xref: /linux/drivers/nvme/target/core.c (revision a1ff5a7d78a036d6c2178ee5acd6ba4946243800)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common code for the NVMe target.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/random.h>
9 #include <linux/rculist.h>
10 #include <linux/pci-p2pdma.h>
11 #include <linux/scatterlist.h>
12 
13 #include <generated/utsrelease.h>
14 
15 #define CREATE_TRACE_POINTS
16 #include "trace.h"
17 
18 #include "nvmet.h"
19 #include "debugfs.h"
20 
21 struct kmem_cache *nvmet_bvec_cache;
22 struct workqueue_struct *buffered_io_wq;
23 struct workqueue_struct *zbd_wq;
24 static const struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX];
25 static DEFINE_IDA(cntlid_ida);
26 
27 struct workqueue_struct *nvmet_wq;
28 EXPORT_SYMBOL_GPL(nvmet_wq);
29 
30 /*
31  * This read/write semaphore is used to synchronize access to configuration
32  * information on a target system that will result in discovery log page
33  * information change for at least one host.
34  * The full list of resources to protected by this semaphore is:
35  *
36  *  - subsystems list
37  *  - per-subsystem allowed hosts list
38  *  - allow_any_host subsystem attribute
39  *  - nvmet_genctr
40  *  - the nvmet_transports array
41  *
42  * When updating any of those lists/structures write lock should be obtained,
43  * while when reading (popolating discovery log page or checking host-subsystem
44  * link) read lock is obtained to allow concurrent reads.
45  */
46 DECLARE_RWSEM(nvmet_config_sem);
47 
48 u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1];
49 u64 nvmet_ana_chgcnt;
50 DECLARE_RWSEM(nvmet_ana_sem);
51 
errno_to_nvme_status(struct nvmet_req * req,int errno)52 inline u16 errno_to_nvme_status(struct nvmet_req *req, int errno)
53 {
54 	switch (errno) {
55 	case 0:
56 		return NVME_SC_SUCCESS;
57 	case -ENOSPC:
58 		req->error_loc = offsetof(struct nvme_rw_command, length);
59 		return NVME_SC_CAP_EXCEEDED | NVME_STATUS_DNR;
60 	case -EREMOTEIO:
61 		req->error_loc = offsetof(struct nvme_rw_command, slba);
62 		return  NVME_SC_LBA_RANGE | NVME_STATUS_DNR;
63 	case -EOPNOTSUPP:
64 		req->error_loc = offsetof(struct nvme_common_command, opcode);
65 		switch (req->cmd->common.opcode) {
66 		case nvme_cmd_dsm:
67 		case nvme_cmd_write_zeroes:
68 			return NVME_SC_ONCS_NOT_SUPPORTED | NVME_STATUS_DNR;
69 		default:
70 			return NVME_SC_INVALID_OPCODE | NVME_STATUS_DNR;
71 		}
72 		break;
73 	case -ENODATA:
74 		req->error_loc = offsetof(struct nvme_rw_command, nsid);
75 		return NVME_SC_ACCESS_DENIED;
76 	case -EIO:
77 		fallthrough;
78 	default:
79 		req->error_loc = offsetof(struct nvme_common_command, opcode);
80 		return NVME_SC_INTERNAL | NVME_STATUS_DNR;
81 	}
82 }
83 
nvmet_report_invalid_opcode(struct nvmet_req * req)84 u16 nvmet_report_invalid_opcode(struct nvmet_req *req)
85 {
86 	pr_debug("unhandled cmd %d on qid %d\n", req->cmd->common.opcode,
87 		 req->sq->qid);
88 
89 	req->error_loc = offsetof(struct nvme_common_command, opcode);
90 	return NVME_SC_INVALID_OPCODE | NVME_STATUS_DNR;
91 }
92 
93 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
94 		const char *subsysnqn);
95 
nvmet_copy_to_sgl(struct nvmet_req * req,off_t off,const void * buf,size_t len)96 u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf,
97 		size_t len)
98 {
99 	if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
100 		req->error_loc = offsetof(struct nvme_common_command, dptr);
101 		return NVME_SC_SGL_INVALID_DATA | NVME_STATUS_DNR;
102 	}
103 	return 0;
104 }
105 
nvmet_copy_from_sgl(struct nvmet_req * req,off_t off,void * buf,size_t len)106 u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len)
107 {
108 	if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
109 		req->error_loc = offsetof(struct nvme_common_command, dptr);
110 		return NVME_SC_SGL_INVALID_DATA | NVME_STATUS_DNR;
111 	}
112 	return 0;
113 }
114 
nvmet_zero_sgl(struct nvmet_req * req,off_t off,size_t len)115 u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len)
116 {
117 	if (sg_zero_buffer(req->sg, req->sg_cnt, len, off) != len) {
118 		req->error_loc = offsetof(struct nvme_common_command, dptr);
119 		return NVME_SC_SGL_INVALID_DATA | NVME_STATUS_DNR;
120 	}
121 	return 0;
122 }
123 
nvmet_max_nsid(struct nvmet_subsys * subsys)124 static u32 nvmet_max_nsid(struct nvmet_subsys *subsys)
125 {
126 	struct nvmet_ns *cur;
127 	unsigned long idx;
128 	u32 nsid = 0;
129 
130 	xa_for_each(&subsys->namespaces, idx, cur)
131 		nsid = cur->nsid;
132 
133 	return nsid;
134 }
135 
nvmet_async_event_result(struct nvmet_async_event * aen)136 static u32 nvmet_async_event_result(struct nvmet_async_event *aen)
137 {
138 	return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16);
139 }
140 
nvmet_async_events_failall(struct nvmet_ctrl * ctrl)141 static void nvmet_async_events_failall(struct nvmet_ctrl *ctrl)
142 {
143 	struct nvmet_req *req;
144 
145 	mutex_lock(&ctrl->lock);
146 	while (ctrl->nr_async_event_cmds) {
147 		req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
148 		mutex_unlock(&ctrl->lock);
149 		nvmet_req_complete(req, NVME_SC_INTERNAL | NVME_STATUS_DNR);
150 		mutex_lock(&ctrl->lock);
151 	}
152 	mutex_unlock(&ctrl->lock);
153 }
154 
nvmet_async_events_process(struct nvmet_ctrl * ctrl)155 static void nvmet_async_events_process(struct nvmet_ctrl *ctrl)
156 {
157 	struct nvmet_async_event *aen;
158 	struct nvmet_req *req;
159 
160 	mutex_lock(&ctrl->lock);
161 	while (ctrl->nr_async_event_cmds && !list_empty(&ctrl->async_events)) {
162 		aen = list_first_entry(&ctrl->async_events,
163 				       struct nvmet_async_event, entry);
164 		req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
165 		nvmet_set_result(req, nvmet_async_event_result(aen));
166 
167 		list_del(&aen->entry);
168 		kfree(aen);
169 
170 		mutex_unlock(&ctrl->lock);
171 		trace_nvmet_async_event(ctrl, req->cqe->result.u32);
172 		nvmet_req_complete(req, 0);
173 		mutex_lock(&ctrl->lock);
174 	}
175 	mutex_unlock(&ctrl->lock);
176 }
177 
nvmet_async_events_free(struct nvmet_ctrl * ctrl)178 static void nvmet_async_events_free(struct nvmet_ctrl *ctrl)
179 {
180 	struct nvmet_async_event *aen, *tmp;
181 
182 	mutex_lock(&ctrl->lock);
183 	list_for_each_entry_safe(aen, tmp, &ctrl->async_events, entry) {
184 		list_del(&aen->entry);
185 		kfree(aen);
186 	}
187 	mutex_unlock(&ctrl->lock);
188 }
189 
nvmet_async_event_work(struct work_struct * work)190 static void nvmet_async_event_work(struct work_struct *work)
191 {
192 	struct nvmet_ctrl *ctrl =
193 		container_of(work, struct nvmet_ctrl, async_event_work);
194 
195 	nvmet_async_events_process(ctrl);
196 }
197 
nvmet_add_async_event(struct nvmet_ctrl * ctrl,u8 event_type,u8 event_info,u8 log_page)198 void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type,
199 		u8 event_info, u8 log_page)
200 {
201 	struct nvmet_async_event *aen;
202 
203 	aen = kmalloc(sizeof(*aen), GFP_KERNEL);
204 	if (!aen)
205 		return;
206 
207 	aen->event_type = event_type;
208 	aen->event_info = event_info;
209 	aen->log_page = log_page;
210 
211 	mutex_lock(&ctrl->lock);
212 	list_add_tail(&aen->entry, &ctrl->async_events);
213 	mutex_unlock(&ctrl->lock);
214 
215 	queue_work(nvmet_wq, &ctrl->async_event_work);
216 }
217 
nvmet_add_to_changed_ns_log(struct nvmet_ctrl * ctrl,__le32 nsid)218 static void nvmet_add_to_changed_ns_log(struct nvmet_ctrl *ctrl, __le32 nsid)
219 {
220 	u32 i;
221 
222 	mutex_lock(&ctrl->lock);
223 	if (ctrl->nr_changed_ns > NVME_MAX_CHANGED_NAMESPACES)
224 		goto out_unlock;
225 
226 	for (i = 0; i < ctrl->nr_changed_ns; i++) {
227 		if (ctrl->changed_ns_list[i] == nsid)
228 			goto out_unlock;
229 	}
230 
231 	if (ctrl->nr_changed_ns == NVME_MAX_CHANGED_NAMESPACES) {
232 		ctrl->changed_ns_list[0] = cpu_to_le32(0xffffffff);
233 		ctrl->nr_changed_ns = U32_MAX;
234 		goto out_unlock;
235 	}
236 
237 	ctrl->changed_ns_list[ctrl->nr_changed_ns++] = nsid;
238 out_unlock:
239 	mutex_unlock(&ctrl->lock);
240 }
241 
nvmet_ns_changed(struct nvmet_subsys * subsys,u32 nsid)242 void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid)
243 {
244 	struct nvmet_ctrl *ctrl;
