1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/spinlock.h> 4 #include <linux/minmax.h> 5 #include "misc.h" 6 #include "ctree.h" 7 #include "space-info.h" 8 #include "sysfs.h" 9 #include "volumes.h" 10 #include "free-space-cache.h" 11 #include "ordered-data.h" 12 #include "transaction.h" 13 #include "block-group.h" 14 #include "fs.h" 15 #include "accessors.h" 16 #include "extent-tree.h" 17 #include "zoned.h" 18 #include "delayed-inode.h" 19 20 /* 21 * HOW DOES SPACE RESERVATION WORK 22 * 23 * If you want to know about delalloc specifically, there is a separate comment 24 * for that with the delalloc code. This comment is about how the whole system 25 * works generally. 26 * 27 * BASIC CONCEPTS 28 * 29 * 1) space_info. This is the ultimate arbiter of how much space we can use. 30 * There's a description of the bytes_ fields with the struct declaration, 31 * refer to that for specifics on each field. Suffice it to say that for 32 * reservations we care about total_bytes - SUM(space_info->bytes_) when 33 * determining if there is space to make an allocation. There is a space_info 34 * for METADATA, SYSTEM, and DATA areas. 35 * 36 * 2) block_rsv's. These are basically buckets for every different type of 37 * metadata reservation we have. You can see the comment in the block_rsv 38 * code on the rules for each type, but generally block_rsv->reserved is how 39 * much space is accounted for in space_info->bytes_may_use. 40 * 41 * 3) btrfs_calc*_size. These are the worst case calculations we used based 42 * on the number of items we will want to modify. We have one for changing 43 * items, and one for inserting new items. Generally we use these helpers to 44 * determine the size of the block reserves, and then use the actual bytes 45 * values to adjust the space_info counters. 46 * 47 * MAKING RESERVATIONS, THE NORMAL CASE 48 * 49 * We call into either btrfs_reserve_data_bytes() or 50 * btrfs_reserve_metadata_bytes(), depending on which we're looking for, with 51 * num_bytes we want to reserve. 52 * 53 * ->reserve 54 * space_info->bytes_may_use += num_bytes 55 * 56 * ->extent allocation 57 * Call btrfs_add_reserved_bytes() which does 58 * space_info->bytes_may_use -= num_bytes 59 * space_info->bytes_reserved += extent_bytes 60 * 61 * ->insert reference 62 * Call btrfs_update_block_group() which does 63 * space_info->bytes_reserved -= extent_bytes 64 * space_info->bytes_used += extent_bytes 65 * 66 * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority) 67 * 68 * Assume we are unable to simply make the reservation because we do not have 69 * enough space 70 * 71 * -> reserve_bytes 72 * create a reserve_ticket with ->bytes set to our reservation, add it to 73 * the tail of space_info->tickets, kick async flush thread 74 * 75 * ->handle_reserve_ticket 76 * wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set 77 * on the ticket. 78 * 79 * -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space 80 * Flushes various things attempting to free up space. 81 * 82 * -> btrfs_try_granting_tickets() 83 * This is called by anything that either subtracts space from 84 * space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the 85 * space_info->total_bytes. This loops through the ->priority_tickets and 86 * then the ->tickets list checking to see if the reservation can be 87 * completed. If it can the space is added to space_info->bytes_may_use and 88 * the ticket is woken up. 89 * 90 * -> ticket wakeup 91 * Check if ->bytes == 0, if it does we got our reservation and we can carry 92 * on, if not return the appropriate error (ENOSPC, but can be EINTR if we 93 * were interrupted.) 