1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) Qu Wenruo 2017. All rights reserved. 4 */ 5 6 /* 7 * The module is used to catch unexpected/corrupted tree block data. 8 * Such behavior can be caused either by a fuzzed image or bugs. 9 * 10 * The objective is to do leaf/node validation checks when tree block is read 11 * from disk, and check *every* possible member, so other code won't 12 * need to checking them again. 13 * 14 * Due to the potential and unwanted damage, every checker needs to be 15 * carefully reviewed otherwise so it does not prevent mount of valid images. 16 */ 17 18 #include <linux/types.h> 19 #include <linux/stddef.h> 20 #include <linux/error-injection.h> 21 #include "messages.h" 22 #include "ctree.h" 23 #include "tree-checker.h" 24 #include "compression.h" 25 #include "volumes.h" 26 #include "misc.h" 27 #include "fs.h" 28 #include "accessors.h" 29 #include "file-item.h" 30 #include "inode-item.h" 31 #include "dir-item.h" 32 #include "extent-tree.h" 33 34 /* 35 * Error message should follow the following format: 36 * corrupt <type>: <identifier>, <reason>[, <bad_value>] 37 * 38 * @type: leaf or node 39 * @identifier: the necessary info to locate the leaf/node. 40 * It's recommended to decode key.objecitd/offset if it's 41 * meaningful. 42 * @reason: describe the error 43 * @bad_value: optional, it's recommended to output bad value and its 44 * expected value (range). 45 * 46 * Since comma is used to separate the components, only space is allowed 47 * inside each component. 48 */ 49 50 /* 51 * Append generic "corrupt leaf/node root=%llu block=%llu slot=%d: " to @fmt. 52 * Allows callers to customize the output. 53 */ 54 __printf(3, 4) 55 __cold 56 static void generic_err(const struct extent_buffer *eb, int slot, 57 const char *fmt, ...) 58 { 59 const struct btrfs_fs_info *fs_info = eb->fs_info; 60 struct va_format vaf; 61 va_list args; 62 63 va_start(args, fmt); 64 65 vaf.fmt = fmt; 66 vaf.va = &args; 67 68 dump_page(folio_page(eb->folios[0], 0), "eb page dump"); 69 btrfs_crit(fs_info, 70 "corrupt %s: root=%llu block=%llu slot=%d, %pV", 71 btrfs_header_level(eb) == 0 ? "leaf" : "node", 72 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, &vaf); 73 va_end(args); 74 } 75 76 /* 77 * Customized reporter for extent data item, since its key objectid and 78 * offset has its own meaning. 79 */ 80 __printf(3, 4) 81 __cold 82 static void file_extent_err(const struct extent_buffer *eb, int slot, 83 const char *fmt, ...) 84 { 85 const struct btrfs_fs_info *fs_info = eb->fs_info; 86 struct btrfs_key key; 87 struct va_format vaf; 88 va_list args; 89 90 btrfs_item_key_to_cpu(eb, &key, slot); 91 va_start(args, fmt); 92 93 vaf.fmt = fmt; 94 vaf.va = &args; 95 96 dump_page(folio_page(eb->folios[0], 0), "eb page dump"); 97 btrfs_crit(fs_info, 98 "corrupt %s: root=%llu block=%llu slot=%d ino=%llu file_offset=%llu, %pV", 99 btrfs_header_level(eb) == 0 ? "leaf" : "node", 100 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, 101 key.objectid, key.offset, &vaf); 102 va_end(args); 103 } 104 105 /* 106 * Return 0 if the btrfs_file_extent_##name is aligned to @alignment 107 * Else return 1 108 */ 109 #define CHECK_FE_ALIGNED(leaf, slot, fi, name, alignment) \ 110 ({ \ 111 if (unlikely(!IS_ALIGNED(btrfs_file_extent_##name((leaf), (fi)), \ 112 (alignment)))) \ 113 file_extent_err((leaf), (slot), \ 114 "invalid %s for file extent, have %llu, should be aligned to %u", \ 115 (#name), btrfs_file_extent_##name((leaf), (fi)), \ 116 (alignment)); \ 117 (!IS_ALIGNED(btrfs_file_extent_##name((leaf), (fi)), (alignment))); \ 118 }) 119 120 static u64 file_extent_end(struct extent_buffer *leaf, 121 struct btrfs_key *key, 122 struct btrfs_file_extent_item *extent) 123 { 124 u64 end; 125 u64 len; 126 127 if (btrfs_file_extent_type(leaf, extent) == BTRFS_FILE_EXTENT_INLINE) { 128 len = btrfs_file_extent_ram_bytes(leaf, extent); 129 end = ALIGN(key->offset + len, leaf->fs_info->sectorsize); 130 } else { 131 len = btrfs_file_extent_num_bytes(leaf, extent); 132 end = key->offset + len; 133 } 134 return end; 135 } 136 137 /* 138 * Customized report for dir_item, the only new important information is 139 * key->objectid, which represents inode number 140 */ 141 __printf(3, 4) 142 __cold 143 static void dir_item_err(const struct extent_buffer *eb, int slot, 144 const char *fmt, ...) 145 { 146 const struct btrfs_fs_info *fs_info = eb->fs_info; 147 struct btrfs_key key; 148 struct va_format vaf; 149 va_list args; 150 151 btrfs_item_key_to_cpu(eb, &key, slot); 152 va_start(args, fmt); 153 154 vaf.fmt = fmt; 155 vaf.va = &args; 156 157 dump_page(folio_page(eb->folios[0], 0), "eb page dump"); 158 btrfs_crit(fs_info, 159 "corrupt %s: root=%llu block=%llu slot=%d ino=%llu, %pV", 160 btrfs_header_level(eb) == 0 ? "leaf" : "node", 161 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, 162 key.objectid, &vaf); 163 va_end(args); 164 } 165 166 /* 167 * This functions checks prev_key->objectid, to ensure current key and prev_key 168 * share the same objectid as inode number. 169 * 170 * This is to detect missing INODE_ITEM in subvolume trees. 171 * 172 * Return true if everything is OK or we don't need to check. 173 * Return false if anything is wrong. 174 */ 175 static bool check_prev_ino(struct extent_buffer *leaf, 176 struct btrfs_key *key, int slot, 177 struct btrfs_key *prev_key) 178 { 179 /* No prev key, skip check */ 180 if (slot == 0) 181 return true; 182 183 /* Only these key->types needs to be checked */ 184 ASSERT(key->type == BTRFS_XATTR_ITEM_KEY || 185 key->type == BTRFS_INODE_REF_KEY || 186 key->type == BTRFS_INODE_EXTREF_KEY || 187 key->type == BTRFS_DIR_INDEX_KEY || 188 key->type == BTRFS_DIR_ITEM_KEY || 189 key->type == BTRFS_EXTENT_DATA_KEY, "key->type=%u", key->type); 190 191 /* 192 * Only subvolume trees along with their reloc trees need this check. 193 * Things like log tree doesn't follow this ino requirement. 194 */ 195 if (!btrfs_is_fstree(btrfs_header_owner(leaf))) 196 return true; 197 198 if (key->objectid == prev_key->objectid) 199 return true; 200 201 /* Error found */ 202 dir_item_err(leaf, slot, 203 "invalid previous key objectid, have %llu expect %llu", 204 prev_key->objectid, key->objectid); 205 return false; 206 } 207 static int check_extent_data_item(struct extent_buffer *leaf, 208 struct btrfs_key *key, int slot, 209 struct btrfs_key *prev_key) 210 { 211 struct btrfs_fs_info *fs_info = leaf->fs_info; 212 struct btrfs_file_extent_item *fi; 213 u32 sectorsize = fs_info->sectorsize; 214 u32 item_size = btrfs_item_size(leaf, slot); 215 u64 extent_end; 216 217 if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) { 218 file_extent_err(leaf, slot, 219 "unaligned file_offset for file extent, have %llu should be aligned to %u", 220 key->offset, sectorsize); 221 return -EUCLEAN; 222 } 223 224 /* 225 * Previous key must have the same key->objectid (ino). 226 * It can be XATTR_ITEM, INODE_ITEM or just another EXTENT_DATA. 227 * But if objectids mismatch, it means we have a missing 228 * INODE_ITEM. 229 */ 230 if (unlikely(!check_prev_ino(leaf, key, slot, prev_key))) 231 return -EUCLEAN; 232 233 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 234 235 /* 236 * Make sure the item contains at least inline header, so the file 237 * extent type is not some garbage. 238 */ 239 if (unlikely(item_size < BTRFS_FILE_EXTENT_INLINE_DATA_START)) { 240 file_extent_err(leaf, slot, 241 "invalid item size, have %u expect [%zu, %u)", 242 item_size, BTRFS_FILE_EXTENT_INLINE_DATA_START, 243 SZ_4K); 244 return -EUCLEAN; 245 } 246 if (unlikely(btrfs_file_extent_type(leaf, fi) >= 247 BTRFS_NR_FILE_EXTENT_TYPES)) { 248 file_extent_err(leaf, slot, 249 "invalid type for file extent, have %u expect range [0, %u]", 250 btrfs_file_extent_type(leaf, fi), 251 BTRFS_NR_FILE_EXTENT_TYPES - 1); 252 return -EUCLEAN; 253 } 254 255 /* 256 * Support for new compression/encryption must introduce incompat flag, 257 * and must be caught in open_ctree(). 258 */ 259 if (unlikely(btrfs_file_extent_compression(leaf, fi) >= 260 BTRFS_NR_COMPRESS_TYPES)) { 261 file_extent_err(leaf, slot, 262 "invalid compression for file extent, have %u expect range [0, %u]", 263 btrfs_file_extent_compression(leaf, fi), 264 BTRFS_NR_COMPRESS_TYPES - 1); 265 return -EUCLEAN; 266 } 267 if (unlikely(btrfs_file_extent_encryption(leaf, fi))) { 268 file_extent_err(leaf, slot, 269 "invalid encryption for file extent, have %u expect 0", 270 btrfs_file_extent_encryption(leaf, fi)); 271 return -EUCLEAN; 272 } 273 if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) { 274 /* Inline extent must have 0 as key offset */ 275 if (unlikely(key->offset)) { 276 file_extent_err(leaf, slot, 277 "invalid file_offset for inline file extent, have %llu expect 0", 278 key->offset); 279 return -EUCLEAN; 280 } 281 282 /* Compressed inline extent has no on-disk size, skip it */ 283 if (btrfs_file_extent_compression(leaf, fi) != 284 BTRFS_COMPRESS_NONE) 285 return 0; 286 287 /* Uncompressed inline extent size must match item size */ 288 if (unlikely(item_size != BTRFS_FILE_EXTENT_INLINE_DATA_START + 289 btrfs_file_extent_ram_bytes(leaf, fi))) { 290 file_extent_err(leaf, slot, 291 "invalid ram_bytes for uncompressed inline extent, have %u expect %llu", 292 item_size, BTRFS_FILE_EXTENT_INLINE_DATA_START + 293 btrfs_file_extent_ram_bytes(leaf, fi)); 294 return -EUCLEAN; 295 } 296 return 0; 297 } 298 299 /* Regular or preallocated extent has fixed item size */ 300 if (unlikely(item_size != sizeof(*fi))) { 301 file_extent_err(leaf, slot, 302 "invalid item size for reg/prealloc file extent, have %u expect %zu", 303 item_size, sizeof(*fi)); 304 return -EUCLEAN; 305 } 306 if (unlikely(CHECK_FE_ALIGNED(leaf, slot, fi, ram_bytes, sectorsize) || 307 CHECK_FE_ALIGNED(leaf, slot, fi, disk_bytenr, sectorsize) || 308 CHECK_FE_ALIGNED(leaf, slot, fi, disk_num_bytes, sectorsize) || 309 CHECK_FE_ALIGNED(leaf, slot, fi, offset, sectorsize) || 310 CHECK_FE_ALIGNED(leaf, slot, fi, num_bytes, sectorsize))) 311 return -EUCLEAN; 312 313 /* Catch extent end overflow */ 314 if (unlikely(check_add_overflow(btrfs_file_extent_num_bytes(leaf, fi), 315 key->offset, &extent_end))) { 316 file_extent_err(leaf, slot, 317 "extent end overflow, have file offset %llu extent num bytes %llu", 318 key->offset, 319 btrfs_file_extent_num_bytes(leaf, fi)); 320 return -EUCLEAN; 321 } 322 323 /* 324 * Check that no two consecutive file extent items, in the same leaf, 325 * present ranges that overlap each other. 