xref: /linux/fs/btrfs/tree-checker.c (revision 7977011460cffc6f5a0cd830584c832c4aa07076)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) Qu Wenruo 2017.  All rights reserved.
4  */
5 
6 /*
7  * The module is used to catch unexpected/corrupted tree block data.
8  * Such behavior can be caused either by a fuzzed image or bugs.
9  *
10  * The objective is to do leaf/node validation checks when tree block is read
11  * from disk, and check *every* possible member, so other code won't
12  * need to checking them again.
13  *
14  * Due to the potential and unwanted damage, every checker needs to be
15  * carefully reviewed otherwise so it does not prevent mount of valid images.
16  */
17 
18 #include <linux/types.h>
19 #include <linux/stddef.h>
20 #include <linux/error-injection.h>
21 #include "messages.h"
22 #include "ctree.h"
23 #include "tree-checker.h"
24 #include "compression.h"
25 #include "volumes.h"
26 #include "misc.h"
27 #include "fs.h"
28 #include "accessors.h"
29 #include "file-item.h"
30 #include "inode-item.h"
31 #include "dir-item.h"
32 #include "extent-tree.h"
33 
34 /*
35  * Error message should follow the following format:
36  * corrupt <type>: <identifier>, <reason>[, <bad_value>]
37  *
38  * @type:	leaf or node
39  * @identifier:	the necessary info to locate the leaf/node.
40  * 		It's recommended to decode key.objecitd/offset if it's
41  * 		meaningful.
42  * @reason:	describe the error
43  * @bad_value:	optional, it's recommended to output bad value and its
44  *		expected value (range).
45  *
46  * Since comma is used to separate the components, only space is allowed
47  * inside each component.
48  */
49 
50 /*
51  * Append generic "corrupt leaf/node root=%llu block=%llu slot=%d: " to @fmt.
52  * Allows callers to customize the output.
53  */
54 __printf(3, 4)
55 __cold
56 static void generic_err(const struct extent_buffer *eb, int slot,
57 			const char *fmt, ...)
58 {
59 	const struct btrfs_fs_info *fs_info = eb->fs_info;
60 	struct va_format vaf;
61 	va_list args;
62 
63 	va_start(args, fmt);
64 
65 	vaf.fmt = fmt;
66 	vaf.va = &args;
67 
68 	dump_page(folio_page(eb->folios[0], 0), "eb page dump");
69 	btrfs_crit(fs_info,
70 		"corrupt %s: root=%llu block=%llu slot=%d, %pV",
71 		btrfs_header_level(eb) == 0 ? "leaf" : "node",
72 		btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, &vaf);
73 	va_end(args);
74 }
75 
76 /*
77  * Customized reporter for extent data item, since its key objectid and
78  * offset has its own meaning.
79  */
80 __printf(3, 4)
81 __cold
82 static void file_extent_err(const struct extent_buffer *eb, int slot,
83 			    const char *fmt, ...)
84 {
85 	const struct btrfs_fs_info *fs_info = eb->fs_info;
86 	struct btrfs_key key;
87 	struct va_format vaf;
88 	va_list args;
89 
90 	btrfs_item_key_to_cpu(eb, &key, slot);
91 	va_start(args, fmt);
92 
93 	vaf.fmt = fmt;
94 	vaf.va = &args;
95 
96 	dump_page(folio_page(eb->folios[0], 0), "eb page dump");
97 	btrfs_crit(fs_info,
98 	"corrupt %s: root=%llu block=%llu slot=%d ino=%llu file_offset=%llu, %pV",
99 		btrfs_header_level(eb) == 0 ? "leaf" : "node",
100 		btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
101 		key.objectid, key.offset, &vaf);
102 	va_end(args);
103 }
104 
105 /*
106  * Return 0 if the btrfs_file_extent_##name is aligned to @alignment
107  * Else return 1
108  */
109 #define CHECK_FE_ALIGNED(leaf, slot, fi, name, alignment)		      \
110 ({									      \
111 	if (unlikely(!IS_ALIGNED(btrfs_file_extent_##name((leaf), (fi)),      \
112 				 (alignment))))				      \
113 		file_extent_err((leaf), (slot),				      \
114 	"invalid %s for file extent, have %llu, should be aligned to %u",     \
115 			(#name), btrfs_file_extent_##name((leaf), (fi)),      \
116 			(alignment));					      \
117 	(!IS_ALIGNED(btrfs_file_extent_##name((leaf), (fi)), (alignment)));   \
118 })
119 
120 static u64 file_extent_end(struct extent_buffer *leaf,
121 			   struct btrfs_key *key,
122 			   struct btrfs_file_extent_item *extent)
123 {
124 	u64 end;
125 	u64 len;
126 
127 	if (btrfs_file_extent_type(leaf, extent) == BTRFS_FILE_EXTENT_INLINE) {
128 		len = btrfs_file_extent_ram_bytes(leaf, extent);
129 		end = ALIGN(key->offset + len, leaf->fs_info->sectorsize);
130 	} else {
131 		len = btrfs_file_extent_num_bytes(leaf, extent);
132 		end = key->offset + len;
133 	}
134 	return end;
135 }
136 
137 /*
138  * Customized report for dir_item, the only new important information is
139  * key->objectid, which represents inode number
140  */
141 __printf(3, 4)
142 __cold
143 static void dir_item_err(const struct extent_buffer *eb, int slot,
144 			 const char *fmt, ...)
145 {
146 	const struct btrfs_fs_info *fs_info = eb->fs_info;
147 	struct btrfs_key key;
148 	struct va_format vaf;
149 	va_list args;
150 
151 	btrfs_item_key_to_cpu(eb, &key, slot);
152 	va_start(args, fmt);
153 
154 	vaf.fmt = fmt;
155 	vaf.va = &args;
156 
157 	dump_page(folio_page(eb->folios[0], 0), "eb page dump");
158 	btrfs_crit(fs_info,
159 		"corrupt %s: root=%llu block=%llu slot=%d ino=%llu, %pV",
160 		btrfs_header_level(eb) == 0 ? "leaf" : "node",
161 		btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
162 		key.objectid, &vaf);
163 	va_end(args);
164 }
165 
166 /*
167  * This functions checks prev_key->objectid, to ensure current key and prev_key
168  * share the same objectid as inode number.
169  *
170  * This is to detect missing INODE_ITEM in subvolume trees.
171  *
172  * Return true if everything is OK or we don't need to check.
173  * Return false if anything is wrong.
174  */
175 static bool check_prev_ino(struct extent_buffer *leaf,
176 			   struct btrfs_key *key, int slot,
177 			   struct btrfs_key *prev_key)
178 {
179 	/* No prev key, skip check */
180 	if (slot == 0)
181 		return true;
182 
183 	/* Only these key->types needs to be checked */
184 	ASSERT(key->type == BTRFS_XATTR_ITEM_KEY ||
185 	       key->type == BTRFS_INODE_REF_KEY ||
186 	       key->type == BTRFS_INODE_EXTREF_KEY ||
187 	       key->type == BTRFS_DIR_INDEX_KEY ||
188 	       key->type == BTRFS_DIR_ITEM_KEY ||
189 	       key->type == BTRFS_EXTENT_DATA_KEY, "key->type=%u", key->type);
190 
191 	/*
192 	 * Only subvolume trees along with their reloc trees need this check.
193 	 * Things like log tree doesn't follow this ino requirement.
194 	 */
195 	if (!btrfs_is_fstree(btrfs_header_owner(leaf)))
196 		return true;
197 
198 	if (key->objectid == prev_key->objectid)
199 		return true;
200 
201 	/* Error found */
202 	dir_item_err(leaf, slot,
203 		"invalid previous key objectid, have %llu expect %llu",
204 		prev_key->objectid, key->objectid);
205 	return false;
206 }
207 static int check_extent_data_item(struct extent_buffer *leaf,
208 				  struct btrfs_key *key, int slot,
209 				  struct btrfs_key *prev_key)
210 {
211 	struct btrfs_fs_info *fs_info = leaf->fs_info;
212 	struct btrfs_file_extent_item *fi;
213 	u32 sectorsize = fs_info->sectorsize;
214 	u32 item_size = btrfs_item_size(leaf, slot);
215 	u64 extent_end;
216 
217 	if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) {
218 		file_extent_err(leaf, slot,
219 "unaligned file_offset for file extent, have %llu should be aligned to %u",
220 			key->offset, sectorsize);
221 		return -EUCLEAN;
222 	}
223 
224 	/*
225 	 * Previous key must have the same key->objectid (ino).
226 	 * It can be XATTR_ITEM, INODE_ITEM or just another EXTENT_DATA.
227 	 * But if objectids mismatch, it means we have a missing
228 	 * INODE_ITEM.
229 	 */
230 	if (unlikely(!check_prev_ino(leaf, key, slot, prev_key)))
231 		return -EUCLEAN;
232 
233 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
234 
235 	/*
236 	 * Make sure the item contains at least inline header, so the file
237 	 * extent type is not some garbage.
238 	 */
239 	if (unlikely(item_size < BTRFS_FILE_EXTENT_INLINE_DATA_START)) {
240 		file_extent_err(leaf, slot,
241 				"invalid item size, have %u expect [%zu, %u)",
242 				item_size, BTRFS_FILE_EXTENT_INLINE_DATA_START,
243 				SZ_4K);
244 		return -EUCLEAN;
245 	}
246 	if (unlikely(btrfs_file_extent_type(leaf, fi) >=
247 		     BTRFS_NR_FILE_EXTENT_TYPES)) {
248 		file_extent_err(leaf, slot,
249 		"invalid type for file extent, have %u expect range [0, %u]",
250 			btrfs_file_extent_type(leaf, fi),
251 			BTRFS_NR_FILE_EXTENT_TYPES - 1);
252 		return -EUCLEAN;
253 	}
254 
255 	/*
256 	 * Support for new compression/encryption must introduce incompat flag,
257 	 * and must be caught in open_ctree().
258 	 */
259 	if (unlikely(btrfs_file_extent_compression(leaf, fi) >=
260 		     BTRFS_NR_COMPRESS_TYPES)) {
261 		file_extent_err(leaf, slot,
262 	"invalid compression for file extent, have %u expect range [0, %u]",
263 			btrfs_file_extent_compression(leaf, fi),
264 			BTRFS_NR_COMPRESS_TYPES - 1);
265 		return -EUCLEAN;
266 	}
267 	if (unlikely(btrfs_file_extent_encryption(leaf, fi))) {
268 		file_extent_err(leaf, slot,
269 			"invalid encryption for file extent, have %u expect 0",
270 			btrfs_file_extent_encryption(leaf, fi));
271 		return -EUCLEAN;
272 	}
273 	if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) {
274 		/* Inline extent must have 0 as key offset */
275 		if (unlikely(key->offset)) {
276 			file_extent_err(leaf, slot,
277 		"invalid file_offset for inline file extent, have %llu expect 0",
278 				key->offset);
279 			return -EUCLEAN;
280 		}
281 
282 		/* Compressed inline extent has no on-disk size, skip it */
283 		if (btrfs_file_extent_compression(leaf, fi) !=
284 		    BTRFS_COMPRESS_NONE)
285 			return 0;
286 
287 		/* Uncompressed inline extent size must match item size */
288 		if (unlikely(item_size != BTRFS_FILE_EXTENT_INLINE_DATA_START +
289 					  btrfs_file_extent_ram_bytes(leaf, fi))) {
290 			file_extent_err(leaf, slot,
291 	"invalid ram_bytes for uncompressed inline extent, have %u expect %llu",
292 				item_size, BTRFS_FILE_EXTENT_INLINE_DATA_START +
293 				btrfs_file_extent_ram_bytes(leaf, fi));
294 			return -EUCLEAN;
295 		}
296 		return 0;
297 	}
298 
299 	/* Regular or preallocated extent has fixed item size */
300 	if (unlikely(item_size != sizeof(*fi))) {
301 		file_extent_err(leaf, slot,
302 	"invalid item size for reg/prealloc file extent, have %u expect %zu",
303 			item_size, sizeof(*fi));
304 		return -EUCLEAN;
305 	}
306 	if (unlikely(CHECK_FE_ALIGNED(leaf, slot, fi, ram_bytes, sectorsize) ||
307 		     CHECK_FE_ALIGNED(leaf, slot, fi, disk_bytenr, sectorsize) ||
308 		     CHECK_FE_ALIGNED(leaf, slot, fi, disk_num_bytes, sectorsize) ||
309 		     CHECK_FE_ALIGNED(leaf, slot, fi, offset, sectorsize) ||
310 		     CHECK_FE_ALIGNED(leaf, slot, fi, num_bytes, sectorsize)))
311 		return -EUCLEAN;
312 
313 	/* Catch extent end overflow */
314 	if (unlikely(check_add_overflow(btrfs_file_extent_num_bytes(leaf, fi),
315 					key->offset, &extent_end))) {
316 		file_extent_err(leaf, slot,
317 	"extent end overflow, have file offset %llu extent num bytes %llu",
318 				key->offset,
319 				btrfs_file_extent_num_bytes(leaf, fi));
320 		return -EUCLEAN;
321 	}
322 
323 	/*
324 	 * Check that no two consecutive file extent items, in the same leaf,
325 	 * present ranges that overlap each other.
