xref: /linux/fs/f2fs/segment.c (revision cb015814f8b6eebcbb8e46e111d108892c5e6821)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/segment.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/sched/mm.h>
13 #include <linux/prefetch.h>
14 #include <linux/kthread.h>
15 #include <linux/swap.h>
16 #include <linux/timer.h>
17 #include <linux/freezer.h>
18 #include <linux/sched/signal.h>
19 #include <linux/random.h>
20 
21 #include "f2fs.h"
22 #include "segment.h"
23 #include "node.h"
24 #include "gc.h"
25 #include "iostat.h"
26 #include <trace/events/f2fs.h>
27 
28 #define __reverse_ffz(x) __reverse_ffs(~(x))
29 
30 static struct kmem_cache *discard_entry_slab;
31 static struct kmem_cache *discard_cmd_slab;
32 static struct kmem_cache *sit_entry_set_slab;
33 static struct kmem_cache *revoke_entry_slab;
34 
__reverse_ulong(unsigned char * str)35 static unsigned long __reverse_ulong(unsigned char *str)
36 {
37 	unsigned long tmp = 0;
38 	int shift = 24, idx = 0;
39 
40 #if BITS_PER_LONG == 64
41 	shift = 56;
42 #endif
43 	while (shift >= 0) {
44 		tmp |= (unsigned long)str[idx++] << shift;
45 		shift -= BITS_PER_BYTE;
46 	}
47 	return tmp;
48 }
49 
50 /*
51  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
52  * MSB and LSB are reversed in a byte by f2fs_set_bit.
53  */
__reverse_ffs(unsigned long word)54 static inline unsigned long __reverse_ffs(unsigned long word)
55 {
56 	int num = 0;
57 
58 #if BITS_PER_LONG == 64
59 	if ((word & 0xffffffff00000000UL) == 0)
60 		num += 32;
61 	else
62 		word >>= 32;
63 #endif
64 	if ((word & 0xffff0000) == 0)
65 		num += 16;
66 	else
67 		word >>= 16;
68 
69 	if ((word & 0xff00) == 0)
70 		num += 8;
71 	else
72 		word >>= 8;
73 
74 	if ((word & 0xf0) == 0)
75 		num += 4;
76 	else
77 		word >>= 4;
78 
79 	if ((word & 0xc) == 0)
80 		num += 2;
81 	else
82 		word >>= 2;
83 
84 	if ((word & 0x2) == 0)
85 		num += 1;
86 	return num;
87 }
88 
89 /*
90  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
91  * f2fs_set_bit makes MSB and LSB reversed in a byte.
92  * @size must be integral times of unsigned long.
93  * Example:
94  *                             MSB <--> LSB
95  *   f2fs_set_bit(0, bitmap) => 1000 0000
96  *   f2fs_set_bit(7, bitmap) => 0000 0001
97  */
__find_rev_next_bit(const unsigned long * addr,unsigned long size,unsigned long offset)98 static unsigned long __find_rev_next_bit(const unsigned long *addr,
99 			unsigned long size, unsigned long offset)
100 {
101 	const unsigned long *p = addr + BIT_WORD(offset);
102 	unsigned long result = size;
103 	unsigned long tmp;
104 
105 	if (offset >= size)
106 		return size;
107 
108 	size -= (offset & ~(BITS_PER_LONG - 1));
109 	offset %= BITS_PER_LONG;
110 
111 	while (1) {
112 		if (*p == 0)
113 			goto pass;
114 
115 		tmp = __reverse_ulong((unsigned char *)p);
116 
117 		tmp &= ~0UL >> offset;
118 		if (size < BITS_PER_LONG)
119 			tmp &= (~0UL << (BITS_PER_LONG - size));
120 		if (tmp)
121 			goto found;
122 pass:
123 		if (size <= BITS_PER_LONG)
124 			break;
125 		size -= BITS_PER_LONG;
126 		offset = 0;
127 		p++;
128 	}
129 	return result;
130 found:
131 	return result - size + __reverse_ffs(tmp);
132 }
133 
__find_rev_next_zero_bit(const unsigned long * addr,unsigned long size,unsigned long offset)134 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
135 			unsigned long size, unsigned long offset)
136 {
137 	const unsigned long *p = addr + BIT_WORD(offset);
138 	unsigned long result = size;
139 	unsigned long tmp;
140 
141 	if (offset >= size)
142 		return size;
143 
144 	size -= (offset & ~(BITS_PER_LONG - 1));
145 	offset %= BITS_PER_LONG;
146 
147 	while (1) {
148 		if (*p == ~0UL)
149 			goto pass;
150 
151 		tmp = __reverse_ulong((unsigned char *)p);
152 
153 		if (offset)
154 			tmp |= ~0UL << (BITS_PER_LONG - offset);
155 		if (size < BITS_PER_LONG)
156 			tmp |= ~0UL >> size;
157 		if (tmp != ~0UL)
158 			goto found;
159 pass:
160 		if (size <= BITS_PER_LONG)
161 			break;
162 		size -= BITS_PER_LONG;
163 		offset = 0;
164 		p++;
165 	}
166 	return result;
167 found:
168 	return result - size + __reverse_ffz(tmp);
169 }
170 
f2fs_need_SSR(struct f2fs_sb_info * sbi)171 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
172 {
173 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
174 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
175 	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
176 
177 	if (f2fs_lfs_mode(sbi))
178 		return false;
179 	if (sbi->gc_mode == GC_URGENT_HIGH)
180 		return true;
181 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
182 		return true;
183 
184 	return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
185 			SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
186 }
187 
f2fs_abort_atomic_write(struct inode * inode,bool clean)188 void f2fs_abort_atomic_write(struct inode *inode, bool clean)
189 {
190 	struct f2fs_inode_info *fi = F2FS_I(inode);
191 
192 	if (!f2fs_is_atomic_file(inode))
193 		return;
194 
195 	if (clean)
196 		truncate_inode_pages_final(inode->i_mapping);
197 
198 	release_atomic_write_cnt(inode);
199 	clear_inode_flag(inode, FI_ATOMIC_COMMITTED);
200 	clear_inode_flag(inode, FI_ATOMIC_REPLACE);
201 	clear_inode_flag(inode, FI_ATOMIC_FILE);
202 	if (is_inode_flag_set(inode, FI_ATOMIC_DIRTIED)) {
203 		clear_inode_flag(inode, FI_ATOMIC_DIRTIED);
204 		/*
205 		 * The vfs inode keeps clean during commit, but the f2fs inode
206 		 * doesn't. So clear the dirty state after commit and let
207 		 * f2fs_mark_inode_dirty_sync ensure a consistent dirty state.
208 		 */
209 		f2fs_inode_synced(inode);
210 		f2fs_mark_inode_dirty_sync(inode, true);
211 	}
212 	stat_dec_atomic_inode(inode);
213 
214 	F2FS_I(inode)->atomic_write_task = NULL;
215 
216 	if (clean) {
217 		f2fs_i_size_write(inode, fi->original_i_size);
218 		fi->original_i_size = 0;
219 	}
220 	/* avoid stale dirty inode during eviction */
221 	sync_inode_metadata(inode, 0);
222 }
223 
__replace_atomic_write_block(struct inode * inode,pgoff_t index,block_t new_addr,block_t * old_addr,bool recover)224 static int __replace_atomic_write_block(struct inode *inode, pgoff_t index,
225 			block_t new_addr, block_t *old_addr, bool recover)
226 {
227 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
228 	struct dnode_of_data dn;
229 	struct node_info ni;
230 	int err;
231 
232 retry:
233 	set_new_dnode(&dn, inode, NULL, NULL, 0);
234 	err = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
235 	if (err) {
236 		if (err == -ENOMEM) {
237 			memalloc_retry_wait(GFP_NOFS);
238 			goto retry;
239 		}
240 		return err;
241 	}
242 
243 	err = f2fs_get_node_info(sbi, dn.nid, &ni, false);
244 	if (err) {
245 		f2fs_put_dnode(&dn);
246 		return err;
247 	}
248 
249 	if (recover) {
250 		/* dn.data_blkaddr is always valid */
251 		if (!__is_valid_data_blkaddr(new_addr)) {
252 			if (new_addr == NULL_ADDR)
253 				dec_valid_block_count(sbi, inode, 1);
254 			f2fs_invalidate_blocks(sbi, dn.data_blkaddr, 1);
255 			f2fs_update_data_blkaddr(&dn, new_addr);
256 		} else {
257 			f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
258 				new_addr, ni.version, true, true);
259 		}
260 	} else {
261 		blkcnt_t count = 1;
262 
263 		err = inc_valid_block_count(sbi, inode, &count, true);
264 		if (err) {
265 			f2fs_put_dnode(&dn);
266 			return err;
267 		}
268 
269 		*old_addr = dn.data_blkaddr;
270 		f2fs_truncate_data_blocks_range(&dn, 1);
271 		dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count);
272 
273 		f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr,
274 					ni.version, true, false);
275 	}
276 
277 	f2fs_put_dnode(&dn);
278 
279 	trace_f2fs_replace_atomic_write_block(inode, F2FS_I(inode)->cow_inode,
280 			index, old_addr ? *old_addr : 0, new_addr, recover);
281 	return 0;
282 }
283 
__complete_revoke_list(struct inode * inode,struct list_head * head,bool revoke)284 static void __complete_revoke_list(struct inode *inode, struct list_head *head,
285 					bool revoke)
286 {
287 	struct revoke_entry *cur, *tmp;
288 	pgoff_t start_index = 0;
289 	bool truncate = is_inode_flag_set(inode, FI_ATOMIC_REPLACE);
290 
291 	list_for_each_entry_safe(cur, tmp, head, list) {
292 		if (revoke) {
293 			__replace_atomic_write_block(inode, cur->index,
294 						cur->old_addr, NULL, true);
295 		} else if (truncate) {
296 			f2fs_truncate_hole(inode, start_index, cur->index);
297 			start_index = cur->index + 1;
298 		}
299 
300 		list_del(&cur->list);
301 		kmem_cache_free(revoke_entry_slab, cur);
302 	}
303 
304 	if (!revoke && truncate)
305 		f2fs_do_truncate_blocks(inode, start_index * PAGE_SIZE, false);
306 }
307 
__f2fs_commit_atomic_write(struct inode * inode)308 static int __f2fs_commit_atomic_write(struct inode *inode)
309 {
310 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
311 	struct f2fs_inode_info *fi = F2FS_I(inode);
312 	struct inode *cow_inode = fi->cow_inode;
313 	struct revoke_entry *new;
314 	struct list_head revoke_list;
315 	block_t blkaddr;
316 	struct dnode_of_data dn;
317 	pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
318 	pgoff_t off = 0, blen, index;
319 	int ret = 0, i;
320 
321 	INIT_LIST_HEAD(&revoke_list);
322 
323 	while (len) {
324 		blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len);
325 
326 		set_new_dnode(&dn, cow_inode, NULL, NULL, 0);
327 		ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
328 		if (ret && ret != -ENOENT) {
329 			goto out;
330 		} else if (ret == -ENOENT) {
331 			ret = 0;
332 			if (dn.max_level == 0)
333 				goto out;
334 			goto next;
335 		}
336 
337 		blen = min((pgoff_t)ADDRS_PER_PAGE(dn.node_folio, cow_inode),
338 				len);
339 		index = off;
340 		for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) {
341 			blkaddr = f2fs_data_blkaddr(&dn);
342 
343 			if (!__is_valid_data_blkaddr(blkaddr)) {
344 				continue;
345 			} else if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
346 					DATA_GENERIC_ENHANCE)) {
347 				f2fs_put_dnode(&dn);
348 				ret = -EFSCORRUPTED;
349 				goto out;
350 			}
351 
352 			new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS,
353 							true, NULL);
354 
355 			ret = __replace_atomic_write_block(inode, index, blkaddr,
356 							&new->old_addr, false);
357 			if (ret) {
358 				f2fs_put_dnode(&dn);
359 				kmem_cache_free(revoke_entry_slab, new);
360 				goto out;
361 			}
362 
363 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
364 			new->index = index;
365 			list_add_tail(&new->list, &revoke_list);
366 		}
367 		f2fs_put_dnode(&dn);
368 next:
369 		off += blen;
370 		len -= blen;
371 	}
372 
373 out:
374 	if (time_to_inject(sbi, FAULT_TIMEOUT))
375 		f2fs_io_schedule_timeout_killable(DEFAULT_FAULT_TIMEOUT);
376 
377 	if (ret) {
378 		sbi->revoked_atomic_block += fi->atomic_write_cnt;
379 	} else {
380 		sbi->committed_atomic_block += fi->atomic_write_cnt;
381 		set_inode_flag(inode, FI_ATOMIC_COMMITTED);
382 
383 		/*
384 		 * inode may has no FI_ATOMIC_DIRTIED flag due to no write
385 		 * before commit.
386 		 */
387 		if (is_inode_flag_set(inode, FI_ATOMIC_DIRTIED)) {
388 			/* clear atomic dirty status and set vfs dirty status */
389 			clear_inode_flag(inode, FI_ATOMIC_DIRTIED);
390 			f2fs_mark_inode_dirty_sync(inode, true);
391 		}
392 	}
393 
394 	__complete_revoke_list(inode, &revoke_list, ret ? true : false);
395 
396 	return ret;
397 }
398 
f2fs_commit_atomic_write(struct inode * inode)399 int f2fs_commit_atomic_write(struct inode *inode)
400 {
401 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
402 	struct f2fs_inode_info *fi = F2FS_I(inode);
403 	int err;
404 
405 	err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
406 	if (err)
407 		return err;
408 
409 	f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
410 	f2fs_lock_op(sbi);
411 
412 	err = __f2fs_commit_atomic_write(inode);
413 
414 	f2fs_unlock_op(sbi);
415 	f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
416 
417 	return err;
418 }
419 
420 /*
421  * This function balances dirty node and dentry pages.
422  * In addition, it controls garbage collection.
423  */
f2fs_balance_fs(struct f2fs_sb_info * sbi,bool need)424 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
425 {
426 	if (f2fs_cp_error(sbi))
427 		return;
428 
429 	if (time_to_inject(sbi, FAULT_CHECKPOINT))
430 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_FAULT_INJECT);
431 
432 	/* balance_fs_bg is able to be pending */
433 	if (need && excess_cached_nats(sbi))
434 		f2fs_balance_fs_bg(sbi, false);
435 
436 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
437 		return;
438 
439 	/*
440 	 * We should do GC or end up with checkpoint, if there are so many dirty
441 	 * dir/node pages without enough free segments.
442 	 */
443 	if (has_enough_free_secs(sbi, 0, 0))
444 		return;
445 
446 	if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
447 				sbi->gc_thread->f2fs_gc_task) {
448 		DEFINE_WAIT(wait);
449 
450 		prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
451 					TASK_UNINTERRUPTIBLE);
452 		wake_up(&sbi->gc_thread->gc_wait_queue_head);
453 		io_schedule();
454 		finish_wait(&sbi->gc_thread->fggc_wq, &wait);
455 	} else {
456 		struct f2fs_gc_control gc_control = {
457 			.victim_segno = NULL_SEGNO,
458 			.init_gc_type = f2fs_sb_has_blkzoned(sbi) ?
459 				FG_GC : BG_GC,
460 			.no_bg_gc = true,
461 			.should_migrate_blocks = false,
462 			.err_gc_skipped = false,
463 			.nr_free_secs = 1 };
464 		f2fs_down_write(&sbi->gc_lock);
465 		stat_inc_gc_call_count(sbi, FOREGROUND);
466 		f2fs_gc(sbi, &gc_control);
467 	}
468 }
469 
excess_dirty_threshold(struct f2fs_sb_info * sbi)470 static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi)
471 {
472 	int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2;
473 	unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS);
474 	unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA);
475 	unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES);
476 	unsigned int meta = get_pages(sbi, F2FS_DIRTY_META);
477 	unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA);
478 	unsigned int threshold =
479 		SEGS_TO_BLKS(sbi, (factor * DEFAULT_DIRTY_THRESHOLD));
480 	unsigned int global_threshold = threshold * 3 / 2;
481 
482 	if (dents >= threshold || qdata >= threshold ||
483 		nodes >= threshold || meta >= threshold ||
484 		imeta >= threshold)
485 		return true;
486 	return dents + qdata + nodes + meta + imeta >  global_threshold;
487 }
488 
f2fs_balance_fs_bg(struct f2fs_sb_info * sbi,bool from_bg)489 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
490 {
491 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
492 		return;
493 
494 	/* try to shrink extent cache when there is no enough memory */
495 	if (!f2fs_available_free_memory(sbi, READ_EXTENT_CACHE))
496 		f2fs_shrink_read_extent_tree(sbi,
497 				READ_EXTENT_CACHE_SHRINK_NUMBER);
498 
499 	/* try to shrink age extent cache when there is no enough memory */
500 	if (!f2fs_available_free_memory(sbi, AGE_EXTENT_CACHE))
501 		f2fs_shrink_age_extent_tree(sbi,
502 				AGE_EXTENT_CACHE_SHRINK_NUMBER);
503 
504 	/* check the # of cached NAT entries */
505 	if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
506 		f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
507 
508 	if (!f2fs_available_free_memory(sbi, FREE_NIDS))
509 		f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
510 	else
511 		f2fs_build_free_nids(sbi, false, false);
512 
513 	if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) ||
514 		excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi))
515 		goto do_sync;
516 
517 	/* there is background inflight IO or foreground operation recently */
518 	if (is_inflight_io(sbi, REQ_TIME) ||
519 		(!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem)))
520 		return;
521 
522 	/* exceed periodical checkpoint timeout threshold */
523 	if (f2fs_time_over(sbi, CP_TIME))
524 		goto do_sync;
525 
526 	/* checkpoint is the only way to shrink partial cached entries */
527 	if (f2fs_available_free_memory(sbi, NAT_ENTRIES) &&
528 		f2fs_available_free_memory(sbi, INO_ENTRIES))
529 		return;
530 
531 do_sync:
532 	if (test_opt(sbi, DATA_FLUSH) && from_bg) {
533 		struct blk_plug plug;
534 
535 		mutex_lock(&sbi->flush_lock);
536 
537 		blk_start_plug(&plug);
538 		f2fs_sync_dirty_inodes(sbi, FILE_INODE, false);
539 		blk_finish_plug(&plug);
540 
541 		mutex_unlock(&sbi->flush_lock);
542 	}
543 	stat_inc_cp_call_count(sbi, BACKGROUND);
544 	f2fs_sync_fs(sbi->sb, 1);
545 }
546 
__submit_flush_wait(struct f2fs_sb_info * sbi,struct block_device * bdev)547 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
548 				struct block_device *bdev)
549 {
550 	int ret = blkdev_issue_flush(bdev);
551 
552 	trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
553 				test_opt(sbi, FLUSH_MERGE), ret);
554 	if (!ret)
555 		f2fs_update_iostat(sbi, NULL, FS_FLUSH_IO, 0);
556 	return ret;
557 }
558 
submit_flush_wait(struct f2fs_sb_info * sbi,nid_t ino)559 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
560 {
561 	int ret = 0;
562 	int i;
563 
564 	if (!f2fs_is_multi_device(sbi))
565 		return __submit_flush_wait(sbi, sbi->sb->s_bdev);
566 
567 	for (i = 0; i < sbi->s_ndevs; i++) {
568 		if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
569 			continue;
570 		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
571 		if (ret)
572 			break;
573 	}
574 	return ret;
575 }
576 
issue_flush_thread(void * data)577 static int issue_flush_thread(void *data)
578 {
579 	struct f2fs_sb_info *sbi = data;
580 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
581 	wait_queue_head_t *q = &fcc->flush_wait_queue;
582 repeat:
583 	if (kthread_should_stop())
584 		return 0;
585 
586 	if (!llist_empty(&fcc->issue_list)) {
587 		struct flush_cmd *cmd, *next;
588 		int ret;
589 
590 		fcc->dispatch_list = llist_del_all(&fcc->issue_list);
591 		fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
592 
593 		cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
594 
595 		ret = submit_flush_wait(sbi, cmd->ino);
596 		atomic_inc(&fcc->issued_flush);
597 
598 		llist_for_each_entry_safe(cmd, next,
599 					  fcc->dispatch_list, llnode) {
600 			cmd->ret = ret;
601 			complete(&cmd->wait);
602 		}
603 		fcc->dispatch_list = NULL;
604 	}
605 
606 	wait_event_interruptible(*q,
607 		kthread_should_stop() || !llist_empty(&fcc->issue_list));
608 	goto repeat;
609 }
610 
f2fs_issue_flush(struct f2fs_sb_info * sbi,nid_t ino)611 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
612 {
613 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
614 	struct flush_cmd cmd;
615 	int ret;
616 
617 	if (test_opt(sbi, NOBARRIER))
618 		return 0;
619 
620 	if (!test_opt(sbi, FLUSH_MERGE)) {
621 		atomic_inc(&fcc->queued_flush);
622 		ret = submit_flush_wait(sbi, ino);
623 		atomic_dec(&fcc->queued_flush);
624 		atomic_inc(&fcc->issued_flush);
625 		return ret;
626 	}
627 
628 	if (atomic_inc_return(&fcc->queued_flush) == 1 ||
629 	    f2fs_is_multi_device(sbi)) {
630 		ret = submit_flush_wait(sbi, ino);
631 		atomic_dec(&fcc->queued_flush);
632 
633 		atomic_inc(&fcc->issued_flush);
634 		return ret;
635 	}
636 
637 	cmd.ino = ino;
638 	init_completion(&cmd.wait);
639 
640 	llist_add(&cmd.llnode, &fcc->issue_list);
641 
642 	/*
643 	 * update issue_list before we wake up issue_flush thread, this
644 	 * smp_mb() pairs with another barrier in ___wait_event(), see
645 	 * more details in comments of waitqueue_active().
646 	 */
647 	smp_mb();
648 
649 	if (waitqueue_active(&fcc->flush_wait_queue))
650 		wake_up(&fcc->flush_wait_queue);
651 
652 	if (fcc->f2fs_issue_flush) {
653 		wait_for_completion(&cmd.wait);
654 		atomic_dec(&fcc->queued_flush);
655 	} else {
656 		struct llist_node *list;
657 
658 		list = llist_del_all(&fcc->issue_list);
659 		if (!list) {
660 			wait_for_completion(&cmd.wait);
661 			atomic_dec(&fcc->queued_flush);
662 		} else {
663 			struct flush_cmd *tmp, *next;
664 
665 			ret = submit_flush_wait(sbi, ino);
666 
667 			llist_for_each_entry_safe(tmp, next, list, llnode) {
668 				if (tmp == &cmd) {
669 					cmd.ret = ret;
670 					atomic_dec(&fcc->queued_flush);
671 					continue;
672 				}
673 				tmp->ret = ret;
674 				complete(&tmp->wait);
675 			}
676 		}
677 	}
678 
679 	return cmd.ret;
680 }
681 
f2fs_create_flush_cmd_control(struct f2fs_sb_info * sbi)682 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
683 {
684 	dev_t dev = sbi->sb->s_bdev->bd_dev;
685 	struct flush_cmd_control *fcc;
686 
687 	if (SM_I(sbi)->fcc_info) {
688 		fcc = SM_I(sbi)->fcc_info;
689 		if (fcc->f2fs_issue_flush)
690 			return 0;
691 		goto init_thread;
692 	}
693 
694 	fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
695 	if (!fcc)
696 		return -ENOMEM;
697 	atomic_set(&fcc->issued_flush, 0);
698 	atomic_set(&fcc->queued_flush, 0);
699 	init_waitqueue_head(&fcc->flush_wait_queue);
700 	init_llist_head(&fcc->issue_list);
701 	SM_I(sbi)->fcc_info = fcc;
702 	if (!test_opt(sbi, FLUSH_MERGE))
703 		return 0;
704 
705 init_thread:
706 	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
707 				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
708 	if (IS_ERR(fcc->f2fs_issue_flush)) {
709 		int err = PTR_ERR(fcc->f2fs_issue_flush);
710 
711 		fcc->f2fs_issue_flush = NULL;
712 		return err;
713 	}
714 
715 	return 0;
716 }
717 
f2fs_destroy_flush_cmd_control(struct f2fs_sb_info * sbi,bool free)718 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
719 {
720 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
721 
722 	if (fcc && fcc->f2fs_issue_flush) {
723 		struct task_struct *flush_thread = fcc->f2fs_issue_flush;
724 
725 		fcc->f2fs_issue_flush = NULL;
726 		kthread_stop(flush_thread);
727 	}
728 	if (free) {
729 		kfree(fcc);
730 		SM_I(sbi)->fcc_info = NULL;
731 	}
732 }
733 
f2fs_flush_device_cache(struct f2fs_sb_info * sbi)734 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
735 {
736 	int ret = 0, i;
737 
738 	if (!f2fs_is_multi_device(sbi))
739 		return 0;
740 
741 	if (test_opt(sbi, NOBARRIER))
742 		return 0;
743 
744 	for (i = 1; i < sbi->s_ndevs; i++) {
745 		int count = DEFAULT_RETRY_IO_COUNT;
746 
747 		if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
748 			continue;
749 
750 		do {
751 			ret = __submit_flush_wait(sbi, FDEV(i).bdev);
752 			if (ret)
753 				f2fs_schedule_timeout(DEFAULT_SCHEDULE_TIMEOUT);
754 		} while (ret && --count);
755 
756 		if (ret) {
757 			f2fs_stop_checkpoint(sbi, false,
758 					STOP_CP_REASON_FLUSH_FAIL);
759 			break;
760 		}
761 
762 		spin_lock(&sbi->dev_lock);
763 		f2fs_clear_bit(i, (char *)&sbi->dirty_device);
764 		spin_unlock(&sbi->dev_lock);
765 	}
766 
767 	return ret;
768 }
769 
__locate_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno,enum dirty_type dirty_type)770 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
771 		enum dirty_type dirty_type)
772 {
773 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
774 
775 	/* need not be added */
776 	if (is_curseg(sbi, segno))
777 		return;
778 
779 	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
780 		dirty_i->nr_dirty[dirty_type]++;
781 
782 	if (dirty_type == DIRTY) {
783 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
784 		enum dirty_type t = sentry->type;
785 
786 		if (unlikely(t >= DIRTY)) {
787 			f2fs_bug_on(sbi, 1);
788 			return;
789 		}
790 		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
791 			dirty_i->nr_dirty[t]++;
792 
793 		if (__is_large_section(sbi)) {
794 			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
795 			block_t valid_blocks =
796 				get_valid_blocks(sbi, segno, true);
797 
798 			f2fs_bug_on(sbi,
799 				(!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
800 				!valid_blocks) ||
801 				valid_blocks == CAP_BLKS_PER_SEC(sbi));
802 
803 			if (!is_cursec(sbi, secno))
804 				set_bit(secno, dirty_i->dirty_secmap);
805 		}
806 	}
807 }
808 
__remove_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno,enum dirty_type dirty_type)809 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
810 		enum dirty_type dirty_type)
811 {
812 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
813 	block_t valid_blocks;
814 
815 	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
816 		dirty_i->nr_dirty[dirty_type]--;
817 
818 	if (dirty_type == DIRTY) {
819 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
820 		enum dirty_type t = sentry->type;
821 
822 		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
823 			dirty_i->nr_dirty[t]--;
824 
825 		valid_blocks = get_valid_blocks(sbi, segno, true);
826 		if (valid_blocks == 0) {
827 			clear_bit(GET_SEC_FROM_SEG(sbi, segno),
828 						dirty_i->victim_secmap);
829 #ifdef CONFIG_F2FS_CHECK_FS
830 			clear_bit(segno, SIT_I(sbi)->invalid_segmap);
831 #endif
832 		}
833 		if (__is_large_section(sbi)) {
834 			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
835 
836 			if (!valid_blocks ||
837 					valid_blocks == CAP_BLKS_PER_SEC(sbi)) {
838 				clear_bit(secno, dirty_i->dirty_secmap);
839 				return;
840 			}
841 
842 			if (!is_cursec(sbi, secno))
843 				set_bit(secno, dirty_i->dirty_secmap);
844 		}
845 	}
846 }
847 
848 /*
849  * Should not occur error such as -ENOMEM.
