1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * kaslr.c
4 *
5 * This contains the routines needed to generate a reasonable level of
6 * entropy to choose a randomized kernel base address offset in support
7 * of Kernel Address Space Layout Randomization (KASLR). Additionally
8 * handles walking the physical memory maps (and tracking memory regions
9 * to avoid) in order to select a physical memory location that can
10 * contain the entire properly aligned running kernel image.
11 *
12 */
13
14 /*
15 * isspace() in linux/ctype.h is expected by next_args() to filter
16 * out "space/lf/tab". While boot/ctype.h conflicts with linux/ctype.h,
17 * since isdigit() is implemented in both of them. Hence disable it
18 * here.
19 */
20 #define BOOT_CTYPE_H
21
22 #include "misc.h"
23 #include "error.h"
24 #include "../string.h"
25 #include "efi.h"
26
27 #include <generated/compile.h>
28 #include <linux/module.h>
29 #include <linux/uts.h>
30 #include <linux/utsname.h>
31 #include <linux/ctype.h>
32 #include <generated/utsversion.h>
33 #include <generated/utsrelease.h>
34
35 #define _SETUP
36 #include <asm/setup.h> /* For COMMAND_LINE_SIZE */
37 #undef _SETUP
38
39 extern unsigned long get_cmd_line_ptr(void);
40
41 /* Simplified build-specific string for starting entropy. */
42 static const char build_str[] = UTS_RELEASE " (" LINUX_COMPILE_BY "@"
43 LINUX_COMPILE_HOST ") (" LINUX_COMPILER ") " UTS_VERSION;
44
rotate_xor(unsigned long hash,const void * area,size_t size)45 static unsigned long rotate_xor(unsigned long hash, const void *area,
46 size_t size)
47 {
48 size_t i;
49 unsigned long *ptr = (unsigned long *)area;
50
51 for (i = 0; i < size / sizeof(hash); i++) {
52 /* Rotate by odd number of bits and XOR. */
53 hash = (hash << ((sizeof(hash) * 8) - 7)) | (hash >> 7);
54 hash ^= ptr[i];
55 }
56
57 return hash;
58 }
59
60 /* Attempt to create a simple but unpredictable starting entropy. */
get_boot_seed(void)61 static unsigned long get_boot_seed(void)
62 {
63 unsigned long hash = 0;
64
65 hash = rotate_xor(hash, build_str, sizeof(build_str));
66 hash = rotate_xor(hash, boot_params_ptr, sizeof(*boot_params_ptr));
67
68 return hash;
69 }
70
71 #define KASLR_COMPRESSED_BOOT
72 #include "../../lib/kaslr.c"
73
74
75 /* Only supporting at most 4 unusable memmap regions with kaslr */
76 #define MAX_MEMMAP_REGIONS 4
77
78 static bool memmap_too_large;
79
80
81 /*
82 * Store memory limit: MAXMEM on 64-bit and KERNEL_IMAGE_SIZE on 32-bit.
83 * It may be reduced by "mem=nn[KMG]" or "memmap=nn[KMG]" command line options.