326 	 */
327 	if (slot > 0 &&
328 	    prev_key->objectid == key->objectid &&
329 	    prev_key->type == BTRFS_EXTENT_DATA_KEY) {
330 		struct btrfs_file_extent_item *prev_fi;
331 		u64 prev_end;
332 
333 		prev_fi = btrfs_item_ptr(leaf, slot - 1,
334 					 struct btrfs_file_extent_item);
335 		prev_end = file_extent_end(leaf, prev_key, prev_fi);
336 		if (unlikely(prev_end > key->offset)) {
337 			file_extent_err(leaf, slot - 1,
338 "file extent end range (%llu) goes beyond start offset (%llu) of the next file extent",
339 					prev_end, key->offset);
340 			return -EUCLEAN;
341 		}
342 	}
343 
344 	/*
345 	 * For non-compressed data extents, ram_bytes should match its
346 	 * disk_num_bytes.
347 	 * However we do not really utilize ram_bytes in this case, so this check
348 	 * is only optional for DEBUG builds for developers to catch the
349 	 * unexpected behaviors.
350 	 */
351 	if (IS_ENABLED(CONFIG_BTRFS_DEBUG) &&
352 	    btrfs_file_extent_compression(leaf, fi) == BTRFS_COMPRESS_NONE &&
353 	    btrfs_file_extent_disk_bytenr(leaf, fi)) {
354 		if (WARN_ON(btrfs_file_extent_ram_bytes(leaf, fi) !=
355 			    btrfs_file_extent_disk_num_bytes(leaf, fi)))
356 			file_extent_err(leaf, slot,
357 "mismatch ram_bytes (%llu) and disk_num_bytes (%llu) for non-compressed extent",
358 					btrfs_file_extent_ram_bytes(leaf, fi),
359 					btrfs_file_extent_disk_num_bytes(leaf, fi));
360 	}
361 
362 	return 0;
363 }
364 
365 static int check_csum_item(struct extent_buffer *leaf, struct btrfs_key *key,
366 			   int slot, struct btrfs_key *prev_key)
367 {
368 	struct btrfs_fs_info *fs_info = leaf->fs_info;
369 	u32 sectorsize = fs_info->sectorsize;
370 	const u32 csumsize = fs_info->csum_size;
371 
372 	if (unlikely(key->objectid != BTRFS_EXTENT_CSUM_OBJECTID)) {
373 		generic_err(leaf, slot,
374 		"invalid key objectid for csum item, have %llu expect %llu",
375 			key->objectid, BTRFS_EXTENT_CSUM_OBJECTID);
376 		return -EUCLEAN;
377 	}
378 	if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) {
379 		generic_err(leaf, slot,
380 	"unaligned key offset for csum item, have %llu should be aligned to %u",
381 			key->offset, sectorsize);
382 		return -EUCLEAN;
383 	}
384 	if (unlikely(!IS_ALIGNED(btrfs_item_size(leaf, slot), csumsize))) {
385 		generic_err(leaf, slot,
386 	"unaligned item size for csum item, have %u should be aligned to %u",
387 			btrfs_item_size(leaf, slot), csumsize);
388 		return -EUCLEAN;
389 	}
390 	if (slot > 0 && prev_key->type == BTRFS_EXTENT_CSUM_KEY) {
391 		u64 prev_csum_end;
392 		u32 prev_item_size;
393 
394 		prev_item_size = btrfs_item_size(leaf, slot - 1);
395 		prev_csum_end = (prev_item_size / csumsize) * sectorsize;
396 		prev_csum_end += prev_key->offset;
397 		if (unlikely(prev_csum_end > key->offset)) {
398 			generic_err(leaf, slot - 1,
399 "csum end range (%llu) goes beyond the start range (%llu) of the next csum item",
400 				    prev_csum_end, key->offset);
401 			return -EUCLEAN;
402 		}
403 	}
404 	return 0;
405 }
406 
407 /* Inode item error output has the same format as dir_item_err() */
408 #define inode_item_err(eb, slot, fmt, ...)			\
409 	dir_item_err(eb, slot, fmt, __VA_ARGS__)
410 
411 static int check_inode_key(struct extent_buffer *leaf, struct btrfs_key *key,
412 			   int slot)
413 {
414 	struct btrfs_key item_key;
415 	bool is_inode_item;
416 
417 	btrfs_item_key_to_cpu(leaf, &item_key, slot);
418 	is_inode_item = (item_key.type == BTRFS_INODE_ITEM_KEY);
419 
420 	/* For XATTR_ITEM, location key should be all 0 */
421 	if (item_key.type == BTRFS_XATTR_ITEM_KEY) {
422 		if (unlikely(key->objectid != 0 || key->type != 0 ||
423 			     key->offset != 0))
424 			return -EUCLEAN;
425 		return 0;
426 	}
427 
428 	if (unlikely((key->objectid < BTRFS_FIRST_FREE_OBJECTID ||
429 		      key->objectid > BTRFS_LAST_FREE_OBJECTID) &&
430 		     key->objectid != BTRFS_ROOT_TREE_DIR_OBJECTID &&
431 		     key->objectid != BTRFS_FREE_INO_OBJECTID)) {
432 		if (is_inode_item) {
433 			generic_err(leaf, slot,
434 	"invalid key objectid: has %llu expect %llu or [%llu, %llu] or %llu",
435 				key->objectid, BTRFS_ROOT_TREE_DIR_OBJECTID,
436 				BTRFS_FIRST_FREE_OBJECTID,
437 				BTRFS_LAST_FREE_OBJECTID,
438 				BTRFS_FREE_INO_OBJECTID);
439 		} else {
440 			dir_item_err(leaf, slot,
441 "invalid location key objectid: has %llu expect %llu or [%llu, %llu] or %llu",
442 				key->objectid, BTRFS_ROOT_TREE_DIR_OBJECTID,
443 				BTRFS_FIRST_FREE_OBJECTID,
444 				BTRFS_LAST_FREE_OBJECTID,
445 				BTRFS_FREE_INO_OBJECTID);
446 		}
447 		return -EUCLEAN;
448 	}
449 	if (unlikely(key->offset != 0)) {
450 		if (is_inode_item)
451 			inode_item_err(leaf, slot,
452 				       "invalid key offset: has %llu expect 0",
453 				       key->offset);
454 		else
455 			dir_item_err(leaf, slot,
456 				"invalid location key offset:has %llu expect 0",
457 				key->offset);
458 		return -EUCLEAN;
459 	}
460 	return 0;
461 }
462 
463 static int check_root_key(struct extent_buffer *leaf, struct btrfs_key *key,
464 			  int slot)
465 {
466 	struct btrfs_key item_key;
467 	bool is_root_item;
468 
469 	btrfs_item_key_to_cpu(leaf, &item_key, slot);
470 	is_root_item = (item_key.type == BTRFS_ROOT_ITEM_KEY);
471 
472 	/*
473 	 * Bad rootid for reloc trees.
474 	 *
475 	 * Reloc trees are only for subvolume trees, other trees only need
476 	 * to be COWed to be relocated.
477 	 */
478 	if (unlikely(is_root_item && key->objectid == BTRFS_TREE_RELOC_OBJECTID &&
479 		     !btrfs_is_fstree(key->offset))) {
480 		generic_err(leaf, slot,
481 		"invalid reloc tree for root %lld, root id is not a subvolume tree",
482 			    key->offset);
483 		return -EUCLEAN;
484 	}
485 
486 	/* No such tree id */
487 	if (unlikely(key->objectid == 0)) {
488 		if (is_root_item)
489 			generic_err(leaf, slot, "invalid root id 0");
490 		else
491 			dir_item_err(leaf, slot,
492 				     "invalid location key root id 0");
493 		return -EUCLEAN;
494 	}
495 
496 	/* DIR_ITEM/INDEX/INODE_REF is not allowed to point to non-fs trees */
497 	if (unlikely(!btrfs_is_fstree(key->objectid) && !is_root_item)) {
498 		dir_item_err(leaf, slot,
499 		"invalid location key objectid, have %llu expect [%llu, %llu]",
500 				key->objectid, BTRFS_FIRST_FREE_OBJECTID,
501 				BTRFS_LAST_FREE_OBJECTID);
502 		return -EUCLEAN;
503 	}
504 
505 	/*
506 	 * ROOT_ITEM with non-zero offset means this is a snapshot, created at
507 	 * @offset transid.
508 	 * Furthermore, for location key in DIR_ITEM, its offset is always -1.
509 	 *
510 	 * So here we only check offset for reloc tree whose key->offset must
511 	 * be a valid tree.
512 	 */
513 	if (unlikely(key->objectid == BTRFS_TREE_RELOC_OBJECTID &&
514 		     key->offset == 0)) {
515 		generic_err(leaf, slot, "invalid root id 0 for reloc tree");
516 		return -EUCLEAN;
517 	}
518 	return 0;
519 }
520 
521 static int check_dir_item(struct extent_buffer *leaf,
522 			  struct btrfs_key *key, struct btrfs_key *prev_key,
523 			  int slot)
524 {
525 	struct btrfs_fs_info *fs_info = leaf->fs_info;
526 	struct btrfs_dir_item *di;
527 	u32 item_size = btrfs_item_size(leaf, slot);
528 	u32 cur = 0;
529 
530 	if (unlikely(!check_prev_ino(leaf, key, slot, prev_key)))
531 		return -EUCLEAN;
532 
533 	di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
534 	while (cur < item_size) {
535 		struct btrfs_key location_key;
536 		u32 name_len;
537 		u32 data_len;
538 		u32 max_name_len;
539 		u32 total_size;
540 		u32 name_hash;
541 		u8 dir_type;
542 		int ret;
543 
544 		/* header itself should not cross item boundary */
545 		if (unlikely(cur + sizeof(*di) > item_size)) {
546 			dir_item_err(leaf, slot,
547 		"dir item header crosses item boundary, have %zu boundary %u",
548 				cur + sizeof(*di), item_size);
549 			return -EUCLEAN;
550 		}
551 
552 		/* Location key check */
553 		btrfs_dir_item_key_to_cpu(leaf, di, &location_key);
554 		if (location_key.type == BTRFS_ROOT_ITEM_KEY) {
555 			ret = check_root_key(leaf, &location_key, slot);
556 			if (unlikely(ret < 0))
557 				return ret;
558 		} else if (location_key.type == BTRFS_INODE_ITEM_KEY ||
559 			   location_key.type == 0) {
560 			ret = check_inode_key(leaf, &location_key, slot);
561 			if (unlikely(ret < 0))
562 				return ret;
563 		} else {
564 			dir_item_err(leaf, slot,
565 			"invalid location key type, have %u, expect %u or %u",
566 				     location_key.type, BTRFS_ROOT_ITEM_KEY,
567 				     BTRFS_INODE_ITEM_KEY);
568 			return -EUCLEAN;
569 		}
570 
571 		/* dir type check */
572 		dir_type = btrfs_dir_ftype(leaf, di);
573 		if (unlikely(dir_type <= BTRFS_FT_UNKNOWN ||
574 			     dir_type >= BTRFS_FT_MAX)) {
575 			dir_item_err(leaf, slot,
576 			"invalid dir item type, have %u expect (0, %u)",
577 				dir_type, BTRFS_FT_MAX);
578 			return -EUCLEAN;
579 		}
580 
581 		if (unlikely(key->type == BTRFS_XATTR_ITEM_KEY &&
582 			     dir_type != BTRFS_FT_XATTR)) {
583 			dir_item_err(leaf, slot,
584 		"invalid dir item type for XATTR key, have %u expect %u",
585 				dir_type, BTRFS_FT_XATTR);
586 			return -EUCLEAN;
587 		}
588 		if (unlikely(dir_type == BTRFS_FT_XATTR &&
589 			     key->type != BTRFS_XATTR_ITEM_KEY)) {
590 			dir_item_err(leaf, slot,
591 			"xattr dir type found for non-XATTR key");
592 			return -EUCLEAN;
593 		}
594 		if (dir_type == BTRFS_FT_XATTR)
595 			max_name_len = XATTR_NAME_MAX;
596 		else
597 			max_name_len = BTRFS_NAME_LEN;
598 
599 		/* Name/data length check */
600 		name_len = btrfs_dir_name_len(leaf, di);
601 		data_len = btrfs_dir_data_len(leaf, di);
602 		if (unlikely(name_len > max_name_len)) {
603 			dir_item_err(leaf, slot,
604 			"dir item name len too long, have %u max %u",
605 				name_len, max_name_len);
606 			return -EUCLEAN;
607 		}
608 		if (unlikely(name_len + data_len > BTRFS_MAX_XATTR_SIZE(fs_info))) {
609 			dir_item_err(leaf, slot,
610 			"dir item name and data len too long, have %u max %u",
611 				name_len + data_len,
612 				BTRFS_MAX_XATTR_SIZE(fs_info));
613 			return -EUCLEAN;
614 		}
615 
616 		if (unlikely(data_len && dir_type != BTRFS_FT_XATTR)) {
617 			dir_item_err(leaf, slot,
618 			"dir item with invalid data len, have %u expect 0",
619 				data_len);
620 			return -EUCLEAN;
621 		}
622 
623 		total_size = sizeof(*di) + name_len + data_len;
624 
625 		/* header and name/data should not cross item boundary */
626 		if (unlikely(cur + total_size > item_size)) {
627 			dir_item_err(leaf, slot,
628 		"dir item data crosses item boundary, have %u boundary %u",
629 				cur + total_size, item_size);
630 			return -EUCLEAN;
631 		}
632 
633 		/*
634 		 * Special check for XATTR/DIR_ITEM, as key->offset is name
635 		 * hash, should match its name
636 		 */
637 		if (key->type == BTRFS_DIR_ITEM_KEY ||
638 		    key->type == BTRFS_XATTR_ITEM_KEY) {
639 			char namebuf[MAX(BTRFS_NAME_LEN, XATTR_NAME_MAX)];
640 
641 			read_extent_buffer(leaf, namebuf,
642 					(unsigned long)(di + 1), name_len);
643 			name_hash = btrfs_name_hash(namebuf, name_len);
644 			if (unlikely(key->offset != name_hash)) {
645 				dir_item_err(leaf, slot,
646 		"name hash mismatch with key, have 0x%016x expect 0x%016llx",
647 					name_hash, key->offset);
648 				return -EUCLEAN;
649 			}
650 		}
651 		cur += total_size;
652 		di = (struct btrfs_dir_item *)((void *)di + total_size);
653 	}
654 	return 0;
655 }
656 
657 __printf(3, 4)
658 __cold
659 static void block_group_err(const struct extent_buffer *eb, int slot,
660 			    const char *fmt, ...)