245 
246 	lockdep_assert_held(&subsys->lock);
247 
248 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
249 		nvmet_add_to_changed_ns_log(ctrl, cpu_to_le32(nsid));
250 		if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_NS_ATTR))
251 			continue;
252 		nvmet_add_async_event(ctrl, NVME_AER_NOTICE,
253 				NVME_AER_NOTICE_NS_CHANGED,
254 				NVME_LOG_CHANGED_NS);
255 	}
256 }
257 
nvmet_send_ana_event(struct nvmet_subsys * subsys,struct nvmet_port * port)258 void nvmet_send_ana_event(struct nvmet_subsys *subsys,
259 		struct nvmet_port *port)
260 {
261 	struct nvmet_ctrl *ctrl;
262 
263 	mutex_lock(&subsys->lock);
264 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
265 		if (port && ctrl->port != port)
266 			continue;
267 		if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_ANA_CHANGE))
268 			continue;
269 		nvmet_add_async_event(ctrl, NVME_AER_NOTICE,
270 				NVME_AER_NOTICE_ANA, NVME_LOG_ANA);
271 	}
272 	mutex_unlock(&subsys->lock);
273 }
274 
nvmet_port_send_ana_event(struct nvmet_port * port)275 void nvmet_port_send_ana_event(struct nvmet_port *port)
276 {
277 	struct nvmet_subsys_link *p;
278 
279 	down_read(&nvmet_config_sem);
280 	list_for_each_entry(p, &port->subsystems, entry)
281 		nvmet_send_ana_event(p->subsys, port);
282 	up_read(&nvmet_config_sem);
283 }
284 
nvmet_register_transport(const struct nvmet_fabrics_ops * ops)285 int nvmet_register_transport(const struct nvmet_fabrics_ops *ops)
286 {
287 	int ret = 0;
288 
289 	down_write(&nvmet_config_sem);
290 	if (nvmet_transports[ops->type])
291 		ret = -EINVAL;
292 	else
293 		nvmet_transports[ops->type] = ops;
294 	up_write(&nvmet_config_sem);
295 
296 	return ret;
297 }
298 EXPORT_SYMBOL_GPL(nvmet_register_transport);
299 
nvmet_unregister_transport(const struct nvmet_fabrics_ops * ops)300 void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops)
301 {
302 	down_write(&nvmet_config_sem);
303 	nvmet_transports[ops->type] = NULL;
304 	up_write(&nvmet_config_sem);
305 }
306 EXPORT_SYMBOL_GPL(nvmet_unregister_transport);
307 
nvmet_port_del_ctrls(struct nvmet_port * port,struct nvmet_subsys * subsys)308 void nvmet_port_del_ctrls(struct nvmet_port *port, struct nvmet_subsys *subsys)
309 {
310 	struct nvmet_ctrl *ctrl;
311 
312 	mutex_lock(&subsys->lock);
313 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
314 		if (ctrl->port == port)
315 			ctrl->ops->delete_ctrl(ctrl);
316 	}
317 	mutex_unlock(&subsys->lock);
318 }
319 
nvmet_enable_port(struct nvmet_port * port)320 int nvmet_enable_port(struct nvmet_port *port)
321 {
322 	const struct nvmet_fabrics_ops *ops;
323 	int ret;
324 
325 	lockdep_assert_held(&nvmet_config_sem);
326 
327 	ops = nvmet_transports[port->disc_addr.trtype];
328 	if (!ops) {
329 		up_write(&nvmet_config_sem);
330 		request_module("nvmet-transport-%d", port->disc_addr.trtype);
331 		down_write(&nvmet_config_sem);
332 		ops = nvmet_transports[port->disc_addr.trtype];
333 		if (!ops) {
334 			pr_err("transport type %d not supported\n",
335 				port->disc_addr.trtype);
336 			return -EINVAL;
337 		}
338 	}
339 
340 	if (!try_module_get(ops->owner))
341 		return -EINVAL;
342 
343 	/*
344 	 * If the user requested PI support and the transport isn't pi capable,
345 	 * don't enable the port.
346 	 */
347 	if (port->pi_enable && !(ops->flags & NVMF_METADATA_SUPPORTED)) {
348 		pr_err("T10-PI is not supported by transport type %d\n",
349 		       port->disc_addr.trtype);
350 		ret = -EINVAL;
351 		goto out_put;
352 	}
353 
354 	ret = ops->add_port(port);
355 	if (ret)
356 		goto out_put;
357 
358 	/* If the transport didn't set inline_data_size, then disable it. */
359 	if (port->inline_data_size < 0)
360 		port->inline_data_size = 0;
361 
362 	/*
363 	 * If the transport didn't set the max_queue_size properly, then clamp
364 	 * it to the target limits. Also set default values in case the
365 	 * transport didn't set it at all.
366 	 */
367 	if (port->max_queue_size < 0)
368 		port->max_queue_size = NVMET_MAX_QUEUE_SIZE;
369 	else
370 		port->max_queue_size = clamp_t(int, port->max_queue_size,
371 					       NVMET_MIN_QUEUE_SIZE,
372 					       NVMET_MAX_QUEUE_SIZE);
373 
374 	port->enabled = true;
375 	port->tr_ops = ops;
376 	return 0;
377 
378 out_put:
379 	module_put(ops->owner);
380 	return ret;
381 }
382 
nvmet_disable_port(struct nvmet_port * port)383 void nvmet_disable_port(struct nvmet_port *port)
384 {
385 	const struct nvmet_fabrics_ops *ops;
386 
387 	lockdep_assert_held(&nvmet_config_sem);
388 
389 	port->enabled = false;
390 	port->tr_ops = NULL;
391 
392 	ops = nvmet_transports[port->disc_addr.trtype];
393 	ops->remove_port(port);
394 	module_put(ops->owner);
395 }
396 
nvmet_keep_alive_timer(struct work_struct * work)397 static void nvmet_keep_alive_timer(struct work_struct *work)
398 {
399 	struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work),
400 			struct nvmet_ctrl, ka_work);
401 	bool reset_tbkas = ctrl->reset_tbkas;
402 
403 	ctrl->reset_tbkas = false;
404 	if (reset_tbkas) {
405 		pr_debug("ctrl %d reschedule traffic based keep-alive timer\n",
406 			ctrl->cntlid);
407 		queue_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ);
408 		return;
409 	}
410 
411 	pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n",
412 		ctrl->cntlid, ctrl->kato);
413 
414 	nvmet_ctrl_fatal_error(ctrl);
415 }
416 
nvmet_start_keep_alive_timer(struct nvmet_ctrl * ctrl)417 void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl)
418 {
419 	if (unlikely(ctrl->kato == 0))
420 		return;
421 
422 	pr_debug("ctrl %d start keep-alive timer for %d secs\n",
423 		ctrl->cntlid, ctrl->kato);
424 
425 	queue_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ);
426 }
427 
nvmet_stop_keep_alive_timer(struct nvmet_ctrl * ctrl)428 void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl)
429 {
430 	if (unlikely(ctrl->kato == 0))
431 		return;
432 
433 	pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid);
434 
435 	cancel_delayed_work_sync(&ctrl->ka_work);
436 }
437 
nvmet_req_find_ns(struct nvmet_req * req)438 u16 nvmet_req_find_ns(struct nvmet_req *req)
439 {
440 	u32 nsid = le32_to_cpu(req->cmd->common.nsid);
441 	struct nvmet_subsys *subsys = nvmet_req_subsys(req);
442 
443 	req->ns = xa_load(&subsys->namespaces, nsid);
444 	if (unlikely(!req->ns)) {
445 		req->error_loc = offsetof(struct nvme_common_command, nsid);
446 		if (nvmet_subsys_nsid_exists(subsys, nsid))
447 			return NVME_SC_INTERNAL_PATH_ERROR;
448 		return NVME_SC_INVALID_NS | NVME_STATUS_DNR;
449 	}
450 
451 	percpu_ref_get(&req->ns->ref);
452 	return NVME_SC_SUCCESS;
453 }
454 
nvmet_destroy_namespace(struct percpu_ref * ref)455 static void nvmet_destroy_namespace(struct percpu_ref *ref)
456 {
457 	struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref);
458 
459 	complete(&ns->disable_done);
460 }
461 
nvmet_put_namespace(struct nvmet_ns * ns)462 void nvmet_put_namespace(struct nvmet_ns *ns)
463 {
464 	percpu_ref_put(&ns->ref);
465 }
466 
nvmet_ns_dev_disable(struct nvmet_ns * ns)467 static void nvmet_ns_dev_disable(struct nvmet_ns *ns)
468 {
469 	nvmet_bdev_ns_disable(ns);
470 	nvmet_file_ns_disable(ns);
471 }
472 
nvmet_p2pmem_ns_enable(struct nvmet_ns * ns)473 static int nvmet_p2pmem_ns_enable(struct nvmet_ns *ns)
474 {
475 	int ret;
476 	struct pci_dev *p2p_dev;
477 
478 	if (!ns->use_p2pmem)
479 		return 0;
480 
481 	if (!ns->bdev) {
482 		pr_err("peer-to-peer DMA is not supported by non-block device namespaces\n");
483 		return -EINVAL;
484 	}
485 
486 	if (!blk_queue_pci_p2pdma(ns->bdev->bd_disk->queue)) {
487 		pr_err("peer-to-peer DMA is not supported by the driver of %s\n",
488 		       ns->device_path);
489 		return -EINVAL;
490 	}
491 
492 	if (ns->p2p_dev) {
493 		ret = pci_p2pdma_distance(ns->p2p_dev, nvmet_ns_dev(ns), true);
494 		if (ret < 0)
495 			return -EINVAL;
496 	} else {
497 		/*
498 		 * Right now we just check that there is p2pmem available so
499 		 * we can report an error to the user right away if there
500 		 * is not. We'll find the actual device to use once we
501 		 * setup the controller when the port's device is available.