84 */
85 static u64 mem_limit;
86
87 /* Number of immovable memory regions */
88 static int num_immovable_mem;
89
90 enum mem_avoid_index {
91 MEM_AVOID_ZO_RANGE = 0,
92 MEM_AVOID_INITRD,
93 MEM_AVOID_CMDLINE,
94 MEM_AVOID_BOOTPARAMS,
95 MEM_AVOID_MEMMAP_BEGIN,
96 MEM_AVOID_MEMMAP_END = MEM_AVOID_MEMMAP_BEGIN + MAX_MEMMAP_REGIONS - 1,
97 MEM_AVOID_MAX,
98 };
99
100 static struct mem_vector mem_avoid[MEM_AVOID_MAX];
101
mem_overlaps(struct mem_vector * one,struct mem_vector * two)102 static bool mem_overlaps(struct mem_vector *one, struct mem_vector *two)
103 {
104 /* Item one is entirely before item two. */
105 if (one->start + one->size <= two->start)
106 return false;
107 /* Item one is entirely after item two. */
108 if (one->start >= two->start + two->size)
109 return false;
110 return true;
111 }
112
skip_spaces(const char * str)113 char *skip_spaces(const char *str)
114 {
115 while (isspace(*str))
116 ++str;
117 return (char *)str;
118 }
119 #include "../../../../lib/ctype.c"
120 #include "../../../../lib/cmdline.c"
121
122 static int
parse_memmap(char * p,u64 * start,u64 * size)123 parse_memmap(char *p, u64 *start, u64 *size)
124 {
125 char *oldp;
126
127 if (!p)
128 return -EINVAL;
129
130 /* We don't care about this option here */
131 if (!strncmp(p, "exactmap", 8))
132 return -EINVAL;
133
134 oldp = p;
135 *size = memparse(p, &p);
136 if (p == oldp)
137 return -EINVAL;
138
139 switch (*p) {
140 case '#':
141 case '$':
142 case '!':
143 *start = memparse(p + 1, &p);
144 return 0;
145 case '@':
146 /*
147 * memmap=nn@ss specifies usable region, should
148 * be skipped
149 */
150 *size = 0;
151 fallthrough;
152 default:
153 /*
154 * If w/o offset, only size specified, memmap=nn[KMG] has the
155 * same behaviour as mem=nn[KMG]. It limits the max address
156 * system can use. Region above the limit should be avoided.
157 */
158 *start = 0;
159 return 0;
160 }
161
162 return -EINVAL;
163 }
164
mem_avoid_memmap(char * str)165 static void mem_avoid_memmap(char *str)
166 {
167 static int i;
168
169 if (i >= MAX_MEMMAP_REGIONS)
170 return;
171
172 while (str && (i < MAX_MEMMAP_REGIONS)) {
173 int rc;
174 u64 start, size;
175 char *k = strchr(str, ',');
176
177 if (k)
178 *k++ = 0;
179
180 rc = parse_memmap(str, &start, &size);
181 if (rc < 0)
182 break;
183 str = k;
184
185 if (start == 0) {
186 /* Store the specified memory limit if size > 0 */
187 if (size > 0 && size < mem_limit)
188 mem_limit = size;
189
190 continue;
191 }
192
193 mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].start = start;
194 mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].size = size;
195 i++;
196 }
197
198 /* More than 4 memmaps, fail kaslr */
199 if ((i >= MAX_MEMMAP_REGIONS) && str)
200 memmap_too_large = true;
201 }
202
203 /* Store the number of 1GB huge pages which users specified: */
204 static unsigned long max_gb_huge_pages;
205
parse_gb_huge_pages(char * param,char * val)206 static void parse_gb_huge_pages(char *param, char *val)
207 {
208 static bool gbpage_sz;
209 char *p;
210
211 if (!strcmp(param, "hugepagesz")) {
212 p = val;
213 if (memparse(p, &p) != PUD_SIZE) {
214 gbpage_sz = false;
215 return;
216 }
217
218 if (gbpage_sz)
219 warn("Repeatedly set hugeTLB page size of 1G!\n");
220 gbpage_sz = true;
221 return;
222 }
223
224 if (!strcmp(param, "hugepages") && gbpage_sz) {
225 p = val;
226 max_gb_huge_pages = simple_strtoull(p, &p, 0);
227 return;
228 }
229 }
230
handle_mem_options(void)231 static void handle_mem_options(void)
232 {
233 char *args = (char *)get_cmd_line_ptr();
234 size_t len;
235 char *tmp_cmdline;
236 char *param, *val;
237 u64 mem_size;
238
239 if (!args)
240 return;
241
242 len = strnlen(args, COMMAND_LINE_SIZE-1);
