xref: /linux/fs/btrfs/relocation.c (revision 7696286034ac72cf9b46499be1715ac62fd302c3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2009 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/rbtree.h>
11 #include <linux/slab.h>
12 #include <linux/error-injection.h>
13 #include "ctree.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "volumes.h"
17 #include "locking.h"
18 #include "btrfs_inode.h"
19 #include "async-thread.h"
20 #include "free-space-cache.h"
21 #include "qgroup.h"
22 #include "print-tree.h"
23 #include "delalloc-space.h"
24 #include "block-group.h"
25 #include "backref.h"
26 #include "misc.h"
27 #include "subpage.h"
28 #include "zoned.h"
29 #include "inode-item.h"
30 #include "space-info.h"
31 #include "fs.h"
32 #include "accessors.h"
33 #include "extent-tree.h"
34 #include "root-tree.h"
35 #include "file-item.h"
36 #include "relocation.h"
37 #include "super.h"
38 #include "tree-checker.h"
39 #include "raid-stripe-tree.h"
40 
41 /*
42  * Relocation overview
43  *
44  * [What does relocation do]
45  *
46  * The objective of relocation is to relocate all extents of the target block
47  * group to other block groups.
48  * This is utilized by resize (shrink only), profile converting, compacting
49  * space, or balance routine to spread chunks over devices.
50  *
51  * 		Before		|		After
52  * ------------------------------------------------------------------
53  *  BG A: 10 data extents	| BG A: deleted
54  *  BG B:  2 data extents	| BG B: 10 data extents (2 old + 8 relocated)
55  *  BG C:  1 extents		| BG C:  3 data extents (1 old + 2 relocated)
56  *
57  * [How does relocation work]
58  *
59  * 1.   Mark the target block group read-only
60  *      New extents won't be allocated from the target block group.
61  *
62  * 2.1  Record each extent in the target block group
63  *      To build a proper map of extents to be relocated.
64  *
65  * 2.2  Build data reloc tree and reloc trees
66  *      Data reloc tree will contain an inode, recording all newly relocated
67  *      data extents.
68  *      There will be only one data reloc tree for one data block group.
69  *
70  *      Reloc tree will be a special snapshot of its source tree, containing
71  *      relocated tree blocks.
72  *      Each tree referring to a tree block in target block group will get its
73  *      reloc tree built.
74  *
75  * 2.3  Swap source tree with its corresponding reloc tree
76  *      Each involved tree only refers to new extents after swap.
77  *
78  * 3.   Cleanup reloc trees and data reloc tree.
79  *      As old extents in the target block group are still referenced by reloc
80  *      trees, we need to clean them up before really freeing the target block
81  *      group.
82  *
83  * The main complexity is in steps 2.2 and 2.3.
84  *
85  * The entry point of relocation is relocate_block_group() function.
86  */
87 
88 #define RELOCATION_RESERVED_NODES	256
89 /*
90  * map address of tree root to tree
91  */
92 struct mapping_node {
93 	union {
94 		/* Use rb_simple_node for search/insert */
95 		struct {
96 			struct rb_node rb_node;
97 			u64 bytenr;
98 		};
99 
100 		struct rb_simple_node simple_node;
101 	};
102 	void *data;
103 };
104 
105 struct mapping_tree {
106 	struct rb_root rb_root;
107 	spinlock_t lock;
108 };
109 
110 /*
111  * present a tree block to process
112  */
113 struct tree_block {
114 	union {
115 		/* Use rb_simple_node for search/insert */
116 		struct {
117 			struct rb_node rb_node;
118 			u64 bytenr;
119 		};
120 
121 		struct rb_simple_node simple_node;
122 	};
123 	u64 owner;
124 	struct btrfs_key key;
125 	u8 level;
126 	bool key_ready;
127 };
128 
129 #define MAX_EXTENTS 128
130 
131 struct file_extent_cluster {
132 	u64 start;
133 	u64 end;
134 	u64 boundary[MAX_EXTENTS];
135 	unsigned int nr;
136 	u64 owning_root;
137 };
138 
139 /* Stages of data relocation. */
140 enum reloc_stage {
141 	MOVE_DATA_EXTENTS,
142 	UPDATE_DATA_PTRS
143 };
144 
145 struct reloc_control {
146 	/* block group to relocate */
147 	struct btrfs_block_group *block_group;
148 	/* extent tree */
149 	struct btrfs_root *extent_root;
150 	/* inode for moving data */
151 	struct inode *data_inode;
152 
153 	struct btrfs_block_rsv *block_rsv;
154 
155 	struct btrfs_backref_cache backref_cache;
156 
157 	struct file_extent_cluster cluster;
158 	/* tree blocks have been processed */
159 	struct extent_io_tree processed_blocks;
160 	/* map start of tree root to corresponding reloc tree */
161 	struct mapping_tree reloc_root_tree;
162 	/* list of reloc trees */
163 	struct list_head reloc_roots;
164 	/* list of subvolume trees that get relocated */
165 	struct list_head dirty_subvol_roots;
166 	/* size of metadata reservation for merging reloc trees */
167 	u64 merging_rsv_size;
168 	/* size of relocated tree nodes */
169 	u64 nodes_relocated;
170 	/* reserved size for block group relocation*/
171 	u64 reserved_bytes;
172 
173 	u64 search_start;
174 	u64 extents_found;
175 
176 	enum reloc_stage stage;
177 	bool create_reloc_tree;
178 	bool merge_reloc_tree;
179 	bool found_file_extent;
180 };
181 
182 static void mark_block_processed(struct reloc_control *rc,
183 				 struct btrfs_backref_node *node)
184 {
185 	u32 blocksize;
186 
187 	if (node->level == 0 ||
188 	    in_range(node->bytenr, rc->block_group->start,
189 		     rc->block_group->length)) {
190 		blocksize = rc->extent_root->fs_info->nodesize;
191 		btrfs_set_extent_bit(&rc->processed_blocks, node->bytenr,
192 				     node->bytenr + blocksize - 1, EXTENT_DIRTY,
193 				     NULL);
194 	}
195 	node->processed = 1;
196 }
197 
198 /*
199  * walk up backref nodes until reach node presents tree root
200  */
201 static struct btrfs_backref_node *walk_up_backref(
202 		struct btrfs_backref_node *node,
203 		struct btrfs_backref_edge *edges[], int *index)
204 {
205 	struct btrfs_backref_edge *edge;
206 	int idx = *index;
207 
208 	while (!list_empty(&node->upper)) {
209 		edge = list_first_entry(&node->upper, struct btrfs_backref_edge,
210 					list[LOWER]);
211 		edges[idx++] = edge;
212 		node = edge->node[UPPER];
213 	}
214 	BUG_ON(node->detached);
215 	*index = idx;
216 	return node;
217 }
218 
219 /*
220  * walk down backref nodes to find start of next reference path
221  */
222 static struct btrfs_backref_node *walk_down_backref(
223 		struct btrfs_backref_edge *edges[], int *index)
224 {
225 	struct btrfs_backref_edge *edge;
226 	struct btrfs_backref_node *lower;
227 	int idx = *index;
228 
229 	while (idx > 0) {
230 		edge = edges[idx - 1];
231 		lower = edge->node[LOWER];
232 		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
233 			idx--;
234 			continue;
235 		}
236 		edge = list_first_entry(&edge->list[LOWER], struct btrfs_backref_edge,
237 					list[LOWER]);
238 		edges[idx - 1] = edge;
239 		*index = idx;
240 		return edge->node[UPPER];
241 	}
242 	*index = 0;
243 	return NULL;
244 }
245 
246 static bool reloc_root_is_dead(const struct btrfs_root *root)
247 {
248 	/*
249 	 * Pair with set_bit/clear_bit in clean_dirty_subvols and
250 	 * btrfs_update_reloc_root. We need to see the updated bit before
251 	 * trying to access reloc_root
252 	 */
253 	smp_rmb();
254 	if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
255 		return true;
256 	return false;
257 }
258 
259 /*
260  * Check if this subvolume tree has valid reloc tree.
261  *
262  * Reloc tree after swap is considered dead, thus not considered as valid.
263  * This is enough for most callers, as they don't distinguish dead reloc root
264  * from no reloc root.  But btrfs_should_ignore_reloc_root() below is a
265  * special case.
266  */
267 static bool have_reloc_root(const struct btrfs_root *root)
268 {
269 	if (reloc_root_is_dead(root))
270 		return false;
271 	if (!root->reloc_root)
272 		return false;
273 	return true;
274 }
275 
276 bool btrfs_should_ignore_reloc_root(const struct btrfs_root *root)
277 {
278 	struct btrfs_root *reloc_root;
279 
280 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
281 		return false;
282 
283 	/* This root has been merged with its reloc tree, we can ignore it */
284 	if (reloc_root_is_dead(root))
285 		return true;
286 
287 	reloc_root = root->reloc_root;
288 	if (!reloc_root)
289 		return false;
290 
291 	if (btrfs_header_generation(reloc_root->commit_root) ==
292 	    root->fs_info->running_transaction->transid)
293 		return false;
294 	/*
295 	 * If there is reloc tree and it was created in previous transaction
296 	 * backref lookup can find the reloc tree, so backref node for the fs
297 	 * tree root is useless for relocation.
298 	 */
299 	return true;
300 }
301 
302 /*
303  * find reloc tree by address of tree root
304  */
305 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr)
306 {
307 	struct reloc_control *rc = fs_info->reloc_ctl;
308 	struct rb_node *rb_node;
309 	struct mapping_node *node;
310 	struct btrfs_root *root = NULL;
311 
312 	ASSERT(rc);
313 	spin_lock(&rc->reloc_root_tree.lock);
314 	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr);
315 	if (rb_node) {
316 		node = rb_entry(rb_node, struct mapping_node, rb_node);
317 		root = node->data;
318 	}
319 	spin_unlock(&rc->reloc_root_tree.lock);
320 	return btrfs_grab_root(root);
321 }
322 
323 /*
324  * For useless nodes, do two major clean ups:
325  *
326  * - Cleanup the children edges and nodes
327  *   If child node is also orphan (no parent) during cleanup, then the child
328  *   node will also be cleaned up.
329  *
330  * - Freeing up leaves (level 0), keeps nodes detached
331  *   For nodes, the node is still cached as "detached"
332  *
333  * Return false if @node is not in the @useless_nodes list.
334  * Return true if @node is in the @useless_nodes list.
335  */
336 static bool handle_useless_nodes(struct reloc_control *rc,
337 				 struct btrfs_backref_node *node)
338 {
339 	struct btrfs_backref_cache *cache = &rc->backref_cache;
340 	struct list_head *useless_node = &cache->useless_node;
341 	bool ret = false;
342 
343 	while (!list_empty(useless_node)) {
344 		struct btrfs_backref_node *cur;
345 
346 		cur = list_first_entry(useless_node, struct btrfs_backref_node,
347 				 list);
348 		list_del_init(&cur->list);
349 
350 		/* Only tree root nodes can be added to @useless_nodes */
351 		ASSERT(list_empty(&cur->upper));
352 
353 		if (cur == node)
354 			ret = true;
355 
356 		/* Cleanup the lower edges */
357 		while (!list_empty(&cur->lower)) {
358 			struct btrfs_backref_edge *edge;
359 			struct btrfs_backref_node *lower;
360 
361 			edge = list_first_entry(&cur->lower, struct btrfs_backref_edge,
362 						list[UPPER]);
363 			list_del(&edge->list[UPPER]);
364 			list_del(&edge->list[LOWER]);
365 			lower = edge->node[LOWER];
366 			btrfs_backref_free_edge(cache, edge);
367 
368 			/* Child node is also orphan, queue for cleanup */
369 			if (list_empty(&lower->upper))
370 				list_add(&lower->list, useless_node);
371 		}
372 		/* Mark this block processed for relocation */
373 		mark_block_processed(rc, cur);
374 
375 		/*
376 		 * Backref nodes for tree leaves are deleted from the cache.
377 		 * Backref nodes for upper level tree blocks are left in the
378 		 * cache to avoid unnecessary backref lookup.
379 		 */
380 		if (cur->level > 0) {
381 			cur->detached = 1;
382 		} else {
383 			rb_erase(&cur->rb_node, &cache->rb_root);
384 			btrfs_backref_free_node(cache, cur);
385 		}
386 	}
387 	return ret;
388 }
389 
390 /*
391  * Build backref tree for a given tree block. Root of the backref tree
392  * corresponds the tree block, leaves of the backref tree correspond roots of
393  * b-trees that reference the tree block.
394  *
395  * The basic idea of this function is check backrefs of a given block to find
396  * upper level blocks that reference the block, and then check backrefs of
397  * these upper level blocks recursively. The recursion stops when tree root is
398  * reached or backrefs for the block is cached.
399  *
400  * NOTE: if we find that backrefs for a block are cached, we know backrefs for
401  * all upper level blocks that directly/indirectly reference the block are also
402  * cached.
403  */
404 static noinline_for_stack struct btrfs_backref_node *build_backref_tree(
405 			struct btrfs_trans_handle *trans,
406 			struct reloc_control *rc, struct btrfs_key *node_key,
407 			int level, u64 bytenr)
408 {
409 	struct btrfs_backref_iter *iter;
410 	struct btrfs_backref_cache *cache = &rc->backref_cache;
411 	/* For searching parent of TREE_BLOCK_REF */
412 	struct btrfs_path *path;
413 	struct btrfs_backref_node *cur;
414 	struct btrfs_backref_node *node = NULL;
415 	struct btrfs_backref_edge *edge;
416 	int ret;
417 
418 	iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info);
419 	if (!iter)
420 		return ERR_PTR(-ENOMEM);
421 	path = btrfs_alloc_path();
422 	if (!path) {
423 		ret = -ENOMEM;
424 		goto out;
425 	}
426 
427 	node = btrfs_backref_alloc_node(cache, bytenr, level);
428 	if (!node) {
429 		ret = -ENOMEM;
430 		goto out;
431 	}
432 
433 	cur = node;
434 
435 	/* Breadth-first search to build backref cache */
436 	do {
437 		ret = btrfs_backref_add_tree_node(trans, cache, path, iter,
438 						  node_key, cur);
439 		if (ret < 0)
440 			goto out;
441 
442 		edge = list_first_entry_or_null(&cache->pending_edge,
443 				struct btrfs_backref_edge, list[UPPER]);
444 		/*
445 		 * The pending list isn't empty, take the first block to
446 		 * process
447 		 */
448 		if (edge) {
449 			list_del_init(&edge->list[UPPER]);
450 			cur = edge->node[UPPER];
451 		}
452 	} while (edge);
453 
454 	/* Finish the upper linkage of newly added edges/nodes */
455 	ret = btrfs_backref_finish_upper_links(cache, node);
456 	if (ret < 0)
457 		goto out;
458 
459 	if (handle_useless_nodes(rc, node))
460 		node = NULL;
461 out:
462 	btrfs_free_path(iter->path);
463 	kfree(iter);
464 	btrfs_free_path(path);
465 	if (ret) {
466 		btrfs_backref_error_cleanup(cache, node);
467 		return ERR_PTR(ret);
468 	}
469 	ASSERT(!node || !node->detached);
470 	ASSERT(list_empty(&cache->useless_node) &&
471 	       list_empty(&cache->pending_edge));
472 	return node;
473 }
474 
475 /*
476  * helper to add 'address of tree root -> reloc tree' mapping
477  */
478 static int __add_reloc_root(struct btrfs_root *root)
479 {
480 	struct btrfs_fs_info *fs_info = root->fs_info;
481 	struct rb_node *rb_node;
482 	struct mapping_node *node;
483 	struct reloc_control *rc = fs_info->reloc_ctl;
484 
485 	node = kmalloc(sizeof(*node), GFP_NOFS);
486 	if (!node)
487 		return -ENOMEM;
488 
489 	node->bytenr = root->commit_root->start;
490 	node->data = root;
491 
492 	spin_lock(&rc->reloc_root_tree.lock);
493 	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root, &node->simple_node);
494 	spin_unlock(&rc->reloc_root_tree.lock);
495 	if (rb_node) {
496 		btrfs_err(fs_info,
497 			    "Duplicate root found for start=%llu while inserting into relocation tree",
498 			    node->bytenr);
499 		return -EEXIST;
500 	}
501 
502 	list_add_tail(&root->root_list, &rc->reloc_roots);
503 	return 0;
504 }
505 
506 /*
507  * helper to delete the 'address of tree root -> reloc tree'
508  * mapping
509  */
510 static void __del_reloc_root(struct btrfs_root *root)
511 {
512 	struct btrfs_fs_info *fs_info = root->fs_info;
513 	struct rb_node *rb_node;
514 	struct mapping_node AUTO_KFREE(node);
515 	struct reloc_control *rc = fs_info->reloc_ctl;
516 	bool put_ref = false;
517 
518 	if (rc && root->node) {
519 		spin_lock(&rc->reloc_root_tree.lock);
520 		rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
521 					   root->commit_root->start);
522 		if (rb_node) {
523 			node = rb_entry(rb_node, struct mapping_node, rb_node);
524 			rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
525 			RB_CLEAR_NODE(&node->rb_node);
526 		}
527 		spin_unlock(&rc->reloc_root_tree.lock);
528 		ASSERT(!node || (struct btrfs_root *)node->data == root);
529 	}
530 
531 	/*
532 	 * We only put the reloc root here if it's on the list.  There's a lot
533 	 * of places where the pattern is to splice the rc->reloc_roots, process
534 	 * the reloc roots, and then add the reloc root back onto
535 	 * rc->reloc_roots.  If we call __del_reloc_root while it's off of the
536 	 * list we don't want the reference being dropped, because the guy
537 	 * messing with the list is in charge of the reference.
538 	 */
539 	spin_lock(&fs_info->trans_lock);
540 	if (!list_empty(&root->root_list)) {
541 		put_ref = true;
542 		list_del_init(&root->root_list);
543 	}
544 	spin_unlock(&fs_info->trans_lock);
545 	if (put_ref)
546 		btrfs_put_root(root);
547 }
548 
549 /*
550  * helper to update the 'address of tree root -> reloc tree'
551  * mapping
552  */
553 static int __update_reloc_root(struct btrfs_root *root)
554 {
555 	struct btrfs_fs_info *fs_info = root->fs_info;
556 	struct rb_node *rb_node;
557 	struct mapping_node *node = NULL;
558 	struct reloc_control *rc = fs_info->reloc_ctl;
559 
560 	spin_lock(&rc->reloc_root_tree.lock);
561 	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
562 				   root->commit_root->start);
563 	if (rb_node) {
564 		node = rb_entry(rb_node, struct mapping_node, rb_node);
565 		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
566 	}
567 	spin_unlock(&rc->reloc_root_tree.lock);
568 
569 	if (!node)
570 		return 0;
571 	BUG_ON((struct btrfs_root *)node->data != root);
572 
573 	spin_lock(&rc->reloc_root_tree.lock);
574 	node->bytenr = root->node->start;
575 	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root, &node->simple_node);
576 	spin_unlock(&rc->reloc_root_tree.lock);
577 	if (rb_node)
578 		btrfs_backref_panic(fs_info, node->bytenr, -EEXIST);
579 	return 0;
580 }
581 
582 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
583 					struct btrfs_root *root, u64 objectid)
584 {
585 	struct btrfs_fs_info *fs_info = root->fs_info;
586 	struct btrfs_root *reloc_root;
587 	struct extent_buffer *eb;
588 	struct btrfs_root_item AUTO_KFREE(root_item);
589 	struct btrfs_key root_key;
590 	int ret = 0;
591 
592 	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
593 	if (!root_item)
594 		return ERR_PTR(-ENOMEM);
595 
596 	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
597 	root_key.type = BTRFS_ROOT_ITEM_KEY;
598 	root_key.offset = objectid;
599 
600 	if (btrfs_root_id(root) == objectid) {
601 		u64 commit_root_gen;
602 
603 		/*
604 		 * Relocation will wait for cleaner thread, and any half-dropped
605 		 * subvolume will be fully cleaned up at mount time.