326 */ 327 if (slot > 0 && 328 prev_key->objectid == key->objectid && 329 prev_key->type == BTRFS_EXTENT_DATA_KEY) { 330 struct btrfs_file_extent_item *prev_fi; 331 u64 prev_end; 332 333 prev_fi = btrfs_item_ptr(leaf, slot - 1, 334 struct btrfs_file_extent_item); 335 prev_end = file_extent_end(leaf, prev_key, prev_fi); 336 if (unlikely(prev_end > key->offset)) { 337 file_extent_err(leaf, slot - 1, 338 "file extent end range (%llu) goes beyond start offset (%llu) of the next file extent", 339 prev_end, key->offset); 340 return -EUCLEAN; 341 } 342 } 343 344 /* 345 * For non-compressed data extents, ram_bytes should match its 346 * disk_num_bytes. 347 * However we do not really utilize ram_bytes in this case, so this check 348 * is only optional for DEBUG builds for developers to catch the 349 * unexpected behaviors. 350 */ 351 if (IS_ENABLED(CONFIG_BTRFS_DEBUG) && 352 btrfs_file_extent_compression(leaf, fi) == BTRFS_COMPRESS_NONE && 353 btrfs_file_extent_disk_bytenr(leaf, fi)) { 354 if (WARN_ON(btrfs_file_extent_ram_bytes(leaf, fi) != 355 btrfs_file_extent_disk_num_bytes(leaf, fi))) 356 file_extent_err(leaf, slot, 357 "mismatch ram_bytes (%llu) and disk_num_bytes (%llu) for non-compressed extent", 358 btrfs_file_extent_ram_bytes(leaf, fi), 359 btrfs_file_extent_disk_num_bytes(leaf, fi)); 360 } 361 362 return 0; 363 } 364 365 static int check_csum_item(struct extent_buffer *leaf, struct btrfs_key *key, 366 int slot, struct btrfs_key *prev_key) 367 { 368 struct btrfs_fs_info *fs_info = leaf->fs_info; 369 u32 sectorsize = fs_info->sectorsize; 370 const u32 csumsize = fs_info->csum_size; 371 372 if (unlikely(key->objectid != BTRFS_EXTENT_CSUM_OBJECTID)) { 373 generic_err(leaf, slot, 374 "invalid key objectid for csum item, have %llu expect %llu", 375 key->objectid, BTRFS_EXTENT_CSUM_OBJECTID); 376 return -EUCLEAN; 377 } 378 if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) { 379 generic_err(leaf, slot, 380 "unaligned key offset for csum item, have %llu should be aligned to %u", 381 key->offset, sectorsize); 382 return -EUCLEAN; 383 } 384 if (unlikely(!IS_ALIGNED(btrfs_item_size(leaf, slot), csumsize))) { 385 generic_err(leaf, slot, 386 "unaligned item size for csum item, have %u should be aligned to %u", 387 btrfs_item_size(leaf, slot), csumsize); 388 return -EUCLEAN; 389 } 390 if (slot > 0 && prev_key->type == BTRFS_EXTENT_CSUM_KEY) { 391 u64 prev_csum_end; 392 u32 prev_item_size; 393 394 prev_item_size = btrfs_item_size(leaf, slot - 1); 395 prev_csum_end = (prev_item_size / csumsize) * sectorsize; 396 prev_csum_end += prev_key->offset; 397 if (unlikely(prev_csum_end > key->offset)) { 398 generic_err(leaf, slot - 1, 399 "csum end range (%llu) goes beyond the start range (%llu) of the next csum item", 400 prev_csum_end, key->offset); 401 return -EUCLEAN; 402 } 403 } 404 return 0; 405 } 406 407 /* Inode item error output has the same format as dir_item_err() */ 408 #define inode_item_err(eb, slot, fmt, ...) \ 409 dir_item_err(eb, slot, fmt, __VA_ARGS__) 410 411 static int check_inode_key(struct extent_buffer *leaf, struct btrfs_key *key, 412 int slot) 413 { 414 struct btrfs_key item_key; 415 bool is_inode_item; 416 417 btrfs_item_key_to_cpu(leaf, &item_key, slot); 418 is_inode_item = (item_key.type == BTRFS_INODE_ITEM_KEY); 419 420 /* For XATTR_ITEM, location key should be all 0 */ 421 if (item_key.type == BTRFS_XATTR_ITEM_KEY) { 422 if (unlikely(key->objectid != 0 || key->type != 0 || 423 key->offset != 0)) 424 return -EUCLEAN; 425 return 0; 426 } 427 428 if (unlikely((key->objectid < BTRFS_FIRST_FREE_OBJECTID || 429 key->objectid > BTRFS_LAST_FREE_OBJECTID) && 430 key->objectid != BTRFS_ROOT_TREE_DIR_OBJECTID && 431 key->objectid != BTRFS_FREE_INO_OBJECTID)) { 432 if (is_inode_item) { 433 generic_err(leaf, slot, 434 "invalid key objectid: has %llu expect %llu or [%llu, %llu] or %llu", 435 key->objectid, BTRFS_ROOT_TREE_DIR_OBJECTID, 436 BTRFS_FIRST_FREE_OBJECTID, 437 BTRFS_LAST_FREE_OBJECTID, 438 BTRFS_FREE_INO_OBJECTID); 439 } else { 440 dir_item_err(leaf, slot, 441 "invalid location key objectid: has %llu expect %llu or [%llu, %llu] or %llu", 442 key->objectid, BTRFS_ROOT_TREE_DIR_OBJECTID, 443 BTRFS_FIRST_FREE_OBJECTID, 444 BTRFS_LAST_FREE_OBJECTID, 445 BTRFS_FREE_INO_OBJECTID); 446 } 447 return -EUCLEAN; 448 } 449 if (unlikely(key->offset != 0)) { 450 if (is_inode_item) 451 inode_item_err(leaf, slot, 452 "invalid key offset: has %llu expect 0", 453 key->offset); 454 else 455 dir_item_err(leaf, slot, 456 "invalid location key offset:has %llu expect 0", 457 key->offset); 458 return -EUCLEAN; 459 } 460 return 0; 461 } 462 463 static int check_root_key(struct extent_buffer *leaf, struct btrfs_key *key, 464 int slot) 465 { 466 struct btrfs_key item_key; 467 bool is_root_item; 468 469 btrfs_item_key_to_cpu(leaf, &item_key, slot); 470 is_root_item = (item_key.type == BTRFS_ROOT_ITEM_KEY); 471 472 /* 473 * Bad rootid for reloc trees. 474 * 475 * Reloc trees are only for subvolume trees, other trees only need 476 * to be COWed to be relocated. 477 */ 478 if (unlikely(is_root_item && key->objectid == BTRFS_TREE_RELOC_OBJECTID && 479 !btrfs_is_fstree(key->offset))) { 480 generic_err(leaf, slot, 481 "invalid reloc tree for root %lld, root id is not a subvolume tree", 482 key->offset); 483 return -EUCLEAN; 484 } 485 486 /* No such tree id */ 487 if (unlikely(key->objectid == 0)) { 488 if (is_root_item) 489 generic_err(leaf, slot, "invalid root id 0"); 490 else 491 dir_item_err(leaf, slot, 492 "invalid location key root id 0"); 493 return -EUCLEAN; 494 } 495 496 /* DIR_ITEM/INDEX/INODE_REF is not allowed to point to non-fs trees */ 497 if (unlikely(!btrfs_is_fstree(key->objectid) && !is_root_item)) { 498 dir_item_err(leaf, slot, 499 "invalid location key objectid, have %llu expect [%llu, %llu]", 500 key->objectid, BTRFS_FIRST_FREE_OBJECTID, 501 BTRFS_LAST_FREE_OBJECTID); 502 return -EUCLEAN; 503 } 504 505 /* 506 * ROOT_ITEM with non-zero offset means this is a snapshot, created at 507 * @offset transid. 508 * Furthermore, for location key in DIR_ITEM, its offset is always -1. 509 * 510 * So here we only check offset for reloc tree whose key->offset must 511 * be a valid tree. 512 */ 513 if (unlikely(key->objectid == BTRFS_TREE_RELOC_OBJECTID && 514 key->offset == 0)) { 515 generic_err(leaf, slot, "invalid root id 0 for reloc tree"); 516 return -EUCLEAN; 517 } 518 return 0; 519 } 520 521 static int check_dir_item(struct extent_buffer *leaf, 522 struct btrfs_key *key, struct btrfs_key *prev_key, 523 int slot) 524 { 525 struct btrfs_fs_info *fs_info = leaf->fs_info; 526 struct btrfs_dir_item *di; 527 u32 item_size = btrfs_item_size(leaf, slot); 528 u32 cur = 0; 529 530 if (unlikely(!check_prev_ino(leaf, key, slot, prev_key))) 531 return -EUCLEAN; 532 533 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 534 while (cur < item_size) { 535 struct btrfs_key location_key; 536 u32 name_len; 537 u32 data_len; 538 u32 max_name_len; 539 u32 total_size; 540 u32 name_hash; 541 u8 dir_type; 542 int ret; 543 544 /* header itself should not cross item boundary */ 545 if (unlikely(cur + sizeof(*di) > item_size)) { 546 dir_item_err(leaf, slot, 547 "dir item header crosses item boundary, have %zu boundary %u", 548 cur + sizeof(*di), item_size); 549 return -EUCLEAN; 550 } 551 552 /* Location key check */ 553 btrfs_dir_item_key_to_cpu(leaf, di, &location_key); 554 if (location_key.type == BTRFS_ROOT_ITEM_KEY) { 555 ret = check_root_key(leaf, &location_key, slot); 556 if (unlikely(ret < 0)) 557 return ret; 558 } else if (location_key.type == BTRFS_INODE_ITEM_KEY || 559 location_key.type == 0) { 560 ret = check_inode_key(leaf, &location_key, slot); 561 if (unlikely(ret < 0)) 562 return ret; 563 } else { 564 dir_item_err(leaf, slot, 565 "invalid location key type, have %u, expect %u or %u", 566 location_key.type, BTRFS_ROOT_ITEM_KEY, 567 BTRFS_INODE_ITEM_KEY); 568 return -EUCLEAN; 569 } 570 571 /* dir type check */ 572 dir_type = btrfs_dir_ftype(leaf, di); 573 if (unlikely(dir_type <= BTRFS_FT_UNKNOWN || 574 dir_type >= BTRFS_FT_MAX)) { 575 dir_item_err(leaf, slot, 576 "invalid dir item type, have %u expect (0, %u)", 577 dir_type, BTRFS_FT_MAX); 578 return -EUCLEAN; 579 } 580 581 if (unlikely(key->type == BTRFS_XATTR_ITEM_KEY && 582 dir_type != BTRFS_FT_XATTR)) { 583 dir_item_err(leaf, slot, 584 "invalid dir item type for XATTR key, have %u expect %u", 585 dir_type, BTRFS_FT_XATTR); 586 return -EUCLEAN; 587 } 588 if (unlikely(dir_type == BTRFS_FT_XATTR && 589 key->type != BTRFS_XATTR_ITEM_KEY)) { 590 dir_item_err(leaf, slot, 591 "xattr dir type found for non-XATTR key"); 592 return -EUCLEAN; 593 } 594 if (dir_type == BTRFS_FT_XATTR) 595 max_name_len = XATTR_NAME_MAX; 596 else 597 max_name_len = BTRFS_NAME_LEN; 598 599 /* Name/data length check */ 600 name_len = btrfs_dir_name_len(leaf, di); 601 data_len = btrfs_dir_data_len(leaf, di); 602 if (unlikely(name_len > max_name_len)) { 603 dir_item_err(leaf, slot, 604 "dir item name len too long, have %u max %u", 605 name_len, max_name_len); 606 return -EUCLEAN; 607 } 608 if (unlikely(name_len + data_len > BTRFS_MAX_XATTR_SIZE(fs_info))) { 609 dir_item_err(leaf, slot, 610 "dir item name and data len too long, have %u max %u", 611 name_len + data_len, 612 BTRFS_MAX_XATTR_SIZE(fs_info)); 613 return -EUCLEAN; 614 } 615 616 if (unlikely(data_len && dir_type != BTRFS_FT_XATTR)) { 617 dir_item_err(leaf, slot, 618 "dir item with invalid data len, have %u expect 0", 619 data_len); 620 return -EUCLEAN; 621 } 622 623 total_size = sizeof(*di) + name_len + data_len; 624 625 /* header and name/data should not cross item boundary */ 626 if (unlikely(cur + total_size > item_size)) { 627 dir_item_err(leaf, slot, 628 "dir item data crosses item boundary, have %u boundary %u", 629 cur + total_size, item_size); 630 return -EUCLEAN; 631 } 632 633 /* 634 * Special check for XATTR/DIR_ITEM, as key->offset is name 635 * hash, should match its name 636 */ 637 if (key->type == BTRFS_DIR_ITEM_KEY || 638 key->type == BTRFS_XATTR_ITEM_KEY) { 639 char namebuf[MAX(BTRFS_NAME_LEN, XATTR_NAME_MAX)]; 640 641 read_extent_buffer(leaf, namebuf, 642 (unsigned long)(di + 1), name_len); 643 name_hash = btrfs_name_hash(namebuf, name_len); 644 if (unlikely(key->offset != name_hash)) { 645 dir_item_err(leaf, slot, 646 "name hash mismatch with key, have 0x%016x expect 0x%016llx", 647 name_hash, key->offset); 648 return -EUCLEAN; 649 } 650 } 651 cur += total_size; 652 di = (struct btrfs_dir_item *)((void *)di + total_size); 653 } 654 return 0; 655 } 656 657 __printf(3, 4) 658 __cold 659 static void block_group_err(const struct extent_buffer *eb, int slot, 660 const char *fmt, ...) 661 { 662 const struct btrfs_fs_info *fs_info = eb->fs_info; 663 struct btrfs_key key; 664 struct va_format vaf; 665 va_list args; 666 667 btrfs_item_key_to_cpu(eb, &key, slot); 668 va_start(args, fmt); 669 670 vaf.fmt = fmt; 671 vaf.va = &args; 672 673 dump_page(folio_page(eb->folios[0], 0), "eb page dump"); 674 btrfs_crit(fs_info, 675 "corrupt %s: root=%llu block=%llu slot=%d bg_start=%llu bg_len=%llu, %pV", 676 btrfs_header_level(eb) == 0 ? "leaf" : "node", 677 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, 678 key.objectid, key.offset, &vaf); 679 va_end(args); 680 } 681 682 static int check_block_group_item(struct extent_buffer *leaf, 683 struct btrfs_key *key, int slot) 684 { 685 struct btrfs_fs_info *fs_info = leaf->fs_info; 686 struct btrfs_block_group_item bgi; 687 u32 item_size = btrfs_item_size(leaf, slot); 688 u64 chunk_objectid; 689 u64 flags; 690 u64 type; 691 size_t exp_size; 692 693 /* 694 * Here we don't really care about alignment since extent allocator can 695 * handle it. We care more about the size. 696 */ 697 if (unlikely(key->offset == 0)) { 698 block_group_err(leaf, slot, 699 "invalid block group size 0"); 700 return -EUCLEAN; 701 } 702 703 if (btrfs_fs_incompat(fs_info, REMAP_TREE)) 704 exp_size = sizeof(struct btrfs_block_group_item_v2); 705 else 706 exp_size = sizeof(struct btrfs_block_group_item); 707 708 if (unlikely(item_size != exp_size)) { 709 block_group_err(leaf, slot, 710 "invalid item size, have %u expect %zu", 711 item_size, exp_size); 712 return -EUCLEAN; 713 } 714 715 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot), 716 sizeof(bgi)); 717 chunk_objectid = btrfs_stack_block_group_chunk_objectid(&bgi); 718 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 719 /* 720 * We don't init the nr_global_roots until we load the global 721 * roots, so this could be 0 at mount time. If it's 0 we'll 722 * just assume we're fine, and later we'll check against our 723 * actual value. 724 */ 725 if (unlikely(fs_info->nr_global_roots && 726 chunk_objectid >= fs_info->nr_global_roots)) { 727 block_group_err(leaf, slot, 728 "invalid block group global root id, have %llu, needs to be <= %llu", 729 chunk_objectid, 730 fs_info->nr_global_roots); 731 return -EUCLEAN; 732 } 733 } else if (unlikely(chunk_objectid != BTRFS_FIRST_CHUNK_TREE_OBJECTID)) { 734 block_group_err(leaf, slot, 735 "invalid block group chunk objectid, have %llu expect %llu", 736 btrfs_stack_block_group_chunk_objectid(&bgi), 737 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 738 return -EUCLEAN; 739 } 740 741 if (unlikely(btrfs_stack_block_group_used(&bgi) > key->offset)) { 742 block_group_err(leaf, slot, 743 "invalid block group used, have %llu expect [0, %llu)", 744 btrfs_stack_block_group_used(&bgi), key->offset); 745 return -EUCLEAN; 746 } 747 748 flags = btrfs_stack_block_group_flags(&bgi); 749 if (unlikely(hweight64(flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) > 1)) { 750 block_group_err(leaf, slot, 751 "invalid profile flags, have 0x%llx (%lu bits set) expect no more than 1 bit set", 752 flags & BTRFS_BLOCK_GROUP_PROFILE_MASK, 753 hweight64(flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)); 754 return -EUCLEAN; 755 } 756 757 if (unlikely(flags & BTRFS_BLOCK_GROUP_METADATA_REMAP && 758 !btrfs_fs_incompat(fs_info, REMAP_TREE))) { 759 block_group_err(leaf, slot, 760 "invalid flags, have 0x%llx (METADATA_REMAP flag set) but no remap-tree incompat flag", 761 flags); 762 return -EUCLEAN; 763 } 764 765 type = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 766 if (unlikely(type != BTRFS_BLOCK_GROUP_DATA && 767 type != BTRFS_BLOCK_GROUP_METADATA && 768 type != BTRFS_BLOCK_GROUP_SYSTEM && 769 type != BTRFS_BLOCK_GROUP_METADATA_REMAP && 770 type != (BTRFS_BLOCK_GROUP_METADATA | 771 BTRFS_BLOCK_GROUP_DATA))) { 772 block_group_err(leaf, slot, 773 "invalid type, have 0x%llx (%lu bits set) expect either 0x%llx, 0x%llx, 0x%llx, 0x%llx or 0x%llx", 774 type, hweight64(type), 775 BTRFS_BLOCK_GROUP_DATA, BTRFS_BLOCK_GROUP_METADATA, 776 BTRFS_BLOCK_GROUP_SYSTEM, BTRFS_BLOCK_GROUP_METADATA_REMAP, 777 BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA); 778 return -EUCLEAN; 779 } 780 return 0; 781 } 782 783 __printf(5, 6) 784 __cold 785 static void chunk_err(const struct btrfs_fs_info *fs_info, 786 const struct extent_buffer *leaf, 787 const struct btrfs_chunk *chunk, u64 logical, 788 const char *fmt, ...) 789 { 790 bool is_sb = !leaf; 791 struct va_format vaf; 792 va_list args; 793 int i; 794 int slot = -1; 795 796 if (!is_sb) { 797 /* 798 * Get the slot number by iterating through all slots, this 799 * would provide better readability. 800 */ 801 for (i = 0; i < btrfs_header_nritems(leaf); i++) { 802 if (btrfs_item_ptr_offset(leaf, i) == 803 (unsigned long)chunk) { 804 slot = i; 805 break; 806 } 807 } 808 } 809 va_start(args, fmt); 810 vaf.fmt = fmt; 811 vaf.va = &args; 812 813 if (is_sb) 814 btrfs_crit(fs_info, 815 "corrupt superblock syschunk array: chunk_start=%llu, %pV", 816 logical, &vaf); 817 else 818 btrfs_crit(fs_info, 819 "corrupt leaf: root=%llu block=%llu slot=%d chunk_start=%llu, %pV", 820 BTRFS_CHUNK_TREE_OBJECTID, leaf->start, slot, 821 logical, &vaf); 822 va_end(args); 823 } 824 825 static bool valid_stripe_count(u64 profile, u16 num_stripes, u16 sub_stripes) 826 { 827 switch (profile) { 828 case BTRFS_BLOCK_GROUP_RAID0: 829 return true; 830 case BTRFS_BLOCK_GROUP_RAID10: 831 return sub_stripes == btrfs_raid_array[BTRFS_RAID_RAID10].sub_stripes; 832 case BTRFS_BLOCK_GROUP_RAID1: 833 return num_stripes == btrfs_raid_array[BTRFS_RAID_RAID1].devs_min; 834 case BTRFS_BLOCK_GROUP_RAID1C3: 835 return num_stripes == btrfs_raid_array[BTRFS_RAID_RAID1C3].devs_min; 836 case BTRFS_BLOCK_GROUP_RAID1C4: 837 return num_stripes == btrfs_raid_array[BTRFS_RAID_RAID1C4].devs_min; 838 case BTRFS_BLOCK_GROUP_RAID5: 839 return num_stripes >= btrfs_raid_array[BTRFS_RAID_RAID5].devs_min; 840 case BTRFS_BLOCK_GROUP_RAID6: 841 return num_stripes >= btrfs_raid_array[BTRFS_RAID_RAID6].devs_min; 842 case BTRFS_BLOCK_GROUP_DUP: 843 return num_stripes == btrfs_raid_array[BTRFS_RAID_DUP].dev_stripes; 844 case 0: /* SINGLE */ 845 return num_stripes == btrfs_raid_array[BTRFS_RAID_SINGLE].dev_stripes; 846 default: 847 BUG(); 848 } 849 } 850 851 /* 852 * The common chunk check which could also work on super block sys chunk array. 853 * 854 * If @leaf is NULL, then @chunk must be an on-stack chunk item. 855 * (For superblock sys_chunk array, and fs_info->sectorsize is unreliable) 856 * 857 * Return -EUCLEAN if anything is corrupted. 858 * Return 0 if everything is OK. 859 */ 860 int btrfs_check_chunk_valid(const struct btrfs_fs_info *fs_info, 861 const struct extent_buffer *leaf, 862 const struct btrfs_chunk *chunk, u64 logical, 863 u32 sectorsize) 864 { 865 u64 length; 866 u64 chunk_end; 867 u64 stripe_len; 868 u16 num_stripes; 869 u16 sub_stripes; 870 u64 type; 871 u64 features; 872 u32 chunk_sector_size; 873 bool mixed = false; 874 bool remapped; 875 int raid_index; 876 int nparity; 877 int ncopies; 878 879 if (leaf) { 880 length = btrfs_chunk_length(leaf, chunk); 881 stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 882 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 883 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); 884 type = btrfs_chunk_type(leaf, chunk); 885 chunk_sector_size = btrfs_chunk_sector_size(leaf, chunk); 886 } else { 887 length = btrfs_stack_chunk_length(chunk); 888 stripe_len = btrfs_stack_chunk_stripe_len(chunk); 889 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 890 sub_stripes = btrfs_stack_chunk_sub_stripes(chunk); 891 type = btrfs_stack_chunk_type(chunk); 892 chunk_sector_size = btrfs_stack_chunk_sector_size(chunk); 893 } 894 raid_index = btrfs_bg_flags_to_raid_index(type); 895 ncopies = btrfs_raid_array[raid_index].ncopies; 896 nparity = btrfs_raid_array[raid_index].nparity; 897 remapped = (type & BTRFS_BLOCK_GROUP_REMAPPED); 898 899 if (unlikely(!remapped && !num_stripes)) { 900 chunk_err(fs_info, leaf, chunk, logical, 901 "invalid chunk num_stripes, have %u", num_stripes); 902 return -EUCLEAN; 903 } 904 if (unlikely(num_stripes != 0 && num_stripes < ncopies)) { 905 chunk_err(fs_info, leaf, chunk, logical, 906 "invalid chunk num_stripes < ncopies, have %u < %d", 907 num_stripes, ncopies); 908 return -EUCLEAN; 909 } 910 if (unlikely(nparity && num_stripes == nparity)) { 911 chunk_err(fs_info, leaf, chunk, logical, 912 "invalid chunk num_stripes == nparity, have %u == %d", 913 num_stripes, nparity); 914 return -EUCLEAN; 915 } 916 if (unlikely(!IS_ALIGNED(logical, sectorsize))) { 917 chunk_err(fs_info, leaf, chunk, logical, 918 "invalid chunk logical, have %llu should aligned to %u", 919 logical, sectorsize); 920 return -EUCLEAN; 921 } 922 if (unlikely(chunk_sector_size != sectorsize)) { 923 chunk_err(fs_info, leaf, chunk, logical, 924 "invalid chunk sectorsize, have %u expect %u", 925 chunk_sector_size, sectorsize); 926 return -EUCLEAN; 927 } 928 if (unlikely(!length || !IS_ALIGNED(length, sectorsize))) { 929 chunk_err(fs_info, leaf, chunk, logical, 930 "invalid chunk length, have %llu", length); 931 return -EUCLEAN; 932 } 933 if (unlikely(check_add_overflow(logical, length, &chunk_end))) { 934 chunk_err(fs_info, leaf, chunk, logical, 935 "invalid chunk logical start and length, have logical start %llu length %llu", 936 logical, length); 937 return -EUCLEAN; 938 } 939 if (unlikely(!