243 tmp_cmdline = malloc(len + 1);
244 if (!tmp_cmdline)
245 error("Failed to allocate space for tmp_cmdline");
246
247 memcpy(tmp_cmdline, args, len);
248 tmp_cmdline[len] = 0;
249 args = tmp_cmdline;
250
251 /* Chew leading spaces */
252 args = skip_spaces(args);
253
254 while (*args) {
255 args = next_arg(args, ¶m, &val);
256 /* Stop at -- */
257 if (!val && strcmp(param, "--") == 0)
258 break;
259
260 if (!strcmp(param, "memmap")) {
261 mem_avoid_memmap(val);
262 } else if (IS_ENABLED(CONFIG_X86_64) && strstr(param, "hugepages")) {
263 parse_gb_huge_pages(param, val);
264 } else if (!strcmp(param, "mem")) {
265 char *p = val;
266
267 if (!strcmp(p, "nopentium"))
268 continue;
269 mem_size = memparse(p, &p);
270 if (mem_size == 0)
271 break;
272
273 if (mem_size < mem_limit)
274 mem_limit = mem_size;
275 }
276 }
277
278 free(tmp_cmdline);
279 return;
280 }
281
282 /*
283 * In theory, KASLR can put the kernel anywhere in the range of [16M, MAXMEM)
284 * on 64-bit, and [16M, KERNEL_IMAGE_SIZE) on 32-bit.
285 *
286 * The mem_avoid array is used to store the ranges that need to be avoided
287 * when KASLR searches for an appropriate random address. We must avoid any
288 * regions that are unsafe to overlap with during decompression, and other
289 * things like the initrd, cmdline and boot_params. This comment seeks to
290 * explain mem_avoid as clearly as possible since incorrect mem_avoid
291 * memory ranges lead to really hard to debug boot failures.
292 *
293 * The initrd, cmdline, and boot_params are trivial to identify for
294 * avoiding. They are MEM_AVOID_INITRD, MEM_AVOID_CMDLINE, and
295 * MEM_AVOID_BOOTPARAMS respectively below.
296 *
297 * What is not obvious how to avoid is the range of memory that is used
298 * during decompression (MEM_AVOID_ZO_RANGE below). This range must cover
299 * the compressed kernel (ZO) and its run space, which is used to extract
300 * the uncompressed kernel (VO) and relocs.
301 *
302 * ZO's full run size sits against the end of the decompression buffer, so
303 * we can calculate where text, data, bss, etc of ZO are positioned more
304 * easily.
305 *
306 * For additional background, the decompression calculations can be found
307 * in header.S, and the memory diagram is based on the one found in misc.c.
308 *
309 * The following conditions are already enforced by the image layouts and
310 * associated code:
311 * - input + input_size >= output + output_size
312 * - kernel_total_size <= init_size
313 * - kernel_total_size <= output_size (see Note below)
314 * - output + init_size >= output + output_size
315 *
316 * (Note that kernel_total_size and output_size have no fundamental
317 * relationship, but output_size is passed to choose_random_location
318 * as a maximum of the two. The diagram is showing a case where
319 * kernel_total_size is larger than output_size, but this case is
320 * handled by bumping output_size.)
321 *
322 * The above conditions can be illustrated by a diagram:
323 *
324 * 0 output input input+input_size output+init_size
325 * | | | | |
326 * | | | | |
327 * |-----|--------|--------|--------------|-----------|--|-------------|
328 * | | |
329 * | | |
330 * output+init_size-ZO_INIT_SIZE output+output_size output+kernel_total_size
331 *
332 * [output, output+init_size) is the entire memory range used for
333 * extracting the compressed image.
334 *
335 * [output, output+kernel_total_size) is the range needed for the
336 * uncompressed kernel (VO) and its run size (bss, brk, etc).
337 *
338 * [output, output+output_size) is VO plus relocs (i.e. the entire
339 * uncompressed payload contained by ZO). This is the area of the buffer
340 * written to during decompression.