502 		 */
503 
504 		p2p_dev = pci_p2pmem_find(nvmet_ns_dev(ns));
505 		if (!p2p_dev) {
506 			pr_err("no peer-to-peer memory is available for %s\n",
507 			       ns->device_path);
508 			return -EINVAL;
509 		}
510 
511 		pci_dev_put(p2p_dev);
512 	}
513 
514 	return 0;
515 }
516 
517 /*
518  * Note: ctrl->subsys->lock should be held when calling this function
519  */
nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl * ctrl,struct nvmet_ns * ns)520 static void nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl *ctrl,
521 				    struct nvmet_ns *ns)
522 {
523 	struct device *clients[2];
524 	struct pci_dev *p2p_dev;
525 	int ret;
526 
527 	if (!ctrl->p2p_client || !ns->use_p2pmem)
528 		return;
529 
530 	if (ns->p2p_dev) {
531 		ret = pci_p2pdma_distance(ns->p2p_dev, ctrl->p2p_client, true);
532 		if (ret < 0)
533 			return;
534 
535 		p2p_dev = pci_dev_get(ns->p2p_dev);
536 	} else {
537 		clients[0] = ctrl->p2p_client;
538 		clients[1] = nvmet_ns_dev(ns);
539 
540 		p2p_dev = pci_p2pmem_find_many(clients, ARRAY_SIZE(clients));
541 		if (!p2p_dev) {
542 			pr_err("no peer-to-peer memory is available that's supported by %s and %s\n",
543 			       dev_name(ctrl->p2p_client), ns->device_path);
544 			return;
545 		}
546 	}
547 
548 	ret = radix_tree_insert(&ctrl->p2p_ns_map, ns->nsid, p2p_dev);
549 	if (ret < 0)
550 		pci_dev_put(p2p_dev);
551 
552 	pr_info("using p2pmem on %s for nsid %d\n", pci_name(p2p_dev),
553 		ns->nsid);
554 }
555 
nvmet_ns_revalidate(struct nvmet_ns * ns)556 bool nvmet_ns_revalidate(struct nvmet_ns *ns)
557 {
558 	loff_t oldsize = ns->size;
559 
560 	if (ns->bdev)
561 		nvmet_bdev_ns_revalidate(ns);
562 	else
563 		nvmet_file_ns_revalidate(ns);
564 
565 	return oldsize != ns->size;
566 }
567 
nvmet_ns_enable(struct nvmet_ns * ns)568 int nvmet_ns_enable(struct nvmet_ns *ns)
569 {
570 	struct nvmet_subsys *subsys = ns->subsys;
571 	struct nvmet_ctrl *ctrl;
572 	int ret;
573 
574 	mutex_lock(&subsys->lock);
575 	ret = 0;
576 
577 	if (nvmet_is_passthru_subsys(subsys)) {
578 		pr_info("cannot enable both passthru and regular namespaces for a single subsystem");
579 		goto out_unlock;
580 	}
581 
582 	if (ns->enabled)
583 		goto out_unlock;
584 
585 	ret = -EMFILE;
586 	if (subsys->nr_namespaces == NVMET_MAX_NAMESPACES)
587 		goto out_unlock;
588 
589 	ret = nvmet_bdev_ns_enable(ns);
590 	if (ret == -ENOTBLK)
591 		ret = nvmet_file_ns_enable(ns);
592 	if (ret)
593 		goto out_unlock;
594 
595 	ret = nvmet_p2pmem_ns_enable(ns);
596 	if (ret)
597 		goto out_dev_disable;
598 
599 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
600 		nvmet_p2pmem_ns_add_p2p(ctrl, ns);
601 
602 	ret = percpu_ref_init(&ns->ref, nvmet_destroy_namespace,
603 				0, GFP_KERNEL);
604 	if (ret)
605 		goto out_dev_put;
606 
607 	if (ns->nsid > subsys->max_nsid)
608 		subsys->max_nsid = ns->nsid;
609 
610 	ret = xa_insert(&subsys->namespaces, ns->nsid, ns, GFP_KERNEL);
611 	if (ret)
612 		goto out_restore_subsys_maxnsid;
613 
614 	subsys->nr_namespaces++;
615 
616 	nvmet_ns_changed(subsys, ns->nsid);
617 	ns->enabled = true;
618 	ret = 0;
619 out_unlock:
620 	mutex_unlock(&subsys->lock);
621 	return ret;
622 
623 out_restore_subsys_maxnsid:
624 	subsys->max_nsid = nvmet_max_nsid(subsys);
625 	percpu_ref_exit(&ns->ref);
626 out_dev_put:
627 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
628 		pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
629 out_dev_disable:
630 	nvmet_ns_dev_disable(ns);
631 	goto out_unlock;
632 }
633 
nvmet_ns_disable(struct nvmet_ns * ns)634 void nvmet_ns_disable(struct nvmet_ns *ns)
635 {
636 	struct nvmet_subsys *subsys = ns->subsys;
637 	struct nvmet_ctrl *ctrl;
638 
639 	mutex_lock(&subsys->lock);
640 	if (!ns->enabled)
641 		goto out_unlock;
642 
643 	ns->enabled = false;
644 	xa_erase(&ns->subsys->namespaces, ns->nsid);
645 	if (ns->nsid == subsys->max_nsid)
646 		subsys->max_nsid = nvmet_max_nsid(subsys);
647 
648 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
649 		pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
650 
651 	mutex_unlock(&subsys->lock);
652 
653 	/*
654 	 * Now that we removed the namespaces from the lookup list, we
655 	 * can kill the per_cpu ref and wait for any remaining references
656 	 * to be dropped, as well as a RCU grace period for anyone only
657 	 * using the namepace under rcu_read_lock().  Note that we can't
658 	 * use call_rcu here as we need to ensure the namespaces have
659 	 * been fully destroyed before unloading the module.
