames. If the frame couldn't be used
7995 * because it was unprotected, the driver must call the function
7996 * cfg80211_rx_unprot_mlme_mgmt() instead.
7997 *
7998 * This function may sleep. The caller must hold the corresponding wdev's mutex.
7999 */
8000 void cfg80211_rx_mlme_mgmt(struct net_device *dev, const u8 *buf, size_t len);
8001
8002 /**
8003 * cfg80211_auth_timeout - notification of timed out authentication
8004 * @dev: network device
8005 * @addr: The MAC address of the device with which the authentication timed out
8006 *
8007 * This function may sleep. The caller must hold the corresponding wdev's
8008 * mutex.
8009 */
8010 void cfg80211_auth_timeout(struct net_device *dev, const u8 *addr);
8011
8012 /**
8013 * struct cfg80211_rx_assoc_resp_data - association response data
8014 * @buf: (Re)Association Response frame (header + body)
8015 * @len: length of the frame data
8016 * @uapsd_queues: bitmap of queues configured for uapsd. Same format
8017 * as the AC bitmap in the QoS info field
8018 * @req_ies: information elements from the (Re)Association Request frame
8019 * @req_ies_len: length of req_ies data
8020 * @ap_mld_addr: AP MLD address (in case of MLO)
8021 * @links: per-link information indexed by link ID, use links[0] for
8022 * non-MLO connections
8023 * @links.bss: the BSS that association was requested with, ownership of the
8024 * pointer moves to cfg80211 in the call to cfg80211_rx_assoc_resp()
8025 * @links.status: Set this (along with a BSS pointer) for links that
8026 * were rejected by the AP.
8027 */
8028 struct cfg80211_rx_assoc_resp_data {
8029 const u8 *buf;
8030 size_t len;
8031 const u8 *req_ies;
8032 size_t req_ies_len;
8033 int uapsd_queues;
8034 const u8 *ap_mld_addr;
8035 struct {
8036 u8 addr[ETH_ALEN] __aligned(2);
8037 struct cfg80211_bss *bss;
8038 u16 status;
8039 } links[IEEE80211_MLD_MAX_NUM_LINKS];
8040 };
8041
8042 /**
8043 * cfg80211_rx_assoc_resp - notification of processed association response
8044 * @dev: network device
8045 * @data: association response data, &struct cfg80211_rx_assoc_resp_data
8046 *
8047 * After being asked to associate via cfg80211_ops::assoc() the driver must
8048 * call either this function or cfg80211_auth_timeout().
8049 *
8050 * This function may sleep. The caller must hold the corresponding wdev's mutex.
8051 */
8052 void cfg80211_rx_assoc_resp(struct net_device *dev,
8053 const struct cfg80211_rx_assoc_resp_data *data);
8054
8055 /**
8056 * struct cfg80211_assoc_failure - association failure data
8057 * @ap_mld_addr: AP MLD address, or %NULL
8058 * @bss: list of BSSes, must use entry 0 for non-MLO connections
8059 * (@ap_mld_addr is %NULL)
8060 * @timeout: indicates the association failed due to timeout, otherwise
8061 * the association was abandoned for a reason reported through some
8062 * other API (e.g. deauth RX)
8063 */
8064 struct cfg80211_assoc_failure {
8065 const u8 *ap_mld_addr;
8066 struct cfg80211_bss *bss[IEEE80211_MLD_MAX_NUM_LINKS];
8067 bool timeout;
8068 };
8069
8070 /**
8071 * cfg80211_assoc_failure - notification of association failure
8072 * @dev: network device
8073 * @data: data describing the association failure
8074 *
8075 * This function may sleep. The caller must hold the corresponding wdev's mutex.
8076 */
8077 void cfg80211_assoc_failure(struct net_device *dev,
8078 struct cfg80211_assoc_failure *data);
8079
8080 /**
8081 * cfg80211_tx_mlme_mgmt - notification of transmitted deauth/disassoc frame
8082 * @dev: network device
8083 * @buf: 802.11 frame (header + body)
8084 * @len: length of the frame data
8085 * @reconnect: immediate reconnect is desired (include the nl80211 attribute)
8086 *
8087 * This function is called whenever deauthentication has been processed in
8088 * station mode. This includes both received deauthentication frames and
8089 * locally generated ones. This function may sleep. The caller must hold the
8090 * corresponding wdev's mutex.
8091 */
8092 void cfg80211_tx_mlme_mgmt(struct net_device *dev, const u8 *buf, size_t len,
8093 bool reconnect);
8094
8095 /**
8096 * cfg80211_rx_unprot_mlme_mgmt - notification of unprotected mlme mgmt frame
8097 * @dev: network device
8098 * @buf: received management frame (header + body)
8099 * @len: length of the frame data
8100 *
8101 * This function is called whenever a received deauthentication or dissassoc
8102 * frame has been dropped in station mode because of MFP being used but the
8103 * frame was not protected. This is also used to notify reception of a Beacon
8104 * frame that was dropped because it did not include a valid MME MIC while
8105 * beacon protection was enabled (BIGTK configured in station mode).
8106 *
8107 * This function may sleep.
8108 */
8109 void cfg80211_rx_unprot_mlme_mgmt(struct net_device *dev,
8110 const u8 *buf, size_t len);
8111
8112 /**
8113 * cfg80211_michael_mic_failure - notification of Michael MIC failure (TKIP)
8114 * @dev: network device
8115 * @addr: The source MAC address of the frame
8116 * @key_type: The key type that the received frame used
8117 * @key_id: Key identifier (0..3). Can be -1 if missing.
8118 * @tsc: The TSC value of the frame that generated the MIC failure (6 octets)
8119 * @gfp: allocation flags
8120 *
8121 * This function is called whenever the local MAC detects a MIC failure in a
8122 * received frame. This matches with MLME-MICHAELMICFAILURE.indication()
8123 * primitive.
8124 */
8125 void cfg80211_michael_mic_failure(struct net_device *dev, const u8 *addr,
8126 enum nl80211_key_type key_type, int key_id,
8127 const u8 *tsc, gfp_t gfp);
8128
8129 /**
8130 * cfg80211_ibss_joined - notify cfg80211 that device joined an IBSS
8131 *
8132 * @dev: network device
8133 * @bssid: the BSSID of the IBSS joined
8134 * @channel: the channel of the IBSS joined
8135 * @gfp: allocation flags
8136 *
8137 * This function notifies cfg80211 that the device joined an IBSS or
8138 * switched to a different BSSID. Before this function can be called,
8139 * either a beacon has to have been received from the IBSS, or one of
8140 * the cfg80211_inform_bss{,_frame} functions must have been called
8141 * with the locally generated beacon -- this guarantees that there is
8142 * always a scan result for this IBSS. cfg80211 will handle the rest.
8143 */
8144 void cfg80211_ibss_joined(struct net_device *dev, const u8 *bssid,
8145 struct ieee80211_channel *channel, gfp_t gfp);
8146
8147 /**
8148 * cfg80211_notify_new_peer_candidate - notify cfg80211 of a new mesh peer
8149 * candidate
8150 *
8151 * @dev: network device
8152 * @macaddr: the MAC address of the new candidate
8153 * @ie: information elements advertised by the peer candidate
8154 * @ie_len: length of the information elements buffer
8155 * @sig_dbm: signal level in dBm
8156 * @gfp: allocation flags
8157 *
8158 * This function notifies cfg80211 that the mesh peer candidate has been
8159 * detected, most likely via a beacon or, less likely, via a probe response.
8160 * cfg80211 then sends a notification to userspace.
8161 */
8162 void cfg80211_notify_new_peer_candidate(struct net_device *dev,
8163 const u8 *macaddr, const u8 *ie, u8 ie_len,
8164 int sig_dbm, gfp_t gfp);
8165
8166 /**
8167 * DOC: RFkill integration
8168 *
8169 * RFkill integration in cfg80211 is almost invisible to drivers,
8170 * as cfg80211 automatically registers an rfkill instance for each
8171 * wireless device it knows about. Soft kill is also translated
8172 * into disconnecting and turning all interfaces off. Drivers are
8173 * expected to turn off the device when all interfaces are down.
8174 *
8175 * However, devices may have a hard RFkill line, in which case they
8176 * also need to interact with the rfkill subsystem, via cfg80211.
8177 * They can do this with a few helper functions documented here.
8178 */
8179
8180 /**
8181 * wiphy_rfkill_set_hw_state_reason - notify cfg80211 about hw block state
8182 * @wiphy: the wiphy
8183 * @blocked: block status
8184 * @reason: one of reasons in &enum rfkill_hard_block_reasons
8185 */
8186 void wiphy_rfkill_set_hw_state_reason(struct wiphy *wiphy, bool blocked,
8187 enum rfkill_hard_block_reasons reason);
8188
wiphy_rfkill_set_hw_state(struct wiphy * wiphy,bool blocked)8189 static inline void wiphy_rfkill_set_hw_state(struct wiphy *wiphy, bool blocked)
8190 {
8191 wiphy_rfkill_set_hw_state_reason(wiphy, blocked,
8192 RFKILL_HARD_BLOCK_SIGNAL);
8193 }
8194
8195 /**
8196 * wiphy_rfkill_start_polling - start polling rfkill
8197 * @wiphy: the wiphy
8198 */
8199 void wiphy_rfkill_start_polling(struct wiphy *wiphy);
8200
8201 /**
8202 * wiphy_rfkill_stop_polling - stop polling rfkill
8203 * @wiphy: the wiphy
8204 */
wiphy_rfkill_stop_polling(struct wiphy * wiphy)8205 static inline void wiphy_rfkill_stop_polling(struct wiphy *wiphy)
8206 {
8207 rfkill_pause_polling(wiphy->rfkill);
8208 }
8209
8210 /**
8211 * DOC: Vendor commands
8212 *
8213 * Occasionally, there are special protocol or firmware features that
8214 * can't be implemented very openly. For this and similar cases, the
8215 * vendor command functionality allows implementing the features with
8216 * (typically closed-source) userspace and firmware, using nl80211 as
8217 * the configuration mechanism.
8218 *
8219 * A driver supporting vendor commands must register them as an array
8220 * in struct wiphy, with handlers for each one. Each command has an
8221 * OUI and sub command ID to identify it.
8222 *
8223 * Note that this feature should not be (ab)used to implement protocol
8224 * features that could openly be shared across drivers. In particular,
8225 * it must never be required to use vendor commands to implement any
8226 * "normal" functionality that higher-level userspace like connection
8227 * managers etc. need.
8228 */
8229
8230 struct sk_buff *__cfg80211_alloc_reply_skb(struct wiphy *wiphy,
8231 enum nl80211_commands cmd,
8232 enum nl80211_attrs attr,
8233 int approxlen);
8234
8235 struct sk_buff *__cfg80211_alloc_event_skb(struct wiphy *wiphy,
8236 struct wireless_dev *wdev,
8237 enum nl80211_commands cmd,
8238 enum nl80211_attrs attr,
8239 unsigned int portid,
8240 int vendor_event_idx,
8241 int approxlen, gfp_t gfp);
8242
8243 void __cfg80211_send_event_skb(struct sk_buff *skb, gfp_t gfp);
8244
8245 /**
8246 * cfg80211_vendor_cmd_alloc_reply_skb - allocate vendor command reply
8247 * @wiphy: the wiphy
8248 * @approxlen: an upper bound of the length of the data that will
8249 * be put into the skb
8250 *
8251 * This function allocates and pre-fills an skb for a reply to
8252 * a vendor command. Since it is intended for a reply, calling
8253 * it outside of a vendor command's doit() operation is invalid.
8254 *
8255 * The returned skb is pre-filled with some identifying data in
8256 * a way that any data that is put into the skb (with skb_put(),
8257 * nla_put() or similar) will end up being within the
8258 * %NL80211_ATTR_VENDOR_DATA attribute, so all that needs to be done
8259 * with the skb is adding data for the corresponding userspace tool
8260 * which can then read that data out of the vendor data attribute.
8261 * You must not modify the skb in any other way.
8262 *
8263 * When done, call cfg80211_vendor_cmd_reply() with the skb and return
8264 * its error code as the result of the doit() operation.
8265 *
8266 * Return: An allocated and pre-filled skb. %NULL if any errors happen.
8267 */
8268 static inline struct sk_buff *
cfg80211_vendor_cmd_alloc_reply_skb(struct wiphy * wiphy,int approxlen)8269 cfg80211_vendor_cmd_alloc_reply_skb(struct wiphy *wiphy, int approxlen)
8270 {
8271 return __cfg80211_alloc_reply_skb(wiphy, NL80211_CMD_VENDOR,
8272 NL80211_ATTR_VENDOR_DATA, approxlen);
8273 }
8274
8275 /**
8276 * cfg80211_vendor_cmd_reply - send the reply skb
8277 * @skb: The skb, must have been allocated with
8278 * cfg80211_vendor_cmd_alloc_reply_skb()
8279 *
8280 * Since calling this function will usually be the last thing
8281 * before returning from the vendor command doit() you should
8282 * return the error code. Note that this function consumes the
8283 * skb regardless of the return value.
8284 *
8285 * Return: An error code or 0 on success.
8286 */
8287 int cfg80211_vendor_cmd_reply(struct sk_buff *skb);
8288
8289 /**
8290 * cfg80211_vendor_cmd_get_sender - get the current sender netlink ID
8291 * @wiphy: the wiphy
8292 *
8293 * Return: the current netlink port ID in a vendor command handler.