661 {
662 	const struct btrfs_fs_info *fs_info = eb->fs_info;
663 	struct btrfs_key key;
664 	struct va_format vaf;
665 	va_list args;
666 
667 	btrfs_item_key_to_cpu(eb, &key, slot);
668 	va_start(args, fmt);
669 
670 	vaf.fmt = fmt;
671 	vaf.va = &args;
672 
673 	dump_page(folio_page(eb->folios[0], 0), "eb page dump");
674 	btrfs_crit(fs_info,
675 	"corrupt %s: root=%llu block=%llu slot=%d bg_start=%llu bg_len=%llu, %pV",
676 		btrfs_header_level(eb) == 0 ? "leaf" : "node",
677 		btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
678 		key.objectid, key.offset, &vaf);
679 	va_end(args);
680 }
681 
682 static int check_block_group_item(struct extent_buffer *leaf,
683 				  struct btrfs_key *key, int slot)
684 {
685 	struct btrfs_fs_info *fs_info = leaf->fs_info;
686 	struct btrfs_block_group_item bgi;
687 	u32 item_size = btrfs_item_size(leaf, slot);
688 	u64 chunk_objectid;
689 	u64 flags;
690 	u64 type;
691 	size_t exp_size;
692 
693 	/*
694 	 * Here we don't really care about alignment since extent allocator can
695 	 * handle it.  We care more about the size.
696 	 */
697 	if (unlikely(key->offset == 0)) {
698 		block_group_err(leaf, slot,
699 				"invalid block group size 0");
700 		return -EUCLEAN;
701 	}
702 
703 	if (btrfs_fs_incompat(fs_info, REMAP_TREE))
704 		exp_size = sizeof(struct btrfs_block_group_item_v2);
705 	else
706 		exp_size = sizeof(struct btrfs_block_group_item);
707 
708 	if (unlikely(item_size != exp_size)) {
709 		block_group_err(leaf, slot,
710 			"invalid item size, have %u expect %zu",
711 				item_size, exp_size);
712 		return -EUCLEAN;
713 	}
714 
715 	read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
716 			   sizeof(bgi));
717 	chunk_objectid = btrfs_stack_block_group_chunk_objectid(&bgi);
718 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
719 		/*
720 		 * We don't init the nr_global_roots until we load the global
721 		 * roots, so this could be 0 at mount time.  If it's 0 we'll
722 		 * just assume we're fine, and later we'll check against our
723 		 * actual value.
724 		 */
725 		if (unlikely(fs_info->nr_global_roots &&
726 			     chunk_objectid >= fs_info->nr_global_roots)) {
727 			block_group_err(leaf, slot,
728 	"invalid block group global root id, have %llu, needs to be <= %llu",
729 					chunk_objectid,
730 					fs_info->nr_global_roots);
731 			return -EUCLEAN;
732 		}
733 	} else if (unlikely(chunk_objectid != BTRFS_FIRST_CHUNK_TREE_OBJECTID)) {
734 		block_group_err(leaf, slot,
735 		"invalid block group chunk objectid, have %llu expect %llu",
736 				btrfs_stack_block_group_chunk_objectid(&bgi),
737 				BTRFS_FIRST_CHUNK_TREE_OBJECTID);
738 		return -EUCLEAN;
739 	}
740 
741 	if (unlikely(btrfs_stack_block_group_used(&bgi) > key->offset)) {
742 		block_group_err(leaf, slot,
743 			"invalid block group used, have %llu expect [0, %llu)",
744 				btrfs_stack_block_group_used(&bgi), key->offset);
745 		return -EUCLEAN;
746 	}
747 
748 	flags = btrfs_stack_block_group_flags(&bgi);
749 	if (unlikely(hweight64(flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) > 1)) {
750 		block_group_err(leaf, slot,
751 "invalid profile flags, have 0x%llx (%lu bits set) expect no more than 1 bit set",
752 			flags & BTRFS_BLOCK_GROUP_PROFILE_MASK,
753 			hweight64(flags & BTRFS_BLOCK_GROUP_PROFILE_MASK));
754 		return -EUCLEAN;
755 	}
756 
757 	if (unlikely(flags & BTRFS_BLOCK_GROUP_METADATA_REMAP &&
758 		     !btrfs_fs_incompat(fs_info, REMAP_TREE))) {
759 		block_group_err(leaf, slot,
760 "invalid flags, have 0x%llx (METADATA_REMAP flag set) but no remap-tree incompat flag",
761 				flags);
762 		return -EUCLEAN;
763 	}
764 
765 	type = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
766 	if (unlikely(type != BTRFS_BLOCK_GROUP_DATA &&
767 		     type != BTRFS_BLOCK_GROUP_METADATA &&
768 		     type != BTRFS_BLOCK_GROUP_SYSTEM &&
769 		     type != BTRFS_BLOCK_GROUP_METADATA_REMAP &&
770 		     type != (BTRFS_BLOCK_GROUP_METADATA |
771 			      BTRFS_BLOCK_GROUP_DATA))) {
772 		block_group_err(leaf, slot,
773 "invalid type, have 0x%llx (%lu bits set) expect either 0x%llx, 0x%llx, 0x%llx, 0x%llx or 0x%llx",
774 			type, hweight64(type),
775 			BTRFS_BLOCK_GROUP_DATA, BTRFS_BLOCK_GROUP_METADATA,
776 			BTRFS_BLOCK_GROUP_SYSTEM, BTRFS_BLOCK_GROUP_METADATA_REMAP,
777 			BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA);
778 		return -EUCLEAN;
779 	}
780 	return 0;
781 }
782 
783 __printf(5, 6)
784 __cold
785 static void chunk_err(const struct btrfs_fs_info *fs_info,
786 		      const struct extent_buffer *leaf,
787 		      const struct btrfs_chunk *chunk, u64 logical,
788 		      const char *fmt, ...)
789 {
790 	bool is_sb = !leaf;
791 	struct va_format vaf;
792 	va_list args;
793 	int i;
794 	int slot = -1;
795 
796 	if (!is_sb) {
797 		/*
798 		 * Get the slot number by iterating through all slots, this
799 		 * would provide better readability.
800 		 */
801 		for (i = 0; i < btrfs_header_nritems(leaf); i++) {
802 			if (btrfs_item_ptr_offset(leaf, i) ==
803 					(unsigned long)chunk) {
804 				slot = i;
805 				break;
806 			}
807 		}
808 	}
809 	va_start(args, fmt);
810 	vaf.fmt = fmt;
811 	vaf.va = &args;
812 
813 	if (is_sb)
814 		btrfs_crit(fs_info,
815 		"corrupt superblock syschunk array: chunk_start=%llu, %pV",
816 			   logical, &vaf);
817 	else
818 		btrfs_crit(fs_info,
819 	"corrupt leaf: root=%llu block=%llu slot=%d chunk_start=%llu, %pV",
820 			   BTRFS_CHUNK_TREE_OBJECTID, leaf->start, slot,
821 			   logical, &vaf);
822 	va_end(args);
823 }
824 
825 static bool valid_stripe_count(u64 profile, u16 num_stripes, u16 sub_stripes)
826 {
827 	switch (profile) {
828 	case BTRFS_BLOCK_GROUP_RAID0:
829 		return true;
830 	case BTRFS_BLOCK_GROUP_RAID10:
831 		return sub_stripes == btrfs_raid_array[BTRFS_RAID_RAID10].sub_stripes;
832 	case BTRFS_BLOCK_GROUP_RAID1:
833 		return num_stripes == btrfs_raid_array[BTRFS_RAID_RAID1].devs_min;
834 	case BTRFS_BLOCK_GROUP_RAID1C3:
835 		return num_stripes == btrfs_raid_array[BTRFS_RAID_RAID1C3].devs_min;
836 	case BTRFS_BLOCK_GROUP_RAID1C4:
837 		return num_stripes == btrfs_raid_array[BTRFS_RAID_RAID1C4].devs_min;
838 	case BTRFS_BLOCK_GROUP_RAID5:
839 		return num_stripes >= btrfs_raid_array[BTRFS_RAID_RAID5].devs_min;
840 	case BTRFS_BLOCK_GROUP_RAID6:
841 		return num_stripes >= btrfs_raid_array[BTRFS_RAID_RAID6].devs_min;
842 	case BTRFS_BLOCK_GROUP_DUP:
843 		return num_stripes == btrfs_raid_array[BTRFS_RAID_DUP].dev_stripes;
844 	case 0: /* SINGLE */
845 		return num_stripes == btrfs_raid_array[BTRFS_RAID_SINGLE].dev_stripes;
846 	default:
847 		BUG();
848 	}
849 }
850 
851 /*
852  * The common chunk check which could also work on super block sys chunk array.
853  *
854  * If @leaf is NULL, then @chunk must be an on-stack chunk item.
855  * (For superblock sys_chunk array, and fs_info->sectorsize is unreliable)
856  *
857  * Return -EUCLEAN if anything is corrupted.
858  * Return 0 if everything is OK.
859  */
860 int btrfs_check_chunk_valid(const struct btrfs_fs_info *fs_info,
861 			    const struct extent_buffer *leaf,
862 			    const struct btrfs_chunk *chunk, u64 logical,
863 			    u32 sectorsize)
864 {
865 	u64 length;
866 	u64 chunk_end;
867 	u64 stripe_len;
868 	u16 num_stripes;
869 	u16 sub_stripes;
870 	u64 type;
871 	u64 features;
872 	u32 chunk_sector_size;
873 	bool mixed = false;
874 	bool remapped;
875 	int raid_index;
876 	int nparity;
877 	int ncopies;
878 
879 	if (leaf) {
880 		length = btrfs_chunk_length(leaf, chunk);
881 		stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
882 		num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
883 		sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
884 		type = btrfs_chunk_type(leaf, chunk);
885 		chunk_sector_size = btrfs_chunk_sector_size(leaf, chunk);
886 	} else {
887 		length = btrfs_stack_chunk_length(chunk);
888 		stripe_len = btrfs_stack_chunk_stripe_len(chunk);
889 		num_stripes = btrfs_stack_chunk_num_stripes(chunk);
890 		sub_stripes = btrfs_stack_chunk_sub_stripes(chunk);
891 		type = btrfs_stack_chunk_type(chunk);
892 		chunk_sector_size = btrfs_stack_chunk_sector_size(chunk);
893 	}
894 	raid_index = btrfs_bg_flags_to_raid_index(type);
895 	ncopies = btrfs_raid_array[raid_index].ncopies;
896 	nparity = btrfs_raid_array[raid_index].nparity;
897 	remapped = (type & BTRFS_BLOCK_GROUP_REMAPPED);
898 
899 	if (unlikely(!remapped && !num_stripes)) {
900 		chunk_err(fs_info, leaf, chunk, logical,
901 			  "invalid chunk num_stripes, have %u", num_stripes);
902 		return -EUCLEAN;
903 	}
904 	if (unlikely(num_stripes != 0 && num_stripes < ncopies)) {
905 		chunk_err(fs_info, leaf, chunk, logical,
906 			  "invalid chunk num_stripes < ncopies, have %u < %d",
907 			  num_stripes, ncopies);
908 		return -EUCLEAN;
909 	}
910 	if (unlikely(nparity && num_stripes == nparity)) {
911 		chunk_err(fs_info, leaf, chunk, logical,
912 			  "invalid chunk num_stripes == nparity, have %u == %d",
913 			  num_stripes, nparity);
914 		return -EUCLEAN;
915 	}
916 	if (unlikely(!IS_ALIGNED(logical, sectorsize))) {
917 		chunk_err(fs_info, leaf, chunk, logical,
918 		"invalid chunk logical, have %llu should aligned to %u",
919 			  logical, sectorsize);
920 		return -EUCLEAN;
921 	}
922 	if (unlikely(chunk_sector_size != sectorsize)) {
923 		chunk_err(fs_info, leaf, chunk, logical,
924 			  "invalid chunk sectorsize, have %u expect %u",
925 			  chunk_sector_size, sectorsize);
926 		return -EUCLEAN;
927 	}
928 	if (unlikely(!length || !IS_ALIGNED(length, sectorsize))) {
929 		chunk_err(fs_info, leaf, chunk, logical,
930 			  "invalid chunk length, have %llu", length);
931 		return -EUCLEAN;
932 	}
933 	if (unlikely(check_add_overflow(logical, length, &chunk_end))) {
934 		chunk_err(fs_info, leaf, chunk, logical,
935 "invalid chunk logical start and length, have logical start %llu length %llu",
936 			  logical, length);
937 		return -EUCLEAN;
938 	}
939 	if (unlikely(!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN)) {
940 		chunk_err(fs_info, leaf, chunk, logical,
941 			  "invalid chunk stripe length: %llu",
942 			  stripe_len);
943 		return -EUCLEAN;
944 	}
945 	/*
946 	 * We artificially limit the chunk size, so that the number of stripes
947 	 * inside a chunk can be fit into a U32.  The current limit (256G) is
948 	 * way too large for real world usage anyway, and it's also much larger
949 	 * than our existing limit (10G).