660 	 */
661 	percpu_ref_kill(&ns->ref);
662 	synchronize_rcu();
663 	wait_for_completion(&ns->disable_done);
664 	percpu_ref_exit(&ns->ref);
665 
666 	mutex_lock(&subsys->lock);
667 
668 	subsys->nr_namespaces--;
669 	nvmet_ns_changed(subsys, ns->nsid);
670 	nvmet_ns_dev_disable(ns);
671 out_unlock:
672 	mutex_unlock(&subsys->lock);
673 }
674 
nvmet_ns_free(struct nvmet_ns * ns)675 void nvmet_ns_free(struct nvmet_ns *ns)
676 {
677 	nvmet_ns_disable(ns);
678 
679 	down_write(&nvmet_ana_sem);
680 	nvmet_ana_group_enabled[ns->anagrpid]--;
681 	up_write(&nvmet_ana_sem);
682 
683 	kfree(ns->device_path);
684 	kfree(ns);
685 }
686 
nvmet_ns_alloc(struct nvmet_subsys * subsys,u32 nsid)687 struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid)
688 {
689 	struct nvmet_ns *ns;
690 
691 	ns = kzalloc(sizeof(*ns), GFP_KERNEL);
692 	if (!ns)
693 		return NULL;
694 
695 	init_completion(&ns->disable_done);
696 
697 	ns->nsid = nsid;
698 	ns->subsys = subsys;
699 
700 	down_write(&nvmet_ana_sem);
701 	ns->anagrpid = NVMET_DEFAULT_ANA_GRPID;
702 	nvmet_ana_group_enabled[ns->anagrpid]++;
703 	up_write(&nvmet_ana_sem);
704 
705 	uuid_gen(&ns->uuid);
706 	ns->buffered_io = false;
707 	ns->csi = NVME_CSI_NVM;
708 
709 	return ns;
710 }
711 
nvmet_update_sq_head(struct nvmet_req * req)712 static void nvmet_update_sq_head(struct nvmet_req *req)
713 {
714 	if (req->sq->size) {
715 		u32 old_sqhd, new_sqhd;
716 
717 		old_sqhd = READ_ONCE(req->sq->sqhd);
718 		do {
719 			new_sqhd = (old_sqhd + 1) % req->sq->size;
720 		} while (!try_cmpxchg(&req->sq->sqhd, &old_sqhd, new_sqhd));
721 	}
722 	req->cqe->sq_head = cpu_to_le16(req->sq->sqhd & 0x0000FFFF);
723 }
724 
nvmet_set_error(struct nvmet_req * req,u16 status)725 static void nvmet_set_error(struct nvmet_req *req, u16 status)
726 {
727 	struct nvmet_ctrl *ctrl = req->sq->ctrl;
728 	struct nvme_error_slot *new_error_slot;
729 	unsigned long flags;
730 
731 	req->cqe->status = cpu_to_le16(status << 1);
732 
733 	if (!ctrl || req->error_loc == NVMET_NO_ERROR_LOC)
734 		return;
735 
736 	spin_lock_irqsave(&ctrl->error_lock, flags);
737 	ctrl->err_counter++;
738 	new_error_slot =
739 		&ctrl->slots[ctrl->err_counter % NVMET_ERROR_LOG_SLOTS];
740 
741 	new_error_slot->error_count = cpu_to_le64(ctrl->err_counter);
742 	new_error_slot->sqid = cpu_to_le16(req->sq->qid);
743 	new_error_slot->cmdid = cpu_to_le16(req->cmd->common.command_id);
744 	new_error_slot->status_field = cpu_to_le16(status << 1);
745 	new_error_slot->param_error_location = cpu_to_le16(req->error_loc);
746 	new_error_slot->lba = cpu_to_le64(req->error_slba);
747 	new_error_slot->nsid = req->cmd->common.nsid;
748 	spin_unlock_irqrestore(&ctrl->error_lock, flags);
749 
750 	/* set the more bit for this request */
751 	req->cqe->status |= cpu_to_le16(1 << 14);
752 }
753 
__nvmet_req_complete(struct nvmet_req * req,u16 status)754 static void __nvmet_req_complete(struct nvmet_req *req, u16 status)
755 {
756 	struct nvmet_ns *ns = req->ns;
757 
758 	if (!req->sq->sqhd_disabled)
759 		nvmet_update_sq_head(req);
760 	req->cqe->sq_id = cpu_to_le16(req->sq->qid);
761 	req->cqe->command_id = req->cmd->common.command_id;
762 
763 	if (unlikely(status))
764 		nvmet_set_error(req, status);
765 
766 	trace_nvmet_req_complete(req);
767 
768 	req->ops->queue_response(req);
769 	if (ns)
770 		nvmet_put_namespace(ns);
771 }
772 
nvmet_req_complete(struct nvmet_req * req,u16 status)773 void nvmet_req_complete(struct nvmet_req *req, u16 status)
774 {
775 	struct nvmet_sq *sq = req->sq;
776 
777 	__nvmet_req_complete(req, status);
778 	percpu_ref_put(&sq->ref);
779 }
780 EXPORT_SYMBOL_GPL(nvmet_req_complete);
781 
nvmet_cq_setup(struct nvmet_ctrl * ctrl,struct nvmet_cq * cq,u16 qid,u16 size)782 void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq,
783 		u16 qid, u16 size)
784 {
785 	cq->qid = qid;
786 	cq->size = size;
787 }
788 
nvmet_sq_setup(struct nvmet_ctrl * ctrl,struct nvmet_sq * sq,u16 qid,u16 size)789 void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq,
790 		u16 qid, u16 size)
791 {
792 	sq->sqhd = 0;
793 	sq->qid = qid;
794 	sq->size = size;
795 
796 	ctrl->sqs[qid] = sq;
797 }
798 
nvmet_confirm_sq(struct percpu_ref * ref)799 static void nvmet_confirm_sq(struct percpu_ref *ref)
800 {
801 	struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
802 
803 	complete(&sq->confirm_done);
804 }
805 
nvmet_sq_destroy(struct nvmet_sq * sq)806 void nvmet_sq_destroy(struct nvmet_sq *sq)
807 {
808 	struct nvmet_ctrl *ctrl = sq->ctrl;
809 
810 	/*
811 	 * If this is the admin queue, complete all AERs so that our
812 	 * queue doesn't have outstanding requests on it.
813 	 */
814 	if (ctrl && ctrl->sqs && ctrl->sqs[0] == sq)
815 		nvmet_async_events_failall(ctrl);
816 	percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq);
817 	wait_for_completion(&sq->confirm_done);
818 	wait_for_completion(&sq->free_done);
819 	percpu_ref_exit(&sq->ref);
820 	nvmet_auth_sq_free(sq);
821 
822 	/*
823 	 * we must reference the ctrl again after waiting for inflight IO
824 	 * to complete. Because admin connect may have sneaked in after we
825 	 * store sq->ctrl locally, but before we killed the percpu_ref. the
826 	 * admin connect allocates and assigns sq->ctrl, which now needs a
827 	 * final ref put, as this ctrl is going away.
828 	 */
829 	ctrl = sq->ctrl;
830 
831 	if (ctrl) {
832 		/*
833 		 * The teardown flow may take some time, and the host may not
834 		 * send us keep-alive during this period, hence reset the
835 		 * traffic based keep-alive timer so we don't trigger a
836 		 * controller teardown as a result of a keep-alive expiration.
837 		 */
838 		ctrl->reset_tbkas = true;
839 		sq->ctrl->sqs[sq->qid] = NULL;
840 		nvmet_ctrl_put(ctrl);
841 		sq->ctrl = NULL; /* allows reusing the queue later */
842 	}
843 }
844 EXPORT_SYMBOL_GPL(nvmet_sq_destroy);
845 
nvmet_sq_free(struct percpu_ref * ref)846 static void nvmet_sq_free(struct percpu_ref *ref)
847 {
848 	struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
849 
850 	complete(&sq->free_done);
851 }
852 
nvmet_sq_init(struct nvmet_sq * sq)853 int nvmet_sq_init(struct nvmet_sq *sq)
854 {
855 	int ret;
856 
857 	ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL);
858 	if (ret) {
859 		pr_err("percpu_ref init failed!\n");
860 		return ret;
861 	}
862 	init_completion(&sq->free_done);
863 	init_completion(&sq->confirm_done);
864 	nvmet_auth_sq_init(sq);
865 
866 	return 0;
867 }
868 EXPORT_SYMBOL_GPL(nvmet_sq_init);
869 
nvmet_check_ana_state(struct nvmet_port * port,struct nvmet_ns * ns)870 static inline u16 nvmet_check_ana_state(struct nvmet_port *port,
871 		struct nvmet_ns *ns)
872 {
873 	enum nvme_ana_state state = port->ana_state[ns->anagrpid];
874 
875 	if (unlikely(state == NVME_ANA_INACCESSIBLE))
876 		return NVME_SC_ANA_INACCESSIBLE;
877 	if (unlikely(state == NVME_ANA_PERSISTENT_LOSS))
878 		return NVME_SC_ANA_PERSISTENT_LOSS;
879 	if (unlikely(state == NVME_ANA_CHANGE))
880 		return NVME_SC_ANA_TRANSITION;
881 	return 0;
882 }
883 
nvmet_io_cmd_check_access(struct nvmet_req * req)884 static inline u16 nvmet_io_cmd_check_access(struct nvmet_req *req)
885 {
886 	if (unlikely(req->ns->readonly)) {
887 		switch (req->cmd->common.opcode) {
888 		case nvme_cmd_read:
889 		case nvme_cmd_flush:
890 			break;
891 		default:
892 			return NVME_SC_NS_WRITE_PROTECTED;
893 		}
894 	}
895 
896 	return 0;
897 }
898 
nvmet_parse_io_cmd(struct nvmet_req * req)899 static u16 nvmet_parse_io_cmd(struct nvmet_req *req)
900 {
901 	struct nvme_command *cmd = req->cmd;
902 	u16 ret;
903 
904 	if (nvme_is_fabrics(cmd))
905 		return nvmet_parse_fabrics_io_cmd(req);
906 
907 	if (unlikely(!nvmet_check_auth_status(req)))
908 		return NVME_SC_AUTH_REQUIRED | NVME_STATUS_DNR;
909 
910 	ret = nvmet_check_ctrl_status(req);
911 	if (unlikely(ret))
912 		return ret;
913 
914 	if (nvmet_is_passthru_req(req))
915 		return nvmet_parse_passthru_io_cmd(req);
916 
917 	ret = nvmet_req_find_ns(req);
918 	if (unlikely(ret))
919 		return ret;
920 
921 	ret = nvmet_check_ana_state(req->port, req->ns);
922 	if (unlikely(ret)) {
923 		req->error_loc = offsetof(struct nvme_common_command, nsid);
924 		return ret;
925 	}
926 	ret = nvmet_io_cmd_check_access(req);
927 	if (unlikely(ret)) {
928 		req->error_loc = offsetof(struct nvme_common_command, nsid);
929 		return ret;
930 	}
931 
932 	switch (req->ns->csi) {
933 	case NVME_CSI_NVM:
934 		if (req->ns->file)
935 			return nvmet_file_parse_io_cmd(req);
936 		return nvmet_bdev_parse_io_cmd(req);
937 	case NVME_CSI_ZNS:
938 		if (IS_ENABLED(CONFIG_BLK_DEV_ZONED))
939 			return nvmet_bdev_zns_parse_io_cmd(req);
940 		return NVME_SC_INVALID_IO_CMD_SET;
941 	default:
942 		return NVME_SC_INVALID_IO_CMD_SET;
943 	}
944 }
945 
nvmet_req_init(struct nvmet_req * req,struct nvmet_cq * cq,struct nvmet_sq * sq,const struct nvmet_fabrics_ops * ops)946 bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq,
947 		struct nvmet_sq *sq, const struct nvmet_fabrics_ops *ops)
948 {
949 	u8 flags = req->cmd->common.flags;
950 	u16 status;
951 
952 	req->cq = cq;
953 	req->sq = sq;
954 	req->ops = ops;
955 	req->sg = NULL;
956 	req->metadata_sg = NULL;
957 	req->sg_cnt = 0;
958 	req->metadata_sg_cnt = 0;
959 	req->transfer_len = 0;
960 	req->metadata_len = 0;
961 	req->cqe->result.u64 = 0;
962 	req->cqe->status = 0;
963 	req->cqe->sq_head = 0;
964 	req->ns = NULL;
965 	req->error_loc = NVMET_NO_ERROR_LOC;
966 	req->error_slba = 0;
967 
968 	/* no support for fused commands yet */
969 	if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) {
970 		req->error_loc = offsetof(struct nvme_common_command, flags);
971 		status = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
972 		goto fail;
973 	}
974 
975 	/*
976 	 * For fabrics, PSDT field shall describe metadata pointer (MPTR) that
977 	 * contains an address of a single contiguous physical buffer that is
978 	 * byte aligned.