606 		 * So here we shouldn't hit a subvolume with non-zero drop_progress.
607 		 *
608 		 * If this isn't the case, error out since it can make us attempt to
609 		 * drop references for extents that were already dropped before.
610 		 */
611 		if (unlikely(btrfs_disk_key_objectid(&root->root_item.drop_progress))) {
612 			struct btrfs_key cpu_key;
613 
614 			btrfs_disk_key_to_cpu(&cpu_key, &root->root_item.drop_progress);
615 			btrfs_err(fs_info,
616 	"cannot relocate partially dropped subvolume %llu, drop progress key " BTRFS_KEY_FMT,
617 				  objectid, BTRFS_KEY_FMT_VALUE(&cpu_key));
618 			return ERR_PTR(-EUCLEAN);
619 		}
620 
621 		/* called by btrfs_init_reloc_root */
622 		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
623 				      BTRFS_TREE_RELOC_OBJECTID);
624 		if (ret)
625 			return ERR_PTR(ret);
626 
627 		/*
628 		 * Set the last_snapshot field to the generation of the commit
629 		 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
630 		 * correctly (returns true) when the relocation root is created
631 		 * either inside the critical section of a transaction commit
632 		 * (through transaction.c:qgroup_account_snapshot()) and when
633 		 * it's created before the transaction commit is started.
634 		 */
635 		commit_root_gen = btrfs_header_generation(root->commit_root);
636 		btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
637 	} else {
638 		/*
639 		 * called by btrfs_reloc_post_snapshot_hook.
640 		 * the source tree is a reloc tree, all tree blocks
641 		 * modified after it was created have RELOC flag
642 		 * set in their headers. so it's OK to not update
643 		 * the 'last_snapshot'.
644 		 */
645 		ret = btrfs_copy_root(trans, root, root->node, &eb,
646 				      BTRFS_TREE_RELOC_OBJECTID);
647 		if (ret)
648 			return ERR_PTR(ret);
649 	}
650 
651 	/*
652 	 * We have changed references at this point, we must abort the
653 	 * transaction if anything fails (i.e. 'goto abort').
654 	 */
655 
656 	memcpy(root_item, &root->root_item, sizeof(*root_item));
657 	btrfs_set_root_bytenr(root_item, eb->start);
658 	btrfs_set_root_level(root_item, btrfs_header_level(eb));
659 	btrfs_set_root_generation(root_item, trans->transid);
660 
661 	if (btrfs_root_id(root) == objectid) {
662 		btrfs_set_root_refs(root_item, 0);
663 		memset(&root_item->drop_progress, 0,
664 		       sizeof(struct btrfs_disk_key));
665 		btrfs_set_root_drop_level(root_item, 0);
666 	}
667 
668 	btrfs_tree_unlock(eb);
669 	free_extent_buffer(eb);
670 
671 	ret = btrfs_insert_root(trans, fs_info->tree_root,
672 				&root_key, root_item);
673 	if (ret)
674 		goto abort;
675 
676 	reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key);
677 	if (IS_ERR(reloc_root)) {
678 		ret = PTR_ERR(reloc_root);
679 		goto abort;
680 	}
681 	set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
682 	btrfs_set_root_last_trans(reloc_root, trans->transid);
683 	return reloc_root;
684 
685 abort:
686 	btrfs_abort_transaction(trans, ret);
687 	return ERR_PTR(ret);
688 }
689 
690 /*
691  * create reloc tree for a given fs tree. reloc tree is just a
692  * snapshot of the fs tree with special root objectid.
693  *
694  * The reloc_root comes out of here with two references, one for
695  * root->reloc_root, and another for being on the rc->reloc_roots list.
696  */
697 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
698 			  struct btrfs_root *root)
699 {
700 	struct btrfs_fs_info *fs_info = root->fs_info;
701 	struct btrfs_root *reloc_root;
702 	struct reloc_control *rc = fs_info->reloc_ctl;
703 	struct btrfs_block_rsv *rsv;
704 	int clear_rsv = 0;
705 	int ret;
706 
707 	if (!rc)
708 		return 0;
709 
710 	/*
711 	 * The subvolume has reloc tree but the swap is finished, no need to
712 	 * create/update the dead reloc tree
713 	 */
714 	if (reloc_root_is_dead(root))
715 		return 0;
716 
717 	/*
718 	 * This is subtle but important.  We do not do
719 	 * record_root_in_transaction for reloc roots, instead we record their
720 	 * corresponding fs root, and then here we update the last trans for the
721 	 * reloc root.  This means that we have to do this for the entire life
722 	 * of the reloc root, regardless of which stage of the relocation we are
723 	 * in.
724 	 */
725 	if (root->reloc_root) {
726 		reloc_root = root->reloc_root;
727 		btrfs_set_root_last_trans(reloc_root, trans->transid);
728 		return 0;
729 	}
730 
731 	/*
732 	 * We are merging reloc roots, we do not need new reloc trees.  Also
733 	 * reloc trees never need their own reloc tree.
734 	 */
735 	if (!rc->create_reloc_tree || btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
736 		return 0;
737 
738 	if (!trans->reloc_reserved) {
739 		rsv = trans->block_rsv;
740 		trans->block_rsv = rc->block_rsv;
741 		clear_rsv = 1;
742 	}
743 	reloc_root = create_reloc_root(trans, root, btrfs_root_id(root));
744 	if (clear_rsv)
745 		trans->block_rsv = rsv;
746 	if (IS_ERR(reloc_root))
747 		return PTR_ERR(reloc_root);
748 
749 	ret = __add_reloc_root(reloc_root);
750 	ASSERT(ret != -EEXIST);
751 	if (ret) {
752 		/* Pairs with create_reloc_root */
753 		btrfs_put_root(reloc_root);
754 		return ret;
755 	}
756 	root->reloc_root = btrfs_grab_root(reloc_root);
757 	return 0;
758 }
759 
760 /*
761  * update root item of reloc tree
762  */
763 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
764 			    struct btrfs_root *root)
765 {
766 	struct btrfs_fs_info *fs_info = root->fs_info;
767 	struct btrfs_root *reloc_root;
768 	struct btrfs_root_item *root_item;
769 	int ret;
770 
771 	if (!have_reloc_root(root))
772 		return 0;
773 
774 	reloc_root = root->reloc_root;
775 	root_item = &reloc_root->root_item;
776 
777 	/*
778 	 * We are probably ok here, but __del_reloc_root() will drop its ref of
779 	 * the root.  We have the ref for root->reloc_root, but just in case
780 	 * hold it while we update the reloc root.
781 	 */
782 	btrfs_grab_root(reloc_root);
783 
784 	/* root->reloc_root will stay until current relocation finished */
785 	if (fs_info->reloc_ctl && fs_info->reloc_ctl->merge_reloc_tree &&
786 	    btrfs_root_refs(root_item) == 0) {
787 		set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
788 		/*
789 		 * Mark the tree as dead before we change reloc_root so
790 		 * have_reloc_root will not touch it from now on.
791 		 */
792 		smp_wmb();
793 		__del_reloc_root(reloc_root);
794 	}
795 
796 	if (reloc_root->commit_root != reloc_root->node) {
797 		__update_reloc_root(reloc_root);
798 		btrfs_set_root_node(root_item, reloc_root->node);
799 		free_extent_buffer(reloc_root->commit_root);
800 		reloc_root->commit_root = btrfs_root_node(reloc_root);
801 	}
802 
803 	ret = btrfs_update_root(trans, fs_info->tree_root,
804 				&reloc_root->root_key, root_item);
805 	btrfs_put_root(reloc_root);
806 	return ret;
807 }
808 
809 /*
810  * get new location of data
811  */
812 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
813 			    u64 bytenr, u64 num_bytes)
814 {
815 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
816 	BTRFS_PATH_AUTO_FREE(path);
817 	struct btrfs_file_extent_item *fi;
818 	struct extent_buffer *leaf;
819 	int ret;
820 
821 	path = btrfs_alloc_path();
822 	if (!path)
823 		return -ENOMEM;
824 
825 	bytenr -= BTRFS_I(reloc_inode)->reloc_block_group_start;
826 	ret = btrfs_lookup_file_extent(NULL, root, path,
827 			btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
828 	if (ret < 0)
829 		return ret;
830 	if (ret > 0)
831 		return -ENOENT;
832 
833 	leaf = path->nodes[0];
834 	fi = btrfs_item_ptr(leaf, path->slots[0],
835 			    struct btrfs_file_extent_item);
836 
837 	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
838 	       btrfs_file_extent_compression(leaf, fi) ||
839 	       btrfs_file_extent_encryption(leaf, fi) ||
840 	       btrfs_file_extent_other_encoding(leaf, fi));
841 
842 	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi))
843 		return -EINVAL;
844 
845 	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
846 	return 0;
847 }
848 
849 /*
850  * update file extent items in the tree leaf to point to
851  * the new locations.
852  */
853 static noinline_for_stack
854 int replace_file_extents(struct btrfs_trans_handle *trans,
855 			 struct reloc_control *rc,
856 			 struct btrfs_root *root,
857 			 struct extent_buffer *leaf)
858 {
859 	struct btrfs_fs_info *fs_info = root->fs_info;
860 	struct btrfs_key key;
861 	struct btrfs_file_extent_item *fi;
862 	struct btrfs_inode *inode = NULL;
863 	u64 parent;
864 	u64 bytenr;
865 	u64 new_bytenr = 0;
866 	u64 num_bytes;
867 	u64 end;
868 	u32 nritems;
869 	u32 i;
870 	int ret = 0;
871 	int first = 1;
872 
873 	if (rc->stage != UPDATE_DATA_PTRS)
874 		return 0;
875 
876 	/* reloc trees always use full backref */
877 	if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
878 		parent = leaf->start;
879 	else
880 		parent = 0;
881 
882 	nritems = btrfs_header_nritems(leaf);
883 	for (i = 0; i < nritems; i++) {
884 		struct btrfs_ref ref = { 0 };
885 
886 		cond_resched();
887 		btrfs_item_key_to_cpu(leaf, &key, i);
888 		if (key.type != BTRFS_EXTENT_DATA_KEY)
889 			continue;
890 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
891 		if (btrfs_file_extent_type(leaf, fi) ==
892 		    BTRFS_FILE_EXTENT_INLINE)
893 			continue;
894 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
895 		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
896 		if (bytenr == 0)
897 			continue;
898 		if (!in_range(bytenr, rc->block_group->start,
899 			      rc->block_group->length))
900 			continue;
901 
902 		/*
903 		 * if we are modifying block in fs tree, wait for read_folio
904 		 * to complete and drop the extent cache
905 		 */
906 		if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID) {
907 			if (first) {
908 				inode = btrfs_find_first_inode(root, key.objectid);
909 				first = 0;
910 			} else if (inode && btrfs_ino(inode) < key.objectid) {
911 				btrfs_add_delayed_iput(inode);
912 				inode = btrfs_find_first_inode(root, key.objectid);
913 			}
914 			if (inode && btrfs_ino(inode) == key.objectid) {
915 				struct extent_state *cached_state = NULL;
916 
917 				end = key.offset +
918 				      btrfs_file_extent_num_bytes(leaf, fi);
919 				WARN_ON(!IS_ALIGNED(key.offset,
920 						    fs_info->sectorsize));
921 				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
922 				end--;
923 				/* Take mmap lock to serialize with reflinks. */
924 				if (!down_read_trylock(&inode->i_mmap_lock))
925 					continue;
926 				ret = btrfs_try_lock_extent(&inode->io_tree, key.offset,
927 							    end, &cached_state);
928 				if (!ret) {
929 					up_read(&inode->i_mmap_lock);
930 					continue;
931 				}
932 
933 				btrfs_drop_extent_map_range(inode, key.offset, end, true);
934 				btrfs_unlock_extent(&inode->io_tree, key.offset, end,
935 						    &cached_state);
936 				up_read(&inode->i_mmap_lock);
937 			}
938 		}
939 
940 		ret = get_new_location(rc->data_inode, &new_bytenr,
941 				       bytenr, num_bytes);
942 		if (ret) {
943 			/*
944 			 * Don't have to abort since we've not changed anything
945 			 * in the file extent yet.
946 			 */
947 			break;
948 		}
949 
950 		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
951 
952 		key.offset -= btrfs_file_extent_offset(leaf, fi);
953 		ref.action = BTRFS_ADD_DELAYED_REF;
954 		ref.bytenr = new_bytenr;
955 		ref.num_bytes = num_bytes;
956 		ref.parent = parent;
957 		ref.owning_root = btrfs_root_id(root);
958 		ref.ref_root = btrfs_header_owner(leaf);
959 		btrfs_init_data_ref(&ref, key.objectid, key.offset,
960 				    btrfs_root_id(root), false);
961 		ret = btrfs_inc_extent_ref(trans, &ref);
962 		if (unlikely(ret)) {
963 			btrfs_abort_transaction(trans, ret);
964 			break;
965 		}
966 
967 		ref.action = BTRFS_DROP_DELAYED_REF;
968 		ref.bytenr = bytenr;
969 		ref.num_bytes = num_bytes;
970 		ref.parent = parent;
971 		ref.owning_root = btrfs_root_id(root);
972 		ref.ref_root = btrfs_header_owner(leaf);
973 		btrfs_init_data_ref(&ref, key.objectid, key.offset,
974 				    btrfs_root_id(root), false);
975 		ret = btrfs_free_extent(trans, &ref);
976 		if (unlikely(ret)) {
977 			btrfs_abort_transaction(trans, ret);
978 			break;
979 		}
980 	}
981 	if (inode)
982 		btrfs_add_delayed_iput(inode);
983 	return ret;
984 }
985 
986 static noinline_for_stack int memcmp_node_keys(const struct extent_buffer *eb,
987 					       int slot, const struct btrfs_path *path,
988 					       int level)
989 {
990 	struct btrfs_disk_key key1;
991 	struct btrfs_disk_key key2;
992 	btrfs_node_key(eb, &key1, slot);
993 	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
994 	return memcmp(&key1, &key2, sizeof(key1));
995 }
996 
997 /*
998  * try to replace tree blocks in fs tree with the new blocks
999  * in reloc tree. tree blocks haven't been modified since the
1000  * reloc tree was create can be replaced.
1001  *
1002  * if a block was replaced, level of the block + 1 is returned.
1003  * if no block got replaced, 0 is returned. if there are other
1004  * errors, a negative error number is returned.
1005  */
1006 static noinline_for_stack
1007 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1008 		 struct btrfs_root *dest, struct btrfs_root *src,
1009 		 struct btrfs_path *path, struct btrfs_key *next_key,
1010 		 int lowest_level, int max_level)
1011 {
1012 	struct btrfs_fs_info *fs_info = dest->fs_info;
1013 	struct extent_buffer *eb;
1014 	struct extent_buffer *parent;
1015 	struct btrfs_ref ref = { 0 };
1016 	struct btrfs_key key;
1017 	u64 old_bytenr;
1018 	u64 new_bytenr;
1019 	u64 old_ptr_gen;
1020 	u64 new_ptr_gen;
1021 	u64 last_snapshot;
1022 	u32 blocksize;
1023 	int cow = 0;
1024 	int level;
1025 	int ret;
1026 	int slot;
1027 
1028 	ASSERT(btrfs_root_id(src) == BTRFS_TREE_RELOC_OBJECTID);
1029 	ASSERT(btrfs_root_id(dest) != BTRFS_TREE_RELOC_OBJECTID);
1030 
1031 	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1032 again:
1033 	slot = path->slots[lowest_level];
1034 	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1035 
1036 	eb = btrfs_lock_root_node(dest);
1037 	level = btrfs_header_level(eb);
1038 
1039 	if (level < lowest_level) {
1040 		btrfs_tree_unlock(eb);
1041 		free_extent_buffer(eb);
1042 		return 0;
1043 	}
1044 
1045 	if (cow) {
1046 		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb,
1047 				      BTRFS_NESTING_COW);
1048 		if (ret) {
1049 			btrfs_tree_unlock(eb);
1050 			free_extent_buffer(eb);
1051 			return ret;
1052 		}
1053 	}
1054 
1055 	if (next_key) {
1056 		next_key->objectid = (u64)-1;
1057 		next_key->type = (u8)-1;
1058 		next_key->offset = (u64)-1;
1059 	}
1060 
1061 	parent = eb;
1062 	while (1) {
1063 		level = btrfs_header_level(parent);
1064 		ASSERT(level >= lowest_level);
1065 
1066 		ret = btrfs_bin_search(parent, 0, &key, &slot);
1067 		if (ret < 0)
1068 			break;
1069 		if (ret && slot > 0)
1070 			slot--;
1071 
1072 		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1073 			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1074 
1075 		old_bytenr = btrfs_node_blockptr(parent, slot);
1076 		blocksize = fs_info->nodesize;
1077 		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1078 
1079 		if (level <= max_level) {
1080 			eb = path->nodes[level];
1081 			new_bytenr = btrfs_node_blockptr(eb,
1082 							path->slots[level]);
1083 			new_ptr_gen = btrfs_node_ptr_generation(eb,
1084 							path->slots[level]);
1085 		} else {
1086 			new_bytenr = 0;
1087 			new_ptr_gen = 0;
1088 		}
1089 
1090 		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1091 			ret = level;
1092 			break;
1093 		}
1094 
1095 		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1096 		    memcmp_node_keys(parent, slot, path, level)) {
1097 			if (level <= lowest_level) {
1098 				ret = 0;
1099 				break;
1100 			}
1101 
1102 			eb = btrfs_read_node_slot(parent, slot);
1103 			if (IS_ERR(eb)) {
1104 				ret = PTR_ERR(eb);
1105 				break;
1106 			}
1107 			btrfs_tree_lock(eb);
1108 			if (cow) {
1109 				ret = btrfs_cow_block(trans, dest, eb, parent,
1110 						      slot, &eb,
1111 						      BTRFS_NESTING_COW);
1112 				if (ret) {
1113 					btrfs_tree_unlock(eb);
1114 					free_extent_buffer(eb);
1115 					break;
1116 				}
1117 			}
1118 
1119 			btrfs_tree_unlock(parent);
1120 			free_extent_buffer(parent);
1121 
1122 			parent = eb;
1123 			continue;
1124 		}
1125 
1126 		if (!cow) {
1127 			btrfs_tree_unlock(parent);
1128 			free_extent_buffer(parent);
1129 			cow = 1;
1130 			goto again;
1131 		}
1132 
1133 		btrfs_node_key_to_cpu(path->nodes[level], &key,
1134 				      path->slots[level]);
1135 		btrfs_release_path(path);
1136 
1137 		path->lowest_level = level;
1138 		set_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1139 		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1140 		clear_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1141 		path->lowest_level = 0;
1142 		if (ret) {
1143 			if (ret > 0)
1144 				ret = -ENOENT;
1145 			break;
1146 		}
1147 
1148 		/*
1149 		 * Info qgroup to trace both subtrees.
1150 		 *
1151 		 * We must trace both trees.