341 *
342 * [output+init_size-ZO_INIT_SIZE, output+init_size) is the worst-case
343 * range of the copied ZO and decompression code. (i.e. the range
344 * covered backwards of size ZO_INIT_SIZE, starting from output+init_size.)
345 *
346 * [input, input+input_size) is the original copied compressed image (ZO)
347 * (i.e. it does not include its run size). This range must be avoided
348 * because it contains the data used for decompression.
349 *
350 * [input+input_size, output+init_size) is [_text, _end) for ZO. This
351 * range includes ZO's heap and stack, and must be avoided since it
352 * performs the decompression.
353 *
354 * Since the above two ranges need to be avoided and they are adjacent,
355 * they can be merged, resulting in: [input, output+init_size) which
356 * becomes the MEM_AVOID_ZO_RANGE below.
357 */
mem_avoid_init(unsigned long input,unsigned long input_size,unsigned long output)358 static void mem_avoid_init(unsigned long input, unsigned long input_size,
359 unsigned long output)
360 {
361 unsigned long init_size = boot_params_ptr->hdr.init_size;
362 u64 initrd_start, initrd_size;
363 unsigned long cmd_line, cmd_line_size;
364
365 /*
366 * Avoid the region that is unsafe to overlap during
367 * decompression.
368 */
369 mem_avoid[MEM_AVOID_ZO_RANGE].start = input;
370 mem_avoid[MEM_AVOID_ZO_RANGE].size = (output + init_size) - input;
371
372 /* Avoid initrd. */
373 initrd_start = (u64)boot_params_ptr->ext_ramdisk_image << 32;
374 initrd_start |= boot_params_ptr->hdr.ramdisk_image;
375 initrd_size = (u64)boot_params_ptr->ext_ramdisk_size << 32;
376 initrd_size |= boot_params_ptr->hdr.ramdisk_size;
377 mem_avoid[MEM_AVOID_INITRD].start = initrd_start;
378 mem_avoid[MEM_AVOID_INITRD].size = initrd_size;
379 /* No need to set mapping for initrd, it will be handled in VO. */
380
381 /* Avoid kernel command line. */
382 cmd_line = get_cmd_line_ptr();
383 /* Calculate size of cmd_line. */
384 if (cmd_line) {
385 cmd_line_size = strnlen((char *)cmd_line, COMMAND_LINE_SIZE-1) + 1;
386 mem_avoid[MEM_AVOID_CMDLINE].start = cmd_line;
387 mem_avoid[MEM_AVOID_CMDLINE].size = cmd_line_size;
388 }
389
390 /* Avoid boot parameters. */
391 mem_avoid[MEM_AVOID_BOOTPARAMS].start = (unsigned long)boot_params_ptr;
392 mem_avoid[MEM_AVOID_BOOTPARAMS].size = sizeof(*boot_params_ptr);
393
394 /* We don't need to set a mapping for setup_data. */
395
396 /* Mark the memmap regions we need to avoid */
397 handle_mem_options();
398
399 /* Enumerate the immovable memory regions */
400 num_immovable_mem = count_immovable_mem_regions();
401 }
402
403 /*
404 * Does this memory vector overlap a known avoided area? If so, record the
405 * overlap region with the lowest address.