850  * Adding dirty entry into seglist is not critical operation.
851  * If a given segment is one of current working segments, it won't be added.
852  */
locate_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno)853 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
854 {
855 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
856 	unsigned short valid_blocks, ckpt_valid_blocks;
857 	unsigned int usable_blocks;
858 
859 	if (segno == NULL_SEGNO || is_curseg(sbi, segno))
860 		return;
861 
862 	usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
863 	mutex_lock(&dirty_i->seglist_lock);
864 
865 	valid_blocks = get_valid_blocks(sbi, segno, false);
866 	ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
867 
868 	if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
869 		ckpt_valid_blocks == usable_blocks)) {
870 		__locate_dirty_segment(sbi, segno, PRE);
871 		__remove_dirty_segment(sbi, segno, DIRTY);
872 	} else if (valid_blocks < usable_blocks) {
873 		__locate_dirty_segment(sbi, segno, DIRTY);
874 	} else {
875 		/* Recovery routine with SSR needs this */
876 		__remove_dirty_segment(sbi, segno, DIRTY);
877 	}
878 
879 	mutex_unlock(&dirty_i->seglist_lock);
880 }
881 
882 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
f2fs_dirty_to_prefree(struct f2fs_sb_info * sbi)883 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
884 {
885 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
886 	unsigned int segno;
887 
888 	mutex_lock(&dirty_i->seglist_lock);
889 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
890 		if (get_valid_blocks(sbi, segno, false))
891 			continue;
892 		if (is_curseg(sbi, segno))
893 			continue;
894 		__locate_dirty_segment(sbi, segno, PRE);
895 		__remove_dirty_segment(sbi, segno, DIRTY);
896 	}
897 	mutex_unlock(&dirty_i->seglist_lock);
898 }
899 
f2fs_get_unusable_blocks(struct f2fs_sb_info * sbi)900 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
901 {
902 	int ovp_hole_segs =
903 		(overprovision_segments(sbi) - reserved_segments(sbi));
904 	block_t ovp_holes = SEGS_TO_BLKS(sbi, ovp_hole_segs);
905 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
906 	block_t holes[2] = {0, 0};	/* DATA and NODE */
907 	block_t unusable;
908 	struct seg_entry *se;
909 	unsigned int segno;
910 
911 	mutex_lock(&dirty_i->seglist_lock);
912 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
913 		se = get_seg_entry(sbi, segno);
914 		if (IS_NODESEG(se->type))
915 			holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
916 							se->valid_blocks;
917 		else
918 			holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
919 							se->valid_blocks;
920 	}
921 	mutex_unlock(&dirty_i->seglist_lock);
922 
923 	unusable = max(holes[DATA], holes[NODE]);
924 	if (unusable > ovp_holes)
925 		return unusable - ovp_holes;
926 	return 0;
927 }
928 
f2fs_disable_cp_again(struct f2fs_sb_info * sbi,block_t unusable)929 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
930 {
931 	int ovp_hole_segs =
932 		(overprovision_segments(sbi) - reserved_segments(sbi));
933 
934 	if (F2FS_OPTION(sbi).unusable_cap_perc == 100)
935 		return 0;
936 	if (unusable > F2FS_OPTION(sbi).unusable_cap)
937 		return -EAGAIN;
938 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
939 		dirty_segments(sbi) > ovp_hole_segs)
940 		return -EAGAIN;
941 	if (has_not_enough_free_secs(sbi, 0, 0))
942 		return -EAGAIN;
943 	return 0;
944 }
945 
946 /* This is only used by SBI_CP_DISABLED */
get_free_segment(struct f2fs_sb_info * sbi)947 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
948 {
949 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
950 	unsigned int segno = 0;
951 
952 	mutex_lock(&dirty_i->seglist_lock);
953 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
954 		if (get_valid_blocks(sbi, segno, false))
955 			continue;
956 		if (get_ckpt_valid_blocks(sbi, segno, false))
957 			continue;
958 		mutex_unlock(&dirty_i->seglist_lock);
959 		return segno;
960 	}
961 	mutex_unlock(&dirty_i->seglist_lock);
962 	return NULL_SEGNO;
963 }
964 
__create_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)965 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
966 		struct block_device *bdev, block_t lstart,
967 		block_t start, block_t len)
968 {
969 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
970 	struct list_head *pend_list;
971 	struct discard_cmd *dc;
972 
973 	f2fs_bug_on(sbi, !len);
974 
975 	pend_list = &dcc->pend_list[plist_idx(len)];
976 
977 	dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL);
978 	INIT_LIST_HEAD(&dc->list);
979 	dc->bdev = bdev;
980 	dc->di.lstart = lstart;
981 	dc->di.start = start;
982 	dc->di.len = len;
983 	dc->ref = 0;
984 	dc->state = D_PREP;
985 	dc->queued = 0;
986 	dc->error = 0;
987 	init_completion(&dc->wait);
988 	list_add_tail(&dc->list, pend_list);
989 	spin_lock_init(&dc->lock);
990 	dc->bio_ref = 0;
991 	atomic_inc(&dcc->discard_cmd_cnt);
992 	dcc->undiscard_blks += len;
993 
994 	return dc;
995 }
996 
f2fs_check_discard_tree(struct f2fs_sb_info * sbi)997 static bool f2fs_check_discard_tree(struct f2fs_sb_info *sbi)
998 {
999 #ifdef CONFIG_F2FS_CHECK_FS
1000 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1001 	struct rb_node *cur = rb_first_cached(&dcc->root), *next;
1002 	struct discard_cmd *cur_dc, *next_dc;
1003 
1004 	while (cur) {
1005 		next = rb_next(cur);
1006 		if (!next)
1007 			return true;
1008 
1009 		cur_dc = rb_entry(cur, struct discard_cmd, rb_node);
1010 		next_dc = rb_entry(next, struct discard_cmd, rb_node);
1011 
1012 		if (cur_dc->di.lstart + cur_dc->di.len > next_dc->di.lstart) {
1013 			f2fs_info(sbi, "broken discard_rbtree, "
1014 				"cur(%u, %u) next(%u, %u)",
1015 				cur_dc->di.lstart, cur_dc->di.len,
1016 				next_dc->di.lstart, next_dc->di.len);
1017 			return false;
1018 		}
1019 		cur = next;
1020 	}
1021 #endif
1022 	return true;
1023 }
1024 
__lookup_discard_cmd(struct f2fs_sb_info * sbi,block_t blkaddr)1025 static struct discard_cmd *__lookup_discard_cmd(struct f2fs_sb_info *sbi,
1026 						block_t blkaddr)
1027 {
1028 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1029 	struct rb_node *node = dcc->root.rb_root.rb_node;
1030 	struct discard_cmd *dc;
1031 
1032 	while (node) {
1033 		dc = rb_entry(node, struct discard_cmd, rb_node);
1034 
1035 		if (blkaddr < dc->di.lstart)
1036 			node = node->rb_left;
1037 		else if (blkaddr >= dc->di.lstart + dc->di.len)
1038 			node = node->rb_right;
1039 		else
1040 			return dc;
1041 	}
1042 	return NULL;
1043 }
1044 
__lookup_discard_cmd_ret(struct rb_root_cached * root,block_t blkaddr,struct discard_cmd ** prev_entry,struct discard_cmd ** next_entry,struct rb_node *** insert_p,struct rb_node ** insert_parent)1045 static struct discard_cmd *__lookup_discard_cmd_ret(struct rb_root_cached *root,
1046 				block_t blkaddr,
1047 				struct discard_cmd **prev_entry,
1048 				struct discard_cmd **next_entry,
1049 				struct rb_node ***insert_p,
1050 				struct rb_node **insert_parent)
1051 {
1052 	struct rb_node **pnode = &root->rb_root.rb_node;
1053 	struct rb_node *parent = NULL, *tmp_node;
1054 	struct discard_cmd *dc;
1055 
1056 	*insert_p = NULL;
1057 	*insert_parent = NULL;
1058 	*prev_entry = NULL;
1059 	*next_entry = NULL;
1060 
1061 	if (RB_EMPTY_ROOT(&root->rb_root))
1062 		return NULL;
1063 
1064 	while (*pnode) {
1065 		parent = *pnode;
1066 		dc = rb_entry(*pnode, struct discard_cmd, rb_node);
1067 
1068 		if (blkaddr < dc->di.lstart)
1069 			pnode = &(*pnode)->rb_left;
1070 		else if (blkaddr >= dc->di.lstart + dc->di.len)
1071 			pnode = &(*pnode)->rb_right;
1072 		else
1073 			goto lookup_neighbors;
1074 	}
1075 
1076 	*insert_p = pnode;
1077 	*insert_parent = parent;
1078 
1079 	dc = rb_entry(parent, struct discard_cmd, rb_node);
1080 	tmp_node = parent;
1081 	if (parent && blkaddr > dc->di.lstart)
1082 		tmp_node = rb_next(parent);
1083 	*next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1084 
1085 	tmp_node = parent;
1086 	if (parent && blkaddr < dc->di.lstart)
1087 		tmp_node = rb_prev(parent);
1088 	*prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1089 	return NULL;
1090 
1091 lookup_neighbors:
1092 	/* lookup prev node for merging backward later */
1093 	tmp_node = rb_prev(&dc->rb_node);
1094 	*prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1095 
1096 	/* lookup next node for merging frontward later */
1097 	tmp_node = rb_next(&dc->rb_node);
1098 	*next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1099 	return dc;
1100 }
1101 
__detach_discard_cmd(struct discard_cmd_control * dcc,struct discard_cmd * dc)1102 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1103 							struct discard_cmd *dc)
1104 {
1105 	if (dc->state == D_DONE)
1106 		atomic_sub(dc->queued, &dcc->queued_discard);
1107 
1108 	list_del(&dc->list);
1109 	rb_erase_cached(&dc->rb_node, &dcc->root);
1110 	dcc->undiscard_blks -= dc->di.len;
1111 
1112 	kmem_cache_free(discard_cmd_slab, dc);
1113 
1114 	atomic_dec(&dcc->discard_cmd_cnt);
1115 }
1116 
__remove_discard_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc)1117 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1118 							struct discard_cmd *dc)
1119 {
1120 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1121 	unsigned long flags;
1122 
1123 	trace_f2fs_remove_discard(dc->bdev, dc->di.start, dc->di.len);
1124 
1125 	spin_lock_irqsave(&dc->lock, flags);
1126 	if (dc->bio_ref) {
1127 		spin_unlock_irqrestore(&dc->lock, flags);
1128 		return;
1129 	}
1130 	spin_unlock_irqrestore(&dc->lock, flags);
1131 
1132 	f2fs_bug_on(sbi, dc->ref);
1133 
1134 	if (dc->error == -EOPNOTSUPP)
1135 		dc->error = 0;
1136 
1137 	if (dc->error)
1138 		f2fs_info_ratelimited(sbi,
1139 			"Issue discard(%u, %u, %u) failed, ret: %d",
1140 			dc->di.lstart, dc->di.start, dc->di.len, dc->error);
1141 	__detach_discard_cmd(dcc, dc);
1142 }
1143 
f2fs_submit_discard_endio(struct bio * bio)1144 static void f2fs_submit_discard_endio(struct bio *bio)
1145 {
1146 	struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1147 	unsigned long flags;
1148 
1149 	spin_lock_irqsave(&dc->lock, flags);
1150 	if (!dc->error)
1151 		dc->error = blk_status_to_errno(bio->bi_status);
1152 	dc->bio_ref--;
1153 	if (!dc->bio_ref && dc->state == D_SUBMIT) {
1154 		dc->state = D_DONE;
1155 		complete_all(&dc->wait);
1156 	}
1157 	spin_unlock_irqrestore(&dc->lock, flags);
1158 	bio_put(bio);
1159 }
1160 
__check_sit_bitmap(struct f2fs_sb_info * sbi,block_t start,block_t end)1161 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1162 				block_t start, block_t end)
1163 {
1164 #ifdef CONFIG_F2FS_CHECK_FS
1165 	struct seg_entry *sentry;
1166 	unsigned int segno;
1167 	block_t blk = start;
1168 	unsigned long offset, size, *map;
1169 
1170 	while (blk < end) {
1171 		segno = GET_SEGNO(sbi, blk);
1172 		sentry = get_seg_entry(sbi, segno);
1173 		offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1174 
1175 		if (end < START_BLOCK(sbi, segno + 1))
1176 			size = GET_BLKOFF_FROM_SEG0(sbi, end);
1177 		else
1178 			size = BLKS_PER_SEG(sbi);
1179 		map = (unsigned long *)(sentry->cur_valid_map);
1180 		offset = __find_rev_next_bit(map, size, offset);
1181 		f2fs_bug_on(sbi, offset != size);
1182 		blk = START_BLOCK(sbi, segno + 1);
1183 	}
1184 #endif
1185 }
1186 
__init_discard_policy(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,int discard_type,unsigned int granularity)1187 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1188 				struct discard_policy *dpolicy,
1189 				int discard_type, unsigned int granularity)
1190 {
1191 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1192 
1193 	/* common policy */
1194 	dpolicy->type = discard_type;
1195 	dpolicy->sync = true;
1196 	dpolicy->ordered = false;
1197 	dpolicy->granularity = granularity;
1198 
1199 	dpolicy->max_requests = dcc->max_discard_request;
1200 	dpolicy->io_aware_gran = dcc->discard_io_aware_gran;
1201 	dpolicy->timeout = false;
1202 
1203 	if (discard_type == DPOLICY_BG) {
1204 		dpolicy->min_interval = dcc->min_discard_issue_time;
1205 		dpolicy->mid_interval = dcc->mid_discard_issue_time;
1206 		dpolicy->max_interval = dcc->max_discard_issue_time;
1207 		if (dcc->discard_io_aware == DPOLICY_IO_AWARE_ENABLE)
1208 			dpolicy->io_aware = true;
1209 		else if (dcc->discard_io_aware == DPOLICY_IO_AWARE_DISABLE)
1210 			dpolicy->io_aware = false;
1211 		dpolicy->sync = false;
1212 		dpolicy->ordered = true;
1213 		if (utilization(sbi) > dcc->discard_urgent_util) {
1214 			dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1215 			if (atomic_read(&dcc->discard_cmd_cnt))
1216 				dpolicy->max_interval =
1217 					dcc->min_discard_issue_time;
1218 		}
1219 	} else if (discard_type == DPOLICY_FORCE) {
1220 		dpolicy->min_interval = dcc->min_discard_issue_time;
1221 		dpolicy->mid_interval = dcc->mid_discard_issue_time;
1222 		dpolicy->max_interval = dcc->max_discard_issue_time;
1223 		dpolicy->io_aware = false;
1224 	} else if (discard_type == DPOLICY_FSTRIM) {
1225 		dpolicy->io_aware = false;
1226 	} else if (discard_type == DPOLICY_UMOUNT) {
1227 		dpolicy->io_aware = false;
1228 		/* we need to issue all to keep CP_TRIMMED_FLAG */
1229 		dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1230 		dpolicy->timeout = true;
1231 	}
1232 }
1233 
1234 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1235 				struct block_device *bdev, block_t lstart,
1236 				block_t start, block_t len);
1237 
1238 #ifdef CONFIG_BLK_DEV_ZONED
__submit_zone_reset_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc,blk_opf_t flag,struct list_head * wait_list,unsigned int * issued)1239 static void __submit_zone_reset_cmd(struct f2fs_sb_info *sbi,
1240 				   struct discard_cmd *dc, blk_opf_t flag,
1241 				   struct list_head *wait_list,
1242 				   unsigned int *issued)
1243 {
1244 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1245 	struct block_device *bdev = dc->bdev;
1246 	struct bio *bio = bio_alloc(bdev, 0, REQ_OP_ZONE_RESET | flag, GFP_NOFS);
1247 	unsigned long flags;
1248 
1249 	trace_f2fs_issue_reset_zone(bdev, dc->di.start);
1250 
1251 	spin_lock_irqsave(&dc->lock, flags);
1252 	dc->state = D_SUBMIT;
1253 	dc->bio_ref++;
1254 	spin_unlock_irqrestore(&dc->lock, flags);
1255 
1256 	if (issued)
1257 		(*issued)++;
1258 
1259 	atomic_inc(&dcc->queued_discard);
1260 	dc->queued++;
1261 	list_move_tail(&dc->list, wait_list);
1262 
1263 	/* sanity check on discard range */
1264 	__check_sit_bitmap(sbi, dc->di.lstart, dc->di.lstart + dc->di.len);
1265 
1266 	bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(dc->di.start);
1267 	bio->bi_private = dc;
1268 	bio->bi_end_io = f2fs_submit_discard_endio;
1269 	submit_bio(bio);
1270 
1271 	atomic_inc(&dcc->issued_discard);
1272 	f2fs_update_iostat(sbi, NULL, FS_ZONE_RESET_IO, dc->di.len * F2FS_BLKSIZE);
1273 }
1274 #endif
1275 
1276 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
__submit_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,struct discard_cmd * dc,int * issued)1277 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1278 				struct discard_policy *dpolicy,
1279 				struct discard_cmd *dc, int *issued)
1280 {
1281 	struct block_device *bdev = dc->bdev;
1282 	unsigned int max_discard_blocks =
1283 			SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1284 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1285 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1286 					&(dcc->fstrim_list) : &(dcc->wait_list);
1287 	blk_opf_t flag = dpolicy->sync ? REQ_SYNC : 0;
1288 	block_t lstart, start, len, total_len;
1289 	int err = 0;
1290 
1291 	if (dc->state != D_PREP)
1292 		return 0;
1293 
1294 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1295 		return 0;
1296 
1297 #ifdef CONFIG_BLK_DEV_ZONED
1298 	if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) {
1299 		int devi = f2fs_bdev_index(sbi, bdev);
1300 
1301 		if (devi < 0)
1302 			return -EINVAL;
1303 
1304 		if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) {
1305 			__submit_zone_reset_cmd(sbi, dc, flag,
1306 						wait_list, issued);
1307 			return 0;
1308 		}
1309 	}
1310 #endif
1311 
1312 	/*
1313 	 * stop issuing discard for any of below cases:
1314 	 * 1. device is conventional zone, but it doesn't support discard.
1315 	 * 2. device is regulare device, after snapshot it doesn't support
1316 	 * discard.