94 * 95 * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY 96 * 97 * Same as the above, except we add ourselves to the 98 * space_info->priority_tickets, and we do not use ticket->wait, we simply 99 * call flush_space() ourselves for the states that are safe for us to call 100 * without deadlocking and hope for the best. 101 * 102 * THE FLUSHING STATES 103 * 104 * Generally speaking we will have two cases for each state, a "nice" state 105 * and a "ALL THE THINGS" state. In btrfs we delay a lot of work in order to 106 * reduce the locking over head on the various trees, and even to keep from 107 * doing any work at all in the case of delayed refs. Each of these delayed 108 * things however hold reservations, and so letting them run allows us to 109 * reclaim space so we can make new reservations. 110 * 111 * FLUSH_DELAYED_ITEMS 112 * Every inode has a delayed item to update the inode. Take a simple write 113 * for example, we would update the inode item at write time to update the 114 * mtime, and then again at finish_ordered_io() time in order to update the 115 * isize or bytes. We keep these delayed items to coalesce these operations 116 * into a single operation done on demand. These are an easy way to reclaim 117 * metadata space. 118 * 119 * FLUSH_DELALLOC 120 * Look at the delalloc comment to get an idea of how much space is reserved 121 * for delayed allocation. We can reclaim some of this space simply by 122 * running delalloc, but usually we need to wait for ordered extents to 123 * reclaim the bulk of this space. 124 * 125 * FLUSH_DELAYED_REFS 126 * We have a block reserve for the outstanding delayed refs space, and every 127 * delayed ref operation holds a reservation. Running these is a quick way 128 * to reclaim space, but we want to hold this until the end because COW can 129 * churn a lot and we can avoid making some extent tree modifications if we 130 * are able to delay for as long as possible. 131 * 132 * RESET_ZONES 133 * This state works only for the zoned mode. On the zoned mode, we cannot 134 * reuse once allocated then freed region until we reset the zone, due to 135 * the sequential write zone requirement. The RESET_ZONES state resets the 136 * zones of an unused block group and let us reuse the space. The reusing 137 * is faster than removing the block group and allocating another block 138 * group on the zones. 139 * 140 * ALLOC_CHUNK 141 * We will skip this the first time through space reservation, because of 142 * overcommit and we don't want to have a lot of useless metadata space when 143 * our worst case reservations will likely never come true. 144 * 145 * RUN_DELAYED_IPUTS 146 * If we're freeing inodes we're likely freeing checksums, file extent 147 * items, and extent tree items. Loads of space could be freed up by these 148 * operations, however they won't be usable until the transaction commits. 149 * 150 * COMMIT_TRANS 151 * This will commit the transaction. Historically we had a lot of logic 152 * surrounding whether or not we'd commit the transaction, but this waits born 153 * out of a pre-tickets era where we could end up committing the transaction 154 * thousands of times in a row without making progress. Now thanks to our 155 * ticketing system we know if we're not making progress and can error 156 * everybody out after a few commits rather than burning the disk hoping for 157 * a different answer. 158 * 159 * OVERCOMMIT 160 * 161 * Because we hold so many reservations for metadata we will allow you to 162 * reserve more space than is currently free in the currently allocate 163 * metadata space. This only happens with metadata, data does not allow 164 * overcommitting. 165 * 166 * You can see the current logic for when we allow overcommit in 167 * btrfs_can_overcommit(), but it only applies to unallocated space. If there 168 * is no unallocated space to be had, all reservations are kept within the 169 * free space in the allocated metadata chunks. 