979 	 */
980 	if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF)) {
981 		req->error_loc = offsetof(struct nvme_common_command, flags);
982 		status = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
983 		goto fail;
984 	}
985 
986 	if (unlikely(!req->sq->ctrl))
987 		/* will return an error for any non-connect command: */
988 		status = nvmet_parse_connect_cmd(req);
989 	else if (likely(req->sq->qid != 0))
990 		status = nvmet_parse_io_cmd(req);
991 	else
992 		status = nvmet_parse_admin_cmd(req);
993 
994 	if (status)
995 		goto fail;
996 
997 	trace_nvmet_req_init(req, req->cmd);
998 
999 	if (unlikely(!percpu_ref_tryget_live(&sq->ref))) {
1000 		status = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
1001 		goto fail;
1002 	}
1003 
1004 	if (sq->ctrl)
1005 		sq->ctrl->reset_tbkas = true;
1006 
1007 	return true;
1008 
1009 fail:
1010 	__nvmet_req_complete(req, status);
1011 	return false;
1012 }
1013 EXPORT_SYMBOL_GPL(nvmet_req_init);
1014 
nvmet_req_uninit(struct nvmet_req * req)1015 void nvmet_req_uninit(struct nvmet_req *req)
1016 {
1017 	percpu_ref_put(&req->sq->ref);
1018 	if (req->ns)
1019 		nvmet_put_namespace(req->ns);
1020 }
1021 EXPORT_SYMBOL_GPL(nvmet_req_uninit);
1022 
nvmet_check_transfer_len(struct nvmet_req * req,size_t len)1023 bool nvmet_check_transfer_len(struct nvmet_req *req, size_t len)
1024 {
1025 	if (unlikely(len != req->transfer_len)) {
1026 		req->error_loc = offsetof(struct nvme_common_command, dptr);
1027 		nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_STATUS_DNR);
1028 		return false;
1029 	}
1030 
1031 	return true;
1032 }
1033 EXPORT_SYMBOL_GPL(nvmet_check_transfer_len);
1034 
nvmet_check_data_len_lte(struct nvmet_req * req,size_t data_len)1035 bool nvmet_check_data_len_lte(struct nvmet_req *req, size_t data_len)
1036 {
1037 	if (unlikely(data_len > req->transfer_len)) {
1038 		req->error_loc = offsetof(struct nvme_common_command, dptr);
1039 		nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_STATUS_DNR);
1040 		return false;
1041 	}
1042 
1043 	return true;
1044 }
1045 
nvmet_data_transfer_len(struct nvmet_req * req)1046 static unsigned int nvmet_data_transfer_len(struct nvmet_req *req)
1047 {
1048 	return req->transfer_len - req->metadata_len;
1049 }
1050 
nvmet_req_alloc_p2pmem_sgls(struct pci_dev * p2p_dev,struct nvmet_req * req)1051 static int nvmet_req_alloc_p2pmem_sgls(struct pci_dev *p2p_dev,
1052 		struct nvmet_req *req)
1053 {
1054 	req->sg = pci_p2pmem_alloc_sgl(p2p_dev, &req->sg_cnt,
1055 			nvmet_data_transfer_len(req));
1056 	if (!req->sg)
1057 		goto out_err;
1058 
1059 	if (req->metadata_len) {
1060 		req->metadata_sg = pci_p2pmem_alloc_sgl(p2p_dev,
1061 				&req->metadata_sg_cnt, req->metadata_len);
1062 		if (!req->metadata_sg)
1063 			goto out_free_sg;
1064 	}
1065 
1066 	req->p2p_dev = p2p_dev;
1067 
1068 	return 0;
1069 out_free_sg:
1070 	pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
1071 out_err:
1072 	return -ENOMEM;
1073 }
1074 
nvmet_req_find_p2p_dev(struct nvmet_req * req)1075 static struct pci_dev *nvmet_req_find_p2p_dev(struct nvmet_req *req)
1076 {
1077 	if (!IS_ENABLED(CONFIG_PCI_P2PDMA) ||
1078 	    !req->sq->ctrl || !req->sq->qid || !req->ns)
1079 		return NULL;
1080 	return radix_tree_lookup(&req->sq->ctrl->p2p_ns_map, req->ns->nsid);
1081 }
1082 
nvmet_req_alloc_sgls(struct nvmet_req * req)1083 int nvmet_req_alloc_sgls(struct nvmet_req *req)
1084 {
1085 	struct pci_dev *p2p_dev = nvmet_req_find_p2p_dev(req);
1086 
1087 	if (p2p_dev && !nvmet_req_alloc_p2pmem_sgls(p2p_dev, req))
1088 		return 0;
1089 
1090 	req->sg = sgl_alloc(nvmet_data_transfer_len(req), GFP_KERNEL,
1091 			    &req->sg_cnt);
1092 	if (unlikely(!req->sg))
1093 		goto out;
1094 
1095 	if (req->metadata_len) {
1096 		req->metadata_sg = sgl_alloc(req->metadata_len, GFP_KERNEL,
1097 					     &req->metadata_sg_cnt);
1098 		if (unlikely(!req->metadata_sg))
1099 			goto out_free;
1100 	}
1101 
1102 	return 0;
1103 out_free:
1104 	sgl_free(req->sg);
1105 out:
1106 	return -ENOMEM;
1107 }
1108 EXPORT_SYMBOL_GPL(nvmet_req_alloc_sgls);
1109 
nvmet_req_free_sgls(struct nvmet_req * req)1110 void nvmet_req_free_sgls(struct nvmet_req *req)
1111 {
1112 	if (req->p2p_dev) {
1113 		pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
1114 		if (req->metadata_sg)
1115 			pci_p2pmem_free_sgl(req->p2p_dev, req->metadata_sg);
1116 		req->p2p_dev = NULL;
1117 	} else {
1118 		sgl_free(req->sg);
1119 		if (req->metadata_sg)
1120 			sgl_free(req->metadata_sg);
1121 	}
1122 
1123 	req->sg = NULL;
1124 	req->metadata_sg = NULL;
1125 	req->sg_cnt = 0;
1126 	req->metadata_sg_cnt = 0;
1127 }
1128 EXPORT_SYMBOL_GPL(nvmet_req_free_sgls);
1129 
nvmet_cc_en(u32 cc)1130 static inline bool nvmet_cc_en(u32 cc)
1131 {
1132 	return (cc >> NVME_CC_EN_SHIFT) & 0x1;
1133 }
1134 
nvmet_cc_css(u32 cc)1135 static inline u8 nvmet_cc_css(u32 cc)
1136 {
1137 	return (cc >> NVME_CC_CSS_SHIFT) & 0x7;
1138 }
1139 
nvmet_cc_mps(u32 cc)1140 static inline u8 nvmet_cc_mps(u32 cc)
1141 {
1142 	return (cc >> NVME_CC_MPS_SHIFT) & 0xf;
1143 }
1144 
nvmet_cc_ams(u32 cc)1145 static inline u8 nvmet_cc_ams(u32 cc)
1146 {
1147 	return (cc >> NVME_CC_AMS_SHIFT) & 0x7;
1148 }
1149 
nvmet_cc_shn(u32 cc)1150 static inline u8 nvmet_cc_shn(u32 cc)
1151 {
1152 	return (cc >> NVME_CC_SHN_SHIFT) & 0x3;
1153 }
1154 
nvmet_cc_iosqes(u32 cc)1155 static inline u8 nvmet_cc_iosqes(u32 cc)
1156 {
1157 	return (cc >> NVME_CC_IOSQES_SHIFT) & 0xf;
1158 }
1159 
nvmet_cc_iocqes(u32 cc)1160 static inline u8 nvmet_cc_iocqes(u32 cc)
1161 {
1162 	return (cc >> NVME_CC_IOCQES_SHIFT) & 0xf;
1163 }
1164 
nvmet_css_supported(u8 cc_css)1165 static inline bool nvmet_css_supported(u8 cc_css)
1166 {
1167 	switch (cc_css << NVME_CC_CSS_SHIFT) {
1168 	case NVME_CC_CSS_NVM:
1169 	case NVME_CC_CSS_CSI:
1170 		return true;
1171 	default:
1172 		return false;
1173 	}
1174 }
1175 
nvmet_start_ctrl(struct nvmet_ctrl * ctrl)1176 static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl)
1177 {
1178 	lockdep_assert_held(&ctrl->lock);
1179 
1180 	/*
1181 	 * Only I/O controllers should verify iosqes,iocqes.