1317 	 */
1318 	if (!bdev_max_discard_sectors(bdev))
1319 		return -EOPNOTSUPP;
1320 
1321 	trace_f2fs_issue_discard(bdev, dc->di.start, dc->di.len);
1322 
1323 	lstart = dc->di.lstart;
1324 	start = dc->di.start;
1325 	len = dc->di.len;
1326 	total_len = len;
1327 
1328 	dc->di.len = 0;
1329 
1330 	while (total_len && *issued < dpolicy->max_requests && !err) {
1331 		struct bio *bio = NULL;
1332 		unsigned long flags;
1333 		bool last = true;
1334 
1335 		if (len > max_discard_blocks) {
1336 			len = max_discard_blocks;
1337 			last = false;
1338 		}
1339 
1340 		(*issued)++;
1341 		if (*issued == dpolicy->max_requests)
1342 			last = true;
1343 
1344 		dc->di.len += len;
1345 
1346 		err = 0;
1347 		if (time_to_inject(sbi, FAULT_DISCARD)) {
1348 			err = -EIO;
1349 			spin_lock_irqsave(&dc->lock, flags);
1350 			if (dc->state == D_PARTIAL)
1351 				dc->state = D_SUBMIT;
1352 			spin_unlock_irqrestore(&dc->lock, flags);
1353 
1354 			break;
1355 		}
1356 
1357 		__blkdev_issue_discard(bdev, SECTOR_FROM_BLOCK(start),
1358 				SECTOR_FROM_BLOCK(len), GFP_NOFS, &bio);
1359 		f2fs_bug_on(sbi, !bio);
1360 
1361 		/*
1362 		 * should keep before submission to avoid D_DONE
1363 		 * right away
1364 		 */
1365 		spin_lock_irqsave(&dc->lock, flags);
1366 		if (last)
1367 			dc->state = D_SUBMIT;
1368 		else
1369 			dc->state = D_PARTIAL;
1370 		dc->bio_ref++;
1371 		spin_unlock_irqrestore(&dc->lock, flags);
1372 
1373 		atomic_inc(&dcc->queued_discard);
1374 		dc->queued++;
1375 		list_move_tail(&dc->list, wait_list);
1376 
1377 		/* sanity check on discard range */
1378 		__check_sit_bitmap(sbi, lstart, lstart + len);
1379 
1380 		bio->bi_private = dc;
1381 		bio->bi_end_io = f2fs_submit_discard_endio;
1382 		bio->bi_opf |= flag;
1383 		submit_bio(bio);
1384 
1385 		atomic_inc(&dcc->issued_discard);
1386 
1387 		f2fs_update_iostat(sbi, NULL, FS_DISCARD_IO, len * F2FS_BLKSIZE);
1388 
1389 		lstart += len;
1390 		start += len;
1391 		total_len -= len;
1392 		len = total_len;
1393 	}
1394 
1395 	if (!err && len) {
1396 		dcc->undiscard_blks -= len;
1397 		__update_discard_tree_range(sbi, bdev, lstart, start, len);
1398 	}
1399 	return err;
1400 }
1401 
__insert_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)1402 static void __insert_discard_cmd(struct f2fs_sb_info *sbi,
1403 				struct block_device *bdev, block_t lstart,
1404 				block_t start, block_t len)
1405 {
1406 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1407 	struct rb_node **p = &dcc->root.rb_root.rb_node;
1408 	struct rb_node *parent = NULL;
1409 	struct discard_cmd *dc;
1410 	bool leftmost = true;
1411 
1412 	/* look up rb tree to find parent node */
1413 	while (*p) {
1414 		parent = *p;
1415 		dc = rb_entry(parent, struct discard_cmd, rb_node);
1416 
1417 		if (lstart < dc->di.lstart) {
1418 			p = &(*p)->rb_left;
1419 		} else if (lstart >= dc->di.lstart + dc->di.len) {
1420 			p = &(*p)->rb_right;
1421 			leftmost = false;
1422 		} else {
1423 			/* Let's skip to add, if exists */
1424 			return;
1425 		}
1426 	}
1427 
1428 	dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1429 
1430 	rb_link_node(&dc->rb_node, parent, p);
1431 	rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
1432 }
1433 
__relocate_discard_cmd(struct discard_cmd_control * dcc,struct discard_cmd * dc)1434 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1435 						struct discard_cmd *dc)
1436 {
1437 	list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->di.len)]);
1438 }
1439 
__punch_discard_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc,block_t blkaddr)1440 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1441 				struct discard_cmd *dc, block_t blkaddr)
1442 {
1443 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1444 	struct discard_info di = dc->di;
1445 	bool modified = false;
1446 
1447 	if (dc->state == D_DONE || dc->di.len == 1) {
1448 		__remove_discard_cmd(sbi, dc);
1449 		return;
1450 	}
1451 
1452 	dcc->undiscard_blks -= di.len;
1453 
1454 	if (blkaddr > di.lstart) {
1455 		dc->di.len = blkaddr - dc->di.lstart;
1456 		dcc->undiscard_blks += dc->di.len;
1457 		__relocate_discard_cmd(dcc, dc);
1458 		modified = true;
1459 	}
1460 
1461 	if (blkaddr < di.lstart + di.len - 1) {
1462 		if (modified) {
1463 			__insert_discard_cmd(sbi, dc->bdev, blkaddr + 1,
1464 					di.start + blkaddr + 1 - di.lstart,
1465 					di.lstart + di.len - 1 - blkaddr);
1466 		} else {
1467 			dc->di.lstart++;
1468 			dc->di.len--;
1469 			dc->di.start++;
1470 			dcc->undiscard_blks += dc->di.len;
1471 			__relocate_discard_cmd(dcc, dc);
1472 		}
1473 	}
1474 }
1475 
__update_discard_tree_range(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)1476 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1477 				struct block_device *bdev, block_t lstart,
1478 				block_t start, block_t len)
1479 {
1480 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1481 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1482 	struct discard_cmd *dc;
1483 	struct discard_info di = {0};
1484 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1485 	unsigned int max_discard_blocks =
1486 			SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1487 	block_t end = lstart + len;
1488 
1489 	dc = __lookup_discard_cmd_ret(&dcc->root, lstart,
1490 				&prev_dc, &next_dc, &insert_p, &insert_parent);
1491 	if (dc)
1492 		prev_dc = dc;
1493 
1494 	if (!prev_dc) {
1495 		di.lstart = lstart;
1496 		di.len = next_dc ? next_dc->di.lstart - lstart : len;
1497 		di.len = min(di.len, len);
1498 		di.start = start;
1499 	}
1500 
1501 	while (1) {
1502 		struct rb_node *node;
1503 		bool merged = false;
1504 		struct discard_cmd *tdc = NULL;
1505 
1506 		if (prev_dc) {
1507 			di.lstart = prev_dc->di.lstart + prev_dc->di.len;
1508 			if (di.lstart < lstart)
1509 				di.lstart = lstart;
1510 			if (di.lstart >= end)
1511 				break;
1512 
1513 			if (!next_dc || next_dc->di.lstart > end)
1514 				di.len = end - di.lstart;
1515 			else
1516 				di.len = next_dc->di.lstart - di.lstart;
1517 			di.start = start + di.lstart - lstart;
1518 		}
1519 
1520 		if (!di.len)
1521 			goto next;
1522 
1523 		if (prev_dc && prev_dc->state == D_PREP &&
1524 			prev_dc->bdev == bdev &&
1525 			__is_discard_back_mergeable(&di, &prev_dc->di,
1526 							max_discard_blocks)) {
1527 			prev_dc->di.len += di.len;
1528 			dcc->undiscard_blks += di.len;
1529 			__relocate_discard_cmd(dcc, prev_dc);
1530 			di = prev_dc->di;
1531 			tdc = prev_dc;
1532 			merged = true;
1533 		}
1534 
1535 		if (next_dc && next_dc->state == D_PREP &&
1536 			next_dc->bdev == bdev &&
1537 			__is_discard_front_mergeable(&di, &next_dc->di,
1538 							max_discard_blocks)) {
1539 			next_dc->di.lstart = di.lstart;
1540 			next_dc->di.len += di.len;
1541 			next_dc->di.start = di.start;
1542 			dcc->undiscard_blks += di.len;
1543 			__relocate_discard_cmd(dcc, next_dc);
1544 			if (tdc)
1545 				__remove_discard_cmd(sbi, tdc);
1546 			merged = true;
1547 		}
1548 
1549 		if (!merged)
1550 			__insert_discard_cmd(sbi, bdev,
1551 						di.lstart, di.start, di.len);
1552  next:
1553 		prev_dc = next_dc;
1554 		if (!prev_dc)
1555 			break;
1556 
1557 		node = rb_next(&prev_dc->rb_node);
1558 		next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1559 	}
1560 }
1561 
1562 #ifdef CONFIG_BLK_DEV_ZONED
__queue_zone_reset_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t lblkstart,block_t blklen)1563 static void __queue_zone_reset_cmd(struct f2fs_sb_info *sbi,
1564 		struct block_device *bdev, block_t blkstart, block_t lblkstart,
1565 		block_t blklen)
1566 {
1567 	trace_f2fs_queue_reset_zone(bdev, blkstart);
1568 
1569 	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1570 	__insert_discard_cmd(sbi, bdev, lblkstart, blkstart, blklen);
1571 	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1572 }
1573 #endif
1574 
__queue_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1575 static void __queue_discard_cmd(struct f2fs_sb_info *sbi,
1576 		struct block_device *bdev, block_t blkstart, block_t blklen)
1577 {
1578 	block_t lblkstart = blkstart;
1579 
1580 	if (!f2fs_bdev_support_discard(bdev))
1581 		return;
1582 
1583 	trace_f2fs_queue_discard(bdev, blkstart, blklen);
1584 
1585 	if (f2fs_is_multi_device(sbi)) {
1586 		int devi = f2fs_target_device_index(sbi, blkstart);
1587 
1588 		blkstart -= FDEV(devi).start_blk;
1589 	}
1590 	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1591 	__update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1592 	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1593 }
1594 
__issue_discard_cmd_orderly(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,int * issued)1595 static void __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1596 		struct discard_policy *dpolicy, int *issued)
1597 {
1598 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1599 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1600 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1601 	struct discard_cmd *dc;
1602 	struct blk_plug plug;
1603 	bool io_interrupted = false;
1604 
1605 	mutex_lock(&dcc->cmd_lock);
1606 	dc = __lookup_discard_cmd_ret(&dcc->root, dcc->next_pos,
1607 				&prev_dc, &next_dc, &insert_p, &insert_parent);
1608 	if (!dc)
1609 		dc = next_dc;
1610 
1611 	blk_start_plug(&plug);
1612 
1613 	while (dc) {
1614 		struct rb_node *node;
1615 		int err = 0;
1616 
1617 		if (dc->state != D_PREP)
1618 			goto next;
1619 
1620 		if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1621 			io_interrupted = true;
1622 			break;
1623 		}
1624 
1625 		dcc->next_pos = dc->di.lstart + dc->di.len;
1626 		err = __submit_discard_cmd(sbi, dpolicy, dc, issued);
1627 
1628 		if (*issued >= dpolicy->max_requests)
1629 			break;
1630 next:
1631 		node = rb_next(&dc->rb_node);
1632 		if (err)
1633 			__remove_discard_cmd(sbi, dc);
1634 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1635 	}
1636 
1637 	blk_finish_plug(&plug);
1638 
1639 	if (!dc)
1640 		dcc->next_pos = 0;
1641 
1642 	mutex_unlock(&dcc->cmd_lock);
1643 
1644 	if (!(*issued) && io_interrupted)
1645 		*issued = -1;
1646 }
1647 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1648 					struct discard_policy *dpolicy);
1649 
__issue_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy)1650 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1651 					struct discard_policy *dpolicy)
1652 {
1653 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1654 	struct list_head *pend_list;
1655 	struct discard_cmd *dc, *tmp;
1656 	struct blk_plug plug;
1657 	int i, issued;
1658 	bool io_interrupted = false;
1659 
1660 	if (dpolicy->timeout)
1661 		f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1662 
1663 retry:
1664 	issued = 0;
1665 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1666 		if (dpolicy->timeout &&
1667 				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1668 			break;
1669 
1670 		if (i + 1 < dpolicy->granularity)
1671 			break;
1672 
1673 		if (i + 1 < dcc->max_ordered_discard && dpolicy->ordered) {
1674 			__issue_discard_cmd_orderly(sbi, dpolicy, &issued);
1675 			return issued;
1676 		}
1677 
1678 		pend_list = &dcc->pend_list[i];
1679 
1680 		mutex_lock(&dcc->cmd_lock);
1681 		if (list_empty(pend_list))
1682 			goto next;
1683 		if (unlikely(dcc->rbtree_check))
1684 			f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi));
1685 		blk_start_plug(&plug);
1686 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1687 			f2fs_bug_on(sbi, dc->state != D_PREP);
1688 
1689 			if (dpolicy->timeout &&
1690 				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1691 				break;
1692 
1693 			if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1694 						!is_idle(sbi, DISCARD_TIME)) {
1695 				io_interrupted = true;
1696 				break;
1697 			}
1698 
1699 			__submit_discard_cmd(sbi, dpolicy, dc, &issued);
1700 
1701 			if (issued >= dpolicy->max_requests)
1702 				break;
1703 		}
1704 		blk_finish_plug(&plug);
1705 next:
1706 		mutex_unlock(&dcc->cmd_lock);
1707 
1708 		if (issued >= dpolicy->max_requests || io_interrupted)
1709 			break;
1710 	}
1711 
1712 	if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1713 		__wait_all_discard_cmd(sbi, dpolicy);
1714 		goto retry;
1715 	}
1716 
1717 	if (!issued && io_interrupted)
1718 		issued = -1;
1719 
1720 	return issued;
1721 }
1722 
__drop_discard_cmd(struct f2fs_sb_info * sbi)1723 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1724 {
1725 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1726 	struct list_head *pend_list;
1727 	struct discard_cmd *dc, *tmp;
1728 	int i;
1729 	bool dropped = false;
1730 
1731 	mutex_lock(&dcc->cmd_lock);
1732 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1733 		pend_list = &dcc->pend_list[i];
1734 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1735 			f2fs_bug_on(sbi, dc->state != D_PREP);
1736 			__remove_discard_cmd(sbi, dc);
1737 			dropped = true;
1738 		}
1739 	}
1740 	mutex_unlock(&dcc->cmd_lock);
1741 
1742 	return dropped;
1743 }
1744 
f2fs_drop_discard_cmd(struct f2fs_sb_info * sbi)1745 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1746 {
1747 	__drop_discard_cmd(sbi);
1748 }
1749 
__wait_one_discard_bio(struct f2fs_sb_info * sbi,struct discard_cmd * dc)1750 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1751 							struct discard_cmd *dc)
1752 {
1753 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1754 	unsigned int len = 0;
1755 
1756 	wait_for_completion_io(&dc->wait);
1757 	mutex_lock(&dcc->cmd_lock);
1758 	f2fs_bug_on(sbi, dc->state != D_DONE);
1759 	dc->ref--;
1760 	if (!dc->ref) {
1761 		if (!dc->error)
1762 			len = dc->di.len;
1763 		__remove_discard_cmd(sbi, dc);
1764 	}
1765 	mutex_unlock(&dcc->cmd_lock);
1766 
1767 	return len;
1768 }
1769 
__wait_discard_cmd_range(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,block_t start,block_t end)1770 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1771 						struct discard_policy *dpolicy,
1772 						block_t start, block_t end)
1773 {
1774 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1775 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1776 					&(dcc->fstrim_list) : &(dcc->wait_list);
1777 	struct discard_cmd *dc = NULL, *iter, *tmp;
1778 	unsigned int trimmed = 0;
1779 
1780 next:
1781 	dc = NULL;
1782 
1783 	mutex_lock(&dcc->cmd_lock);
1784 	list_for_each_entry_safe(iter, tmp, wait_list, list) {
1785 		if (iter->di.lstart + iter->di.len <= start ||
1786 					end <= iter->di.lstart)
1787 			continue;
1788 		if (iter->di.len < dpolicy->granularity)
1789 			continue;
1790 		if (iter->state == D_DONE && !iter->ref) {
1791 			wait_for_completion_io(&iter->wait);
1792 			if (!iter->error)
1793 				trimmed += iter->di.len;
1794 			__remove_discard_cmd(sbi, iter);
1795 		} else {
1796 			iter->ref++;
1797 			dc = iter;
1798 			break;
1799 		}
1800 	}
1801 	mutex_unlock(&dcc->cmd_lock);
1802 
1803 	if (dc) {
1804 		trimmed += __wait_one_discard_bio(sbi, dc);
1805 		goto next;
1806 	}
1807 
1808 	return trimmed;
1809 }
1810 
__wait_all_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy)1811 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1812 						struct discard_policy *dpolicy)
1813 {
1814 	struct discard_policy dp;
1815 	unsigned int discard_blks;
1816 
1817 	if (dpolicy)
1818 		return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1819 
1820 	/* wait all */
1821 	__init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, MIN_DISCARD_GRANULARITY);
1822 	discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1823 	__init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, MIN_DISCARD_GRANULARITY);
1824 	discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1825 
1826 	return discard_blks;
1827 }
1828 
1829 /* This should be covered by global mutex, &sit_i->sentry_lock */
f2fs_wait_discard_bio(struct f2fs_sb_info * sbi,block_t blkaddr)1830 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1831 {
1832 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1833 	struct discard_cmd *dc;
1834 	bool need_wait = false;
1835 
1836 	mutex_lock(&dcc->cmd_lock);
1837 	dc = __lookup_discard_cmd(sbi, blkaddr);
1838 #ifdef CONFIG_BLK_DEV_ZONED
1839 	if (dc && f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(dc->bdev)) {
1840 		int devi = f2fs_bdev_index(sbi, dc->bdev);
1841 
1842 		if (devi < 0) {
1843 			mutex_unlock(&dcc->cmd_lock);
1844 			return;
1845 		}
1846 
1847 		if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) {
1848 			/* force submit zone reset */
1849 			if (dc->state == D_PREP)
1850 				__submit_zone_reset_cmd(sbi, dc, REQ_SYNC,
1851 							&dcc->wait_list, NULL);
1852 			dc->ref++;
1853 			mutex_unlock(&dcc->cmd_lock);
1854 			/* wait zone reset */
1855 			__wait_one_discard_bio(sbi, dc);
1856 			return;
1857 		}
1858 	}
1859 #endif
1860 	if (dc) {
1861 		if (dc->state == D_PREP) {
1862 			__punch_discard_cmd(sbi, dc, blkaddr);
1863 		} else {
1864 			dc->ref++;
1865 			need_wait = true;
1866 		}
1867 	}
1868 	mutex_unlock(&dcc->cmd_lock);
1869 
1870 	if (need_wait)
1871 		__wait_one_discard_bio(sbi, dc);
1872 }
1873 
f2fs_stop_discard_thread(struct f2fs_sb_info * sbi)1874 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1875 {
1876 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1877 
1878 	if (dcc && dcc->f2fs_issue_discard) {
1879 		struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1880 
1881 		dcc->f2fs_issue_discard = NULL;
1882 		kthread_stop(discard_thread);
1883 	}
1884 }
1885 
1886 /**
1887  * f2fs_issue_discard_timeout() - Issue all discard cmd within UMOUNT_DISCARD_TIMEOUT
1888  * @sbi: the f2fs_sb_info data for discard cmd to issue
1889  *
1890  * When UMOUNT_DISCARD_TIMEOUT is exceeded, all remaining discard commands will be dropped
1891  *
1892  * Return true if issued all discard cmd or no discard cmd need issue, otherwise return false.
1893  */
f2fs_issue_discard_timeout(struct f2fs_sb_info * sbi)1894 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1895 {
1896 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1897 	struct discard_policy dpolicy;
1898 	bool dropped;
1899 
1900 	if (!atomic_read(&dcc->discard_cmd_cnt))
1901 		return true;
1902 
1903 	__init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1904 					dcc->discard_granularity);
1905 	__issue_discard_cmd(sbi, &dpolicy);
1906 	dropped = __drop_discard_cmd(sbi);
1907 
1908 	/* just to make sure there is no pending discard commands */
1909 	__wait_all_discard_cmd(sbi, NULL);
1910 
1911 	f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1912 	return !dropped;
1913 }
1914 
issue_discard_thread(void * data)1915 static int issue_discard_thread(void *data)
1916 {
1917 	struct f2fs_sb_info *sbi = data;
1918 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1919 	wait_queue_head_t *q = &dcc->discard_wait_queue;
1920 	struct discard_policy dpolicy;
1921 	unsigned int wait_ms = dcc->min_discard_issue_time;
1922 	int issued;
1923 
1924 	set_freezable();
1925 
1926 	do {
1927 		wait_event_freezable_timeout(*q,
1928 				kthread_should_stop() || dcc->discard_wake,
1929 				msecs_to_jiffies(wait_ms));
1930 
1931 		if (sbi->gc_mode == GC_URGENT_HIGH ||
1932 			!f2fs_available_free_memory(sbi, DISCARD_CACHE))
1933 			__init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE,
1934 						MIN_DISCARD_GRANULARITY);
1935 		else
1936 			__init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1937 						dcc->discard_granularity);
1938 
1939 		if (dcc->discard_wake)
1940 			dcc->discard_wake = false;
1941 
1942 		/* clean up pending candidates before going to sleep */
1943 		if (atomic_read(&dcc->queued_discard))
1944 			__wait_all_discard_cmd(sbi, NULL);
1945 
1946 		if (f2fs_readonly(sbi->sb))
1947 			continue;
1948 		if (kthread_should_stop())
1949 			return 0;
1950 		if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) ||
1951 			!atomic_read(&dcc->discard_cmd_cnt)) {
1952 			wait_ms = dpolicy.max_interval;
1953 			continue;
1954 		}
1955 
1956 		sb_start_intwrite(sbi->sb);
1957 
1958 		issued = __issue_discard_cmd(sbi, &dpolicy);
1959 		if (issued > 0) {
1960 			__wait_all_discard_cmd(sbi, &dpolicy);
1961 			wait_ms = dpolicy.min_interval;
1962 		} else if (issued == -1) {
1963 			wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1964 			if (!wait_ms)
1965 				wait_ms = dpolicy.mid_interval;
1966 		} else {
1967 			wait_ms = dpolicy.max_interval;
1968 		}
1969 		if (!atomic_read(&dcc->discard_cmd_cnt))
1970 			wait_ms = dpolicy.max_interval;
1971 
1972 		sb_end_intwrite(sbi->sb);
1973 
1974 	} while (!kthread_should_stop());
1975 	return 0;
1976 }
1977 
1978 #ifdef CONFIG_BLK_DEV_ZONED
__f2fs_issue_discard_zone(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1979 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1980 		struct block_device *bdev, block_t blkstart, block_t blklen)
1981 {
1982 	sector_t sector, nr_sects;
1983 	block_t lblkstart = blkstart;
1984 	int devi = 0;
1985 	u64 remainder = 0;
1986 
1987 	if (f2fs_is_multi_device(sbi)) {
1988 		devi = f2fs_target_device_index(sbi, blkstart);
1989 		if (blkstart < FDEV(devi).start_blk ||
1990 		    blkstart > FDEV(devi).end_blk) {
1991 			f2fs_err(sbi, "Invalid block %x", blkstart);
1992 			return -EIO;
1993 		}
1994 		blkstart -= FDEV(devi).start_blk;
1995 	}
1996 
1997 	/* For sequential zones, reset the zone write pointer */
1998 	if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1999 		sector = SECTOR_FROM_BLOCK(blkstart);
2000 		nr_sects = SECTOR_FROM_BLOCK(blklen);
2001 		div64_u64_rem(sector, bdev_zone_sectors(bdev), &remainder);
2002 
2003 		if (remainder || nr_sects != bdev_zone_sectors(bdev)) {
2004 			f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
2005 				 devi, sbi->s_ndevs ? FDEV(devi).path : "",
2006 				 blkstart, blklen);
2007 			return -EIO;
2008 		}
2009 
2010 		if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) {
2011 			unsigned int nofs_flags;
2012 			int ret;
2013 
2014 			trace_f2fs_issue_reset_zone(bdev, blkstart);
2015 			nofs_flags = memalloc_nofs_save();
2016 			ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
2017 						sector, nr_sects);
2018 			memalloc_nofs_restore(nofs_flags);
2019 			return ret;
2020 		}
2021 
2022 		__queue_zone_reset_cmd(sbi, bdev, blkstart, lblkstart, blklen);
2023 		return 0;
2024 	}
2025 
2026 	/* For conventional zones, use regular discard if supported */
2027 	__queue_discard_cmd(sbi, bdev, lblkstart, blklen);
2028 	return 0;
2029 }
2030 #endif
2031 
__issue_discard_async(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)2032 static int __issue_discard_async(struct f2fs_sb_info *sbi,
2033 		struct block_device *bdev, block_t blkstart, block_t blklen)
2034 {
2035 #ifdef CONFIG_BLK_DEV_ZONED
2036 	if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
2037 		return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
2038 #endif
2039 	__queue_discard_cmd(sbi, bdev, blkstart, blklen);
2040 	return 0;
2041 }
2042 
f2fs_issue_discard(struct f2fs_sb_info * sbi,block_t blkstart,block_t blklen)2043 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
2044 				block_t blkstart, block_t blklen)
2045 {
2046 	sector_t start = blkstart, len = 0;
2047 	struct block_device *bdev;
2048 	struct seg_entry *se;
2049 	unsigned int offset;
2050 	block_t i;
2051 	int err = 0;
2052 
2053 	bdev = f2fs_target_device(sbi, blkstart, NULL);
2054 
2055 	for (i = blkstart; i < blkstart + blklen; i++, len++) {
2056 		if (i != start) {
2057 			struct block_device *bdev2 =
2058 				f2fs_target_device(sbi, i, NULL);
2059 
2060 			if (bdev2 != bdev) {
2061 				err = __issue_discard_async(sbi, bdev,
2062 						start, len);
2063 				if (err)
2064 					return err;
2065 				bdev = bdev2;
2066 				start = i;
2067 				len = 0;
2068 			}
2069 		}
2070 
2071 		se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
2072 		offset = GET_BLKOFF_FROM_SEG0(sbi, i);
2073 
2074 		if (f2fs_block_unit_discard(sbi) &&
2075 				!f2fs_test_and_set_bit(offset, se->discard_map))
2076 			sbi->discard_blks--;
2077 	}
2078 
2079 	if (len)
2080 		err = __issue_discard_async(sbi, bdev, start, len);
2081 	return err;
2082 }
2083 
add_discard_addrs(struct f2fs_sb_info * sbi,struct cp_control * cpc,bool check_only)2084 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
2085 							bool check_only)
2086 {
2087 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2088 	struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
2089 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2090 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2091 	unsigned long *discard_map = (unsigned long *)se->discard_map;
2092 	unsigned long *dmap = SIT_I(sbi)->tmp_map;
2093 	unsigned int start = 0, end = -1;
2094 	bool force = (cpc->reason & CP_DISCARD);
2095 	struct discard_entry *de = NULL;
2096 	struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
2097 	int i;
2098 
2099 	if (se->valid_blocks == BLKS_PER_SEG(sbi) ||
2100 	    !f2fs_hw_support_discard(sbi) ||
2101 	    !f2fs_block_unit_discard(sbi))
2102 		return false;
2103 
2104 	if (!force) {
2105 		if (!f2fs_realtime_discard_enable(sbi) ||
2106 			(!se->valid_blocks &&
2107 				!is_curseg(sbi, cpc->trim_start)) ||
2108 			SM_I(sbi)->dcc_info->nr_discards >=
2109 				SM_I(sbi)->dcc_info->max_discards)
2110 			return false;
2111 	}
2112 
2113 	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
2114 	for (i = 0; i < entries; i++)
2115 		dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
2116 				(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
2117 
2118 	while (force || SM_I(sbi)->dcc_info->nr_discards <=
2119 				SM_I(sbi)->dcc_info->max_discards) {
2120 		start = __find_rev_next_bit(dmap, BLKS_PER_SEG(sbi), end + 1);
2121 		if (start >= BLKS_PER_SEG(sbi))
2122 			break;
2123 
2124 		end = __find_rev_next_zero_bit(dmap,
2125 						BLKS_PER_SEG(sbi), start + 1);
2126 		if (force && start && end != BLKS_PER_SEG(sbi) &&
2127 		    (end - start) < cpc->trim_minlen)
2128 			continue;
2129 
2130 		if (check_only)
2131 			return true;
2132 
2133 		if (!de) {
2134 			de = f2fs_kmem_cache_alloc(discard_entry_slab,
2135 						GFP_F2FS_ZERO, true, NULL);
2136 			de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
2137 			list_add_tail(&de->list, head);
2138 		}
2139 
2140 		for (i = start; i < end; i++)
2141 			__set_bit_le(i, (void *)de->discard_map);
2142 
2143 		SM_I(sbi)->dcc_info->nr_discards += end - start;
2144 	}
2145 	return false;
2146 }
2147 
release_discard_addr(struct discard_entry * entry)2148 static void release_discard_addr(struct discard_entry *entry)
2149 {
2150 	list_del(&entry->list);
2151 	kmem_cache_free(discard_entry_slab, entry);
2152 }
2153 
f2fs_release_discard_addrs(struct f2fs_sb_info * sbi)2154 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
2155 {
2156 	struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
2157 	struct discard_entry *entry, *this;
2158 
2159 	/* drop caches */
2160 	list_for_each_entry_safe(entry, this, head, list)
2161 		release_discard_addr(entry);
2162 }
2163 
2164 /*
2165  * Should call f2fs_clear_prefree_segments after checkpoint is done.
2166  */
set_prefree_as_free_segments(struct f2fs_sb_info * sbi)2167 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
2168 {
2169 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2170 	unsigned int segno;
2171 
2172 	mutex_lock(&dirty_i->seglist_lock);
2173 	for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
2174 		__set_test_and_free(sbi, segno, false);
2175 	mutex_unlock(&dirty_i->seglist_lock);
2176 }
2177 
f2fs_clear_prefree_segments(struct f2fs_sb_info * sbi,struct cp_control * cpc)2178 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
2179 						struct cp_control *cpc)
2180 {
2181 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2182 	struct list_head *head = &dcc->entry_list;
2183 	struct discard_entry *entry, *this;
2184 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2185 	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
2186 	unsigned int start = 0, end = -1;
2187 	unsigned int secno, start_segno;
2188 	bool force = (cpc->reason & CP_DISCARD);
2189 	bool section_alignment = F2FS_OPTION(sbi).discard_unit ==
2190 						DISCARD_UNIT_SECTION;
2191 
2192 	if (f2fs_lfs_mode(sbi) && __is_large_section(sbi))
2193 		section_alignment = true;
2194 
2195 	mutex_lock(&dirty_i->seglist_lock);
2196 
2197 	while (1) {
2198 		int i;
2199 
2200 		if (section_alignment && end != -1)
2201 			end--;
2202 		start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
2203 		if (start >= MAIN_SEGS(sbi))
2204 			break;
2205 		end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
2206 								start + 1);
2207 
2208 		if (section_alignment) {
2209 			start = rounddown(start, SEGS_PER_SEC(sbi));
2210 			end = roundup(end, SEGS_PER_SEC(sbi));
2211 		}
2212 
2213 		for (i = start; i < end; i++) {
2214 			if (test_and_clear_bit(i, prefree_map))
2215 				dirty_i->nr_dirty[PRE]--;
2216 		}
2217 
2218 		if (!f2fs_realtime_discard_enable(sbi))
2219 			continue;
2220 
2221 		if (force && start >= cpc->trim_start &&
2222 					(end - 1) <= cpc->trim_end)
2223 			continue;
2224 
2225 		/* Should cover 2MB zoned device for zone-based reset */
2226 		if (!f2fs_sb_has_blkzoned(sbi) &&
2227 		    (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi))) {
2228 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2229 				SEGS_TO_BLKS(sbi, end - start));
2230 			continue;
2231 		}
2232 next:
2233 		secno = GET_SEC_FROM_SEG(sbi, start);
2234 		start_segno = GET_SEG_FROM_SEC(sbi, secno);
2235 		if (!is_cursec(sbi, secno) &&
2236 			!get_valid_blocks(sbi, start, true))
2237 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2238 						BLKS_PER_SEC(sbi));
2239 
2240 		start = start_segno + SEGS_PER_SEC(sbi);
2241 		if (start < end)
2242 			goto next;
2243 		else
2244 			end = start - 1;
2245 	}
2246 	mutex_unlock(&dirty_i->seglist_lock);
2247 
2248 	if (!f2fs_block_unit_discard(sbi))
2249 		goto wakeup;
2250 
2251 	/* send small discards */
2252 	list_for_each_entry_safe(entry, this, head, list) {
2253 		unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2254 		bool is_valid = test_bit_le(0, entry->discard_map);
2255 
2256 find_next:
2257 		if (is_valid) {
2258 			next_pos = find_next_zero_bit_le(entry->discard_map,
2259 						BLKS_PER_SEG(sbi), cur_pos);
2260 			len = next_pos - cur_pos;
2261 
2262 			if (f2fs_sb_has_blkzoned(sbi) ||
2263 			    (force && len < cpc->trim_minlen))
2264 				goto skip;
2265 
2266 			f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2267 									len);
2268 			total_len += len;
2269 		} else {
2270 			next_pos = find_next_bit_le(entry->discard_map,
2271 						BLKS_PER_SEG(sbi), cur_pos);
2272 		}
2273 skip:
2274 		cur_pos = next_pos;
2275 		is_valid = !is_valid;
2276 
2277 		if (cur_pos < BLKS_PER_SEG(sbi))
2278 			goto find_next;
2279 
2280 		release_discard_addr(entry);
2281 		dcc->nr_discards -= total_len;
2282 	}
2283 
2284 wakeup:
2285 	wake_up_discard_thread(sbi, false);
2286 }
2287 
f2fs_start_discard_thread(struct f2fs_sb_info * sbi)2288 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi)
2289 {
2290 	dev_t dev = sbi->sb->s_bdev->bd_dev;
2291 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2292 	int err = 0;
2293 
2294 	if (f2fs_sb_has_readonly(sbi)) {
2295 		f2fs_info(sbi,
2296 			"Skip to start discard thread for readonly image");
2297 		return 0;
2298 	}
2299 
2300 	if (!f2fs_realtime_discard_enable(sbi))
2301 		return 0;
2302 
2303 	dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2304 				"f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2305 	if (IS_ERR(dcc->f2fs_issue_discard)) {
2306 		err = PTR_ERR(dcc->f2fs_issue_discard);
2307 		dcc->f2fs_issue_discard = NULL;
2308 	}
2309 
2310 	return err;
2311 }
2312 
create_discard_cmd_control(struct f2fs_sb_info * sbi)2313 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2314 {
2315 	struct discard_cmd_control *dcc;
2316 	int err = 0, i;
2317 
2318 	if (SM_I(sbi)->dcc_info) {
2319 		dcc = SM_I(sbi)->dcc_info;
2320 		goto init_thread;
2321 	}
2322 
2323 	dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2324 	if (!dcc)
2325 		return -ENOMEM;
2326 
2327 	dcc->discard_io_aware_gran = MAX_PLIST_NUM;
2328 	dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2329 	dcc->max_ordered_discard = DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY;
2330 	dcc->discard_io_aware = DPOLICY_IO_AWARE_ENABLE;
2331 	if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT ||
2332 		F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2333 		dcc->discard_granularity = BLKS_PER_SEG(sbi);
2334 
2335 	INIT_LIST_HEAD(&dcc->entry_list);
2336 	for (i = 0; i < MAX_PLIST_NUM; i++)
2337 		INIT_LIST_HEAD(&dcc->pend_list[i]);
2338 	INIT_LIST_HEAD(&dcc->wait_list);
2339 	INIT_LIST_HEAD(&dcc->fstrim_list);
2340 	mutex_init(&dcc->cmd_lock);
2341 	atomic_set(&dcc->issued_discard, 0);
2342 	atomic_set(&dcc->queued_discard, 0);
2343 	atomic_set(&dcc->discard_cmd_cnt, 0);
2344 	dcc->nr_discards = 0;
2345 	dcc->max_discards = SEGS_TO_BLKS(sbi, MAIN_SEGS(sbi));
2346 	dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST;
2347 	dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME;
2348 	dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME;
2349 	dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME;
2350 	dcc->discard_urgent_util = DEF_DISCARD_URGENT_UTIL;
2351 	dcc->undiscard_blks = 0;
2352 	dcc->next_pos = 0;
2353 	dcc->root = RB_ROOT_CACHED;
2354 	dcc->rbtree_check = false;
2355 
2356 	init_waitqueue_head(&dcc->discard_wait_queue);
2357 	SM_I(sbi)->dcc_info = dcc;
2358 init_thread:
2359 	err = f2fs_start_discard_thread(sbi);
2360 	if (err) {
2361 		kfree(dcc);
2362 		SM_I(sbi)->dcc_info = NULL;
2363 	}
2364 
2365 	return err;
2366 }
2367 
destroy_discard_cmd_control(struct f2fs_sb_info * sbi)2368 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2369 {
2370 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2371 
2372 	if (!dcc)
2373 		return;
2374 
2375 	f2fs_stop_discard_thread(sbi);
2376 
2377 	/*
2378 	 * Recovery can cache discard commands, so in error path of
2379 	 * fill_super(), it needs to give a chance to handle them.