170 * 171 * Because of overcommitting, you generally want to use the 172 * btrfs_can_overcommit() logic for metadata allocations, as it does the right 173 * thing with or without extra unallocated space. 174 */ 175 176 struct reserve_ticket { 177 u64 bytes; 178 int error; 179 bool steal; 180 struct list_head list; 181 wait_queue_head_t wait; 182 spinlock_t lock; 183 }; 184 185 /* 186 * after adding space to the filesystem, we need to clear the full flags 187 * on all the space infos. 188 */ 189 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 190 { 191 struct list_head *head = &info->space_info; 192 struct btrfs_space_info *found; 193 194 list_for_each_entry(found, head, list) 195 found->full = false; 196 } 197 198 /* 199 * Block groups with more than this value (percents) of unusable space will be 200 * scheduled for background reclaim. 201 */ 202 #define BTRFS_DEFAULT_ZONED_RECLAIM_THRESH (75) 203 204 #define BTRFS_UNALLOC_BLOCK_GROUP_TARGET (10ULL) 205 206 /* 207 * Calculate chunk size depending on volume type (regular or zoned). 208 */ 209 static u64 calc_chunk_size(const struct btrfs_fs_info *fs_info, u64 flags) 210 { 211 if (btrfs_is_zoned(fs_info)) 212 return fs_info->zone_size; 213 214 ASSERT(flags & BTRFS_BLOCK_GROUP_TYPE_MASK, "flags=%llu", flags); 215 216 if (flags & BTRFS_BLOCK_GROUP_DATA) 217 return BTRFS_MAX_DATA_CHUNK_SIZE; 218 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 219 return SZ_32M; 220 221 /* Handle BTRFS_BLOCK_GROUP_METADATA */ 222 if (fs_info->fs_devices->total_rw_bytes > 50ULL * SZ_1G) 223 return SZ_1G; 224 225 return SZ_256M; 226 } 227 228 /* 229 * Update default chunk size. 230 */ 231 void btrfs_update_space_info_chunk_size(struct btrfs_space_info *space_info, 232 u64 chunk_size) 233 { 234 WRITE_ONCE(space_info->chunk_size, chunk_size); 235 } 236 237 static void init_space_info(struct btrfs_fs_info *info, 238 struct btrfs_space_info *space_info, u64 flags) 239 { 240 space_info->fs_info = info; 241 for (int i = 0; i < BTRFS_NR_RAID_TYPES; i++) 242 INIT_LIST_HEAD(&space_info->block_groups[i]); 243 init_rwsem(&space_info->groups_sem); 244 spin_lock_init(&space_info->lock); 245 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 246 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 247 INIT_LIST_HEAD(&space_info->ro_bgs); 248 INIT_LIST_HEAD(&space_info->tickets); 249 INIT_LIST_HEAD(&space_info->priority_tickets); 250 space_info->clamp = 1; 251 btrfs_update_space_info_chunk_size(space_info, calc_chunk_size(info, flags)); 252 space_info->subgroup_id = BTRFS_SUB_GROUP_PRIMARY; 253 254 if (btrfs_is_zoned(info)) 255 space_info->bg_reclaim_threshold = BTRFS_DEFAULT_ZONED_RECLAIM_THRESH; 256 } 257 258 static int create_space_info_sub_group(struct btrfs_space_info *parent, u64 flags, 259 enum btrfs_space_info_sub_group id, int index) 260 { 261 struct btrfs_fs_info *fs_info = parent->fs_info; 262 struct btrfs_space_info *sub_group; 263 int ret; 264 265 ASSERT(parent->subgroup_id == BTRFS_SUB_GROUP_PRIMARY, 266 "parent->subgroup_id=%d", parent->subgroup_id); 267 ASSERT(id != BTRFS_SUB_GROUP_PRIMARY, "id=%d", id); 268 269 sub_group = kzalloc(sizeof(*sub_group), GFP_NOFS); 270 if (!sub_group) 271 return -ENOMEM; 272 273 init_space_info(fs_info, sub_group, flags); 274 parent->sub_group[index] = sub_group; 275 sub_group->parent = parent; 276 sub_group->subgroup_id = id; 277 278 ret = btrfs_sysfs_add_space_info_type(sub_group); 279 if (ret) { 280 kfree(sub_group); 281 parent->sub_group[index] = NULL; 282 } 283 return ret; 284 } 285 286 static int create_space_info(struct btrfs_fs_info *info, u64 flags) 287 { 288 289 struct btrfs_space_info *space_info; 290 int ret = 0; 291 292 space_info = kzalloc(sizeof(*space_info), GFP_NOFS); 