1152 		 * 1) Tree reloc subtree
1153 		 *    If not traced, we will leak data numbers
1154 		 * 2) Fs subtree
1155 		 *    If not traced, we will double count old data
1156 		 *
1157 		 * We don't scan the subtree right now, but only record
1158 		 * the swapped tree blocks.
1159 		 * The real subtree rescan is delayed until we have new
1160 		 * CoW on the subtree root node before transaction commit.
1161 		 */
1162 		ret = btrfs_qgroup_add_swapped_blocks(dest,
1163 				rc->block_group, parent, slot,
1164 				path->nodes[level], path->slots[level],
1165 				last_snapshot);
1166 		if (ret < 0)
1167 			break;
1168 		/*
1169 		 * swap blocks in fs tree and reloc tree.
1170 		 */
1171 		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1172 		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1173 
1174 		btrfs_set_node_blockptr(path->nodes[level],
1175 					path->slots[level], old_bytenr);
1176 		btrfs_set_node_ptr_generation(path->nodes[level],
1177 					      path->slots[level], old_ptr_gen);
1178 
1179 		ref.action = BTRFS_ADD_DELAYED_REF;
1180 		ref.bytenr = old_bytenr;
1181 		ref.num_bytes = blocksize;
1182 		ref.parent = path->nodes[level]->start;
1183 		ref.owning_root = btrfs_root_id(src);
1184 		ref.ref_root = btrfs_root_id(src);
1185 		btrfs_init_tree_ref(&ref, level - 1, 0, true);
1186 		ret = btrfs_inc_extent_ref(trans, &ref);
1187 		if (unlikely(ret)) {
1188 			btrfs_abort_transaction(trans, ret);
1189 			break;
1190 		}
1191 
1192 		ref.action = BTRFS_ADD_DELAYED_REF;
1193 		ref.bytenr = new_bytenr;
1194 		ref.num_bytes = blocksize;
1195 		ref.parent = 0;
1196 		ref.owning_root = btrfs_root_id(dest);
1197 		ref.ref_root = btrfs_root_id(dest);
1198 		btrfs_init_tree_ref(&ref, level - 1, 0, true);
1199 		ret = btrfs_inc_extent_ref(trans, &ref);
1200 		if (unlikely(ret)) {
1201 			btrfs_abort_transaction(trans, ret);
1202 			break;
1203 		}
1204 
1205 		/* We don't know the real owning_root, use 0. */
1206 		ref.action = BTRFS_DROP_DELAYED_REF;
1207 		ref.bytenr = new_bytenr;
1208 		ref.num_bytes = blocksize;
1209 		ref.parent = path->nodes[level]->start;
1210 		ref.owning_root = 0;
1211 		ref.ref_root = btrfs_root_id(src);
1212 		btrfs_init_tree_ref(&ref, level - 1, 0, true);
1213 		ret = btrfs_free_extent(trans, &ref);
1214 		if (unlikely(ret)) {
1215 			btrfs_abort_transaction(trans, ret);
1216 			break;
1217 		}
1218 
1219 		/* We don't know the real owning_root, use 0. */
1220 		ref.action = BTRFS_DROP_DELAYED_REF;
1221 		ref.bytenr = old_bytenr;
1222 		ref.num_bytes = blocksize;
1223 		ref.parent = 0;
1224 		ref.owning_root = 0;
1225 		ref.ref_root = btrfs_root_id(dest);
1226 		btrfs_init_tree_ref(&ref, level - 1, 0, true);
1227 		ret = btrfs_free_extent(trans, &ref);
1228 		if (unlikely(ret)) {
1229 			btrfs_abort_transaction(trans, ret);
1230 			break;
1231 		}
1232 
1233 		btrfs_unlock_up_safe(path, 0);
1234 
1235 		ret = level;
1236 		break;
1237 	}
1238 	btrfs_tree_unlock(parent);
1239 	free_extent_buffer(parent);
1240 	return ret;
1241 }
1242 
1243 /*
1244  * helper to find next relocated block in reloc tree
1245  */
1246 static noinline_for_stack
1247 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1248 		       int *level)
1249 {
1250 	struct extent_buffer *eb;
1251 	int i;
1252 	u64 last_snapshot;
1253 	u32 nritems;
1254 
1255 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1256 
1257 	for (i = 0; i < *level; i++) {
1258 		free_extent_buffer(path->nodes[i]);
1259 		path->nodes[i] = NULL;
1260 	}
1261 
1262 	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1263 		eb = path->nodes[i];
1264 		nritems = btrfs_header_nritems(eb);
1265 		while (path->slots[i] + 1 < nritems) {
1266 			path->slots[i]++;
1267 			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1268 			    last_snapshot)
1269 				continue;
1270 
1271 			*level = i;
1272 			return 0;
1273 		}
1274 		free_extent_buffer(path->nodes[i]);
1275 		path->nodes[i] = NULL;
1276 	}
1277 	return 1;
1278 }
1279 
1280 /*
1281  * walk down reloc tree to find relocated block of lowest level
1282  */
1283 static noinline_for_stack
1284 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1285 			 int *level)
1286 {
1287 	struct extent_buffer *eb = NULL;
1288 	int i;
1289 	u64 ptr_gen = 0;
1290 	u64 last_snapshot;
1291 	u32 nritems;
1292 
1293 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1294 
1295 	for (i = *level; i > 0; i--) {
1296 		eb = path->nodes[i];
1297 		nritems = btrfs_header_nritems(eb);
1298 		while (path->slots[i] < nritems) {
1299 			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1300 			if (ptr_gen > last_snapshot)
1301 				break;
1302 			path->slots[i]++;
1303 		}
1304 		if (path->slots[i] >= nritems) {
1305 			if (i == *level)
1306 				break;
1307 			*level = i + 1;
1308 			return 0;
1309 		}
1310 		if (i == 1) {
1311 			*level = i;
1312 			return 0;
1313 		}
1314 
1315 		eb = btrfs_read_node_slot(eb, path->slots[i]);
1316 		if (IS_ERR(eb))
1317 			return PTR_ERR(eb);
1318 		BUG_ON(btrfs_header_level(eb) != i - 1);
1319 		path->nodes[i - 1] = eb;
1320 		path->slots[i - 1] = 0;
1321 	}
1322 	return 1;
1323 }
1324 
1325 /*
1326  * invalidate extent cache for file extents whose key in range of
1327  * [min_key, max_key)
1328  */
1329 static int invalidate_extent_cache(struct btrfs_root *root,
1330 				   const struct btrfs_key *min_key,
1331 				   const struct btrfs_key *max_key)
1332 {
1333 	struct btrfs_fs_info *fs_info = root->fs_info;
1334 	struct btrfs_inode *inode = NULL;
1335 	u64 objectid;
1336 	u64 start, end;
1337 	u64 ino;
1338 
1339 	objectid = min_key->objectid;
1340 	while (1) {
1341 		struct extent_state *cached_state = NULL;
1342 
1343 		cond_resched();
1344 		if (inode)
1345 			iput(&inode->vfs_inode);
1346 
1347 		if (objectid > max_key->objectid)
1348 			break;
1349 
1350 		inode = btrfs_find_first_inode(root, objectid);
1351 		if (!inode)
1352 			break;
1353 		ino = btrfs_ino(inode);
1354 
1355 		if (ino > max_key->objectid) {
1356 			iput(&inode->vfs_inode);
1357 			break;
1358 		}
1359 
1360 		objectid = ino + 1;
1361 		if (!S_ISREG(inode->vfs_inode.i_mode))
1362 			continue;
1363 
1364 		if (unlikely(min_key->objectid == ino)) {
1365 			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1366 				continue;
1367 			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1368 				start = 0;
1369 			else {
1370 				start = min_key->offset;
1371 				WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
1372 			}
1373 		} else {
1374 			start = 0;
1375 		}
1376 
1377 		if (unlikely(max_key->objectid == ino)) {
1378 			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1379 				continue;
1380 			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1381 				end = (u64)-1;
1382 			} else {
1383 				if (max_key->offset == 0)
1384 					continue;
1385 				end = max_key->offset;
1386 				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1387 				end--;
1388 			}
1389 		} else {
1390 			end = (u64)-1;
1391 		}
1392 
1393 		/* the lock_extent waits for read_folio to complete */
1394 		btrfs_lock_extent(&inode->io_tree, start, end, &cached_state);
1395 		btrfs_drop_extent_map_range(inode, start, end, true);
1396 		btrfs_unlock_extent(&inode->io_tree, start, end, &cached_state);
1397 	}
1398 	return 0;
1399 }
1400 
1401 static int find_next_key(struct btrfs_path *path, int level,
1402 			 struct btrfs_key *key)
1403 
1404 {
1405 	while (level < BTRFS_MAX_LEVEL) {
1406 		if (!path->nodes[level])
1407 			break;
1408 		if (path->slots[level] + 1 <
1409 		    btrfs_header_nritems(path->nodes[level])) {
1410 			btrfs_node_key_to_cpu(path->nodes[level], key,
1411 					      path->slots[level] + 1);
1412 			return 0;
1413 		}
1414 		level++;
1415 	}
1416 	return 1;
1417 }
1418 
1419 /*
1420  * Insert current subvolume into reloc_control::dirty_subvol_roots
1421  */
1422 static int insert_dirty_subvol(struct btrfs_trans_handle *trans,
1423 			       struct reloc_control *rc,
1424 			       struct btrfs_root *root)
1425 {
1426 	struct btrfs_root *reloc_root = root->reloc_root;
1427 	struct btrfs_root_item *reloc_root_item;
1428 	int ret;
1429 
1430 	/* @root must be a subvolume tree root with a valid reloc tree */
1431 	ASSERT(btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID);
1432 	ASSERT(reloc_root);
1433 
1434 	reloc_root_item = &reloc_root->root_item;
1435 	memset(&reloc_root_item->drop_progress, 0,
1436 		sizeof(reloc_root_item->drop_progress));
1437 	btrfs_set_root_drop_level(reloc_root_item, 0);
1438 	btrfs_set_root_refs(reloc_root_item, 0);
1439 	ret = btrfs_update_reloc_root(trans, root);
1440 	if (ret)
1441 		return ret;
1442 
1443 	if (list_empty(&root->reloc_dirty_list)) {
1444 		btrfs_grab_root(root);
1445 		list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
1446 	}
1447 
1448 	return 0;
1449 }
1450 
1451 static int clean_dirty_subvols(struct reloc_control *rc)
1452 {
1453 	struct btrfs_root *root;
1454 	struct btrfs_root *next;
1455 	int ret = 0;
1456 	int ret2;
1457 
1458 	list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
1459 				 reloc_dirty_list) {
1460 		if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID) {
1461 			/* Merged subvolume, cleanup its reloc root */
1462 			struct btrfs_root *reloc_root = root->reloc_root;
1463 
1464 			list_del_init(&root->reloc_dirty_list);
1465 			root->reloc_root = NULL;
1466 			/*
1467 			 * Need barrier to ensure clear_bit() only happens after
1468 			 * root->reloc_root = NULL. Pairs with have_reloc_root.
1469 			 */
1470 			smp_wmb();
1471 			clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1472 			if (reloc_root) {
1473 				/*
1474 				 * btrfs_drop_snapshot drops our ref we hold for
1475 				 * ->reloc_root.  If it fails however we must
1476 				 * drop the ref ourselves.
1477 				 */
1478 				ret2 = btrfs_drop_snapshot(reloc_root, false, true);
1479 				if (ret2 < 0) {
1480 					btrfs_put_root(reloc_root);
1481 					if (!ret)
1482 						ret = ret2;
1483 				}
1484 			}
1485 			btrfs_put_root(root);
1486 		} else {
1487 			/* Orphan reloc tree, just clean it up */
1488 			ret2 = btrfs_drop_snapshot(root, false, true);
1489 			if (ret2 < 0) {
1490 				btrfs_put_root(root);
1491 				if (!ret)
1492 					ret = ret2;
1493 			}
1494 		}
1495 	}
1496 	return ret;
1497 }
1498 
1499 /*
1500  * merge the relocated tree blocks in reloc tree with corresponding
1501  * fs tree.
1502  */
1503 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1504 					       struct btrfs_root *root)
1505 {
1506 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1507 	struct btrfs_key key;
1508 	struct btrfs_key next_key;
1509 	struct btrfs_trans_handle *trans = NULL;
1510 	struct btrfs_root *reloc_root;
1511 	struct btrfs_root_item *root_item;
1512 	struct btrfs_path *path;
1513 	struct extent_buffer *leaf;
1514 	int reserve_level;
1515 	int level;
1516 	int max_level;
1517 	int replaced = 0;
1518 	int ret = 0;
1519 	u32 min_reserved;
1520 
1521 	path = btrfs_alloc_path();
1522 	if (!path)
1523 		return -ENOMEM;
1524 	path->reada = READA_FORWARD;
1525 
1526 	reloc_root = root->reloc_root;
1527 	root_item = &reloc_root->root_item;
1528 
1529 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
1530 		level = btrfs_root_level(root_item);
1531 		refcount_inc(&reloc_root->node->refs);
1532 		path->nodes[level] = reloc_root->node;
1533 		path->slots[level] = 0;
1534 	} else {
1535 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
1536 
1537 		level = btrfs_root_drop_level(root_item);
1538 		BUG_ON(level == 0);
1539 		path->lowest_level = level;
1540 		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
1541 		path->lowest_level = 0;
1542 		if (ret < 0) {
1543 			btrfs_free_path(path);
1544 			return ret;
1545 		}
1546 
1547 		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
1548 				      path->slots[level]);
1549 		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
1550 
1551 		btrfs_unlock_up_safe(path, 0);
1552 	}
1553 
1554 	/*
1555 	 * In merge_reloc_root(), we modify the upper level pointer to swap the
1556 	 * tree blocks between reloc tree and subvolume tree.  Thus for tree
1557 	 * block COW, we COW at most from level 1 to root level for each tree.
1558 	 *
1559 	 * Thus the needed metadata size is at most root_level * nodesize,
1560 	 * and * 2 since we have two trees to COW.
1561 	 */
1562 	reserve_level = max_t(int, 1, btrfs_root_level(root_item));
1563 	min_reserved = fs_info->nodesize * reserve_level * 2;
1564 	memset(&next_key, 0, sizeof(next_key));
1565 
1566 	while (1) {
1567 		ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
1568 					     min_reserved,
1569 					     BTRFS_RESERVE_FLUSH_LIMIT);
1570 		if (ret)
1571 			goto out;
1572 		trans = btrfs_start_transaction(root, 0);
1573 		if (IS_ERR(trans)) {
1574 			ret = PTR_ERR(trans);
1575 			trans = NULL;
1576 			goto out;
1577 		}
1578 
1579 		/*
1580 		 * At this point we no longer have a reloc_control, so we can't
1581 		 * depend on btrfs_init_reloc_root to update our last_trans.
1582 		 *
1583 		 * But that's ok, we started the trans handle on our
1584 		 * corresponding fs_root, which means it's been added to the
1585 		 * dirty list.  At commit time we'll still call
1586 		 * btrfs_update_reloc_root() and update our root item
1587 		 * appropriately.
1588 		 */
1589 		btrfs_set_root_last_trans(reloc_root, trans->transid);
1590 		trans->block_rsv = rc->block_rsv;
1591 
1592 		replaced = 0;
1593 		max_level = level;
1594 
1595 		ret = walk_down_reloc_tree(reloc_root, path, &level);
1596 		if (ret < 0)
1597 			goto out;
1598 		if (ret > 0)
1599 			break;
1600 
1601 		if (!find_next_key(path, level, &key) &&
1602 		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
1603 			ret = 0;
1604 		} else {
1605 			ret = replace_path(trans, rc, root, reloc_root, path,
1606 					   &next_key, level, max_level);
1607 		}
1608 		if (ret < 0)
1609 			goto out;
1610 		if (ret > 0) {
1611 			level = ret;
1612 			btrfs_node_key_to_cpu(path->nodes[level], &key,
1613 					      path->slots[level]);
1614 			replaced = 1;
1615 		}
1616 
1617 		ret = walk_up_reloc_tree(reloc_root, path, &level);
1618 		if (ret > 0)
1619 			break;
1620 
1621 		BUG_ON(level == 0);
1622 		/*
1623 		 * save the merging progress in the drop_progress.
1624 		 * this is OK since root refs == 1 in this case.
1625 		 */
1626 		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
1627 			       path->slots[level]);
1628 		btrfs_set_root_drop_level(root_item, level);
1629 
1630 		btrfs_end_transaction_throttle(trans);
1631 		trans = NULL;
1632 
1633 		btrfs_btree_balance_dirty(fs_info);
1634 
1635 		if (replaced && rc->stage == UPDATE_DATA_PTRS)
1636 			invalidate_extent_cache(root, &key, &next_key);
1637 	}
1638 
1639 	/*
1640 	 * handle the case only one block in the fs tree need to be
1641 	 * relocated and the block is tree root.
1642 	 */
1643 	leaf = btrfs_lock_root_node(root);
1644 	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf,
1645 			      BTRFS_NESTING_COW);
1646 	btrfs_tree_unlock(leaf);
1647 	free_extent_buffer(leaf);
1648 out:
1649 	btrfs_free_path(path);
1650 
1651 	if (ret == 0) {
1652 		ret = insert_dirty_subvol(trans, rc, root);
1653 		if (ret)
1654 			btrfs_abort_transaction(trans, ret);
1655 	}
1656 
1657 	if (trans)
1658 		btrfs_end_transaction_throttle(trans);
1659 
1660 	btrfs_btree_balance_dirty(fs_info);
1661 
1662 	if (replaced && rc->stage == UPDATE_DATA_PTRS)
1663 		invalidate_extent_cache(root, &key, &next_key);
1664 
1665 	return ret;
1666 }
1667 
1668 static noinline_for_stack
1669 int prepare_to_merge(struct reloc_control *rc, int err)
1670 {
1671 	struct btrfs_root *root = rc->extent_root;
1672 	struct btrfs_fs_info *fs_info = root->fs_info;
1673 	struct btrfs_root *reloc_root;
1674 	struct btrfs_trans_handle *trans;
1675 	LIST_HEAD(reloc_roots);
1676 	u64 num_bytes = 0;
1677 	int ret;
1678 
1679 	mutex_lock(&fs_info->reloc_mutex);
1680 	rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
1681 	rc->merging_rsv_size += rc->nodes_relocated * 2;
1682 	mutex_unlock(&fs_info->reloc_mutex);
1683 
1684 again:
1685 	if (!err) {
1686 		num_bytes = rc->merging_rsv_size;
1687 		ret = btrfs_block_rsv_add(fs_info, rc->block_rsv, num_bytes,
1688 					  BTRFS_RESERVE_FLUSH_ALL);
1689 		if (ret)
1690 			err = ret;
1691 	}
1692 
1693 	trans = btrfs_join_transaction(rc->extent_root);
1694 	if (IS_ERR(trans)) {
1695 		if (!err)
1696 			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1697 						num_bytes, NULL);
1698 		return PTR_ERR(trans);
1699 	}
1700 
1701 	if (!err) {
1702 		if (num_bytes != rc->merging_rsv_size) {
1703 			btrfs_end_transaction(trans);
1704 			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1705 						num_bytes, NULL);
1706 			goto again;
1707 		}
1708 	}
1709 
1710 	rc->merge_reloc_tree = true;
1711 
1712 	while (!list_empty(&rc->reloc_roots)) {
1713 		reloc_root = list_first_entry(&rc->reloc_roots,
1714 					      struct btrfs_root, root_list);
1715 		list_del_init(&reloc_root->root_list);
1716 
1717 		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1718 				false);
1719 		if (IS_ERR(root)) {
1720 			/*
1721 			 * Even if we have an error we need this reloc root
1722 			 * back on our list so we can clean up properly.