8294 *
8295 * Context: May only be called from a vendor command handler
8296 */
8297 unsigned int cfg80211_vendor_cmd_get_sender(struct wiphy *wiphy);
8298
8299 /**
8300 * cfg80211_vendor_event_alloc - allocate vendor-specific event skb
8301 * @wiphy: the wiphy
8302 * @wdev: the wireless device
8303 * @event_idx: index of the vendor event in the wiphy's vendor_events
8304 * @approxlen: an upper bound of the length of the data that will
8305 * be put into the skb
8306 * @gfp: allocation flags
8307 *
8308 * This function allocates and pre-fills an skb for an event on the
8309 * vendor-specific multicast group.
8310 *
8311 * If wdev != NULL, both the ifindex and identifier of the specified
8312 * wireless device are added to the event message before the vendor data
8313 * attribute.
8314 *
8315 * When done filling the skb, call cfg80211_vendor_event() with the
8316 * skb to send the event.
8317 *
8318 * Return: An allocated and pre-filled skb. %NULL if any errors happen.
8319 */
8320 static inline struct sk_buff *
cfg80211_vendor_event_alloc(struct wiphy * wiphy,struct wireless_dev * wdev,int approxlen,int event_idx,gfp_t gfp)8321 cfg80211_vendor_event_alloc(struct wiphy *wiphy, struct wireless_dev *wdev,
8322 int approxlen, int event_idx, gfp_t gfp)
8323 {
8324 return __cfg80211_alloc_event_skb(wiphy, wdev, NL80211_CMD_VENDOR,
8325 NL80211_ATTR_VENDOR_DATA,
8326 0, event_idx, approxlen, gfp);
8327 }
8328
8329 /**
8330 * cfg80211_vendor_event_alloc_ucast - alloc unicast vendor-specific event skb
8331 * @wiphy: the wiphy
8332 * @wdev: the wireless device
8333 * @event_idx: index of the vendor event in the wiphy's vendor_events
8334 * @portid: port ID of the receiver
8335 * @approxlen: an upper bound of the length of the data that will
8336 * be put into the skb
8337 * @gfp: allocation flags
8338 *
8339 * This function allocates and pre-fills an skb for an event to send to
8340 * a specific (userland) socket. This socket would previously have been
8341 * obtained by cfg80211_vendor_cmd_get_sender(), and the caller MUST take
8342 * care to register a netlink notifier to see when the socket closes.
8343 *
8344 * If wdev != NULL, both the ifindex and identifier of the specified
8345 * wireless device are added to the event message before the vendor data
8346 * attribute.
8347 *
8348 * When done filling the skb, call cfg80211_vendor_event() with the
8349 * skb to send the event.
8350 *
8351 * Return: An allocated and pre-filled skb. %NULL if any errors happen.
8352 */
8353 static inline struct sk_buff *
cfg80211_vendor_event_alloc_ucast(struct wiphy * wiphy,struct wireless_dev * wdev,unsigned int portid,int approxlen,int event_idx,gfp_t gfp)8354 cfg80211_vendor_event_alloc_ucast(struct wiphy *wiphy,
8355 struct wireless_dev *wdev,
8356 unsigned int portid, int approxlen,
8357 int event_idx, gfp_t gfp)
8358 {
8359 return __cfg80211_alloc_event_skb(wiphy, wdev, NL80211_CMD_VENDOR,
8360 NL80211_ATTR_VENDOR_DATA,
8361 portid, event_idx, approxlen, gfp);
8362 }
8363
8364 /**
8365 * cfg80211_vendor_event - send the event
8366 * @skb: The skb, must have been allocated with cfg80211_vendor_event_alloc()
8367 * @gfp: allocation flags
8368 *
8369 * This function sends the given @skb, which must have been allocated
8370 * by cfg80211_vendor_event_alloc(), as an event. It always consumes it.
8371 */
cfg80211_vendor_event(struct sk_buff * skb,gfp_t gfp)8372 static inline void cfg80211_vendor_event(struct sk_buff *skb, gfp_t gfp)
8373 {
8374 __cfg80211_send_event_skb(skb, gfp);
8375 }
8376
8377 #ifdef CONFIG_NL80211_TESTMODE
8378 /**
8379 * DOC: Test mode
8380 *
8381 * Test mode is a set of utility functions to allow drivers to
8382 * interact with driver-specific tools to aid, for instance,
8383 * factory programming.
8384 *
8385 * This chapter describes how drivers interact with it. For more
8386 * information see the nl80211 book's chapter on it.
8387 */
8388
8389 /**
8390 * cfg80211_testmode_alloc_reply_skb - allocate testmode reply
8391 * @wiphy: the wiphy
8392 * @approxlen: an upper bound of the length of the data that will
8393 * be put into the skb
8394 *
8395 * This function allocates and pre-fills an skb for a reply to
8396 * the testmode command. Since it is intended for a reply, calling
8397 * it outside of the @testmode_cmd operation is invalid.
8398 *
8399 * The returned skb is pre-filled with the wiphy index and set up in
8400 * a way that any data that is put into the skb (with skb_put(),
8401 * nla_put() or similar) will end up being within the
8402 * %NL80211_ATTR_TESTDATA attribute, so all that needs to be done
8403 * with the skb is adding data for the corresponding userspace tool
8404 * which can then read that data out of the testdata attribute. You
8405 * must not modify the skb in any other way.
8406 *
8407 * When done, call cfg80211_testmode_reply() with the skb and return
8408 * its error code as the result of the @testmode_cmd operation.
8409 *
8410 * Return: An allocated and pre-filled skb. %NULL if any errors happen.
8411 */
8412 static inline struct sk_buff *
cfg80211_testmode_alloc_reply_skb(struct wiphy * wiphy,int approxlen)8413 cfg80211_testmode_alloc_reply_skb(struct wiphy *wiphy, int approxlen)
8414 {
8415 return __cfg80211_alloc_reply_skb(wiphy, NL80211_CMD_TESTMODE,
8416 NL80211_ATTR_TESTDATA, approxlen);
8417 }
8418
8419 /**
8420 * cfg80211_testmode_reply - send the reply skb
8421 * @skb: The skb, must have been allocated with
8422 * cfg80211_testmode_alloc_reply_skb()
8423 *
8424 * Since calling this function will usually be the last thing
8425 * before returning from the @testmode_cmd you should return
8426 * the error code. Note that this function consumes the skb
8427 * regardless of the return value.
8428 *
8429 * Return: An error code or 0 on success.
8430 */
cfg80211_testmode_reply(struct sk_buff * skb)8431 static inline int cfg80211_testmode_reply(struct sk_buff *skb)
8432 {
8433 return cfg80211_vendor_cmd_reply(skb);
8434 }
8435
8436 /**
8437 * cfg80211_testmode_alloc_event_skb - allocate testmode event
8438 * @wiphy: the wiphy
8439 * @approxlen: an upper bound of the length of the data that will
8440 * be put into the skb
8441 * @gfp: allocation flags
8442 *
8443 * This function allocates and pre-fills an skb for an event on the
8444 * testmode multicast group.
8445 *
8446 * The returned skb is set up in the same way as with
8447 * cfg80211_testmode_alloc_reply_skb() but prepared for an event. As
8448 * there, you should simply add data to it that will then end up in the
8449 * %NL80211_ATTR_TESTDATA attribute. Again, you must not modify the skb
8450 * in any other way.
8451 *
8452 * When done filling the skb, call cfg80211_testmode_event() with the
8453 * skb to send the event.
8454 *
8455 * Return: An allocated and pre-filled skb. %NULL if any errors happen.
8456 */
8457 static inline struct sk_buff *
cfg80211_testmode_alloc_event_skb(struct wiphy * wiphy,int approxlen,gfp_t gfp)8458 cfg80211_testmode_alloc_event_skb(struct wiphy *wiphy, int approxlen, gfp_t gfp)
8459 {
8460 return __cfg80211_alloc_event_skb(wiphy, NULL, NL80211_CMD_TESTMODE,
8461 NL80211_ATTR_TESTDATA, 0, -1,
8462 approxlen, gfp);
8463 }
8464
8465 /**
8466 * cfg80211_testmode_event - send the event
8467 * @skb: The skb, must have been allocated with
8468 * cfg80211_testmode_alloc_event_skb()
8469 * @gfp: allocation flags
8470 *
8471 * This function sends the given @skb, which must have been allocated
8472 * by cfg80211_testmode_alloc_event_skb(), as an event. It always
8473 * consumes it.
8474 */
cfg80211_testmode_event(struct sk_buff * skb,gfp_t gfp)8475 static inline void cfg80211_testmode_event(struct sk_buff *skb, gfp_t gfp)
8476 {
8477 __cfg80211_send_event_skb(skb, gfp);
8478 }
8479
8480 #define CFG80211_TESTMODE_CMD(cmd) .testmode_cmd = (cmd),
8481 #define CFG80211_TESTMODE_DUMP(cmd) .testmode_dump = (cmd),
8482 #else
8483 #define CFG80211_TESTMODE_CMD(cmd)
8484 #define CFG80211_TESTMODE_DUMP(cmd)
8485 #endif
8486
8487 /**
8488 * struct cfg80211_fils_resp_params - FILS connection response params
8489 * @kek: KEK derived from a successful FILS connection (may be %NULL)
8490 * @kek_len: Length of @fils_kek in octets
8491 * @update_erp_next_seq_num: Boolean value to specify whether the value in
8492 * @erp_next_seq_num is valid.
8493 * @erp_next_seq_num: The next sequence number to use in ERP message in
8494 * FILS Authentication. This value should be specified irrespective of the
8495 * status for a FILS connection.
8496 * @pmk: A new PMK if derived from a successful FILS connection (may be %NULL).
8497 * @pmk_len: Length of @pmk in octets
8498 * @pmkid: A new PMKID if derived from a successful FILS connection or the PMKID
8499 * used for this FILS connection (may be %NULL).
8500 */
8501 struct cfg80211_fils_resp_params {
8502 const u8 *kek;
8503 size_t kek_len;
8504 bool update_erp_next_seq_num;
8505 u16 erp_next_seq_num;
8506 const u8 *pmk;
8507 size_t pmk_len;
8508 const u8 *pmkid;
8509 };
8510
8511 /**
8512 * struct cfg80211_connect_resp_params - Connection response params
8513 * @status: Status code, %WLAN_STATUS_SUCCESS for successful connection, use
8514 * %WLAN_STATUS_UNSPECIFIED_FAILURE if your device cannot give you
8515 * the real status code for failures. If this call is used to report a
8516 * failure due to a timeout (e.g., not receiving an Authentication frame
8517 * from the AP) instead of an explicit rejection by the AP, -1 is used to
8518 * indicate that this is a failure, but without a status code.
8519 * @timeout_reason is used to report the reason for the timeout in that
8520 * case.
8521 * @req_ie: Association request IEs (may be %NULL)
8522 * @req_ie_len: Association request IEs length
8523 * @resp_ie: Association response IEs (may be %NULL)
8524 * @resp_ie_len: Association response IEs length
8525 * @fils: FILS connection response parameters.
8526 * @timeout_reason: Reason for connection timeout. This is used when the
8527 * connection fails due to a timeout instead of an explicit rejection from
8528 * the AP. %NL80211_TIMEOUT_UNSPECIFIED is used when the timeout reason is
8529 * not known. This value is used only if @status < 0 to indicate that the
8530 * failure is due to a timeout and not due to explicit rejection by the AP.
8531 * This value is ignored in other cases (@status >= 0).
8532 * @valid_links: For MLO connection, BIT mask of the valid link ids. Otherwise
8533 * zero.
8534 * @ap_mld_addr: For MLO connection, MLD address of the AP. Otherwise %NULL.
8535 * @links : For MLO connection, contains link info for the valid links indicated
8536 * using @valid_links. For non-MLO connection, links[0] contains the
8537 * connected AP info.
8538 * @links.addr: For MLO connection, MAC address of the STA link. Otherwise
8539 * %NULL.
8540 * @links.bssid: For MLO connection, MAC address of the AP link. For non-MLO
8541 * connection, links[0].bssid points to the BSSID of the AP (may be %NULL).
8542 * @links.bss: For MLO connection, entry of bss to which STA link is connected.
8543 * For non-MLO connection, links[0].bss points to entry of bss to which STA
8544 * is connected. It can be obtained through cfg80211_get_bss() (may be
8545 * %NULL). It is recommended to store the bss from the connect_request and
8546 * hold a reference to it and return through this param to avoid a warning
8547 * if the bss is expired during the connection, esp. for those drivers
8548 * implementing connect op. Only one parameter among @bssid and @bss needs
8549 * to be specified.
8550 * @links.status: per-link status code, to report a status code that's not
8551 * %WLAN_STATUS_SUCCESS for a given link, it must also be in the
8552 * @valid_links bitmap and may have a BSS pointer (which is then released)
8553 */
8554 struct cfg80211_connect_resp_params {
8555 int status;
8556 const u8 *req_ie;
8557 size_t req_ie_len;
8558 const u8 *resp_ie;
8559 size_t resp_ie_len;
8560 struct cfg80211_fils_resp_params fils;
8561 enum nl80211_timeout_reason timeout_reason;
8562
8563 const u8 *ap_mld_addr;
8564 u16 valid_links;
8565 struct {
8566 const u8 *addr;
8567 const u8 *bssid;
8568 struct cfg80211_bss *bss;
8569 u16 status;
8570 } links[IEEE80211_MLD_MAX_NUM_LINKS];
8571 };
8572
8573 /**
8574 * cfg80211_connect_done - notify cfg80211 of connection result
8575 *
8576 * @dev: network device
8577 * @params: connection response parameters
8578 * @gfp: allocation flags
8579 *
8580 * It should be called by the underlying driver once execution of the connection
8581 * request from connect() has been completed. This is similar to
8582 * cfg80211_connect_bss(), but takes a structure pointer for connection response
8583 * parameters. Only one of the functions among cfg80211_connect_bss(),
8584 * cfg80211_connect_result(), cfg80211_connect_timeout(),
8585 * and cfg80211_connect_done() should be called.