293 if (!space_info) 294 return -ENOMEM; 295 296 init_space_info(info, space_info, flags); 297 298 if (btrfs_is_zoned(info)) { 299 if (flags & BTRFS_BLOCK_GROUP_DATA) 300 ret = create_space_info_sub_group(space_info, flags, 301 BTRFS_SUB_GROUP_DATA_RELOC, 302 0); 303 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 304 ret = create_space_info_sub_group(space_info, flags, 305 BTRFS_SUB_GROUP_TREELOG, 306 0); 307 308 if (ret) 309 return ret; 310 } 311 312 ret = btrfs_sysfs_add_space_info_type(space_info); 313 if (ret) 314 return ret; 315 316 list_add(&space_info->list, &info->space_info); 317 if (flags & BTRFS_BLOCK_GROUP_DATA) 318 info->data_sinfo = space_info; 319 320 return ret; 321 } 322 323 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 324 { 325 struct btrfs_super_block *disk_super; 326 u64 features; 327 u64 flags; 328 int mixed = 0; 329 int ret; 330 331 disk_super = fs_info->super_copy; 332 if (!btrfs_super_root(disk_super)) 333 return -EINVAL; 334 335 features = btrfs_super_incompat_flags(disk_super); 336 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 337 mixed = 1; 338 339 flags = BTRFS_BLOCK_GROUP_SYSTEM; 340 ret = create_space_info(fs_info, flags); 341 if (ret) 342 goto out; 343 344 if (mixed) { 345 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 346 ret = create_space_info(fs_info, flags); 347 } else { 348 flags = BTRFS_BLOCK_GROUP_METADATA; 349 ret = create_space_info(fs_info, flags); 350 if (ret) 351 goto out; 352 353 flags = BTRFS_BLOCK_GROUP_DATA; 354 ret = create_space_info(fs_info, flags); 355 } 356 out: 357 return ret; 358 } 359 360 void btrfs_add_bg_to_space_info(struct btrfs_fs_info *info, 361 struct btrfs_block_group *block_group) 362 { 363 struct btrfs_space_info *space_info = block_group->space_info; 364 int factor, index; 365 366 factor = btrfs_bg_type_to_factor(block_group->flags); 367 368 spin_lock(&space_info->lock); 369 space_info->total_bytes += block_group->length; 370 space_info->disk_total += block_group->length * factor; 371 space_info->bytes_used += block_group->used; 372 space_info->disk_used += block_group->used * factor; 373 space_info->bytes_readonly += block_group->bytes_super; 374 btrfs_space_info_update_bytes_zone_unusable(space_info, block_group->zone_unusable); 375 if (block_group->length > 0) 376 space_info->full = false; 377 btrfs_try_granting_tickets(space_info); 378 spin_unlock(&space_info->lock); 379 380 block_group->space_info = space_info; 381 382 index = btrfs_bg_flags_to_raid_index(block_group->flags); 383 down_write(&space_info->groups_sem); 384 list_add_tail(&block_group->list, &space_info->block_groups[index]); 385 up_write(&space_info->groups_sem); 386 } 387 388 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info, 389 u64 flags) 390 { 391 struct list_head *head = &info->space_info; 392 struct btrfs_space_info *found; 393 394 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 395 396 list_for_each_entry(found, head, list) { 397 if (found->flags & flags) 398 return found; 399 } 400 return NULL; 401 } 402 403 static u64 calc_effective_data_chunk_size(struct btrfs_fs_info *fs_info) 404 { 405 struct btrfs_space_info *data_sinfo; 406 u64 data_chunk_size; 407 408 /* 409 * Calculate the data_chunk_size, space_info->chunk_size is the 410 * "optimal" chunk size based on the fs size. However when we actually 411 * allocate the chunk we will strip this down further, making it no 412 * more than 10% of the disk or 1G, whichever is smaller. 