1723 			 */
1724 			list_add(&reloc_root->root_list, &reloc_roots);
1725 			btrfs_abort_transaction(trans, (int)PTR_ERR(root));
1726 			if (!err)
1727 				err = PTR_ERR(root);
1728 			break;
1729 		}
1730 
1731 		if (unlikely(root->reloc_root != reloc_root)) {
1732 			if (root->reloc_root) {
1733 				btrfs_err(fs_info,
1734 "reloc tree mismatch, root %lld has reloc root key (%lld %u %llu) gen %llu, expect reloc root key (%lld %u %llu) gen %llu",
1735 					  btrfs_root_id(root),
1736 					  btrfs_root_id(root->reloc_root),
1737 					  root->reloc_root->root_key.type,
1738 					  root->reloc_root->root_key.offset,
1739 					  btrfs_root_generation(
1740 						  &root->reloc_root->root_item),
1741 					  btrfs_root_id(reloc_root),
1742 					  reloc_root->root_key.type,
1743 					  reloc_root->root_key.offset,
1744 					  btrfs_root_generation(
1745 						  &reloc_root->root_item));
1746 			} else {
1747 				btrfs_err(fs_info,
1748 "reloc tree mismatch, root %lld has no reloc root, expect reloc root key (%lld %u %llu) gen %llu",
1749 					  btrfs_root_id(root),
1750 					  btrfs_root_id(reloc_root),
1751 					  reloc_root->root_key.type,
1752 					  reloc_root->root_key.offset,
1753 					  btrfs_root_generation(
1754 						  &reloc_root->root_item));
1755 			}
1756 			list_add(&reloc_root->root_list, &reloc_roots);
1757 			btrfs_put_root(root);
1758 			btrfs_abort_transaction(trans, -EUCLEAN);
1759 			if (!err)
1760 				err = -EUCLEAN;
1761 			break;
1762 		}
1763 
1764 		/*
1765 		 * set reference count to 1, so btrfs_recover_relocation
1766 		 * knows it should resumes merging
1767 		 */
1768 		if (!err)
1769 			btrfs_set_root_refs(&reloc_root->root_item, 1);
1770 		ret = btrfs_update_reloc_root(trans, root);
1771 
1772 		/*
1773 		 * Even if we have an error we need this reloc root back on our
1774 		 * list so we can clean up properly.
1775 		 */
1776 		list_add(&reloc_root->root_list, &reloc_roots);
1777 		btrfs_put_root(root);
1778 
1779 		if (unlikely(ret)) {
1780 			btrfs_abort_transaction(trans, ret);
1781 			if (!err)
1782 				err = ret;
1783 			break;
1784 		}
1785 	}
1786 
1787 	list_splice(&reloc_roots, &rc->reloc_roots);
1788 
1789 	if (!err)
1790 		err = btrfs_commit_transaction(trans);
1791 	else
1792 		btrfs_end_transaction(trans);
1793 	return err;
1794 }
1795 
1796 static noinline_for_stack
1797 void free_reloc_roots(struct list_head *list)
1798 {
1799 	struct btrfs_root *reloc_root, *tmp;
1800 
1801 	list_for_each_entry_safe(reloc_root, tmp, list, root_list)
1802 		__del_reloc_root(reloc_root);
1803 }
1804 
1805 static noinline_for_stack
1806 void merge_reloc_roots(struct reloc_control *rc)
1807 {
1808 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1809 	struct btrfs_root *root;
1810 	struct btrfs_root *reloc_root;
1811 	LIST_HEAD(reloc_roots);
1812 	int found = 0;
1813 	int ret = 0;
1814 again:
1815 	root = rc->extent_root;
1816 
1817 	/*
1818 	 * this serializes us with btrfs_record_root_in_transaction,
1819 	 * we have to make sure nobody is in the middle of
1820 	 * adding their roots to the list while we are
1821 	 * doing this splice
1822 	 */
1823 	mutex_lock(&fs_info->reloc_mutex);
1824 	list_splice_init(&rc->reloc_roots, &reloc_roots);
1825 	mutex_unlock(&fs_info->reloc_mutex);
1826 
1827 	while (!list_empty(&reloc_roots)) {
1828 		found = 1;
1829 		reloc_root = list_first_entry(&reloc_roots, struct btrfs_root, root_list);
1830 
1831 		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1832 					 false);
1833 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
1834 			if (WARN_ON(IS_ERR(root))) {
1835 				/*
1836 				 * For recovery we read the fs roots on mount,
1837 				 * and if we didn't find the root then we marked
1838 				 * the reloc root as a garbage root.  For normal
1839 				 * relocation obviously the root should exist in
1840 				 * memory.  However there's no reason we can't
1841 				 * handle the error properly here just in case.
1842 				 */
1843 				ret = PTR_ERR(root);
1844 				goto out;
1845 			}
1846 			if (WARN_ON(root->reloc_root != reloc_root)) {
1847 				/*
1848 				 * This can happen if on-disk metadata has some
1849 				 * corruption, e.g. bad reloc tree key offset.
1850 				 */
1851 				ret = -EINVAL;
1852 				goto out;
1853 			}
1854 			ret = merge_reloc_root(rc, root);
1855 			btrfs_put_root(root);
1856 			if (ret) {
1857 				if (list_empty(&reloc_root->root_list))
1858 					list_add_tail(&reloc_root->root_list,
1859 						      &reloc_roots);
1860 				goto out;
1861 			}
1862 		} else {
1863 			if (!IS_ERR(root)) {
1864 				if (root->reloc_root == reloc_root) {
1865 					root->reloc_root = NULL;
1866 					btrfs_put_root(reloc_root);
1867 				}
1868 				clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE,
1869 					  &root->state);
1870 				btrfs_put_root(root);
1871 			}
1872 
1873 			list_del_init(&reloc_root->root_list);
1874 			/* Don't forget to queue this reloc root for cleanup */
1875 			list_add_tail(&reloc_root->reloc_dirty_list,
1876 				      &rc->dirty_subvol_roots);
1877 		}
1878 	}
1879 
1880 	if (found) {
1881 		found = 0;
1882 		goto again;
1883 	}
1884 out:
1885 	if (ret) {
1886 		btrfs_handle_fs_error(fs_info, ret, NULL);
1887 		free_reloc_roots(&reloc_roots);
1888 
1889 		/* new reloc root may be added */
1890 		mutex_lock(&fs_info->reloc_mutex);
1891 		list_splice_init(&rc->reloc_roots, &reloc_roots);
1892 		mutex_unlock(&fs_info->reloc_mutex);
1893 		free_reloc_roots(&reloc_roots);
1894 	}
1895 
1896 	/*
1897 	 * We used to have
1898 	 *
1899 	 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
1900 	 *
1901 	 * here, but it's wrong.  If we fail to start the transaction in
1902 	 * prepare_to_merge() we will have only 0 ref reloc roots, none of which
1903 	 * have actually been removed from the reloc_root_tree rb tree.  This is
1904 	 * fine because we're bailing here, and we hold a reference on the root
1905 	 * for the list that holds it, so these roots will be cleaned up when we
1906 	 * do the reloc_dirty_list afterwards.  Meanwhile the root->reloc_root
1907 	 * will be cleaned up on unmount.
1908 	 *
1909 	 * The remaining nodes will be cleaned up by free_reloc_control.
1910 	 */
1911 }
1912 
1913 static void free_block_list(struct rb_root *blocks)
1914 {
1915 	struct tree_block *block;
1916 	struct rb_node *rb_node;
1917 	while ((rb_node = rb_first(blocks))) {
1918 		block = rb_entry(rb_node, struct tree_block, rb_node);
1919 		rb_erase(rb_node, blocks);
1920 		kfree(block);
1921 	}
1922 }
1923 
1924 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
1925 				      struct btrfs_root *reloc_root)
1926 {
1927 	struct btrfs_fs_info *fs_info = reloc_root->fs_info;
1928 	struct btrfs_root *root;
1929 	int ret;
1930 
1931 	if (btrfs_get_root_last_trans(reloc_root) == trans->transid)
1932 		return 0;
1933 
1934 	root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false);
1935 
1936 	/*
1937 	 * This should succeed, since we can't have a reloc root without having
1938 	 * already looked up the actual root and created the reloc root for this
1939 	 * root.
1940 	 *
1941 	 * However if there's some sort of corruption where we have a ref to a
1942 	 * reloc root without a corresponding root this could return ENOENT.
1943 	 */
1944 	if (IS_ERR(root)) {
1945 		DEBUG_WARN("error %ld reading root for reloc root", PTR_ERR(root));
1946 		return PTR_ERR(root);
1947 	}
1948 	if (unlikely(root->reloc_root != reloc_root)) {
1949 		DEBUG_WARN("unexpected reloc root found");
1950 		btrfs_err(fs_info,
1951 			  "root %llu has two reloc roots associated with it",
1952 			  reloc_root->root_key.offset);
1953 		btrfs_put_root(root);
1954 		return -EUCLEAN;
1955 	}
1956 	ret = btrfs_record_root_in_trans(trans, root);
1957 	btrfs_put_root(root);
1958 
1959 	return ret;
1960 }
1961 
1962 static noinline_for_stack
1963 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
1964 				     struct reloc_control *rc,
1965 				     struct btrfs_backref_node *node,
1966 				     struct btrfs_backref_edge *edges[])
1967 {
1968 	struct btrfs_backref_node *next;
1969 	struct btrfs_root *root;
1970 	int index = 0;
1971 	int ret;
1972 
1973 	next = walk_up_backref(node, edges, &index);
1974 	root = next->root;
1975 
1976 	/*
1977 	 * If there is no root, then our references for this block are
1978 	 * incomplete, as we should be able to walk all the way up to a block
1979 	 * that is owned by a root.
1980 	 *
1981 	 * This path is only for SHAREABLE roots, so if we come upon a
1982 	 * non-SHAREABLE root then we have backrefs that resolve improperly.
1983 	 *
1984 	 * Both of these cases indicate file system corruption, or a bug in the
1985 	 * backref walking code.
1986 	 */
1987 	if (unlikely(!root)) {
1988 		btrfs_err(trans->fs_info,
1989 			  "bytenr %llu doesn't have a backref path ending in a root",
1990 			  node->bytenr);
1991 		return ERR_PTR(-EUCLEAN);
1992 	}
1993 	if (unlikely(!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))) {
1994 		btrfs_err(trans->fs_info,
1995 			  "bytenr %llu has multiple refs with one ending in a non-shareable root",
1996 			  node->bytenr);
1997 		return ERR_PTR(-EUCLEAN);
1998 	}
1999 
2000 	if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) {
2001 		ret = record_reloc_root_in_trans(trans, root);
2002 		if (ret)
2003 			return ERR_PTR(ret);
2004 		goto found;
2005 	}
2006 
2007 	ret = btrfs_record_root_in_trans(trans, root);
2008 	if (ret)
2009 		return ERR_PTR(ret);
2010 	root = root->reloc_root;
2011 
2012 	/*
2013 	 * We could have raced with another thread which failed, so
2014 	 * root->reloc_root may not be set, return ENOENT in this case.
2015 	 */
2016 	if (!root)
2017 		return ERR_PTR(-ENOENT);
2018 
2019 	if (unlikely(next->new_bytenr)) {
2020 		/*
2021 		 * We just created the reloc root, so we shouldn't have
2022 		 * ->new_bytenr set yet. If it is then we have multiple roots
2023 		 *  pointing at the same bytenr which indicates corruption, or
2024 		 *  we've made a mistake in the backref walking code.
2025 		 */
2026 		ASSERT(next->new_bytenr == 0);
2027 		btrfs_err(trans->fs_info,
2028 			  "bytenr %llu possibly has multiple roots pointing at the same bytenr %llu",
2029 			  node->bytenr, next->bytenr);
2030 		return ERR_PTR(-EUCLEAN);
2031 	}
2032 
2033 	next->new_bytenr = root->node->start;
2034 	btrfs_put_root(next->root);
2035 	next->root = btrfs_grab_root(root);
2036 	ASSERT(next->root);
2037 	mark_block_processed(rc, next);
2038 found:
2039 	next = node;
2040 	/* setup backref node path for btrfs_reloc_cow_block */
2041 	while (1) {
2042 		rc->backref_cache.path[next->level] = next;
2043 		if (--index < 0)
2044 			break;
2045 		next = edges[index]->node[UPPER];
2046 	}
2047 	return root;
2048 }
2049 
2050 /*
2051  * Select a tree root for relocation.
2052  *
2053  * Return NULL if the block is not shareable. We should use do_relocation() in
2054  * this case.
2055  *
2056  * Return a tree root pointer if the block is shareable.
2057  * Return -ENOENT if the block is root of reloc tree.
2058  */
2059 static noinline_for_stack
2060 struct btrfs_root *select_one_root(struct btrfs_backref_node *node)
2061 {
2062 	struct btrfs_backref_node *next;
2063 	struct btrfs_root *root;
2064 	struct btrfs_root *fs_root = NULL;
2065 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2066 	int index = 0;
2067 
2068 	next = node;
2069 	while (1) {
2070 		cond_resched();
2071 		next = walk_up_backref(next, edges, &index);
2072 		root = next->root;
2073 
2074 		/*
2075 		 * This can occur if we have incomplete extent refs leading all
2076 		 * the way up a particular path, in this case return -EUCLEAN.
2077 		 */
2078 		if (unlikely(!root))
2079 			return ERR_PTR(-EUCLEAN);
2080 
2081 		/* No other choice for non-shareable tree */
2082 		if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2083 			return root;
2084 
2085 		if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID)
2086 			fs_root = root;
2087 
2088 		if (next != node)
2089 			return NULL;
2090 
2091 		next = walk_down_backref(edges, &index);
2092 		if (!next || next->level <= node->level)
2093 			break;
2094 	}
2095 
2096 	if (!fs_root)
2097 		return ERR_PTR(-ENOENT);
2098 	return fs_root;
2099 }
2100 
2101 static noinline_for_stack u64 calcu_metadata_size(struct reloc_control *rc,
2102 						  struct btrfs_backref_node *node)
2103 {
2104 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2105 	struct btrfs_backref_node *next = node;
2106 	struct btrfs_backref_edge *edge;
2107 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2108 	u64 num_bytes = 0;
2109 	int index = 0;
2110 
2111 	BUG_ON(node->processed);
2112 
2113 	while (next) {
2114 		cond_resched();
2115 		while (1) {
2116 			if (next->processed)
2117 				break;
2118 
2119 			num_bytes += fs_info->nodesize;
2120 
2121 			if (list_empty(&next->upper))
2122 				break;
2123 
2124 			edge = list_first_entry(&next->upper, struct btrfs_backref_edge,
2125 						list[LOWER]);
2126 			edges[index++] = edge;
2127 			next = edge->node[UPPER];
2128 		}
2129 		next = walk_down_backref(edges, &index);
2130 	}
2131 	return num_bytes;
2132 }
2133 
2134 static int refill_metadata_space(struct btrfs_trans_handle *trans,
2135 				 struct reloc_control *rc, u64 num_bytes)
2136 {
2137 	struct btrfs_fs_info *fs_info = trans->fs_info;
2138 	int ret;
2139 
2140 	trans->block_rsv = rc->block_rsv;
2141 	rc->reserved_bytes += num_bytes;
2142 
2143 	/*
2144 	 * We are under a transaction here so we can only do limited flushing.
2145 	 * If we get an enospc just kick back -EAGAIN so we know to drop the
2146 	 * transaction and try to refill when we can flush all the things.
2147 	 */
2148 	ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, num_bytes,
2149 				     BTRFS_RESERVE_FLUSH_LIMIT);
2150 	if (ret) {
2151 		u64 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2152 
2153 		while (tmp <= rc->reserved_bytes)
2154 			tmp <<= 1;
2155 		/*
2156 		 * only one thread can access block_rsv at this point,
2157 		 * so we don't need hold lock to protect block_rsv.
2158 		 * we expand more reservation size here to allow enough
2159 		 * space for relocation and we will return earlier in
2160 		 * enospc case.
2161 		 */
2162 		rc->block_rsv->size = tmp + fs_info->nodesize *
2163 				      RELOCATION_RESERVED_NODES;
2164 		return -EAGAIN;
2165 	}
2166 
2167 	return 0;
2168 }
2169 
2170 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2171 				  struct reloc_control *rc,
2172 				  struct btrfs_backref_node *node)
2173 {
2174 	u64 num_bytes;
2175 
2176 	num_bytes = calcu_metadata_size(rc, node) * 2;
2177 	return refill_metadata_space(trans, rc, num_bytes);
2178 }
2179 
2180 /*
2181  * relocate a block tree, and then update pointers in upper level
2182  * blocks that reference the block to point to the new location.
2183  *
2184  * if called by link_to_upper, the block has already been relocated.
2185  * in that case this function just updates pointers.
2186  */
2187 static int do_relocation(struct btrfs_trans_handle *trans,
2188 			 struct reloc_control *rc,
2189 			 struct btrfs_backref_node *node,
2190 			 struct btrfs_key *key,
2191 			 struct btrfs_path *path, int lowest)
2192 {
2193 	struct btrfs_backref_node *upper;
2194 	struct btrfs_backref_edge *edge;
2195 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2196 	struct btrfs_root *root;
2197 	struct extent_buffer *eb;
2198 	u32 blocksize;
2199 	u64 bytenr;
2200 	int slot;
2201 	int ret = 0;
2202 
2203 	/*
2204 	 * If we are lowest then this is the first time we're processing this
2205 	 * block, and thus shouldn't have an eb associated with it yet.
2206 	 */
2207 	ASSERT(!lowest || !node->eb);
2208 
2209 	path->lowest_level = node->level + 1;
2210 	rc->backref_cache.path[node->level] = node;
2211 	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2212 		cond_resched();
2213 
2214 		upper = edge->node[UPPER];
2215 		root = select_reloc_root(trans, rc, upper, edges);
2216 		if (IS_ERR(root)) {
2217 			ret = PTR_ERR(root);
2218 			goto next;
2219 		}
2220 
2221 		if (upper->eb && !upper->locked) {
2222 			if (!lowest) {
2223 				ret = btrfs_bin_search(upper->eb, 0, key, &slot);
2224 				if (ret < 0)
2225 					goto next;
2226 				BUG_ON(ret);
2227 				bytenr = btrfs_node_blockptr(upper->eb, slot);
2228 				if (node->eb->start == bytenr)
2229 					goto next;
2230 			}
2231 			btrfs_backref_drop_node_buffer(upper);
2232 		}
2233 
2234 		if (!upper->eb) {
2235 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2236 			if (ret) {
2237 				if (ret > 0)
2238 					ret = -ENOENT;
2239 
2240 				btrfs_release_path(path);
2241 				break;
2242 			}
2243 
2244 			if (!upper->eb) {
2245 				upper->eb = path->nodes[upper->level];
2246 				path->nodes[upper->level] = NULL;
2247 			} else {
2248 				BUG_ON(upper->eb != path->nodes[upper->level]);
2249 			}
2250 
2251 			upper->locked = 1;
2252 			path->locks[upper->level] = 0;
2253 
2254 			slot = path->slots[upper->level];
2255 			btrfs_release_path(path);
2256 		} else {
2257 			ret = btrfs_bin_search(upper->eb, 0, key, &slot);
2258 			if (ret < 0)
2259 				goto next;
2260 			BUG_ON(ret);
2261 		}
2262 
2263 		bytenr = btrfs_node_blockptr(upper->eb, slot);
2264 		if (lowest) {
2265 			if (unlikely(bytenr != node->bytenr)) {
2266 				btrfs_err(root->fs_info,
2267 		"lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2268 					  bytenr, node->bytenr, slot,
2269 					  upper->eb->start);
2270 				ret = -EIO;
2271 				goto next;
2272 			}
2273 		} else {
2274 			if (node->eb->start == bytenr)
2275 				goto next;
2276 		}
2277 
2278 		blocksize = root->fs_info->nodesize;
2279 		eb = btrfs_read_node_slot(upper->eb, slot);
2280 		if (IS_ERR(eb)) {
2281 			ret = PTR_ERR(eb);
2282 			goto next;
2283 		}
2284 		btrfs_tree_lock(eb);
2285 
2286 		if (!node->eb) {
2287 			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2288 					      slot, &eb, BTRFS_NESTING_COW);
2289 			btrfs_tree_unlock(eb);
2290 			free_extent_buffer(eb);
2291 			if (ret < 0)
2292 				goto next;
2293 			/*
2294 			 * We've just COWed this block, it should have updated
2295 			 * the correct backref node entry.