8586 */
8587 void cfg80211_connect_done(struct net_device *dev,
8588 struct cfg80211_connect_resp_params *params,
8589 gfp_t gfp);
8590
8591 /**
8592 * cfg80211_connect_bss - notify cfg80211 of connection result
8593 *
8594 * @dev: network device
8595 * @bssid: the BSSID of the AP
8596 * @bss: Entry of bss to which STA got connected to, can be obtained through
8597 * cfg80211_get_bss() (may be %NULL). But it is recommended to store the
8598 * bss from the connect_request and hold a reference to it and return
8599 * through this param to avoid a warning if the bss is expired during the
8600 * connection, esp. for those drivers implementing connect op.
8601 * Only one parameter among @bssid and @bss needs to be specified.
8602 * @req_ie: association request IEs (maybe be %NULL)
8603 * @req_ie_len: association request IEs length
8604 * @resp_ie: association response IEs (may be %NULL)
8605 * @resp_ie_len: assoc response IEs length
8606 * @status: status code, %WLAN_STATUS_SUCCESS for successful connection, use
8607 * %WLAN_STATUS_UNSPECIFIED_FAILURE if your device cannot give you
8608 * the real status code for failures. If this call is used to report a
8609 * failure due to a timeout (e.g., not receiving an Authentication frame
8610 * from the AP) instead of an explicit rejection by the AP, -1 is used to
8611 * indicate that this is a failure, but without a status code.
8612 * @timeout_reason is used to report the reason for the timeout in that
8613 * case.
8614 * @gfp: allocation flags
8615 * @timeout_reason: reason for connection timeout. This is used when the
8616 * connection fails due to a timeout instead of an explicit rejection from
8617 * the AP. %NL80211_TIMEOUT_UNSPECIFIED is used when the timeout reason is
8618 * not known. This value is used only if @status < 0 to indicate that the
8619 * failure is due to a timeout and not due to explicit rejection by the AP.
8620 * This value is ignored in other cases (@status >= 0).
8621 *
8622 * It should be called by the underlying driver once execution of the connection
8623 * request from connect() has been completed. This is similar to
8624 * cfg80211_connect_result(), but with the option of identifying the exact bss
8625 * entry for the connection. Only one of the functions among
8626 * cfg80211_connect_bss(), cfg80211_connect_result(),
8627 * cfg80211_connect_timeout(), and cfg80211_connect_done() should be called.
8628 */
8629 static inline void
cfg80211_connect_bss(struct net_device * dev,const u8 * bssid,struct cfg80211_bss * bss,const u8 * req_ie,size_t req_ie_len,const u8 * resp_ie,size_t resp_ie_len,int status,gfp_t gfp,enum nl80211_timeout_reason timeout_reason)8630 cfg80211_connect_bss(struct net_device *dev, const u8 *bssid,
8631 struct cfg80211_bss *bss, const u8 *req_ie,
8632 size_t req_ie_len, const u8 *resp_ie,
8633 size_t resp_ie_len, int status, gfp_t gfp,
8634 enum nl80211_timeout_reason timeout_reason)
8635 {
8636 struct cfg80211_connect_resp_params params;
8637
8638 memset(¶ms, 0, sizeof(params));
8639 params.status = status;
8640 params.links[0].bssid = bssid;
8641 params.links[0].bss = bss;
8642 params.req_ie = req_ie;
8643 params.req_ie_len = req_ie_len;
8644 params.resp_ie = resp_ie;
8645 params.resp_ie_len = resp_ie_len;
8646 params.timeout_reason = timeout_reason;
8647
8648 cfg80211_connect_done(dev, ¶ms, gfp);
8649 }
8650
8651 /**
8652 * cfg80211_connect_result - notify cfg80211 of connection result
8653 *
8654 * @dev: network device
8655 * @bssid: the BSSID of the AP
8656 * @req_ie: association request IEs (maybe be %NULL)
8657 * @req_ie_len: association request IEs length
8658 * @resp_ie: association response IEs (may be %NULL)
8659 * @resp_ie_len: assoc response IEs length
8660 * @status: status code, %WLAN_STATUS_SUCCESS for successful connection, use
8661 * %WLAN_STATUS_UNSPECIFIED_FAILURE if your device cannot give you
8662 * the real status code for failures.
8663 * @gfp: allocation flags
8664 *
8665 * It should be called by the underlying driver once execution of the connection
8666 * request from connect() has been completed. This is similar to
8667 * cfg80211_connect_bss() which allows the exact bss entry to be specified. Only
8668 * one of the functions among cfg80211_connect_bss(), cfg80211_connect_result(),
8669 * cfg80211_connect_timeout(), and cfg80211_connect_done() should be called.
8670 */
8671 static inline void
cfg80211_connect_result(struct net_device * dev,const u8 * bssid,const u8 * req_ie,size_t req_ie_len,const u8 * resp_ie,size_t resp_ie_len,u16 status,gfp_t gfp)8672 cfg80211_connect_result(struct net_device *dev, const u8 *bssid,
8673 const u8 *req_ie, size_t req_ie_len,
8674 const u8 *resp_ie, size_t resp_ie_len,
8675 u16 status, gfp_t gfp)
8676 {
8677 cfg80211_connect_bss(dev, bssid, NULL, req_ie, req_ie_len, resp_ie,
8678 resp_ie_len, status, gfp,
8679 NL80211_TIMEOUT_UNSPECIFIED);
8680 }
8681
8682 /**
8683 * cfg80211_connect_timeout - notify cfg80211 of connection timeout
8684 *
8685 * @dev: network device
8686 * @bssid: the BSSID of the AP
8687 * @req_ie: association request IEs (maybe be %NULL)
8688 * @req_ie_len: association request IEs length
8689 * @gfp: allocation flags
8690 * @timeout_reason: reason for connection timeout.
8691 *
8692 * It should be called by the underlying driver whenever connect() has failed
8693 * in a sequence where no explicit authentication/association rejection was
8694 * received from the AP. This could happen, e.g., due to not being able to send
8695 * out the Authentication or Association Request frame or timing out while
8696 * waiting for the response. Only one of the functions among
8697 * cfg80211_connect_bss(), cfg80211_connect_result(),
8698 * cfg80211_connect_timeout(), and cfg80211_connect_done() should be called.
8699 */
8700 static inline void
cfg80211_connect_timeout(struct net_device * dev,const u8 * bssid,const u8 * req_ie,size_t req_ie_len,gfp_t gfp,enum nl80211_timeout_reason timeout_reason)8701 cfg80211_connect_timeout(struct net_device *dev, const u8 *bssid,
8702 const u8 *req_ie, size_t req_ie_len, gfp_t gfp,
8703 enum nl80211_timeout_reason timeout_reason)
8704 {
8705 cfg80211_connect_bss(dev, bssid, NULL, req_ie, req_ie_len, NULL, 0, -1,
8706 gfp, timeout_reason);
8707 }
8708
8709 /**
8710 * struct cfg80211_roam_info - driver initiated roaming information
8711 *
8712 * @req_ie: association request IEs (maybe be %NULL)
8713 * @req_ie_len: association request IEs length
8714 * @resp_ie: association response IEs (may be %NULL)
8715 * @resp_ie_len: assoc response IEs length
8716 * @fils: FILS related roaming information.
8717 * @valid_links: For MLO roaming, BIT mask of the new valid links is set.
8718 * Otherwise zero.
8719 * @ap_mld_addr: For MLO roaming, MLD address of the new AP. Otherwise %NULL.
8720 * @links : For MLO roaming, contains new link info for the valid links set in
8721 * @valid_links. For non-MLO roaming, links[0] contains the new AP info.
8722 * @links.addr: For MLO roaming, MAC address of the STA link. Otherwise %NULL.
8723 * @links.bssid: For MLO roaming, MAC address of the new AP link. For non-MLO
8724 * roaming, links[0].bssid points to the BSSID of the new AP. May be
8725 * %NULL if %links.bss is set.
8726 * @links.channel: the channel of the new AP.
8727 * @links.bss: For MLO roaming, entry of new bss to which STA link got
8728 * roamed. For non-MLO roaming, links[0].bss points to entry of bss to
8729 * which STA got roamed (may be %NULL if %links.bssid is set)
8730 */
8731 struct cfg80211_roam_info {
8732 const u8 *req_ie;
8733 size_t req_ie_len;
8734 const u8 *resp_ie;
8735 size_t resp_ie_len;
8736 struct cfg80211_fils_resp_params fils;
8737
8738 const u8 *ap_mld_addr;
8739 u16 valid_links;
8740 struct {
8741 const u8 *addr;
8742 const u8 *bssid;
8743 struct ieee80211_channel *channel;
8744 struct cfg80211_bss *bss;
8745 } links[IEEE80211_MLD_MAX_NUM_LINKS];
8746 };
8747
8748 /**
8749 * cfg80211_roamed - notify cfg80211 of roaming
8750 *
8751 * @dev: network device
8752 * @info: information about the new BSS. struct &cfg80211_roam_info.
8753 * @gfp: allocation flags
8754 *
8755 * This function may be called with the driver passing either the BSSID of the
8756 * new AP or passing the bss entry to avoid a race in timeout of the bss entry.
8757 * It should be called by the underlying driver whenever it roamed from one AP
8758 * to another while connected. Drivers which have roaming implemented in
8759 * firmware should pass the bss entry to avoid a race in bss entry timeout where
8760 * the bss entry of the new AP is seen in the driver, but gets timed out by the
8761 * time it is accessed in __cfg80211_roamed() due to delay in scheduling
8762 * rdev->event_work. In case of any failures, the reference is released
8763 * either in cfg80211_roamed() or in __cfg80211_romed(), Otherwise, it will be
8764 * released while disconnecting from the current bss.
8765 */
8766 void cfg80211_roamed(struct net_device *dev, struct cfg80211_roam_info *info,
8767 gfp_t gfp);
8768
8769 /**
8770 * cfg80211_port_authorized - notify cfg80211 of successful security association
8771 *
8772 * @dev: network device
8773 * @peer_addr: BSSID of the AP/P2P GO in case of STA/GC or STA/GC MAC address
8774 * in case of AP/P2P GO
8775 * @td_bitmap: transition disable policy
8776 * @td_bitmap_len: Length of transition disable policy
8777 * @gfp: allocation flags
8778 *
8779 * This function should be called by a driver that supports 4 way handshake
8780 * offload after a security association was successfully established (i.e.,
8781 * the 4 way handshake was completed successfully). The call to this function
8782 * should be preceded with a call to cfg80211_connect_result(),
8783 * cfg80211_connect_done(), cfg80211_connect_bss() or cfg80211_roamed() to
8784 * indicate the 802.11 association.
8785 * This function can also be called by AP/P2P GO driver that supports
8786 * authentication offload. In this case the peer_mac passed is that of
8787 * associated STA/GC.
8788 */
8789 void cfg80211_port_authorized(struct net_device *dev, const u8 *peer_addr,
8790 const u8* td_bitmap, u8 td_bitmap_len, gfp_t gfp);
8791
8792 /**
8793 * cfg80211_disconnected - notify cfg80211 that connection was dropped
8794 *
8795 * @dev: network device
8796 * @ie: information elements of the deauth/disassoc frame (may be %NULL)
8797 * @ie_len: length of IEs
8798 * @reason: reason code for the disconnection, set it to 0 if unknown
8799 * @locally_generated: disconnection was requested locally
8800 * @gfp: allocation flags
8801 *
8802 * After it calls this function, the driver should enter an idle state
8803 * and not try to connect to any AP any more.
8804 */
8805 void cfg80211_disconnected(struct net_device *dev, u16 reason,
8806 const u8 *ie, size_t ie_len,
8807 bool locally_generated, gfp_t gfp);
8808
8809 /**
8810 * cfg80211_ready_on_channel - notification of remain_on_channel start
8811 * @wdev: wireless device
8812 * @cookie: the request cookie
8813 * @chan: The current channel (from remain_on_channel request)
8814 * @duration: Duration in milliseconds that the driver intents to remain on the
8815 * channel
8816 * @gfp: allocation flags
8817 */
8818 void cfg80211_ready_on_channel(struct wireless_dev *wdev, u64 cookie,
8819 struct ieee80211_channel *chan,
8820 unsigned int duration, gfp_t gfp);
8821
8822 /**
8823 * cfg80211_remain_on_channel_expired - remain_on_channel duration expired
8824 * @wdev: wireless device
8825 * @cookie: the request cookie
8826 * @chan: The current channel (from remain_on_channel request)
8827 * @gfp: allocation flags
8828 */
8829 void cfg80211_remain_on_channel_expired(struct wireless_dev *wdev, u64 cookie,
8830 struct ieee80211_channel *chan,
8831 gfp_t gfp);
8832
8833 /**
8834 * cfg80211_tx_mgmt_expired - tx_mgmt duration expired
8835 * @wdev: wireless device
8836 * @cookie: the requested cookie
8837 * @chan: The current channel (from tx_mgmt request)
8838 * @gfp: allocation flags
8839 */
8840 void cfg80211_tx_mgmt_expired(struct wireless_dev *wdev, u64 cookie,
8841 struct ieee80211_channel *chan, gfp_t gfp);
8842
8843 /**
8844 * cfg80211_sinfo_alloc_tid_stats - allocate per-tid statistics.