1182 	 * Strictly speaking, the spec says a discovery controller
1183 	 * should verify iosqes,iocqes are zeroed, however that
1184 	 * would break backwards compatibility, so don't enforce it.
1185 	 */
1186 	if (!nvmet_is_disc_subsys(ctrl->subsys) &&
1187 	    (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES ||
1188 	     nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES)) {
1189 		ctrl->csts = NVME_CSTS_CFS;
1190 		return;
1191 	}
1192 
1193 	if (nvmet_cc_mps(ctrl->cc) != 0 ||
1194 	    nvmet_cc_ams(ctrl->cc) != 0 ||
1195 	    !nvmet_css_supported(nvmet_cc_css(ctrl->cc))) {
1196 		ctrl->csts = NVME_CSTS_CFS;
1197 		return;
1198 	}
1199 
1200 	ctrl->csts = NVME_CSTS_RDY;
1201 
1202 	/*
1203 	 * Controllers that are not yet enabled should not really enforce the
1204 	 * keep alive timeout, but we still want to track a timeout and cleanup
1205 	 * in case a host died before it enabled the controller.  Hence, simply
1206 	 * reset the keep alive timer when the controller is enabled.
1207 	 */
1208 	if (ctrl->kato)
1209 		mod_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ);
1210 }
1211 
nvmet_clear_ctrl(struct nvmet_ctrl * ctrl)1212 static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl)
1213 {
1214 	lockdep_assert_held(&ctrl->lock);
1215 
1216 	/* XXX: tear down queues? */
1217 	ctrl->csts &= ~NVME_CSTS_RDY;
1218 	ctrl->cc = 0;
1219 }
1220 
nvmet_update_cc(struct nvmet_ctrl * ctrl,u32 new)1221 void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new)
1222 {
1223 	u32 old;
1224 
1225 	mutex_lock(&ctrl->lock);
1226 	old = ctrl->cc;
1227 	ctrl->cc = new;
1228 
1229 	if (nvmet_cc_en(new) && !nvmet_cc_en(old))
1230 		nvmet_start_ctrl(ctrl);
1231 	if (!nvmet_cc_en(new) && nvmet_cc_en(old))
1232 		nvmet_clear_ctrl(ctrl);
1233 	if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) {
1234 		nvmet_clear_ctrl(ctrl);
1235 		ctrl->csts |= NVME_CSTS_SHST_CMPLT;
1236 	}
1237 	if (!nvmet_cc_shn(new) && nvmet_cc_shn(old))
1238 		ctrl->csts &= ~NVME_CSTS_SHST_CMPLT;
1239 	mutex_unlock(&ctrl->lock);
1240 }
1241 
nvmet_init_cap(struct nvmet_ctrl * ctrl)1242 static void nvmet_init_cap(struct nvmet_ctrl *ctrl)
1243 {
1244 	/* command sets supported: NVMe command set: */
1245 	ctrl->cap = (1ULL << 37);
1246 	/* Controller supports one or more I/O Command Sets */
1247 	ctrl->cap |= (1ULL << 43);
1248 	/* CC.EN timeout in 500msec units: */
1249 	ctrl->cap |= (15ULL << 24);
1250 	/* maximum queue entries supported: */
1251 	if (ctrl->ops->get_max_queue_size)
1252 		ctrl->cap |= min_t(u16, ctrl->ops->get_max_queue_size(ctrl),
1253 				   ctrl->port->max_queue_size) - 1;
1254 	else
1255 		ctrl->cap |= ctrl->port->max_queue_size - 1;
1256 
1257 	if (nvmet_is_passthru_subsys(ctrl->subsys))
1258 		nvmet_passthrough_override_cap(ctrl);
1259 }
1260 
nvmet_ctrl_find_get(const char * subsysnqn,const char * hostnqn,u16 cntlid,struct nvmet_req * req)1261 struct nvmet_ctrl *nvmet_ctrl_find_get(const char *subsysnqn,
1262 				       const char *hostnqn, u16 cntlid,
1263 				       struct nvmet_req *req)
1264 {
1265 	struct nvmet_ctrl *ctrl = NULL;
1266 	struct nvmet_subsys *subsys;
1267 
1268 	subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1269 	if (!subsys) {
1270 		pr_warn("connect request for invalid subsystem %s!\n",
1271 			subsysnqn);
1272 		req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1273 		goto out;
1274 	}
1275 
1276 	mutex_lock(&subsys->lock);
1277 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
1278 		if (ctrl->cntlid == cntlid) {
1279 			if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) {
1280 				pr_warn("hostnqn mismatch.\n");
1281 				continue;
1282 			}
1283 			if (!kref_get_unless_zero(&ctrl->ref))
1284 				continue;
1285 
1286 			/* ctrl found */
1287 			goto found;
1288 		}
1289 	}
1290 
1291 	ctrl = NULL; /* ctrl not found */
1292 	pr_warn("could not find controller %d for subsys %s / host %s\n",
1293 		cntlid, subsysnqn, hostnqn);
1294 	req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid);
1295 
1296 found:
1297 	mutex_unlock(&subsys->lock);
1298 	nvmet_subsys_put(subsys);
1299 out:
1300 	return ctrl;
1301 }
1302 
nvmet_check_ctrl_status(struct nvmet_req * req)1303 u16 nvmet_check_ctrl_status(struct nvmet_req *req)
1304 {
1305 	if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) {
1306 		pr_err("got cmd %d while CC.EN == 0 on qid = %d\n",
1307 		       req->cmd->common.opcode, req->sq->qid);
1308 		return NVME_SC_CMD_SEQ_ERROR | NVME_STATUS_DNR;
1309 	}
1310 
1311 	if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) {
1312 		pr_err("got cmd %d while CSTS.RDY == 0 on qid = %d\n",
1313 		       req->cmd->common.opcode, req->sq->qid);
1314 		return NVME_SC_CMD_SEQ_ERROR | NVME_STATUS_DNR;
1315 	}
1316 
1317 	if (unlikely(!nvmet_check_auth_status(req))) {
1318 		pr_warn("qid %d not authenticated\n", req->sq->qid);
1319 		return NVME_SC_AUTH_REQUIRED | NVME_STATUS_DNR;
1320 	}
1321 	return 0;
1322 }
1323 
nvmet_host_allowed(struct nvmet_subsys * subsys,const char * hostnqn)1324 bool nvmet_host_allowed(struct nvmet_subsys *subsys, const char *hostnqn)
1325 {
1326 	struct nvmet_host_link *p;
1327 
1328 	lockdep_assert_held(&nvmet_config_sem);
1329 
1330 	if (subsys->allow_any_host)
1331 		return true;
1332 
1333 	if (nvmet_is_disc_subsys(subsys)) /* allow all access to disc subsys */
1334 		return true;
1335 
1336 	list_for_each_entry(p, &subsys->hosts, entry) {
1337 		if (!strcmp(nvmet_host_name(p->host), hostnqn))
1338 			return true;
1339 	}
1340 
1341 	return false;
1342 }
1343 
1344 /*
1345  * Note: ctrl->subsys->lock should be held when calling this function
1346  */
nvmet_setup_p2p_ns_map(struct nvmet_ctrl * ctrl,struct nvmet_req * req)1347 static void nvmet_setup_p2p_ns_map(struct nvmet_ctrl *ctrl,
1348 		struct nvmet_req *req)
1349 {
1350 	struct nvmet_ns *ns;
1351 	unsigned long idx;
1352 
1353 	if (!req->p2p_client)
1354 		return;
1355 
1356 	ctrl->p2p_client = get_device(req->p2p_client);
1357 
1358 	xa_for_each(&ctrl->subsys->namespaces, idx, ns)
1359 		nvmet_p2pmem_ns_add_p2p(ctrl, ns);
1360 }
1361 
1362 /*
1363  * Note: ctrl->subsys->lock should be held when calling this function
1364  */
nvmet_release_p2p_ns_map(struct nvmet_ctrl * ctrl)1365 static void nvmet_release_p2p_ns_map(struct nvmet_ctrl *ctrl)
1366 {