950 	 *
951 	 * Thus it should be a good way to catch obvious bitflips.
952 	 */
953 	if (unlikely(length >= btrfs_stripe_nr_to_offset(U32_MAX))) {
954 		chunk_err(fs_info, leaf, chunk, logical,
955 			  "chunk length too large: have %llu limit %llu",
956 			  length, btrfs_stripe_nr_to_offset(U32_MAX));
957 		return -EUCLEAN;
958 	}
959 	if (unlikely(type & ~BTRFS_BLOCK_GROUP_VALID)) {
960 		chunk_err(fs_info, leaf, chunk, logical,
961 			  "unrecognized chunk type: 0x%llx",
962 			  type & ~BTRFS_BLOCK_GROUP_VALID);
963 		return -EUCLEAN;
964 	}
965 
966 	if (unlikely(!has_single_bit_set(type & BTRFS_BLOCK_GROUP_PROFILE_MASK) &&
967 		     (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) != 0)) {
968 		chunk_err(fs_info, leaf, chunk, logical,
969 		"invalid chunk profile flag: 0x%llx, expect 0 or 1 bit set",
970 			  type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
971 		return -EUCLEAN;
972 	}
973 	if (unlikely((type & BTRFS_BLOCK_GROUP_TYPE_MASK) == 0)) {
974 		chunk_err(fs_info, leaf, chunk, logical,
975 	"missing chunk type flag, have 0x%llx one bit must be set in 0x%llx",
976 			  type, BTRFS_BLOCK_GROUP_TYPE_MASK);
977 		return -EUCLEAN;
978 	}
979 
980 	if (unlikely((type & BTRFS_BLOCK_GROUP_SYSTEM) &&
981 		     (type & (BTRFS_BLOCK_GROUP_METADATA |
982 			      BTRFS_BLOCK_GROUP_DATA)))) {
983 		chunk_err(fs_info, leaf, chunk, logical,
984 			  "system chunk with data or metadata type: 0x%llx",
985 			  type);
986 		return -EUCLEAN;
987 	}
988 
989 	features = btrfs_super_incompat_flags(fs_info->super_copy);
990 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
991 		mixed = true;
992 
993 	if (!mixed) {
994 		if (unlikely((type & BTRFS_BLOCK_GROUP_METADATA) &&
995 			     (type & BTRFS_BLOCK_GROUP_DATA))) {
996 			chunk_err(fs_info, leaf, chunk, logical,
997 			"mixed chunk type in non-mixed mode: 0x%llx", type);
998 			return -EUCLEAN;
999 		}
1000 	}
1001 
1002 	if (!remapped &&
1003 	    !valid_stripe_count(type & BTRFS_BLOCK_GROUP_PROFILE_MASK,
1004 				num_stripes, sub_stripes)) {
1005 		chunk_err(fs_info, leaf, chunk, logical,
1006 			"invalid num_stripes:sub_stripes %u:%u for profile %llu",
1007 			num_stripes, sub_stripes,
1008 			type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
1009 		return -EUCLEAN;
1010 	}
1011 
1012 	return 0;
1013 }
1014 
1015 /*
1016  * Enhanced version of chunk item checker.
1017  *
1018  * The common btrfs_check_chunk_valid() doesn't check item size since it needs
1019  * to work on super block sys_chunk_array which doesn't have full item ptr.
1020  */
1021 static int check_leaf_chunk_item(struct extent_buffer *leaf,
1022 				 struct btrfs_chunk *chunk,
1023 				 struct btrfs_key *key, int slot)
1024 {
1025 	struct btrfs_fs_info *fs_info = leaf->fs_info;
1026 	int num_stripes;
1027 
1028 	if (unlikely(btrfs_item_size(leaf, slot) < offsetof(struct btrfs_chunk, stripe))) {
1029 		chunk_err(fs_info, leaf, chunk, key->offset,
1030 			"invalid chunk item size: have %u expect [%zu, %u)",
1031 			btrfs_item_size(leaf, slot),
1032 			offsetof(struct btrfs_chunk, stripe),
1033 			BTRFS_LEAF_DATA_SIZE(fs_info));
1034 		return -EUCLEAN;
1035 	}
1036 
1037 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
1038 	/* Let btrfs_check_chunk_valid() handle this error type */
1039 	if (num_stripes == 0)
1040 		goto out;
1041 
1042 	if (unlikely(btrfs_chunk_item_size(num_stripes) !=
1043 		     btrfs_item_size(leaf, slot))) {
1044 		chunk_err(fs_info, leaf, chunk, key->offset,
1045 			"invalid chunk item size: have %u expect %lu",
1046 			btrfs_item_size(leaf, slot),
1047 			btrfs_chunk_item_size(num_stripes));
1048 		return -EUCLEAN;
1049 	}
1050 out:
1051 	return btrfs_check_chunk_valid(fs_info, leaf, chunk, key->offset,
1052 				       fs_info->sectorsize);
1053 }
1054 
1055 __printf(3, 4)
1056 __cold
1057 static void dev_item_err(const struct extent_buffer *eb, int slot,
1058 			 const char *fmt, ...)
1059 {
1060 	struct btrfs_key key;
1061 	struct va_format vaf;
1062 	va_list args;
1063 
1064 	btrfs_item_key_to_cpu(eb, &key, slot);
1065 	va_start(args, fmt);
1066 
1067 	vaf.fmt = fmt;
1068 	vaf.va = &args;
1069 
1070 	dump_page(folio_page(eb->folios[0], 0), "eb page dump");
1071 	btrfs_crit(eb->fs_info,
1072 	"corrupt %s: root=%llu block=%llu slot=%d devid=%llu %pV",
1073 		btrfs_header_level(eb) == 0 ? "leaf" : "node",
1074 		btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
1075 		key.objectid, &vaf);
1076 	va_end(args);
1077 }
1078 
1079 static int check_dev_item(struct extent_buffer *leaf,
1080 			  struct btrfs_key *key, int slot)
1081 {
1082 	struct btrfs_dev_item *ditem;
1083 	const u32 item_size = btrfs_item_size(leaf, slot);
1084 
1085 	if (unlikely(key->objectid != BTRFS_DEV_ITEMS_OBJECTID)) {
1086 		dev_item_err(leaf, slot,
1087 			     "invalid objectid: has=%llu expect=%llu",
1088 			     key->objectid, BTRFS_DEV_ITEMS_OBJECTID);
1089 		return -EUCLEAN;
1090 	}
1091 
1092 	if (unlikely(item_size != sizeof(*ditem))) {
1093 		dev_item_err(leaf, slot, "invalid item size: has %u expect %zu",
1094 			     item_size, sizeof(*ditem));
1095 		return -EUCLEAN;
1096 	}
1097 
1098 	ditem = btrfs_item_ptr(leaf, slot, struct btrfs_dev_item);
1099 	if (unlikely(btrfs_device_id(leaf, ditem) != key->offset)) {
1100 		dev_item_err(leaf, slot,
1101 			     "devid mismatch: key has=%llu item has=%llu",
1102 			     key->offset, btrfs_device_id(leaf, ditem));
1103 		return -EUCLEAN;
1104 	}
1105 
1106 	/*
1107 	 * For device total_bytes, we don't have reliable way to check it, as
1108 	 * it can be 0 for device removal. Device size check can only be done
1109 	 * by dev extents check.
1110 	 */
1111 	if (unlikely(btrfs_device_bytes_used(leaf, ditem) >
1112 		     btrfs_device_total_bytes(leaf, ditem))) {
1113 		dev_item_err(leaf, slot,
1114 			     "invalid bytes used: have %llu expect [0, %llu]",
1115 			     btrfs_device_bytes_used(leaf, ditem),
1116 			     btrfs_device_total_bytes(leaf, ditem));
1117 		return -EUCLEAN;
1118 	}
1119 	/*
1120 	 * Remaining members like io_align/type/gen/dev_group aren't really
1121 	 * utilized.  Skip them to make later usage of them easier.
1122 	 */
1123 	return 0;
1124 }
1125 
1126 static int check_inode_item(struct extent_buffer *leaf,
1127 			    struct btrfs_key *key, int slot)
1128 {
1129 	struct btrfs_fs_info *fs_info = leaf->fs_info;
1130 	struct btrfs_inode_item *iitem;
1131 	u64 super_gen = btrfs_super_generation(fs_info->super_copy);
1132 	u32 valid_mask = (S_IFMT | S_ISUID | S_ISGID | S_ISVTX | 0777);
1133 	const u32 item_size = btrfs_item_size(leaf, slot);
1134 	u32 mode;
1135 	int ret;
1136 	u32 flags;
1137 	u32 ro_flags;
1138 
1139 	ret = check_inode_key(leaf, key, slot);
1140 	if (unlikely(ret < 0))
1141 		return ret;
1142 
1143 	if (unlikely(item_size != sizeof(*iitem))) {
1144 		generic_err(leaf, slot, "invalid item size: has %u expect %zu",
1145 			    item_size, sizeof(*iitem));
1146 		return -EUCLEAN;
1147 	}
1148 
1149 	iitem = btrfs_item_ptr(leaf, slot, struct btrfs_inode_item);
1150 
1151 	/* Here we use super block generation + 1 to handle log tree */
1152 	if (unlikely(btrfs_inode_generation(leaf, iitem) > super_gen + 1)) {
1153 		inode_item_err(leaf, slot,
1154 			"invalid inode generation: has %llu expect (0, %llu]",
1155 			       btrfs_inode_generation(leaf, iitem),
1156 			       super_gen + 1);
1157 		return -EUCLEAN;
1158 	}
1159 	/* Note for ROOT_TREE_DIR_ITEM, mkfs could set its transid 0 */
1160 	if (unlikely(btrfs_inode_transid(leaf, iitem) > super_gen + 1)) {
1161 		inode_item_err(leaf, slot,
1162 			"invalid inode transid: has %llu expect [0, %llu]",
1163 			       btrfs_inode_transid(leaf, iitem), super_gen + 1);
1164 		return -EUCLEAN;
1165 	}
1166 
1167 	/*
1168 	 * For size and nbytes it's better not to be too strict, as for dir
1169 	 * item its size/nbytes can easily get wrong, but doesn't affect
1170 	 * anything in the fs. So here we skip the check.
1171 	 */
1172 	mode = btrfs_inode_mode(leaf, iitem);
1173 	if (unlikely(mode & ~valid_mask)) {
1174 		inode_item_err(leaf, slot,
1175 			       "unknown mode bit detected: 0x%x",
1176 			       mode & ~valid_mask);
1177 		return -EUCLEAN;
1178 	}
1179 
1180 	/*
1181 	 * S_IFMT is not bit mapped so we can't completely rely on
1182 	 * is_power_of_2/has_single_bit_set, but it can save us from checking
1183 	 * FIFO/CHR/DIR/REG.  Only needs to check BLK, LNK and SOCKS
1184 	 */
1185 	if (!has_single_bit_set(mode & S_IFMT)) {
1186 		if (unlikely(!S_ISLNK(mode) && !S_ISBLK(mode) && !S_ISSOCK(mode))) {
1187 			inode_item_err(leaf, slot,
1188 			"invalid mode: has 0%o expect valid S_IF* bit(s)",
1189 				       mode & S_IFMT);
1190 			return -EUCLEAN;
1191 		}
1192 	}
1193 	if (unlikely(S_ISDIR(mode) && btrfs_inode_nlink(leaf, iitem) > 1)) {
1194 		inode_item_err(leaf, slot,
1195 		       "invalid nlink: has %u expect no more than 1 for dir",
1196 			btrfs_inode_nlink(leaf, iitem));
1197 		return -EUCLEAN;
1198 	}
1199 	btrfs_inode_split_flags(btrfs_inode_flags(leaf, iitem), &flags, &ro_flags);
1200 	if (unlikely(flags & ~BTRFS_INODE_FLAG_MASK)) {
1201 		inode_item_err(leaf, slot,
1202 			       "unknown incompat flags detected: 0x%x", flags);
1203 		return -EUCLEAN;
1204 	}
1205 	if (unlikely(!sb_rdonly(fs_info->sb) &&
1206 		     (ro_flags & ~BTRFS_INODE_RO_FLAG_MASK))) {
1207 		inode_item_err(leaf, slot,
1208 			"unknown ro-compat flags detected on writeable mount: 0x%x",
1209 			ro_flags);
1210 		return -EUCLEAN;
1211 	}
1212 	return 0;
1213 }
1214 
1215 static int check_root_item(struct extent_buffer *leaf, struct btrfs_key *key,
1216 			   int slot)
1217 {
1218 	struct btrfs_fs_info *fs_info = leaf->fs_info;
1219 	struct btrfs_root_item ri = { 0 };
1220 	const u64 valid_root_flags = BTRFS_ROOT_SUBVOL_RDONLY |
1221 				     BTRFS_ROOT_SUBVOL_DEAD;
1222 	int ret;
1223 
1224 	ret = check_root_key(leaf, key, slot);
1225 	if (unlikely(ret < 0))
1226 		return ret;
1227 
1228 	if (unlikely(btrfs_item_size(leaf, slot) != sizeof(ri) &&
1229 		     btrfs_item_size(leaf, slot) !=
1230 		     btrfs_legacy_root_item_size())) {
1231 		generic_err(leaf, slot,
1232 			    "invalid root item size, have %u expect %zu or %u",
1233 			    btrfs_item_size(leaf, slot), sizeof(ri),
1234 			    btrfs_legacy_root_item_size());
1235 		return -EUCLEAN;
1236 	}
1237 
1238 	/*
1239 	 * For legacy root item, the members starting at generation_v2 will be
1240 	 * all filled with 0.