2380 	 */
2381 	f2fs_issue_discard_timeout(sbi);
2382 
2383 	kfree(dcc);
2384 	SM_I(sbi)->dcc_info = NULL;
2385 }
2386 
__mark_sit_entry_dirty(struct f2fs_sb_info * sbi,unsigned int segno)2387 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2388 {
2389 	struct sit_info *sit_i = SIT_I(sbi);
2390 
2391 	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2392 		sit_i->dirty_sentries++;
2393 		return false;
2394 	}
2395 
2396 	return true;
2397 }
2398 
__set_sit_entry_type(struct f2fs_sb_info * sbi,int type,unsigned int segno,int modified)2399 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2400 					unsigned int segno, int modified)
2401 {
2402 	struct seg_entry *se = get_seg_entry(sbi, segno);
2403 
2404 	se->type = type;
2405 	if (modified)
2406 		__mark_sit_entry_dirty(sbi, segno);
2407 }
2408 
get_segment_mtime(struct f2fs_sb_info * sbi,block_t blkaddr)2409 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2410 								block_t blkaddr)
2411 {
2412 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2413 
2414 	if (segno == NULL_SEGNO)
2415 		return 0;
2416 	return get_seg_entry(sbi, segno)->mtime;
2417 }
2418 
update_segment_mtime(struct f2fs_sb_info * sbi,block_t blkaddr,unsigned long long old_mtime)2419 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2420 						unsigned long long old_mtime)
2421 {
2422 	struct seg_entry *se;
2423 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2424 	unsigned long long ctime = get_mtime(sbi, false);
2425 	unsigned long long mtime = old_mtime ? old_mtime : ctime;
2426 
2427 	if (segno == NULL_SEGNO)
2428 		return;
2429 
2430 	se = get_seg_entry(sbi, segno);
2431 
2432 	if (!se->mtime)
2433 		se->mtime = mtime;
2434 	else
2435 		se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2436 						se->valid_blocks + 1);
2437 
2438 	if (ctime > SIT_I(sbi)->max_mtime)
2439 		SIT_I(sbi)->max_mtime = ctime;
2440 }
2441 
2442 /*
2443  * NOTE: when updating multiple blocks at the same time, please ensure
2444  * that the consecutive input blocks belong to the same segment.
2445  */
update_sit_entry_for_release(struct f2fs_sb_info * sbi,struct seg_entry * se,unsigned int segno,block_t blkaddr,unsigned int offset,int del)2446 static int update_sit_entry_for_release(struct f2fs_sb_info *sbi, struct seg_entry *se,
2447 				unsigned int segno, block_t blkaddr, unsigned int offset, int del)
2448 {
2449 	bool exist;
2450 #ifdef CONFIG_F2FS_CHECK_FS
2451 	bool mir_exist;
2452 #endif
2453 	int i;
2454 	int del_count = -del;
2455 
2456 	f2fs_bug_on(sbi, GET_SEGNO(sbi, blkaddr) != GET_SEGNO(sbi, blkaddr + del_count - 1));
2457 
2458 	for (i = 0; i < del_count; i++) {
2459 		exist = f2fs_test_and_clear_bit(offset + i, se->cur_valid_map);
2460 #ifdef CONFIG_F2FS_CHECK_FS
2461 		mir_exist = f2fs_test_and_clear_bit(offset + i,
2462 						se->cur_valid_map_mir);
2463 		if (unlikely(exist != mir_exist)) {
2464 			f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2465 				blkaddr + i, exist);
2466 			f2fs_bug_on(sbi, 1);
2467 		}
2468 #endif
2469 		if (unlikely(!exist)) {
2470 			f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u", blkaddr + i);
2471 			f2fs_bug_on(sbi, 1);
2472 			se->valid_blocks++;
2473 			del += 1;
2474 		} else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2475 			/*
2476 			 * If checkpoints are off, we must not reuse data that
2477 			 * was used in the previous checkpoint. If it was used
2478 			 * before, we must track that to know how much space we
2479 			 * really have.
2480 			 */
2481 			if (f2fs_test_bit(offset + i, se->ckpt_valid_map)) {
2482 				spin_lock(&sbi->stat_lock);
2483 				sbi->unusable_block_count++;
2484 				spin_unlock(&sbi->stat_lock);
2485 			}
2486 		}
2487 
2488 		if (f2fs_block_unit_discard(sbi) &&
2489 				f2fs_test_and_clear_bit(offset + i, se->discard_map))
2490 			sbi->discard_blks++;
2491 
2492 		if (!f2fs_test_bit(offset + i, se->ckpt_valid_map)) {
2493 			se->ckpt_valid_blocks -= 1;
2494 			if (__is_large_section(sbi))
2495 				get_sec_entry(sbi, segno)->ckpt_valid_blocks -= 1;
2496 		}
2497 	}
2498 
2499 	if (__is_large_section(sbi))
2500 		sanity_check_valid_blocks(sbi, segno);
2501 
2502 	return del;
2503 }
2504 
update_sit_entry_for_alloc(struct f2fs_sb_info * sbi,struct seg_entry * se,unsigned int segno,block_t blkaddr,unsigned int offset,int del)2505 static int update_sit_entry_for_alloc(struct f2fs_sb_info *sbi, struct seg_entry *se,
2506 				unsigned int segno, block_t blkaddr, unsigned int offset, int del)
2507 {
2508 	bool exist;
2509 #ifdef CONFIG_F2FS_CHECK_FS
2510 	bool mir_exist;
2511 #endif
2512 
2513 	exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2514 #ifdef CONFIG_F2FS_CHECK_FS
2515 	mir_exist = f2fs_test_and_set_bit(offset,
2516 					se->cur_valid_map_mir);
2517 	if (unlikely(exist != mir_exist)) {
2518 		f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2519 			blkaddr, exist);
2520 		f2fs_bug_on(sbi, 1);
2521 	}
2522 #endif
2523 	if (unlikely(exist)) {
2524 		f2fs_err(sbi, "Bitmap was wrongly set, blk:%u", blkaddr);
2525 		f2fs_bug_on(sbi, 1);
2526 		se->valid_blocks--;
2527 		del = 0;
2528 	}
2529 
2530 	if (f2fs_block_unit_discard(sbi) &&
2531 			!f2fs_test_and_set_bit(offset, se->discard_map))
2532 		sbi->discard_blks--;
2533 
2534 	/*
2535 	 * SSR should never reuse block which is checkpointed
2536 	 * or newly invalidated.
2537 	 */
2538 	if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2539 		if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map)) {
2540 			se->ckpt_valid_blocks++;
2541 			if (__is_large_section(sbi))
2542 				get_sec_entry(sbi, segno)->ckpt_valid_blocks++;
2543 		}
2544 	}
2545 
2546 	if (!f2fs_test_bit(offset, se->ckpt_valid_map)) {
2547 		se->ckpt_valid_blocks += del;
2548 		if (__is_large_section(sbi))
2549 			get_sec_entry(sbi, segno)->ckpt_valid_blocks += del;
2550 	}
2551 
2552 	if (__is_large_section(sbi))
2553 		sanity_check_valid_blocks(sbi, segno);
2554 
2555 	return del;
2556 }
2557 
2558 /*
2559  * If releasing blocks, this function supports updating multiple consecutive blocks
2560  * at one time, but please note that these consecutive blocks need to belong to the
2561  * same segment.
2562  */
update_sit_entry(struct f2fs_sb_info * sbi,block_t blkaddr,int del)2563 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2564 {
2565 	struct seg_entry *se;
2566 	unsigned int segno, offset;
2567 	long int new_vblocks;
2568 
2569 	segno = GET_SEGNO(sbi, blkaddr);
2570 	if (segno == NULL_SEGNO)
2571 		return;
2572 
2573 	se = get_seg_entry(sbi, segno);
2574 	new_vblocks = se->valid_blocks + del;
2575 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2576 
2577 	f2fs_bug_on(sbi, (new_vblocks < 0 ||
2578 			(new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2579 
2580 	se->valid_blocks = new_vblocks;
2581 
2582 	/* Update valid block bitmap */
2583 	if (del > 0) {
2584 		del = update_sit_entry_for_alloc(sbi, se, segno, blkaddr, offset, del);
2585 	} else {
2586 		del = update_sit_entry_for_release(sbi, se, segno, blkaddr, offset, del);
2587 	}
2588 
2589 	__mark_sit_entry_dirty(sbi, segno);
2590 
2591 	/* update total number of valid blocks to be written in ckpt area */
2592 	SIT_I(sbi)->written_valid_blocks += del;
2593 
2594 	if (__is_large_section(sbi))
2595 		get_sec_entry(sbi, segno)->valid_blocks += del;
2596 }
2597 
f2fs_invalidate_blocks(struct f2fs_sb_info * sbi,block_t addr,unsigned int len)2598 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr,
2599 				unsigned int len)
2600 {
2601 	unsigned int segno = GET_SEGNO(sbi, addr);
2602 	struct sit_info *sit_i = SIT_I(sbi);
2603 	block_t addr_start = addr, addr_end = addr + len - 1;
2604 	unsigned int seg_num = GET_SEGNO(sbi, addr_end) - segno + 1;
2605 	unsigned int i = 1, max_blocks = sbi->blocks_per_seg, cnt;
2606 
2607 	f2fs_bug_on(sbi, addr == NULL_ADDR);
2608 	if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2609 		return;
2610 
2611 	f2fs_invalidate_internal_cache(sbi, addr, len);
2612 
2613 	/* add it into sit main buffer */
2614 	down_write(&sit_i->sentry_lock);
2615 
2616 	if (seg_num == 1)
2617 		cnt = len;
2618 	else
2619 		cnt = max_blocks - GET_BLKOFF_FROM_SEG0(sbi, addr);
2620 
2621 	do {
2622 		update_segment_mtime(sbi, addr_start, 0);
2623 		update_sit_entry(sbi, addr_start, -cnt);
2624 
2625 		/* add it into dirty seglist */
2626 		locate_dirty_segment(sbi, segno);
2627 
2628 		/* update @addr_start and @cnt and @segno */
2629 		addr_start = START_BLOCK(sbi, ++segno);
2630 		if (++i == seg_num)
2631 			cnt = GET_BLKOFF_FROM_SEG0(sbi, addr_end) + 1;
2632 		else
2633 			cnt = max_blocks;
2634 	} while (i <= seg_num);
2635 
2636 	up_write(&sit_i->sentry_lock);
2637 }
2638 
f2fs_is_checkpointed_data(struct f2fs_sb_info * sbi,block_t blkaddr)2639 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2640 {
2641 	struct sit_info *sit_i = SIT_I(sbi);
2642 	unsigned int segno, offset;
2643 	struct seg_entry *se;
2644 	bool is_cp = false;
2645 
2646 	if (!__is_valid_data_blkaddr(blkaddr))
2647 		return true;
2648 
2649 	down_read(&sit_i->sentry_lock);
2650 
2651 	segno = GET_SEGNO(sbi, blkaddr);
2652 	se = get_seg_entry(sbi, segno);
2653 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2654 
2655 	if (f2fs_test_bit(offset, se->ckpt_valid_map))
2656 		is_cp = true;
2657 
2658 	up_read(&sit_i->sentry_lock);
2659 
2660 	return is_cp;
2661 }
2662 
f2fs_curseg_valid_blocks(struct f2fs_sb_info * sbi,int type)2663 static unsigned short f2fs_curseg_valid_blocks(struct f2fs_sb_info *sbi, int type)
2664 {
2665 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2666 
2667 	if (sbi->ckpt->alloc_type[type] == SSR)
2668 		return BLKS_PER_SEG(sbi);
2669 	return curseg->next_blkoff;
2670 }
2671 
2672 /*
2673  * Calculate the number of current summary pages for writing
2674  */
f2fs_npages_for_summary_flush(struct f2fs_sb_info * sbi,bool for_ra)2675 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2676 {
2677 	int valid_sum_count = 0;
2678 	int i, sum_in_page;
2679 
2680 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2681 		if (sbi->ckpt->alloc_type[i] != SSR && for_ra)
2682 			valid_sum_count +=
2683 				le16_to_cpu(F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2684 		else
2685 			valid_sum_count += f2fs_curseg_valid_blocks(sbi, i);
2686 	}
2687 
2688 	sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2689 			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2690 	if (valid_sum_count <= sum_in_page)
2691 		return 1;
2692 	else if ((valid_sum_count - sum_in_page) <=
2693 		(PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2694 		return 2;
2695 	return 3;
2696 }
2697 
2698 /*
2699  * Caller should put this summary folio
2700  */
f2fs_get_sum_folio(struct f2fs_sb_info * sbi,unsigned int segno)2701 struct folio *f2fs_get_sum_folio(struct f2fs_sb_info *sbi, unsigned int segno)
2702 {
2703 	if (unlikely(f2fs_cp_error(sbi)))
2704 		return ERR_PTR(-EIO);
2705 	return f2fs_get_meta_folio_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2706 }
2707 
f2fs_update_meta_page(struct f2fs_sb_info * sbi,void * src,block_t blk_addr)2708 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2709 					void *src, block_t blk_addr)
2710 {
2711 	struct folio *folio;
2712 
2713 	if (SUMS_PER_BLOCK == 1)
2714 		folio = f2fs_grab_meta_folio(sbi, blk_addr);
2715 	else
2716 		folio = f2fs_get_meta_folio_retry(sbi, blk_addr);
2717 
2718 	if (IS_ERR(folio))
2719 		return;
2720 
2721 	memcpy(folio_address(folio), src, PAGE_SIZE);
2722 	folio_mark_dirty(folio);
2723 	f2fs_folio_put(folio, true);
2724 }
2725 
write_sum_page(struct f2fs_sb_info * sbi,struct f2fs_summary_block * sum_blk,unsigned int segno)2726 static void write_sum_page(struct f2fs_sb_info *sbi,
2727 		struct f2fs_summary_block *sum_blk, unsigned int segno)
2728 {
2729 	struct folio *folio;
2730 
2731 	if (SUMS_PER_BLOCK == 1)
2732 		return f2fs_update_meta_page(sbi, (void *)sum_blk,
2733 				GET_SUM_BLOCK(sbi, segno));
2734 
2735 	folio = f2fs_get_sum_folio(sbi, segno);
2736 	if (IS_ERR(folio))
2737 		return;
2738 
2739 	memcpy(SUM_BLK_PAGE_ADDR(folio, segno), sum_blk, sizeof(*sum_blk));
2740 	folio_mark_dirty(folio);
2741 	f2fs_folio_put(folio, true);
2742 }
2743 
write_current_sum_page(struct f2fs_sb_info * sbi,int type,block_t blk_addr)2744 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2745 						int type, block_t blk_addr)
2746 {
2747 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2748 	struct folio *folio = f2fs_grab_meta_folio(sbi, blk_addr);
2749 	struct f2fs_summary_block *src = curseg->sum_blk;
2750 	struct f2fs_summary_block *dst;
2751 
2752 	dst = folio_address(folio);
2753 	memset(dst, 0, PAGE_SIZE);
2754 
2755 	mutex_lock(&curseg->curseg_mutex);
2756 
2757 	down_read(&curseg->journal_rwsem);
2758 	memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2759 	up_read(&curseg->journal_rwsem);
2760 
2761 	memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2762 	memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2763 
2764 	mutex_unlock(&curseg->curseg_mutex);
2765 
2766 	folio_mark_dirty(folio);
2767 	f2fs_folio_put(folio, true);
2768 }
2769 
is_next_segment_free(struct f2fs_sb_info * sbi,struct curseg_info * curseg)2770 static int is_next_segment_free(struct f2fs_sb_info *sbi,
2771 				struct curseg_info *curseg)
2772 {
2773 	unsigned int segno = curseg->segno + 1;
2774 	struct free_segmap_info *free_i = FREE_I(sbi);
2775 
2776 	if (segno < MAIN_SEGS(sbi) && segno % SEGS_PER_SEC(sbi))
2777 		return !test_bit(segno, free_i->free_segmap);
2778 	return 0;
2779 }
2780 
2781 /*
2782  * Find a new segment from the free segments bitmap to right order
2783  * This function should be returned with success, otherwise BUG
2784  */
get_new_segment(struct f2fs_sb_info * sbi,unsigned int * newseg,bool new_sec,bool pinning)2785 static int get_new_segment(struct f2fs_sb_info *sbi,
2786 			unsigned int *newseg, bool new_sec, bool pinning)
2787 {
2788 	struct free_segmap_info *free_i = FREE_I(sbi);
2789 	unsigned int segno, secno, zoneno;
2790 	unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2791 	unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2792 	unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2793 	unsigned int alloc_policy = sbi->allocate_section_policy;
2794 	unsigned int alloc_hint = sbi->allocate_section_hint;
2795 	bool init = true;
2796 	int i;
2797 	int ret = 0;
2798 
2799 	spin_lock(&free_i->segmap_lock);
2800 
2801 	if (time_to_inject(sbi, FAULT_NO_SEGMENT)) {
2802 		ret = -ENOSPC;
2803 		goto out_unlock;
2804 	}
2805 
2806 	if (!new_sec && ((*newseg + 1) % SEGS_PER_SEC(sbi))) {
2807 		segno = find_next_zero_bit(free_i->free_segmap,
2808 			GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2809 		if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2810 			goto got_it;
2811 	}
2812 
2813 #ifdef CONFIG_BLK_DEV_ZONED
2814 	/*
2815 	 * If we format f2fs on zoned storage, let's try to get pinned sections
2816 	 * from beginning of the storage, which should be a conventional one.
2817 	 */
2818 	if (f2fs_sb_has_blkzoned(sbi)) {
2819 		/* Prioritize writing to conventional zones */
2820 		if (sbi->blkzone_alloc_policy == BLKZONE_ALLOC_PRIOR_CONV || pinning)
2821 			segno = 0;
2822 		else
2823 			segno = max(sbi->first_seq_zone_segno, *newseg);
2824 		hint = GET_SEC_FROM_SEG(sbi, segno);
2825 	}
2826 #endif
2827 
2828 	/*
2829 	 * Prevent allocate_section_hint from exceeding MAIN_SECS()
2830 	 * due to desynchronization.
2831 	 */
2832 	if (alloc_policy != ALLOCATE_FORWARD_NOHINT &&
2833 		alloc_hint > MAIN_SECS(sbi))
2834 		alloc_hint = MAIN_SECS(sbi);
2835 
2836 	if (alloc_policy == ALLOCATE_FORWARD_FROM_HINT &&
2837 		hint < alloc_hint)
2838 		hint = alloc_hint;
2839 	else if (alloc_policy == ALLOCATE_FORWARD_WITHIN_HINT &&
2840 			hint >= alloc_hint)
2841 		hint = 0;
2842 
2843 find_other_zone:
2844 	secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2845 
2846 #ifdef CONFIG_BLK_DEV_ZONED
2847 	if (secno >= MAIN_SECS(sbi) && f2fs_sb_has_blkzoned(sbi)) {
2848 		/* Write only to sequential zones */
2849 		if (sbi->blkzone_alloc_policy == BLKZONE_ALLOC_ONLY_SEQ) {
2850 			hint = GET_SEC_FROM_SEG(sbi, sbi->first_seq_zone_segno);
2851 			secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2852 		} else
2853 			secno = find_first_zero_bit(free_i->free_secmap,
2854 								MAIN_SECS(sbi));
2855 		if (secno >= MAIN_SECS(sbi)) {
2856 			ret = -ENOSPC;
2857 			f2fs_bug_on(sbi, 1);
2858 			goto out_unlock;
2859 		}
2860 	}
2861 #endif
2862 
2863 	if (secno >= MAIN_SECS(sbi)) {
2864 		secno = find_first_zero_bit(free_i->free_secmap,
2865 							MAIN_SECS(sbi));
2866 		if (secno >= MAIN_SECS(sbi)) {
2867 			ret = -ENOSPC;
2868 			f2fs_bug_on(sbi, !pinning);
2869 			goto out_unlock;
2870 		}
2871 	}
2872 	segno = GET_SEG_FROM_SEC(sbi, secno);
2873 	zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2874 
2875 	/* give up on finding another zone */
2876 	if (!init)
2877 		goto got_it;
2878 	if (sbi->secs_per_zone == 1)
2879 		goto got_it;
2880 	if (zoneno == old_zoneno)
2881 		goto got_it;
2882 	for (i = 0; i < NR_CURSEG_TYPE; i++)
2883 		if (CURSEG_I(sbi, i)->zone == zoneno)
2884 			break;
2885 
2886 	if (i < NR_CURSEG_TYPE) {
2887 		/* zone is in user, try another */
2888 		if (zoneno + 1 >= total_zones)
2889 			hint = 0;
2890 		else
2891 			hint = (zoneno + 1) * sbi->secs_per_zone;
2892 		init = false;
2893 		goto find_other_zone;
2894 	}
2895 got_it:
2896 	/* set it as dirty segment in free segmap */
2897 	if (test_bit(segno, free_i->free_segmap)) {
2898 		ret = -EFSCORRUPTED;
2899 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_CORRUPTED_FREE_BITMAP);
2900 		goto out_unlock;
2901 	}
2902 
2903 	/* no free section in conventional device or conventional zone */
2904 	if (new_sec && pinning &&
2905 		f2fs_is_sequential_zone_area(sbi, START_BLOCK(sbi, segno))) {
2906 		ret = -EAGAIN;
2907 		goto out_unlock;
2908 	}
2909 	__set_inuse(sbi, segno);
2910 	*newseg = segno;
2911 out_unlock:
2912 	spin_unlock(&free_i->segmap_lock);
2913 
2914 	if (ret == -ENOSPC && !pinning)
2915 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_NO_SEGMENT);
2916 	return ret;
2917 }
2918 
reset_curseg(struct f2fs_sb_info * sbi,int type,int modified)2919 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2920 {
2921 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2922 	struct summary_footer *sum_footer;
2923 	unsigned short seg_type = curseg->seg_type;
2924 
2925 	/* only happen when get_new_segment() fails */
2926 	if (curseg->next_segno == NULL_SEGNO)
2927 		return;
2928 
2929 	curseg->inited = true;
2930 	curseg->segno = curseg->next_segno;
2931 	curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2932 	curseg->next_blkoff = 0;
2933 	curseg->next_segno = NULL_SEGNO;
2934 
2935 	sum_footer = &(curseg->sum_blk->footer);
2936 	memset(sum_footer, 0, sizeof(struct summary_footer));
2937 
2938 	sanity_check_seg_type(sbi, seg_type);
2939 
2940 	if (IS_DATASEG(seg_type))
2941 		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2942 	if (IS_NODESEG(seg_type))
2943 		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2944 	__set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2945 }
2946 
__get_next_segno(struct f2fs_sb_info * sbi,int type)2947 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2948 {
2949 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2950 	unsigned short seg_type = curseg->seg_type;
2951 
2952 	sanity_check_seg_type(sbi, seg_type);
2953 	if (__is_large_section(sbi)) {
2954 		if (f2fs_need_rand_seg(sbi)) {
2955 			unsigned int hint = GET_SEC_FROM_SEG(sbi, curseg->segno);
2956 
2957 			if (GET_SEC_FROM_SEG(sbi, curseg->segno + 1) != hint)
2958 				return curseg->segno;
2959 			return get_random_u32_inclusive(curseg->segno + 1,
2960 					GET_SEG_FROM_SEC(sbi, hint + 1) - 1);
2961 		}
2962 		return curseg->segno;
2963 	} else if (f2fs_need_rand_seg(sbi)) {
2964 		return get_random_u32_below(MAIN_SECS(sbi) * SEGS_PER_SEC(sbi));
2965 	}
2966 
2967 	/* inmem log may not locate on any segment after mount */
2968 	if (!curseg->inited)
2969 		return 0;
2970 
2971 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2972 		return 0;
2973 
2974 	if (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type))
2975 		return 0;
2976 
2977 	if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2978 		return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2979 
2980 	/* find segments from 0 to reuse freed segments */
2981 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2982 		return 0;
2983 
2984 	return curseg->segno;
2985 }
2986 
reset_curseg_fields(struct curseg_info * curseg)2987 static void reset_curseg_fields(struct curseg_info *curseg)
2988 {
2989 	curseg->inited = false;
2990 	curseg->segno = NULL_SEGNO;
2991 	curseg->next_segno = 0;
2992 }
2993 
2994 /*
2995  * Allocate a current working segment.