406 */
mem_avoid_overlap(struct mem_vector * img,struct mem_vector * overlap)407 static bool mem_avoid_overlap(struct mem_vector *img,
408 struct mem_vector *overlap)
409 {
410 int i;
411 struct setup_data *ptr;
412 u64 earliest = img->start + img->size;
413 bool is_overlapping = false;
414
415 for (i = 0; i < MEM_AVOID_MAX; i++) {
416 if (mem_overlaps(img, &mem_avoid[i]) &&
417 mem_avoid[i].start < earliest) {
418 *overlap = mem_avoid[i];
419 earliest = overlap->start;
420 is_overlapping = true;
421 }
422 }
423
424 /* Avoid all entries in the setup_data linked list. */
425 ptr = (struct setup_data *)(unsigned long)boot_params_ptr->hdr.setup_data;
426 while (ptr) {
427 struct mem_vector avoid;
428
429 avoid.start = (unsigned long)ptr;
430 avoid.size = sizeof(*ptr) + ptr->len;
431
432 if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) {
433 *overlap = avoid;
434 earliest = overlap->start;
435 is_overlapping = true;
436 }
437
438 if (ptr->type == SETUP_INDIRECT &&
439 ((struct setup_indirect *)ptr->data)->type != SETUP_INDIRECT) {
440 avoid.start = ((struct setup_indirect *)ptr->data)->addr;
441 avoid.size = ((struct setup_indirect *)ptr->data)->len;
442
443 if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) {
444 *overlap = avoid;
445 earliest = overlap->start;
446 is_overlapping = true;
447 }
448 }
449
450 ptr = (struct setup_data *)(unsigned long)ptr->next;
451 }
452
453 return is_overlapping;
454 }
455
456 struct slot_area {
457 u64 addr;
458 unsigned long num;
459 };
460
461 #define MAX_SLOT_AREA 100
462
463 static struct slot_area slot_areas[MAX_SLOT_AREA];
464 static unsigned int slot_area_index;
465 static unsigned long slot_max;
466
store_slot_info(struct mem_vector * region,unsigned long image_size)467 static void store_slot_info(struct mem_vector *region, unsigned long image_size)
468 {
469 struct slot_area slot_area;
470
471 if (slot_area_index == MAX_SLOT_AREA)
472 return;
473
474 slot_area.addr = region->start;
475 slot_area.num = 1 + (region->size - image_size) / CONFIG_PHYSICAL_ALIGN;
476
477 slot_areas[slot_area_index++] = slot_area;
478 slot_max += slot_area.num;
479 }
480
481 /*
482 * Skip as many 1GB huge pages as possible in the passed region
483 * according to the number which users specified:
484 */
485 static void
process_gb_huge_pages(struct mem_vector * region,unsigned long image_size)486 process_gb_huge_pages(struct mem_vector *region, unsigned long image_size)
487 {
488 u64 pud_start, pud_end;
489 unsigned long gb_huge_pages;
490 struct mem_vector tmp;
491
492 if (!IS_ENABLED(CONFIG_X86_64) || !max_gb_huge_pages) {
493 store_slot_info(region, image_size);
494 return;
495 }
496
497 /* Are there any 1GB pages in the region? */
498 pud_start = ALIGN(region->start, PUD_SIZE);
499 pud_end = ALIGN_DOWN(region->start + region->size, PUD_SIZE);
500
501 /* No good 1GB huge pages found: */
502 if (pud_start >= pud_end) {
503 store_slot_info(region, image_size);
504 return;
505 }
506
507 /* Check if the head part of the region is usable. */
508 if (pud_start >= region->start + image_size) {
509 tmp.start = region->start;
510 tmp.size = pud_start - region->start;
511 store_slot_info(&tmp, image_size);
512 }
513
514 /* Skip the good 1GB pages. */
515 gb_huge_pages = (pud_end - pud_start) >> PUD_SHIFT;
516 if (gb_huge_pages > max_gb_huge_pages) {
517 pud_end = pud_start + (max_gb_huge_pages << PUD_SHIFT);
518 max_gb_huge_pages = 0;
519 } else {
520 max_gb_huge_pages -= gb_huge_pages;
521 }
522
523 /* Check if the tail part of the region is usable. */
524 if (region->start + region->size >= pud_end + image_size) {
525 tmp.start = pud_end;
526 tmp.size = region->start + region->size - pud_end;
527 store_slot_info(&tmp, image_size);
528 }
529 }
530