8845 *
8846 * @sinfo: the station information
8847 * @gfp: allocation flags
8848 *
8849 * Return: 0 on success. Non-zero on error.
8850 */
8851 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp);
8852
8853 /**
8854 * cfg80211_link_sinfo_alloc_tid_stats - allocate per-tid statistics.
8855 *
8856 * @link_sinfo: the link station information
8857 * @gfp: allocation flags
8858 *
8859 * Return: 0 on success. Non-zero on error.
8860 */
8861 int cfg80211_link_sinfo_alloc_tid_stats(struct link_station_info *link_sinfo,
8862 gfp_t gfp);
8863
8864 /**
8865 * cfg80211_sinfo_release_content - release contents of station info
8866 * @sinfo: the station information
8867 *
8868 * Releases any potentially allocated sub-information of the station
8869 * information, but not the struct itself (since it's typically on
8870 * the stack.)
8871 */
cfg80211_sinfo_release_content(struct station_info * sinfo)8872 static inline void cfg80211_sinfo_release_content(struct station_info *sinfo)
8873 {
8874 kfree(sinfo->pertid);
8875
8876 for (int link_id = 0; link_id < ARRAY_SIZE(sinfo->links); link_id++) {
8877 if (sinfo->links[link_id]) {
8878 kfree(sinfo->links[link_id]->pertid);
8879 kfree(sinfo->links[link_id]);
8880 }
8881 }
8882 }
8883
8884 /**
8885 * cfg80211_new_sta - notify userspace about station
8886 *
8887 * @dev: the netdev
8888 * @mac_addr: the station's address
8889 * @sinfo: the station information
8890 * @gfp: allocation flags
8891 */
8892 void cfg80211_new_sta(struct net_device *dev, const u8 *mac_addr,
8893 struct station_info *sinfo, gfp_t gfp);
8894
8895 /**
8896 * cfg80211_del_sta_sinfo - notify userspace about deletion of a station
8897 * @dev: the netdev
8898 * @mac_addr: the station's address. For MLD station, MLD address is used.
8899 * @sinfo: the station information/statistics
8900 * @gfp: allocation flags
8901 */
8902 void cfg80211_del_sta_sinfo(struct net_device *dev, const u8 *mac_addr,
8903 struct station_info *sinfo, gfp_t gfp);
8904
8905 /**
8906 * cfg80211_del_sta - notify userspace about deletion of a station
8907 *
8908 * @dev: the netdev
8909 * @mac_addr: the station's address. For MLD station, MLD address is used.
8910 * @gfp: allocation flags
8911 */
cfg80211_del_sta(struct net_device * dev,const u8 * mac_addr,gfp_t gfp)8912 static inline void cfg80211_del_sta(struct net_device *dev,
8913 const u8 *mac_addr, gfp_t gfp)
8914 {
8915 cfg80211_del_sta_sinfo(dev, mac_addr, NULL, gfp);
8916 }
8917
8918 /**
8919 * cfg80211_conn_failed - connection request failed notification
8920 *
8921 * @dev: the netdev
8922 * @mac_addr: the station's address
8923 * @reason: the reason for connection failure
8924 * @gfp: allocation flags
8925 *
8926 * Whenever a station tries to connect to an AP and if the station
8927 * could not connect to the AP as the AP has rejected the connection
8928 * for some reasons, this function is called.
8929 *
8930 * The reason for connection failure can be any of the value from
8931 * nl80211_connect_failed_reason enum
8932 */
8933 void cfg80211_conn_failed(struct net_device *dev, const u8 *mac_addr,
8934 enum nl80211_connect_failed_reason reason,
8935 gfp_t gfp);
8936
8937 /**
8938 * struct cfg80211_rx_info - received management frame info
8939 *
8940 * @freq: Frequency on which the frame was received in kHz
8941 * @sig_dbm: signal strength in dBm, or 0 if unknown
8942 * @have_link_id: indicates the frame was received on a link of
8943 * an MLD, i.e. the @link_id field is valid
8944 * @link_id: the ID of the link the frame was received on
8945 * @buf: Management frame (header + body)
8946 * @len: length of the frame data
8947 * @flags: flags, as defined in &enum nl80211_rxmgmt_flags
8948 * @rx_tstamp: Hardware timestamp of frame RX in nanoseconds
8949 * @ack_tstamp: Hardware timestamp of ack TX in nanoseconds
8950 */
8951 struct cfg80211_rx_info {
8952 int freq;
8953 int sig_dbm;
8954 bool have_link_id;
8955 u8 link_id;
8956 const u8 *buf;
8957 size_t len;
8958 u32 flags;
8959 u64 rx_tstamp;
8960 u64 ack_tstamp;
8961 };
8962
8963 /**
8964 * cfg80211_rx_mgmt_ext - management frame notification with extended info
8965 * @wdev: wireless device receiving the frame
8966 * @info: RX info as defined in struct cfg80211_rx_info
8967 *
8968 * This function is called whenever an Action frame is received for a station
8969 * mode interface, but is not processed in kernel.
8970 *
8971 * Return: %true if a user space application has registered for this frame.
8972 * For action frames, that makes it responsible for rejecting unrecognized
8973 * action frames; %false otherwise, in which case for action frames the
8974 * driver is responsible for rejecting the frame.
8975 */
8976 bool cfg80211_rx_mgmt_ext(struct wireless_dev *wdev,
8977 struct cfg80211_rx_info *info);
8978
8979 /**
8980 * cfg80211_rx_mgmt_khz - notification of received, unprocessed management frame
8981 * @wdev: wireless device receiving the frame
8982 * @freq: Frequency on which the frame was received in KHz
8983 * @sig_dbm: signal strength in dBm, or 0 if unknown
8984 * @buf: Management frame (header + body)
8985 * @len: length of the frame data
8986 * @flags: flags, as defined in enum nl80211_rxmgmt_flags
8987 *
8988 * This function is called whenever an Action frame is received for a station
8989 * mode interface, but is not processed in kernel.
8990 *
8991 * Return: %true if a user space application has registered for this frame.
8992 * For action frames, that makes it responsible for rejecting unrecognized
8993 * action frames; %false otherwise, in which case for action frames the
8994 * driver is responsible for rejecting the frame.
8995 */
cfg80211_rx_mgmt_khz(struct wireless_dev * wdev,int freq,int sig_dbm,const u8 * buf,size_t len,u32 flags)8996 static inline bool cfg80211_rx_mgmt_khz(struct wireless_dev *wdev, int freq,
8997 int sig_dbm, const u8 *buf, size_t len,
8998 u32 flags)
8999 {
9000 struct cfg80211_rx_info info = {
9001 .freq = freq,
9002 .sig_dbm = sig_dbm,
9003 .buf = buf,
9004 .len = len,
9005 .flags = flags
9006 };
9007
9008 return cfg80211_rx_mgmt_ext(wdev, &info);
9009 }
9010
9011 /**
9012 * cfg80211_rx_mgmt - notification of received, unprocessed management frame
9013 * @wdev: wireless device receiving the frame
9014 * @freq: Frequency on which the frame was received in MHz
9015 * @sig_dbm: signal strength in dBm, or 0 if unknown
9016 * @buf: Management frame (header + body)
9017 * @len: length of the frame data
9018 * @flags: flags, as defined in enum nl80211_rxmgmt_flags
9019 *
9020 * This function is called whenever an Action frame is received for a station
9021 * mode interface, but is not processed in kernel.
9022 *
9023 * Return: %true if a user space application has registered for this frame.
9024 * For action frames, that makes it responsible for rejecting unrecognized
9025 * action frames; %false otherwise, in which case for action frames the
9026 * driver is responsible for rejecting the frame.
9027 */
cfg80211_rx_mgmt(struct wireless_dev * wdev,int freq,int sig_dbm,const u8 * buf,size_t len,u32 flags)9028 static inline bool cfg80211_rx_mgmt(struct wireless_dev *wdev, int freq,
9029 int sig_dbm, const u8 *buf, size_t len,
9030 u32 flags)
9031 {
9032 struct cfg80211_rx_info info = {
9033 .freq = MHZ_TO_KHZ(freq),
9034 .sig_dbm = sig_dbm,
9035 .buf = buf,
9036 .len = len,
9037 .flags = flags
9038 };
9039
9040 return cfg80211_rx_mgmt_ext(wdev, &info);
9041 }
9042
9043 /**
9044 * struct cfg80211_tx_status - TX status for management frame information
9045 *
9046 * @cookie: Cookie returned by cfg80211_ops::mgmt_tx()
9047 * @tx_tstamp: hardware TX timestamp in nanoseconds
9048 * @ack_tstamp: hardware ack RX timestamp in nanoseconds
9049 * @buf: Management frame (header + body)
9050 * @len: length of the frame data
9051 * @ack: Whether frame was acknowledged
9052 */
9053 struct cfg80211_tx_status {
9054 u64 cookie;
9055 u64 tx_tstamp;
9056 u64 ack_tstamp;
9057 const u8 *buf;
9058 size_t len;
9059 bool ack;
9060 };
9061
9062 /**
9063 * cfg80211_mgmt_tx_status_ext - TX status notification with extended info
9064 * @wdev: wireless device receiving the frame
9065 * @status: TX status data
9066 * @gfp: context flags
9067 *
9068 * This function is called whenever a management frame was requested to be
9069 * transmitted with cfg80211_ops::mgmt_tx() to report the TX status of the
9070 * transmission attempt with extended info.
9071 */
9072 void cfg80211_mgmt_tx_status_ext(struct wireless_dev *wdev,
9073 struct cfg80211_tx_status *status, gfp_t gfp);
9074
9075 /**
9076 * cfg80211_mgmt_tx_status - notification of TX status for management frame
9077 * @wdev: wireless device receiving the frame
9078 * @cookie: Cookie returned by cfg80211_ops::mgmt_tx()
9079 * @buf: Management frame (header + body)
9080 * @len: length of the frame data
9081 * @ack: Whether frame was acknowledged
9082 * @gfp: context flags
9083 *
9084 * This function is called whenever a management frame was requested to be
9085 * transmitted with cfg80211_ops::mgmt_tx() to report the TX status of the
9086 * transmission attempt.
9087 */
cfg80211_mgmt_tx_status(struct wireless_dev * wdev,u64 cookie,const u8 * buf,size_t len,bool ack,gfp_t gfp)9088 static inline void cfg80211_mgmt_tx_status(struct wireless_dev *wdev,
9089 u64 cookie, const u8 *buf,
9090 size_t len, bool ack, gfp_t gfp)
9091 {
9092 struct cfg80211_tx_status status = {
9093 .cookie = cookie,
9094 .buf = buf,
9095 .len = len,
9096 .ack = ack
9097 };
9098
9099 cfg80211_mgmt_tx_status_ext(wdev, &status, gfp);
9100 }
9101
9102 /**
9103 * cfg80211_control_port_tx_status - notification of TX status for control
9104 * port frames
9105 * @wdev: wireless device receiving the frame
9106 * @cookie: Cookie returned by cfg80211_ops::tx_control_port()
9107 * @buf: Data frame (header + body)
9108 * @len: length of the frame data
9109 * @ack: Whether frame was acknowledged
9110 * @gfp: context flags
9111 *
9112 * This function is called whenever a control port frame was requested to be
9113 * transmitted with cfg80211_ops::tx_control_port() to report the TX status of
9114 * the transmission attempt.
9115 */
9116 void cfg80211_control_port_tx_status(struct wireless_dev *wdev, u64 cookie,
9117 const u8 *buf, size_t len, bool ack,
9118 gfp_t gfp);
9119
9120 /**
9121 * cfg80211_rx_control_port - notification about a received control port frame
9122 * @dev: The device the frame matched to
9123 * @skb: The skbuf with the control port frame. It is assumed that the skbuf
9124 * is 802.3 formatted (with 802.3 header). The skb can be non-linear.
9125 * This function does not take ownership of the skb, so the caller is
9126 * responsible for any cleanup. The caller must also ensure that
9127 * skb->protocol is set appropriately.
9128 * @unencrypted: Whether the frame was received unencrypted
9129 * @link_id: the link the frame was received on, -1 if not applicable or unknown
9130 *
9131 * This function is used to inform userspace about a received control port
9132 * frame. It should only be used if userspace indicated it wants to receive
9133 * control port frames over nl80211.
9134 *
9135 * The frame is the data portion of the 802.3 or 802.11 data frame with all
9136 * network layer headers removed (e.g. the raw EAPoL frame).
9137 *
9138 * Return: %true if the frame was passed to userspace
9139 */
9140 bool cfg80211_rx_control_port(struct net_device *dev, struct sk_buff *skb,
9141 bool unencrypted, int link_id);
9142
9143 /**
9144 * cfg80211_cqm_rssi_notify - connection quality monitoring rssi event
9145 * @dev: network device
9146 * @rssi_event: the triggered RSSI event
9147 * @rssi_level: new RSSI level value or 0 if not available
9148 * @gfp: context flags
9149 *
9150 * This function is called when a configured connection quality monitoring
9151 * rssi threshold reached event occurs.