2996  * This function always allocates a free segment in LFS manner.
2997  */
new_curseg(struct f2fs_sb_info * sbi,int type,bool new_sec)2998 static int new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2999 {
3000 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3001 	unsigned int segno = curseg->segno;
3002 	bool pinning = type == CURSEG_COLD_DATA_PINNED;
3003 	int ret;
3004 
3005 	if (curseg->inited)
3006 		write_sum_page(sbi, curseg->sum_blk, segno);
3007 
3008 	segno = __get_next_segno(sbi, type);
3009 	ret = get_new_segment(sbi, &segno, new_sec, pinning);
3010 	if (ret) {
3011 		if (ret == -ENOSPC)
3012 			reset_curseg_fields(curseg);
3013 		return ret;
3014 	}
3015 
3016 	curseg->next_segno = segno;
3017 	reset_curseg(sbi, type, 1);
3018 	curseg->alloc_type = LFS;
3019 	if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
3020 		curseg->fragment_remained_chunk =
3021 				get_random_u32_inclusive(1, sbi->max_fragment_chunk);
3022 	return 0;
3023 }
3024 
__next_free_blkoff(struct f2fs_sb_info * sbi,int segno,block_t start)3025 static int __next_free_blkoff(struct f2fs_sb_info *sbi,
3026 					int segno, block_t start)
3027 {
3028 	struct seg_entry *se = get_seg_entry(sbi, segno);
3029 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
3030 	unsigned long *target_map = SIT_I(sbi)->tmp_map;
3031 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
3032 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
3033 	int i;
3034 
3035 	for (i = 0; i < entries; i++)
3036 		target_map[i] = ckpt_map[i] | cur_map[i];
3037 
3038 	return __find_rev_next_zero_bit(target_map, BLKS_PER_SEG(sbi), start);
3039 }
3040 
f2fs_find_next_ssr_block(struct f2fs_sb_info * sbi,struct curseg_info * seg)3041 static int f2fs_find_next_ssr_block(struct f2fs_sb_info *sbi,
3042 		struct curseg_info *seg)
3043 {
3044 	return __next_free_blkoff(sbi, seg->segno, seg->next_blkoff + 1);
3045 }
3046 
f2fs_segment_has_free_slot(struct f2fs_sb_info * sbi,int segno)3047 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
3048 {
3049 	return __next_free_blkoff(sbi, segno, 0) < BLKS_PER_SEG(sbi);
3050 }
3051 
3052 /*
3053  * This function always allocates a used segment(from dirty seglist) by SSR
3054  * manner, so it should recover the existing segment information of valid blocks
3055  */
change_curseg(struct f2fs_sb_info * sbi,int type)3056 static int change_curseg(struct f2fs_sb_info *sbi, int type)
3057 {
3058 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3059 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3060 	unsigned int new_segno = curseg->next_segno;
3061 	struct f2fs_summary_block *sum_node;
3062 	struct folio *sum_folio;
3063 
3064 	if (curseg->inited)
3065 		write_sum_page(sbi, curseg->sum_blk, curseg->segno);
3066 
3067 	__set_test_and_inuse(sbi, new_segno);
3068 
3069 	mutex_lock(&dirty_i->seglist_lock);
3070 	__remove_dirty_segment(sbi, new_segno, PRE);
3071 	__remove_dirty_segment(sbi, new_segno, DIRTY);
3072 	mutex_unlock(&dirty_i->seglist_lock);
3073 
3074 	reset_curseg(sbi, type, 1);
3075 	curseg->alloc_type = SSR;
3076 	curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
3077 
3078 	sum_folio = f2fs_get_sum_folio(sbi, new_segno);
3079 	if (IS_ERR(sum_folio)) {
3080 		/* GC won't be able to use stale summary pages by cp_error */
3081 		memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
3082 		return PTR_ERR(sum_folio);
3083 	}
3084 	sum_node = SUM_BLK_PAGE_ADDR(sum_folio, new_segno);
3085 	memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
3086 	f2fs_folio_put(sum_folio, true);
3087 	return 0;
3088 }
3089 
3090 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
3091 				int alloc_mode, unsigned long long age);
3092 
get_atssr_segment(struct f2fs_sb_info * sbi,int type,int target_type,int alloc_mode,unsigned long long age)3093 static int get_atssr_segment(struct f2fs_sb_info *sbi, int type,
3094 					int target_type, int alloc_mode,
3095 					unsigned long long age)
3096 {
3097 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3098 	int ret = 0;
3099 
3100 	curseg->seg_type = target_type;
3101 
3102 	if (get_ssr_segment(sbi, type, alloc_mode, age)) {
3103 		struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
3104 
3105 		curseg->seg_type = se->type;
3106 		ret = change_curseg(sbi, type);
3107 	} else {
3108 		/* allocate cold segment by default */
3109 		curseg->seg_type = CURSEG_COLD_DATA;
3110 		ret = new_curseg(sbi, type, true);
3111 	}
3112 	stat_inc_seg_type(sbi, curseg);
3113 	return ret;
3114 }
3115 
__f2fs_init_atgc_curseg(struct f2fs_sb_info * sbi,bool force)3116 static int __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi, bool force)
3117 {
3118 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
3119 	int ret = 0;
3120 
3121 	if (!sbi->am.atgc_enabled && !force)
3122 		return 0;
3123 
3124 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3125 
3126 	mutex_lock(&curseg->curseg_mutex);
3127 	down_write(&SIT_I(sbi)->sentry_lock);
3128 
3129 	ret = get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC,
3130 					CURSEG_COLD_DATA, SSR, 0);
3131 
3132 	up_write(&SIT_I(sbi)->sentry_lock);
3133 	mutex_unlock(&curseg->curseg_mutex);
3134 
3135 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3136 	return ret;
3137 }
3138 
f2fs_init_inmem_curseg(struct f2fs_sb_info * sbi)3139 int f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
3140 {
3141 	return __f2fs_init_atgc_curseg(sbi, false);
3142 }
3143 
f2fs_reinit_atgc_curseg(struct f2fs_sb_info * sbi)3144 int f2fs_reinit_atgc_curseg(struct f2fs_sb_info *sbi)
3145 {
3146 	int ret;
3147 
3148 	if (!test_opt(sbi, ATGC))
3149 		return 0;
3150 	if (sbi->am.atgc_enabled)
3151 		return 0;
3152 	if (le64_to_cpu(F2FS_CKPT(sbi)->elapsed_time) <
3153 			sbi->am.age_threshold)
3154 		return 0;
3155 
3156 	ret = __f2fs_init_atgc_curseg(sbi, true);
3157 	if (!ret) {
3158 		sbi->am.atgc_enabled = true;
3159 		f2fs_info(sbi, "reenabled age threshold GC");
3160 	}
3161 	return ret;
3162 }
3163 
__f2fs_save_inmem_curseg(struct f2fs_sb_info * sbi,int type)3164 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
3165 {
3166 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3167 
3168 	mutex_lock(&curseg->curseg_mutex);
3169 	if (!curseg->inited)
3170 		goto out;
3171 
3172 	if (get_valid_blocks(sbi, curseg->segno, false)) {
3173 		write_sum_page(sbi, curseg->sum_blk, curseg->segno);
3174 	} else {
3175 		mutex_lock(&DIRTY_I(sbi)->seglist_lock);
3176 		__set_test_and_free(sbi, curseg->segno, true);
3177 		mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
3178 	}
3179 out:
3180 	mutex_unlock(&curseg->curseg_mutex);
3181 }
3182 
f2fs_save_inmem_curseg(struct f2fs_sb_info * sbi)3183 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
3184 {
3185 	__f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
3186 
3187 	if (sbi->am.atgc_enabled)
3188 		__f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
3189 }
3190 
__f2fs_restore_inmem_curseg(struct f2fs_sb_info * sbi,int type)3191 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
3192 {
3193 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3194 
3195 	mutex_lock(&curseg->curseg_mutex);
3196 	if (!curseg->inited)
3197 		goto out;
3198 	if (get_valid_blocks(sbi, curseg->segno, false))
3199 		goto out;
3200 
3201 	mutex_lock(&DIRTY_I(sbi)->seglist_lock);
3202 	__set_test_and_inuse(sbi, curseg->segno);
3203 	mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
3204 out:
3205 	mutex_unlock(&curseg->curseg_mutex);
3206 }
3207 
f2fs_restore_inmem_curseg(struct f2fs_sb_info * sbi)3208 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
3209 {
3210 	__f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
3211 
3212 	if (sbi->am.atgc_enabled)
3213 		__f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
3214 }
3215 
get_ssr_segment(struct f2fs_sb_info * sbi,int type,int alloc_mode,unsigned long long age)3216 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
3217 				int alloc_mode, unsigned long long age)
3218 {
3219 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3220 	unsigned segno = NULL_SEGNO;
3221 	unsigned short seg_type = curseg->seg_type;
3222 	int i, cnt;
3223 	bool reversed = false;
3224 
3225 	sanity_check_seg_type(sbi, seg_type);
3226 
3227 	/* f2fs_need_SSR() already forces to do this */
3228 	if (!f2fs_get_victim(sbi, &segno, BG_GC, seg_type,
3229 				alloc_mode, age, false)) {
3230 		curseg->next_segno = segno;
3231 		return 1;
3232 	}
3233 
3234 	/* For node segments, let's do SSR more intensively */
3235 	if (IS_NODESEG(seg_type)) {
3236 		if (seg_type >= CURSEG_WARM_NODE) {
3237 			reversed = true;
3238 			i = CURSEG_COLD_NODE;
3239 		} else {
3240 			i = CURSEG_HOT_NODE;
3241 		}
3242 		cnt = NR_CURSEG_NODE_TYPE;
3243 	} else {
3244 		if (seg_type >= CURSEG_WARM_DATA) {
3245 			reversed = true;
3246 			i = CURSEG_COLD_DATA;
3247 		} else {
3248 			i = CURSEG_HOT_DATA;
3249 		}
3250 		cnt = NR_CURSEG_DATA_TYPE;
3251 	}
3252 
3253 	for (; cnt-- > 0; reversed ? i-- : i++) {
3254 		if (i == seg_type)
3255 			continue;
3256 		if (!f2fs_get_victim(sbi, &segno, BG_GC, i,
3257 					alloc_mode, age, false)) {
3258 			curseg->next_segno = segno;
3259 			return 1;
3260 		}
3261 	}
3262 
3263 	/* find valid_blocks=0 in dirty list */
3264 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
3265 		segno = get_free_segment(sbi);
3266 		if (segno != NULL_SEGNO) {
3267 			curseg->next_segno = segno;
3268 			return 1;
3269 		}
3270 	}
3271 	return 0;
3272 }
3273 
need_new_seg(struct f2fs_sb_info * sbi,int type)3274 static bool need_new_seg(struct f2fs_sb_info *sbi, int type)
3275 {
3276 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3277 
3278 	if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
3279 	    curseg->seg_type == CURSEG_WARM_NODE)
3280 		return true;
3281 	if (curseg->alloc_type == LFS && is_next_segment_free(sbi, curseg) &&
3282 	    likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
3283 		return true;
3284 	if (!f2fs_need_SSR(sbi) || !get_ssr_segment(sbi, type, SSR, 0))
3285 		return true;
3286 	return false;
3287 }
3288 
f2fs_allocate_segment_for_resize(struct f2fs_sb_info * sbi,int type,unsigned int start,unsigned int end)3289 int f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3290 					unsigned int start, unsigned int end)
3291 {
3292 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3293 	unsigned int segno;
3294 	int ret = 0;
3295 
3296 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3297 	mutex_lock(&curseg->curseg_mutex);
3298 	down_write(&SIT_I(sbi)->sentry_lock);
3299 
3300 	segno = CURSEG_I(sbi, type)->segno;
3301 	if (segno < start || segno > end)
3302 		goto unlock;
3303 
3304 	if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
3305 		ret = change_curseg(sbi, type);
3306 	else
3307 		ret = new_curseg(sbi, type, true);
3308 
3309 	stat_inc_seg_type(sbi, curseg);
3310 
3311 	locate_dirty_segment(sbi, segno);
3312 unlock:
3313 	up_write(&SIT_I(sbi)->sentry_lock);
3314 
3315 	if (segno != curseg->segno)
3316 		f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
3317 			    type, segno, curseg->segno);
3318 
3319 	mutex_unlock(&curseg->curseg_mutex);
3320 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3321 	return ret;
3322 }
3323 
__allocate_new_segment(struct f2fs_sb_info * sbi,int type,bool new_sec,bool force)3324 static int __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
3325 						bool new_sec, bool force)
3326 {
3327 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3328 	unsigned int old_segno;
3329 	int err = 0;
3330 
3331 	if (type == CURSEG_COLD_DATA_PINNED && !curseg->inited)
3332 		goto allocate;
3333 
3334 	if (!force && curseg->inited &&
3335 	    !curseg->next_blkoff &&
3336 	    !get_valid_blocks(sbi, curseg->segno, new_sec) &&
3337 	    !get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
3338 		return 0;
3339 
3340 allocate:
3341 	old_segno = curseg->segno;
3342 	err = new_curseg(sbi, type, true);
3343 	if (err)
3344 		return err;
3345 	stat_inc_seg_type(sbi, curseg);
3346 	locate_dirty_segment(sbi, old_segno);
3347 	return 0;
3348 }
3349 
f2fs_allocate_new_section(struct f2fs_sb_info * sbi,int type,bool force)3350 int f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
3351 {
3352 	int ret;
3353 
3354 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3355 	down_write(&SIT_I(sbi)->sentry_lock);
3356 	ret = __allocate_new_segment(sbi, type, true, force);
3357 	up_write(&SIT_I(sbi)->sentry_lock);
3358 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3359 
3360 	return ret;
3361 }
3362 
f2fs_allocate_pinning_section(struct f2fs_sb_info * sbi)3363 int f2fs_allocate_pinning_section(struct f2fs_sb_info *sbi)
3364 {
3365 	int err;
3366 	bool gc_required = true;
3367 
3368 retry:
3369 	f2fs_lock_op(sbi);
3370 	err = f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
3371 	f2fs_unlock_op(sbi);
3372 
3373 	if (f2fs_sb_has_blkzoned(sbi) && err == -EAGAIN && gc_required) {
3374 		f2fs_down_write(&sbi->gc_lock);
3375 		err = f2fs_gc_range(sbi, 0, sbi->first_seq_zone_segno - 1,
3376 				true, ZONED_PIN_SEC_REQUIRED_COUNT);
3377 		f2fs_up_write(&sbi->gc_lock);
3378 
3379 		gc_required = false;
3380 		if (!err)
3381 			goto retry;
3382 	}
3383 
3384 	return err;
3385 }
3386 
f2fs_allocate_new_segments(struct f2fs_sb_info * sbi)3387 int f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
3388 {
3389 	int i;
3390 	int err = 0;
3391 
3392 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3393 	down_write(&SIT_I(sbi)->sentry_lock);
3394 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
3395 		err += __allocate_new_segment(sbi, i, false, false);
3396 	up_write(&SIT_I(sbi)->sentry_lock);
3397 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3398 
3399 	return err;
3400 }
3401 
f2fs_exist_trim_candidates(struct f2fs_sb_info * sbi,struct cp_control * cpc)3402 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3403 						struct cp_control *cpc)
3404 {
3405 	__u64 trim_start = cpc->trim_start;
3406 	bool has_candidate = false;
3407 
3408 	down_write(&SIT_I(sbi)->sentry_lock);
3409 	for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
3410 		if (add_discard_addrs(sbi, cpc, true)) {
3411 			has_candidate = true;
3412 			break;
3413 		}
3414 	}
3415 	up_write(&SIT_I(sbi)->sentry_lock);
3416 
3417 	cpc->trim_start = trim_start;
3418 	return has_candidate;
3419 }
3420 
__issue_discard_cmd_range(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,unsigned int start,unsigned int end)3421 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
3422 					struct discard_policy *dpolicy,
3423 					unsigned int start, unsigned int end)
3424 {
3425 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
3426 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
3427 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
3428 	struct discard_cmd *dc;
3429 	struct blk_plug plug;
3430 	int issued;
3431 	unsigned int trimmed = 0;
3432 
3433 next:
3434 	issued = 0;
3435 
3436 	mutex_lock(&dcc->cmd_lock);
3437 	if (unlikely(dcc->rbtree_check))
3438 		f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi));
3439 
3440 	dc = __lookup_discard_cmd_ret(&dcc->root, start,
3441 				&prev_dc, &next_dc, &insert_p, &insert_parent);
3442 	if (!dc)
3443 		dc = next_dc;
3444 
3445 	blk_start_plug(&plug);
3446 
3447 	while (dc && dc->di.lstart <= end) {
3448 		struct rb_node *node;
3449 		int err = 0;
3450 
3451 		if (dc->di.len < dpolicy->granularity)
3452 			goto skip;
3453 
3454 		if (dc->state != D_PREP) {
3455 			list_move_tail(&dc->list, &dcc->fstrim_list);
3456 			goto skip;
3457 		}
3458 
3459 		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3460 
3461 		if (issued >= dpolicy->max_requests) {
3462 			start = dc->di.lstart + dc->di.len;
3463 
3464 			if (err)
3465 				__remove_discard_cmd(sbi, dc);
3466 
3467 			blk_finish_plug(&plug);
3468 			mutex_unlock(&dcc->cmd_lock);
3469 			trimmed += __wait_all_discard_cmd(sbi, NULL);
3470 			f2fs_schedule_timeout(DEFAULT_DISCARD_INTERVAL);
3471 			goto next;
3472 		}
3473 skip:
3474 		node = rb_next(&dc->rb_node);
3475 		if (err)
3476 			__remove_discard_cmd(sbi, dc);
3477 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3478 
3479 		if (fatal_signal_pending(current))
3480 			break;
3481 	}
3482 
3483 	blk_finish_plug(&plug);
3484 	mutex_unlock(&dcc->cmd_lock);
3485 
3486 	return trimmed;
3487 }
3488 
f2fs_trim_fs(struct f2fs_sb_info * sbi,struct fstrim_range * range)3489 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3490 {
3491 	__u64 start = F2FS_BYTES_TO_BLK(range->start);
3492 	__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3493 	unsigned int start_segno, end_segno;
3494 	block_t start_block, end_block;
3495 	struct cp_control cpc;
3496 	struct discard_policy dpolicy;
3497 	unsigned long long trimmed = 0;
3498 	int err = 0;
3499 	bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3500 
3501 	if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3502 		return -EINVAL;
3503 
3504 	if (end < MAIN_BLKADDR(sbi))
3505 		goto out;
3506 
3507 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3508 		f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3509 		return -EFSCORRUPTED;
3510 	}
3511 
3512 	/* start/end segment number in main_area */
3513 	start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3514 	end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3515 						GET_SEGNO(sbi, end);
3516 	if (need_align) {
3517 		start_segno = rounddown(start_segno, SEGS_PER_SEC(sbi));
3518 		end_segno = roundup(end_segno + 1, SEGS_PER_SEC(sbi)) - 1;
3519 	}
3520 
3521 	cpc.reason = CP_DISCARD;
3522 	cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3523 	cpc.trim_start = start_segno;
3524 	cpc.trim_end = end_segno;
3525 
3526 	if (sbi->discard_blks == 0)
3527 		goto out;
3528 
3529 	f2fs_down_write(&sbi->gc_lock);
3530 	stat_inc_cp_call_count(sbi, TOTAL_CALL);
3531 	err = f2fs_write_checkpoint(sbi, &cpc);
3532 	f2fs_up_write(&sbi->gc_lock);
3533 	if (err)
3534 		goto out;
3535 
3536 	/*
3537 	 * We filed discard candidates, but actually we don't need to wait for
3538 	 * all of them, since they'll be issued in idle time along with runtime
3539 	 * discard option. User configuration looks like using runtime discard
3540 	 * or periodic fstrim instead of it.
3541 	 */
3542 	if (f2fs_realtime_discard_enable(sbi))
3543 		goto out;
3544 
3545 	start_block = START_BLOCK(sbi, start_segno);
3546 	end_block = START_BLOCK(sbi, end_segno + 1);
3547 
3548 	__init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3549 	trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3550 					start_block, end_block);
3551 
3552 	trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3553 					start_block, end_block);
3554 out:
3555 	if (!err)
3556 		range->len = F2FS_BLK_TO_BYTES(trimmed);
3557 	return err;
3558 }
3559 
f2fs_rw_hint_to_seg_type(struct f2fs_sb_info * sbi,enum rw_hint hint)3560 int f2fs_rw_hint_to_seg_type(struct f2fs_sb_info *sbi, enum rw_hint hint)
3561 {
3562 	if (F2FS_OPTION(sbi).active_logs == 2)
3563 		return CURSEG_HOT_DATA;
3564 	else if (F2FS_OPTION(sbi).active_logs == 4)
3565 		return CURSEG_COLD_DATA;
3566 
3567 	/* active_log == 6 */
3568 	switch (hint) {
3569 	case WRITE_LIFE_SHORT:
3570 		return CURSEG_HOT_DATA;
3571 	case WRITE_LIFE_EXTREME:
3572 		return CURSEG_COLD_DATA;
3573 	default:
3574 		return CURSEG_WARM_DATA;
3575 	}
3576 }
3577 
3578 /*
3579  * This returns write hints for each segment type. This hints will be
3580  * passed down to block layer as below by default.
3581  *
3582  * User                  F2FS                     Block
3583  * ----                  ----                     -----
3584  *                       META                     WRITE_LIFE_NONE|REQ_META
3585  *                       HOT_NODE                 WRITE_LIFE_NONE
3586  *                       WARM_NODE                WRITE_LIFE_MEDIUM
3587  *                       COLD_NODE                WRITE_LIFE_LONG
3588  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
3589  * extension list        "                        "
3590  *
3591  * -- buffered io
3592  *                       COLD_DATA                WRITE_LIFE_EXTREME
3593  *                       HOT_DATA                 WRITE_LIFE_SHORT
3594  *                       WARM_DATA                WRITE_LIFE_NOT_SET
3595  *
3596  * -- direct io
3597  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3598  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3599  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3600  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
3601  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
3602  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
3603  */
f2fs_io_type_to_rw_hint(struct f2fs_sb_info * sbi,enum page_type type,enum temp_type temp)3604 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3605 				enum page_type type, enum temp_type temp)
3606 {
3607 	switch (type) {
3608 	case DATA:
3609 		switch (temp) {
3610 		case WARM:
3611 			return WRITE_LIFE_NOT_SET;
3612 		case HOT:
3613 			return WRITE_LIFE_SHORT;
3614 		case COLD:
3615 			return WRITE_LIFE_EXTREME;
3616 		default:
3617 			return WRITE_LIFE_NONE;
3618 		}
3619 	case NODE:
3620 		switch (temp) {
3621 		case WARM:
3622 			return WRITE_LIFE_MEDIUM;
3623 		case HOT:
3624 			return WRITE_LIFE_NONE;
3625 		case COLD:
3626 			return WRITE_LIFE_LONG;
3627 		default:
3628 			return WRITE_LIFE_NONE;
3629 		}
3630 	case META:
3631 		return WRITE_LIFE_NONE;
3632 	default:
3633 		return WRITE_LIFE_NONE;
3634 	}
3635 }
3636 
__get_segment_type_2(struct f2fs_io_info * fio)3637 static int __get_segment_type_2(struct f2fs_io_info *fio)
3638 {
3639 	if (fio->type == DATA)
3640 		return CURSEG_HOT_DATA;
3641 	else
3642 		return CURSEG_HOT_NODE;
3643 }
3644 
__get_segment_type_4(struct f2fs_io_info * fio)3645 static int __get_segment_type_4(struct f2fs_io_info *fio)
3646 {
3647 	if (fio->type == DATA) {
3648 		struct inode *inode = fio_inode(fio);
3649 
3650 		if (S_ISDIR(inode->i_mode))
3651 			return CURSEG_HOT_DATA;
3652 		else
3653 			return CURSEG_COLD_DATA;
3654 	} else {
3655 		if (IS_DNODE(fio->folio) && is_cold_node(fio->folio))
3656 			return CURSEG_WARM_NODE;
3657 		else
3658 			return CURSEG_COLD_NODE;
3659 	}
3660 }
3661 
__get_age_segment_type(struct inode * inode,pgoff_t pgofs)3662 static int __get_age_segment_type(struct inode *inode, pgoff_t pgofs)
3663 {
3664 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3665 	struct extent_info ei = {};
3666 
3667 	if (f2fs_lookup_age_extent_cache(inode, pgofs, &ei)) {
3668 		if (!ei.age)
3669 			return NO_CHECK_TYPE;
3670 		if (ei.age <= sbi->hot_data_age_threshold)
3671 			return CURSEG_HOT_DATA;
3672 		if (ei.age <= sbi->warm_data_age_threshold)
3673 			return CURSEG_WARM_DATA;
3674 		return CURSEG_COLD_DATA;
3675 	}
3676 	return NO_CHECK_TYPE;
3677 }
3678 
__get_segment_type_6(struct f2fs_io_info * fio)3679 static int __get_segment_type_6(struct f2fs_io_info *fio)
3680 {
3681 	if (fio->type == DATA) {
3682 		struct inode *inode = fio_inode(fio);
3683 		int type;
3684 
3685 		if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3686 			return CURSEG_COLD_DATA_PINNED;
3687 
3688 		if (page_private_gcing(fio->page)) {
3689 			if (fio->sbi->am.atgc_enabled &&
3690 				(fio->io_type == FS_DATA_IO) &&
3691 				(fio->sbi->gc_mode != GC_URGENT_HIGH) &&
3692 				__is_valid_data_blkaddr(fio->old_blkaddr) &&
3693 				!is_inode_flag_set(inode, FI_OPU_WRITE))
3694 				return CURSEG_ALL_DATA_ATGC;
3695 			else
3696 				return CURSEG_COLD_DATA;
3697 		}
3698 		if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3699 			return CURSEG_COLD_DATA;
3700 
3701 		type = __get_age_segment_type(inode, fio->folio->index);
3702 		if (type != NO_CHECK_TYPE)
3703 			return type;
3704 
3705 		if (file_is_hot(inode) ||
3706 				is_inode_flag_set(inode, FI_HOT_DATA) ||
3707 				f2fs_is_cow_file(inode) ||
3708 				is_inode_flag_set(inode, FI_NEED_IPU))
3709 			return CURSEG_HOT_DATA;
3710 		return f2fs_rw_hint_to_seg_type(F2FS_I_SB(inode),
3711 						inode->i_write_hint);
3712 	} else {
3713 		if (IS_DNODE(fio->folio))
3714 			return is_cold_node(fio->folio) ? CURSEG_WARM_NODE :
3715 						CURSEG_HOT_NODE;
3716 		return CURSEG_COLD_NODE;
3717 	}
3718 }
3719 
f2fs_get_segment_temp(struct f2fs_sb_info * sbi,enum log_type type)3720 enum temp_type f2fs_get_segment_temp(struct f2fs_sb_info *sbi,
3721 						enum log_type type)
3722 {
3723 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3724 	enum temp_type temp = COLD;
3725 
3726 	switch (curseg->seg_type) {
3727 	case CURSEG_HOT_NODE:
3728 	case CURSEG_HOT_DATA:
3729 		temp = HOT;
3730 		break;
3731 	case CURSEG_WARM_NODE:
3732 	case CURSEG_WARM_DATA:
3733 		temp = WARM;
3734 		break;
3735 	case CURSEG_COLD_NODE:
3736 	case CURSEG_COLD_DATA:
3737 		temp = COLD;
3738 		break;
3739 	default:
3740 		f2fs_bug_on(sbi, 1);
3741 	}
3742 
3743 	return temp;
3744 }
3745 
__get_segment_type(struct f2fs_io_info * fio)3746 static int __get_segment_type(struct f2fs_io_info *fio)
3747 {
3748 	enum log_type type = CURSEG_HOT_DATA;
3749 
3750 	switch (F2FS_OPTION(fio->sbi).active_logs) {
3751 	case 2:
3752 		type = __get_segment_type_2(fio);
3753 		break;
3754 	case 4:
3755 		type = __get_segment_type_4(fio);
3756 		break;
3757 	case 6:
3758 		type = __get_segment_type_6(fio);
3759 		break;
3760 	default:
3761 		f2fs_bug_on(fio->sbi, true);
3762 	}
3763 
3764 	fio->temp = f2fs_get_segment_temp(fio->sbi, type);
3765 
3766 	return type;
3767 }
3768 
f2fs_randomize_chunk(struct f2fs_sb_info * sbi,struct curseg_info * seg)3769 static void f2fs_randomize_chunk(struct f2fs_sb_info *sbi,
3770 		struct curseg_info *seg)
3771 {
3772 	/* To allocate block chunks in different sizes, use random number */
3773 	if (--seg->fragment_remained_chunk > 0)
3774 		return;
3775 
3776 	seg->fragment_remained_chunk =
3777 		get_random_u32_inclusive(1, sbi->max_fragment_chunk);
3778 	seg->next_blkoff +=
3779 		get_random_u32_inclusive(1, sbi->max_fragment_hole);
3780 }
3781 
f2fs_allocate_data_block(struct f2fs_sb_info * sbi,struct folio * folio,block_t old_blkaddr,block_t * new_blkaddr,struct f2fs_summary * sum,int type,struct f2fs_io_info * fio)3782 int f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct folio *folio,
3783 		block_t old_blkaddr, block_t *new_blkaddr,
3784 		struct f2fs_summary *sum, int type,
3785 		struct f2fs_io_info *fio)
3786 {
3787 	struct sit_info *sit_i = SIT_I(sbi);
3788 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3789 	unsigned long long old_mtime;
3790 	bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3791 	struct seg_entry *se = NULL;
3792 	bool segment_full = false;
3793 	int ret = 0;
3794 
3795 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3796 
3797 	mutex_lock(&curseg->curseg_mutex);
3798 	down_write(&sit_i->sentry_lock);
3799 
3800 	if (curseg->segno == NULL_SEGNO) {
3801 		ret = -ENOSPC;
3802 		goto out_err;
3803 	}
3804 
3805 	if (from_gc) {
3806 		f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3807 		se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3808 		sanity_check_seg_type(sbi, se->type);
3809 		f2fs_bug_on(sbi, IS_NODESEG(se->type));
3810 	}
3811 	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3812 
3813 	f2fs_bug_on(sbi, curseg->next_blkoff >= BLKS_PER_SEG(sbi));
3814 
3815 	f2fs_wait_discard_bio(sbi, *new_blkaddr);
3816 
3817 	curseg->sum_blk->entries[curseg->next_blkoff] = *sum;
3818 	if (curseg->alloc_type == SSR) {
3819 		curseg->next_blkoff = f2fs_find_next_ssr_block(sbi, curseg);
3820 	} else {
3821 		curseg->next_blkoff++;
3822 		if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
3823 			f2fs_randomize_chunk(sbi, curseg);
3824 	}
3825 	if (curseg->next_blkoff >= f2fs_usable_blks_in_seg(sbi, curseg->segno))
3826 		segment_full = true;
3827 	stat_inc_block_count(sbi, curseg);
3828 
3829 	if (from_gc) {
3830 		old_mtime = get_segment_mtime(sbi, old_blkaddr);
3831 	} else {
3832 		update_segment_mtime(sbi, old_blkaddr, 0);
3833 		old_mtime = 0;
3834 	}
3835 	update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3836 
3837 	/*
3838 	 * SIT information should be updated before segment allocation,
3839 	 * since SSR needs latest valid block information.