413 * 414 * On the zoned mode, we need to use zone_size (= data_sinfo->chunk_size) 415 * as it is. 416 */ 417 data_sinfo = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA); 418 if (btrfs_is_zoned(fs_info)) 419 return data_sinfo->chunk_size; 420 data_chunk_size = min(data_sinfo->chunk_size, 421 mult_perc(fs_info->fs_devices->total_rw_bytes, 10)); 422 return min_t(u64, data_chunk_size, SZ_1G); 423 } 424 425 static u64 calc_available_free_space(const struct btrfs_space_info *space_info, 426 enum btrfs_reserve_flush_enum flush) 427 { 428 struct btrfs_fs_info *fs_info = space_info->fs_info; 429 u64 profile; 430 u64 avail; 431 u64 data_chunk_size; 432 int factor; 433 434 if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM) 435 profile = btrfs_system_alloc_profile(fs_info); 436 else 437 profile = btrfs_metadata_alloc_profile(fs_info); 438 439 avail = atomic64_read(&fs_info->free_chunk_space); 440 441 /* 442 * If we have dup, raid1 or raid10 then only half of the free 443 * space is actually usable. For raid56, the space info used 444 * doesn't include the parity drive, so we don't have to 445 * change the math 446 */ 447 factor = btrfs_bg_type_to_factor(profile); 448 avail = div_u64(avail, factor); 449 if (avail == 0) 450 return 0; 451 452 data_chunk_size = calc_effective_data_chunk_size(fs_info); 453 454 /* 455 * Since data allocations immediately use block groups as part of the 456 * reservation, because we assume that data reservations will == actual 457 * usage, we could potentially overcommit and then immediately have that 458 * available space used by a data allocation, which could put us in a 459 * bind when we get close to filling the file system. 460 * 461 * To handle this simply remove the data_chunk_size from the available 462 * space. If we are relatively empty this won't affect our ability to 463 * overcommit much, and if we're very close to full it'll keep us from 464 * getting into a position where we've given ourselves very little 465 * metadata wiggle room. 466 */ 467 if (avail <= data_chunk_size) 468 return 0; 469 avail -= data_chunk_size; 470 471 /* 472 * If we aren't flushing all things, let us overcommit up to 473 * 1/2th of the space. If we can flush, don't let us overcommit 474 * too much, let it overcommit up to 1/8 of the space. 475 */ 476 if (flush == BTRFS_RESERVE_FLUSH_ALL) 477 avail >>= 3; 478 else 479 avail >>= 1; 480 481 /* 482 * On the zoned mode, we always allocate one zone as one chunk. 483 * Returning non-zone size aligned bytes here will result in 484 * less pressure for the async metadata reclaim process, and it 485 * will over-commit too much leading to ENOSPC. Align down to the 486 * zone size to avoid that. 487 */ 488 if (btrfs_is_zoned(fs_info)) 489 avail = ALIGN_DOWN(avail, fs_info->zone_size); 490 491 return avail; 492 } 493 494 static inline bool check_can_overcommit(const struct btrfs_space_info *space_info, 495 u64 space_info_used_bytes, u64 bytes, 496 enum btrfs_reserve_flush_enum flush) 497 { 498 const u64 avail = calc_available_free_space(space_info, flush); 499 500 return (space_info_used_bytes + bytes < space_info->total_bytes + avail); 501 } 502 503 static inline bool can_overcommit(const struct btrfs_space_info *space_info, 504 u64 space_info_used_bytes, u64 bytes, 505 enum btrfs_reserve_flush_enum flush) 506 { 507 /* Don't overcommit when in mixed mode. */ 508 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA) 509 return false; 510 511 return check_can_overcommit(space_info, space_info_used_bytes, bytes, flush); 512 } 513 514 bool btrfs_can_overcommit(const struct btrfs_space_info *space_info, u64 bytes, 515 enum btrfs_reserve_flush_enum flush) 516 { 517 u64 used; 518 519 /* Don't overcommit when in mixed mode */ 520 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA) 521 return false; 522 523 used = btrfs_space_info_used(space_info, true); 524 525 return check_can_overcommit(space_info, used, bytes, flush); 526 } 527 528 static void remove_ticket(struct btrfs_space_info *space_info, 529 struct reserve_ticket *ticket, int