slots_fetch_random(void)531 static u64 slots_fetch_random(void)
532 {
533 unsigned long slot;
534 unsigned int i;
535
536 /* Handle case of no slots stored. */
537 if (slot_max == 0)
538 return 0;
539
540 slot = kaslr_get_random_long("Physical") % slot_max;
541
542 for (i = 0; i < slot_area_index; i++) {
543 if (slot >= slot_areas[i].num) {
544 slot -= slot_areas[i].num;
545 continue;
546 }
547 return slot_areas[i].addr + ((u64)slot * CONFIG_PHYSICAL_ALIGN);
548 }
549
550 if (i == slot_area_index)
551 debug_putstr("slots_fetch_random() failed!?\n");
552 return 0;
553 }
554
__process_mem_region(struct mem_vector * entry,unsigned long minimum,unsigned long image_size)555 static void __process_mem_region(struct mem_vector *entry,
556 unsigned long minimum,
557 unsigned long image_size)
558 {
559 struct mem_vector region, overlap;
560 u64 region_end;
561
562 /* Enforce minimum and memory limit. */
563 region.start = max_t(u64, entry->start, minimum);
564 region_end = min(entry->start + entry->size, mem_limit);
565
566 /* Give up if slot area array is full. */
567 while (slot_area_index < MAX_SLOT_AREA) {
568 /* Potentially raise address to meet alignment needs. */
569 region.start = ALIGN(region.start, CONFIG_PHYSICAL_ALIGN);
570
571 /* Did we raise the address above the passed in memory entry? */
572 if (region.start > region_end)
573 return;
574
575 /* Reduce size by any delta from the original address. */
576 region.size = region_end - region.start;
577
578 /* Return if region can't contain decompressed kernel */
579 if (region.size < image_size)
580 return;
581
582 /* If nothing overlaps, store the region and return. */
583 if (!mem_avoid_overlap(®ion, &overlap)) {
584 process_gb_huge_pages(®ion, image_size);
585 return;
586 }
587
588 /* Store beginning of region if holds at least image_size. */
589 if (overlap.start >= region.start + image_size) {
590 region.size = overlap.start - region.start;
591 process_gb_huge_pages(®ion, image_size);
592 }
593
594 /* Clip off the overlapping region and start over. */
595 region.start = overlap.start + overlap.size;
596 }
597 }
598
process_mem_region(struct mem_vector * region,unsigned long minimum,unsigned long image_size)599 static bool process_mem_region(struct mem_vector *region,
600 unsigned long minimum,
601 unsigned long image_size)
602 {
603 int i;
604 /*
605 * If no immovable memory found, or MEMORY_HOTREMOVE disabled,
606 * use @region directly.
607 */
608 if (!num_immovable_mem) {
609 __process_mem_region(region, minimum, image_size);
610
611 if (slot_area_index == MAX_SLOT_AREA) {
612 debug_putstr("Aborted e820/efi memmap scan (slot_areas full)!\n");
613 return true;
614 }
615 return false;
616 }
617
618 #if defined(CONFIG_MEMORY_HOTREMOVE) && defined(CONFIG_ACPI)
619 /*
620 * If immovable memory found, filter the intersection between
621 * immovable memory and @region.
622 */
623 for (i = 0; i < num_immovable_mem; i++) {
624 u64 start, end, entry_end, region_end;
625 struct mem_vector entry;
626
627 if (!mem_overlaps(region, &immovable_mem[i]))
628 continue;
629
630 start = immovable_mem[i].start;
631 end = start + immovable_mem[i].size;
632 region_end = region->start + region->size;
633
634 entry.start = clamp(region->start, start, end);
635 entry_end = clamp(region_end, start, end);
636 entry.size = entry_end - entry.start;
637
638 __process_mem_region(&entry, minimum, image_size);
639
640 if (slot_area_index == MAX_SLOT_AREA) {
641 debug_putstr("Aborted e820/efi memmap scan when walking immovable regions(slot_areas full)!\n");
642 return true;
643 }
644 }
645 #endif
646 return false;
647 }
648
649 #ifdef CONFIG_EFI
650
651 /*
652 * Only EFI_CONVENTIONAL_MEMORY and EFI_UNACCEPTED_MEMORY (if supported) are
653 * guaranteed to be free.