3840 	 */
3841 	update_sit_entry(sbi, *new_blkaddr, 1);
3842 	update_sit_entry(sbi, old_blkaddr, -1);
3843 
3844 	/*
3845 	 * If the current segment is full, flush it out and replace it with a
3846 	 * new segment.
3847 	 */
3848 	if (segment_full) {
3849 		if (type == CURSEG_COLD_DATA_PINNED &&
3850 		    !((curseg->segno + 1) % sbi->segs_per_sec)) {
3851 			write_sum_page(sbi, curseg->sum_blk, curseg->segno);
3852 			reset_curseg_fields(curseg);
3853 			goto skip_new_segment;
3854 		}
3855 
3856 		if (from_gc) {
3857 			ret = get_atssr_segment(sbi, type, se->type,
3858 						AT_SSR, se->mtime);
3859 		} else {
3860 			if (need_new_seg(sbi, type))
3861 				ret = new_curseg(sbi, type, false);
3862 			else
3863 				ret = change_curseg(sbi, type);
3864 			stat_inc_seg_type(sbi, curseg);
3865 		}
3866 
3867 		if (ret)
3868 			goto out_err;
3869 	}
3870 
3871 skip_new_segment:
3872 	/*
3873 	 * segment dirty status should be updated after segment allocation,
3874 	 * so we just need to update status only one time after previous
3875 	 * segment being closed.
3876 	 */
3877 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3878 	locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3879 
3880 	if (IS_DATASEG(curseg->seg_type)) {
3881 		unsigned long long new_val;
3882 
3883 		new_val = atomic64_inc_return(&sbi->allocated_data_blocks);
3884 		if (unlikely(new_val == ULLONG_MAX))
3885 			atomic64_set(&sbi->allocated_data_blocks, 0);
3886 	}
3887 
3888 	up_write(&sit_i->sentry_lock);
3889 
3890 	if (folio && IS_NODESEG(curseg->seg_type)) {
3891 		fill_node_footer_blkaddr(folio, NEXT_FREE_BLKADDR(sbi, curseg));
3892 
3893 		f2fs_inode_chksum_set(sbi, folio);
3894 	}
3895 
3896 	if (fio) {
3897 		struct f2fs_bio_info *io;
3898 
3899 		INIT_LIST_HEAD(&fio->list);
3900 		fio->in_list = 1;
3901 		io = sbi->write_io[fio->type] + fio->temp;
3902 		spin_lock(&io->io_lock);
3903 		list_add_tail(&fio->list, &io->io_list);
3904 		spin_unlock(&io->io_lock);
3905 	}
3906 
3907 	mutex_unlock(&curseg->curseg_mutex);
3908 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3909 	return 0;
3910 
3911 out_err:
3912 	*new_blkaddr = NULL_ADDR;
3913 	up_write(&sit_i->sentry_lock);
3914 	mutex_unlock(&curseg->curseg_mutex);
3915 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3916 	return ret;
3917 }
3918 
f2fs_update_device_state(struct f2fs_sb_info * sbi,nid_t ino,block_t blkaddr,unsigned int blkcnt)3919 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3920 					block_t blkaddr, unsigned int blkcnt)
3921 {
3922 	if (!f2fs_is_multi_device(sbi))
3923 		return;
3924 
3925 	while (1) {
3926 		unsigned int devidx = f2fs_target_device_index(sbi, blkaddr);
3927 		unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1;
3928 
3929 		/* update device state for fsync */
3930 		f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO);
3931 
3932 		/* update device state for checkpoint */
3933 		if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3934 			spin_lock(&sbi->dev_lock);
3935 			f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3936 			spin_unlock(&sbi->dev_lock);
3937 		}
3938 
3939 		if (blkcnt <= blks)
3940 			break;
3941 		blkcnt -= blks;
3942 		blkaddr += blks;
3943 	}
3944 }
3945 
log_type_to_seg_type(enum log_type type)3946 static int log_type_to_seg_type(enum log_type type)
3947 {
3948 	int seg_type = CURSEG_COLD_DATA;
3949 
3950 	switch (type) {
3951 	case CURSEG_HOT_DATA:
3952 	case CURSEG_WARM_DATA:
3953 	case CURSEG_COLD_DATA:
3954 	case CURSEG_HOT_NODE:
3955 	case CURSEG_WARM_NODE:
3956 	case CURSEG_COLD_NODE:
3957 		seg_type = (int)type;
3958 		break;
3959 	case CURSEG_COLD_DATA_PINNED:
3960 	case CURSEG_ALL_DATA_ATGC:
3961 		seg_type = CURSEG_COLD_DATA;
3962 		break;
3963 	default:
3964 		break;
3965 	}
3966 	return seg_type;
3967 }
3968 
do_write_page(struct f2fs_summary * sum,struct f2fs_io_info * fio)3969 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3970 {
3971 	struct folio *folio = fio->folio;
3972 	enum log_type type = __get_segment_type(fio);
3973 	int seg_type = log_type_to_seg_type(type);
3974 	bool keep_order = (f2fs_lfs_mode(fio->sbi) &&
3975 				seg_type == CURSEG_COLD_DATA);
3976 	int err;
3977 
3978 	if (keep_order)
3979 		f2fs_down_read(&fio->sbi->io_order_lock);
3980 
3981 	err = f2fs_allocate_data_block(fio->sbi, folio, fio->old_blkaddr,
3982 			&fio->new_blkaddr, sum, type, fio);
3983 	if (unlikely(err)) {
3984 		f2fs_err_ratelimited(fio->sbi,
3985 			"%s Failed to allocate data block, ino:%u, index:%lu, type:%d, old_blkaddr:0x%x, new_blkaddr:0x%x, err:%d",
3986 			__func__, fio->ino, folio->index, type,
3987 			fio->old_blkaddr, fio->new_blkaddr, err);
3988 		if (fscrypt_inode_uses_fs_layer_crypto(folio->mapping->host))
3989 			fscrypt_finalize_bounce_page(&fio->encrypted_page);
3990 		folio_end_writeback(folio);
3991 		if (f2fs_in_warm_node_list(fio->sbi, folio))
3992 			f2fs_del_fsync_node_entry(fio->sbi, folio);
3993 		f2fs_bug_on(fio->sbi, !is_set_ckpt_flags(fio->sbi,
3994 							CP_ERROR_FLAG));
3995 		goto out;
3996 	}
3997 
3998 	f2fs_bug_on(fio->sbi, !f2fs_is_valid_blkaddr_raw(fio->sbi,
3999 				fio->new_blkaddr, DATA_GENERIC_ENHANCE));
4000 
4001 	if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
4002 		f2fs_invalidate_internal_cache(fio->sbi, fio->old_blkaddr, 1);
4003 
4004 	/* writeout dirty page into bdev */
4005 	f2fs_submit_page_write(fio);
4006 
4007 	f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1);
4008 out:
4009 	if (keep_order)
4010 		f2fs_up_read(&fio->sbi->io_order_lock);
4011 }
4012 
f2fs_do_write_meta_page(struct f2fs_sb_info * sbi,struct folio * folio,enum iostat_type io_type)4013 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct folio *folio,
4014 					enum iostat_type io_type)
4015 {
4016 	struct f2fs_io_info fio = {
4017 		.sbi = sbi,
4018 		.type = META,
4019 		.temp = HOT,
4020 		.op = REQ_OP_WRITE,
4021 		.op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
4022 		.old_blkaddr = folio->index,
4023 		.new_blkaddr = folio->index,
4024 		.folio = folio,
4025 		.encrypted_page = NULL,
4026 		.in_list = 0,
4027 	};
4028 
4029 	if (unlikely(folio->index >= MAIN_BLKADDR(sbi)))
4030 		fio.op_flags &= ~REQ_META;
4031 
4032 	folio_start_writeback(folio);
4033 	f2fs_submit_page_write(&fio);
4034 
4035 	stat_inc_meta_count(sbi, folio->index);
4036 	f2fs_update_iostat(sbi, NULL, io_type, F2FS_BLKSIZE);
4037 }
4038 
f2fs_do_write_node_page(unsigned int nid,struct f2fs_io_info * fio)4039 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
4040 {
4041 	struct f2fs_summary sum;
4042 
4043 	set_summary(&sum, nid, 0, 0);
4044 	do_write_page(&sum, fio);
4045 
4046 	f2fs_update_iostat(fio->sbi, NULL, fio->io_type, F2FS_BLKSIZE);
4047 }
4048 
f2fs_outplace_write_data(struct dnode_of_data * dn,struct f2fs_io_info * fio)4049 void f2fs_outplace_write_data(struct dnode_of_data *dn,
4050 					struct f2fs_io_info *fio)
4051 {
4052 	struct f2fs_sb_info *sbi = fio->sbi;
4053 	struct f2fs_summary sum;
4054 
4055 	f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
4056 	if (fio->io_type == FS_DATA_IO || fio->io_type == FS_CP_DATA_IO)
4057 		f2fs_update_age_extent_cache(dn);
4058 	set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
4059 	do_write_page(&sum, fio);
4060 	f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
4061 
4062 	f2fs_update_iostat(sbi, dn->inode, fio->io_type, F2FS_BLKSIZE);
4063 }
4064 
f2fs_inplace_write_data(struct f2fs_io_info * fio)4065 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
4066 {
4067 	int err;
4068 	struct f2fs_sb_info *sbi = fio->sbi;
4069 	unsigned int segno;
4070 
4071 	fio->new_blkaddr = fio->old_blkaddr;
4072 	/* i/o temperature is needed for passing down write hints */
4073 	__get_segment_type(fio);
4074 
4075 	segno = GET_SEGNO(sbi, fio->new_blkaddr);
4076 
4077 	if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
4078 		set_sbi_flag(sbi, SBI_NEED_FSCK);
4079 		f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
4080 			  __func__, segno);
4081 		err = -EFSCORRUPTED;
4082 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
4083 		goto drop_bio;
4084 	}
4085 
4086 	if (f2fs_cp_error(sbi)) {
4087 		err = -EIO;
4088 		goto drop_bio;
4089 	}
4090 
4091 	if (fio->meta_gc)
4092 		f2fs_truncate_meta_inode_pages(sbi, fio->new_blkaddr, 1);
4093 
4094 	stat_inc_inplace_blocks(fio->sbi);
4095 
4096 	if (fio->bio && !IS_F2FS_IPU_NOCACHE(sbi))
4097 		err = f2fs_merge_page_bio(fio);
4098 	else
4099 		err = f2fs_submit_page_bio(fio);
4100 	if (!err) {
4101 		f2fs_update_device_state(fio->sbi, fio->ino,
4102 						fio->new_blkaddr, 1);
4103 		f2fs_update_iostat(fio->sbi, fio_inode(fio),
4104 						fio->io_type, F2FS_BLKSIZE);
4105 	}
4106 
4107 	return err;
4108 drop_bio:
4109 	if (fio->bio && *(fio->bio)) {
4110 		struct bio *bio = *(fio->bio);
4111 
4112 		bio->bi_status = BLK_STS_IOERR;
4113 		bio_endio(bio);
4114 		*(fio->bio) = NULL;
4115 	}
4116 	return err;
4117 }
4118 
__f2fs_get_curseg(struct f2fs_sb_info * sbi,unsigned int segno)4119 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
4120 						unsigned int segno)
4121 {
4122 	int i;
4123 
4124 	for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
4125 		if (CURSEG_I(sbi, i)->segno == segno)
4126 			break;
4127 	}
4128 	return i;
4129 }
4130 
f2fs_do_replace_block(struct f2fs_sb_info * sbi,struct f2fs_summary * sum,block_t old_blkaddr,block_t new_blkaddr,bool recover_curseg,bool recover_newaddr,bool from_gc)4131 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
4132 				block_t old_blkaddr, block_t new_blkaddr,
4133 				bool recover_curseg, bool recover_newaddr,
4134 				bool from_gc)
4135 {
4136 	struct sit_info *sit_i = SIT_I(sbi);
4137 	struct curseg_info *curseg;
4138 	unsigned int segno, old_cursegno;
4139 	struct seg_entry *se;
4140 	int type;
4141 	unsigned short old_blkoff;
4142 	unsigned char old_alloc_type;
4143 
4144 	segno = GET_SEGNO(sbi, new_blkaddr);
4145 	se = get_seg_entry(sbi, segno);
4146 	type = se->type;
4147 
4148 	f2fs_down_write(&SM_I(sbi)->curseg_lock);
4149 
4150 	if (!recover_curseg) {
4151 		/* for recovery flow */
4152 		if (se->valid_blocks == 0 && !is_curseg(sbi, segno)) {
4153 			if (old_blkaddr == NULL_ADDR)
4154 				type = CURSEG_COLD_DATA;
4155 			else
4156 				type = CURSEG_WARM_DATA;
4157 		}
4158 	} else {
4159 		if (is_curseg(sbi, segno)) {
4160 			/* se->type is volatile as SSR allocation */
4161 			type = __f2fs_get_curseg(sbi, segno);
4162 			f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
4163 		} else {
4164 			type = CURSEG_WARM_DATA;
4165 		}
4166 	}
4167 
4168 	curseg = CURSEG_I(sbi, type);
4169 	f2fs_bug_on(sbi, !IS_DATASEG(curseg->seg_type));
4170 
4171 	mutex_lock(&curseg->curseg_mutex);
4172 	down_write(&sit_i->sentry_lock);
4173 
4174 	old_cursegno = curseg->segno;
4175 	old_blkoff = curseg->next_blkoff;
4176 	old_alloc_type = curseg->alloc_type;
4177 
4178 	/* change the current segment */
4179 	if (segno != curseg->segno) {
4180 		curseg->next_segno = segno;
4181 		if (change_curseg(sbi, type))
4182 			goto out_unlock;
4183 	}
4184 
4185 	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
4186 	curseg->sum_blk->entries[curseg->next_blkoff] = *sum;
4187 
4188 	if (!recover_curseg || recover_newaddr) {
4189 		if (!from_gc)
4190 			update_segment_mtime(sbi, new_blkaddr, 0);
4191 		update_sit_entry(sbi, new_blkaddr, 1);
4192 	}
4193 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
4194 		f2fs_invalidate_internal_cache(sbi, old_blkaddr, 1);
4195 		if (!from_gc)
4196 			update_segment_mtime(sbi, old_blkaddr, 0);
4197 		update_sit_entry(sbi, old_blkaddr, -1);
4198 	}
4199 
4200 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
4201 	locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
4202 
4203 	locate_dirty_segment(sbi, old_cursegno);
4204 
4205 	if (recover_curseg) {
4206 		if (old_cursegno != curseg->segno) {
4207 			curseg->next_segno = old_cursegno;
4208 			if (change_curseg(sbi, type))
4209 				goto out_unlock;
4210 		}
4211 		curseg->next_blkoff = old_blkoff;
4212 		curseg->alloc_type = old_alloc_type;
4213 	}
4214 
4215 out_unlock:
4216 	up_write(&sit_i->sentry_lock);
4217 	mutex_unlock(&curseg->curseg_mutex);
4218 	f2fs_up_write(&SM_I(sbi)->curseg_lock);
4219 }
4220 
f2fs_replace_block(struct f2fs_sb_info * sbi,struct dnode_of_data * dn,block_t old_addr,block_t new_addr,unsigned char version,bool recover_curseg,bool recover_newaddr)4221 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
4222 				block_t old_addr, block_t new_addr,
4223 				unsigned char version, bool recover_curseg,
4224 				bool recover_newaddr)
4225 {
4226 	struct f2fs_summary sum;
4227 
4228 	set_summary(&sum, dn->nid, dn->ofs_in_node, version);
4229 
4230 	f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
4231 					recover_curseg, recover_newaddr, false);
4232 
4233 	f2fs_update_data_blkaddr(dn, new_addr);
4234 }
4235 
f2fs_folio_wait_writeback(struct folio * folio,enum page_type type,bool ordered,bool locked)4236 void f2fs_folio_wait_writeback(struct folio *folio, enum page_type type,
4237 		bool ordered, bool locked)
4238 {
4239 	if (folio_test_writeback(folio)) {
4240 		struct f2fs_sb_info *sbi = F2FS_F_SB(folio);
4241 
4242 		/* submit cached LFS IO */
4243 		f2fs_submit_merged_write_cond(sbi, NULL, folio, 0, type);
4244 		/* submit cached IPU IO */
4245 		f2fs_submit_merged_ipu_write(sbi, NULL, folio);
4246 		if (ordered) {
4247 			folio_wait_writeback(folio);
4248 			f2fs_bug_on(sbi, locked && folio_test_writeback(folio));
4249 		} else {
4250 			folio_wait_stable(folio);
4251 		}
4252 	}
4253 }
4254 
f2fs_wait_on_block_writeback(struct inode * inode,block_t blkaddr)4255 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
4256 {
4257 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4258 	struct folio *cfolio;
4259 
4260 	if (!f2fs_meta_inode_gc_required(inode))
4261 		return;
4262 
4263 	if (!__is_valid_data_blkaddr(blkaddr))
4264 		return;
4265 
4266 	cfolio = filemap_lock_folio(META_MAPPING(sbi), blkaddr);
4267 	if (!IS_ERR(cfolio)) {
4268 		f2fs_folio_wait_writeback(cfolio, DATA, true, true);
4269 		f2fs_folio_put(cfolio, true);
4270 	}
4271 }
4272 
f2fs_wait_on_block_writeback_range(struct inode * inode,block_t blkaddr,block_t len)4273 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
4274 								block_t len)
4275 {
4276 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4277 	block_t i;
4278 
4279 	if (!f2fs_meta_inode_gc_required(inode))
4280 		return;
4281 
4282 	for (i = 0; i < len; i++)
4283 		f2fs_wait_on_block_writeback(inode, blkaddr + i);
4284 
4285 	f2fs_truncate_meta_inode_pages(sbi, blkaddr, len);
4286 }
4287 
read_compacted_summaries(struct f2fs_sb_info * sbi)4288 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
4289 {
4290 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4291 	struct curseg_info *seg_i;
4292 	unsigned char *kaddr;
4293 	struct folio *folio;
4294 	block_t start;
4295 	int i, j, offset;
4296 
4297 	start = start_sum_block(sbi);
4298 
4299 	folio = f2fs_get_meta_folio(sbi, start++);
4300 	if (IS_ERR(folio))
4301 		return PTR_ERR(folio);
4302 	kaddr = folio_address(folio);
4303 
4304 	/* Step 1: restore nat cache */
4305 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
4306 	memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
4307 
4308 	/* Step 2: restore sit cache */
4309 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
4310 	memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
4311 	offset = 2 * SUM_JOURNAL_SIZE;
4312 
4313 	/* Step 3: restore summary entries */
4314 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
4315 		unsigned short blk_off;
4316 		unsigned int segno;
4317 
4318 		seg_i = CURSEG_I(sbi, i);
4319 		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
4320 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
4321 		seg_i->next_segno = segno;
4322 		reset_curseg(sbi, i, 0);
4323 		seg_i->alloc_type = ckpt->alloc_type[i];
4324 		seg_i->next_blkoff = blk_off;
4325 
4326 		if (seg_i->alloc_type == SSR)
4327 			blk_off = BLKS_PER_SEG(sbi);
4328 
4329 		for (j = 0; j < blk_off; j++) {
4330 			struct f2fs_summary *s;
4331 
4332 			s = (struct f2fs_summary *)(kaddr + offset);
4333 			seg_i->sum_blk->entries[j] = *s;
4334 			offset += SUMMARY_SIZE;
4335 			if (offset + SUMMARY_SIZE <= PAGE_SIZE -
4336 						SUM_FOOTER_SIZE)
4337 				continue;
4338 
4339 			f2fs_folio_put(folio, true);
4340 
4341 			folio = f2fs_get_meta_folio(sbi, start++);
4342 			if (IS_ERR(folio))
4343 				return PTR_ERR(folio);
4344 			kaddr = folio_address(folio);
4345 			offset = 0;
4346 		}
4347 	}
4348 	f2fs_folio_put(folio, true);
4349 	return 0;
4350 }
4351 
read_normal_summaries(struct f2fs_sb_info * sbi,int type)4352 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
4353 {
4354 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4355 	struct f2fs_summary_block *sum;
4356 	struct curseg_info *curseg;
4357 	struct folio *new;
4358 	unsigned short blk_off;
4359 	unsigned int segno = 0;
4360 	block_t blk_addr = 0;
4361 	int err = 0;
4362 
4363 	/* get segment number and block addr */
4364 	if (IS_DATASEG(type)) {
4365 		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
4366 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
4367 							CURSEG_HOT_DATA]);
4368 		if (__exist_node_summaries(sbi))
4369 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
4370 		else
4371 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
4372 	} else {
4373 		segno = le32_to_cpu(ckpt->cur_node_segno[type -
4374 							CURSEG_HOT_NODE]);
4375 		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
4376 							CURSEG_HOT_NODE]);
4377 		if (__exist_node_summaries(sbi))
4378 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
4379 							type - CURSEG_HOT_NODE);
4380 		else
4381 			blk_addr = GET_SUM_BLOCK(sbi, segno);
4382 	}
4383 
4384 	new = f2fs_get_meta_folio(sbi, blk_addr);
4385 	if (IS_ERR(new))
4386 		return PTR_ERR(new);
4387 	sum = folio_address(new);
4388 
4389 	if (IS_NODESEG(type)) {
4390 		if (__exist_node_summaries(sbi)) {
4391 			struct f2fs_summary *ns = &sum->entries[0];
4392 			int i;
4393 
4394 			for (i = 0; i < BLKS_PER_SEG(sbi); i++, ns++) {
4395 				ns->version = 0;
4396 				ns->ofs_in_node = 0;
4397 			}
4398 		} else {
4399 			err = f2fs_restore_node_summary(sbi, segno, sum);
4400 			if (err)
4401 				goto out;
4402 		}
4403 	}
4404 
4405 	/* set uncompleted segment to curseg */
4406 	curseg = CURSEG_I(sbi, type);
4407 	mutex_lock(&curseg->curseg_mutex);
4408 
4409 	/* update journal info */
4410 	down_write(&curseg->journal_rwsem);
4411 	memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
4412 	up_write(&curseg->journal_rwsem);
4413 
4414 	memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
4415 	memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
4416 	curseg->next_segno = segno;
4417 	reset_curseg(sbi, type, 0);
4418 	curseg->alloc_type = ckpt->alloc_type[type];
4419 	curseg->next_blkoff = blk_off;
4420 	mutex_unlock(&curseg->curseg_mutex);
4421 out:
4422 	f2fs_folio_put(new, true);
4423 	return err;
4424 }
4425 
restore_curseg_summaries(struct f2fs_sb_info * sbi)4426 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
4427 {
4428 	struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
4429 	struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
4430 	int type = CURSEG_HOT_DATA;
4431 	int err;
4432 
4433 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
4434 		int npages = f2fs_npages_for_summary_flush(sbi, true);
4435 
4436 		if (npages >= 2)
4437 			f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
4438 							META_CP, true);
4439 
4440 		/* restore for compacted data summary */
4441 		err = read_compacted_summaries(sbi);
4442 		if (err)
4443 			return err;
4444 		type = CURSEG_HOT_NODE;
4445 	}
4446 
4447 	if (__exist_node_summaries(sbi))
4448 		f2fs_ra_meta_pages(sbi,
4449 				sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
4450 				NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
4451 
4452 	for (; type <= CURSEG_COLD_NODE; type++) {
4453 		err = read_normal_summaries(sbi, type);
4454 		if (err)
4455 			return err;
4456 	}
4457 
4458 	/* sanity check for summary blocks */
4459 	if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
4460 			sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
4461 		f2fs_err(sbi, "invalid journal entries nats %u sits %u",
4462 			 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
4463 		return -EINVAL;
4464 	}
4465 
4466 	return 0;
4467 }
4468 
write_compacted_summaries(struct f2fs_sb_info * sbi,block_t blkaddr)4469 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
4470 {
4471 	struct folio *folio;
4472 	unsigned char *kaddr;
4473 	struct f2fs_summary *summary;
4474 	struct curseg_info *seg_i;
4475 	int written_size = 0;
4476 	int i, j;
4477 
4478 	folio = f2fs_grab_meta_folio(sbi, blkaddr++);
4479 	kaddr = folio_address(folio);
4480 	memset(kaddr, 0, PAGE_SIZE);
4481 
4482 	/* Step 1: write nat cache */
4483 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
4484 	memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
4485 	written_size += SUM_JOURNAL_SIZE;
4486 
4487 	/* Step 2: write sit cache */
4488 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
4489 	memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
4490 	written_size += SUM_JOURNAL_SIZE;
4491 
4492 	/* Step 3: write summary entries */
4493 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
4494 		seg_i = CURSEG_I(sbi, i);
4495 		for (j = 0; j < f2fs_curseg_valid_blocks(sbi, i); j++) {
4496 			if (!folio) {
4497 				folio = f2fs_grab_meta_folio(sbi, blkaddr++);
4498 				kaddr = folio_address(folio);
4499 				memset(kaddr, 0, PAGE_SIZE);
4500 				written_size = 0;
4501 			}
4502 			summary = (struct f2fs_summary *)(kaddr + written_size);
4503 			*summary = seg_i->sum_blk->entries[j];
4504 			written_size += SUMMARY_SIZE;
4505 
4506 			if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
4507 							SUM_FOOTER_SIZE)
4508 				continue;
4509 
4510 			folio_mark_dirty(folio);
4511 			f2fs_folio_put(folio, true);
4512 			folio = NULL;
4513 		}
4514 	}
4515 	if (folio) {
4516 		folio_mark_dirty(folio);
4517 		f2fs_folio_put(folio, true);
4518 	}
4519 }
4520 
write_normal_summaries(struct f2fs_sb_info * sbi,block_t blkaddr,int type)4521 static void write_normal_summaries(struct f2fs_sb_info *sbi,
4522 					block_t blkaddr, int type)
4523 {
4524 	int i, end;
4525 
4526 	if (IS_DATASEG(type))
4527 		end = type + NR_CURSEG_DATA_TYPE;
4528 	else
4529 		end = type + NR_CURSEG_NODE_TYPE;
4530 
4531 	for (i = type; i < end; i++)
4532 		write_current_sum_page(sbi, i, blkaddr + (i - type));
4533 }
4534 
f2fs_write_data_summaries(struct f2fs_sb_info * sbi,block_t start_blk)4535 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4536 {
4537 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
4538 		write_compacted_summaries(sbi, start_blk);
4539 	else
4540 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
4541 }
4542 
f2fs_write_node_summaries(struct f2fs_sb_info * sbi,block_t start_blk)4543 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4544 {
4545 	write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
4546 }
4547 
f2fs_lookup_journal_in_cursum(struct f2fs_journal * journal,int type,unsigned int val,int alloc)4548 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
4549 					unsigned int val, int alloc)
4550 {
4551 	int i;
4552 
4553 	if (type == NAT_JOURNAL) {
4554 		for (i = 0; i < nats_in_cursum(journal); i++) {
4555 			if (le32_to_cpu(nid_in_journal(journal, i)) == val)
4556 				return i;
4557 		}
4558 		if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
4559 			return update_nats_in_cursum(journal, 1);
4560 	} else if (type == SIT_JOURNAL) {
4561 		for (i = 0; i < sits_in_cursum(journal); i++)
4562 			if (le32_to_cpu(segno_in_journal(journal, i)) == val)
4563 				return i;
4564 		if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
4565 			return update_sits_in_cursum(journal, 1);
4566 	}
4567 	return -1;
4568 }
4569 
get_current_sit_folio(struct f2fs_sb_info * sbi,unsigned int segno)4570 static struct folio *get_current_sit_folio(struct f2fs_sb_info *sbi,
4571 					unsigned int segno)
4572 {
4573 	return f2fs_get_meta_folio(sbi, current_sit_addr(sbi, segno));
4574 }
4575 
get_next_sit_folio(struct f2fs_sb_info * sbi,unsigned int start)4576 static struct folio *get_next_sit_folio(struct f2fs_sb_info *sbi,