9152 */
9153 void cfg80211_cqm_rssi_notify(struct net_device *dev,
9154 enum nl80211_cqm_rssi_threshold_event rssi_event,
9155 s32 rssi_level, gfp_t gfp);
9156
9157 /**
9158 * cfg80211_cqm_pktloss_notify - notify userspace about packetloss to peer
9159 * @dev: network device
9160 * @peer: peer's MAC address
9161 * @num_packets: how many packets were lost -- should be a fixed threshold
9162 * but probably no less than maybe 50, or maybe a throughput dependent
9163 * threshold (to account for temporary interference)
9164 * @gfp: context flags
9165 */
9166 void cfg80211_cqm_pktloss_notify(struct net_device *dev,
9167 const u8 *peer, u32 num_packets, gfp_t gfp);
9168
9169 /**
9170 * cfg80211_cqm_txe_notify - TX error rate event
9171 * @dev: network device
9172 * @peer: peer's MAC address
9173 * @num_packets: how many packets were lost
9174 * @rate: % of packets which failed transmission
9175 * @intvl: interval (in s) over which the TX failure threshold was breached.
9176 * @gfp: context flags
9177 *
9178 * Notify userspace when configured % TX failures over number of packets in a
9179 * given interval is exceeded.
9180 */
9181 void cfg80211_cqm_txe_notify(struct net_device *dev, const u8 *peer,
9182 u32 num_packets, u32 rate, u32 intvl, gfp_t gfp);
9183
9184 /**
9185 * cfg80211_cqm_beacon_loss_notify - beacon loss event
9186 * @dev: network device
9187 * @gfp: context flags
9188 *
9189 * Notify userspace about beacon loss from the connected AP.
9190 */
9191 void cfg80211_cqm_beacon_loss_notify(struct net_device *dev, gfp_t gfp);
9192
9193 /**
9194 * __cfg80211_radar_event - radar detection event
9195 * @wiphy: the wiphy
9196 * @chandef: chandef for the current channel
9197 * @offchan: the radar has been detected on the offchannel chain
9198 * @gfp: context flags
9199 *
9200 * This function is called when a radar is detected on the current chanenl.
9201 */
9202 void __cfg80211_radar_event(struct wiphy *wiphy,
9203 struct cfg80211_chan_def *chandef,
9204 bool offchan, gfp_t gfp);
9205
9206 static inline void
cfg80211_radar_event(struct wiphy * wiphy,struct cfg80211_chan_def * chandef,gfp_t gfp)9207 cfg80211_radar_event(struct wiphy *wiphy,
9208 struct cfg80211_chan_def *chandef,
9209 gfp_t gfp)
9210 {
9211 __cfg80211_radar_event(wiphy, chandef, false, gfp);
9212 }
9213
9214 static inline void
cfg80211_background_radar_event(struct wiphy * wiphy,struct cfg80211_chan_def * chandef,gfp_t gfp)9215 cfg80211_background_radar_event(struct wiphy *wiphy,
9216 struct cfg80211_chan_def *chandef,
9217 gfp_t gfp)
9218 {
9219 __cfg80211_radar_event(wiphy, chandef, true, gfp);
9220 }
9221
9222 /**
9223 * cfg80211_sta_opmode_change_notify - STA's ht/vht operation mode change event
9224 * @dev: network device
9225 * @mac: MAC address of a station which opmode got modified
9226 * @sta_opmode: station's current opmode value
9227 * @gfp: context flags
9228 *
9229 * Driver should call this function when station's opmode modified via action
9230 * frame.
9231 */
9232 void cfg80211_sta_opmode_change_notify(struct net_device *dev, const u8 *mac,
9233 struct sta_opmode_info *sta_opmode,
9234 gfp_t gfp);
9235
9236 /**
9237 * cfg80211_cac_event - Channel availability check (CAC) event
9238 * @netdev: network device
9239 * @chandef: chandef for the current channel
9240 * @event: type of event
9241 * @gfp: context flags
9242 * @link_id: valid link_id for MLO operation or 0 otherwise.
9243 *
9244 * This function is called when a Channel availability check (CAC) is finished
9245 * or aborted. This must be called to notify the completion of a CAC process,
9246 * also by full-MAC drivers.
9247 */
9248 void cfg80211_cac_event(struct net_device *netdev,
9249 const struct cfg80211_chan_def *chandef,
9250 enum nl80211_radar_event event, gfp_t gfp,
9251 unsigned int link_id);
9252
9253 /**
9254 * cfg80211_background_cac_abort - Channel Availability Check offchan abort event
9255 * @wiphy: the wiphy
9256 *
9257 * This function is called by the driver when a Channel Availability Check
9258 * (CAC) is aborted by a offchannel dedicated chain.
9259 */
9260 void cfg80211_background_cac_abort(struct wiphy *wiphy);
9261
9262 /**
9263 * cfg80211_gtk_rekey_notify - notify userspace about driver rekeying
9264 * @dev: network device
9265 * @bssid: BSSID of AP (to avoid races)
9266 * @replay_ctr: new replay counter
9267 * @gfp: allocation flags
9268 */
9269 void cfg80211_gtk_rekey_notify(struct net_device *dev, const u8 *bssid,
9270 const u8 *replay_ctr, gfp_t gfp);
9271
9272 /**
9273 * cfg80211_pmksa_candidate_notify - notify about PMKSA caching candidate
9274 * @dev: network device
9275 * @index: candidate index (the smaller the index, the higher the priority)
9276 * @bssid: BSSID of AP
9277 * @preauth: Whether AP advertises support for RSN pre-authentication
9278 * @gfp: allocation flags
9279 */
9280 void cfg80211_pmksa_candidate_notify(struct net_device *dev, int index,
9281 const u8 *bssid, bool preauth, gfp_t gfp);
9282
9283 /**
9284 * cfg80211_rx_spurious_frame - inform userspace about a spurious frame
9285 * @dev: The device the frame matched to
9286 * @link_id: the link the frame was received on, -1 if not applicable or unknown
9287 * @addr: the transmitter address
9288 * @gfp: context flags
9289 *
9290 * This function is used in AP mode (only!) to inform userspace that
9291 * a spurious class 3 frame was received, to be able to deauth the
9292 * sender.
9293 * Return: %true if the frame was passed to userspace (or this failed
9294 * for a reason other than not having a subscription.)
9295 */
9296 bool cfg80211_rx_spurious_frame(struct net_device *dev, const u8 *addr,
9297 int link_id, gfp_t gfp);
9298
9299 /**
9300 * cfg80211_rx_unexpected_4addr_frame - inform about unexpected WDS frame
9301 * @dev: The device the frame matched to
9302 * @addr: the transmitter address
9303 * @link_id: the link the frame was received on, -1 if not applicable or unknown
9304 * @gfp: context flags
9305 *
9306 * This function is used in AP mode (only!) to inform userspace that
9307 * an associated station sent a 4addr frame but that wasn't expected.
9308 * It is allowed and desirable to send this event only once for each
9309 * station to avoid event flooding.
9310 * Return: %true if the frame was passed to userspace (or this failed
9311 * for a reason other than not having a subscription.)
9312 */
9313 bool cfg80211_rx_unexpected_4addr_frame(struct net_device *dev, const u8 *addr,
9314 int link_id, gfp_t gfp);
9315
9316 /**
9317 * cfg80211_probe_status - notify userspace about probe status
9318 * @dev: the device the probe was sent on
9319 * @addr: the address of the peer
9320 * @cookie: the cookie filled in @probe_client previously
9321 * @acked: indicates whether probe was acked or not
9322 * @ack_signal: signal strength (in dBm) of the ACK frame.
9323 * @is_valid_ack_signal: indicates the ack_signal is valid or not.
9324 * @gfp: allocation flags
9325 */
9326 void cfg80211_probe_status(struct net_device *dev, const u8 *addr,
9327 u64 cookie, bool acked, s32 ack_signal,
9328 bool is_valid_ack_signal, gfp_t gfp);
9329
9330 /**
9331 * cfg80211_report_obss_beacon_khz - report beacon from other APs
9332 * @wiphy: The wiphy that received the beacon
9333 * @frame: the frame
9334 * @len: length of the frame
9335 * @freq: frequency the frame was received on in KHz
9336 * @sig_dbm: signal strength in dBm, or 0 if unknown
9337 *
9338 * Use this function to report to userspace when a beacon was
9339 * received. It is not useful to call this when there is no
9340 * netdev that is in AP/GO mode.
9341 */
9342 void cfg80211_report_obss_beacon_khz(struct wiphy *wiphy, const u8 *frame,
9343 size_t len, int freq, int sig_dbm);
9344
9345 /**
9346 * cfg80211_report_obss_beacon - report beacon from other APs
9347 * @wiphy: The wiphy that received the beacon
9348 * @frame: the frame
9349 * @len: length of the frame
9350 * @freq: frequency the frame was received on
9351 * @sig_dbm: signal strength in dBm, or 0 if unknown
9352 *
9353 * Use this function to report to userspace when a beacon was
9354 * received. It is not useful to call this when there is no
9355 * netdev that is in AP/GO mode.
9356 */
cfg80211_report_obss_beacon(struct wiphy * wiphy,const u8 * frame,size_t len,int freq,int sig_dbm)9357 static inline void cfg80211_report_obss_beacon(struct wiphy *wiphy,
9358 const u8 *frame, size_t len,
9359 int freq, int sig_dbm)
9360 {
9361 cfg80211_report_obss_beacon_khz(wiphy, frame, len, MHZ_TO_KHZ(freq),
9362 sig_dbm);
9363 }
9364
9365 /**
9366 * struct cfg80211_beaconing_check_config - beacon check configuration
9367 * @iftype: the interface type to check for
9368 * @relax: allow IR-relaxation conditions to apply (e.g. another
9369 * interface connected already on the same channel)
9370 * NOTE: If this is set, wiphy mutex must be held.
9371 * @reg_power: &enum ieee80211_ap_reg_power value indicating the
9372 * advertised/used 6 GHz regulatory power setting
9373 */
9374 struct cfg80211_beaconing_check_config {
9375 enum nl80211_iftype iftype;
9376 enum ieee80211_ap_reg_power reg_power;
9377 bool relax;
9378 };
9379
9380 /**
9381 * cfg80211_reg_check_beaconing - check if beaconing is allowed
9382 * @wiphy: the wiphy
9383 * @chandef: the channel definition
9384 * @cfg: additional parameters for the checking
9385 *
9386 * Return: %true if there is no secondary channel or the secondary channel(s)
9387 * can be used for beaconing (i.e. is not a radar channel etc.)
9388 */
9389 bool cfg80211_reg_check_beaconing(struct wiphy *wiphy,
9390 struct cfg80211_chan_def *chandef,
9391 struct cfg80211_beaconing_check_config *cfg);
9392
9393 /**
9394 * cfg80211_reg_can_beacon - check if beaconing is allowed
9395 * @wiphy: the wiphy
9396 * @chandef: the channel definition
9397 * @iftype: interface type
9398 *
9399 * Return: %true if there is no secondary channel or the secondary channel(s)
9400 * can be used for beaconing (i.e. is not a radar channel etc.)
9401 */
9402 static inline bool
cfg80211_reg_can_beacon(struct wiphy * wiphy,struct cfg80211_chan_def * chandef,enum nl80211_iftype iftype)9403 cfg80211_reg_can_beacon(struct wiphy *wiphy,
9404 struct cfg80211_chan_def *chandef,
9405 enum nl80211_iftype iftype)
9406 {
9407 struct cfg80211_beaconing_check_config config = {
9408 .iftype = iftype,
9409 };
9410
9411 return cfg80211_reg_check_beaconing(wiphy, chandef, &config);
9412 }
9413
9414 /**
9415 * cfg80211_reg_can_beacon_relax - check if beaconing is allowed with relaxation
9416 * @wiphy: the wiphy
9417 * @chandef: the channel definition
9418 * @iftype: interface type
9419 *
9420 * Return: %true if there is no secondary channel or the secondary channel(s)
9421 * can be used for beaconing (i.e. is not a radar channel etc.). This version
9422 * also checks if IR-relaxation conditions apply, to allow beaconing under
9423 * more permissive conditions.
9424 *
9425 * Context: Requires the wiphy mutex to be held.
9426 */
9427 static inline bool
cfg80211_reg_can_beacon_relax(struct wiphy * wiphy,struct cfg80211_chan_def * chandef,enum nl80211_iftype iftype)9428 cfg80211_reg_can_beacon_relax(struct wiphy *wiphy,
9429 struct cfg80211_chan_def *chandef,
9430 enum nl80211_iftype iftype)
9431 {
9432 struct cfg80211_beaconing_check_config config = {
9433 .iftype = iftype,
9434 .relax = true,
9435 };
9436
9437 return cfg80211_reg_check_beaconing(wiphy, chandef, &config);
9438 }
9439
9440 /**
9441 * cfg80211_ch_switch_notify - update wdev channel and notify userspace
9442 * @dev: the device which switched channels
9443 * @chandef: the new channel definition
9444 * @link_id: the link ID for MLO, must be 0 for non-MLO
9445 *
9446 * Caller must hold wiphy mutex, therefore must only be called from sleepable
9447 * driver context!