2296 			 */
2297 			ASSERT(node->eb == eb);
2298 		} else {
2299 			struct btrfs_ref ref = {
2300 				.action = BTRFS_ADD_DELAYED_REF,
2301 				.bytenr = node->eb->start,
2302 				.num_bytes = blocksize,
2303 				.parent = upper->eb->start,
2304 				.owning_root = btrfs_header_owner(upper->eb),
2305 				.ref_root = btrfs_header_owner(upper->eb),
2306 			};
2307 
2308 			btrfs_set_node_blockptr(upper->eb, slot,
2309 						node->eb->start);
2310 			btrfs_set_node_ptr_generation(upper->eb, slot,
2311 						      trans->transid);
2312 			btrfs_mark_buffer_dirty(trans, upper->eb);
2313 
2314 			btrfs_init_tree_ref(&ref, node->level,
2315 					    btrfs_root_id(root), false);
2316 			ret = btrfs_inc_extent_ref(trans, &ref);
2317 			if (!ret)
2318 				ret = btrfs_drop_subtree(trans, root, eb,
2319 							 upper->eb);
2320 			if (unlikely(ret))
2321 				btrfs_abort_transaction(trans, ret);
2322 		}
2323 next:
2324 		if (!upper->pending)
2325 			btrfs_backref_drop_node_buffer(upper);
2326 		else
2327 			btrfs_backref_unlock_node_buffer(upper);
2328 		if (ret)
2329 			break;
2330 	}
2331 
2332 	if (!ret && node->pending) {
2333 		btrfs_backref_drop_node_buffer(node);
2334 		list_del_init(&node->list);
2335 		node->pending = 0;
2336 	}
2337 
2338 	path->lowest_level = 0;
2339 
2340 	/*
2341 	 * We should have allocated all of our space in the block rsv and thus
2342 	 * shouldn't ENOSPC.
2343 	 */
2344 	ASSERT(ret != -ENOSPC);
2345 	return ret;
2346 }
2347 
2348 static int link_to_upper(struct btrfs_trans_handle *trans,
2349 			 struct reloc_control *rc,
2350 			 struct btrfs_backref_node *node,
2351 			 struct btrfs_path *path)
2352 {
2353 	struct btrfs_key key;
2354 
2355 	btrfs_node_key_to_cpu(node->eb, &key, 0);
2356 	return do_relocation(trans, rc, node, &key, path, 0);
2357 }
2358 
2359 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2360 				struct reloc_control *rc,
2361 				struct btrfs_path *path, int err)
2362 {
2363 	LIST_HEAD(list);
2364 	struct btrfs_backref_cache *cache = &rc->backref_cache;
2365 	struct btrfs_backref_node *node;
2366 	int level;
2367 	int ret;
2368 
2369 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2370 		while (!list_empty(&cache->pending[level])) {
2371 			node = list_first_entry(&cache->pending[level],
2372 						struct btrfs_backref_node, list);
2373 			list_move_tail(&node->list, &list);
2374 			BUG_ON(!node->pending);
2375 
2376 			if (!err) {
2377 				ret = link_to_upper(trans, rc, node, path);
2378 				if (ret < 0)
2379 					err = ret;
2380 			}
2381 		}
2382 		list_splice_init(&list, &cache->pending[level]);
2383 	}
2384 	return err;
2385 }
2386 
2387 /*
2388  * mark a block and all blocks directly/indirectly reference the block
2389  * as processed.
2390  */
2391 static void update_processed_blocks(struct reloc_control *rc,
2392 				    struct btrfs_backref_node *node)
2393 {
2394 	struct btrfs_backref_node *next = node;
2395 	struct btrfs_backref_edge *edge;
2396 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2397 	int index = 0;
2398 
2399 	while (next) {
2400 		cond_resched();
2401 		while (1) {
2402 			if (next->processed)
2403 				break;
2404 
2405 			mark_block_processed(rc, next);
2406 
2407 			if (list_empty(&next->upper))
2408 				break;
2409 
2410 			edge = list_first_entry(&next->upper, struct btrfs_backref_edge,
2411 						list[LOWER]);
2412 			edges[index++] = edge;
2413 			next = edge->node[UPPER];
2414 		}
2415 		next = walk_down_backref(edges, &index);
2416 	}
2417 }
2418 
2419 static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2420 {
2421 	u32 blocksize = rc->extent_root->fs_info->nodesize;
2422 
2423 	if (btrfs_test_range_bit(&rc->processed_blocks, bytenr,
2424 				 bytenr + blocksize - 1, EXTENT_DIRTY, NULL))
2425 		return 1;
2426 	return 0;
2427 }
2428 
2429 static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2430 			      struct tree_block *block)
2431 {
2432 	struct btrfs_tree_parent_check check = {
2433 		.level = block->level,
2434 		.owner_root = block->owner,
2435 		.transid = block->key.offset
2436 	};
2437 	struct extent_buffer *eb;
2438 
2439 	eb = read_tree_block(fs_info, block->bytenr, &check);
2440 	if (IS_ERR(eb))
2441 		return PTR_ERR(eb);
2442 	if (unlikely(!extent_buffer_uptodate(eb))) {
2443 		free_extent_buffer(eb);
2444 		return -EIO;
2445 	}
2446 	if (block->level == 0)
2447 		btrfs_item_key_to_cpu(eb, &block->key, 0);
2448 	else
2449 		btrfs_node_key_to_cpu(eb, &block->key, 0);
2450 	free_extent_buffer(eb);
2451 	block->key_ready = true;
2452 	return 0;
2453 }
2454 
2455 /*
2456  * helper function to relocate a tree block
2457  */
2458 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2459 				struct reloc_control *rc,
2460 				struct btrfs_backref_node *node,
2461 				struct btrfs_key *key,
2462 				struct btrfs_path *path)
2463 {
2464 	struct btrfs_root *root;
2465 	int ret = 0;
2466 
2467 	if (!node)
2468 		return 0;
2469 
2470 	/*
2471 	 * If we fail here we want to drop our backref_node because we are going
2472 	 * to start over and regenerate the tree for it.
2473 	 */
2474 	ret = reserve_metadata_space(trans, rc, node);
2475 	if (ret)
2476 		goto out;
2477 
2478 	BUG_ON(node->processed);
2479 	root = select_one_root(node);
2480 	if (IS_ERR(root)) {
2481 		ret = PTR_ERR(root);
2482 
2483 		/* See explanation in select_one_root for the -EUCLEAN case. */
2484 		ASSERT(ret == -ENOENT);
2485 		if (ret == -ENOENT) {
2486 			ret = 0;
2487 			update_processed_blocks(rc, node);
2488 		}
2489 		goto out;
2490 	}
2491 
2492 	if (root) {
2493 		if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2494 			/*
2495 			 * This block was the root block of a root, and this is
2496 			 * the first time we're processing the block and thus it
2497 			 * should not have had the ->new_bytenr modified.
2498 			 *
2499 			 * However in the case of corruption we could have
2500 			 * multiple refs pointing to the same block improperly,
2501 			 * and thus we would trip over these checks.  ASSERT()
2502 			 * for the developer case, because it could indicate a
2503 			 * bug in the backref code, however error out for a
2504 			 * normal user in the case of corruption.
2505 			 */
2506 			ASSERT(node->new_bytenr == 0);
2507 			if (unlikely(node->new_bytenr)) {
2508 				btrfs_err(root->fs_info,
2509 				  "bytenr %llu has improper references to it",
2510 					  node->bytenr);
2511 				ret = -EUCLEAN;
2512 				goto out;
2513 			}
2514 			ret = btrfs_record_root_in_trans(trans, root);
2515 			if (ret)
2516 				goto out;
2517 			/*
2518 			 * Another thread could have failed, need to check if we
2519 			 * have reloc_root actually set.
2520 			 */
2521 			if (!root->reloc_root) {
2522 				ret = -ENOENT;
2523 				goto out;
2524 			}
2525 			root = root->reloc_root;
2526 			node->new_bytenr = root->node->start;
2527 			btrfs_put_root(node->root);
2528 			node->root = btrfs_grab_root(root);
2529 			ASSERT(node->root);
2530 		} else {
2531 			btrfs_err(root->fs_info,
2532 				  "bytenr %llu resolved to a non-shareable root",
2533 				  node->bytenr);
2534 			ret = -EUCLEAN;
2535 			goto out;
2536 		}
2537 		if (!ret)
2538 			update_processed_blocks(rc, node);
2539 	} else {
2540 		ret = do_relocation(trans, rc, node, key, path, 1);
2541 	}
2542 out:
2543 	if (ret || node->level == 0)
2544 		btrfs_backref_cleanup_node(&rc->backref_cache, node);
2545 	return ret;
2546 }
2547 
2548 static int relocate_cowonly_block(struct btrfs_trans_handle *trans,
2549 				  struct reloc_control *rc, struct tree_block *block,
2550 				  struct btrfs_path *path)
2551 {
2552 	struct btrfs_fs_info *fs_info = trans->fs_info;
2553 	struct btrfs_root *root;
2554 	u64 num_bytes;
2555 	int nr_levels;
2556 	int ret;
2557 
2558 	root = btrfs_get_fs_root(fs_info, block->owner, true);
2559 	if (IS_ERR(root))
2560 		return PTR_ERR(root);
2561 
2562 	nr_levels = max(btrfs_header_level(root->node) - block->level, 0) + 1;
2563 
2564 	num_bytes = fs_info->nodesize * nr_levels;
2565 	ret = refill_metadata_space(trans, rc, num_bytes);
2566 	if (ret) {
2567 		btrfs_put_root(root);
2568 		return ret;
2569 	}
2570 	path->lowest_level = block->level;
2571 	if (root == root->fs_info->chunk_root)
2572 		btrfs_reserve_chunk_metadata(trans, false);
2573 
2574 	ret = btrfs_search_slot(trans, root, &block->key, path, 0, 1);
2575 	path->lowest_level = 0;
2576 	btrfs_release_path(path);
2577 
2578 	if (root == root->fs_info->chunk_root)
2579 		btrfs_trans_release_chunk_metadata(trans);
2580 	if (ret > 0)
2581 		ret = 0;
2582 	btrfs_put_root(root);
2583 
2584 	return ret;
2585 }
2586 
2587 /*
2588  * relocate a list of blocks
2589  */
2590 static noinline_for_stack
2591 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2592 			 struct reloc_control *rc, struct rb_root *blocks)
2593 {
2594 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2595 	struct btrfs_backref_node *node;
2596 	struct btrfs_path *path;
2597 	struct tree_block *block;
2598 	struct tree_block *next;
2599 	int ret = 0;
2600 
2601 	path = btrfs_alloc_path();
2602 	if (!path) {
2603 		ret = -ENOMEM;
2604 		goto out_free_blocks;
2605 	}
2606 
2607 	/* Kick in readahead for tree blocks with missing keys */
2608 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2609 		if (!block->key_ready)
2610 			btrfs_readahead_tree_block(fs_info, block->bytenr,
2611 						   block->owner, 0,
2612 						   block->level);
2613 	}
2614 
2615 	/* Get first keys */
2616 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2617 		if (!block->key_ready) {
2618 			ret = get_tree_block_key(fs_info, block);
2619 			if (ret)
2620 				goto out_free_path;
2621 		}
2622 	}
2623 
2624 	/* Do tree relocation */
2625 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2626 		/*
2627 		 * For COWonly blocks, or the data reloc tree, we only need to
2628 		 * COW down to the block, there's no need to generate a backref
2629 		 * tree.
2630 		 */
2631 		if (block->owner &&
2632 		    (!btrfs_is_fstree(block->owner) ||
2633 		     block->owner == BTRFS_DATA_RELOC_TREE_OBJECTID)) {
2634 			ret = relocate_cowonly_block(trans, rc, block, path);
2635 			if (ret)
2636 				break;
2637 			continue;
2638 		}
2639 
2640 		node = build_backref_tree(trans, rc, &block->key,
2641 					  block->level, block->bytenr);
2642 		if (IS_ERR(node)) {
2643 			ret = PTR_ERR(node);
2644 			goto out;
2645 		}
2646 
2647 		ret = relocate_tree_block(trans, rc, node, &block->key,
2648 					  path);
2649 		if (ret < 0)
2650 			break;
2651 	}
2652 out:
2653 	ret = finish_pending_nodes(trans, rc, path, ret);
2654 
2655 out_free_path:
2656 	btrfs_free_path(path);
2657 out_free_blocks:
2658 	free_block_list(blocks);
2659 	return ret;
2660 }
2661 
2662 static noinline_for_stack int prealloc_file_extent_cluster(struct reloc_control *rc)
2663 {
2664 	const struct file_extent_cluster *cluster = &rc->cluster;
2665 	struct btrfs_inode *inode = BTRFS_I(rc->data_inode);
2666 	u64 alloc_hint = 0;
2667 	u64 start;
2668 	u64 end;
2669 	u64 offset = inode->reloc_block_group_start;
2670 	u64 num_bytes;
2671 	int nr;
2672 	int ret = 0;
2673 	u64 prealloc_start = cluster->start - offset;
2674 	u64 prealloc_end = cluster->end - offset;
2675 	u64 cur_offset = prealloc_start;
2676 
2677 	/*
2678 	 * For blocksize < folio size case (either bs < page size or large folios),
2679 	 * beyond i_size, all blocks are filled with zero.
2680 	 *
2681 	 * If the current cluster covers the above range, btrfs_do_readpage()
2682 	 * will skip the read, and relocate_one_folio() will later writeback
2683 	 * the padding zeros as new data, causing data corruption.
2684 	 *
2685 	 * Here we have to invalidate the cache covering our cluster.
2686 	 */
2687 	ret = filemap_invalidate_inode(&inode->vfs_inode, true, prealloc_start,
2688 				       prealloc_end);
2689 	if (ret < 0)
2690 		return ret;
2691 
2692 	BUG_ON(cluster->start != cluster->boundary[0]);
2693 	ret = btrfs_alloc_data_chunk_ondemand(inode,
2694 					      prealloc_end + 1 - prealloc_start);
2695 	if (ret)
2696 		return ret;
2697 
2698 	btrfs_inode_lock(inode, 0);
2699 	for (nr = 0; nr < cluster->nr; nr++) {
2700 		struct extent_state *cached_state = NULL;
2701 
2702 		start = cluster->boundary[nr] - offset;
2703 		if (nr + 1 < cluster->nr)
2704 			end = cluster->boundary[nr + 1] - 1 - offset;
2705 		else
2706 			end = cluster->end - offset;
2707 
2708 		btrfs_lock_extent(&inode->io_tree, start, end, &cached_state);
2709 		num_bytes = end + 1 - start;
2710 		ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start,
2711 						num_bytes, num_bytes,
2712 						end + 1, &alloc_hint);
2713 		cur_offset = end + 1;
2714 		btrfs_unlock_extent(&inode->io_tree, start, end, &cached_state);
2715 		if (ret)
2716 			break;
2717 	}
2718 	btrfs_inode_unlock(inode, 0);
2719 
2720 	if (cur_offset < prealloc_end)
2721 		btrfs_free_reserved_data_space_noquota(inode,
2722 						       prealloc_end + 1 - cur_offset);
2723 	return ret;
2724 }
2725 
2726 static noinline_for_stack int setup_relocation_extent_mapping(struct reloc_control *rc)
2727 {
2728 	struct btrfs_inode *inode = BTRFS_I(rc->data_inode);
2729 	struct extent_map *em;
2730 	struct extent_state *cached_state = NULL;
2731 	u64 offset = inode->reloc_block_group_start;
2732 	u64 start = rc->cluster.start - offset;
2733 	u64 end = rc->cluster.end - offset;
2734 	int ret = 0;
2735 
2736 	em = btrfs_alloc_extent_map();
2737 	if (!em)
2738 		return -ENOMEM;
2739 
2740 	em->start = start;
2741 	em->len = end + 1 - start;
2742 	em->disk_bytenr = rc->cluster.start;
2743 	em->disk_num_bytes = em->len;
2744 	em->ram_bytes = em->len;
2745 	em->flags |= EXTENT_FLAG_PINNED;
2746 
2747 	btrfs_lock_extent(&inode->io_tree, start, end, &cached_state);
2748 	ret = btrfs_replace_extent_map_range(inode, em, false);
2749 	btrfs_unlock_extent(&inode->io_tree, start, end, &cached_state);
2750 	btrfs_free_extent_map(em);
2751 
2752 	return ret;
2753 }
2754 
2755 /*
2756  * Allow error injection to test balance/relocation cancellation
2757  */
2758 noinline int btrfs_should_cancel_balance(const struct btrfs_fs_info *fs_info)
2759 {
2760 	return atomic_read(&fs_info->balance_cancel_req) ||
2761 		atomic_read(&fs_info->reloc_cancel_req) ||
2762 		fatal_signal_pending(current);
2763 }
2764 ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE);
2765 
2766 static u64 get_cluster_boundary_end(const struct file_extent_cluster *cluster,
2767 				    int cluster_nr)
2768 {
2769 	/* Last extent, use cluster end directly */
2770 	if (cluster_nr >= cluster->nr - 1)
2771 		return cluster->end;
2772 
2773 	/* Use next boundary start*/
2774 	return cluster->boundary[cluster_nr + 1] - 1;
2775 }
2776 
2777 static int relocate_one_folio(struct reloc_control *rc,
2778 			      struct file_ra_state *ra,
2779 			      int *cluster_nr, u64 *file_offset_ret)
2780 {
2781 	const struct file_extent_cluster *cluster = &rc->cluster;
2782 	struct inode *inode = rc->data_inode;
2783 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2784 	const u64 orig_file_offset = *file_offset_ret;
2785 	u64 offset = BTRFS_I(inode)->reloc_block_group_start;
2786 	const pgoff_t last_index = (cluster->end - offset) >> PAGE_SHIFT;
2787 	const pgoff_t index = orig_file_offset >> PAGE_SHIFT;
2788 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2789 	struct folio *folio;
2790 	u64 folio_start;
2791 	u64 folio_end;
2792 	u64 cur;
2793 	int ret;
2794 	const bool use_rst = btrfs_need_stripe_tree_update(fs_info, rc->block_group->flags);
2795 
2796 	ASSERT(index <= last_index);
2797 again:
2798 	folio = filemap_lock_folio(inode->i_mapping, index);
2799 	if (IS_ERR(folio)) {
2800 
2801 		/*
2802 		 * On relocation we're doing readahead on the relocation inode,
2803 		 * but if the filesystem is backed by a RAID stripe tree we can
2804 		 * get ENOENT (e.g. due to preallocated extents not being
2805 		 * mapped in the RST) from the lookup.