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN)) { 940 chunk_err(fs_info, leaf, chunk, logical, 941 "invalid chunk stripe length: %llu", 942 stripe_len); 943 return -EUCLEAN; 944 } 945 /* 946 * We artificially limit the chunk size, so that the number of stripes 947 * inside a chunk can be fit into a U32. The current limit (256G) is 948 * way too large for real world usage anyway, and it's also much larger 949 * than our existing limit (10G). 950 * 951 * Thus it should be a good way to catch obvious bitflips. 952 */ 953 if (unlikely(length >= btrfs_stripe_nr_to_offset(U32_MAX))) { 954 chunk_err(fs_info, leaf, chunk, logical, 955 "chunk length too large: have %llu limit %llu", 956 length, btrfs_stripe_nr_to_offset(U32_MAX)); 957 return -EUCLEAN; 958 } 959 if (unlikely(type & ~BTRFS_BLOCK_GROUP_VALID)) { 960 chunk_err(fs_info, leaf, chunk, logical, 961 "unrecognized chunk type: 0x%llx", 962 type & ~BTRFS_BLOCK_GROUP_VALID); 963 return -EUCLEAN; 964 } 965 966 if (unlikely(!has_single_bit_set(type & BTRFS_BLOCK_GROUP_PROFILE_MASK) && 967 (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) != 0)) { 968 chunk_err(fs_info, leaf, chunk, logical, 969 "invalid chunk profile flag: 0x%llx, expect 0 or 1 bit set", 970 type & BTRFS_BLOCK_GROUP_PROFILE_MASK); 971 return -EUCLEAN; 972 } 973 if (unlikely((type & BTRFS_BLOCK_GROUP_TYPE_MASK) == 0)) { 974 chunk_err(fs_info, leaf, chunk, logical, 975 "missing chunk type flag, have 0x%llx one bit must be set in 0x%llx", 976 type, BTRFS_BLOCK_GROUP_TYPE_MASK); 977 return -EUCLEAN; 978 } 979 980 if (unlikely((type & BTRFS_BLOCK_GROUP_SYSTEM) && 981 (type & (BTRFS_BLOCK_GROUP_METADATA | 982 BTRFS_BLOCK_GROUP_DATA)))) { 983 chunk_err(fs_info, leaf, chunk, logical, 984 "system chunk with data or metadata type: 0x%llx", 985 type); 986 return -EUCLEAN; 987 } 988 989 features = btrfs_super_incompat_flags(fs_info->super_copy); 990 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 991 mixed = true; 992 993 if (!mixed) { 994 if (unlikely((type & BTRFS_BLOCK_GROUP_METADATA) && 995 (type & BTRFS_BLOCK_GROUP_DATA))) { 996 chunk_err(fs_info, leaf, chunk, logical, 997 "mixed chunk type in non-mixed mode: 0x%llx", type); 998 return -EUCLEAN; 999 } 1000 } 1001 1002 if (!remapped && 1003 !valid_stripe_count(type & BTRFS_BLOCK_GROUP_PROFILE_MASK, 1004 num_stripes, sub_stripes)) { 1005 chunk_err(fs_info, leaf, chunk, logical, 1006 "invalid num_stripes:sub_stripes %u:%u for profile %llu", 1007 num_stripes, sub_stripes, 1008 type & BTRFS_BLOCK_GROUP_PROFILE_MASK); 1009 return -EUCLEAN; 1010 } 1011 1012 return 0; 1013 } 1014 1015 /* 1016 * Enhanced version of chunk item checker. 1017 * 1018 * The common btrfs_check_chunk_valid() doesn't check item size since it needs 1019 * to work on super block sys_chunk_array which doesn't have full item ptr. 1020 */ 1021 static int check_leaf_chunk_item(struct extent_buffer *leaf, 1022 struct btrfs_chunk *chunk, 1023 struct btrfs_key *key, int slot) 1024 { 1025 struct btrfs_fs_info *fs_info = leaf->fs_info; 1026 int num_stripes; 1027 1028 if (unlikely(btrfs_item_size(leaf, slot) < offsetof(struct btrfs_chunk, stripe))) { 1029 chunk_err(fs_info, leaf, chunk, key->offset, 1030 "invalid chunk item size: have %u expect [%zu, %u)", 1031 btrfs_item_size(leaf, slot), 1032 offsetof(struct btrfs_chunk, stripe), 1033 BTRFS_LEAF_DATA_SIZE(fs_info)); 1034 return -EUCLEAN; 1035 } 1036 1037 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 1038 /* Let btrfs_check_chunk_valid() handle this error type */ 1039 if (num_stripes == 0) 1040 goto out; 1041 1042 if (unlikely(btrfs_chunk_item_size(num_stripes) != 1043 btrfs_item_size(leaf, slot))) { 1044 chunk_err(fs_info, leaf, chunk, key->offset, 1045 "invalid chunk item size: have %u expect %lu", 1046 btrfs_item_size(leaf, slot), 1047 btrfs_chunk_item_size(num_stripes)); 1048 return -EUCLEAN; 1049 } 1050 out: 1051 return btrfs_check_chunk_valid(fs_info, leaf, chunk, key->offset, 1052 fs_info->sectorsize); 1053 } 1054 1055 __printf(3, 4) 1056 __cold 1057 static void dev_item_err(const struct extent_buffer *eb, int slot, 1058 const char *fmt, ...) 1059 { 1060 struct btrfs_key key; 1061 struct va_format vaf; 1062 va_list args; 1063 1064 btrfs_item_key_to_cpu(eb, &key, slot); 1065 va_start(args, fmt); 1066 1067 vaf.fmt = fmt; 1068 vaf.va = &args; 1069 1070 dump_page(folio_page(eb->folios[0], 0), "eb page dump"); 1071 btrfs_crit(eb->fs_info, 1072 "corrupt %s: root=%llu block=%llu slot=%d devid=%llu %pV", 1073 btrfs_header_level(eb) == 0 ? "leaf" : "node", 1074 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, 1075 key.objectid, &vaf); 1076 va_end(args); 1077 } 1078 1079 static int check_dev_item(struct extent_buffer *leaf, 1080 struct btrfs_key *key, int slot) 1081 { 1082 struct btrfs_dev_item *ditem; 1083 const u32 item_size = btrfs_item_size(leaf, slot); 1084 1085 if (unlikely(key->objectid != BTRFS_DEV_ITEMS_OBJECTID)) { 1086 dev_item_err(leaf, slot, 1087 "invalid objectid: has=%llu expect=%llu", 1088 key->objectid, BTRFS_DEV_ITEMS_OBJECTID); 1089 return -EUCLEAN; 1090 } 1091 1092 if (unlikely(item_size != sizeof(*ditem))) { 1093 dev_item_err(leaf, slot, "invalid item size: has %u expect %zu", 1094 item_size, sizeof(*ditem)); 1095 return -EUCLEAN; 1096 } 1097 1098 ditem = btrfs_item_ptr(leaf, slot, struct btrfs_dev_item); 1099 if (unlikely(btrfs_device_id(leaf, ditem) != key->offset)) { 1100 dev_item_err(leaf, slot, 1101 "devid mismatch: key has=%llu item has=%llu", 1102 key->offset, btrfs_device_id(leaf, ditem)); 1103 return -EUCLEAN; 1104 } 1105 1106 /* 1107 * For device total_bytes, we don't have reliable way to check it, as 1108 * it can be 0 for device removal. Device size check can only be done 1109 * by dev extents check. 1110 */ 1111 if (unlikely(btrfs_device_bytes_used(leaf, ditem) > 1112 btrfs_device_total_bytes(leaf, ditem))) { 1113 dev_item_err(leaf, slot, 1114 "invalid bytes used: have %llu expect [0, %llu]", 1115 btrfs_device_bytes_used(leaf, ditem), 1116 btrfs_device_total_bytes(leaf, ditem)); 1117 return -EUCLEAN; 1118 } 1119 /* 1120 * Remaining members like io_align/type/gen/dev_group aren't really 1121 * utilized. Skip them to make later usage of them easier. 1122 */ 1123 return 0; 1124 } 1125 1126 static int check_inode_item(struct extent_buffer *leaf, 1127 struct btrfs_key *key, int slot) 1128 { 1129 struct btrfs_fs_info *fs_info = leaf->fs_info; 1130 struct btrfs_inode_item *iitem; 1131 u64 super_gen = btrfs_super_generation(fs_info->super_copy); 1132 u32 valid_mask = (S_IFMT | S_ISUID | S_ISGID | S_ISVTX | 0777); 1133 const u32 item_size = btrfs_item_size(leaf, slot); 1134 u32 mode; 1135 int ret; 1136 u32 flags; 1137 u32 ro_flags; 1138 1139 ret = check_inode_key(leaf, key, slot); 1140 if (unlikely(ret < 0)) 1141 return ret; 1142 1143 if (unlikely(item_size != sizeof(*iitem))) { 1144 generic_err(leaf, slot, "invalid item size: has %u expect %zu", 1145 item_size, sizeof(*iitem)); 1146 return -EUCLEAN; 1147 } 1148 1149 iitem = btrfs_item_ptr(leaf, slot, struct btrfs_inode_item); 1150 1151 /* Here we use super block generation + 1 to handle log tree */ 1152 if (unlikely(btrfs_inode_generation(leaf, iitem) > super_gen + 1)) { 1153 inode_item_err(leaf, slot, 1154 "invalid inode generation: has %llu expect (0, %llu]", 1155 btrfs_inode_generation(leaf, iitem), 1156 super_gen + 1); 1157 return -EUCLEAN; 1158 } 1159 /* Note for ROOT_TREE_DIR_ITEM, mkfs could set its transid 0 */ 1160 if (unlikely(btrfs_inode_transid(leaf, iitem) > super_gen + 1)) { 1161 inode_item_err(leaf, slot, 1162 "invalid inode transid: has %llu expect [0, %llu]", 1163 btrfs_inode_transid(leaf, iitem), super_gen + 1); 1164 return -EUCLEAN; 1165 } 1166 1167 /* 1168 * For size and nbytes it's better not to be too strict, as for dir 1169 * item its size/nbytes can easily get wrong, but doesn't affect 1170 * anything in the fs. So here we skip the check. 