1367 	struct radix_tree_iter iter;
1368 	void __rcu **slot;
1369 
1370 	radix_tree_for_each_slot(slot, &ctrl->p2p_ns_map, &iter, 0)
1371 		pci_dev_put(radix_tree_deref_slot(slot));
1372 
1373 	put_device(ctrl->p2p_client);
1374 }
1375 
nvmet_fatal_error_handler(struct work_struct * work)1376 static void nvmet_fatal_error_handler(struct work_struct *work)
1377 {
1378 	struct nvmet_ctrl *ctrl =
1379 			container_of(work, struct nvmet_ctrl, fatal_err_work);
1380 
1381 	pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid);
1382 	ctrl->ops->delete_ctrl(ctrl);
1383 }
1384 
nvmet_alloc_ctrl(const char * subsysnqn,const char * hostnqn,struct nvmet_req * req,u32 kato,struct nvmet_ctrl ** ctrlp)1385 u16 nvmet_alloc_ctrl(const char *subsysnqn, const char *hostnqn,
1386 		struct nvmet_req *req, u32 kato, struct nvmet_ctrl **ctrlp)
1387 {
1388 	struct nvmet_subsys *subsys;
1389 	struct nvmet_ctrl *ctrl;
1390 	int ret;
1391 	u16 status;
1392 
1393 	status = NVME_SC_CONNECT_INVALID_PARAM | NVME_STATUS_DNR;
1394 	subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1395 	if (!subsys) {
1396 		pr_warn("connect request for invalid subsystem %s!\n",
1397 			subsysnqn);
1398 		req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1399 		req->error_loc = offsetof(struct nvme_common_command, dptr);
1400 		goto out;
1401 	}
1402 
1403 	down_read(&nvmet_config_sem);
1404 	if (!nvmet_host_allowed(subsys, hostnqn)) {
1405 		pr_info("connect by host %s for subsystem %s not allowed\n",
1406 			hostnqn, subsysnqn);
1407 		req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(hostnqn);
1408 		up_read(&nvmet_config_sem);
1409 		status = NVME_SC_CONNECT_INVALID_HOST | NVME_STATUS_DNR;
1410 		req->error_loc = offsetof(struct nvme_common_command, dptr);
1411 		goto out_put_subsystem;
1412 	}
1413 	up_read(&nvmet_config_sem);
1414 
1415 	status = NVME_SC_INTERNAL;
1416 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1417 	if (!ctrl)
1418 		goto out_put_subsystem;
1419 	mutex_init(&ctrl->lock);
1420 
1421 	ctrl->port = req->port;
1422 	ctrl->ops = req->ops;
1423 
1424 #ifdef CONFIG_NVME_TARGET_PASSTHRU
1425 	/* By default, set loop targets to clear IDS by default */
1426 	if (ctrl->port->disc_addr.trtype == NVMF_TRTYPE_LOOP)
1427 		subsys->clear_ids = 1;
1428 #endif
1429 
1430 	INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work);
1431 	INIT_LIST_HEAD(&ctrl->async_events);
1432 	INIT_RADIX_TREE(&ctrl->p2p_ns_map, GFP_KERNEL);
1433 	INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler);
1434 	INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer);
1435 
1436 	memcpy(ctrl->subsysnqn, subsysnqn, NVMF_NQN_SIZE);
1437 	memcpy(ctrl->hostnqn, hostnqn, NVMF_NQN_SIZE);
1438 
1439 	kref_init(&ctrl->ref);
1440 	ctrl->subsys = subsys;
1441 	ctrl->pi_support = ctrl->port->pi_enable && ctrl->subsys->pi_support;
1442 	nvmet_init_cap(ctrl);
1443 	WRITE_ONCE(ctrl->aen_enabled, NVMET_AEN_CFG_OPTIONAL);
1444 
1445 	ctrl->changed_ns_list = kmalloc_array(NVME_MAX_CHANGED_NAMESPACES,
1446 			sizeof(__le32), GFP_KERNEL);
1447 	if (!ctrl->changed_ns_list)
1448 		goto out_free_ctrl;
1449 
1450 	ctrl->sqs = kcalloc(subsys->max_qid + 1,
1451 			sizeof(struct nvmet_sq *),
1452 			GFP_KERNEL);
1453 	if (!ctrl->sqs)
1454 		goto out_free_changed_ns_list;
1455 
1456 	ret = ida_alloc_range(&cntlid_ida,
1457 			     subsys->cntlid_min, subsys->cntlid_max,
1458 			     GFP_KERNEL);
1459 	if (ret < 0) {
1460 		status = NVME_SC_CONNECT_CTRL_BUSY | NVME_STATUS_DNR;
1461 		goto out_free_sqs;
1462 	}
1463 	ctrl->cntlid = ret;
1464 
1465 	/*
1466 	 * Discovery controllers may use some arbitrary high value
1467 	 * in order to cleanup stale discovery sessions
1468 	 */
1469 	if (nvmet_is_disc_subsys(ctrl->subsys) && !kato)
1470 		kato = NVMET_DISC_KATO_MS;
1471 
1472 	/* keep-alive timeout in seconds */
1473 	ctrl->kato = DIV_ROUND_UP(kato, 1000);
1474 
1475 	ctrl->err_counter = 0;
1476 	spin_lock_init(&ctrl->error_lock);
1477 
1478 	nvmet_start_keep_alive_timer(ctrl);
1479 
1480 	mutex_lock(&subsys->lock);
1481 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
1482 	nvmet_setup_p2p_ns_map(ctrl, req);
1483 	nvmet_debugfs_ctrl_setup(ctrl);
1484 	mutex_unlock(&subsys->lock);
1485 
1486 	*ctrlp = ctrl;
1487 	return 0;
1488 
1489 out_free_sqs:
1490 	kfree(ctrl->sqs);
1491 out_free_changed_ns_list:
1492 	kfree(ctrl->changed_ns_list);
1493 out_free_ctrl:
1494 	kfree(ctrl);
1495 out_put_subsystem:
1496 	nvmet_subsys_put(subsys);
1497 out:
1498 	return status;
1499 }
1500 
nvmet_ctrl_free(struct kref * ref)1501 static void nvmet_ctrl_free(struct kref *ref)
1502 {
1503 	struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref);
1504 	struct nvmet_subsys *subsys = ctrl->subsys;
1505 
1506 	mutex_lock(&subsys->lock);
1507 	nvmet_release_p2p_ns_map(ctrl);
1508 	list_del(&ctrl->subsys_entry);
1509 	mutex_unlock(&subsys->lock);
1510 
1511 	nvmet_stop_keep_alive_timer(ctrl);
1512 
1513 	flush_work(&ctrl->async_event_work);
1514 	cancel_work_sync(&ctrl->fatal_err_work);
1515 
1516 	nvmet_destroy_auth(ctrl);
1517 
1518 	nvmet_debugfs_ctrl_free(ctrl);
1519 
1520 	ida_free(&cntlid_ida, ctrl->cntlid);
1521 
1522 	nvmet_async_events_free(ctrl);
1523 	kfree(ctrl->sqs);
1524 	kfree(ctrl->changed_ns_list);
1525 	kfree(ctrl);
1526 
1527 	nvmet_subsys_put(subsys);
1528 }
1529 
nvmet_ctrl_put(struct nvmet_ctrl * ctrl)1530 void nvmet_ctrl_put(struct nvmet_ctrl *ctrl)
1531 {
1532 	kref_put(&ctrl->ref, nvmet_ctrl_free);
1533 }
1534 
nvmet_ctrl_fatal_error(struct nvmet_ctrl * ctrl)1535 void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl)
1536 {
1537 	mutex_lock(&ctrl->lock);
1538 	if (!(ctrl->csts & NVME_CSTS_CFS)) {
1539 		ctrl->csts |= NVME_CSTS_CFS;
1540 		queue_work(nvmet_wq, &ctrl->fatal_err_work);
1541 	}
1542 	mutex_unlock(&ctrl->lock);
1543 }
1544 EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error);
1545 
nvmet_ctrl_host_traddr(struct nvmet_ctrl * ctrl,char * traddr,size_t traddr_len)1546 ssize_t nvmet_ctrl_host_traddr(struct nvmet_ctrl *ctrl,
1547 		char *traddr, size_t traddr_len)
1548 {
1549 	if (!ctrl->ops->host_traddr)
1550 		return -EOPNOTSUPP;
1551 	return ctrl->ops->host_traddr(ctrl, traddr, traddr_len);
1552 }
1553 
nvmet_find_get_subsys(struct nvmet_port * port,const char * subsysnqn)1554 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