2806 		 *
2807 		 * But readahead doesn't handle the error and submits invalid
2808 		 * reads to the device, causing a assertion failures.
2809 		 */
2810 		if (!use_rst)
2811 			page_cache_sync_readahead(inode->i_mapping, ra, NULL,
2812 						  index, last_index + 1 - index);
2813 		folio = __filemap_get_folio(inode->i_mapping, index,
2814 					    FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
2815 					    mask);
2816 		if (IS_ERR(folio))
2817 			return PTR_ERR(folio);
2818 	}
2819 
2820 	if (folio_test_readahead(folio) && !use_rst)
2821 		page_cache_async_readahead(inode->i_mapping, ra, NULL,
2822 					   folio, last_index + 1 - index);
2823 
2824 	if (!folio_test_uptodate(folio)) {
2825 		btrfs_read_folio(NULL, folio);
2826 		folio_lock(folio);
2827 		if (unlikely(!folio_test_uptodate(folio))) {
2828 			ret = -EIO;
2829 			goto release_folio;
2830 		}
2831 		if (folio->mapping != inode->i_mapping) {
2832 			folio_unlock(folio);
2833 			folio_put(folio);
2834 			goto again;
2835 		}
2836 	}
2837 
2838 	/*
2839 	 * We could have lost folio private when we dropped the lock to read the
2840 	 * folio above, make sure we set_folio_extent_mapped() here so we have any
2841 	 * of the subpage blocksize stuff we need in place.
2842 	 */
2843 	ret = set_folio_extent_mapped(folio);
2844 	if (ret < 0)
2845 		goto release_folio;
2846 
2847 	folio_start = folio_pos(folio);
2848 	folio_end = folio_start + folio_size(folio) - 1;
2849 
2850 	/*
2851 	 * Start from the cluster, as for subpage case, the cluster can start
2852 	 * inside the folio.
2853 	 */
2854 	cur = max(folio_start, cluster->boundary[*cluster_nr] - offset);
2855 	while (cur <= folio_end) {
2856 		struct extent_state *cached_state = NULL;
2857 		u64 extent_start = cluster->boundary[*cluster_nr] - offset;
2858 		u64 extent_end = get_cluster_boundary_end(cluster,
2859 						*cluster_nr) - offset;
2860 		u64 clamped_start = max(folio_start, extent_start);
2861 		u64 clamped_end = min(folio_end, extent_end);
2862 		u32 clamped_len = clamped_end + 1 - clamped_start;
2863 
2864 		/* Reserve metadata for this range */
2865 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
2866 						      clamped_len, clamped_len,
2867 						      false);
2868 		if (ret)
2869 			goto release_folio;
2870 
2871 		/* Mark the range delalloc and dirty for later writeback */
2872 		btrfs_lock_extent(&BTRFS_I(inode)->io_tree, clamped_start,
2873 				  clamped_end, &cached_state);
2874 		ret = btrfs_set_extent_delalloc(BTRFS_I(inode), clamped_start,
2875 						clamped_end, 0, &cached_state);
2876 		if (ret) {
2877 			btrfs_clear_extent_bit(&BTRFS_I(inode)->io_tree,
2878 					       clamped_start, clamped_end,
2879 					       EXTENT_LOCKED | EXTENT_BOUNDARY,
2880 					       &cached_state);
2881 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
2882 							clamped_len, true);
2883 			btrfs_delalloc_release_extents(BTRFS_I(inode),
2884 						       clamped_len);
2885 			goto release_folio;
2886 		}
2887 		btrfs_folio_set_dirty(fs_info, folio, clamped_start, clamped_len);
2888 
2889 		/*
2890 		 * Set the boundary if it's inside the folio.
2891 		 * Data relocation requires the destination extents to have the
2892 		 * same size as the source.
2893 		 * EXTENT_BOUNDARY bit prevents current extent from being merged
2894 		 * with previous extent.
2895 		 */
2896 		if (in_range(cluster->boundary[*cluster_nr] - offset,
2897 			     folio_start, folio_size(folio))) {
2898 			u64 boundary_start = cluster->boundary[*cluster_nr] -
2899 						offset;
2900 			u64 boundary_end = boundary_start +
2901 					   fs_info->sectorsize - 1;
2902 
2903 			btrfs_set_extent_bit(&BTRFS_I(inode)->io_tree,
2904 					     boundary_start, boundary_end,
2905 					     EXTENT_BOUNDARY, NULL);
2906 		}
2907 		btrfs_unlock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end,
2908 				    &cached_state);
2909 		btrfs_delalloc_release_extents(BTRFS_I(inode), clamped_len);
2910 		cur += clamped_len;
2911 
2912 		/* Crossed extent end, go to next extent */
2913 		if (cur >= extent_end) {
2914 			(*cluster_nr)++;
2915 			/* Just finished the last extent of the cluster, exit. */
2916 			if (*cluster_nr >= cluster->nr)
2917 				break;
2918 		}
2919 	}
2920 	folio_unlock(folio);
2921 	folio_put(folio);
2922 
2923 	balance_dirty_pages_ratelimited(inode->i_mapping);
2924 	btrfs_throttle(fs_info);
2925 	if (btrfs_should_cancel_balance(fs_info))
2926 		ret = -ECANCELED;
2927 	*file_offset_ret = folio_end + 1;
2928 	return ret;
2929 
2930 release_folio:
2931 	folio_unlock(folio);
2932 	folio_put(folio);
2933 	return ret;
2934 }
2935 
2936 static int relocate_file_extent_cluster(struct reloc_control *rc)
2937 {
2938 	struct inode *inode = rc->data_inode;
2939 	const struct file_extent_cluster *cluster = &rc->cluster;
2940 	u64 offset = BTRFS_I(inode)->reloc_block_group_start;
2941 	u64 cur_file_offset = cluster->start - offset;
2942 	struct file_ra_state AUTO_KFREE(ra);
2943 	int cluster_nr = 0;
2944 	int ret = 0;
2945 
2946 	if (!cluster->nr)
2947 		return 0;
2948 
2949 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
2950 	if (!ra)
2951 		return -ENOMEM;
2952 
2953 	ret = prealloc_file_extent_cluster(rc);
2954 	if (ret)
2955 		return ret;
2956 
2957 	file_ra_state_init(ra, inode->i_mapping);
2958 
2959 	ret = setup_relocation_extent_mapping(rc);
2960 	if (ret)
2961 		return ret;
2962 
2963 	while (cur_file_offset < cluster->end - offset) {
2964 		ret = relocate_one_folio(rc, ra, &cluster_nr, &cur_file_offset);
2965 		if (ret)
2966 			break;
2967 	}
2968 	if (ret == 0)
2969 		WARN_ON(cluster_nr != cluster->nr);
2970 	return ret;
2971 }
2972 
2973 static noinline_for_stack int relocate_data_extent(struct reloc_control *rc,
2974 					   const struct btrfs_key *extent_key)
2975 {
2976 	struct inode *inode = rc->data_inode;
2977 	struct file_extent_cluster *cluster = &rc->cluster;
2978 	int ret;
2979 	struct btrfs_root *root = BTRFS_I(inode)->root;
2980 
2981 	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
2982 		ret = relocate_file_extent_cluster(rc);
2983 		if (ret)
2984 			return ret;
2985 		cluster->nr = 0;
2986 	}
2987 
2988 	/*
2989 	 * Under simple quotas, we set root->relocation_src_root when we find
2990 	 * the extent. If adjacent extents have different owners, we can't merge
2991 	 * them while relocating. Handle this by storing the owning root that
2992 	 * started a cluster and if we see an extent from a different root break
2993 	 * cluster formation (just like the above case of non-adjacent extents).
2994 	 *
2995 	 * Without simple quotas, relocation_src_root is always 0, so we should
2996 	 * never see a mismatch, and it should have no effect on relocation
2997 	 * clusters.
2998 	 */
2999 	if (cluster->nr > 0 && cluster->owning_root != root->relocation_src_root) {
3000 		u64 tmp = root->relocation_src_root;
3001 
3002 		/*
3003 		 * root->relocation_src_root is the state that actually affects
3004 		 * the preallocation we do here, so set it to the root owning
3005 		 * the cluster we need to relocate.
3006 		 */
3007 		root->relocation_src_root = cluster->owning_root;
3008 		ret = relocate_file_extent_cluster(rc);
3009 		if (ret)
3010 			return ret;
3011 		cluster->nr = 0;
3012 		/* And reset it back for the current extent's owning root. */
3013 		root->relocation_src_root = tmp;
3014 	}
3015 
3016 	if (!cluster->nr) {
3017 		cluster->start = extent_key->objectid;
3018 		cluster->owning_root = root->relocation_src_root;
3019 	}
3020 	else
3021 		BUG_ON(cluster->nr >= MAX_EXTENTS);
3022 	cluster->end = extent_key->objectid + extent_key->offset - 1;
3023 	cluster->boundary[cluster->nr] = extent_key->objectid;
3024 	cluster->nr++;
3025 
3026 	if (cluster->nr >= MAX_EXTENTS) {
3027 		ret = relocate_file_extent_cluster(rc);
3028 		if (ret)
3029 			return ret;
3030 		cluster->nr = 0;
3031 	}
3032 	return 0;
3033 }
3034 
3035 /*
3036  * helper to add a tree block to the list.
3037  * the major work is getting the generation and level of the block
3038  */
3039 static int add_tree_block(struct reloc_control *rc,
3040 			  const struct btrfs_key *extent_key,
3041 			  struct btrfs_path *path,
3042 			  struct rb_root *blocks)
3043 {
3044 	struct extent_buffer *eb;
3045 	struct btrfs_extent_item *ei;
3046 	struct btrfs_tree_block_info *bi;
3047 	struct tree_block *block;
3048 	struct rb_node *rb_node;
3049 	u32 item_size;
3050 	int level = -1;
3051 	u64 generation;
3052 	u64 owner = 0;
3053 
3054 	eb =  path->nodes[0];
3055 	item_size = btrfs_item_size(eb, path->slots[0]);
3056 
3057 	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3058 	    item_size >= sizeof(*ei) + sizeof(*bi)) {
3059 		unsigned long ptr = 0, end;
3060 
3061 		ei = btrfs_item_ptr(eb, path->slots[0],
3062 				struct btrfs_extent_item);
3063 		end = (unsigned long)ei + item_size;
3064 		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3065 			bi = (struct btrfs_tree_block_info *)(ei + 1);
3066 			level = btrfs_tree_block_level(eb, bi);
3067 			ptr = (unsigned long)(bi + 1);
3068 		} else {
3069 			level = (int)extent_key->offset;
3070 			ptr = (unsigned long)(ei + 1);
3071 		}
3072 		generation = btrfs_extent_generation(eb, ei);
3073 
3074 		/*
3075 		 * We're reading random blocks without knowing their owner ahead
3076 		 * of time.  This is ok most of the time, as all reloc roots and
3077 		 * fs roots have the same lock type.  However normal trees do
3078 		 * not, and the only way to know ahead of time is to read the
3079 		 * inline ref offset.  We know it's an fs root if
3080 		 *
3081 		 * 1. There's more than one ref.
3082 		 * 2. There's a SHARED_DATA_REF_KEY set.
3083 		 * 3. FULL_BACKREF is set on the flags.
3084 		 *
3085 		 * Otherwise it's safe to assume that the ref offset == the
3086 		 * owner of this block, so we can use that when calling
3087 		 * read_tree_block.
3088 		 */
3089 		if (btrfs_extent_refs(eb, ei) == 1 &&
3090 		    !(btrfs_extent_flags(eb, ei) &
3091 		      BTRFS_BLOCK_FLAG_FULL_BACKREF) &&
3092 		    ptr < end) {
3093 			struct btrfs_extent_inline_ref *iref;
3094 			int type;
3095 
3096 			iref = (struct btrfs_extent_inline_ref *)ptr;
3097 			type = btrfs_get_extent_inline_ref_type(eb, iref,
3098 							BTRFS_REF_TYPE_BLOCK);
3099 			if (type == BTRFS_REF_TYPE_INVALID)
3100 				return -EINVAL;
3101 			if (type == BTRFS_TREE_BLOCK_REF_KEY)
3102 				owner = btrfs_extent_inline_ref_offset(eb, iref);
3103 		}
3104 	} else {
3105 		btrfs_print_leaf(eb);
3106 		btrfs_err(rc->block_group->fs_info,
3107 			  "unrecognized tree backref at tree block %llu slot %u",
3108 			  eb->start, path->slots[0]);
3109 		btrfs_release_path(path);
3110 		return -EUCLEAN;
3111 	}
3112 
3113 	btrfs_release_path(path);
3114 
3115 	BUG_ON(level == -1);
3116 
3117 	block = kmalloc(sizeof(*block), GFP_NOFS);
3118 	if (!block)
3119 		return -ENOMEM;
3120 
3121 	block->bytenr = extent_key->objectid;
3122 	block->key.objectid = rc->extent_root->fs_info->nodesize;
3123 	block->key.offset = generation;
3124 	block->level = level;
3125 	block->key_ready = false;
3126 	block->owner = owner;
3127 
3128 	rb_node = rb_simple_insert(blocks, &block->simple_node);
3129 	if (rb_node)
3130 		btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr,
3131 				    -EEXIST);
3132 
3133 	return 0;
3134 }
3135 
3136 /*
3137  * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3138  */
3139 static int __add_tree_block(struct reloc_control *rc,
3140 			    u64 bytenr, u32 blocksize,
3141 			    struct rb_root *blocks)
3142 {
3143 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3144 	BTRFS_PATH_AUTO_FREE(path);
3145 	struct btrfs_key key;
3146 	int ret;
3147 	bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3148 
3149 	if (tree_block_processed(bytenr, rc))
3150 		return 0;
3151 
3152 	if (rb_simple_search(blocks, bytenr))
3153 		return 0;
3154 
3155 	path = btrfs_alloc_path();
3156 	if (!path)
3157 		return -ENOMEM;
3158 again:
3159 	key.objectid = bytenr;
3160 	if (skinny) {
3161 		key.type = BTRFS_METADATA_ITEM_KEY;
3162 		key.offset = (u64)-1;
3163 	} else {
3164 		key.type = BTRFS_EXTENT_ITEM_KEY;
3165 		key.offset = blocksize;
3166 	}
3167 
3168 	path->search_commit_root = true;
3169 	path->skip_locking = true;
3170 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3171 	if (ret < 0)
3172 		return ret;
3173 
3174 	if (ret > 0 && skinny) {
3175 		if (path->slots[0]) {
3176 			path->slots[0]--;
3177 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3178 					      path->slots[0]);
3179 			if (key.objectid == bytenr &&
3180 			    (key.type == BTRFS_METADATA_ITEM_KEY ||
3181 			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
3182 			      key.offset == blocksize)))
3183 				ret = 0;
3184 		}
3185 
3186 		if (ret) {
3187 			skinny = false;
3188 			btrfs_release_path(path);
3189 			goto again;
3190 		}
3191 	}
3192 	if (ret) {
3193 		ASSERT(ret == 1);
3194 		btrfs_print_leaf(path->nodes[0]);
3195 		btrfs_err(fs_info,
3196 	     "tree block extent item (%llu) is not found in extent tree",
3197 		     bytenr);
3198 		WARN_ON(1);
3199 		return -EINVAL;
3200 	}
3201 
3202 	return add_tree_block(rc, &key, path, blocks);
3203 }
3204 
3205 static int delete_block_group_cache(struct btrfs_block_group *block_group,
3206 				    struct inode *inode,
3207 				    u64 ino)
3208 {
3209 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3210 	struct btrfs_root *root = fs_info->tree_root;
3211 	struct btrfs_trans_handle *trans;
3212 	struct btrfs_inode *btrfs_inode;
3213 	int ret = 0;
3214 
3215 	if (inode)
3216 		goto truncate;
3217 
3218 	btrfs_inode = btrfs_iget(ino, root);
3219 	if (IS_ERR(btrfs_inode))
3220 		return -ENOENT;
3221 	inode = &btrfs_inode->vfs_inode;
3222 
3223 truncate:
3224 	ret = btrfs_check_trunc_cache_free_space(fs_info,
3225 						 &fs_info->global_block_rsv);
3226 	if (ret)
3227 		goto out;
3228 
3229 	trans = btrfs_join_transaction(root);
3230 	if (IS_ERR(trans)) {
3231 		ret = PTR_ERR(trans);
3232 		goto out;
3233 	}
3234 
3235 	ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3236 
3237 	btrfs_end_transaction(trans);
3238 	btrfs_btree_balance_dirty(fs_info);
3239 out:
3240 	iput(inode);
3241 	return ret;
3242 }
3243 
3244 /*
3245  * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
3246  * cache inode, to avoid free space cache data extent blocking data relocation.