1171 */ 1172 mode = btrfs_inode_mode(leaf, iitem); 1173 if (unlikely(mode & ~valid_mask)) { 1174 inode_item_err(leaf, slot, 1175 "unknown mode bit detected: 0x%x", 1176 mode & ~valid_mask); 1177 return -EUCLEAN; 1178 } 1179 1180 /* 1181 * S_IFMT is not bit mapped so we can't completely rely on 1182 * is_power_of_2/has_single_bit_set, but it can save us from checking 1183 * FIFO/CHR/DIR/REG. Only needs to check BLK, LNK and SOCKS 1184 */ 1185 if (!has_single_bit_set(mode & S_IFMT)) { 1186 if (unlikely(!S_ISLNK(mode) && !S_ISBLK(mode) && !S_ISSOCK(mode))) { 1187 inode_item_err(leaf, slot, 1188 "invalid mode: has 0%o expect valid S_IF* bit(s)", 1189 mode & S_IFMT); 1190 return -EUCLEAN; 1191 } 1192 } 1193 if (unlikely(S_ISDIR(mode) && btrfs_inode_nlink(leaf, iitem) > 1)) { 1194 inode_item_err(leaf, slot, 1195 "invalid nlink: has %u expect no more than 1 for dir", 1196 btrfs_inode_nlink(leaf, iitem)); 1197 return -EUCLEAN; 1198 } 1199 btrfs_inode_split_flags(btrfs_inode_flags(leaf, iitem), &flags, &ro_flags); 1200 if (unlikely(flags & ~BTRFS_INODE_FLAG_MASK)) { 1201 inode_item_err(leaf, slot, 1202 "unknown incompat flags detected: 0x%x", flags); 1203 return -EUCLEAN; 1204 } 1205 if (unlikely(!sb_rdonly(fs_info->sb) && 1206 (ro_flags & ~BTRFS_INODE_RO_FLAG_MASK))) { 1207 inode_item_err(leaf, slot, 1208 "unknown ro-compat flags detected on writeable mount: 0x%x", 1209 ro_flags); 1210 return -EUCLEAN; 1211 } 1212 return 0; 1213 } 1214 1215 static int check_root_item(struct extent_buffer *leaf, struct btrfs_key *key, 1216 int slot) 1217 { 1218 struct btrfs_fs_info *fs_info = leaf->fs_info; 1219 struct btrfs_root_item ri = { 0 }; 1220 const u64 valid_root_flags = BTRFS_ROOT_SUBVOL_RDONLY | 1221 BTRFS_ROOT_SUBVOL_DEAD; 1222 int ret; 1223 1224 ret = check_root_key(leaf, key, slot); 1225 if (unlikely(ret < 0)) 1226 return ret; 1227 1228 if (unlikely(btrfs_item_size(leaf, slot) != sizeof(ri) && 1229 btrfs_item_size(leaf, slot) != 1230 btrfs_legacy_root_item_size())) { 1231 generic_err(leaf, slot, 1232 "invalid root item size, have %u expect %zu or %u", 1233 btrfs_item_size(leaf, slot), sizeof(ri), 1234 btrfs_legacy_root_item_size()); 1235 return -EUCLEAN; 1236 } 1237 1238 /* 1239 * For legacy root item, the members starting at generation_v2 will be 1240 * all filled with 0. 1241 * And since we allow generation_v2 as 0, it will still pass the check. 1242 */ 1243 read_extent_buffer(leaf, &ri, btrfs_item_ptr_offset(leaf, slot), 1244 btrfs_item_size(leaf, slot)); 1245 1246 /* Generation related */ 1247 if (unlikely(btrfs_root_generation(&ri) > 1248 btrfs_super_generation(fs_info->super_copy) + 1)) { 1249 generic_err(leaf, slot, 1250 "invalid root generation, have %llu expect (0, %llu]", 1251 btrfs_root_generation(&ri), 1252 btrfs_super_generation(fs_info->super_copy) + 1); 1253 return -EUCLEAN; 1254 } 1255 if (unlikely(btrfs_root_generation_v2(&ri) > 1256 btrfs_super_generation(fs_info->super_copy) + 1)) { 1257 generic_err(leaf, slot, 1258 "invalid root v2 generation, have %llu expect (0, %llu]", 1259 btrfs_root_generation_v2(&ri), 1260 btrfs_super_generation(fs_info->super_copy) + 1); 1261 return -EUCLEAN; 1262 } 1263 if (unlikely(btrfs_root_last_snapshot(&ri) > 1264 btrfs_super_generation(fs_info->super_copy) + 1)) { 1265 generic_err(leaf, slot, 1266 "invalid root last_snapshot, have %llu expect (0, %llu]", 1267 btrfs_root_last_snapshot(&ri), 1268 btrfs_super_generation(fs_info->super_copy) + 1); 1269 return -EUCLEAN; 1270 } 1271 1272 /* Alignment and level check */ 1273 if (unlikely(!IS_ALIGNED(btrfs_root_bytenr(&ri), fs_info->sectorsize))) { 1274 generic_err(leaf, slot, 1275 "invalid root bytenr, have %llu expect to be aligned to %u", 1276 btrfs_root_bytenr(&ri), fs_info->sectorsize); 1277 return -EUCLEAN; 1278 } 1279 if (unlikely(btrfs_root_level(&ri) >= BTRFS_MAX_LEVEL)) { 1280 generic_err(leaf, slot, 1281 "invalid root level, have %u expect [0, %u]", 1282 btrfs_root_level(&ri), BTRFS_MAX_LEVEL - 1); 1283 return -EUCLEAN; 1284 } 1285 if (unlikely(btrfs_root_drop_level(&ri) >= BTRFS_MAX_LEVEL)) { 1286 generic_err(leaf, slot, 1287 "invalid root level, have %u expect [0, %u]", 1288 btrfs_root_drop_level(&ri), BTRFS_MAX_LEVEL - 1); 1289 return -EUCLEAN; 1290 } 1291 1292 /* Flags check */ 1293 if (unlikely(btrfs_root_flags(&ri) & ~valid_root_flags)) { 1294 generic_err(leaf, slot, 1295 "invalid root flags, have 0x%llx expect mask 0x%llx", 1296 btrfs_root_flags(&ri), valid_root_flags); 1297 return -EUCLEAN; 1298 } 1299 return 0; 1300 } 1301 1302 __printf(3,4) 1303 __cold 1304 static void extent_err(const struct extent_buffer *eb, int slot, 1305 const char *fmt, ...) 1306 { 1307 struct btrfs_key key; 1308 struct va_format vaf; 1309 va_list args; 1310 u64 bytenr; 1311 u64 len; 1312 1313 btrfs_item_key_to_cpu(eb, &key, slot); 1314 bytenr = key.objectid; 1315 if (key.type == BTRFS_METADATA_ITEM_KEY || 1316 key.type == BTRFS_TREE_BLOCK_REF_KEY || 1317 key.type == BTRFS_SHARED_BLOCK_REF_KEY) 1318 len = eb->fs_info->nodesize; 1319 else 1320 len = key.offset; 1321 va_start(args, fmt); 1322 1323 vaf.fmt = fmt; 1324 vaf.va = &args; 1325 1326 dump_page(folio_page(eb->folios[0], 0), "eb page dump"); 1327 btrfs_crit(eb->fs_info, 1328 "corrupt %s: block=%llu slot=%d extent bytenr=%llu len=%llu %pV", 1329 btrfs_header_level(eb) == 0 ? "leaf" : "node", 1330 eb->start, slot, bytenr, len, &vaf); 1331 va_end(args); 1332 } 1333 1334 static bool is_valid_dref_root(u64 rootid) 1335 { 1336 /* 1337 * The following tree root objectids are allowed to have a data backref: 1338 * - subvolume trees 1339 * - data reloc tree 1340 * - tree root 1341 * For v1 space cache 1342 */ 1343 return btrfs_is_fstree(rootid) || rootid == BTRFS_DATA_RELOC_TREE_OBJECTID || 1344 rootid == BTRFS_ROOT_TREE_OBJECTID; 1345 } 1346 1347 static int check_extent_item(struct extent_buffer *leaf, 1348 struct btrfs_key *key, int slot, 1349 struct btrfs_key *prev_key) 1350 { 1351 struct btrfs_fs_info *fs_info = leaf->fs_info; 1352 struct btrfs_extent_item *ei; 1353 bool is_tree_block = false; 1354 unsigned long ptr; /* Current pointer inside inline refs */ 1355 unsigned long end; /* Extent item end */ 1356 const u32 item_size = btrfs_item_size(leaf, slot); 1357 u8 last_type = 0; 1358 u64 last_seq = U64_MAX; 1359 u64 flags; 1360 u64 generation; 1361 u64 total_refs; /* Total refs in btrfs_extent_item */ 1362 u64 inline_refs = 0; /* found total inline refs */ 1363 1364 if (unlikely(key->type == BTRFS_METADATA_ITEM_KEY && 1365 !btrfs_fs_incompat(fs_info, SKINNY_METADATA))) { 1366 generic_err(leaf, slot, 1367 "invalid key type, METADATA_ITEM type invalid when SKINNY_METADATA feature disabled"); 1368 return -EUCLEAN; 1369 } 1370 /* key->objectid is the bytenr for both key types */ 1371 if (unlikely(!IS_ALIGNED(key->objectid, fs_info->sectorsize))) { 1372 generic_err(leaf, slot, 1373 "invalid key objectid, have %llu expect to be aligned to %u", 1374 key->objectid, fs_info->sectorsize); 1375 return -EUCLEAN; 1376 } 1377 1378 /* key->offset is tree level for METADATA_ITEM_KEY */ 1379 if (unlikely(key->type == BTRFS_METADATA_ITEM_KEY && 1380 key->offset >= BTRFS_MAX_LEVEL)) { 1381 extent_err(leaf, slot, 1382 "invalid tree level, have %llu expect [0, %u]", 1383 key->offset, BTRFS_MAX_LEVEL - 1); 1384 return -EUCLEAN; 1385 } 1386 1387 /* 1388 * EXTENT/METADATA_ITEM consists of: 1389 * 1) One btrfs_extent_item 1390 * Records the total refs, type and generation of the extent. 1391 * 1392 * 2) One btrfs_tree_block_info (for EXTENT_ITEM and tree backref only) 1393 * Records the first key and level of the tree block. 1394 * 1395 * 2) Zero or more btrfs_extent_inline_ref(s) 1396 * Each inline ref has one btrfs_extent_inline_ref shows: 1397 * 2.1) The ref type, one of the 4 1398 * TREE_BLOCK_REF Tree block only 1399 * SHARED_BLOCK_REF Tree block only 1400 * EXTENT_DATA_REF Data only 1401 * SHARED_DATA_REF Data only 1402 * 2.2) Ref type specific data 1403 * Either using btrfs_extent_inline_ref::offset, or specific 1404 * data structure. 1405 * 1406 * All above inline items should follow the order: 1407 * 1408 * - All btrfs_extent_inline_ref::type should be in an ascending 1409 * order 1410 * 1411 * - Within the same type, the items should follow a descending 1412 * order by their sequence number. The sequence number is 1413 * determined by: 1414 * * btrfs_extent_inline_ref::offset for all types other than 1415 * EXTENT_DATA_REF 1416 * * hash_extent_data_ref() for EXTENT_DATA_REF 1417 */ 1418 if (unlikely(item_size < sizeof(*ei))) { 1419 extent_err(leaf, slot, 1420 "invalid item size, have %u expect [%zu, %u)", 1421 item_size, sizeof(*ei), 1422 BTRFS_LEAF_DATA_SIZE(fs_info)); 1423 return -EUCLEAN; 1424 } 1425 end = item_size + btrfs_item_ptr_offset(leaf, slot); 1426 1427 /* Checks against extent_item */ 1428 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 1429 flags = btrfs_extent_flags(leaf, ei); 1430 total_refs = btrfs_extent_refs(leaf, ei); 1431 generation = btrfs_extent_generation(leaf, ei); 1432 if (unlikely(generation > 1433 btrfs_super_generation(fs_info->super_copy) + 1)) { 1434 extent_err(leaf, slot, 1435 "invalid generation, have %llu expect (0, %llu]", 1436 generation, 1437 btrfs_super_generation(fs_info->super_copy) + 1); 1438 return -EUCLEAN; 1439 } 1440 if (unlikely(!has_single_bit_set(flags & (BTRFS_EXTENT_FLAG_DATA | 1441 BTRFS_EXTENT_FLAG_TREE_BLOCK)))) { 1442 extent_err(leaf, slot, 1443 "invalid extent flag, have 0x%llx expect 1 bit set in 0x%llx", 1444 flags, BTRFS_EXTENT_FLAG_DATA | 1445 BTRFS_EXTENT_FLAG_TREE_BLOCK); 1446 return -EUCLEAN; 1447 } 1448 is_tree_block = !!