9448 */
9449 void cfg80211_ch_switch_notify(struct net_device *dev,
9450 struct cfg80211_chan_def *chandef,
9451 unsigned int link_id);
9452
9453 /**
9454 * cfg80211_ch_switch_started_notify - notify channel switch start
9455 * @dev: the device on which the channel switch started
9456 * @chandef: the future channel definition
9457 * @link_id: the link ID for MLO, must be 0 for non-MLO
9458 * @count: the number of TBTTs until the channel switch happens
9459 * @quiet: whether or not immediate quiet was requested by the AP
9460 *
9461 * Inform the userspace about the channel switch that has just
9462 * started, so that it can take appropriate actions (eg. starting
9463 * channel switch on other vifs), if necessary.
9464 */
9465 void cfg80211_ch_switch_started_notify(struct net_device *dev,
9466 struct cfg80211_chan_def *chandef,
9467 unsigned int link_id, u8 count,
9468 bool quiet);
9469
9470 /**
9471 * ieee80211_operating_class_to_band - convert operating class to band
9472 *
9473 * @operating_class: the operating class to convert
9474 * @band: band pointer to fill
9475 *
9476 * Return: %true if the conversion was successful, %false otherwise.
9477 */
9478 bool ieee80211_operating_class_to_band(u8 operating_class,
9479 enum nl80211_band *band);
9480
9481 /**
9482 * ieee80211_operating_class_to_chandef - convert operating class to chandef
9483 *
9484 * @operating_class: the operating class to convert
9485 * @chan: the ieee80211_channel to convert
9486 * @chandef: a pointer to the resulting chandef
9487 *
9488 * Return: %true if the conversion was successful, %false otherwise.
9489 */
9490 bool ieee80211_operating_class_to_chandef(u8 operating_class,
9491 struct ieee80211_channel *chan,
9492 struct cfg80211_chan_def *chandef);
9493
9494 /**
9495 * ieee80211_chandef_to_operating_class - convert chandef to operation class
9496 *
9497 * @chandef: the chandef to convert
9498 * @op_class: a pointer to the resulting operating class
9499 *
9500 * Return: %true if the conversion was successful, %false otherwise.
9501 */
9502 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
9503 u8 *op_class);
9504
9505 /**
9506 * ieee80211_chandef_to_khz - convert chandef to frequency in KHz
9507 *
9508 * @chandef: the chandef to convert
9509 *
9510 * Return: the center frequency of chandef (1st segment) in KHz.
9511 */
9512 static inline u32
ieee80211_chandef_to_khz(const struct cfg80211_chan_def * chandef)9513 ieee80211_chandef_to_khz(const struct cfg80211_chan_def *chandef)
9514 {
9515 return MHZ_TO_KHZ(chandef->center_freq1) + chandef->freq1_offset;
9516 }
9517
9518 /**
9519 * cfg80211_tdls_oper_request - request userspace to perform TDLS operation
9520 * @dev: the device on which the operation is requested
9521 * @peer: the MAC address of the peer device
9522 * @oper: the requested TDLS operation (NL80211_TDLS_SETUP or
9523 * NL80211_TDLS_TEARDOWN)
9524 * @reason_code: the reason code for teardown request
9525 * @gfp: allocation flags
9526 *
9527 * This function is used to request userspace to perform TDLS operation that
9528 * requires knowledge of keys, i.e., link setup or teardown when the AP
9529 * connection uses encryption. This is optional mechanism for the driver to use
9530 * if it can automatically determine when a TDLS link could be useful (e.g.,
9531 * based on traffic and signal strength for a peer).
9532 */
9533 void cfg80211_tdls_oper_request(struct net_device *dev, const u8 *peer,
9534 enum nl80211_tdls_operation oper,
9535 u16 reason_code, gfp_t gfp);
9536
9537 /**
9538 * cfg80211_calculate_bitrate - calculate actual bitrate (in 100Kbps units)
9539 * @rate: given rate_info to calculate bitrate from
9540 *
9541 * Return: calculated bitrate
9542 */
9543 u32 cfg80211_calculate_bitrate(struct rate_info *rate);
9544
9545 /**
9546 * cfg80211_unregister_wdev - remove the given wdev
9547 * @wdev: struct wireless_dev to remove
9548 *
9549 * This function removes the device so it can no longer be used. It is necessary
9550 * to call this function even when cfg80211 requests the removal of the device
9551 * by calling the del_virtual_intf() callback. The function must also be called
9552 * when the driver wishes to unregister the wdev, e.g. when the hardware device
9553 * is unbound from the driver.
9554 *
9555 * Context: Requires the RTNL and wiphy mutex to be held.
9556 */
9557 void cfg80211_unregister_wdev(struct wireless_dev *wdev);
9558
9559 /**
9560 * cfg80211_register_netdevice - register the given netdev
9561 * @dev: the netdev to register
9562 *
9563 * Note: In contexts coming from cfg80211 callbacks, you must call this rather
9564 * than register_netdevice(), unregister_netdev() is impossible as the RTNL is
9565 * held. Otherwise, both register_netdevice() and register_netdev() are usable
9566 * instead as well.
9567 *
9568 * Context: Requires the RTNL and wiphy mutex to be held.
9569 *
9570 * Return: 0 on success. Non-zero on error.
9571 */
9572 int cfg80211_register_netdevice(struct net_device *dev);
9573
9574 /**
9575 * cfg80211_unregister_netdevice - unregister the given netdev
9576 * @dev: the netdev to register
9577 *
9578 * Note: In contexts coming from cfg80211 callbacks, you must call this rather
9579 * than unregister_netdevice(), unregister_netdev() is impossible as the RTNL
9580 * is held. Otherwise, both unregister_netdevice() and unregister_netdev() are
9581 * usable instead as well.
9582 *
9583 * Context: Requires the RTNL and wiphy mutex to be held.
9584 */
cfg80211_unregister_netdevice(struct net_device * dev)9585 static inline void cfg80211_unregister_netdevice(struct net_device *dev)
9586 {
9587 #if IS_ENABLED(CONFIG_CFG80211)
9588 cfg80211_unregister_wdev(dev->ieee80211_ptr);
9589 #endif
9590 }
9591
9592 /**
9593 * struct cfg80211_ft_event_params - FT Information Elements
9594 * @ies: FT IEs
9595 * @ies_len: length of the FT IE in bytes
9596 * @target_ap: target AP's MAC address
9597 * @ric_ies: RIC IE
9598 * @ric_ies_len: length of the RIC IE in bytes
9599 */
9600 struct cfg80211_ft_event_params {
9601 const u8 *ies;
9602 size_t ies_len;
9603 const u8 *target_ap;
9604 const u8 *ric_ies;
9605 size_t ric_ies_len;
9606 };
9607
9608 /**
9609 * cfg80211_ft_event - notify userspace about FT IE and RIC IE
9610 * @netdev: network device
9611 * @ft_event: IE information
9612 */
9613 void cfg80211_ft_event(struct net_device *netdev,
9614 struct cfg80211_ft_event_params *ft_event);
9615
9616 /**
9617 * cfg80211_get_p2p_attr - find and copy a P2P attribute from IE buffer
9618 * @ies: the input IE buffer
9619 * @len: the input length
9620 * @attr: the attribute ID to find
9621 * @buf: output buffer, can be %NULL if the data isn't needed, e.g.
9622 * if the function is only called to get the needed buffer size
9623 * @bufsize: size of the output buffer
9624 *
9625 * The function finds a given P2P attribute in the (vendor) IEs and
9626 * copies its contents to the given buffer.
9627 *
9628 * Return: A negative error code (-%EILSEQ or -%ENOENT) if the data is
9629 * malformed or the attribute can't be found (respectively), or the
9630 * length of the found attribute (which can be zero).
9631 */
9632 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
9633 enum ieee80211_p2p_attr_id attr,
9634 u8 *buf, unsigned int bufsize);
9635
9636 /**
9637 * ieee80211_ie_split_ric - split an IE buffer according to ordering (with RIC)
9638 * @ies: the IE buffer
9639 * @ielen: the length of the IE buffer
9640 * @ids: an array with element IDs that are allowed before
9641 * the split. A WLAN_EID_EXTENSION value means that the next
9642 * EID in the list is a sub-element of the EXTENSION IE.
9643 * @n_ids: the size of the element ID array
9644 * @after_ric: array IE types that come after the RIC element
9645 * @n_after_ric: size of the @after_ric array
9646 * @offset: offset where to start splitting in the buffer
9647 *
9648 * This function splits an IE buffer by updating the @offset
9649 * variable to point to the location where the buffer should be
9650 * split.
9651 *
9652 * It assumes that the given IE buffer is well-formed, this
9653 * has to be guaranteed by the caller!
9654 *
9655 * It also assumes that the IEs in the buffer are ordered
9656 * correctly, if not the result of using this function will not
9657 * be ordered correctly either, i.e. it does no reordering.
9658 *
9659 * Return: The offset where the next part of the buffer starts, which
9660 * may be @ielen if the entire (remainder) of the buffer should be
9661 * used.
9662 */
9663 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
9664 const u8 *ids, int n_ids,
9665 const u8 *after_ric, int n_after_ric,
9666 size_t offset);
9667
9668 /**
9669 * ieee80211_ie_split - split an IE buffer according to ordering
9670 * @ies: the IE buffer
9671 * @ielen: the length of the IE buffer
9672 * @ids: an array with element IDs that are allowed before
9673 * the split. A WLAN_EID_EXTENSION value means that the next
9674 * EID in the list is a sub-element of the EXTENSION IE.
9675 * @n_ids: the size of the element ID array
9676 * @offset: offset where to start splitting in the buffer
9677 *
9678 * This function splits an IE buffer by updating the @offset
9679 * variable to point to the location where the buffer should be
9680 * split.
9681 *
9682 * It assumes that the given IE buffer is well-formed, this
9683 * has to be guaranteed by the caller!
9684 *
9685 * It also assumes that the IEs in the buffer are ordered
9686 * correctly, if not the result of using this function will not
9687 * be ordered correctly either, i.e. it does no reordering.
9688 *
9689 * Return: The offset where the next part of the buffer starts, which
9690 * may be @ielen if the entire (remainder) of the buffer should be
9691 * used.
9692 */
ieee80211_ie_split(const u8 * ies,size_t ielen,const u8 * ids,int n_ids,size_t offset)9693 static inline size_t ieee80211_ie_split(const u8 *ies, size_t ielen,
9694 const u8 *ids, int n_ids, size_t offset)
9695 {
9696 return ieee80211_ie_split_ric(ies, ielen, ids, n_ids, NULL, 0, offset);
9697 }
9698
9699 /**
9700 * ieee80211_fragment_element - fragment the last element in skb
9701 * @skb: The skbuf that the element was added to
9702 * @len_pos: Pointer to length of the element to fragment
9703 * @frag_id: The element ID to use for fragments
9704 *
9705 * This function fragments all data after @len_pos, adding fragmentation
9706 * elements with the given ID as appropriate. The SKB will grow in size
9707 * accordingly.
9708 */
9709 void ieee80211_fragment_element(struct sk_buff *skb, u8 *len_pos, u8 frag_id);
9710
9711 /**
9712 * cfg80211_report_wowlan_wakeup - report wakeup from WoWLAN
9713 * @wdev: the wireless device reporting the wakeup
9714 * @wakeup: the wakeup report
9715 * @gfp: allocation flags
9716 *
9717 * This function reports that the given device woke up. If it
9718 * caused the wakeup, report the reason(s), otherwise you may
9719 * pass %NULL as the @wakeup parameter to advertise that something
9720 * else caused the wakeup.
9721 */
9722 void cfg80211_report_wowlan_wakeup(struct wireless_dev *wdev,
9723 struct cfg80211_wowlan_wakeup *wakeup,
9724 gfp_t gfp);
9725
9726 /**
9727 * cfg80211_crit_proto_stopped() - indicate critical protocol stopped by driver.
9728 *
9729 * @wdev: the wireless device for which critical protocol is stopped.
9730 * @gfp: allocation flags
9731 *
9732 * This function can be called by the driver to indicate it has reverted
9733 * operation back to normal. One reason could be that the duration given
9734 * by .crit_proto_start() has expired.
9735 */
9736 void cfg80211_crit_proto_stopped(struct wireless_dev *wdev, gfp_t gfp);
9737
9738 /**
9739 * ieee80211_get_num_supported_channels - get number of channels device has
9740 * @wiphy: the wiphy
9741 *
9742 * Return: the number of channels supported by the device.
9743 */
9744 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy);
9745
9746 /**
9747 * cfg80211_check_combinations - check interface combinations
9748 *
9749 * @wiphy: the wiphy
9750 * @params: the interface combinations parameter
9751 *
9752 * This function can be called by the driver to check whether a
9753 * combination of interfaces and their types are allowed according to
9754 * the interface combinations.
9755 *
9756 * Return: 0 if combinations are allowed. Non-zero on error.
9757 */
9758 int cfg80211_check_combinations(struct wiphy *wiphy,
9759 struct iface_combination_params *params);
9760
9761 /**
9762 * cfg80211_iter_combinations - iterate over matching combinations
9763 *
9764 * @wiphy: the wiphy
9765 * @params: the interface combinations parameter
9766 * @iter: function to call for each matching combination
9767 * @data: pointer to pass to iter function
9768 *
9769 * This function can be called by the driver to check what possible
9770 * combinations it fits in at a given moment, e.g. for channel switching
9771 * purposes.
9772 *
9773 * Return: 0 on success. Non-zero on error.