error) 530 { 531 lockdep_assert_held(&space_info->lock); 532 533 if (!list_empty(&ticket->list)) { 534 list_del_init(&ticket->list); 535 ASSERT(space_info->reclaim_size >= ticket->bytes, 536 "space_info->reclaim_size=%llu ticket->bytes=%llu", 537 space_info->reclaim_size, ticket->bytes); 538 space_info->reclaim_size -= ticket->bytes; 539 } 540 541 spin_lock(&ticket->lock); 542 /* 543 * If we are called from a task waiting on the ticket, it may happen 544 * that before it sets an error on the ticket, a reclaim task was able 545 * to satisfy the ticket. In that case ignore the error. 546 */ 547 if (error && ticket->bytes > 0) 548 ticket->error = error; 549 else 550 ticket->bytes = 0; 551 552 wake_up(&ticket->wait); 553 spin_unlock(&ticket->lock); 554 } 555 556 /* 557 * This is for space we already have accounted in space_info->bytes_may_use, so 558 * basically when we're returning space from block_rsv's. 559 */ 560 void btrfs_try_granting_tickets(struct btrfs_space_info *space_info) 561 { 562 struct list_head *head; 563 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH; 564 u64 used = btrfs_space_info_used(space_info, true); 565 566 lockdep_assert_held(&space_info->lock); 567 568 head = &space_info->priority_tickets; 569 again: 570 while (!list_empty(head)) { 571 struct reserve_ticket *ticket; 572 u64 used_after; 573 574 ticket = list_first_entry(head, struct reserve_ticket, list); 575 used_after = used + ticket->bytes; 576 577 /* Check and see if our ticket can be satisfied now. */ 578 if (used_after <= space_info->total_bytes || 579 can_overcommit(space_info, used, ticket->bytes, flush)) { 580 btrfs_space_info_update_bytes_may_use(space_info, ticket->bytes); 581 remove_ticket(space_info, ticket, 0); 582 space_info->tickets_id++; 583 used = used_after; 584 } else { 585 break; 586 } 587 } 588 589 if (head == &space_info->priority_tickets) { 590 head = &space_info->tickets; 591 flush = BTRFS_RESERVE_FLUSH_ALL; 592 goto again; 593 } 594 } 595 596 #define DUMP_BLOCK_RSV(fs_info, rsv_name) \ 597 do { \ 598 struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name; \ 599 spin_lock(&__rsv->lock); \ 600 btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu", \ 601 __rsv->size, __rsv->reserved); \ 602 spin_unlock(&__rsv->lock); \ 603 } while (0) 604 605 static const char *space_info_flag_to_str(const struct btrfs_space_info *space_info) 606 { 607 switch (space_info->flags) { 608 case BTRFS_BLOCK_GROUP_SYSTEM: 609 return "SYSTEM"; 610 case BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA: 611 return "DATA+METADATA"; 612 case BTRFS_BLOCK_GROUP_DATA: 613 return "DATA"; 614 case BTRFS_BLOCK_GROUP_METADATA: 615 return "METADATA"; 616 default: 617 return "UNKNOWN"; 618 } 619 } 620 621 static void dump_global_block_rsv(struct btrfs_fs_info *fs_info) 622 { 623 DUMP_BLOCK_RSV(fs_info, global_block_rsv); 624 DUMP_BLOCK_RSV(fs_info, trans_block_rsv); 625 DUMP_BLOCK_RSV(fs_info, chunk_block_rsv); 626 DUMP_BLOCK_RSV(fs_info, delayed_block_rsv); 627 DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv); 628 } 629 630 static void __btrfs_dump_space_info(const struct btrfs_space_info *info) 631 { 632 const struct btrfs_fs_info *fs_info = info->fs_info; 633 const char *flag_str = space_info_flag_to_str(info); 634 lockdep_assert_held(&info->lock); 635 636 /* The free space could be negative in case of overcommit */ 637 btrfs_info(fs_info, 638 "space_info %s (sub-group id %d) has %lld free, is %sfull", 639 flag_str, info->subgroup_id, 640 (s64)(info->total_bytes - btrfs_space_info_used(info, true)), 641 info->full ? "" : "not "); 642 btrfs_info(fs_info, 643 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu zone_unusable=%llu", 644 info->total_bytes, info->bytes_used, info->bytes_pinned, 645 