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK); 1449 if (is_tree_block) { 1450 if (unlikely(key->type == BTRFS_EXTENT_ITEM_KEY && 1451 key->offset != fs_info->nodesize)) { 1452 extent_err(leaf, slot, 1453 "invalid extent length, have %llu expect %u", 1454 key->offset, fs_info->nodesize); 1455 return -EUCLEAN; 1456 } 1457 } else { 1458 if (unlikely(key->type != BTRFS_EXTENT_ITEM_KEY)) { 1459 extent_err(leaf, slot, 1460 "invalid key type, have %u expect %u for data backref", 1461 key->type, BTRFS_EXTENT_ITEM_KEY); 1462 return -EUCLEAN; 1463 } 1464 if (unlikely(!IS_ALIGNED(key->offset, fs_info->sectorsize))) { 1465 extent_err(leaf, slot, 1466 "invalid extent length, have %llu expect aligned to %u", 1467 key->offset, fs_info->sectorsize); 1468 return -EUCLEAN; 1469 } 1470 if (unlikely(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 1471 extent_err(leaf, slot, 1472 "invalid extent flag, data has full backref set"); 1473 return -EUCLEAN; 1474 } 1475 } 1476 ptr = (unsigned long)(struct btrfs_extent_item *)(ei + 1); 1477 1478 /* Check the special case of btrfs_tree_block_info */ 1479 if (is_tree_block && key->type != BTRFS_METADATA_ITEM_KEY) { 1480 struct btrfs_tree_block_info *info; 1481 1482 info = (struct btrfs_tree_block_info *)ptr; 1483 if (unlikely(btrfs_tree_block_level(leaf, info) >= BTRFS_MAX_LEVEL)) { 1484 extent_err(leaf, slot, 1485 "invalid tree block info level, have %u expect [0, %u]", 1486 btrfs_tree_block_level(leaf, info), 1487 BTRFS_MAX_LEVEL - 1); 1488 return -EUCLEAN; 1489 } 1490 ptr = (unsigned long)(struct btrfs_tree_block_info *)(info + 1); 1491 } 1492 1493 /* Check inline refs */ 1494 while (ptr < end) { 1495 struct btrfs_extent_inline_ref *iref; 1496 struct btrfs_extent_data_ref *dref; 1497 struct btrfs_shared_data_ref *sref; 1498 u64 seq; 1499 u64 dref_root; 1500 u64 dref_objectid; 1501 u64 dref_offset; 1502 u64 inline_offset; 1503 u8 inline_type; 1504 1505 if (unlikely(ptr + sizeof(*iref) > end)) { 1506 extent_err(leaf, slot, 1507 "inline ref item overflows extent item, ptr %lu iref size %zu end %lu", 1508 ptr, sizeof(*iref), end); 1509 return -EUCLEAN; 1510 } 1511 iref = (struct btrfs_extent_inline_ref *)ptr; 1512 inline_type = btrfs_extent_inline_ref_type(leaf, iref); 1513 inline_offset = btrfs_extent_inline_ref_offset(leaf, iref); 1514 seq = inline_offset; 1515 if (unlikely(ptr + btrfs_extent_inline_ref_size(inline_type) > end)) { 1516 extent_err(leaf, slot, 1517 "inline ref item overflows extent item, ptr %lu iref size %u end %lu", 1518 ptr, btrfs_extent_inline_ref_size(inline_type), end); 1519 return -EUCLEAN; 1520 } 1521 1522 switch (inline_type) { 1523 /* inline_offset is subvolid of the owner, no need to check */ 1524 case BTRFS_TREE_BLOCK_REF_KEY: 1525 inline_refs++; 1526 break; 1527 /* Contains parent bytenr */ 1528 case BTRFS_SHARED_BLOCK_REF_KEY: 1529 if (unlikely(!IS_ALIGNED(inline_offset, 1530 fs_info->sectorsize))) { 1531 extent_err(leaf, slot, 1532 "invalid tree parent bytenr, have %llu expect aligned to %u", 1533 inline_offset, fs_info->sectorsize); 1534 return -EUCLEAN; 1535 } 1536 inline_refs++; 1537 break; 1538 /* 1539 * Contains owner subvolid, owner key objectid, adjusted offset. 1540 * The only obvious corruption can happen in that offset. 1541 */ 1542 case BTRFS_EXTENT_DATA_REF_KEY: 1543 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1544 dref_root = btrfs_extent_data_ref_root(leaf, dref); 1545 dref_objectid = btrfs_extent_data_ref_objectid(leaf, dref); 1546 dref_offset = btrfs_extent_data_ref_offset(leaf, dref); 1547 seq = hash_extent_data_ref( 1548 btrfs_extent_data_ref_root(leaf, dref), 1549 btrfs_extent_data_ref_objectid(leaf, dref), 1550 btrfs_extent_data_ref_offset(leaf, dref)); 1551 if (unlikely(!is_valid_dref_root(dref_root))) { 1552 extent_err(leaf, slot, 1553 "invalid data ref root value %llu", 1554 dref_root); 1555 return -EUCLEAN; 1556 } 1557 if (unlikely(dref_objectid < BTRFS_FIRST_FREE_OBJECTID || 1558 dref_objectid > BTRFS_LAST_FREE_OBJECTID)) { 1559 extent_err(leaf, slot, 1560 "invalid data ref objectid value %llu", 1561 dref_objectid); 1562 return -EUCLEAN; 1563 } 1564 if (unlikely(!IS_ALIGNED(dref_offset, 1565 fs_info->sectorsize))) { 1566 extent_err(leaf, slot, 1567 "invalid data ref offset, have %llu expect aligned to %u", 1568 dref_offset, fs_info->sectorsize); 1569 return -EUCLEAN; 1570 } 1571 if (unlikely(btrfs_extent_data_ref_count(leaf, dref) == 0)) { 1572 extent_err(leaf, slot, 1573 "invalid data ref count, should have non-zero value"); 1574 return -EUCLEAN; 1575 } 1576 inline_refs += btrfs_extent_data_ref_count(leaf, dref); 1577 break; 1578 /* Contains parent bytenr and ref count */ 1579 case BTRFS_SHARED_DATA_REF_KEY: 1580 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1581 if (unlikely(!IS_ALIGNED(inline_offset, 1582 fs_info->sectorsize))) { 1583 extent_err(leaf, slot, 1584 "invalid data parent bytenr, have %llu expect aligned to %u", 1585 inline_offset, fs_info->sectorsize); 1586 return -EUCLEAN; 1587 } 1588 if (unlikely(btrfs_shared_data_ref_count(leaf, sref) == 0)) { 1589 extent_err(leaf, slot, 1590 "invalid shared data ref count, should have non-zero value"); 1591 return -EUCLEAN; 1592 } 1593 inline_refs += btrfs_shared_data_ref_count(leaf, sref); 1594 break; 1595 case BTRFS_EXTENT_OWNER_REF_KEY: 1596 WARN_ON(!btrfs_fs_incompat(fs_info, SIMPLE_QUOTA)); 1597 break; 1598 default: 1599 extent_err(leaf, slot, "unknown inline ref type: %u", 1600 inline_type); 1601 return -EUCLEAN; 1602 } 1603 if (unlikely(inline_type < last_type)) { 1604 extent_err(leaf, slot, 1605 "inline ref out-of-order: has type %u, prev type %u", 1606 inline_type, last_type); 1607 return -EUCLEAN; 1608 } 1609 /* Type changed, allow the sequence starts from U64_MAX again. */ 1610 if (inline_type > last_type) 1611 last_seq = U64_MAX; 1612 if (unlikely(seq > last_seq)) { 1613 extent_err(leaf, slot, 1614 "inline ref out-of-order: has type %u offset %llu seq 0x%llx, prev type %u seq 0x%llx", 1615 inline_type, inline_offset, seq, 1616 last_type, last_seq); 1617 return -EUCLEAN; 1618 } 1619 last_type = inline_type; 1620 last_seq = seq; 1621 ptr += btrfs_extent_inline_ref_size(inline_type); 1622 } 1623 /* No padding is allowed */ 1624 if (unlikely(ptr != end)) { 1625 extent_err(leaf, slot, 1626 "invalid extent item size, padding bytes found"); 1627 return -EUCLEAN; 1628 } 1629 1630 /* Finally, check the inline refs against total refs */ 1631 if (unlikely(inline_refs > total_refs)) { 1632 extent_err(leaf, slot, 1633 "invalid extent refs, have %llu expect >= inline %llu", 1634 total_refs, inline_refs); 1635 return -EUCLEAN; 1636 } 1637 1638 if ((prev_key->type == BTRFS_EXTENT_ITEM_KEY) || 1639 (prev_key->type == BTRFS_METADATA_ITEM_KEY)) { 1640 u64 prev_end = prev_key->objectid; 1641 1642 if (prev_key->type == BTRFS_METADATA_ITEM_KEY) 1643 prev_end += fs_info->nodesize; 1644 else 1645 prev_end += prev_key->offset; 1646 1647 if (unlikely(prev_end > key->objectid)) { 1648 extent_err(leaf, slot, 1649 "previous extent " BTRFS_KEY_FMT " overlaps current extent " BTRFS_KEY_FMT, 1650 BTRFS_KEY_FMT_VALUE(prev_key), 1651 BTRFS_KEY_FMT_VALUE(key)); 1652 return -EUCLEAN; 1653 } 1654 } 1655 1656 return 0; 1657 } 1658 1659 static int check_simple_keyed_refs(struct extent_buffer *leaf, 1660 struct btrfs_key *key, int slot) 1661 { 1662 u32 expect_item_size = 0; 1663 1664 if (key->type == BTRFS_SHARED_DATA_REF_KEY) { 1665 struct btrfs_shared_data_ref *sref; 1666 1667 sref = btrfs_item_ptr(leaf, slot, struct btrfs_shared_data_ref); 1668 if (unlikely(btrfs_shared_data_ref_count(leaf, sref) == 0)) { 1669 extent_err(leaf, slot, 1670 "invalid shared data backref count, should have non-zero value"); 1671 return -EUCLEAN; 1672 } 1673 1674 expect_item_size = sizeof(struct btrfs_shared_data_ref); 1675 } 1676 1677 if (unlikely(btrfs_item_size(leaf, slot) != expect_item_size)) { 1678 generic_err(leaf, slot, 1679 "invalid item size, have %u expect %u for key type %u", 1680 btrfs_item_size(leaf, slot), 1681 expect_item_size, key->type); 1682 return -EUCLEAN; 1683 } 1684 if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) { 1685 generic_err(leaf, slot, 1686 "invalid key objectid for shared block ref, have %llu expect aligned to %u", 1687 key->objectid, leaf->fs_info->sectorsize); 1688 return -EUCLEAN; 1689 } 1690 if (unlikely(key->type != BTRFS_TREE_BLOCK_REF_KEY && 1691 !IS_ALIGNED(key->offset, leaf->fs_info->sectorsize))) { 1692 extent_err(leaf, slot, 1693 "invalid tree parent bytenr, have %llu expect aligned to %u", 1694 key->offset, leaf->fs_info->sectorsize); 1695 return -EUCLEAN; 1696 } 1697 return 0; 1698 } 1699 1700 static int check_extent_data_ref(struct extent_buffer *leaf, 1701 struct btrfs_key *key, int slot) 1702 { 1703 struct btrfs_extent_data_ref *dref; 1704 unsigned long ptr = btrfs_item_ptr_offset(leaf, slot); 1705 const unsigned long end = ptr + btrfs_item_size(leaf, slot); 1706 1707 if (unlikely(btrfs_item_size(leaf, slot) % sizeof(*dref) != 0)) { 1708 generic_err(leaf, slot, 1709 "invalid item size, have %u expect aligned to %zu for key type %u", 1710 btrfs_item_size(leaf, slot), 1711 sizeof(*dref), key->type); 1712 return -EUCLEAN; 1713 } 1714 if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) { 1715 generic_err(leaf, slot, 1716 "invalid key objectid for shared block ref, have %llu expect aligned to %u", 1717 key->objectid, leaf->fs_info->sectorsize); 1718 return -EUCLEAN; 1719 } 1720 for (; ptr < end; ptr += sizeof(*dref)) { 1721 u64 root; 1722 u64 objectid; 1723 u64 offset; 1724 1725 /* 1726 * We cannot check the extent_data_ref hash due to possible 1727 * overflow from the leaf due to hash collisions. 