4577 					unsigned int start)
4578 {
4579 	struct sit_info *sit_i = SIT_I(sbi);
4580 	struct folio *folio;
4581 	pgoff_t src_off, dst_off;
4582 
4583 	src_off = current_sit_addr(sbi, start);
4584 	dst_off = next_sit_addr(sbi, src_off);
4585 
4586 	folio = f2fs_grab_meta_folio(sbi, dst_off);
4587 	seg_info_to_sit_folio(sbi, folio, start);
4588 
4589 	folio_mark_dirty(folio);
4590 	set_to_next_sit(sit_i, start);
4591 
4592 	return folio;
4593 }
4594 
grab_sit_entry_set(void)4595 static struct sit_entry_set *grab_sit_entry_set(void)
4596 {
4597 	struct sit_entry_set *ses =
4598 			f2fs_kmem_cache_alloc(sit_entry_set_slab,
4599 						GFP_NOFS, true, NULL);
4600 
4601 	ses->entry_cnt = 0;
4602 	INIT_LIST_HEAD(&ses->set_list);
4603 	return ses;
4604 }
4605 
release_sit_entry_set(struct sit_entry_set * ses)4606 static void release_sit_entry_set(struct sit_entry_set *ses)
4607 {
4608 	list_del(&ses->set_list);
4609 	kmem_cache_free(sit_entry_set_slab, ses);
4610 }
4611 
adjust_sit_entry_set(struct sit_entry_set * ses,struct list_head * head)4612 static void adjust_sit_entry_set(struct sit_entry_set *ses,
4613 						struct list_head *head)
4614 {
4615 	struct sit_entry_set *next = ses;
4616 
4617 	if (list_is_last(&ses->set_list, head))
4618 		return;
4619 
4620 	list_for_each_entry_continue(next, head, set_list)
4621 		if (ses->entry_cnt <= next->entry_cnt) {
4622 			list_move_tail(&ses->set_list, &next->set_list);
4623 			return;
4624 		}
4625 
4626 	list_move_tail(&ses->set_list, head);
4627 }
4628 
add_sit_entry(unsigned int segno,struct list_head * head)4629 static void add_sit_entry(unsigned int segno, struct list_head *head)
4630 {
4631 	struct sit_entry_set *ses;
4632 	unsigned int start_segno = START_SEGNO(segno);
4633 
4634 	list_for_each_entry(ses, head, set_list) {
4635 		if (ses->start_segno == start_segno) {
4636 			ses->entry_cnt++;
4637 			adjust_sit_entry_set(ses, head);
4638 			return;
4639 		}
4640 	}
4641 
4642 	ses = grab_sit_entry_set();
4643 
4644 	ses->start_segno = start_segno;
4645 	ses->entry_cnt++;
4646 	list_add(&ses->set_list, head);
4647 }
4648 
add_sits_in_set(struct f2fs_sb_info * sbi)4649 static void add_sits_in_set(struct f2fs_sb_info *sbi)
4650 {
4651 	struct f2fs_sm_info *sm_info = SM_I(sbi);
4652 	struct list_head *set_list = &sm_info->sit_entry_set;
4653 	unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4654 	unsigned int segno;
4655 
4656 	for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4657 		add_sit_entry(segno, set_list);
4658 }
4659 
remove_sits_in_journal(struct f2fs_sb_info * sbi)4660 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4661 {
4662 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4663 	struct f2fs_journal *journal = curseg->journal;
4664 	int i;
4665 
4666 	down_write(&curseg->journal_rwsem);
4667 	for (i = 0; i < sits_in_cursum(journal); i++) {
4668 		unsigned int segno;
4669 		bool dirtied;
4670 
4671 		segno = le32_to_cpu(segno_in_journal(journal, i));
4672 		dirtied = __mark_sit_entry_dirty(sbi, segno);
4673 
4674 		if (!dirtied)
4675 			add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4676 	}
4677 	update_sits_in_cursum(journal, -i);
4678 	up_write(&curseg->journal_rwsem);
4679 }
4680 
4681 /*
4682  * CP calls this function, which flushes SIT entries including sit_journal,
4683  * and moves prefree segs to free segs.
4684  */
f2fs_flush_sit_entries(struct f2fs_sb_info * sbi,struct cp_control * cpc)4685 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4686 {
4687 	struct sit_info *sit_i = SIT_I(sbi);
4688 	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4689 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4690 	struct f2fs_journal *journal = curseg->journal;
4691 	struct sit_entry_set *ses, *tmp;
4692 	struct list_head *head = &SM_I(sbi)->sit_entry_set;
4693 	bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4694 	struct seg_entry *se;
4695 
4696 	down_write(&sit_i->sentry_lock);
4697 
4698 	if (!sit_i->dirty_sentries)
4699 		goto out;
4700 
4701 	/*
4702 	 * add and account sit entries of dirty bitmap in sit entry
4703 	 * set temporarily
4704 	 */
4705 	add_sits_in_set(sbi);
4706 
4707 	/*
4708 	 * if there are no enough space in journal to store dirty sit
4709 	 * entries, remove all entries from journal and add and account
4710 	 * them in sit entry set.
4711 	 */
4712 	if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4713 								!to_journal)
4714 		remove_sits_in_journal(sbi);
4715 
4716 	/*
4717 	 * there are two steps to flush sit entries:
4718 	 * #1, flush sit entries to journal in current cold data summary block.
4719 	 * #2, flush sit entries to sit page.
4720 	 */
4721 	list_for_each_entry_safe(ses, tmp, head, set_list) {
4722 		struct folio *folio = NULL;
4723 		struct f2fs_sit_block *raw_sit = NULL;
4724 		unsigned int start_segno = ses->start_segno;
4725 		unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4726 						(unsigned long)MAIN_SEGS(sbi));
4727 		unsigned int segno = start_segno;
4728 
4729 		if (to_journal &&
4730 			!__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4731 			to_journal = false;
4732 
4733 		if (to_journal) {
4734 			down_write(&curseg->journal_rwsem);
4735 		} else {
4736 			folio = get_next_sit_folio(sbi, start_segno);
4737 			raw_sit = folio_address(folio);
4738 		}
4739 
4740 		/* flush dirty sit entries in region of current sit set */
4741 		for_each_set_bit_from(segno, bitmap, end) {
4742 			int offset, sit_offset;
4743 
4744 			se = get_seg_entry(sbi, segno);
4745 #ifdef CONFIG_F2FS_CHECK_FS
4746 			if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4747 						SIT_VBLOCK_MAP_SIZE))
4748 				f2fs_bug_on(sbi, 1);
4749 #endif
4750 
4751 			/* add discard candidates */
4752 			if (!(cpc->reason & CP_DISCARD)) {
4753 				cpc->trim_start = segno;
4754 				add_discard_addrs(sbi, cpc, false);
4755 			}
4756 
4757 			if (to_journal) {
4758 				offset = f2fs_lookup_journal_in_cursum(journal,
4759 							SIT_JOURNAL, segno, 1);
4760 				f2fs_bug_on(sbi, offset < 0);
4761 				segno_in_journal(journal, offset) =
4762 							cpu_to_le32(segno);
4763 				seg_info_to_raw_sit(se,
4764 					&sit_in_journal(journal, offset));
4765 				check_block_count(sbi, segno,
4766 					&sit_in_journal(journal, offset));
4767 			} else {
4768 				sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4769 				seg_info_to_raw_sit(se,
4770 						&raw_sit->entries[sit_offset]);
4771 				check_block_count(sbi, segno,
4772 						&raw_sit->entries[sit_offset]);
4773 			}
4774 
4775 			/* update ckpt_valid_block */
4776 			if (__is_large_section(sbi)) {
4777 				set_ckpt_valid_blocks(sbi, segno);
4778 				sanity_check_valid_blocks(sbi, segno);
4779 			}
4780 
4781 			__clear_bit(segno, bitmap);
4782 			sit_i->dirty_sentries--;
4783 			ses->entry_cnt--;
4784 		}
4785 
4786 		if (to_journal)
4787 			up_write(&curseg->journal_rwsem);
4788 		else
4789 			f2fs_folio_put(folio, true);
4790 
4791 		f2fs_bug_on(sbi, ses->entry_cnt);
4792 		release_sit_entry_set(ses);
4793 	}
4794 
4795 	f2fs_bug_on(sbi, !list_empty(head));
4796 	f2fs_bug_on(sbi, sit_i->dirty_sentries);
4797 out:
4798 	if (cpc->reason & CP_DISCARD) {
4799 		__u64 trim_start = cpc->trim_start;
4800 
4801 		for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4802 			add_discard_addrs(sbi, cpc, false);
4803 
4804 		cpc->trim_start = trim_start;
4805 	}
4806 	up_write(&sit_i->sentry_lock);
4807 
4808 	set_prefree_as_free_segments(sbi);
4809 }
4810 
build_sit_info(struct f2fs_sb_info * sbi)4811 static int build_sit_info(struct f2fs_sb_info *sbi)
4812 {
4813 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4814 	struct sit_info *sit_i;
4815 	unsigned int sit_segs, start;
4816 	char *src_bitmap, *bitmap;
4817 	unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4818 	unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0;
4819 
4820 	/* allocate memory for SIT information */
4821 	sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4822 	if (!sit_i)
4823 		return -ENOMEM;
4824 
4825 	SM_I(sbi)->sit_info = sit_i;
4826 
4827 	sit_i->sentries =
4828 		f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4829 					      MAIN_SEGS(sbi)),
4830 			      GFP_KERNEL);
4831 	if (!sit_i->sentries)
4832 		return -ENOMEM;
4833 
4834 	main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4835 	sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4836 								GFP_KERNEL);
4837 	if (!sit_i->dirty_sentries_bitmap)
4838 		return -ENOMEM;
4839 
4840 #ifdef CONFIG_F2FS_CHECK_FS
4841 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map);
4842 #else
4843 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map);
4844 #endif
4845 	sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4846 	if (!sit_i->bitmap)
4847 		return -ENOMEM;
4848 
4849 	bitmap = sit_i->bitmap;
4850 
4851 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4852 		sit_i->sentries[start].cur_valid_map = bitmap;
4853 		bitmap += SIT_VBLOCK_MAP_SIZE;
4854 
4855 		sit_i->sentries[start].ckpt_valid_map = bitmap;
4856 		bitmap += SIT_VBLOCK_MAP_SIZE;
4857 
4858 #ifdef CONFIG_F2FS_CHECK_FS
4859 		sit_i->sentries[start].cur_valid_map_mir = bitmap;
4860 		bitmap += SIT_VBLOCK_MAP_SIZE;
4861 #endif
4862 
4863 		if (discard_map) {
4864 			sit_i->sentries[start].discard_map = bitmap;
4865 			bitmap += SIT_VBLOCK_MAP_SIZE;
4866 		}
4867 	}
4868 
4869 	sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4870 	if (!sit_i->tmp_map)
4871 		return -ENOMEM;
4872 
4873 	if (__is_large_section(sbi)) {
4874 		sit_i->sec_entries =
4875 			f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4876 						      MAIN_SECS(sbi)),
4877 				      GFP_KERNEL);
4878 		if (!sit_i->sec_entries)
4879 			return -ENOMEM;
4880 	}
4881 
4882 	/* get information related with SIT */
4883 	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4884 
4885 	/* setup SIT bitmap from ckeckpoint pack */
4886 	sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4887 	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4888 
4889 	sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4890 	if (!sit_i->sit_bitmap)
4891 		return -ENOMEM;
4892 
4893 #ifdef CONFIG_F2FS_CHECK_FS
4894 	sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4895 					sit_bitmap_size, GFP_KERNEL);
4896 	if (!sit_i->sit_bitmap_mir)
4897 		return -ENOMEM;
4898 
4899 	sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4900 					main_bitmap_size, GFP_KERNEL);
4901 	if (!sit_i->invalid_segmap)
4902 		return -ENOMEM;
4903 #endif
4904 
4905 	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4906 	sit_i->sit_blocks = SEGS_TO_BLKS(sbi, sit_segs);
4907 	sit_i->written_valid_blocks = 0;
4908 	sit_i->bitmap_size = sit_bitmap_size;
4909 	sit_i->dirty_sentries = 0;
4910 	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4911 	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4912 	sit_i->mounted_time = ktime_get_boottime_seconds();
4913 	init_rwsem(&sit_i->sentry_lock);
4914 	return 0;
4915 }
4916 
build_free_segmap(struct f2fs_sb_info * sbi)4917 static int build_free_segmap(struct f2fs_sb_info *sbi)
4918 {
4919 	struct free_segmap_info *free_i;
4920 	unsigned int bitmap_size, sec_bitmap_size;
4921 
4922 	/* allocate memory for free segmap information */
4923 	free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4924 	if (!free_i)
4925 		return -ENOMEM;
4926 
4927 	SM_I(sbi)->free_info = free_i;
4928 
4929 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4930 	free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4931 	if (!free_i->free_segmap)
4932 		return -ENOMEM;
4933 
4934 	sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4935 	free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4936 	if (!free_i->free_secmap)
4937 		return -ENOMEM;
4938 
4939 	/* set all segments as dirty temporarily */
4940 	memset(free_i->free_segmap, 0xff, bitmap_size);
4941 	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4942 
4943 	/* init free segmap information */
4944 	free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4945 	free_i->free_segments = 0;
4946 	free_i->free_sections = 0;
4947 	spin_lock_init(&free_i->segmap_lock);
4948 	return 0;
4949 }
4950 
build_curseg(struct f2fs_sb_info * sbi)4951 static int build_curseg(struct f2fs_sb_info *sbi)
4952 {
4953 	struct curseg_info *array;
4954 	int i;
4955 
4956 	array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4957 					sizeof(*array)), GFP_KERNEL);
4958 	if (!array)
4959 		return -ENOMEM;
4960 
4961 	SM_I(sbi)->curseg_array = array;
4962 
4963 	for (i = 0; i < NO_CHECK_TYPE; i++) {
4964 		mutex_init(&array[i].curseg_mutex);
4965 		array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4966 		if (!array[i].sum_blk)
4967 			return -ENOMEM;
4968 		init_rwsem(&array[i].journal_rwsem);
4969 		array[i].journal = f2fs_kzalloc(sbi,
4970 				sizeof(struct f2fs_journal), GFP_KERNEL);
4971 		if (!array[i].journal)
4972 			return -ENOMEM;
4973 		array[i].seg_type = log_type_to_seg_type(i);
4974 		reset_curseg_fields(&array[i]);
4975 	}
4976 	return restore_curseg_summaries(sbi);
4977 }
4978 
build_sit_entries(struct f2fs_sb_info * sbi)4979 static int build_sit_entries(struct f2fs_sb_info *sbi)
4980 {
4981 	struct sit_info *sit_i = SIT_I(sbi);
4982 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4983 	struct f2fs_journal *journal = curseg->journal;
4984 	struct seg_entry *se;
4985 	struct f2fs_sit_entry sit;
4986 	int sit_blk_cnt = SIT_BLK_CNT(sbi);
4987 	unsigned int i, start, end;
4988 	unsigned int readed, start_blk = 0;
4989 	int err = 0;
4990 	block_t sit_valid_blocks[2] = {0, 0};
4991 
4992 	do {
4993 		readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4994 							META_SIT, true);
4995 
4996 		start = start_blk * sit_i->sents_per_block;
4997 		end = (start_blk + readed) * sit_i->sents_per_block;
4998 
4999 		for (; start < end && start < MAIN_SEGS(sbi); start++) {
5000 			struct f2fs_sit_block *sit_blk;
5001 			struct folio *folio;
5002 
5003 			se = &sit_i->sentries[start];
5004 			folio = get_current_sit_folio(sbi, start);
5005 			if (IS_ERR(folio))
5006 				return PTR_ERR(folio);
5007 			sit_blk = folio_address(folio);
5008 			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
5009 			f2fs_folio_put(folio, true);
5010 
5011 			err = check_block_count(sbi, start, &sit);
5012 			if (err)
5013 				return err;
5014 			seg_info_from_raw_sit(se, &sit);
5015 
5016 			if (se->type >= NR_PERSISTENT_LOG) {
5017 				f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
5018 							se->type, start);
5019 				f2fs_handle_error(sbi,
5020 						ERROR_INCONSISTENT_SUM_TYPE);
5021 				return -EFSCORRUPTED;
5022 			}
5023 
5024 			sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
5025 
5026 			if (!f2fs_block_unit_discard(sbi))
5027 				goto init_discard_map_done;
5028 
5029 			/* build discard map only one time */
5030 			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
5031 				memset(se->discard_map, 0xff,
5032 						SIT_VBLOCK_MAP_SIZE);
5033 				goto init_discard_map_done;
5034 			}
5035 			memcpy(se->discard_map, se->cur_valid_map,
5036 						SIT_VBLOCK_MAP_SIZE);
5037 			sbi->discard_blks += BLKS_PER_SEG(sbi) -
5038 						se->valid_blocks;
5039 init_discard_map_done:
5040 			if (__is_large_section(sbi))
5041 				get_sec_entry(sbi, start)->valid_blocks +=
5042 							se->valid_blocks;
5043 		}
5044 		start_blk += readed;
5045 	} while (start_blk < sit_blk_cnt);
5046 
5047 	down_read(&curseg->journal_rwsem);
5048 	for (i = 0; i < sits_in_cursum(journal); i++) {
5049 		unsigned int old_valid_blocks;
5050 
5051 		start = le32_to_cpu(segno_in_journal(journal, i));
5052 		if (start >= MAIN_SEGS(sbi)) {
5053 			f2fs_err(sbi, "Wrong journal entry on segno %u",
5054 				 start);
5055 			err = -EFSCORRUPTED;
5056 			f2fs_handle_error(sbi, ERROR_CORRUPTED_JOURNAL);
5057 			break;
5058 		}
5059 
5060 		se = &sit_i->sentries[start];
5061 		sit = sit_in_journal(journal, i);
5062 
5063 		old_valid_blocks = se->valid_blocks;
5064 
5065 		sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks;
5066 
5067 		err = check_block_count(sbi, start, &sit);
5068 		if (err)
5069 			break;
5070 		seg_info_from_raw_sit(se, &sit);
5071 
5072 		if (se->type >= NR_PERSISTENT_LOG) {
5073 			f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
5074 							se->type, start);
5075 			err = -EFSCORRUPTED;
5076 			f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
5077 			break;
5078 		}
5079 
5080 		sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
5081 
5082 		if (f2fs_block_unit_discard(sbi)) {
5083 			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
5084 				memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
5085 			} else {
5086 				memcpy(se->discard_map, se->cur_valid_map,
5087 							SIT_VBLOCK_MAP_SIZE);
5088 				sbi->discard_blks += old_valid_blocks;
5089 				sbi->discard_blks -= se->valid_blocks;
5090 			}
5091 		}
5092 
5093 		if (__is_large_section(sbi)) {
5094 			get_sec_entry(sbi, start)->valid_blocks +=
5095 							se->valid_blocks;
5096 			get_sec_entry(sbi, start)->valid_blocks -=
5097 							old_valid_blocks;
5098 		}
5099 	}
5100 	up_read(&curseg->journal_rwsem);
5101 
5102 	/* update ckpt_valid_block */
5103 	if (__is_large_section(sbi)) {
5104 		unsigned int segno;
5105 
5106 		for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) {
5107 			set_ckpt_valid_blocks(sbi, segno);
5108 			sanity_check_valid_blocks(sbi, segno);
5109 		}
5110 	}
5111 
5112 	if (err)
5113 		return err;
5114 
5115 	if (sit_valid_blocks[NODE] != valid_node_count(sbi)) {
5116 		f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
5117 			 sit_valid_blocks[NODE], valid_node_count(sbi));
5118 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_NODE_COUNT);
5119 		return -EFSCORRUPTED;
5120 	}
5121 
5122 	if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] >
5123 				valid_user_blocks(sbi)) {
5124 		f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u",
5125 			 sit_valid_blocks[DATA], sit_valid_blocks[NODE],
5126 			 valid_user_blocks(sbi));
5127 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_BLOCK_COUNT);
5128 		return -EFSCORRUPTED;
5129 	}
5130 
5131 	return 0;
5132 }
5133 
init_free_segmap(struct f2fs_sb_info * sbi)5134 static void init_free_segmap(struct f2fs_sb_info *sbi)
5135 {
5136 	unsigned int start;
5137 	int type;
5138 	struct seg_entry *sentry;
5139 
5140 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
5141 		if (f2fs_usable_blks_in_seg(sbi, start) == 0)
5142 			continue;
5143 		sentry = get_seg_entry(sbi, start);
5144 		if (!sentry->valid_blocks)
5145 			__set_free(sbi, start);
5146 		else
5147 			SIT_I(sbi)->written_valid_blocks +=
5148 						sentry->valid_blocks;
5149 	}
5150 
5151 	/* set use the current segments */
5152 	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
5153 		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
5154 
5155 		__set_test_and_inuse(sbi, curseg_t->segno);
5156 	}
5157 }
5158 
init_dirty_segmap(struct f2fs_sb_info * sbi)5159 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
5160 {
5161 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5162 	struct free_segmap_info *free_i = FREE_I(sbi);
5163 	unsigned int segno = 0, offset = 0, secno;
5164 	block_t valid_blocks, usable_blks_in_seg;
5165 
5166 	while (1) {
5167 		/* find dirty segment based on free segmap */
5168 		segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
5169 		if (segno >= MAIN_SEGS(sbi))
5170 			break;
5171 		offset = segno + 1;
5172 		valid_blocks = get_valid_blocks(sbi, segno, false);
5173 		usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
5174 		if (valid_blocks == usable_blks_in_seg || !valid_blocks)
5175 			continue;
5176 		if (valid_blocks > usable_blks_in_seg) {
5177 			f2fs_bug_on(sbi, 1);
5178 			continue;
5179 		}
5180 		mutex_lock(&dirty_i->seglist_lock);
5181 		__locate_dirty_segment(sbi, segno, DIRTY);
5182 		mutex_unlock(&dirty_i->seglist_lock);
5183 	}
5184 
5185 	if (!__is_large_section(sbi))
5186 		return;
5187 
5188 	mutex_lock(&dirty_i->seglist_lock);
5189 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) {
5190 		valid_blocks = get_valid_blocks(sbi, segno, true);
5191 		secno = GET_SEC_FROM_SEG(sbi, segno);
5192 
5193 		if (!valid_blocks || valid_blocks == CAP_BLKS_PER_SEC(sbi))
5194 			continue;
5195 		if (is_cursec(sbi, secno))
5196 			continue;
5197 		set_bit(secno, dirty_i->dirty_secmap);
5198 	}
5199 	mutex_unlock(&dirty_i->seglist_lock);
5200 }
5201 
init_victim_secmap(struct f2fs_sb_info * sbi)5202 static int init_victim_secmap(struct f2fs_sb_info *sbi)
5203 {
5204 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5205 	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
5206 
5207 	dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
5208 	if (!dirty_i->victim_secmap)
5209 		return -ENOMEM;
5210 
5211 	dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
5212 	if (!dirty_i->pinned_secmap)
5213 		return -ENOMEM;
5214 
5215 	dirty_i->pinned_secmap_cnt = 0;
5216 	dirty_i->enable_pin_section = true;
5217 	return 0;
5218 }
5219 
build_dirty_segmap(struct f2fs_sb_info * sbi)5220 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
5221 {
5222 	struct dirty_seglist_info *dirty_i;
5223 	unsigned int bitmap_size, i;
5224 
5225 	/* allocate memory for dirty segments list information */
5226 	dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
5227 								GFP_KERNEL);
5228 	if (!dirty_i)
5229 		return -ENOMEM;
5230 
5231 	SM_I(sbi)->dirty_info = dirty_i;
5232 	mutex_init(&dirty_i->seglist_lock);
5233 
5234 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
5235 
5236 	for (i = 0; i < NR_DIRTY_TYPE; i++) {
5237 		dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
5238 								GFP_KERNEL);
5239 		if (!dirty_i->dirty_segmap[i])
5240 			return -ENOMEM;
5241 	}
5242 
5243 	if (__is_large_section(sbi)) {
5244 		bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
5245 		dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
5246 						bitmap_size, GFP_KERNEL);
5247 		if (!dirty_i->dirty_secmap)
5248 			return -ENOMEM;
5249 	}
5250 
5251 	init_dirty_segmap(sbi);
5252 	return init_victim_secmap(sbi);
5253 }
5254 
sanity_check_curseg(struct f2fs_sb_info * sbi)5255 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
5256 {
5257 	int i;
5258 
5259 	/*
5260 	 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
5261 	 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
5262 	 */
5263 	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
5264 		struct curseg_info *curseg = CURSEG_I(sbi, i);
5265 		struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
5266 		unsigned int blkofs = curseg->next_blkoff;
5267 
5268 		if (f2fs_sb_has_readonly(sbi) &&
5269 			i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
5270 			continue;
5271 
5272 		sanity_check_seg_type(sbi, curseg->seg_type);
5273 
5274 		if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) {
5275 			f2fs_err(sbi,
5276 				 "Current segment has invalid alloc_type:%d",
5277 				 curseg->alloc_type);
5278 			f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
5279 			return -EFSCORRUPTED;
5280 		}
5281 
5282 		if (f2fs_test_bit(blkofs, se->cur_valid_map))
5283 			goto out;
5284 
5285 		if (curseg->alloc_type == SSR)
5286 			continue;
5287 
5288 		for (blkofs += 1; blkofs < BLKS_PER_SEG(sbi); blkofs++) {
5289 			if (!f2fs_test_bit(blkofs, se->cur_valid_map))
5290 				continue;
5291 out:
5292 			f2fs_err(sbi,
5293 				 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
5294 				 i, curseg->segno, curseg->alloc_type,
5295 				 curseg->next_blkoff, blkofs);
5296 			f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
5297 			return -EFSCORRUPTED;
5298 		}
5299 	}
5300 	return 0;
5301 }
5302 
5303 #ifdef CONFIG_BLK_DEV_ZONED
check_zone_write_pointer(struct f2fs_sb_info * sbi,struct f2fs_dev_info * fdev,struct blk_zone * zone)5304 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
5305 				    struct f2fs_dev_info *fdev,
5306 				    struct blk_zone *zone)
5307 {
5308 	unsigned int zone_segno;
5309 	block_t zone_block, valid_block_cnt;
5310 	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
5311 	int ret;
5312 	unsigned int nofs_flags;
5313 
5314 	if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5315 		return 0;
5316 
5317 	zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
5318 	zone_segno = GET_SEGNO(sbi, zone_block);
5319 
5320 	/*
5321 	 * Skip check of zones cursegs point to, since
5322 	 * fix_curseg_write_pointer() checks them.