1241 	 * And since we allow generation_v2 as 0, it will still pass the check.
1242 	 */
1243 	read_extent_buffer(leaf, &ri, btrfs_item_ptr_offset(leaf, slot),
1244 			   btrfs_item_size(leaf, slot));
1245 
1246 	/* Generation related */
1247 	if (unlikely(btrfs_root_generation(&ri) >
1248 		     btrfs_super_generation(fs_info->super_copy) + 1)) {
1249 		generic_err(leaf, slot,
1250 			"invalid root generation, have %llu expect (0, %llu]",
1251 			    btrfs_root_generation(&ri),
1252 			    btrfs_super_generation(fs_info->super_copy) + 1);
1253 		return -EUCLEAN;
1254 	}
1255 	if (unlikely(btrfs_root_generation_v2(&ri) >
1256 		     btrfs_super_generation(fs_info->super_copy) + 1)) {
1257 		generic_err(leaf, slot,
1258 		"invalid root v2 generation, have %llu expect (0, %llu]",
1259 			    btrfs_root_generation_v2(&ri),
1260 			    btrfs_super_generation(fs_info->super_copy) + 1);
1261 		return -EUCLEAN;
1262 	}
1263 	if (unlikely(btrfs_root_last_snapshot(&ri) >
1264 		     btrfs_super_generation(fs_info->super_copy) + 1)) {
1265 		generic_err(leaf, slot,
1266 		"invalid root last_snapshot, have %llu expect (0, %llu]",
1267 			    btrfs_root_last_snapshot(&ri),
1268 			    btrfs_super_generation(fs_info->super_copy) + 1);
1269 		return -EUCLEAN;
1270 	}
1271 
1272 	/* Alignment and level check */
1273 	if (unlikely(!IS_ALIGNED(btrfs_root_bytenr(&ri), fs_info->sectorsize))) {
1274 		generic_err(leaf, slot,
1275 		"invalid root bytenr, have %llu expect to be aligned to %u",
1276 			    btrfs_root_bytenr(&ri), fs_info->sectorsize);
1277 		return -EUCLEAN;
1278 	}
1279 	if (unlikely(btrfs_root_level(&ri) >= BTRFS_MAX_LEVEL)) {
1280 		generic_err(leaf, slot,
1281 			    "invalid root level, have %u expect [0, %u]",
1282 			    btrfs_root_level(&ri), BTRFS_MAX_LEVEL - 1);
1283 		return -EUCLEAN;
1284 	}
1285 	if (unlikely(btrfs_root_drop_level(&ri) >= BTRFS_MAX_LEVEL)) {
1286 		generic_err(leaf, slot,
1287 			    "invalid root level, have %u expect [0, %u]",
1288 			    btrfs_root_drop_level(&ri), BTRFS_MAX_LEVEL - 1);
1289 		return -EUCLEAN;
1290 	}
1291 
1292 	/* Flags check */
1293 	if (unlikely(btrfs_root_flags(&ri) & ~valid_root_flags)) {
1294 		generic_err(leaf, slot,
1295 			    "invalid root flags, have 0x%llx expect mask 0x%llx",
1296 			    btrfs_root_flags(&ri), valid_root_flags);
1297 		return -EUCLEAN;
1298 	}
1299 	return 0;
1300 }
1301 
1302 __printf(3,4)
1303 __cold
1304 static void extent_err(const struct extent_buffer *eb, int slot,
1305 		       const char *fmt, ...)
1306 {
1307 	struct btrfs_key key;
1308 	struct va_format vaf;
1309 	va_list args;
1310 	u64 bytenr;
1311 	u64 len;
1312 
1313 	btrfs_item_key_to_cpu(eb, &key, slot);
1314 	bytenr = key.objectid;
1315 	if (key.type == BTRFS_METADATA_ITEM_KEY ||
1316 	    key.type == BTRFS_TREE_BLOCK_REF_KEY ||
1317 	    key.type == BTRFS_SHARED_BLOCK_REF_KEY)
1318 		len = eb->fs_info->nodesize;
1319 	else
1320 		len = key.offset;
1321 	va_start(args, fmt);
1322 
1323 	vaf.fmt = fmt;
1324 	vaf.va = &args;
1325 
1326 	dump_page(folio_page(eb->folios[0], 0), "eb page dump");
1327 	btrfs_crit(eb->fs_info,
1328 	"corrupt %s: block=%llu slot=%d extent bytenr=%llu len=%llu %pV",
1329 		btrfs_header_level(eb) == 0 ? "leaf" : "node",
1330 		eb->start, slot, bytenr, len, &vaf);
1331 	va_end(args);
1332 }
1333 
1334 static bool is_valid_dref_root(u64 rootid)
1335 {
1336 	/*
1337 	 * The following tree root objectids are allowed to have a data backref:
1338 	 * - subvolume trees
1339 	 * - data reloc tree
1340 	 * - tree root
1341 	 *   For v1 space cache
1342 	 */
1343 	return btrfs_is_fstree(rootid) || rootid == BTRFS_DATA_RELOC_TREE_OBJECTID ||
1344 	       rootid == BTRFS_ROOT_TREE_OBJECTID;
1345 }
1346 
1347 static int check_extent_item(struct extent_buffer *leaf,
1348 			     struct btrfs_key *key, int slot,
1349 			     struct btrfs_key *prev_key)
1350 {
1351 	struct btrfs_fs_info *fs_info = leaf->fs_info;
1352 	struct btrfs_extent_item *ei;
1353 	bool is_tree_block = false;
1354 	unsigned long ptr;	/* Current pointer inside inline refs */
1355 	unsigned long end;	/* Extent item end */
1356 	const u32 item_size = btrfs_item_size(leaf, slot);
1357 	u8 last_type = 0;
1358 	u64 last_seq = U64_MAX;
1359 	u64 flags;
1360 	u64 generation;
1361 	u64 total_refs;		/* Total refs in btrfs_extent_item */
1362 	u64 inline_refs = 0;	/* found total inline refs */
1363 
1364 	if (unlikely(key->type == BTRFS_METADATA_ITEM_KEY &&
1365 		     !btrfs_fs_incompat(fs_info, SKINNY_METADATA))) {
1366 		generic_err(leaf, slot,
1367 "invalid key type, METADATA_ITEM type invalid when SKINNY_METADATA feature disabled");
1368 		return -EUCLEAN;
1369 	}
1370 	/* key->objectid is the bytenr for both key types */
1371 	if (unlikely(!IS_ALIGNED(key->objectid, fs_info->sectorsize))) {
1372 		generic_err(leaf, slot,
1373 		"invalid key objectid, have %llu expect to be aligned to %u",
1374 			   key->objectid, fs_info->sectorsize);
1375 		return -EUCLEAN;
1376 	}
1377 
1378 	/* key->offset is tree level for METADATA_ITEM_KEY */
1379 	if (unlikely(key->type == BTRFS_METADATA_ITEM_KEY &&
1380 		     key->offset >= BTRFS_MAX_LEVEL)) {
1381 		extent_err(leaf, slot,
1382 			   "invalid tree level, have %llu expect [0, %u]",
1383 			   key->offset, BTRFS_MAX_LEVEL - 1);
1384 		return -EUCLEAN;
1385 	}
1386 
1387 	/*
1388 	 * EXTENT/METADATA_ITEM consists of:
1389 	 * 1) One btrfs_extent_item
1390 	 *    Records the total refs, type and generation of the extent.
1391 	 *
1392 	 * 2) One btrfs_tree_block_info (for EXTENT_ITEM and tree backref only)
1393 	 *    Records the first key and level of the tree block.
1394 	 *
1395 	 * 2) Zero or more btrfs_extent_inline_ref(s)
1396 	 *    Each inline ref has one btrfs_extent_inline_ref shows:
1397 	 *    2.1) The ref type, one of the 4
1398 	 *         TREE_BLOCK_REF	Tree block only
1399 	 *         SHARED_BLOCK_REF	Tree block only
1400 	 *         EXTENT_DATA_REF	Data only
1401 	 *         SHARED_DATA_REF	Data only
1402 	 *    2.2) Ref type specific data
1403 	 *         Either using btrfs_extent_inline_ref::offset, or specific
1404 	 *         data structure.
1405 	 *
1406 	 *    All above inline items should follow the order:
1407 	 *
1408 	 *    - All btrfs_extent_inline_ref::type should be in an ascending
1409 	 *      order
1410 	 *
1411 	 *    - Within the same type, the items should follow a descending
1412 	 *      order by their sequence number. The sequence number is
1413 	 *      determined by:
1414 	 *      * btrfs_extent_inline_ref::offset for all types  other than
1415 	 *        EXTENT_DATA_REF
1416 	 *      * hash_extent_data_ref() for EXTENT_DATA_REF
1417 	 */
1418 	if (unlikely(item_size < sizeof(*ei))) {
1419 		extent_err(leaf, slot,
1420 			   "invalid item size, have %u expect [%zu, %u)",
1421 			   item_size, sizeof(*ei),
1422 			   BTRFS_LEAF_DATA_SIZE(fs_info));
1423 		return -EUCLEAN;
1424 	}
1425 	end = item_size + btrfs_item_ptr_offset(leaf, slot);
1426 
1427 	/* Checks against extent_item */
1428 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
1429 	flags = btrfs_extent_flags(leaf, ei);
1430 	total_refs = btrfs_extent_refs(leaf, ei);
1431 	generation = btrfs_extent_generation(leaf, ei);
1432 	if (unlikely(generation >
1433 		     btrfs_super_generation(fs_info->super_copy) + 1)) {
1434 		extent_err(leaf, slot,
1435 			   "invalid generation, have %llu expect (0, %llu]",
1436 			   generation,
1437 			   btrfs_super_generation(fs_info->super_copy) + 1);
1438 		return -EUCLEAN;
1439 	}
1440 	if (unlikely(!has_single_bit_set(flags & (BTRFS_EXTENT_FLAG_DATA |
1441 						  BTRFS_EXTENT_FLAG_TREE_BLOCK)))) {
1442 		extent_err(leaf, slot,
1443 		"invalid extent flag, have 0x%llx expect 1 bit set in 0x%llx",
1444 			flags, BTRFS_EXTENT_FLAG_DATA |
1445 			BTRFS_EXTENT_FLAG_TREE_BLOCK);
1446 		return -EUCLEAN;
1447 	}
1448 	is_tree_block = !!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK);
1449 	if (is_tree_block) {
1450 		if (unlikely(key->type == BTRFS_EXTENT_ITEM_KEY &&
1451 			     key->offset != fs_info->nodesize)) {
1452 			extent_err(leaf, slot,
1453 				   "invalid extent length, have %llu expect %u",
1454 				   key->offset, fs_info->nodesize);
1455 			return -EUCLEAN;
1456 		}
1457 	} else {
1458 		if (unlikely(key->type != BTRFS_EXTENT_ITEM_KEY)) {
1459 			extent_err(leaf, slot,
1460 			"invalid key type, have %u expect %u for data backref",
1461 				   key->type, BTRFS_EXTENT_ITEM_KEY);
1462 			return -EUCLEAN;
1463 		}
1464 		if (unlikely(!IS_ALIGNED(key->offset, fs_info->sectorsize))) {
1465 			extent_err(leaf, slot,
1466 			"invalid extent length, have %llu expect aligned to %u",
1467 				   key->offset, fs_info->sectorsize);
1468 			return -EUCLEAN;
1469 		}
1470 		if (unlikely(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1471 			extent_err(leaf, slot,
1472 			"invalid extent flag, data has full backref set");
1473 			return -EUCLEAN;
1474 		}
1475 	}
1476 	ptr = (unsigned long)(struct btrfs_extent_item *)(ei + 1);
1477 
1478 	/* Check the special case of btrfs_tree_block_info */
1479 	if (is_tree_block && key->type != BTRFS_METADATA_ITEM_KEY) {
1480 		struct btrfs_tree_block_info *info;
1481 
1482 		info = (struct btrfs_tree_block_info *)ptr;
1483 		if (unlikely(btrfs_tree_block_level(leaf, info) >= BTRFS_MAX_LEVEL)) {
1484 			extent_err(leaf, slot,
1485 			"invalid tree block info level, have %u expect [0, %u]",
1486 				   btrfs_tree_block_level(leaf, info),
1487 				   BTRFS_MAX_LEVEL - 1);
1488 			return -EUCLEAN;
1489 		}
1490 		ptr = (unsigned long)(struct btrfs_tree_block_info *)(info + 1);
1491 	}
1492 
1493 	/* Check inline refs */
1494 	while (ptr < end) {
1495 		struct btrfs_extent_inline_ref *iref;
1496 		struct btrfs_extent_data_ref *dref;
1497 		struct btrfs_shared_data_ref *sref;
1498 		u64 seq;
1499 		u64 dref_root;
1500 		u64 dref_objectid;
1501 		u64 dref_offset;
1502 		u64 inline_offset;
1503 		u8 inline_type;
1504 
1505 		if (unlikely(ptr + sizeof(*iref) > end)) {
1506 			extent_err(leaf, slot,
1507 "inline ref item overflows extent item, ptr %lu iref size %zu end %lu",
1508 				   ptr, sizeof(*iref), end);
1509 			return -EUCLEAN;
1510 		}
1511 		iref = (struct btrfs_extent_inline_ref *)ptr;
1512 		inline_type = btrfs_extent_inline_ref_type(leaf, iref);
1513 		inline_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1514 		seq = inline_offset;
1515 		if (unlikely(ptr + btrfs_extent_inline_ref_size(inline_type) > end)) {
1516 			extent_err(leaf, slot,
1517 "inline ref item overflows extent item, ptr %lu iref size %u end %lu",
1518 				   ptr, btrfs_extent_inline_ref_size(inline_type), end);
1519 			return -EUCLEAN;
1520 		}
1521 
1522 		switch (inline_type) {
1523 		/* inline_offset is subvolid of the owner, no need to check */
1524 		case BTRFS_TREE_BLOCK_REF_KEY:
1525 			inline_refs++;
1526 			break;
1527 		/* Contains parent bytenr */
1528 		case BTRFS_SHARED_BLOCK_REF_KEY:
1529 			if (unlikely(!IS_ALIGNED(inline_offset,
1530 						 fs_info->sectorsize))) {
1531 				extent_err(leaf, slot,
1532 		"invalid tree parent bytenr, have %llu expect aligned to %u",
1533 					   inline_offset, fs_info->sectorsize);
1534 				return -EUCLEAN;
1535 			}
1536 			inline_refs++;
1537 			break;
1538 		/*
1539 		 * Contains owner subvolid, owner key objectid, adjusted offset.