1728 */ 1729 dref = (struct btrfs_extent_data_ref *)ptr; 1730 root = btrfs_extent_data_ref_root(leaf, dref); 1731 objectid = btrfs_extent_data_ref_objectid(leaf, dref); 1732 offset = btrfs_extent_data_ref_offset(leaf, dref); 1733 if (unlikely(!is_valid_dref_root(root))) { 1734 extent_err(leaf, slot, 1735 "invalid extent data backref root value %llu", 1736 root); 1737 return -EUCLEAN; 1738 } 1739 if (unlikely(objectid < BTRFS_FIRST_FREE_OBJECTID || 1740 objectid > BTRFS_LAST_FREE_OBJECTID)) { 1741 extent_err(leaf, slot, 1742 "invalid extent data backref objectid value %llu", 1743 root); 1744 return -EUCLEAN; 1745 } 1746 if (unlikely(!IS_ALIGNED(offset, leaf->fs_info->sectorsize))) { 1747 extent_err(leaf, slot, 1748 "invalid extent data backref offset, have %llu expect aligned to %u", 1749 offset, leaf->fs_info->sectorsize); 1750 return -EUCLEAN; 1751 } 1752 if (unlikely(btrfs_extent_data_ref_count(leaf, dref) == 0)) { 1753 extent_err(leaf, slot, 1754 "invalid extent data backref count, should have non-zero value"); 1755 return -EUCLEAN; 1756 } 1757 } 1758 return 0; 1759 } 1760 1761 #define inode_ref_err(eb, slot, fmt, args...) \ 1762 inode_item_err(eb, slot, fmt, ##args) 1763 static int check_inode_ref(struct extent_buffer *leaf, 1764 struct btrfs_key *key, struct btrfs_key *prev_key, 1765 int slot) 1766 { 1767 struct btrfs_inode_ref *iref; 1768 unsigned long ptr; 1769 unsigned long end; 1770 1771 if (unlikely(!check_prev_ino(leaf, key, slot, prev_key))) 1772 return -EUCLEAN; 1773 /* namelen can't be 0, so item_size == sizeof() is also invalid */ 1774 if (unlikely(btrfs_item_size(leaf, slot) <= sizeof(*iref))) { 1775 inode_ref_err(leaf, slot, 1776 "invalid item size, have %u expect (%zu, %u)", 1777 btrfs_item_size(leaf, slot), 1778 sizeof(*iref), BTRFS_LEAF_DATA_SIZE(leaf->fs_info)); 1779 return -EUCLEAN; 1780 } 1781 1782 ptr = btrfs_item_ptr_offset(leaf, slot); 1783 end = ptr + btrfs_item_size(leaf, slot); 1784 while (ptr < end) { 1785 u16 namelen; 1786 1787 if (unlikely(ptr + sizeof(*iref) > end)) { 1788 inode_ref_err(leaf, slot, 1789 "inode ref overflow, ptr %lu end %lu inode_ref_size %zu", 1790 ptr, end, sizeof(*iref)); 1791 return -EUCLEAN; 1792 } 1793 1794 iref = (struct btrfs_inode_ref *)ptr; 1795 namelen = btrfs_inode_ref_name_len(leaf, iref); 1796 if (unlikely(ptr + sizeof(*iref) + namelen > end)) { 1797 inode_ref_err(leaf, slot, 1798 "inode ref overflow, ptr %lu end %lu namelen %u", 1799 ptr, end, namelen); 1800 return -EUCLEAN; 1801 } 1802 1803 /* 1804 * NOTE: In theory we should record all found index numbers 1805 * to find any duplicated indexes, but that will be too time 1806 * consuming for inodes with too many hard links. 1807 */ 1808 ptr += sizeof(*iref) + namelen; 1809 } 1810 return 0; 1811 } 1812 1813 static int check_inode_extref(struct extent_buffer *leaf, 1814 struct btrfs_key *key, struct btrfs_key *prev_key, 1815 int slot) 1816 { 1817 unsigned long ptr = btrfs_item_ptr_offset(leaf, slot); 1818 unsigned long end = ptr + btrfs_item_size(leaf, slot); 1819 1820 if (unlikely(!check_prev_ino(leaf, key, slot, prev_key))) 1821 return -EUCLEAN; 1822 1823 while (ptr < end) { 1824 struct btrfs_inode_extref *extref = (struct btrfs_inode_extref *)ptr; 1825 u16 namelen; 1826 1827 if (unlikely(ptr + sizeof(*extref) > end)) { 1828 inode_ref_err(leaf, slot, 1829 "inode extref overflow, ptr %lu end %lu inode_extref size %zu", 1830 ptr, end, sizeof(*extref)); 1831 return -EUCLEAN; 1832 } 1833 1834 namelen = btrfs_inode_extref_name_len(leaf, extref); 1835 if (unlikely(ptr + sizeof(*extref) + namelen > end)) { 1836 inode_ref_err(leaf, slot, 1837 "inode extref overflow, ptr %lu end %lu namelen %u", 1838 ptr, end, namelen); 1839 return -EUCLEAN; 1840 } 1841 ptr += sizeof(*extref) + namelen; 1842 } 1843 return 0; 1844 } 1845 1846 static int check_raid_stripe_extent(const struct extent_buffer *leaf, 1847 const struct btrfs_key *key, int slot) 1848 { 1849 if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) { 1850 generic_err(leaf, slot, 1851 "invalid key objectid for raid stripe extent, have %llu expect aligned to %u", 1852 key->objectid, leaf->fs_info->sectorsize); 1853 return -EUCLEAN; 1854 } 1855 1856 if (unlikely(!btrfs_fs_incompat(leaf->fs_info, RAID_STRIPE_TREE))) { 1857 generic_err(leaf, slot, 1858 "RAID_STRIPE_EXTENT present but RAID_STRIPE_TREE incompat bit unset"); 1859 return -EUCLEAN; 1860 } 1861 1862 return 0; 1863 } 1864 1865 static int check_dev_extent_item(const struct extent_buffer *leaf, 1866 const struct btrfs_key *key, 1867 int slot, 1868 struct btrfs_key *prev_key) 1869 { 1870 struct btrfs_dev_extent *de; 1871 const u32 sectorsize = leaf->fs_info->sectorsize; 1872 1873 de = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent); 1874 /* Basic fixed member checks. */ 1875 if (unlikely(btrfs_dev_extent_chunk_tree(leaf, de) != 1876 BTRFS_CHUNK_TREE_OBJECTID)) { 1877 generic_err(leaf, slot, 1878 "invalid dev extent chunk tree id, has %llu expect %llu", 1879 btrfs_dev_extent_chunk_tree(leaf, de), 1880 BTRFS_CHUNK_TREE_OBJECTID); 1881 return -EUCLEAN; 1882 } 1883 if (unlikely(btrfs_dev_extent_chunk_objectid(leaf, de) != 1884 BTRFS_FIRST_CHUNK_TREE_OBJECTID)) { 1885 generic_err(leaf, slot, 1886 "invalid dev extent chunk objectid, has %llu expect %llu", 1887 btrfs_dev_extent_chunk_objectid(leaf, de), 1888 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 1889 return -EUCLEAN; 1890 } 1891 /* Alignment check. */ 1892 if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) { 1893 generic_err(leaf, slot, 1894 "invalid dev extent key.offset, has %llu not aligned to %u", 1895 key->offset, sectorsize); 1896 return -EUCLEAN; 1897 } 1898 if (unlikely(!IS_ALIGNED(btrfs_dev_extent_chunk_offset(leaf, de), 1899 sectorsize))) { 1900 generic_err(leaf, slot, 1901 "invalid dev extent chunk offset, has %llu not aligned to %u", 1902 btrfs_dev_extent_chunk_objectid(leaf, de), 1903 sectorsize); 1904 return -EUCLEAN; 1905 } 1906 if (unlikely(!IS_ALIGNED(btrfs_dev_extent_length(leaf, de), 1907 sectorsize))) { 1908 generic_err(leaf, slot, 1909 "invalid dev extent length, has %llu not aligned to %u", 1910 btrfs_dev_extent_length(leaf, de), sectorsize); 1911 return -EUCLEAN; 1912 } 1913 /* Overlap check with previous dev extent. */ 1914 if (slot && prev_key->objectid == key->objectid && 1915 prev_key->type == key->type) { 1916 struct btrfs_dev_extent *prev_de; 1917 u64 prev_len; 1918 1919 prev_de = btrfs_item_ptr(leaf, slot - 1, struct btrfs_dev_extent); 1920 prev_len = btrfs_dev_extent_length(leaf, prev_de); 1921 if (unlikely(prev_key->offset + prev_len > key->offset)) { 1922 generic_err(leaf, slot, 1923 "dev extent overlap, prev offset %llu len %llu current offset %llu", 1924 prev_key->objectid, prev_len, key->offset); 1925 return -EUCLEAN; 1926 } 1927 } 1928 return 0; 1929 } 1930 1931 /* 1932 * Common point to switch the item-specific validation. 1933 */ 1934 static enum btrfs_tree_block_status check_leaf_item(struct extent_buffer *leaf, 1935 struct btrfs_key *key, 1936 int slot, 1937 struct btrfs_key *prev_key) 1938 { 1939 int ret = 0; 1940 struct btrfs_chunk *chunk; 1941 1942 switch (key->type) { 1943 case BTRFS_EXTENT_DATA_KEY: 1944 ret = check_extent_data_item(leaf, key, slot, prev_key); 1945 break; 1946 case BTRFS_EXTENT_CSUM_KEY: 1947 ret = check_csum_item(leaf, key, slot, prev_key); 1948 break; 1949 case BTRFS_DIR_ITEM_KEY: 1950 case BTRFS_DIR_INDEX_KEY: 1951 case BTRFS_XATTR_ITEM_KEY: 1952 ret = check_dir_item(leaf, key, prev_key, slot); 1953 break; 1954 case BTRFS_INODE_REF_KEY: 1955 ret = check_inode_ref(leaf, key, prev_key, slot); 1956 break; 1957 case BTRFS_INODE_EXTREF_KEY: 1958 ret = check_inode_extref(leaf, key, prev_key, slot); 1959 break; 1960 case BTRFS_BLOCK_GROUP_ITEM_KEY: 1961 ret = check_block_group_item(leaf, key, slot); 1962 break; 1963 case BTRFS_CHUNK_ITEM_KEY: 1964 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 1965 ret = check_leaf_chunk_item(leaf, chunk, key, slot); 1966 break; 1967 case BTRFS_DEV_ITEM_KEY: 1968 ret = check_dev_item(leaf, key, slot); 1969 break; 1970 case BTRFS_DEV_EXTENT_KEY: 1971 ret = check_dev_extent_item(leaf, key, slot, prev_key); 1972 break; 1973 case BTRFS_INODE_ITEM_KEY: 1974 ret = check_inode_item(leaf, key, slot); 1975 break; 1976 case BTRFS_ROOT_ITEM_KEY: 1977 ret = check_root_item(leaf, key, slot); 1978 break; 1979 case BTRFS_EXTENT_ITEM_KEY: 1980 case BTRFS_METADATA_ITEM_KEY: 1981 ret = check_extent_item(leaf, key, slot, prev_key); 1982 break; 1983 case BTRFS_TREE_BLOCK_REF_KEY: 1984 case BTRFS_SHARED_DATA_REF_KEY: 1985 case BTRFS_SHARED_BLOCK_REF_KEY: 1986 ret = check_simple_keyed_refs(leaf, key, slot); 1987 break; 1988 case BTRFS_EXTENT_DATA_REF_KEY: 1989 ret = check_extent_data_ref(leaf, key, slot); 1990 break; 1991 case BTRFS_RAID_STRIPE_KEY: 1992 ret = check_raid_stripe_extent(leaf, key, slot); 1993 break; 1994 } 1995 1996 if (unlikely(ret)) 1997 return BTRFS_TREE_BLOCK_INVALID_ITEM; 1998 return BTRFS_TREE_BLOCK_CLEAN; 1999 } 2000 2001 enum btrfs_tree_block_status __btrfs_check_leaf(struct extent_buffer *leaf) 2002 { 2003 struct btrfs_fs_info *fs_info = leaf->fs_info; 2004 /* No valid key type is 0, so all key should be larger than this key */ 2005 struct btrfs_key prev_key = {0, 0, 0}; 2006 struct btrfs_key key; 2007 u32 nritems = btrfs_header_nritems(leaf); 2008 int slot; 2009 2010 if (unlikely(btrfs_header_level(leaf) != 0)) { 2011 generic_err(leaf, 0, 2012 "invalid level for leaf, have %d expect 0", 2013 btrfs_header_level(leaf)); 2014 return BTRFS_TREE_BLOCK_INVALID_LEVEL; 2015 } 2016 2017 if (unlikely(!btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_WRITTEN))) { 2018 generic_err(leaf, 0, "invalid flag for leaf, WRITTEN not set"); 2019 return BTRFS_TREE_BLOCK_WRITTEN_NOT_SET; 2020 } 2021 2022 /* 2023 * Extent buffers from a relocation tree have a owner field that 2024 * corresponds to the subvolume tree they are based on. So just from an 2025 * extent buffer alone we can not find out what is the id of the 2026 * corresponding subvolume tree, so we can not figure out if the extent 2027 * buffer corresponds to the root of the relocation tree or not. So 2028 * skip this check for relocation trees. 