5323 	 */
5324 	if (zone_segno >= MAIN_SEGS(sbi))
5325 		return 0;
5326 
5327 	/*
5328 	 * Get # of valid block of the zone.
5329 	 */
5330 	valid_block_cnt = get_valid_blocks(sbi, zone_segno, true);
5331 	if (is_cursec(sbi, GET_SEC_FROM_SEG(sbi, zone_segno))) {
5332 		f2fs_notice(sbi, "Open zones: valid block[0x%x,0x%x] cond[%s]",
5333 				zone_segno, valid_block_cnt,
5334 				blk_zone_cond_str(zone->cond));
5335 		return 0;
5336 	}
5337 
5338 	if ((!valid_block_cnt && zone->cond == BLK_ZONE_COND_EMPTY) ||
5339 	    (valid_block_cnt && zone->cond == BLK_ZONE_COND_FULL))
5340 		return 0;
5341 
5342 	if (!valid_block_cnt) {
5343 		f2fs_notice(sbi, "Zone without valid block has non-zero write "
5344 			    "pointer. Reset the write pointer: cond[%s]",
5345 			    blk_zone_cond_str(zone->cond));
5346 		ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
5347 					zone->len >> log_sectors_per_block);
5348 		if (ret)
5349 			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
5350 				 fdev->path, ret);
5351 		return ret;
5352 	}
5353 
5354 	/*
5355 	 * If there are valid blocks and the write pointer doesn't match
5356 	 * with them, we need to report the inconsistency and fill
5357 	 * the zone till the end to close the zone. This inconsistency
5358 	 * does not cause write error because the zone will not be
5359 	 * selected for write operation until it get discarded.
5360 	 */
5361 	f2fs_notice(sbi, "Valid blocks are not aligned with write "
5362 		    "pointer: valid block[0x%x,0x%x] cond[%s]",
5363 		    zone_segno, valid_block_cnt, blk_zone_cond_str(zone->cond));
5364 
5365 	nofs_flags = memalloc_nofs_save();
5366 	ret = blkdev_zone_mgmt(fdev->bdev, REQ_OP_ZONE_FINISH,
5367 				zone->start, zone->len);
5368 	memalloc_nofs_restore(nofs_flags);
5369 	if (ret == -EOPNOTSUPP) {
5370 		ret = blkdev_issue_zeroout(fdev->bdev, zone->wp,
5371 					zone->len - (zone->wp - zone->start),
5372 					GFP_NOFS, 0);
5373 		if (ret)
5374 			f2fs_err(sbi, "Fill up zone failed: %s (errno=%d)",
5375 					fdev->path, ret);
5376 	} else if (ret) {
5377 		f2fs_err(sbi, "Finishing zone failed: %s (errno=%d)",
5378 				fdev->path, ret);
5379 	}
5380 
5381 	return ret;
5382 }
5383 
get_target_zoned_dev(struct f2fs_sb_info * sbi,block_t zone_blkaddr)5384 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
5385 						  block_t zone_blkaddr)
5386 {
5387 	int i;
5388 
5389 	for (i = 0; i < sbi->s_ndevs; i++) {
5390 		if (!bdev_is_zoned(FDEV(i).bdev))
5391 			continue;
5392 		if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
5393 				zone_blkaddr <= FDEV(i).end_blk))
5394 			return &FDEV(i);
5395 	}
5396 
5397 	return NULL;
5398 }
5399 
report_one_zone_cb(struct blk_zone * zone,unsigned int idx,void * data)5400 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
5401 			      void *data)
5402 {
5403 	memcpy(data, zone, sizeof(struct blk_zone));
5404 	return 0;
5405 }
5406 
do_fix_curseg_write_pointer(struct f2fs_sb_info * sbi,int type)5407 static int do_fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
5408 {
5409 	struct curseg_info *cs = CURSEG_I(sbi, type);
5410 	struct f2fs_dev_info *zbd;
5411 	struct blk_zone zone;
5412 	unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
5413 	block_t cs_zone_block, wp_block;
5414 	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
5415 	sector_t zone_sector;
5416 	int err;
5417 
5418 	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
5419 	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
5420 
5421 	zbd = get_target_zoned_dev(sbi, cs_zone_block);
5422 	if (!zbd)
5423 		return 0;
5424 
5425 	/* report zone for the sector the curseg points to */
5426 	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
5427 		<< log_sectors_per_block;
5428 	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
5429 				  report_one_zone_cb, &zone);
5430 	if (err != 1) {
5431 		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
5432 			 zbd->path, err);
5433 		return err;
5434 	}
5435 
5436 	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5437 		return 0;
5438 
5439 	/*
5440 	 * When safely unmounted in the previous mount, we could use current
5441 	 * segments. Otherwise, allocate new sections.
5442 	 */
5443 	if (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
5444 		wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
5445 		wp_segno = GET_SEGNO(sbi, wp_block);
5446 		wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
5447 		wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
5448 
5449 		if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
5450 				wp_sector_off == 0)
5451 			return 0;
5452 
5453 		f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
5454 			    "curseg[0x%x,0x%x] wp[0x%x,0x%x]", type, cs->segno,
5455 			    cs->next_blkoff, wp_segno, wp_blkoff);
5456 	}
5457 
5458 	/* Allocate a new section if it's not new. */
5459 	if (cs->next_blkoff ||
5460 	    cs->segno != GET_SEG_FROM_SEC(sbi, GET_ZONE_FROM_SEC(sbi, cs_section))) {
5461 		unsigned int old_segno = cs->segno, old_blkoff = cs->next_blkoff;
5462 
5463 		f2fs_allocate_new_section(sbi, type, true);
5464 		f2fs_notice(sbi, "Assign new section to curseg[%d]: "
5465 				"[0x%x,0x%x] -> [0x%x,0x%x]",
5466 				type, old_segno, old_blkoff,
5467 				cs->segno, cs->next_blkoff);
5468 	}
5469 
5470 	/* check consistency of the zone curseg pointed to */
5471 	if (check_zone_write_pointer(sbi, zbd, &zone))
5472 		return -EIO;
5473 
5474 	/* check newly assigned zone */
5475 	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
5476 	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
5477 
5478 	zbd = get_target_zoned_dev(sbi, cs_zone_block);
5479 	if (!zbd)
5480 		return 0;
5481 
5482 	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
5483 		<< log_sectors_per_block;
5484 	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
5485 				  report_one_zone_cb, &zone);
5486 	if (err != 1) {
5487 		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
5488 			 zbd->path, err);
5489 		return err;
5490 	}
5491 
5492 	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5493 		return 0;
5494 
5495 	if (zone.wp != zone.start) {
5496 		f2fs_notice(sbi,
5497 			    "New zone for curseg[%d] is not yet discarded. "
5498 			    "Reset the zone: curseg[0x%x,0x%x]",
5499 			    type, cs->segno, cs->next_blkoff);
5500 		err = __f2fs_issue_discard_zone(sbi, zbd->bdev,	cs_zone_block,
5501 					zone.len >> log_sectors_per_block);
5502 		if (err) {
5503 			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
5504 				 zbd->path, err);
5505 			return err;
5506 		}
5507 	}
5508 
5509 	return 0;
5510 }
5511 
fix_curseg_write_pointer(struct f2fs_sb_info * sbi)5512 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5513 {
5514 	int i, ret;
5515 
5516 	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
5517 		ret = do_fix_curseg_write_pointer(sbi, i);
5518 		if (ret)
5519 			return ret;
5520 	}
5521 
5522 	return 0;
5523 }
5524 
5525 struct check_zone_write_pointer_args {
5526 	struct f2fs_sb_info *sbi;
5527 	struct f2fs_dev_info *fdev;
5528 };
5529 
check_zone_write_pointer_cb(struct blk_zone * zone,unsigned int idx,void * data)5530 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
5531 				      void *data)
5532 {
5533 	struct check_zone_write_pointer_args *args;
5534 
5535 	args = (struct check_zone_write_pointer_args *)data;
5536 
5537 	return check_zone_write_pointer(args->sbi, args->fdev, zone);
5538 }
5539 
check_write_pointer(struct f2fs_sb_info * sbi)5540 static int check_write_pointer(struct f2fs_sb_info *sbi)
5541 {
5542 	int i, ret;
5543 	struct check_zone_write_pointer_args args;
5544 
5545 	for (i = 0; i < sbi->s_ndevs; i++) {
5546 		if (!bdev_is_zoned(FDEV(i).bdev))
5547 			continue;
5548 
5549 		args.sbi = sbi;
5550 		args.fdev = &FDEV(i);
5551 		ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
5552 					  check_zone_write_pointer_cb, &args);
5553 		if (ret < 0)
5554 			return ret;
5555 	}
5556 
5557 	return 0;
5558 }
5559 
f2fs_check_and_fix_write_pointer(struct f2fs_sb_info * sbi)5560 int f2fs_check_and_fix_write_pointer(struct f2fs_sb_info *sbi)
5561 {
5562 	int ret;
5563 
5564 	if (!f2fs_sb_has_blkzoned(sbi) || f2fs_readonly(sbi->sb) ||
5565 	    f2fs_hw_is_readonly(sbi))
5566 		return 0;
5567 
5568 	f2fs_notice(sbi, "Checking entire write pointers");
5569 	ret = fix_curseg_write_pointer(sbi);
5570 	if (!ret)
5571 		ret = check_write_pointer(sbi);
5572 	return ret;
5573 }
5574 
5575 /*
5576  * Return the number of usable blocks in a segment. The number of blocks
5577  * returned is always equal to the number of blocks in a segment for
5578  * segments fully contained within a sequential zone capacity or a
5579  * conventional zone. For segments partially contained in a sequential
5580  * zone capacity, the number of usable blocks up to the zone capacity
5581  * is returned. 0 is returned in all other cases.
5582  */
f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)5583 static inline unsigned int f2fs_usable_zone_blks_in_seg(
5584 			struct f2fs_sb_info *sbi, unsigned int segno)
5585 {
5586 	block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
5587 	unsigned int secno;
5588 
5589 	if (!sbi->unusable_blocks_per_sec)
5590 		return BLKS_PER_SEG(sbi);
5591 
5592 	secno = GET_SEC_FROM_SEG(sbi, segno);
5593 	seg_start = START_BLOCK(sbi, segno);
5594 	sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5595 	sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi);
5596 
5597 	/*
5598 	 * If segment starts before zone capacity and spans beyond
5599 	 * zone capacity, then usable blocks are from seg start to
5600 	 * zone capacity. If the segment starts after the zone capacity,
5601 	 * then there are no usable blocks.
5602 	 */
5603 	if (seg_start >= sec_cap_blkaddr)
5604 		return 0;
5605 	if (seg_start + BLKS_PER_SEG(sbi) > sec_cap_blkaddr)
5606 		return sec_cap_blkaddr - seg_start;
5607 
5608 	return BLKS_PER_SEG(sbi);
5609 }
5610 #else
f2fs_check_and_fix_write_pointer(struct f2fs_sb_info * sbi)5611 int f2fs_check_and_fix_write_pointer(struct f2fs_sb_info *sbi)
5612 {
5613 	return 0;
5614 }
5615 
f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)5616 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5617 							unsigned int segno)
5618 {
5619 	return 0;
5620 }
5621 
5622 #endif
f2fs_usable_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)5623 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5624 					unsigned int segno)
5625 {
5626 	if (f2fs_sb_has_blkzoned(sbi))
5627 		return f2fs_usable_zone_blks_in_seg(sbi, segno);
5628 
5629 	return BLKS_PER_SEG(sbi);
5630 }
5631 
f2fs_usable_segs_in_sec(struct f2fs_sb_info * sbi)5632 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi)
5633 {
5634 	if (f2fs_sb_has_blkzoned(sbi))
5635 		return CAP_SEGS_PER_SEC(sbi);
5636 
5637 	return SEGS_PER_SEC(sbi);
5638 }
5639 
f2fs_get_section_mtime(struct f2fs_sb_info * sbi,unsigned int segno)5640 unsigned long long f2fs_get_section_mtime(struct f2fs_sb_info *sbi,
5641 	unsigned int segno)
5642 {
5643 	unsigned int usable_segs_per_sec = f2fs_usable_segs_in_sec(sbi);
5644 	unsigned int secno = 0, start = 0;
5645 	unsigned int total_valid_blocks = 0;
5646 	unsigned long long mtime = 0;
5647 	unsigned int i = 0;
5648 
5649 	secno = GET_SEC_FROM_SEG(sbi, segno);
5650 	start = GET_SEG_FROM_SEC(sbi, secno);
5651 
5652 	if (!__is_large_section(sbi)) {
5653 		mtime = get_seg_entry(sbi, start + i)->mtime;
5654 		goto out;
5655 	}
5656 
5657 	for (i = 0; i < usable_segs_per_sec; i++) {
5658 		/* for large section, only check the mtime of valid segments */
5659 		struct seg_entry *se = get_seg_entry(sbi, start+i);
5660 
5661 		mtime += se->mtime * se->valid_blocks;
5662 		total_valid_blocks += se->valid_blocks;
5663 	}
5664 
5665 	if (total_valid_blocks == 0)
5666 		return INVALID_MTIME;
5667 
5668 	mtime = div_u64(mtime, total_valid_blocks);
5669 out:
5670 	if (unlikely(mtime == INVALID_MTIME))
5671 		mtime -= 1;
5672 	return mtime;
5673 }
5674 
5675 /*
5676  * Update min, max modified time for cost-benefit GC algorithm
5677  */
init_min_max_mtime(struct f2fs_sb_info * sbi)5678 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5679 {
5680 	struct sit_info *sit_i = SIT_I(sbi);
5681 	unsigned int segno;
5682 
5683 	down_write(&sit_i->sentry_lock);
5684 
5685 	sit_i->min_mtime = ULLONG_MAX;
5686 
5687 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) {
5688 		unsigned long long mtime = 0;
5689 
5690 		mtime = f2fs_get_section_mtime(sbi, segno);
5691 
5692 		if (sit_i->min_mtime > mtime)
5693 			sit_i->min_mtime = mtime;
5694 	}
5695 	sit_i->max_mtime = get_mtime(sbi, false);
5696 	sit_i->dirty_max_mtime = 0;
5697 	up_write(&sit_i->sentry_lock);
5698 }
5699 
f2fs_build_segment_manager(struct f2fs_sb_info * sbi)5700 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5701 {
5702 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5703 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5704 	struct f2fs_sm_info *sm_info;
5705 	int err;
5706 
5707 	sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5708 	if (!sm_info)
5709 		return -ENOMEM;
5710 
5711 	/* init sm info */
5712 	sbi->sm_info = sm_info;
5713 	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5714 	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5715 	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5716 	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5717 	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5718 	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5719 	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5720 	sm_info->rec_prefree_segments = sm_info->main_segments *
5721 					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5722 	if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5723 		sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5724 
5725 	if (!f2fs_lfs_mode(sbi))
5726 		sm_info->ipu_policy = BIT(F2FS_IPU_FSYNC);
5727 	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5728 	sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5729 	sm_info->min_seq_blocks = BLKS_PER_SEG(sbi);
5730 	sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5731 	sm_info->min_ssr_sections = reserved_sections(sbi);
5732 
5733 	INIT_LIST_HEAD(&sm_info->sit_entry_set);
5734 
5735 	init_f2fs_rwsem(&sm_info->curseg_lock);
5736 
5737 	err = f2fs_create_flush_cmd_control(sbi);
5738 	if (err)
5739 		return err;
5740 
5741 	err = create_discard_cmd_control(sbi);
5742 	if (err)
5743 		return err;
5744 
5745 	err = build_sit_info(sbi);
5746 	if (err)
5747 		return err;
5748 	err = build_free_segmap(sbi);
5749 	if (err)
5750 		return err;
5751 	err = build_curseg(sbi);
5752 	if (err)
5753 		return err;
5754 
5755 	/* reinit free segmap based on SIT */
5756 	err = build_sit_entries(sbi);
5757 	if (err)
5758 		return err;
5759 
5760 	init_free_segmap(sbi);
5761 	err = build_dirty_segmap(sbi);
5762 	if (err)
5763 		return err;
5764 
5765 	err = sanity_check_curseg(sbi);
5766 	if (err)
5767 		return err;
5768 
5769 	init_min_max_mtime(sbi);
5770 	return 0;
5771 }
5772 
discard_dirty_segmap(struct f2fs_sb_info * sbi,enum dirty_type dirty_type)5773 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5774 		enum dirty_type dirty_type)
5775 {
5776 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5777 
5778 	mutex_lock(&dirty_i->seglist_lock);
5779 	kvfree(dirty_i->dirty_segmap[dirty_type]);
5780 	dirty_i->nr_dirty[dirty_type] = 0;
5781 	mutex_unlock(&dirty_i->seglist_lock);
5782 }
5783 
destroy_victim_secmap(struct f2fs_sb_info * sbi)5784 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5785 {
5786 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5787 
5788 	kvfree(dirty_i->pinned_secmap);
5789 	kvfree(dirty_i->victim_secmap);
5790 }
5791 
destroy_dirty_segmap(struct f2fs_sb_info * sbi)5792 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5793 {
5794 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5795 	int i;
5796 
5797 	if (!dirty_i)
5798 		return;
5799 
5800 	/* discard pre-free/dirty segments list */
5801 	for (i = 0; i < NR_DIRTY_TYPE; i++)
5802 		discard_dirty_segmap(sbi, i);
5803 
5804 	if (__is_large_section(sbi)) {
5805 		mutex_lock(&dirty_i->seglist_lock);
5806 		kvfree(dirty_i->dirty_secmap);
5807 		mutex_unlock(&dirty_i->seglist_lock);
5808 	}
5809 
5810 	destroy_victim_secmap(sbi);
5811 	SM_I(sbi)->dirty_info = NULL;
5812 	kfree(dirty_i);
5813 }
5814 
destroy_curseg(struct f2fs_sb_info * sbi)5815 static void destroy_curseg(struct f2fs_sb_info *sbi)
5816 {
5817 	struct curseg_info *array = SM_I(sbi)->curseg_array;
5818 	int i;
5819 
5820 	if (!array)
5821 		return;
5822 	SM_I(sbi)->curseg_array = NULL;
5823 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
5824 		kfree(array[i].sum_blk);
5825 		kfree(array[i].journal);
5826 	}
5827 	kfree(array);
5828 }
5829 
destroy_free_segmap(struct f2fs_sb_info * sbi)5830 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5831 {
5832 	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5833 
5834 	if (!free_i)
5835 		return;
5836 	SM_I(sbi)->free_info = NULL;
5837 	kvfree(free_i->free_segmap);
5838 	kvfree(free_i->free_secmap);
5839 	kfree(free_i);
5840 }
5841 
destroy_sit_info(struct f2fs_sb_info * sbi)5842 static void destroy_sit_info(struct f2fs_sb_info *sbi)
5843 {
5844 	struct sit_info *sit_i = SIT_I(sbi);
5845 
5846 	if (!sit_i)
5847 		return;
5848 
5849 	if (sit_i->sentries)
5850 		kvfree(sit_i->bitmap);
5851 	kfree(sit_i->tmp_map);
5852 
5853 	kvfree(sit_i->sentries);
5854 	kvfree(sit_i->sec_entries);
5855 	kvfree(sit_i->dirty_sentries_bitmap);
5856 
5857 	SM_I(sbi)->sit_info = NULL;
5858 	kfree(sit_i->sit_bitmap);
5859 #ifdef CONFIG_F2FS_CHECK_FS
5860 	kfree(sit_i->sit_bitmap_mir);
5861 	kvfree(sit_i->invalid_segmap);
5862 #endif
5863 	kfree(sit_i);
5864 }
5865 
f2fs_destroy_segment_manager(struct f2fs_sb_info * sbi)5866 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5867 {
5868 	struct f2fs_sm_info *sm_info = SM_I(sbi);
5869 
5870 	if (!sm_info)
5871 		return;
5872 	f2fs_destroy_flush_cmd_control(sbi, true);
5873 	destroy_discard_cmd_control(sbi);
5874 	destroy_dirty_segmap(sbi);
5875 	destroy_curseg(sbi);
5876 	destroy_free_segmap(sbi);
5877 	destroy_sit_info(sbi);
5878 	sbi->sm_info = NULL;
5879 	kfree(sm_info);
5880 }
5881 
f2fs_create_segment_manager_caches(void)5882 int __init f2fs_create_segment_manager_caches(void)
5883 {
5884 	discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5885 			sizeof(struct discard_entry));
5886 	if (!discard_entry_slab)
5887 		goto fail;
5888 
5889 	discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5890 			sizeof(struct discard_cmd));
5891 	if (!discard_cmd_slab)
5892 		goto destroy_discard_entry;
5893 
5894 	sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5895 			sizeof(struct sit_entry_set));
5896 	if (!sit_entry_set_slab)
5897 		goto destroy_discard_cmd;
5898 
5899 	revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry",
5900 			sizeof(struct revoke_entry));
5901 	if (!revoke_entry_slab)
5902 		goto destroy_sit_entry_set;
5903 	return 0;
5904 
5905 destroy_sit_entry_set:
5906 	kmem_cache_destroy(sit_entry_set_slab);
5907 destroy_discard_cmd:
5908 	kmem_cache_destroy(discard_cmd_slab);
5909 destroy_discard_entry:
5910 	kmem_cache_destroy(discard_entry_slab);
5911 fail:
5912 	return -ENOMEM;
5913 }
5914 
f2fs_destroy_segment_manager_caches(void)5915 void f2fs_destroy_segment_manager_caches(void)
5916 {
5917 	kmem_cache_destroy(sit_entry_set_slab);
5918 	kmem_cache_destroy(discard_cmd_slab);
5919 	kmem_cache_destroy(discard_entry_slab);
5920 	kmem_cache_destroy(revoke_entry_slab);
5921 }
5922