654 *
655 * Pick free memory more conservatively than the EFI spec allows: according to
656 * the spec, EFI_BOOT_SERVICES_{CODE|DATA} are also free memory and thus
657 * available to place the kernel image into, but in practice there's firmware
658 * where using that memory leads to crashes. Buggy vendor EFI code registers
659 * for an event that triggers on SetVirtualAddressMap(). The handler assumes
660 * that EFI_BOOT_SERVICES_DATA memory has not been touched by loader yet, which
661 * is probably true for Windows.
662 *
663 * Preserve EFI_BOOT_SERVICES_* regions until after SetVirtualAddressMap().
664 */
memory_type_is_free(efi_memory_desc_t * md)665 static inline bool memory_type_is_free(efi_memory_desc_t *md)
666 {
667 if (md->type == EFI_CONVENTIONAL_MEMORY)
668 return true;
669
670 if (IS_ENABLED(CONFIG_UNACCEPTED_MEMORY) &&
671 md->type == EFI_UNACCEPTED_MEMORY)
672 return true;
673
674 return false;
675 }
676
677 /*
678 * Returns true if we processed the EFI memmap, which we prefer over the E820
679 * table if it is available.
680 */
681 static bool
process_efi_entries(unsigned long minimum,unsigned long image_size)682 process_efi_entries(unsigned long minimum, unsigned long image_size)
683 {
684 struct efi_info *e = &boot_params_ptr->efi_info;
685 bool efi_mirror_found = false;
686 struct mem_vector region;
687 efi_memory_desc_t *md;
688 unsigned long pmap;
689 char *signature;
690 u32 nr_desc;
691 int i;
692
693 signature = (char *)&e->efi_loader_signature;
694 if (strncmp(signature, EFI32_LOADER_SIGNATURE, 4) &&
695 strncmp(signature, EFI64_LOADER_SIGNATURE, 4))
696 return false;
697
698 #ifdef CONFIG_X86_32
699 /* Can't handle data above 4GB at this time */
700 if (e->efi_memmap_hi) {
701 warn("EFI memmap is above 4GB, can't be handled now on x86_32. EFI should be disabled.\n");
702 return false;
703 }
704 pmap = e->efi_memmap;
705 #else
706 pmap = (e->efi_memmap | ((__u64)e->efi_memmap_hi << 32));
707 #endif
708
709 nr_desc = e->efi_memmap_size / e->efi_memdesc_size;
710 for (i = 0; i < nr_desc; i++) {
711 md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i);
712 if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
713 efi_mirror_found = true;
714 break;
715 }
716 }
717
718 for (i = 0; i < nr_desc; i++) {
719 md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i);
720
721 if (!memory_type_is_free(md))
722 continue;
723
724 if (efi_soft_reserve_enabled() &&
725 (md->attribute & EFI_MEMORY_SP))
726 continue;
727
728 if (efi_mirror_found &&
729 !(md->attribute & EFI_MEMORY_MORE_RELIABLE))
730 continue;
731
732 region.start = md->phys_addr;
733 region.size = md->num_pages << EFI_PAGE_SHIFT;
734 if (process_mem_region(®ion, minimum, image_size))
735 break;
736 }
737 return true;
738 }
739 #else
740 static inline bool
process_efi_entries(unsigned long minimum,unsigned long image_size)741 process_efi_entries(unsigned long minimum, unsigned long image_size)
742 {
743 return false;
744 }
745 #endif
746
process_e820_entries(unsigned long minimum,unsigned long image_size)747 static void process_e820_entries(unsigned long minimum,
748 unsigned long image_size)
749 {
750 int i;
751 struct mem_vector region;
752 struct boot_e820_entry *entry;
753
754 /* Verify potential e820 positions, appending to slots list. */
755 for (i = 0; i < boot_params_ptr->e820_entries; i++) {
756 entry = &boot_params_ptr->e820_table[i];
757 /* Skip non-RAM entries. */