3247  */
3248 static int delete_v1_space_cache(struct extent_buffer *leaf,
3249 				 struct btrfs_block_group *block_group,
3250 				 u64 data_bytenr)
3251 {
3252 	u64 space_cache_ino;
3253 	struct btrfs_file_extent_item *ei;
3254 	struct btrfs_key key;
3255 	bool found = false;
3256 	int i;
3257 	int ret;
3258 
3259 	if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID)
3260 		return 0;
3261 
3262 	for (i = 0; i < btrfs_header_nritems(leaf); i++) {
3263 		u8 type;
3264 
3265 		btrfs_item_key_to_cpu(leaf, &key, i);
3266 		if (key.type != BTRFS_EXTENT_DATA_KEY)
3267 			continue;
3268 		ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
3269 		type = btrfs_file_extent_type(leaf, ei);
3270 
3271 		if ((type == BTRFS_FILE_EXTENT_REG ||
3272 		     type == BTRFS_FILE_EXTENT_PREALLOC) &&
3273 		    btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) {
3274 			found = true;
3275 			space_cache_ino = key.objectid;
3276 			break;
3277 		}
3278 	}
3279 	if (!found)
3280 		return -ENOENT;
3281 	ret = delete_block_group_cache(block_group, NULL, space_cache_ino);
3282 	return ret;
3283 }
3284 
3285 /*
3286  * helper to find all tree blocks that reference a given data extent
3287  */
3288 static noinline_for_stack int add_data_references(struct reloc_control *rc,
3289 						  const struct btrfs_key *extent_key,
3290 						  struct btrfs_path *path,
3291 						  struct rb_root *blocks)
3292 {
3293 	struct btrfs_backref_walk_ctx ctx = { 0 };
3294 	struct ulist_iterator leaf_uiter;
3295 	struct ulist_node *ref_node = NULL;
3296 	const u32 blocksize = rc->extent_root->fs_info->nodesize;
3297 	int ret = 0;
3298 
3299 	btrfs_release_path(path);
3300 
3301 	ctx.bytenr = extent_key->objectid;
3302 	ctx.skip_inode_ref_list = true;
3303 	ctx.fs_info = rc->extent_root->fs_info;
3304 
3305 	ret = btrfs_find_all_leafs(&ctx);
3306 	if (ret < 0)
3307 		return ret;
3308 
3309 	ULIST_ITER_INIT(&leaf_uiter);
3310 	while ((ref_node = ulist_next(ctx.refs, &leaf_uiter))) {
3311 		struct btrfs_tree_parent_check check = { 0 };
3312 		struct extent_buffer *eb;
3313 
3314 		eb = read_tree_block(ctx.fs_info, ref_node->val, &check);
3315 		if (IS_ERR(eb)) {
3316 			ret = PTR_ERR(eb);
3317 			break;
3318 		}
3319 		ret = delete_v1_space_cache(eb, rc->block_group,
3320 					    extent_key->objectid);
3321 		free_extent_buffer(eb);
3322 		if (ret < 0)
3323 			break;
3324 		ret = __add_tree_block(rc, ref_node->val, blocksize, blocks);
3325 		if (ret < 0)
3326 			break;
3327 	}
3328 	if (ret < 0)
3329 		free_block_list(blocks);
3330 	ulist_free(ctx.refs);
3331 	return ret;
3332 }
3333 
3334 /*
3335  * helper to find next unprocessed extent
3336  */
3337 static noinline_for_stack
3338 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3339 		     struct btrfs_key *extent_key)
3340 {
3341 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3342 	struct btrfs_key key;
3343 	struct extent_buffer *leaf;
3344 	u64 start, end, last;
3345 	int ret;
3346 
3347 	last = rc->block_group->start + rc->block_group->length;
3348 	while (1) {
3349 		bool block_found;
3350 
3351 		cond_resched();
3352 		if (rc->search_start >= last) {
3353 			ret = 1;
3354 			break;
3355 		}
3356 
3357 		key.objectid = rc->search_start;
3358 		key.type = BTRFS_EXTENT_ITEM_KEY;
3359 		key.offset = 0;
3360 
3361 		path->search_commit_root = true;
3362 		path->skip_locking = true;
3363 		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3364 					0, 0);
3365 		if (ret < 0)
3366 			break;
3367 next:
3368 		leaf = path->nodes[0];
3369 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3370 			ret = btrfs_next_leaf(rc->extent_root, path);
3371 			if (ret != 0)
3372 				break;
3373 			leaf = path->nodes[0];
3374 		}
3375 
3376 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3377 		if (key.objectid >= last) {
3378 			ret = 1;
3379 			break;
3380 		}
3381 
3382 		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3383 		    key.type != BTRFS_METADATA_ITEM_KEY) {
3384 			path->slots[0]++;
3385 			goto next;
3386 		}
3387 
3388 		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3389 		    key.objectid + key.offset <= rc->search_start) {
3390 			path->slots[0]++;
3391 			goto next;
3392 		}
3393 
3394 		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3395 		    key.objectid + fs_info->nodesize <=
3396 		    rc->search_start) {
3397 			path->slots[0]++;
3398 			goto next;
3399 		}
3400 
3401 		block_found = btrfs_find_first_extent_bit(&rc->processed_blocks,
3402 							  key.objectid, &start, &end,
3403 							  EXTENT_DIRTY, NULL);
3404 
3405 		if (block_found && start <= key.objectid) {
3406 			btrfs_release_path(path);
3407 			rc->search_start = end + 1;
3408 		} else {
3409 			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3410 				rc->search_start = key.objectid + key.offset;
3411 			else
3412 				rc->search_start = key.objectid +
3413 					fs_info->nodesize;
3414 			memcpy(extent_key, &key, sizeof(key));
3415 			return 0;
3416 		}
3417 	}
3418 	btrfs_release_path(path);
3419 	return ret;
3420 }
3421 
3422 static void set_reloc_control(struct reloc_control *rc)
3423 {
3424 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3425 
3426 	mutex_lock(&fs_info->reloc_mutex);
3427 	fs_info->reloc_ctl = rc;
3428 	mutex_unlock(&fs_info->reloc_mutex);
3429 }
3430 
3431 static void unset_reloc_control(struct reloc_control *rc)
3432 {
3433 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3434 
3435 	mutex_lock(&fs_info->reloc_mutex);
3436 	fs_info->reloc_ctl = NULL;
3437 	mutex_unlock(&fs_info->reloc_mutex);
3438 }
3439 
3440 static noinline_for_stack
3441 int prepare_to_relocate(struct reloc_control *rc)
3442 {
3443 	struct btrfs_trans_handle *trans;
3444 	int ret;
3445 
3446 	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3447 					      BTRFS_BLOCK_RSV_TEMP);
3448 	if (!rc->block_rsv)
3449 		return -ENOMEM;
3450 
3451 	memset(&rc->cluster, 0, sizeof(rc->cluster));
3452 	rc->search_start = rc->block_group->start;
3453 	rc->extents_found = 0;
3454 	rc->nodes_relocated = 0;
3455 	rc->merging_rsv_size = 0;
3456 	rc->reserved_bytes = 0;
3457 	rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3458 			      RELOCATION_RESERVED_NODES;
3459 	ret = btrfs_block_rsv_refill(rc->extent_root->fs_info,
3460 				     rc->block_rsv, rc->block_rsv->size,
3461 				     BTRFS_RESERVE_FLUSH_ALL);
3462 	if (ret)
3463 		return ret;
3464 
3465 	rc->create_reloc_tree = true;
3466 	set_reloc_control(rc);
3467 
3468 	trans = btrfs_join_transaction(rc->extent_root);
3469 	if (IS_ERR(trans)) {
3470 		unset_reloc_control(rc);
3471 		/*
3472 		 * extent tree is not a ref_cow tree and has no reloc_root to
3473 		 * cleanup.  And callers are responsible to free the above
3474 		 * block rsv.
3475 		 */
3476 		return PTR_ERR(trans);
3477 	}
3478 
3479 	ret = btrfs_commit_transaction(trans);
3480 	if (ret)
3481 		unset_reloc_control(rc);
3482 
3483 	return ret;
3484 }
3485 
3486 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3487 {
3488 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3489 	struct rb_root blocks = RB_ROOT;
3490 	struct btrfs_key key;
3491 	struct btrfs_trans_handle *trans = NULL;
3492 	BTRFS_PATH_AUTO_FREE(path);
3493 	struct btrfs_extent_item *ei;
3494 	u64 flags;
3495 	int ret;
3496 	int err = 0;
3497 	int progress = 0;
3498 
3499 	path = btrfs_alloc_path();
3500 	if (!path)
3501 		return -ENOMEM;
3502 	path->reada = READA_FORWARD;
3503 
3504 	ret = prepare_to_relocate(rc);
3505 	if (ret) {
3506 		err = ret;
3507 		goto out_free;
3508 	}
3509 
3510 	while (1) {
3511 		rc->reserved_bytes = 0;
3512 		ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
3513 					     rc->block_rsv->size,
3514 					     BTRFS_RESERVE_FLUSH_ALL);
3515 		if (ret) {
3516 			err = ret;
3517 			break;
3518 		}
3519 		progress++;
3520 		trans = btrfs_start_transaction(rc->extent_root, 0);
3521 		if (IS_ERR(trans)) {
3522 			err = PTR_ERR(trans);
3523 			trans = NULL;
3524 			break;
3525 		}
3526 restart:
3527 		if (rc->backref_cache.last_trans != trans->transid)
3528 			btrfs_backref_release_cache(&rc->backref_cache);
3529 		rc->backref_cache.last_trans = trans->transid;
3530 
3531 		ret = find_next_extent(rc, path, &key);
3532 		if (ret < 0)
3533 			err = ret;
3534 		if (ret != 0)
3535 			break;
3536 
3537 		rc->extents_found++;
3538 
3539 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3540 				    struct btrfs_extent_item);
3541 		flags = btrfs_extent_flags(path->nodes[0], ei);
3542 
3543 		/*
3544 		 * If we are relocating a simple quota owned extent item, we
3545 		 * need to note the owner on the reloc data root so that when
3546 		 * we allocate the replacement item, we can attribute it to the
3547 		 * correct eventual owner (rather than the reloc data root).
3548 		 */
3549 		if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE) {
3550 			struct btrfs_root *root = BTRFS_I(rc->data_inode)->root;
3551 			u64 owning_root_id = btrfs_get_extent_owner_root(fs_info,
3552 								 path->nodes[0],
3553 								 path->slots[0]);
3554 
3555 			root->relocation_src_root = owning_root_id;
3556 		}
3557 
3558 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3559 			ret = add_tree_block(rc, &key, path, &blocks);
3560 		} else if (rc->stage == UPDATE_DATA_PTRS &&
3561 			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
3562 			ret = add_data_references(rc, &key, path, &blocks);
3563 		} else {
3564 			btrfs_release_path(path);
3565 			ret = 0;
3566 		}
3567 		if (ret < 0) {
3568 			err = ret;
3569 			break;
3570 		}
3571 
3572 		if (!RB_EMPTY_ROOT(&blocks)) {
3573 			ret = relocate_tree_blocks(trans, rc, &blocks);
3574 			if (ret < 0) {
3575 				if (ret != -EAGAIN) {
3576 					err = ret;
3577 					break;
3578 				}
3579 				rc->extents_found--;
3580 				rc->search_start = key.objectid;
3581 			}
3582 		}
3583 
3584 		btrfs_end_transaction_throttle(trans);
3585 		btrfs_btree_balance_dirty(fs_info);
3586 		trans = NULL;
3587 
3588 		if (rc->stage == MOVE_DATA_EXTENTS &&
3589 		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
3590 			rc->found_file_extent = true;
3591 			ret = relocate_data_extent(rc, &key);
3592 			if (ret < 0) {
3593 				err = ret;
3594 				break;
3595 			}
3596 		}
3597 		if (btrfs_should_cancel_balance(fs_info)) {
3598 			err = -ECANCELED;
3599 			break;
3600 		}
3601 	}
3602 	if (trans && progress && err == -ENOSPC) {
3603 		ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
3604 		if (ret == 1) {
3605 			err = 0;
3606 			progress = 0;
3607 			goto restart;
3608 		}
3609 	}
3610 
3611 	btrfs_release_path(path);
3612 	btrfs_clear_extent_bit(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY, NULL);
3613 
3614 	if (trans) {
3615 		btrfs_end_transaction_throttle(trans);
3616 		btrfs_btree_balance_dirty(fs_info);
3617 	}
3618 
3619 	if (!err) {
3620 		ret = relocate_file_extent_cluster(rc);
3621 		if (ret < 0)
3622 			err = ret;
3623 	}
3624 
3625 	rc->create_reloc_tree = false;
3626 	set_reloc_control(rc);
3627 
3628 	btrfs_backref_release_cache(&rc->backref_cache);
3629 	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3630 
3631 	/*
3632 	 * Even in the case when the relocation is cancelled, we should all go
3633 	 * through prepare_to_merge() and merge_reloc_roots().
3634 	 *
3635 	 * For error (including cancelled balance), prepare_to_merge() will
3636 	 * mark all reloc trees orphan, then queue them for cleanup in
3637 	 * merge_reloc_roots()
3638 	 */
3639 	err = prepare_to_merge(rc, err);
3640 
3641 	merge_reloc_roots(rc);
3642 
3643 	rc->merge_reloc_tree = false;
3644 	unset_reloc_control(rc);
3645 	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3646 
3647 	/* get rid of pinned extents */
3648 	trans = btrfs_join_transaction(rc->extent_root);
3649 	if (IS_ERR(trans)) {
3650 		err = PTR_ERR(trans);
3651 		goto out_free;
3652 	}
3653 	ret = btrfs_commit_transaction(trans);
3654 	if (ret && !err)
3655 		err = ret;
3656 out_free:
3657 	ret = clean_dirty_subvols(rc);
3658 	if (ret < 0 && !err)
3659 		err = ret;
3660 	btrfs_free_block_rsv(fs_info, rc->block_rsv);
3661 	return err;
3662 }
3663 
3664 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3665 				 struct btrfs_root *root, u64 objectid)
3666 {
3667 	BTRFS_PATH_AUTO_FREE(path);
3668 	struct btrfs_inode_item *item;
3669 	struct extent_buffer *leaf;
3670 	int ret;
3671 
3672 	path = btrfs_alloc_path();
3673 	if (!path)
3674 		return -ENOMEM;
3675 
3676 	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3677 	if (ret)
3678 		return ret;
3679 
3680 	leaf = path->nodes[0];
3681 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3682 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3683 	btrfs_set_inode_generation(leaf, item, 1);
3684 	btrfs_set_inode_size(leaf, item, 0);
3685 	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3686 	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
3687 					  BTRFS_INODE_PREALLOC);
3688 	return 0;
3689 }
3690 
3691 static void delete_orphan_inode(struct btrfs_trans_handle *trans,
3692 				struct btrfs_root *root, u64 objectid)
3693 {
3694 	BTRFS_PATH_AUTO_FREE(path);
3695 	struct btrfs_key key;
3696 	int ret = 0;
3697 
3698 	path = btrfs_alloc_path();
3699 	if (!path) {
3700 		ret = -ENOMEM;
3701 		goto out;
3702 	}
3703 
3704 	key.objectid = objectid;
3705 	key.type = BTRFS_INODE_ITEM_KEY;
3706 	key.offset = 0;
3707 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3708 	if (ret) {
3709 		if (ret > 0)
3710 			ret = -ENOENT;
3711 		goto out;
3712 	}
3713 	ret = btrfs_del_item(trans, root, path);
3714 out:
3715 	if (ret)
3716 		btrfs_abort_transaction(trans, ret);
3717 }
3718 
3719 /*
3720  * helper to create inode for data relocation.
3721  * the inode is in data relocation tree and its link count is 0
3722  */
3723 static noinline_for_stack struct inode *create_reloc_inode(
3724 					const struct btrfs_block_group *group)
3725 {
3726 	struct btrfs_fs_info *fs_info = group->fs_info;
3727 	struct btrfs_inode *inode = NULL;
3728 	struct btrfs_trans_handle *trans;
3729 	struct btrfs_root *root;
3730 	u64 objectid;
3731 	int ret = 0;
3732 
3733 	root = btrfs_grab_root(fs_info->data_reloc_root);
3734 	trans = btrfs_start_transaction(root, 6);
3735 	if (IS_ERR(trans)) {
3736 		btrfs_put_root(root);
3737 		return ERR_CAST(trans);
3738 	}
3739 
3740 	ret = btrfs_get_free_objectid(root, &objectid);
3741 	if (ret)
3742 		goto out;
3743 
3744 	ret = __insert_orphan_inode(trans, root, objectid);
3745 	if (ret)
3746 		goto out;
3747 
3748 	inode = btrfs_iget(objectid, root);
3749 	if (IS_ERR(inode)) {
3750 		delete_orphan_inode(trans, root, objectid);
3751 		ret = PTR_ERR(inode);
3752 		inode = NULL;
3753 		goto out;
3754 	}
3755 	inode->reloc_block_group_start = group->start;
3756 
3757 	ret = btrfs_orphan_add(trans, inode);
3758 out:
3759 	btrfs_put_root(root);
3760 	btrfs_end_transaction(trans);
3761 	btrfs_btree_balance_dirty(fs_info);
3762 	if (ret) {
3763 		if (inode)
3764 			iput(&inode->vfs_inode);
3765 		return ERR_PTR(ret);
3766 	}
3767 	return &inode->vfs_inode;
3768 }
3769 
3770 /*
3771  * Mark start of chunk relocation that is cancellable. Check if the cancellation
3772  * has been requested meanwhile and don't start in that case.
3773  * NOTE: if this returns an error, reloc_chunk_end() must not be called.
3774  *
3775  * Return:
3776  *   0             success
3777  *   -EINPROGRESS  operation is already in progress, that's probably a bug
3778  *   -ECANCELED    cancellation request was set before the operation started
3779  */
3780 static int reloc_chunk_start(struct btrfs_fs_info *fs_info)
3781 {
3782 	if (test_and_set_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) {
3783 		/* This should not happen */
3784 		btrfs_err(fs_info, "reloc already running, cannot start");
3785 		return -EINPROGRESS;
3786 	}
3787 
3788 	if (atomic_read(&fs_info->reloc_cancel_req) > 0) {
3789 		btrfs_info(fs_info, "chunk relocation canceled on start");
3790 		/* On cancel, clear all requests. */
3791 		clear_and_wake_up_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags);
3792 		atomic_set(&fs_info->reloc_cancel_req, 0);
3793 		return -ECANCELED;
3794 	}
3795 	return 0;
3796 }
3797 
3798 /*
3799  * Mark end of chunk relocation that is cancellable and wake any waiters.
3800  * NOTE: call only if a previous call to reloc_chunk_start() succeeded.
3801  */
3802 static void reloc_chunk_end(struct btrfs_fs_info *fs_info)
3803 {
3804 	ASSERT(test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags));
3805 	/* Requested after start, clear bit first so any waiters can continue */
3806 	if (atomic_read(&fs_info->reloc_cancel_req) > 0)
3807 		btrfs_info(fs_info, "chunk relocation canceled during operation");
3808 	clear_and_wake_up_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags);
3809 	atomic_set(&fs_info->reloc_cancel_req, 0);
3810 }
3811 
3812 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
3813 {
3814 	struct reloc_control *rc;
3815 
3816 	rc = kzalloc(sizeof(*rc), GFP_NOFS);
3817 	if (!rc)
3818 		return NULL;
3819 
3820 	INIT_LIST_HEAD(&rc->reloc_roots);
3821 	INIT_LIST_HEAD(&rc->dirty_subvol_roots);
3822 	btrfs_backref_init_cache(fs_info, &rc->backref_cache, true);
3823 	rc->reloc_root_tree.rb_root = RB_ROOT;
3824 	spin_lock_init(&rc->reloc_root_tree.lock);
3825 	btrfs_extent_io_tree_init(fs_info, &rc->processed_blocks, IO_TREE_RELOC_BLOCKS);
3826 	return rc;
3827 }
3828 
3829 static void free_reloc_control(struct reloc_control *rc)
3830 {
3831 	struct mapping_node *node, *tmp;
3832 
3833 	free_reloc_roots(&rc->reloc_roots);
3834 	rbtree_postorder_for_each_entry_safe(node, tmp,
3835 			&rc->reloc_root_tree.rb_root, rb_node)
3836 		kfree(node);
3837 
3838 	kfree(rc);
3839 }
3840 
3841 /*
3842  * Print the block group being relocated
3843  */
3844 static void describe_relocation(struct btrfs_block_group *block_group)
3845 {
3846 	char buf[128] = "NONE";
3847 
3848 	btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
3849 
3850 	btrfs_info(block_group->fs_info, "relocating block group %llu flags %s",
3851 		   block_group->start, buf);
3852 }
3853 
3854 static const char *stage_to_string(enum reloc_stage stage)
3855 {
3856 	if (stage == MOVE_DATA_EXTENTS)
3857 		return "move data extents";
3858 	if (stage == UPDATE_DATA_PTRS)
3859 		return "update data pointers";
3860 	return "unknown";
3861 }
3862 
3863 /*
3864  * function to relocate all extents in a block group.
3865  */
3866 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start,
3867 			       bool verbose)
3868 {
3869 	struct btrfs_block_group *bg;
3870 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, group_start);
3871 	struct reloc_control *rc;
3872 	struct inode *inode;
3873 	struct btrfs_path *path;
3874 	int ret;
3875 	bool bg_is_ro = false;
3876 
3877 	/*
3878 	 * This only gets set if we had a half-deleted snapshot on mount.  We
3879 	 * cannot allow relocation to start while we're still trying to clean up
3880 	 * these pending deletions.