1555 		const char *subsysnqn)
1556 {
1557 	struct nvmet_subsys_link *p;
1558 
1559 	if (!port)
1560 		return NULL;
1561 
1562 	if (!strcmp(NVME_DISC_SUBSYS_NAME, subsysnqn)) {
1563 		if (!kref_get_unless_zero(&nvmet_disc_subsys->ref))
1564 			return NULL;
1565 		return nvmet_disc_subsys;
1566 	}
1567 
1568 	down_read(&nvmet_config_sem);
1569 	if (!strncmp(nvmet_disc_subsys->subsysnqn, subsysnqn,
1570 				NVMF_NQN_SIZE)) {
1571 		if (kref_get_unless_zero(&nvmet_disc_subsys->ref)) {
1572 			up_read(&nvmet_config_sem);
1573 			return nvmet_disc_subsys;
1574 		}
1575 	}
1576 	list_for_each_entry(p, &port->subsystems, entry) {
1577 		if (!strncmp(p->subsys->subsysnqn, subsysnqn,
1578 				NVMF_NQN_SIZE)) {
1579 			if (!kref_get_unless_zero(&p->subsys->ref))
1580 				break;
1581 			up_read(&nvmet_config_sem);
1582 			return p->subsys;
1583 		}
1584 	}
1585 	up_read(&nvmet_config_sem);
1586 	return NULL;
1587 }
1588 
nvmet_subsys_alloc(const char * subsysnqn,enum nvme_subsys_type type)1589 struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn,
1590 		enum nvme_subsys_type type)
1591 {
1592 	struct nvmet_subsys *subsys;
1593 	char serial[NVMET_SN_MAX_SIZE / 2];
1594 	int ret;
1595 
1596 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
1597 	if (!subsys)
1598 		return ERR_PTR(-ENOMEM);
1599 
1600 	subsys->ver = NVMET_DEFAULT_VS;
1601 	/* generate a random serial number as our controllers are ephemeral: */
1602 	get_random_bytes(&serial, sizeof(serial));
1603 	bin2hex(subsys->serial, &serial, sizeof(serial));
1604 
1605 	subsys->model_number = kstrdup(NVMET_DEFAULT_CTRL_MODEL, GFP_KERNEL);
1606 	if (!subsys->model_number) {
1607 		ret = -ENOMEM;
1608 		goto free_subsys;
1609 	}
1610 
1611 	subsys->ieee_oui = 0;
1612 
1613 	subsys->firmware_rev = kstrndup(UTS_RELEASE, NVMET_FR_MAX_SIZE, GFP_KERNEL);
1614 	if (!subsys->firmware_rev) {
1615 		ret = -ENOMEM;
1616 		goto free_mn;
1617 	}
1618 
1619 	switch (type) {
1620 	case NVME_NQN_NVME:
1621 		subsys->max_qid = NVMET_NR_QUEUES;
1622 		break;
1623 	case NVME_NQN_DISC:
1624 	case NVME_NQN_CURR:
1625 		subsys->max_qid = 0;
1626 		break;
1627 	default:
1628 		pr_err("%s: Unknown Subsystem type - %d\n", __func__, type);
1629 		ret = -EINVAL;
1630 		goto free_fr;
1631 	}
1632 	subsys->type = type;
1633 	subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE,
1634 			GFP_KERNEL);
1635 	if (!subsys->subsysnqn) {
1636 		ret = -ENOMEM;
1637 		goto free_fr;
1638 	}
1639 	subsys->cntlid_min = NVME_CNTLID_MIN;
1640 	subsys->cntlid_max = NVME_CNTLID_MAX;
1641 	kref_init(&subsys->ref);
1642 
1643 	mutex_init(&subsys->lock);
1644 	xa_init(&subsys->namespaces);
1645 	INIT_LIST_HEAD(&subsys->ctrls);
1646 	INIT_LIST_HEAD(&subsys->hosts);
1647 
1648 	ret = nvmet_debugfs_subsys_setup(subsys);
1649 	if (ret)
1650 		goto free_subsysnqn;
1651 
1652 	return subsys;
1653 
1654 free_subsysnqn:
1655 	kfree(subsys->subsysnqn);
1656 free_fr:
1657 	kfree(subsys->firmware_rev);
1658 free_mn:
1659 	kfree(subsys->model_number);
1660 free_subsys:
1661 	kfree(subsys);
1662 	return ERR_PTR(ret);
1663 }
1664 
nvmet_subsys_free(struct kref * ref)1665 static void nvmet_subsys_free(struct kref *ref)
1666 {
1667 	struct nvmet_subsys *subsys =
1668 		container_of(ref, struct nvmet_subsys, ref);
1669 
1670 	WARN_ON_ONCE(!xa_empty(&subsys->namespaces));
1671 
1672 	nvmet_debugfs_subsys_free(subsys);
1673 
1674 	xa_destroy(&subsys->namespaces);
1675 	nvmet_passthru_subsys_free(subsys);
1676 
1677 	kfree(subsys->subsysnqn);
1678 	kfree(subsys->model_number);
1679 	kfree(subsys->firmware_rev);
1680 	kfree(subsys);
1681 }
1682 
nvmet_subsys_del_ctrls(struct nvmet_subsys * subsys)1683 void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys)
1684 {
1685 	struct nvmet_ctrl *ctrl;
1686 
1687 	mutex_lock(&subsys->lock);
1688 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
1689 		ctrl->ops->delete_ctrl(ctrl);
1690 	mutex_unlock(&subsys->lock);
1691 }
1692 
nvmet_subsys_put(struct nvmet_subsys * subsys)1693 void nvmet_subsys_put(struct nvmet_subsys *subsys)
1694 {
1695 	kref_put(&subsys->ref, nvmet_subsys_free);
1696 }
1697 
nvmet_init(void)1698 static int __init nvmet_init(void)
1699 {
1700 	int error = -ENOMEM;
1701 
1702 	nvmet_ana_group_enabled[NVMET_DEFAULT_ANA_GRPID] = 1;
1703 
1704 	nvmet_bvec_cache = kmem_cache_create("nvmet-bvec",
1705 			NVMET_MAX_MPOOL_BVEC * sizeof(struct bio_vec), 0,
1706 			SLAB_HWCACHE_ALIGN, NULL);
1707 	if (!nvmet_bvec_cache)
1708 		return -ENOMEM;
1709 
1710 	zbd_wq = alloc_workqueue("nvmet-zbd-wq", WQ_MEM_RECLAIM, 0);
1711 	if (!zbd_wq)
1712 		goto out_destroy_bvec_cache;
1713 
1714 	buffered_io_wq = alloc_workqueue("nvmet-buffered-io-wq",
1715 			WQ_MEM_RECLAIM, 0);
1716 	if (!buffered_io_wq)
1717 		goto out_free_zbd_work_queue;
1718 
1719 	nvmet_wq = alloc_workqueue("nvmet-wq",
1720 			WQ_MEM_RECLAIM | WQ_UNBOUND, 0);
1721 	if (!nvmet_wq)
1722 		goto out_free_buffered_work_queue;
1723 
1724 	error = nvmet_init_discovery();
1725 	if (error)
1726 		goto out_free_nvmet_work_queue;
1727 
1728 	error = nvmet_init_debugfs();
1729 	if (error)
1730 		goto out_exit_discovery;
1731 
1732 	error = nvmet_init_configfs();
1733 	if (error)
1734 		goto out_exit_debugfs;
1735 
1736 	return 0;
1737 
1738 out_exit_debugfs:
1739 	nvmet_exit_debugfs();
1740 out_exit_discovery:
1741 	nvmet_exit_discovery();
1742 out_free_nvmet_work_queue:
1743 	destroy_workqueue(nvmet_wq);
1744 out_free_buffered_work_queue:
1745 	destroy_workqueue(buffered_io_wq);
1746 out_free_zbd_work_queue:
1747 	destroy_workqueue(zbd_wq);
1748 out_destroy_bvec_cache:
1749 	kmem_cache_destroy(nvmet_bvec_cache);
1750 	return error;
1751 }
1752 
nvmet_exit(void)1753 static void __exit nvmet_exit(void)
1754 {
1755 	nvmet_exit_configfs();
1756 	nvmet_exit_debugfs();
1757 	nvmet_exit_discovery();
1758 	ida_destroy(&cntlid_ida);
1759 	destroy_workqueue(nvmet_wq);
1760 	destroy_workqueue(buffered_io_wq);
1761 	destroy_workqueue(zbd_wq);
1762 	kmem_cache_destroy(nvmet_bvec_cache);
1763 
1764 	BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024);
1765 	BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024);
1766 }
1767 
1768 module_init(nvmet_init);
1769 module_exit(nvmet_exit);
1770 
1771 MODULE_DESCRIPTION("NVMe target core framework");
1772 MODULE_LICENSE("GPL v2");
1773