1540 		 * The only obvious corruption can happen in that offset.
1541 		 */
1542 		case BTRFS_EXTENT_DATA_REF_KEY:
1543 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1544 			dref_root = btrfs_extent_data_ref_root(leaf, dref);
1545 			dref_objectid = btrfs_extent_data_ref_objectid(leaf, dref);
1546 			dref_offset = btrfs_extent_data_ref_offset(leaf, dref);
1547 			seq = hash_extent_data_ref(
1548 					btrfs_extent_data_ref_root(leaf, dref),
1549 					btrfs_extent_data_ref_objectid(leaf, dref),
1550 					btrfs_extent_data_ref_offset(leaf, dref));
1551 			if (unlikely(!is_valid_dref_root(dref_root))) {
1552 				extent_err(leaf, slot,
1553 					   "invalid data ref root value %llu",
1554 					   dref_root);
1555 				return -EUCLEAN;
1556 			}
1557 			if (unlikely(dref_objectid < BTRFS_FIRST_FREE_OBJECTID ||
1558 				     dref_objectid > BTRFS_LAST_FREE_OBJECTID)) {
1559 				extent_err(leaf, slot,
1560 					   "invalid data ref objectid value %llu",
1561 					   dref_objectid);
1562 				return -EUCLEAN;
1563 			}
1564 			if (unlikely(!IS_ALIGNED(dref_offset,
1565 						 fs_info->sectorsize))) {
1566 				extent_err(leaf, slot,
1567 		"invalid data ref offset, have %llu expect aligned to %u",
1568 					   dref_offset, fs_info->sectorsize);
1569 				return -EUCLEAN;
1570 			}
1571 			if (unlikely(btrfs_extent_data_ref_count(leaf, dref) == 0)) {
1572 				extent_err(leaf, slot,
1573 			"invalid data ref count, should have non-zero value");
1574 				return -EUCLEAN;
1575 			}
1576 			inline_refs += btrfs_extent_data_ref_count(leaf, dref);
1577 			break;
1578 		/* Contains parent bytenr and ref count */
1579 		case BTRFS_SHARED_DATA_REF_KEY:
1580 			sref = (struct btrfs_shared_data_ref *)(iref + 1);
1581 			if (unlikely(!IS_ALIGNED(inline_offset,
1582 						 fs_info->sectorsize))) {
1583 				extent_err(leaf, slot,
1584 		"invalid data parent bytenr, have %llu expect aligned to %u",
1585 					   inline_offset, fs_info->sectorsize);
1586 				return -EUCLEAN;
1587 			}
1588 			if (unlikely(btrfs_shared_data_ref_count(leaf, sref) == 0)) {
1589 				extent_err(leaf, slot,
1590 			"invalid shared data ref count, should have non-zero value");
1591 				return -EUCLEAN;
1592 			}
1593 			inline_refs += btrfs_shared_data_ref_count(leaf, sref);
1594 			break;
1595 		case BTRFS_EXTENT_OWNER_REF_KEY:
1596 			WARN_ON(!btrfs_fs_incompat(fs_info, SIMPLE_QUOTA));
1597 			break;
1598 		default:
1599 			extent_err(leaf, slot, "unknown inline ref type: %u",
1600 				   inline_type);
1601 			return -EUCLEAN;
1602 		}
1603 		if (unlikely(inline_type < last_type)) {
1604 			extent_err(leaf, slot,
1605 				   "inline ref out-of-order: has type %u, prev type %u",
1606 				   inline_type, last_type);
1607 			return -EUCLEAN;
1608 		}
1609 		/* Type changed, allow the sequence starts from U64_MAX again. */
1610 		if (inline_type > last_type)
1611 			last_seq = U64_MAX;
1612 		if (unlikely(seq > last_seq)) {
1613 			extent_err(leaf, slot,
1614 "inline ref out-of-order: has type %u offset %llu seq 0x%llx, prev type %u seq 0x%llx",
1615 				   inline_type, inline_offset, seq,
1616 				   last_type, last_seq);
1617 			return -EUCLEAN;
1618 		}
1619 		last_type = inline_type;
1620 		last_seq = seq;
1621 		ptr += btrfs_extent_inline_ref_size(inline_type);
1622 	}
1623 	/* No padding is allowed */
1624 	if (unlikely(ptr != end)) {
1625 		extent_err(leaf, slot,
1626 			   "invalid extent item size, padding bytes found");
1627 		return -EUCLEAN;
1628 	}
1629 
1630 	/* Finally, check the inline refs against total refs */
1631 	if (unlikely(inline_refs > total_refs)) {
1632 		extent_err(leaf, slot,
1633 			"invalid extent refs, have %llu expect >= inline %llu",
1634 			   total_refs, inline_refs);
1635 		return -EUCLEAN;
1636 	}
1637 
1638 	if ((prev_key->type == BTRFS_EXTENT_ITEM_KEY) ||
1639 	    (prev_key->type == BTRFS_METADATA_ITEM_KEY)) {
1640 		u64 prev_end = prev_key->objectid;
1641 
1642 		if (prev_key->type == BTRFS_METADATA_ITEM_KEY)
1643 			prev_end += fs_info->nodesize;
1644 		else
1645 			prev_end += prev_key->offset;
1646 
1647 		if (unlikely(prev_end > key->objectid)) {
1648 			extent_err(leaf, slot,
1649 	"previous extent " BTRFS_KEY_FMT " overlaps current extent " BTRFS_KEY_FMT,
1650 				   BTRFS_KEY_FMT_VALUE(prev_key),
1651 				   BTRFS_KEY_FMT_VALUE(key));
1652 			return -EUCLEAN;
1653 		}
1654 	}
1655 
1656 	return 0;
1657 }
1658 
1659 static int check_simple_keyed_refs(struct extent_buffer *leaf,
1660 				   struct btrfs_key *key, int slot)
1661 {
1662 	u32 expect_item_size = 0;
1663 
1664 	if (key->type == BTRFS_SHARED_DATA_REF_KEY) {
1665 		struct btrfs_shared_data_ref *sref;
1666 
1667 		sref = btrfs_item_ptr(leaf, slot, struct btrfs_shared_data_ref);
1668 		if (unlikely(btrfs_shared_data_ref_count(leaf, sref) == 0)) {
1669 			extent_err(leaf, slot,
1670 		"invalid shared data backref count, should have non-zero value");
1671 			return -EUCLEAN;
1672 		}
1673 
1674 		expect_item_size = sizeof(struct btrfs_shared_data_ref);
1675 	}
1676 
1677 	if (unlikely(btrfs_item_size(leaf, slot) != expect_item_size)) {
1678 		generic_err(leaf, slot,
1679 		"invalid item size, have %u expect %u for key type %u",
1680 			    btrfs_item_size(leaf, slot),
1681 			    expect_item_size, key->type);
1682 		return -EUCLEAN;
1683 	}
1684 	if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) {
1685 		generic_err(leaf, slot,
1686 "invalid key objectid for shared block ref, have %llu expect aligned to %u",
1687 			    key->objectid, leaf->fs_info->sectorsize);
1688 		return -EUCLEAN;
1689 	}
1690 	if (unlikely(key->type != BTRFS_TREE_BLOCK_REF_KEY &&
1691 		     !IS_ALIGNED(key->offset, leaf->fs_info->sectorsize))) {
1692 		extent_err(leaf, slot,
1693 		"invalid tree parent bytenr, have %llu expect aligned to %u",
1694 			   key->offset, leaf->fs_info->sectorsize);
1695 		return -EUCLEAN;
1696 	}
1697 	return 0;
1698 }
1699 
1700 static int check_extent_data_ref(struct extent_buffer *leaf,
1701 				 struct btrfs_key *key, int slot)
1702 {
1703 	struct btrfs_extent_data_ref *dref;
1704 	unsigned long ptr = btrfs_item_ptr_offset(leaf, slot);
1705 	const unsigned long end = ptr + btrfs_item_size(leaf, slot);
1706 
1707 	if (unlikely(btrfs_item_size(leaf, slot) % sizeof(*dref) != 0)) {
1708 		generic_err(leaf, slot,
1709 	"invalid item size, have %u expect aligned to %zu for key type %u",
1710 			    btrfs_item_size(leaf, slot),
1711 			    sizeof(*dref), key->type);
1712 		return -EUCLEAN;
1713 	}
1714 	if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) {
1715 		generic_err(leaf, slot,
1716 "invalid key objectid for shared block ref, have %llu expect aligned to %u",
1717 			    key->objectid, leaf->fs_info->sectorsize);
1718 		return -EUCLEAN;
1719 	}
1720 	for (; ptr < end; ptr += sizeof(*dref)) {
1721 		u64 root;
1722 		u64 objectid;
1723 		u64 offset;
1724 
1725 		/*
1726 		 * We cannot check the extent_data_ref hash due to possible
1727 		 * overflow from the leaf due to hash collisions.