3881 	 */
3882 	ret = wait_on_bit(&fs_info->flags, BTRFS_FS_UNFINISHED_DROPS, TASK_INTERRUPTIBLE);
3883 	if (ret)
3884 		return ret;
3885 
3886 	/* We may have been woken up by close_ctree, so bail if we're closing. */
3887 	if (btrfs_fs_closing(fs_info))
3888 		return -EINTR;
3889 
3890 	bg = btrfs_lookup_block_group(fs_info, group_start);
3891 	if (!bg)
3892 		return -ENOENT;
3893 
3894 	/*
3895 	 * Relocation of a data block group creates ordered extents.  Without
3896 	 * sb_start_write(), we can freeze the filesystem while unfinished
3897 	 * ordered extents are left. Such ordered extents can cause a deadlock
3898 	 * e.g. when syncfs() is waiting for their completion but they can't
3899 	 * finish because they block when joining a transaction, due to the
3900 	 * fact that the freeze locks are being held in write mode.
3901 	 */
3902 	if (bg->flags & BTRFS_BLOCK_GROUP_DATA)
3903 		ASSERT(sb_write_started(fs_info->sb));
3904 
3905 	if (btrfs_pinned_by_swapfile(fs_info, bg)) {
3906 		btrfs_put_block_group(bg);
3907 		return -ETXTBSY;
3908 	}
3909 
3910 	rc = alloc_reloc_control(fs_info);
3911 	if (!rc) {
3912 		btrfs_put_block_group(bg);
3913 		return -ENOMEM;
3914 	}
3915 
3916 	ret = reloc_chunk_start(fs_info);
3917 	if (ret < 0)
3918 		goto out_put_bg;
3919 
3920 	rc->extent_root = extent_root;
3921 	rc->block_group = bg;
3922 
3923 	ret = btrfs_inc_block_group_ro(rc->block_group, true);
3924 	if (ret)
3925 		goto out;
3926 	bg_is_ro = true;
3927 
3928 	path = btrfs_alloc_path();
3929 	if (!path) {
3930 		ret = -ENOMEM;
3931 		goto out;
3932 	}
3933 
3934 	inode = lookup_free_space_inode(rc->block_group, path);
3935 	btrfs_free_path(path);
3936 
3937 	if (!IS_ERR(inode))
3938 		ret = delete_block_group_cache(rc->block_group, inode, 0);
3939 	else
3940 		ret = PTR_ERR(inode);
3941 
3942 	if (ret && ret != -ENOENT)
3943 		goto out;
3944 
3945 	rc->data_inode = create_reloc_inode(rc->block_group);
3946 	if (IS_ERR(rc->data_inode)) {
3947 		ret = PTR_ERR(rc->data_inode);
3948 		rc->data_inode = NULL;
3949 		goto out;
3950 	}
3951 
3952 	if (verbose)
3953 		describe_relocation(rc->block_group);
3954 
3955 	btrfs_wait_block_group_reservations(rc->block_group);
3956 	btrfs_wait_nocow_writers(rc->block_group);
3957 	btrfs_wait_ordered_roots(fs_info, U64_MAX, rc->block_group);
3958 
3959 	ret = btrfs_zone_finish(rc->block_group);
3960 	WARN_ON(ret && ret != -EAGAIN);
3961 
3962 	while (1) {
3963 		enum reloc_stage finishes_stage;
3964 
3965 		mutex_lock(&fs_info->cleaner_mutex);
3966 		ret = relocate_block_group(rc);
3967 		mutex_unlock(&fs_info->cleaner_mutex);
3968 
3969 		finishes_stage = rc->stage;
3970 		/*
3971 		 * We may have gotten ENOSPC after we already dirtied some
3972 		 * extents.  If writeout happens while we're relocating a
3973 		 * different block group we could end up hitting the
3974 		 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
3975 		 * btrfs_reloc_cow_block.  Make sure we write everything out
3976 		 * properly so we don't trip over this problem, and then break
3977 		 * out of the loop if we hit an error.
3978 		 */
3979 		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
3980 			int wb_ret;
3981 
3982 			wb_ret = btrfs_wait_ordered_range(BTRFS_I(rc->data_inode), 0,
3983 							  (u64)-1);
3984 			if (wb_ret && ret == 0)
3985 				ret = wb_ret;
3986 			invalidate_mapping_pages(rc->data_inode->i_mapping,
3987 						 0, -1);
3988 			rc->stage = UPDATE_DATA_PTRS;
3989 		}
3990 
3991 		if (ret < 0)
3992 			goto out;
3993 
3994 		if (rc->extents_found == 0)
3995 			break;
3996 
3997 		if (verbose)
3998 			btrfs_info(fs_info, "found %llu extents, stage: %s",
3999 				   rc->extents_found,
4000 				   stage_to_string(finishes_stage));
4001 	}
4002 
4003 	WARN_ON(rc->block_group->pinned > 0);
4004 	WARN_ON(rc->block_group->reserved > 0);
4005 	WARN_ON(rc->block_group->used > 0);
4006 out:
4007 	if (ret && bg_is_ro)
4008 		btrfs_dec_block_group_ro(rc->block_group);
4009 	iput(rc->data_inode);
4010 	reloc_chunk_end(fs_info);
4011 out_put_bg:
4012 	btrfs_put_block_group(bg);
4013 	free_reloc_control(rc);
4014 	return ret;
4015 }
4016 
4017 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4018 {
4019 	struct btrfs_fs_info *fs_info = root->fs_info;
4020 	struct btrfs_trans_handle *trans;
4021 	int ret, err;
4022 
4023 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4024 	if (IS_ERR(trans))
4025 		return PTR_ERR(trans);
4026 
4027 	memset(&root->root_item.drop_progress, 0,
4028 		sizeof(root->root_item.drop_progress));
4029 	btrfs_set_root_drop_level(&root->root_item, 0);
4030 	btrfs_set_root_refs(&root->root_item, 0);
4031 	ret = btrfs_update_root(trans, fs_info->tree_root,
4032 				&root->root_key, &root->root_item);
4033 
4034 	err = btrfs_end_transaction(trans);
4035 	if (err)
4036 		return err;
4037 	return ret;
4038 }
4039 
4040 /*
4041  * recover relocation interrupted by system crash.
4042  *
4043  * this function resumes merging reloc trees with corresponding fs trees.
4044  * this is important for keeping the sharing of tree blocks
4045  */
4046 int btrfs_recover_relocation(struct btrfs_fs_info *fs_info)
4047 {
4048 	LIST_HEAD(reloc_roots);
4049 	struct btrfs_key key;
4050 	struct btrfs_root *fs_root;
4051 	struct btrfs_root *reloc_root;
4052 	struct btrfs_path *path;
4053 	struct extent_buffer *leaf;
4054 	struct reloc_control *rc = NULL;
4055 	struct btrfs_trans_handle *trans;
4056 	int ret2;
4057 	int ret = 0;
4058 
4059 	path = btrfs_alloc_path();
4060 	if (!path)
4061 		return -ENOMEM;
4062 	path->reada = READA_BACK;
4063 
4064 	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4065 	key.type = BTRFS_ROOT_ITEM_KEY;
4066 	key.offset = (u64)-1;
4067 
4068 	while (1) {
4069 		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4070 					path, 0, 0);
4071 		if (ret < 0)
4072 			goto out;
4073 		if (ret > 0) {
4074 			if (path->slots[0] == 0)
4075 				break;
4076 			path->slots[0]--;
4077 		}
4078 		ret = 0;
4079 		leaf = path->nodes[0];
4080 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4081 		btrfs_release_path(path);
4082 
4083 		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4084 		    key.type != BTRFS_ROOT_ITEM_KEY)
4085 			break;
4086 
4087 		reloc_root = btrfs_read_tree_root(fs_info->tree_root, &key);
4088 		if (IS_ERR(reloc_root)) {
4089 			ret = PTR_ERR(reloc_root);
4090 			goto out;
4091 		}
4092 
4093 		set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
4094 		list_add(&reloc_root->root_list, &reloc_roots);
4095 
4096 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4097 			fs_root = btrfs_get_fs_root(fs_info,
4098 					reloc_root->root_key.offset, false);
4099 			if (IS_ERR(fs_root)) {
4100 				ret = PTR_ERR(fs_root);
4101 				if (ret != -ENOENT)
4102 					goto out;
4103 				ret = mark_garbage_root(reloc_root);
4104 				if (ret < 0)
4105 					goto out;
4106 				ret = 0;
4107 			} else {
4108 				btrfs_put_root(fs_root);
4109 			}
4110 		}
4111 
4112 		if (key.offset == 0)
4113 			break;
4114 
4115 		key.offset--;
4116 	}
4117 	btrfs_release_path(path);
4118 
4119 	if (list_empty(&reloc_roots))
4120 		goto out;
4121 
4122 	rc = alloc_reloc_control(fs_info);
4123 	if (!rc) {
4124 		ret = -ENOMEM;
4125 		goto out;
4126 	}
4127 
4128 	ret = reloc_chunk_start(fs_info);
4129 	if (ret < 0)
4130 		goto out_end;
4131 
4132 	rc->extent_root = btrfs_extent_root(fs_info, 0);
4133 
4134 	set_reloc_control(rc);
4135 
4136 	trans = btrfs_join_transaction(rc->extent_root);
4137 	if (IS_ERR(trans)) {
4138 		ret = PTR_ERR(trans);
4139 		goto out_unset;
4140 	}
4141 
4142 	rc->merge_reloc_tree = true;
4143 
4144 	while (!list_empty(&reloc_roots)) {
4145 		reloc_root = list_first_entry(&reloc_roots, struct btrfs_root, root_list);
4146 		list_del(&reloc_root->root_list);
4147 
4148 		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4149 			list_add_tail(&reloc_root->root_list,
4150 				      &rc->reloc_roots);
4151 			continue;
4152 		}
4153 
4154 		fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
4155 					    false);
4156 		if (IS_ERR(fs_root)) {
4157 			ret = PTR_ERR(fs_root);
4158 			list_add_tail(&reloc_root->root_list, &reloc_roots);
4159 			btrfs_end_transaction(trans);
4160 			goto out_unset;
4161 		}
4162 
4163 		ret = __add_reloc_root(reloc_root);
4164 		ASSERT(ret != -EEXIST);
4165 		if (ret) {
4166 			list_add_tail(&reloc_root->root_list, &reloc_roots);
4167 			btrfs_put_root(fs_root);
4168 			btrfs_end_transaction(trans);
4169 			goto out_unset;
4170 		}
4171 		fs_root->reloc_root = btrfs_grab_root(reloc_root);
4172 		btrfs_put_root(fs_root);
4173 	}
4174 
4175 	ret = btrfs_commit_transaction(trans);
4176 	if (ret)
4177 		goto out_unset;
4178 
4179 	merge_reloc_roots(rc);
4180 
4181 	unset_reloc_control(rc);
4182 
4183 	trans = btrfs_join_transaction(rc->extent_root);
4184 	if (IS_ERR(trans)) {
4185 		ret = PTR_ERR(trans);
4186 		goto out_clean;
4187 	}
4188 	ret = btrfs_commit_transaction(trans);
4189 out_clean:
4190 	ret2 = clean_dirty_subvols(rc);
4191 	if (ret2 < 0 && !ret)
4192 		ret = ret2;
4193 out_unset:
4194 	unset_reloc_control(rc);
4195 	reloc_chunk_end(fs_info);
4196 out_end:
4197 	free_reloc_control(rc);
4198 out:
4199 	free_reloc_roots(&reloc_roots);
4200 
4201 	btrfs_free_path(path);
4202 
4203 	if (ret == 0) {
4204 		/* cleanup orphan inode in data relocation tree */
4205 		fs_root = btrfs_grab_root(fs_info->data_reloc_root);
4206 		ASSERT(fs_root);
4207 		ret = btrfs_orphan_cleanup(fs_root);
4208 		btrfs_put_root(fs_root);
4209 	}
4210 	return ret;
4211 }
4212 
4213 /*
4214  * helper to add ordered checksum for data relocation.
4215  *
4216  * cloning checksum properly handles the nodatasum extents.
4217  * it also saves CPU time to re-calculate the checksum.
4218  */
4219 int btrfs_reloc_clone_csums(struct btrfs_ordered_extent *ordered)
4220 {
4221 	struct btrfs_inode *inode = ordered->inode;
4222 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4223 	u64 disk_bytenr = ordered->file_offset + inode->reloc_block_group_start;
4224 	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, disk_bytenr);
4225 	LIST_HEAD(list);
4226 	int ret;
4227 
4228 	ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4229 				      disk_bytenr + ordered->num_bytes - 1,
4230 				      &list, false);
4231 	if (ret < 0) {
4232 		btrfs_mark_ordered_extent_error(ordered);
4233 		return ret;
4234 	}
4235 
4236 	while (!list_empty(&list)) {
4237 		struct btrfs_ordered_sum *sums =
4238 			list_first_entry(&list, struct btrfs_ordered_sum, list);
4239 
4240 		list_del_init(&sums->list);
4241 
4242 		/*
4243 		 * We need to offset the new_bytenr based on where the csum is.
4244 		 * We need to do this because we will read in entire prealloc
4245 		 * extents but we may have written to say the middle of the
4246 		 * prealloc extent, so we need to make sure the csum goes with
4247 		 * the right disk offset.
4248 		 *
4249 		 * We can do this because the data reloc inode refers strictly
4250 		 * to the on disk bytes, so we don't have to worry about
4251 		 * disk_len vs real len like with real inodes since it's all
4252 		 * disk length.
4253 		 */
4254 		sums->logical = ordered->disk_bytenr + sums->logical - disk_bytenr;
4255 		btrfs_add_ordered_sum(ordered, sums);
4256 	}
4257 
4258 	return 0;
4259 }
4260 
4261 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4262 			  struct btrfs_root *root,
4263 			  const struct extent_buffer *buf,
4264 			  struct extent_buffer *cow)
4265 {
4266 	struct btrfs_fs_info *fs_info = root->fs_info;
4267 	struct reloc_control *rc;
4268 	struct btrfs_backref_node *node;
4269 	int first_cow = 0;
4270 	int level;
4271 	int ret = 0;
4272 
4273 	rc = fs_info->reloc_ctl;
4274 	if (!rc)
4275 		return 0;
4276 
4277 	BUG_ON(rc->stage == UPDATE_DATA_PTRS && btrfs_is_data_reloc_root(root));
4278 
4279 	level = btrfs_header_level(buf);
4280 	if (btrfs_header_generation(buf) <=
4281 	    btrfs_root_last_snapshot(&root->root_item))
4282 		first_cow = 1;
4283 
4284 	if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID && rc->create_reloc_tree) {
4285 		WARN_ON(!first_cow && level == 0);
4286 
4287 		node = rc->backref_cache.path[level];
4288 
4289 		/*
4290 		 * If node->bytenr != buf->start and node->new_bytenr !=
4291 		 * buf->start then we've got the wrong backref node for what we
4292 		 * expected to see here and the cache is incorrect.
4293 		 */
4294 		if (unlikely(node->bytenr != buf->start && node->new_bytenr != buf->start)) {
4295 			btrfs_err(fs_info,
4296 "bytenr %llu was found but our backref cache was expecting %llu or %llu",
4297 				  buf->start, node->bytenr, node->new_bytenr);
4298 			return -EUCLEAN;
4299 		}
4300 
4301 		btrfs_backref_drop_node_buffer(node);
4302 		refcount_inc(&cow->refs);
4303 		node->eb = cow;
4304 		node->new_bytenr = cow->start;
4305 
4306 		if (!node->pending) {
4307 			list_move_tail(&node->list,
4308 				       &rc->backref_cache.pending[level]);
4309 			node->pending = 1;
4310 		}
4311 
4312 		if (first_cow)
4313 			mark_block_processed(rc, node);
4314 
4315 		if (first_cow && level > 0)
4316 			rc->nodes_relocated += buf->len;
4317 	}
4318 
4319 	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4320 		ret = replace_file_extents(trans, rc, root, cow);
4321 	return ret;
4322 }
4323 
4324 /*
4325  * called before creating snapshot. it calculates metadata reservation
4326  * required for relocating tree blocks in the snapshot
4327  */
4328 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4329 			      u64 *bytes_to_reserve)
4330 {
4331 	struct btrfs_root *root = pending->root;
4332 	struct reloc_control *rc = root->fs_info->reloc_ctl;
4333 
4334 	if (!rc || !have_reloc_root(root))
4335 		return;
4336 
4337 	if (!rc->merge_reloc_tree)
4338 		return;
4339 
4340 	root = root->reloc_root;
4341 	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4342 	/*
4343 	 * relocation is in the stage of merging trees. the space
4344 	 * used by merging a reloc tree is twice the size of
4345 	 * relocated tree nodes in the worst case. half for cowing
4346 	 * the reloc tree, half for cowing the fs tree. the space
4347 	 * used by cowing the reloc tree will be freed after the
4348 	 * tree is dropped. if we create snapshot, cowing the fs
4349 	 * tree may use more space than it frees. so we need
4350 	 * reserve extra space.
4351 	 */
4352 	*bytes_to_reserve += rc->nodes_relocated;
4353 }
4354 
4355 /*
4356  * called after snapshot is created. migrate block reservation
4357  * and create reloc root for the newly created snapshot
4358  *
4359  * This is similar to btrfs_init_reloc_root(), we come out of here with two
4360  * references held on the reloc_root, one for root->reloc_root and one for
4361  * rc->reloc_roots.
4362  */
4363 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4364 			       struct btrfs_pending_snapshot *pending)
4365 {
4366 	struct btrfs_root *root = pending->root;
4367 	struct btrfs_root *reloc_root;
4368 	struct btrfs_root *new_root;
4369 	struct reloc_control *rc = root->fs_info->reloc_ctl;
4370 	int ret;
4371 
4372 	if (!rc || !have_reloc_root(root))
4373 		return 0;
4374 
4375 	rc = root->fs_info->reloc_ctl;
4376 	rc->merging_rsv_size += rc->nodes_relocated;
4377 
4378 	if (rc->merge_reloc_tree) {
4379 		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4380 					      rc->block_rsv,
4381 					      rc->nodes_relocated, true);
4382 		if (ret)
4383 			return ret;
4384 	}
4385 
4386 	new_root = pending->snap;
4387 	reloc_root = create_reloc_root(trans, root->reloc_root, btrfs_root_id(new_root));
4388 	if (IS_ERR(reloc_root))
4389 		return PTR_ERR(reloc_root);
4390 
4391 	ret = __add_reloc_root(reloc_root);
4392 	ASSERT(ret != -EEXIST);
4393 	if (ret) {
4394 		/* Pairs with create_reloc_root */
4395 		btrfs_put_root(reloc_root);
4396 		return ret;
4397 	}
4398 	new_root->reloc_root = btrfs_grab_root(reloc_root);
4399 	return 0;
4400 }
4401 
4402 /*
4403  * Get the current bytenr for the block group which is being relocated.
4404  *
4405  * Return U64_MAX if no running relocation.
4406  */
4407 u64 btrfs_get_reloc_bg_bytenr(const struct btrfs_fs_info *fs_info)
4408 {
4409 	u64 logical = U64_MAX;
4410 
4411 	lockdep_assert_held(&fs_info->reloc_mutex);
4412 
4413 	if (fs_info->reloc_ctl && fs_info->reloc_ctl->block_group)
4414 		logical = fs_info->reloc_ctl->block_group->start;
4415 	return logical;
4416 }
4417