758 if (entry->type != E820_TYPE_RAM)
759 continue;
760 region.start = entry->addr;
761 region.size = entry->size;
762 if (process_mem_region(®ion, minimum, image_size))
763 break;
764 }
765 }
766
find_random_phys_addr(unsigned long minimum,unsigned long image_size)767 static unsigned long find_random_phys_addr(unsigned long minimum,
768 unsigned long image_size)
769 {
770 u64 phys_addr;
771
772 /* Bail out early if it's impossible to succeed. */
773 if (minimum + image_size > mem_limit)
774 return 0;
775
776 /* Check if we had too many memmaps. */
777 if (memmap_too_large) {
778 debug_putstr("Aborted memory entries scan (more than 4 memmap= args)!\n");
779 return 0;
780 }
781
782 if (!process_efi_entries(minimum, image_size))
783 process_e820_entries(minimum, image_size);
784
785 phys_addr = slots_fetch_random();
786
787 /* Perform a final check to make sure the address is in range. */
788 if (phys_addr < minimum || phys_addr + image_size > mem_limit) {
789 warn("Invalid physical address chosen!\n");
790 return 0;
791 }
792
793 return (unsigned long)phys_addr;
794 }
795
find_random_virt_addr(unsigned long minimum,unsigned long image_size)796 static unsigned long find_random_virt_addr(unsigned long minimum,
797 unsigned long image_size)
798 {
799 unsigned long slots, random_addr;
800
801 /*
802 * There are how many CONFIG_PHYSICAL_ALIGN-sized slots
803 * that can hold image_size within the range of minimum to
804 * KERNEL_IMAGE_SIZE?
805 */
806 slots = 1 + (KERNEL_IMAGE_SIZE - minimum - image_size) / CONFIG_PHYSICAL_ALIGN;
807
808 random_addr = kaslr_get_random_long("Virtual") % slots;
809
810 return random_addr * CONFIG_PHYSICAL_ALIGN + minimum;
811 }
812
813 /*
814 * Since this function examines addresses much more numerically,
815 * it takes the input and output pointers as 'unsigned long'.
816 */
choose_random_location(unsigned long input,unsigned long input_size,unsigned long * output,unsigned long output_size,unsigned long * virt_addr)817 void choose_random_location(unsigned long input,
818 unsigned long input_size,
819 unsigned long *output,
820 unsigned long output_size,
821 unsigned long *virt_addr)
822 {
823 unsigned long random_addr, min_addr;
824
825 if (cmdline_find_option_bool("nokaslr")) {
826 warn("KASLR disabled: 'nokaslr' on cmdline.");
827 return;
828 }
829
830 boot_params_ptr->hdr.loadflags |= KASLR_FLAG;
831
832 if (IS_ENABLED(CONFIG_X86_32))
833 mem_limit = KERNEL_IMAGE_SIZE;
834 else
835 mem_limit = MAXMEM;
836
837 /* Record the various known unsafe memory ranges. */
838 mem_avoid_init(input, input_size, *output);
839
840 /*
841 * Low end of the randomization range should be the
842 * smaller of 512M or the initial kernel image
843 * location:
844 */
845 min_addr = min(*output, 512UL << 20);
846 /* Make sure minimum is aligned. */
847 min_addr = ALIGN(min_addr, CONFIG_PHYSICAL_ALIGN);
848
849 /* Walk available memory entries to find a random address. */
850 random_addr = find_random_phys_addr(min_addr, output_size);
851 if (!random_addr) {
852 warn("Physical KASLR disabled: no suitable memory region!");
853 } else {
854 /* Update the new physical address location. */
855 if (*output != random_addr)
856 *output = random_addr;
857 }
858
859
860 /* Pick random virtual address starting from LOAD_PHYSICAL_ADDR. */
861 if (IS_ENABLED(CONFIG_X86_64))
862 random_addr = find_random_virt_addr(LOAD_PHYSICAL_ADDR, output_size);
863 *virt_addr = random_addr;
864 }
865