1728 		 */
1729 		dref = (struct btrfs_extent_data_ref *)ptr;
1730 		root = btrfs_extent_data_ref_root(leaf, dref);
1731 		objectid = btrfs_extent_data_ref_objectid(leaf, dref);
1732 		offset = btrfs_extent_data_ref_offset(leaf, dref);
1733 		if (unlikely(!is_valid_dref_root(root))) {
1734 			extent_err(leaf, slot,
1735 				   "invalid extent data backref root value %llu",
1736 				   root);
1737 			return -EUCLEAN;
1738 		}
1739 		if (unlikely(objectid < BTRFS_FIRST_FREE_OBJECTID ||
1740 			     objectid > BTRFS_LAST_FREE_OBJECTID)) {
1741 			extent_err(leaf, slot,
1742 				   "invalid extent data backref objectid value %llu",
1743 				   root);
1744 			return -EUCLEAN;
1745 		}
1746 		if (unlikely(!IS_ALIGNED(offset, leaf->fs_info->sectorsize))) {
1747 			extent_err(leaf, slot,
1748 	"invalid extent data backref offset, have %llu expect aligned to %u",
1749 				   offset, leaf->fs_info->sectorsize);
1750 			return -EUCLEAN;
1751 		}
1752 		if (unlikely(btrfs_extent_data_ref_count(leaf, dref) == 0)) {
1753 			extent_err(leaf, slot,
1754 	"invalid extent data backref count, should have non-zero value");
1755 			return -EUCLEAN;
1756 		}
1757 	}
1758 	return 0;
1759 }
1760 
1761 #define inode_ref_err(eb, slot, fmt, args...)			\
1762 	inode_item_err(eb, slot, fmt, ##args)
1763 static int check_inode_ref(struct extent_buffer *leaf,
1764 			   struct btrfs_key *key, struct btrfs_key *prev_key,
1765 			   int slot)
1766 {
1767 	struct btrfs_inode_ref *iref;
1768 	unsigned long ptr;
1769 	unsigned long end;
1770 
1771 	if (unlikely(!check_prev_ino(leaf, key, slot, prev_key)))
1772 		return -EUCLEAN;
1773 	/* namelen can't be 0, so item_size == sizeof() is also invalid */
1774 	if (unlikely(btrfs_item_size(leaf, slot) <= sizeof(*iref))) {
1775 		inode_ref_err(leaf, slot,
1776 			"invalid item size, have %u expect (%zu, %u)",
1777 			btrfs_item_size(leaf, slot),
1778 			sizeof(*iref), BTRFS_LEAF_DATA_SIZE(leaf->fs_info));
1779 		return -EUCLEAN;
1780 	}
1781 
1782 	ptr = btrfs_item_ptr_offset(leaf, slot);
1783 	end = ptr + btrfs_item_size(leaf, slot);
1784 	while (ptr < end) {
1785 		u16 namelen;
1786 
1787 		if (unlikely(ptr + sizeof(*iref) > end)) {
1788 			inode_ref_err(leaf, slot,
1789 			"inode ref overflow, ptr %lu end %lu inode_ref_size %zu",
1790 				ptr, end, sizeof(*iref));
1791 			return -EUCLEAN;
1792 		}
1793 
1794 		iref = (struct btrfs_inode_ref *)ptr;
1795 		namelen = btrfs_inode_ref_name_len(leaf, iref);
1796 		if (unlikely(ptr + sizeof(*iref) + namelen > end)) {
1797 			inode_ref_err(leaf, slot,
1798 				"inode ref overflow, ptr %lu end %lu namelen %u",
1799 				ptr, end, namelen);
1800 			return -EUCLEAN;
1801 		}
1802 
1803 		/*
1804 		 * NOTE: In theory we should record all found index numbers
1805 		 * to find any duplicated indexes, but that will be too time
1806 		 * consuming for inodes with too many hard links.
1807 		 */
1808 		ptr += sizeof(*iref) + namelen;
1809 	}
1810 	return 0;
1811 }
1812 
1813 static int check_inode_extref(struct extent_buffer *leaf,
1814 			      struct btrfs_key *key, struct btrfs_key *prev_key,
1815 			      int slot)
1816 {
1817 	unsigned long ptr = btrfs_item_ptr_offset(leaf, slot);
1818 	unsigned long end = ptr + btrfs_item_size(leaf, slot);
1819 
1820 	if (unlikely(!check_prev_ino(leaf, key, slot, prev_key)))
1821 		return -EUCLEAN;
1822 
1823 	while (ptr < end) {
1824 		struct btrfs_inode_extref *extref = (struct btrfs_inode_extref *)ptr;
1825 		u16 namelen;
1826 
1827 		if (unlikely(ptr + sizeof(*extref) > end)) {
1828 			inode_ref_err(leaf, slot,
1829 			"inode extref overflow, ptr %lu end %lu inode_extref size %zu",
1830 				      ptr, end, sizeof(*extref));
1831 			return -EUCLEAN;
1832 		}
1833 
1834 		namelen = btrfs_inode_extref_name_len(leaf, extref);
1835 		if (unlikely(ptr + sizeof(*extref) + namelen > end)) {
1836 			inode_ref_err(leaf, slot,
1837 				"inode extref overflow, ptr %lu end %lu namelen %u",
1838 				ptr, end, namelen);
1839 			return -EUCLEAN;
1840 		}
1841 		ptr += sizeof(*extref) + namelen;
1842 	}
1843 	return 0;
1844 }
1845 
1846 static int check_raid_stripe_extent(const struct extent_buffer *leaf,
1847 				    const struct btrfs_key *key, int slot)
1848 {
1849 	if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) {
1850 		generic_err(leaf, slot,
1851 "invalid key objectid for raid stripe extent, have %llu expect aligned to %u",
1852 			    key->objectid, leaf->fs_info->sectorsize);
1853 		return -EUCLEAN;
1854 	}
1855 
1856 	if (unlikely(!btrfs_fs_incompat(leaf->fs_info, RAID_STRIPE_TREE))) {
1857 		generic_err(leaf, slot,
1858 	"RAID_STRIPE_EXTENT present but RAID_STRIPE_TREE incompat bit unset");
1859 		return -EUCLEAN;
1860 	}
1861 
1862 	return 0;
1863 }
1864 
1865 static int check_dev_extent_item(const struct extent_buffer *leaf,
1866 				 const struct btrfs_key *key,
1867 				 int slot,
1868 				 struct btrfs_key *prev_key)
1869 {
1870 	struct btrfs_dev_extent *de;
1871 	const u32 sectorsize = leaf->fs_info->sectorsize;
1872 
1873 	de = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
1874 	/* Basic fixed member checks. */
1875 	if (unlikely(btrfs_dev_extent_chunk_tree(leaf, de) !=
1876 		     BTRFS_CHUNK_TREE_OBJECTID)) {
1877 		generic_err(leaf, slot,
1878 			    "invalid dev extent chunk tree id, has %llu expect %llu",
1879 			    btrfs_dev_extent_chunk_tree(leaf, de),
1880 			    BTRFS_CHUNK_TREE_OBJECTID);
1881 		return -EUCLEAN;
1882 	}
1883 	if (unlikely(btrfs_dev_extent_chunk_objectid(leaf, de) !=
1884 		     BTRFS_FIRST_CHUNK_TREE_OBJECTID)) {
1885 		generic_err(leaf, slot,
1886 			    "invalid dev extent chunk objectid, has %llu expect %llu",
1887 			    btrfs_dev_extent_chunk_objectid(leaf, de),
1888 			    BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1889 		return -EUCLEAN;
1890 	}
1891 	/* Alignment check. */
1892 	if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) {
1893 		generic_err(leaf, slot,
1894 			    "invalid dev extent key.offset, has %llu not aligned to %u",
1895 			    key->offset, sectorsize);
1896 		return -EUCLEAN;
1897 	}
1898 	if (unlikely(!IS_ALIGNED(btrfs_dev_extent_chunk_offset(leaf, de),
1899 				 sectorsize))) {
1900 		generic_err(leaf, slot,
1901 			    "invalid dev extent chunk offset, has %llu not aligned to %u",
1902 			    btrfs_dev_extent_chunk_objectid(leaf, de),
1903 			    sectorsize);
1904 		return -EUCLEAN;
1905 	}
1906 	if (unlikely(!IS_ALIGNED(btrfs_dev_extent_length(leaf, de),
1907 				 sectorsize))) {
1908 		generic_err(leaf, slot,
1909 			    "invalid dev extent length, has %llu not aligned to %u",
1910 			    btrfs_dev_extent_length(leaf, de), sectorsize);
1911 		return -EUCLEAN;
1912 	}
1913 	/* Overlap check with previous dev extent. */
1914 	if (slot && prev_key->objectid == key->objectid &&
1915 	    prev_key->type == key->type) {
1916 		struct btrfs_dev_extent *prev_de;
1917 		u64 prev_len;
1918 
1919 		prev_de = btrfs_item_ptr(leaf, slot - 1, struct btrfs_dev_extent);
1920 		prev_len = btrfs_dev_extent_length(leaf, prev_de);
1921 		if (unlikely(prev_key->offset + prev_len > key->offset)) {
1922 			generic_err(leaf, slot,
1923 		"dev extent overlap, prev offset %llu len %llu current offset %llu",
1924 				    prev_key->objectid, prev_len, key->offset);
1925 			return -EUCLEAN;
1926 		}
1927 	}
1928 	return 0;
1929 }
1930 
1931 /*
1932  * Common point to switch the item-specific validation.
1933  */
1934 static enum btrfs_tree_block_status check_leaf_item(struct extent_buffer *leaf,
1935 						    struct btrfs_key *key,
1936 						    int slot,
1937 						    struct btrfs_key *prev_key)
1938 {
1939 	int ret = 0;
1940 	struct btrfs_chunk *chunk;
1941 
1942 	switch (key->type) {
1943 	case BTRFS_EXTENT_DATA_KEY:
1944 		ret = check_extent_data_item(leaf, key, slot, prev_key);
1945 		break;
1946 	case BTRFS_EXTENT_CSUM_KEY:
1947 		ret = check_csum_item(leaf, key, slot, prev_key);
1948 		break;
1949 	case BTRFS_DIR_ITEM_KEY:
1950 	case BTRFS_DIR_INDEX_KEY:
1951 	case BTRFS_XATTR_ITEM_KEY:
1952 		ret = check_dir_item(leaf, key, prev_key, slot);
1953 		break;
1954 	case BTRFS_INODE_REF_KEY:
1955 		ret = check_inode_ref(leaf, key, prev_key, slot);
1956 		break;
1957 	case BTRFS_INODE_EXTREF_KEY:
1958 		ret = check_inode_extref(leaf, key, prev_key, slot);
1959 		break;
1960 	case BTRFS_BLOCK_GROUP_ITEM_KEY:
1961 		ret = check_block_group_item(leaf, key, slot);
1962 		break;
1963 	case BTRFS_CHUNK_ITEM_KEY:
1964 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
1965 		ret = check_leaf_chunk_item(leaf, chunk, key, slot);
1966 		break;
1967 	case BTRFS_DEV_ITEM_KEY:
1968 		ret = check_dev_item(leaf, key, slot);
1969 		break;
1970 	case BTRFS_DEV_EXTENT_KEY:
1971 		ret = check_dev_extent_item(leaf, key, slot, prev_key);
1972 		break;
1973 	case BTRFS_INODE_ITEM_KEY:
1974 		ret = check_inode_item(leaf, key, slot);
1975 		break;
1976 	case BTRFS_ROOT_ITEM_KEY:
1977 		ret = check_root_item(leaf, key, slot);
1978 		break;
1979 	case BTRFS_EXTENT_ITEM_KEY:
1980 	case BTRFS_METADATA_ITEM_KEY:
1981 		ret = check_extent_item(leaf, key, slot, prev_key);
1982 		break;
1983 	case BTRFS_TREE_BLOCK_REF_KEY:
1984 	case BTRFS_SHARED_DATA_REF_KEY:
1985 	case BTRFS_SHARED_BLOCK_REF_KEY:
1986 		ret = check_simple_keyed_refs(leaf, key, slot);
1987 		break;
1988 	case BTRFS_EXTENT_DATA_REF_KEY:
1989 		ret = check_extent_data_ref(leaf, key, slot);
1990 		break;
1991 	case BTRFS_RAID_STRIPE_KEY:
1992 		ret = check_raid_stripe_extent(leaf, key, slot);
1993 		break;
1994 	}
1995 
1996 	if (unlikely(ret))
1997 		return BTRFS_TREE_BLOCK_INVALID_ITEM;
1998 	return BTRFS_TREE_BLOCK_CLEAN;
1999 }
2000 
2001 enum btrfs_tree_block_status __btrfs_check_leaf(struct extent_buffer *leaf)
2002 {
2003 	struct btrfs_fs_info *fs_info = leaf->fs_info;
2004 	/* No valid key type is 0, so all key should be larger than this key */
2005 	struct btrfs_key prev_key = {0, 0, 0};
2006 	struct btrfs_key key;
2007 	u32 nritems = btrfs_header_nritems(leaf);
2008 	int slot;
2009 
2010 	if (unlikely(btrfs_header_level(leaf) != 0)) {
2011 		generic_err(leaf, 0,
2012 			"invalid level for leaf, have %d expect 0",
2013 			btrfs_header_level(leaf));
2014 		return BTRFS_TREE_BLOCK_INVALID_LEVEL;
2015 	}
2016 
2017 	if (unlikely(!btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_WRITTEN))) {
2018 		generic_err(leaf, 0, "invalid flag for leaf, WRITTEN not set");
2019 		return BTRFS_TREE_BLOCK_WRITTEN_NOT_SET;
2020 	}
2021 
2022 	/*
2023 	 * Extent buffers from a relocation tree have a owner field that
2024 	 * corresponds to the subvolume tree they are based on. So just from an
2025 	 * extent buffer alone we can not find out what is the id of the
2026 	 * corresponding subvolume tree, so we can not figure out if the extent
2027 	 * buffer corresponds to the root of the relocation tree or not. So
2028 	 * skip this check for relocation trees.