2029 */ 2030 if (nritems == 0 && !btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_RELOC)) { 2031 u64 owner = btrfs_header_owner(leaf); 2032 2033 /* These trees must never be empty */ 2034 if (unlikely(owner == BTRFS_ROOT_TREE_OBJECTID || 2035 owner == BTRFS_CHUNK_TREE_OBJECTID || 2036 owner == BTRFS_DEV_TREE_OBJECTID || 2037 owner == BTRFS_FS_TREE_OBJECTID || 2038 owner == BTRFS_DATA_RELOC_TREE_OBJECTID)) { 2039 generic_err(leaf, 0, 2040 "invalid root, root %llu must never be empty", 2041 owner); 2042 return BTRFS_TREE_BLOCK_INVALID_NRITEMS; 2043 } 2044 2045 /* Unknown tree */ 2046 if (unlikely(owner == 0)) { 2047 generic_err(leaf, 0, 2048 "invalid owner, root 0 is not defined"); 2049 return BTRFS_TREE_BLOCK_INVALID_OWNER; 2050 } 2051 2052 /* EXTENT_TREE_V2 can have empty extent trees. */ 2053 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 2054 return BTRFS_TREE_BLOCK_CLEAN; 2055 2056 if (unlikely(owner == BTRFS_EXTENT_TREE_OBJECTID)) { 2057 generic_err(leaf, 0, 2058 "invalid root, root %llu must never be empty", 2059 owner); 2060 return BTRFS_TREE_BLOCK_INVALID_NRITEMS; 2061 } 2062 2063 return BTRFS_TREE_BLOCK_CLEAN; 2064 } 2065 2066 if (unlikely(nritems == 0)) 2067 return BTRFS_TREE_BLOCK_CLEAN; 2068 2069 /* 2070 * Check the following things to make sure this is a good leaf, and 2071 * leaf users won't need to bother with similar sanity checks: 2072 * 2073 * 1) key ordering 2074 * 2) item offset and size 2075 * No overlap, no hole, all inside the leaf. 2076 * 3) item content 2077 * If possible, do comprehensive sanity check. 2078 * NOTE: All checks must only rely on the item data itself. 2079 */ 2080 for (slot = 0; slot < nritems; slot++) { 2081 u32 item_end_expected; 2082 u64 item_data_end; 2083 enum btrfs_tree_block_status ret; 2084 2085 btrfs_item_key_to_cpu(leaf, &key, slot); 2086 2087 /* Make sure the keys are in the right order */ 2088 if (unlikely(btrfs_comp_cpu_keys(&prev_key, &key) >= 0)) { 2089 generic_err(leaf, slot, 2090 "bad key order, prev " BTRFS_KEY_FMT " current " BTRFS_KEY_FMT, 2091 BTRFS_KEY_FMT_VALUE(&prev_key), 2092 BTRFS_KEY_FMT_VALUE(&key)); 2093 return BTRFS_TREE_BLOCK_BAD_KEY_ORDER; 2094 } 2095 2096 item_data_end = (u64)btrfs_item_offset(leaf, slot) + 2097 btrfs_item_size(leaf, slot); 2098 /* 2099 * Make sure the offset and ends are right, remember that the 2100 * item data starts at the end of the leaf and grows towards the 2101 * front. 2102 */ 2103 if (slot == 0) 2104 item_end_expected = BTRFS_LEAF_DATA_SIZE(fs_info); 2105 else 2106 item_end_expected = btrfs_item_offset(leaf, 2107 slot - 1); 2108 if (unlikely(item_data_end != item_end_expected)) { 2109 generic_err(leaf, slot, 2110 "unexpected item end, have %llu expect %u", 2111 item_data_end, item_end_expected); 2112 return BTRFS_TREE_BLOCK_INVALID_OFFSETS; 2113 } 2114 2115 /* 2116 * Check to make sure that we don't point outside of the leaf, 2117 * just in case all the items are consistent to each other, but 2118 * all point outside of the leaf. 2119 */ 2120 if (unlikely(item_data_end > BTRFS_LEAF_DATA_SIZE(fs_info))) { 2121 generic_err(leaf, slot, 2122 "slot end outside of leaf, have %llu expect range [0, %u]", 2123 item_data_end, BTRFS_LEAF_DATA_SIZE(fs_info)); 2124 return BTRFS_TREE_BLOCK_INVALID_OFFSETS; 2125 } 2126 2127 /* Also check if the item pointer overlaps with btrfs item. */ 2128 if (unlikely(btrfs_item_ptr_offset(leaf, slot) < 2129 btrfs_item_nr_offset(leaf, slot) + sizeof(struct btrfs_item))) { 2130 generic_err(leaf, slot, 2131 "slot overlaps with its data, item end %lu data start %lu", 2132 btrfs_item_nr_offset(leaf, slot) + 2133 sizeof(struct btrfs_item), 2134 btrfs_item_ptr_offset(leaf, slot)); 2135 return BTRFS_TREE_BLOCK_INVALID_OFFSETS; 2136 } 2137 2138 /* Check if the item size and content meet other criteria. */ 2139 ret = check_leaf_item(leaf, &key, slot, &prev_key); 2140 if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN)) 2141 return ret; 2142 2143 prev_key.objectid = key.objectid; 2144 prev_key.type = key.type; 2145 prev_key.offset = key.offset; 2146 } 2147 2148 return BTRFS_TREE_BLOCK_CLEAN; 2149 } 2150 2151 int btrfs_check_leaf(struct extent_buffer *leaf) 2152 { 2153 enum btrfs_tree_block_status ret; 2154 2155 ret = __btrfs_check_leaf(leaf); 2156 if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN)) 2157 return -EUCLEAN; 2158 return 0; 2159 } 2160 ALLOW_ERROR_INJECTION(btrfs_check_leaf, ERRNO); 2161 2162 enum btrfs_tree_block_status __btrfs_check_node(struct extent_buffer *node) 2163 { 2164 struct btrfs_fs_info *fs_info = node->fs_info; 2165 unsigned long nr = btrfs_header_nritems(node); 2166 struct btrfs_key key, next_key; 2167 int slot; 2168 int level = btrfs_header_level(node); 2169 u64 bytenr; 2170 2171 if (unlikely(!btrfs_header_flag(node, BTRFS_HEADER_FLAG_WRITTEN))) { 2172 generic_err(node, 0, "invalid flag for node, WRITTEN not set"); 2173 return BTRFS_TREE_BLOCK_WRITTEN_NOT_SET; 2174 } 2175 2176 if (unlikely(level <= 0 || level >= BTRFS_MAX_LEVEL)) { 2177 generic_err(node, 0, 2178 "invalid level for node, have %d expect [1, %d]", 2179 level, BTRFS_MAX_LEVEL - 1); 2180 return BTRFS_TREE_BLOCK_INVALID_LEVEL; 2181 } 2182 if (unlikely(nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(fs_info))) { 2183 btrfs_crit(fs_info, 2184 "corrupt node: root=%llu block=%llu, nritems too %s, have %lu expect range [1,%u]", 2185 btrfs_header_owner(node), node->start, 2186 nr == 0 ? "small" : "large", nr, 2187 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 2188 return BTRFS_TREE_BLOCK_INVALID_NRITEMS; 2189 } 2190 2191 for (slot = 0; slot < nr - 1; slot++) { 2192 bytenr = btrfs_node_blockptr(node, slot); 2193 btrfs_node_key_to_cpu(node, &key, slot); 2194 btrfs_node_key_to_cpu(node, &next_key, slot + 1); 2195 2196 if (unlikely(!bytenr)) { 2197 generic_err(node, slot, 2198 "invalid NULL node pointer"); 2199 return BTRFS_TREE_BLOCK_INVALID_BLOCKPTR; 2200 } 2201 if (unlikely(!IS_ALIGNED(bytenr, fs_info->sectorsize))) { 2202 generic_err(node, slot, 2203 "unaligned pointer, have %llu should be aligned to %u", 2204 bytenr, fs_info->sectorsize); 2205 return BTRFS_TREE_BLOCK_INVALID_BLOCKPTR; 2206 } 2207 2208 if (unlikely(btrfs_comp_cpu_keys(&key, &next_key) >= 0)) { 2209 generic_err(node, slot, 2210 "bad key order, current " BTRFS_KEY_FMT " next " BTRFS_KEY_FMT, 2211 BTRFS_KEY_FMT_VALUE(&key), 2212 BTRFS_KEY_FMT_VALUE(&next_key)); 2213 return BTRFS_TREE_BLOCK_BAD_KEY_ORDER; 2214 } 2215 } 2216 return BTRFS_TREE_BLOCK_CLEAN; 2217 } 2218 2219 int btrfs_check_node(struct extent_buffer *node) 2220 { 2221 enum btrfs_tree_block_status ret; 2222 2223 ret = __btrfs_check_node(node); 2224 if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN)) 2225 return -EUCLEAN; 2226 return 0; 2227 } 2228 ALLOW_ERROR_INJECTION(btrfs_check_node, ERRNO); 2229 2230 int btrfs_check_eb_owner(const struct extent_buffer *eb, u64 root_owner) 2231 { 2232 const bool is_subvol = btrfs_is_fstree(root_owner); 2233 const u64 eb_owner = btrfs_header_owner(eb); 2234 2235 /* 2236 * Skip dummy fs, as selftests don't create unique ebs for each dummy 2237 * root. 2238 */ 2239 if (btrfs_is_testing(eb->fs_info)) 2240 return 0; 2241 /* 2242 * There are several call sites (backref walking, qgroup, and data 2243 * reloc) passing 0 as @root_owner, as they are not holding the 2244 * tree root. In that case, we can not do a reliable ownership check, 2245 * so just exit. 2246 */ 2247 if (root_owner == 0) 2248 return 0; 2249 /* 2250 * These trees use key.offset as their owner, our callers don't have 2251 * the extra capacity to pass key.offset here. So we just skip them. 2252 */ 2253 if (root_owner == BTRFS_TREE_LOG_OBJECTID || 2254 root_owner == BTRFS_TREE_RELOC_OBJECTID) 2255 return 0; 2256 2257 if (!is_subvol) { 2258 /* For non-subvolume trees, the eb owner should match root owner */ 2259 if (unlikely(root_owner != eb_owner)) { 2260 btrfs_crit(eb->fs_info, 2261 "corrupted %s, root=%llu block=%llu owner mismatch, have %llu expect %llu", 2262 btrfs_header_level(eb) == 0 ? "leaf" : "node", 2263 root_owner, btrfs_header_bytenr(eb), eb_owner, 2264 root_owner); 2265 return -EUCLEAN; 2266 } 2267 return 0; 2268 } 2269 2270 /* 2271 * For subvolume trees, owners can mismatch, but they should all belong 2272 * to subvolume trees. 2273 */ 2274 if (unlikely(is_subvol != btrfs_is_fstree(eb_owner))) { 2275 btrfs_crit(eb->fs_info, 2276 "corrupted %s, root=%llu block=%llu owner mismatch, have %llu expect [%llu, %llu]", 2277 btrfs_header_level(eb) == 0 ? "leaf" : "node", 2278 root_owner, btrfs_header_bytenr(eb), eb_owner, 2279 BTRFS_FIRST_FREE_OBJECTID, BTRFS_LAST_FREE_OBJECTID); 2280 return -EUCLEAN; 2281 } 2282 return 0; 2283 } 2284 2285 int btrfs_verify_level_key(struct extent_buffer *eb, 2286 const struct btrfs_tree_parent_check *check) 2287 { 2288 struct btrfs_fs_info *fs_info = eb->fs_info; 2289 int found_level; 2290 struct btrfs_key found_key; 2291 int ret; 2292 2293 found_level = btrfs_header_level(eb); 2294 if (unlikely(found_level != check->level)) { 2295 DEBUG_WARN(); 2296 btrfs_err(fs_info, 2297 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u", 2298 eb->start, check->level, found_level); 2299 return -EUCLEAN; 2300 } 2301 2302 if (!check->has_first_key) 2303 return 0; 2304 2305 /* 2306 * For live tree block (new tree blocks in current transaction), 2307 * we need proper lock context to avoid race, which is impossible here. 2308 * So we only checks tree blocks which is read from disk, whose 2309 * generation <= fs_info->last_trans_committed. 2310 */ 2311 if (btrfs_header_generation(eb) > btrfs_get_last_trans_committed(fs_info)) 2312 return 0; 2313 2314 /* We have @first_key, so this @eb must have at least one item */ 2315 if (unlikely(btrfs_header_nritems(eb) == 0)) { 2316 btrfs_err(fs_info, 2317 "invalid tree nritems, bytenr=%llu nritems=0 expect >0", 2318 eb->start); 2319 DEBUG_WARN(); 2320 return -EUCLEAN; 2321 } 2322 2323 if (found_level) 2324 btrfs_node_key_to_cpu(eb, &found_key, 0); 2325 else 2326 btrfs_item_key_to_cpu(eb, &found_key, 0); 2327 2328 ret = btrfs_comp_cpu_keys(&check->first_key, &found_key); 2329 if (unlikely(ret)) { 2330 DEBUG_WARN(); 2331 btrfs_err(fs_info, 2332 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 2333 eb->start, check->transid, check->first_key.objectid, 2334 check->first_key.type, check->first_key.offset, 2335 found_key.objectid, found_key.type, 2336 found_key.offset); 2337 } 2338 return ret; 2339 } 2340