9774 */
9775 int cfg80211_iter_combinations(struct wiphy *wiphy,
9776 struct iface_combination_params *params,
9777 void (*iter)(const struct ieee80211_iface_combination *c,
9778 void *data),
9779 void *data);
9780 /**
9781 * cfg80211_get_radio_idx_by_chan - get the radio index by the channel
9782 *
9783 * @wiphy: the wiphy
9784 * @chan: channel for which the supported radio index is required
9785 *
9786 * Return: radio index on success or -EINVAL otherwise
9787 */
9788 int cfg80211_get_radio_idx_by_chan(struct wiphy *wiphy,
9789 const struct ieee80211_channel *chan);
9790
9791
9792 /**
9793 * cfg80211_stop_iface - trigger interface disconnection
9794 *
9795 * @wiphy: the wiphy
9796 * @wdev: wireless device
9797 * @gfp: context flags
9798 *
9799 * Trigger interface to be stopped as if AP was stopped, IBSS/mesh left, STA
9800 * disconnected.
9801 *
9802 * Note: This doesn't need any locks and is asynchronous.
9803 */
9804 void cfg80211_stop_iface(struct wiphy *wiphy, struct wireless_dev *wdev,
9805 gfp_t gfp);
9806
9807 /**
9808 * cfg80211_shutdown_all_interfaces - shut down all interfaces for a wiphy
9809 * @wiphy: the wiphy to shut down
9810 *
9811 * This function shuts down all interfaces belonging to this wiphy by
9812 * calling dev_close() (and treating non-netdev interfaces as needed).
9813 * It shouldn't really be used unless there are some fatal device errors
9814 * that really can't be recovered in any other way.
9815 *
9816 * Callers must hold the RTNL and be able to deal with callbacks into
9817 * the driver while the function is running.
9818 */
9819 void cfg80211_shutdown_all_interfaces(struct wiphy *wiphy);
9820
9821 /**
9822 * wiphy_ext_feature_set - set the extended feature flag
9823 *
9824 * @wiphy: the wiphy to modify.
9825 * @ftidx: extended feature bit index.
9826 *
9827 * The extended features are flagged in multiple bytes (see
9828 * &struct wiphy.@ext_features)
9829 */
wiphy_ext_feature_set(struct wiphy * wiphy,enum nl80211_ext_feature_index ftidx)9830 static inline void wiphy_ext_feature_set(struct wiphy *wiphy,
9831 enum nl80211_ext_feature_index ftidx)
9832 {
9833 u8 *ft_byte;
9834
9835 ft_byte = &wiphy->ext_features[ftidx / 8];
9836 *ft_byte |= BIT(ftidx % 8);
9837 }
9838
9839 /**
9840 * wiphy_ext_feature_isset - check the extended feature flag
9841 *
9842 * @wiphy: the wiphy to modify.
9843 * @ftidx: extended feature bit index.
9844 *
9845 * The extended features are flagged in multiple bytes (see
9846 * &struct wiphy.@ext_features)
9847 *
9848 * Return: %true if extended feature flag is set, %false otherwise
9849 */
9850 static inline bool
wiphy_ext_feature_isset(struct wiphy * wiphy,enum nl80211_ext_feature_index ftidx)9851 wiphy_ext_feature_isset(struct wiphy *wiphy,
9852 enum nl80211_ext_feature_index ftidx)
9853 {
9854 u8 ft_byte;
9855
9856 ft_byte = wiphy->ext_features[ftidx / 8];
9857 return (ft_byte & BIT(ftidx % 8)) != 0;
9858 }
9859
9860 /**
9861 * cfg80211_free_nan_func - free NAN function
9862 * @f: NAN function that should be freed
9863 *
9864 * Frees all the NAN function and all it's allocated members.
9865 */
9866 void cfg80211_free_nan_func(struct cfg80211_nan_func *f);
9867
9868 /**
9869 * struct cfg80211_nan_match_params - NAN match parameters
9870 * @type: the type of the function that triggered a match. If it is
9871 * %NL80211_NAN_FUNC_SUBSCRIBE it means that we replied to a subscriber.
9872 * If it is %NL80211_NAN_FUNC_PUBLISH, it means that we got a discovery
9873 * result.
9874 * If it is %NL80211_NAN_FUNC_FOLLOW_UP, we received a follow up.
9875 * @inst_id: the local instance id
9876 * @peer_inst_id: the instance id of the peer's function
9877 * @addr: the MAC address of the peer
9878 * @info_len: the length of the &info
9879 * @info: the Service Specific Info from the peer (if any)
9880 * @cookie: unique identifier of the corresponding function
9881 */
9882 struct cfg80211_nan_match_params {
9883 enum nl80211_nan_function_type type;
9884 u8 inst_id;
9885 u8 peer_inst_id;
9886 const u8 *addr;
9887 u8 info_len;
9888 const u8 *info;
9889 u64 cookie;
9890 };
9891
9892 /**
9893 * cfg80211_nan_match - report a match for a NAN function.
9894 * @wdev: the wireless device reporting the match
9895 * @match: match notification parameters
9896 * @gfp: allocation flags
9897 *
9898 * This function reports that the a NAN function had a match. This
9899 * can be a subscribe that had a match or a solicited publish that
9900 * was sent. It can also be a follow up that was received.
9901 */
9902 void cfg80211_nan_match(struct wireless_dev *wdev,
9903 struct cfg80211_nan_match_params *match, gfp_t gfp);
9904
9905 /**
9906 * cfg80211_nan_func_terminated - notify about NAN function termination.
9907 *
9908 * @wdev: the wireless device reporting the match
9909 * @inst_id: the local instance id
9910 * @reason: termination reason (one of the NL80211_NAN_FUNC_TERM_REASON_*)
9911 * @cookie: unique NAN function identifier
9912 * @gfp: allocation flags
9913 *
9914 * This function reports that the a NAN function is terminated.
9915 */
9916 void cfg80211_nan_func_terminated(struct wireless_dev *wdev,
9917 u8 inst_id,
9918 enum nl80211_nan_func_term_reason reason,
9919 u64 cookie, gfp_t gfp);
9920
9921 /* ethtool helper */
9922 void cfg80211_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info);
9923
9924 /**
9925 * cfg80211_external_auth_request - userspace request for authentication
9926 * @netdev: network device
9927 * @params: External authentication parameters
9928 * @gfp: allocation flags
9929 * Returns: 0 on success, < 0 on error
9930 */
9931 int cfg80211_external_auth_request(struct net_device *netdev,
9932 struct cfg80211_external_auth_params *params,
9933 gfp_t gfp);
9934
9935 /**
9936 * cfg80211_pmsr_report - report peer measurement result data
9937 * @wdev: the wireless device reporting the measurement
9938 * @req: the original measurement request
9939 * @result: the result data
9940 * @gfp: allocation flags
9941 */
9942 void cfg80211_pmsr_report(struct wireless_dev *wdev,
9943 struct cfg80211_pmsr_request *req,
9944 struct cfg80211_pmsr_result *result,
9945 gfp_t gfp);
9946
9947 /**
9948 * cfg80211_pmsr_complete - report peer measurement completed
9949 * @wdev: the wireless device reporting the measurement
9950 * @req: the original measurement request
9951 * @gfp: allocation flags
9952 *
9953 * Report that the entire measurement completed, after this
9954 * the request pointer will no longer be valid.
9955 */
9956 void cfg80211_pmsr_complete(struct wireless_dev *wdev,
9957 struct cfg80211_pmsr_request *req,
9958 gfp_t gfp);
9959
9960 /**
9961 * cfg80211_iftype_allowed - check whether the interface can be allowed
9962 * @wiphy: the wiphy
9963 * @iftype: interface type
9964 * @is_4addr: use_4addr flag, must be '0' when check_swif is '1'
9965 * @check_swif: check iftype against software interfaces
9966 *
9967 * Check whether the interface is allowed to operate; additionally, this API
9968 * can be used to check iftype against the software interfaces when
9969 * check_swif is '1'.
9970 *
9971 * Return: %true if allowed, %false otherwise
9972 */
9973 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
9974 bool is_4addr, u8 check_swif);
9975
9976
9977 /**
9978 * cfg80211_assoc_comeback - notification of association that was
9979 * temporarily rejected with a comeback
9980 * @netdev: network device
9981 * @ap_addr: AP (MLD) address that rejected the association
9982 * @timeout: timeout interval value TUs.
9983 *
9984 * this function may sleep. the caller must hold the corresponding wdev's mutex.
9985 */
9986 void cfg80211_assoc_comeback(struct net_device *netdev,
9987 const u8 *ap_addr, u32 timeout);
9988
9989 /* Logging, debugging and troubleshooting/diagnostic helpers. */
9990
9991 /* wiphy_printk helpers, similar to dev_printk */
9992
9993 #define wiphy_printk(level, wiphy, format, args...) \
9994 dev_printk(level, &(wiphy)->dev, format, ##args)
9995 #define wiphy_emerg(wiphy, format, args...) \
9996 dev_emerg(&(wiphy)->dev, format, ##args)
9997 #define wiphy_alert(wiphy, format, args...) \
9998 dev_alert(&(wiphy)->dev, format, ##args)
9999 #define wiphy_crit(wiphy, format, args...) \
10000 dev_crit(&(wiphy)->dev, format, ##args)
10001 #define wiphy_err(wiphy, format, args...) \
10002 dev_err(&(wiphy)->dev, format, ##args)
10003 #define wiphy_warn(wiphy, format, args...) \
10004 dev_warn(&(wiphy)->dev, format, ##args)
10005 #define wiphy_notice(wiphy, format, args...) \
10006 dev_notice(&(wiphy)->dev, format, ##args)
10007 #define wiphy_info(wiphy, format, args...) \
10008 dev_info(&(wiphy)->dev, format, ##args)
10009 #define wiphy_info_once(wiphy, format, args...) \
10010 dev_info_once(&(wiphy)->dev, format, ##args)
10011
10012 #define wiphy_err_ratelimited(wiphy, format, args...) \
10013 dev_err_ratelimited(&(wiphy)->dev, format, ##args)
10014 #define wiphy_warn_ratelimited(wiphy, format, args...) \
10015 dev_warn_ratelimited(&(wiphy)->dev, format, ##args)
10016
10017 #define wiphy_debug(wiphy, format, args...) \
10018 wiphy_printk(KERN_DEBUG, wiphy, format, ##args)
10019
10020 #define wiphy_dbg(wiphy, format, args...) \
10021 dev_dbg(&(wiphy)->dev, format, ##args)
10022
10023 #if defined(VERBOSE_DEBUG)
10024 #define wiphy_vdbg wiphy_dbg
10025 #else
10026 #define wiphy_vdbg(wiphy, format, args...) \
10027 ({ \
10028 if (0) \
10029 wiphy_printk(KERN_DEBUG, wiphy, format, ##args); \
10030 0; \
10031 })
10032 #endif
10033
10034 /*
10035 * wiphy_WARN() acts like wiphy_printk(), but with the key difference
10036 * of using a WARN/WARN_ON to get the message out, including the
10037 * file/line information and a backtrace.
10038 */
10039 #define wiphy_WARN(wiphy, format, args...) \
10040 WARN(1, "wiphy: %s\n" format, wiphy_name(wiphy), ##args);
10041
10042 /**
10043 * cfg80211_update_owe_info_event - Notify the peer's OWE info to user space
10044 * @netdev: network device
10045 * @owe_info: peer's owe info
10046 * @gfp: allocation flags
10047 */
10048 void cfg80211_update_owe_info_event(struct net_device *netdev,
10049 struct cfg80211_update_owe_info *owe_info,
10050 gfp_t gfp);
10051
10052 /**
10053 * cfg80211_bss_flush - resets all the scan entries
10054 * @wiphy: the wiphy
10055 */
10056 void cfg80211_bss_flush(struct wiphy *wiphy);
10057
10058 /**
10059 * cfg80211_bss_color_notify - notify about bss color event
10060 * @dev: network device
10061 * @cmd: the actual event we want to notify
10062 * @count: the number of TBTTs until the color change happens
10063 * @color_bitmap: representations of the colors that the local BSS is aware of
10064 * @link_id: valid link_id in case of MLO or 0 for non-MLO.
10065 *
10066 * Return: 0 on success. Non-zero on error.
10067 */
10068 int cfg80211_bss_color_notify(struct net_device *dev,
10069 enum nl80211_commands cmd, u8 count,
10070 u64 color_bitmap, u8 link_id);
10071
10072 /**
10073 * cfg80211_obss_color_collision_notify - notify about bss color collision
10074 * @dev: network device
10075 * @color_bitmap: representations of the colors that the local BSS is aware of
10076 * @link_id: valid link_id in case of MLO or 0 for non-MLO.
10077 *
10078 * Return: 0 on success. Non-zero on error.
10079 */
cfg80211_obss_color_collision_notify(struct net_device * dev,u64 color_bitmap,u8 link_id)10080 static inline int cfg80211_obss_color_collision_notify(struct net_device *dev,
10081 u64 color_bitmap,
10082 u8 link_id)
10083 {
10084 return cfg80211_bss_color_notify(dev, NL80211_CMD_OBSS_COLOR_COLLISION,
10085 0, color_bitmap, link_id);
10086 }
10087
10088 /**
10089 * cfg80211_color_change_started_notify - notify color change start
10090 * @dev: the device on which the color is switched
10091 * @count: the number of TBTTs until the color change happens
10092 * @link_id: valid link_id in case of MLO or 0 for non-MLO.