2029 	 */
2030 	if (nritems == 0 && !btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_RELOC)) {
2031 		u64 owner = btrfs_header_owner(leaf);
2032 
2033 		/* These trees must never be empty */
2034 		if (unlikely(owner == BTRFS_ROOT_TREE_OBJECTID ||
2035 			     owner == BTRFS_CHUNK_TREE_OBJECTID ||
2036 			     owner == BTRFS_DEV_TREE_OBJECTID ||
2037 			     owner == BTRFS_FS_TREE_OBJECTID ||
2038 			     owner == BTRFS_DATA_RELOC_TREE_OBJECTID)) {
2039 			generic_err(leaf, 0,
2040 			"invalid root, root %llu must never be empty",
2041 				    owner);
2042 			return BTRFS_TREE_BLOCK_INVALID_NRITEMS;
2043 		}
2044 
2045 		/* Unknown tree */
2046 		if (unlikely(owner == 0)) {
2047 			generic_err(leaf, 0,
2048 				"invalid owner, root 0 is not defined");
2049 			return BTRFS_TREE_BLOCK_INVALID_OWNER;
2050 		}
2051 
2052 		/* EXTENT_TREE_V2 can have empty extent trees. */
2053 		if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2054 			return BTRFS_TREE_BLOCK_CLEAN;
2055 
2056 		if (unlikely(owner == BTRFS_EXTENT_TREE_OBJECTID)) {
2057 			generic_err(leaf, 0,
2058 			"invalid root, root %llu must never be empty",
2059 				    owner);
2060 			return BTRFS_TREE_BLOCK_INVALID_NRITEMS;
2061 		}
2062 
2063 		return BTRFS_TREE_BLOCK_CLEAN;
2064 	}
2065 
2066 	if (unlikely(nritems == 0))
2067 		return BTRFS_TREE_BLOCK_CLEAN;
2068 
2069 	/*
2070 	 * Check the following things to make sure this is a good leaf, and
2071 	 * leaf users won't need to bother with similar sanity checks:
2072 	 *
2073 	 * 1) key ordering
2074 	 * 2) item offset and size
2075 	 *    No overlap, no hole, all inside the leaf.
2076 	 * 3) item content
2077 	 *    If possible, do comprehensive sanity check.
2078 	 *    NOTE: All checks must only rely on the item data itself.
2079 	 */
2080 	for (slot = 0; slot < nritems; slot++) {
2081 		u32 item_end_expected;
2082 		u64 item_data_end;
2083 		enum btrfs_tree_block_status ret;
2084 
2085 		btrfs_item_key_to_cpu(leaf, &key, slot);
2086 
2087 		/* Make sure the keys are in the right order */
2088 		if (unlikely(btrfs_comp_cpu_keys(&prev_key, &key) >= 0)) {
2089 			generic_err(leaf, slot,
2090 	"bad key order, prev " BTRFS_KEY_FMT " current " BTRFS_KEY_FMT,
2091 				    BTRFS_KEY_FMT_VALUE(&prev_key),
2092 				    BTRFS_KEY_FMT_VALUE(&key));
2093 			return BTRFS_TREE_BLOCK_BAD_KEY_ORDER;
2094 		}
2095 
2096 		item_data_end = (u64)btrfs_item_offset(leaf, slot) +
2097 				btrfs_item_size(leaf, slot);
2098 		/*
2099 		 * Make sure the offset and ends are right, remember that the
2100 		 * item data starts at the end of the leaf and grows towards the
2101 		 * front.
2102 		 */
2103 		if (slot == 0)
2104 			item_end_expected = BTRFS_LEAF_DATA_SIZE(fs_info);
2105 		else
2106 			item_end_expected = btrfs_item_offset(leaf,
2107 								 slot - 1);
2108 		if (unlikely(item_data_end != item_end_expected)) {
2109 			generic_err(leaf, slot,
2110 				"unexpected item end, have %llu expect %u",
2111 				item_data_end, item_end_expected);
2112 			return BTRFS_TREE_BLOCK_INVALID_OFFSETS;
2113 		}
2114 
2115 		/*
2116 		 * Check to make sure that we don't point outside of the leaf,
2117 		 * just in case all the items are consistent to each other, but
2118 		 * all point outside of the leaf.
2119 		 */
2120 		if (unlikely(item_data_end > BTRFS_LEAF_DATA_SIZE(fs_info))) {
2121 			generic_err(leaf, slot,
2122 			"slot end outside of leaf, have %llu expect range [0, %u]",
2123 				item_data_end, BTRFS_LEAF_DATA_SIZE(fs_info));
2124 			return BTRFS_TREE_BLOCK_INVALID_OFFSETS;
2125 		}
2126 
2127 		/* Also check if the item pointer overlaps with btrfs item. */
2128 		if (unlikely(btrfs_item_ptr_offset(leaf, slot) <
2129 			     btrfs_item_nr_offset(leaf, slot) + sizeof(struct btrfs_item))) {
2130 			generic_err(leaf, slot,
2131 		"slot overlaps with its data, item end %lu data start %lu",
2132 				btrfs_item_nr_offset(leaf, slot) +
2133 				sizeof(struct btrfs_item),
2134 				btrfs_item_ptr_offset(leaf, slot));
2135 			return BTRFS_TREE_BLOCK_INVALID_OFFSETS;
2136 		}
2137 
2138 		/* Check if the item size and content meet other criteria. */
2139 		ret = check_leaf_item(leaf, &key, slot, &prev_key);
2140 		if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN))
2141 			return ret;
2142 
2143 		prev_key.objectid = key.objectid;
2144 		prev_key.type = key.type;
2145 		prev_key.offset = key.offset;
2146 	}
2147 
2148 	return BTRFS_TREE_BLOCK_CLEAN;
2149 }
2150 
2151 int btrfs_check_leaf(struct extent_buffer *leaf)
2152 {
2153 	enum btrfs_tree_block_status ret;
2154 
2155 	ret = __btrfs_check_leaf(leaf);
2156 	if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN))
2157 		return -EUCLEAN;
2158 	return 0;
2159 }
2160 ALLOW_ERROR_INJECTION(btrfs_check_leaf, ERRNO);
2161 
2162 enum btrfs_tree_block_status __btrfs_check_node(struct extent_buffer *node)
2163 {
2164 	struct btrfs_fs_info *fs_info = node->fs_info;
2165 	unsigned long nr = btrfs_header_nritems(node);
2166 	struct btrfs_key key, next_key;
2167 	int slot;
2168 	int level = btrfs_header_level(node);
2169 	u64 bytenr;
2170 
2171 	if (unlikely(!btrfs_header_flag(node, BTRFS_HEADER_FLAG_WRITTEN))) {
2172 		generic_err(node, 0, "invalid flag for node, WRITTEN not set");
2173 		return BTRFS_TREE_BLOCK_WRITTEN_NOT_SET;
2174 	}
2175 
2176 	if (unlikely(level <= 0 || level >= BTRFS_MAX_LEVEL)) {
2177 		generic_err(node, 0,
2178 			"invalid level for node, have %d expect [1, %d]",
2179 			level, BTRFS_MAX_LEVEL - 1);
2180 		return BTRFS_TREE_BLOCK_INVALID_LEVEL;
2181 	}
2182 	if (unlikely(nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(fs_info))) {
2183 		btrfs_crit(fs_info,
2184 "corrupt node: root=%llu block=%llu, nritems too %s, have %lu expect range [1,%u]",
2185 			   btrfs_header_owner(node), node->start,
2186 			   nr == 0 ? "small" : "large", nr,
2187 			   BTRFS_NODEPTRS_PER_BLOCK(fs_info));
2188 		return BTRFS_TREE_BLOCK_INVALID_NRITEMS;
2189 	}
2190 
2191 	for (slot = 0; slot < nr - 1; slot++) {
2192 		bytenr = btrfs_node_blockptr(node, slot);
2193 		btrfs_node_key_to_cpu(node, &key, slot);
2194 		btrfs_node_key_to_cpu(node, &next_key, slot + 1);
2195 
2196 		if (unlikely(!bytenr)) {
2197 			generic_err(node, slot,
2198 				"invalid NULL node pointer");
2199 			return BTRFS_TREE_BLOCK_INVALID_BLOCKPTR;
2200 		}
2201 		if (unlikely(!IS_ALIGNED(bytenr, fs_info->sectorsize))) {
2202 			generic_err(node, slot,
2203 			"unaligned pointer, have %llu should be aligned to %u",
2204 				bytenr, fs_info->sectorsize);
2205 			return BTRFS_TREE_BLOCK_INVALID_BLOCKPTR;
2206 		}
2207 
2208 		if (unlikely(btrfs_comp_cpu_keys(&key, &next_key) >= 0)) {
2209 			generic_err(node, slot,
2210 	"bad key order, current " BTRFS_KEY_FMT " next " BTRFS_KEY_FMT,
2211 				    BTRFS_KEY_FMT_VALUE(&key),
2212 				    BTRFS_KEY_FMT_VALUE(&next_key));
2213 			return BTRFS_TREE_BLOCK_BAD_KEY_ORDER;
2214 		}
2215 	}
2216 	return BTRFS_TREE_BLOCK_CLEAN;
2217 }
2218 
2219 int btrfs_check_node(struct extent_buffer *node)
2220 {
2221 	enum btrfs_tree_block_status ret;
2222 
2223 	ret = __btrfs_check_node(node);
2224 	if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN))
2225 		return -EUCLEAN;
2226 	return 0;
2227 }
2228 ALLOW_ERROR_INJECTION(btrfs_check_node, ERRNO);
2229 
2230 int btrfs_check_eb_owner(const struct extent_buffer *eb, u64 root_owner)
2231 {
2232 	const bool is_subvol = btrfs_is_fstree(root_owner);
2233 	const u64 eb_owner = btrfs_header_owner(eb);
2234 
2235 	/*
2236 	 * Skip dummy fs, as selftests don't create unique ebs for each dummy
2237 	 * root.
2238 	 */
2239 	if (btrfs_is_testing(eb->fs_info))
2240 		return 0;
2241 	/*
2242 	 * There are several call sites (backref walking, qgroup, and data
2243 	 * reloc) passing 0 as @root_owner, as they are not holding the
2244 	 * tree root.  In that case, we can not do a reliable ownership check,
2245 	 * so just exit.
2246 	 */
2247 	if (root_owner == 0)
2248 		return 0;
2249 	/*
2250 	 * These trees use key.offset as their owner, our callers don't have
2251 	 * the extra capacity to pass key.offset here.  So we just skip them.
2252 	 */
2253 	if (root_owner == BTRFS_TREE_LOG_OBJECTID ||
2254 	    root_owner == BTRFS_TREE_RELOC_OBJECTID)
2255 		return 0;
2256 
2257 	if (!is_subvol) {
2258 		/* For non-subvolume trees, the eb owner should match root owner */
2259 		if (unlikely(root_owner != eb_owner)) {
2260 			btrfs_crit(eb->fs_info,
2261 "corrupted %s, root=%llu block=%llu owner mismatch, have %llu expect %llu",
2262 				btrfs_header_level(eb) == 0 ? "leaf" : "node",
2263 				root_owner, btrfs_header_bytenr(eb), eb_owner,
2264 				root_owner);
2265 			return -EUCLEAN;
2266 		}
2267 		return 0;
2268 	}
2269 
2270 	/*
2271 	 * For subvolume trees, owners can mismatch, but they should all belong
2272 	 * to subvolume trees.
2273 	 */
2274 	if (unlikely(is_subvol != btrfs_is_fstree(eb_owner))) {
2275 		btrfs_crit(eb->fs_info,
2276 "corrupted %s, root=%llu block=%llu owner mismatch, have %llu expect [%llu, %llu]",
2277 			btrfs_header_level(eb) == 0 ? "leaf" : "node",
2278 			root_owner, btrfs_header_bytenr(eb), eb_owner,
2279 			BTRFS_FIRST_FREE_OBJECTID, BTRFS_LAST_FREE_OBJECTID);
2280 		return -EUCLEAN;
2281 	}
2282 	return 0;
2283 }
2284 
2285 int btrfs_verify_level_key(struct extent_buffer *eb,
2286 			   const struct btrfs_tree_parent_check *check)
2287 {
2288 	struct btrfs_fs_info *fs_info = eb->fs_info;
2289 	int found_level;
2290 	struct btrfs_key found_key;
2291 	int ret;
2292 
2293 	found_level = btrfs_header_level(eb);
2294 	if (unlikely(found_level != check->level)) {
2295 		DEBUG_WARN();
2296 		btrfs_err(fs_info,
2297 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
2298 			  eb->start, check->level, found_level);
2299 		return -EUCLEAN;
2300 	}
2301 
2302 	if (!check->has_first_key)
2303 		return 0;
2304 
2305 	/*
2306 	 * For live tree block (new tree blocks in current transaction),
2307 	 * we need proper lock context to avoid race, which is impossible here.
2308 	 * So we only checks tree blocks which is read from disk, whose
2309 	 * generation <= fs_info->last_trans_committed.
2310 	 */
2311 	if (btrfs_header_generation(eb) > btrfs_get_last_trans_committed(fs_info))
2312 		return 0;
2313 
2314 	/* We have @first_key, so this @eb must have at least one item */
2315 	if (unlikely(btrfs_header_nritems(eb) == 0)) {
2316 		btrfs_err(fs_info,
2317 		"invalid tree nritems, bytenr=%llu nritems=0 expect >0",
2318 			  eb->start);
2319 		DEBUG_WARN();
2320 		return -EUCLEAN;
2321 	}
2322 
2323 	if (found_level)
2324 		btrfs_node_key_to_cpu(eb, &found_key, 0);
2325 	else
2326 		btrfs_item_key_to_cpu(eb, &found_key, 0);
2327 
2328 	ret = btrfs_comp_cpu_keys(&check->first_key, &found_key);
2329 	if (unlikely(ret)) {
2330 		DEBUG_WARN();
2331 		btrfs_err(fs_info,
2332 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
2333 			  eb->start, check->transid, check->first_key.objectid,
2334 			  check->first_key.type, check->first_key.offset,
2335 			  found_key.objectid, found_key.type,
2336 			  found_key.offset);
2337 	}
2338 	return ret;
2339 }
2340