10093 *
10094 * Inform the userspace about the color change that has started.
10095 *
10096 * Return: 0 on success. Non-zero on error.
10097 */
cfg80211_color_change_started_notify(struct net_device * dev,u8 count,u8 link_id)10098 static inline int cfg80211_color_change_started_notify(struct net_device *dev,
10099 u8 count, u8 link_id)
10100 {
10101 return cfg80211_bss_color_notify(dev, NL80211_CMD_COLOR_CHANGE_STARTED,
10102 count, 0, link_id);
10103 }
10104
10105 /**
10106 * cfg80211_color_change_aborted_notify - notify color change abort
10107 * @dev: the device on which the color is switched
10108 * @link_id: valid link_id in case of MLO or 0 for non-MLO.
10109 *
10110 * Inform the userspace about the color change that has aborted.
10111 *
10112 * Return: 0 on success. Non-zero on error.
10113 */
cfg80211_color_change_aborted_notify(struct net_device * dev,u8 link_id)10114 static inline int cfg80211_color_change_aborted_notify(struct net_device *dev,
10115 u8 link_id)
10116 {
10117 return cfg80211_bss_color_notify(dev, NL80211_CMD_COLOR_CHANGE_ABORTED,
10118 0, 0, link_id);
10119 }
10120
10121 /**
10122 * cfg80211_color_change_notify - notify color change completion
10123 * @dev: the device on which the color was switched
10124 * @link_id: valid link_id in case of MLO or 0 for non-MLO.
10125 *
10126 * Inform the userspace about the color change that has completed.
10127 *
10128 * Return: 0 on success. Non-zero on error.
10129 */
cfg80211_color_change_notify(struct net_device * dev,u8 link_id)10130 static inline int cfg80211_color_change_notify(struct net_device *dev,
10131 u8 link_id)
10132 {
10133 return cfg80211_bss_color_notify(dev,
10134 NL80211_CMD_COLOR_CHANGE_COMPLETED,
10135 0, 0, link_id);
10136 }
10137
10138 /**
10139 * cfg80211_6ghz_power_type - determine AP regulatory power type
10140 * @control: control flags
10141 * @client_flags: &enum ieee80211_channel_flags for station mode to enable
10142 * SP to LPI fallback, zero otherwise.
10143 *
10144 * Return: regulatory power type from &enum ieee80211_ap_reg_power
10145 */
10146 static inline enum ieee80211_ap_reg_power
cfg80211_6ghz_power_type(u8 control,u32 client_flags)10147 cfg80211_6ghz_power_type(u8 control, u32 client_flags)
10148 {
10149 switch (u8_get_bits(control, IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO)) {
10150 case IEEE80211_6GHZ_CTRL_REG_LPI_AP:
10151 case IEEE80211_6GHZ_CTRL_REG_INDOOR_LPI_AP:
10152 case IEEE80211_6GHZ_CTRL_REG_AP_ROLE_NOT_RELEVANT:
10153 return IEEE80211_REG_LPI_AP;
10154 case IEEE80211_6GHZ_CTRL_REG_SP_AP:
10155 case IEEE80211_6GHZ_CTRL_REG_INDOOR_SP_AP_OLD:
10156 return IEEE80211_REG_SP_AP;
10157 case IEEE80211_6GHZ_CTRL_REG_VLP_AP:
10158 return IEEE80211_REG_VLP_AP;
10159 case IEEE80211_6GHZ_CTRL_REG_INDOOR_SP_AP:
10160 if (client_flags & IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT)
10161 return IEEE80211_REG_LPI_AP;
10162 return IEEE80211_REG_SP_AP;
10163 default:
10164 return IEEE80211_REG_UNSET_AP;
10165 }
10166 }
10167
10168 /**
10169 * cfg80211_links_removed - Notify about removed STA MLD setup links.
10170 * @dev: network device.
10171 * @link_mask: BIT mask of removed STA MLD setup link IDs.
10172 *
10173 * Inform cfg80211 and the userspace about removed STA MLD setup links due to
10174 * AP MLD removing the corresponding affiliated APs with Multi-Link
10175 * reconfiguration. Note that it's not valid to remove all links, in this
10176 * case disconnect instead.
10177 * Also note that the wdev mutex must be held.
10178 */
10179 void cfg80211_links_removed(struct net_device *dev, u16 link_mask);
10180
10181 /**
10182 * struct cfg80211_mlo_reconf_done_data - MLO reconfiguration data
10183 * @buf: MLO Reconfiguration Response frame (header + body)
10184 * @len: length of the frame data
10185 * @driver_initiated: Indicates whether the add links request is initiated by
10186 * driver. This is set to true when the link reconfiguration request
10187 * initiated by driver due to AP link recommendation requests
10188 * (Ex: BTM (BSS Transition Management) request) handling offloaded to
10189 * driver.
10190 * @added_links: BIT mask of links successfully added to the association
10191 * @links: per-link information indexed by link ID
10192 * @links.bss: the BSS that MLO reconfiguration was requested for, ownership of
10193 * the pointer moves to cfg80211 in the call to
10194 * cfg80211_mlo_reconf_add_done().
10195 *
10196 * The BSS pointer must be set for each link for which 'add' operation was
10197 * requested in the assoc_ml_reconf callback.
10198 */
10199 struct cfg80211_mlo_reconf_done_data {
10200 const u8 *buf;
10201 size_t len;
10202 bool driver_initiated;
10203 u16 added_links;
10204 struct {
10205 struct cfg80211_bss *bss;
10206 u8 *addr;
10207 } links[IEEE80211_MLD_MAX_NUM_LINKS];
10208 };
10209
10210 /**
10211 * cfg80211_mlo_reconf_add_done - Notify about MLO reconfiguration result
10212 * @dev: network device.
10213 * @data: MLO reconfiguration done data, &struct cfg80211_mlo_reconf_done_data
10214 *
10215 * Inform cfg80211 and the userspace that processing of ML reconfiguration
10216 * request to add links to the association is done.
10217 */
10218 void cfg80211_mlo_reconf_add_done(struct net_device *dev,
10219 struct cfg80211_mlo_reconf_done_data *data);
10220
10221 /**
10222 * cfg80211_schedule_channels_check - schedule regulatory check if needed
10223 * @wdev: the wireless device to check
10224 *
10225 * In case the device supports NO_IR or DFS relaxations, schedule regulatory
10226 * channels check, as previous concurrent operation conditions may not
10227 * hold anymore.
10228 */
10229 void cfg80211_schedule_channels_check(struct wireless_dev *wdev);
10230
10231 /**
10232 * cfg80211_epcs_changed - Notify about a change in EPCS state
10233 * @netdev: the wireless device whose EPCS state changed
10234 * @enabled: set to true if EPCS was enabled, otherwise set to false.
10235 */
10236 void cfg80211_epcs_changed(struct net_device *netdev, bool enabled);
10237
10238 /**
10239 * cfg80211_next_nan_dw_notif - Notify about the next NAN Discovery Window (DW)
10240 * @wdev: Pointer to the wireless device structure
10241 * @chan: DW channel (6, 44 or 149)
10242 * @gfp: Memory allocation flags
10243 */
10244 void cfg80211_next_nan_dw_notif(struct wireless_dev *wdev,
10245 struct ieee80211_channel *chan, gfp_t gfp);
10246
10247 /**
10248 * cfg80211_nan_cluster_joined - Notify about NAN cluster join
10249 * @wdev: Pointer to the wireless device structure
10250 * @cluster_id: Cluster ID of the NAN cluster that was joined or started
10251 * @new_cluster: Indicates if this is a new cluster or an existing one
10252 * @gfp: Memory allocation flags
10253 *
10254 * This function is used to notify user space when a NAN cluster has been
10255 * joined, providing the cluster ID and a flag whether it is a new cluster.
10256 */
10257 void cfg80211_nan_cluster_joined(struct wireless_dev *wdev,
10258 const u8 *cluster_id, bool new_cluster,
10259 gfp_t gfp);
10260
10261 #ifdef CONFIG_CFG80211_DEBUGFS
10262 /**
10263 * wiphy_locked_debugfs_read - do a locked read in debugfs
10264 * @wiphy: the wiphy to use
10265 * @file: the file being read
10266 * @buf: the buffer to fill and then read from
10267 * @bufsize: size of the buffer
10268 * @userbuf: the user buffer to copy to
10269 * @count: read count
10270 * @ppos: read position
10271 * @handler: the read handler to call (under wiphy lock)
10272 * @data: additional data to pass to the read handler
10273 *
10274 * Return: the number of characters read, or a negative errno
10275 */
10276 ssize_t wiphy_locked_debugfs_read(struct wiphy *wiphy, struct file *file,
10277 char *buf, size_t bufsize,
10278 char __user *userbuf, size_t count,
10279 loff_t *ppos,
10280 ssize_t (*handler)(struct wiphy *wiphy,
10281 struct file *file,
10282 char *buf,
10283 size_t bufsize,
10284 void *data),
10285 void *data);
10286
10287 /**
10288 * wiphy_locked_debugfs_write - do a locked write in debugfs
10289 * @wiphy: the wiphy to use
10290 * @file: the file being written to
10291 * @buf: the buffer to copy the user data to
10292 * @bufsize: size of the buffer
10293 * @userbuf: the user buffer to copy from
10294 * @count: read count
10295 * @handler: the write handler to call (under wiphy lock)
10296 * @data: additional data to pass to the write handler
10297 *
10298 * Return: the number of characters written, or a negative errno
10299 */
10300 ssize_t wiphy_locked_debugfs_write(struct wiphy *wiphy, struct file *file,
10301 char *buf, size_t bufsize,
10302 const char __user *userbuf, size_t count,
10303 ssize_t (*handler)(struct wiphy *wiphy,
10304 struct file *file,
10305 char *buf,
10306 size_t count,
10307 void *data),
10308 void *data);
10309 #endif
10310
10311 /**
10312 * cfg80211_s1g_get_start_freq_khz - get S1G chandef start frequency
10313 * @chandef: the chandef to use
10314 *
10315 * Return: the chandefs starting frequency in KHz
10316 */
10317 static inline u32
cfg80211_s1g_get_start_freq_khz(const struct cfg80211_chan_def * chandef)10318 cfg80211_s1g_get_start_freq_khz(const struct cfg80211_chan_def *chandef)
10319 {
10320 u32 bw_mhz = cfg80211_chandef_get_width(chandef);
10321 u32 center_khz =
10322 MHZ_TO_KHZ(chandef->center_freq1) + chandef->freq1_offset;
10323 return center_khz - bw_mhz * 500 + 500;
10324 }
10325
10326 /**
10327 * cfg80211_s1g_get_end_freq_khz - get S1G chandef end frequency
10328 * @chandef: the chandef to use
10329 *
10330 * Return: the chandefs ending frequency in KHz
10331 */
10332 static inline u32
cfg80211_s1g_get_end_freq_khz(const struct cfg80211_chan_def * chandef)10333 cfg80211_s1g_get_end_freq_khz(const struct cfg80211_chan_def *chandef)
10334 {
10335 u32 bw_mhz = cfg80211_chandef_get_width(chandef);
10336 u32 center_khz =
10337 MHZ_TO_KHZ(chandef->center_freq1) + chandef->freq1_offset;
10338 return center_khz + bw_mhz * 500 - 500;
10339 }
10340
10341 /**
10342 * cfg80211_s1g_get_primary_sibling - retrieve the sibling 1MHz subchannel
10343 * for an S1G chandef using a 2MHz primary channel.
10344 * @wiphy: wiphy the channel belongs to
10345 * @chandef: the chandef to use
10346 *
10347 * When chandef::s1g_primary_2mhz is set to true, we are operating on a 2MHz
10348 * primary channel. The 1MHz subchannel designated by the primary channel
10349 * location exists within chandef::chan, whilst the 'sibling' is denoted as
10350 * being the other 1MHz subchannel that make up the 2MHz primary channel.
10351 *
10352 * Returns: the sibling 1MHz &struct ieee80211_channel, or %NULL on failure.
10353 */
10354 static inline struct ieee80211_channel *
cfg80211_s1g_get_primary_sibling(struct wiphy * wiphy,const struct cfg80211_chan_def * chandef)10355 cfg80211_s1g_get_primary_sibling(struct wiphy *wiphy,
10356 const struct cfg80211_chan_def *chandef)
10357 {
10358 int width_mhz = cfg80211_chandef_get_width(chandef);
10359 u32 pri_1mhz_khz, sibling_1mhz_khz, op_low_1mhz_khz, pri_index;
10360
10361 if (!chandef->s1g_primary_2mhz || width_mhz < 2)
10362 return NULL;
10363
10364 pri_1mhz_khz = ieee80211_channel_to_khz(chandef->chan);
10365 op_low_1mhz_khz = cfg80211_s1g_get_start_freq_khz(chandef);
10366
10367 /*
10368 * Compute the index of the primary 1 MHz subchannel within the
10369 * operating channel, relative to the lowest 1 MHz center frequency.
10370 * Flip the least significant bit to select the even/odd sibling,
10371 * then translate that index back into a channel frequency.
10372 */
10373 pri_index = (pri_1mhz_khz - op_low_1mhz_khz) / 1000;
10374 sibling_1mhz_khz = op_low_1mhz_khz + ((pri_index ^ 1) * 1000);
10375
10376 return ieee80211_get_channel_khz(wiphy, sibling_1mhz_khz);
10377 }
10378
10379 #endif /* __NET_CFG80211_H */
10380