info->bytes_reserved, info->bytes_may_use, 646 info->bytes_readonly, info->bytes_zone_unusable); 647 } 648 649 void btrfs_dump_space_info(struct btrfs_space_info *info, u64 bytes, 650 bool dump_block_groups) 651 { 652 struct btrfs_fs_info *fs_info = info->fs_info; 653 struct btrfs_block_group *cache; 654 u64 total_avail = 0; 655 int index = 0; 656 657 spin_lock(&info->lock); 658 __btrfs_dump_space_info(info); 659 dump_global_block_rsv(fs_info); 660 spin_unlock(&info->lock); 661 662 if (!dump_block_groups) 663 return; 664 665 down_read(&info->groups_sem); 666 again: 667 list_for_each_entry(cache, &info->block_groups[index], list) { 668 u64 avail; 669 670 spin_lock(&cache->lock); 671 avail = cache->length - cache->used - cache->pinned - 672 cache->reserved - cache->bytes_super - cache->zone_unusable; 673 btrfs_info(fs_info, 674 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %llu delalloc %llu super %llu zone_unusable (%llu bytes available) %s", 675 cache->start, cache->length, cache->used, cache->pinned, 676 cache->reserved, cache->delalloc_bytes, 677 cache->bytes_super, cache->zone_unusable, 678 avail, cache->ro ? "[readonly]" : ""); 679 spin_unlock(&cache->lock); 680 btrfs_dump_free_space(cache, bytes); 681 total_avail += avail; 682 } 683 if (++index < BTRFS_NR_RAID_TYPES) 684 goto again; 685 up_read(&info->groups_sem); 686 687 btrfs_info(fs_info, "%llu bytes available across all block groups", total_avail); 688 } 689 690 static inline u64 calc_reclaim_items_nr(const struct btrfs_fs_info *fs_info, 691 u64 to_reclaim) 692 { 693 u64 bytes; 694 u64 nr; 695 696 bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 697 nr = div64_u64(to_reclaim, bytes); 698 if (!nr) 699 nr = 1; 700 return nr; 701 } 702 703 /* 704 * shrink metadata reservation for delalloc 705 */ 706 static void shrink_delalloc(struct btrfs_space_info *space_info, 707 u64 to_reclaim, bool wait_ordered, 708 bool for_preempt) 709 { 710 struct btrfs_fs_info *fs_info = space_info->fs_info; 711 struct btrfs_trans_handle *trans; 712 u64 delalloc_bytes; 713 u64 ordered_bytes; 714 u64 items; 715 long time_left; 716 int loops; 717 718 delalloc_bytes = percpu_counter_sum_positive(&fs_info->delalloc_bytes); 719 ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes); 720 if (delalloc_bytes == 0 && ordered_bytes == 0) 721 return; 722 723 /* Calc the number of the pages we need flush for space reservation */ 724 if (to_reclaim == U64_MAX) { 725 items = U64_MAX; 726 } else { 727 /* 728 * to_reclaim is set to however much metadata we need to 729 * reclaim, but reclaiming that much data doesn't really track 730 * exactly. What we really want to do is reclaim full inode's 731 * worth of reservations, however that's not available to us 732 * here. We will take a fraction of the delalloc bytes for our 733 * flushing loops and hope for the best. Delalloc will expand 734 * the amount we write to cover an entire dirty extent, which 735 * will reclaim the metadata reservation for that range. If 736 * it's not enough subsequent flush stages will be more 737 * aggressive. 738 */ 739 to_reclaim = max(to_reclaim, delalloc_bytes >> 3); 740 items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2; 741 } 742 743 trans = current->journal_info; 744 745 /* 746 * If we are doing more ordered than delalloc we need to just wait on 747 * ordered extents, otherwise we'll waste time trying to flush delalloc 748 * that likely won't give us the space back we need. 749 */ 750 if (ordered_bytes > delalloc_bytes && !for_preempt) 751 wait_ordered = true; 752 753 loops = 0; 754 while ((delalloc_bytes || ordered_bytes) && loops < 3) { 755 u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT; 756 long nr_pages = min_t(u64, temp, LONG_MAX); 757 int async_pages; 758 759 btrfs_start_delalloc_roots(fs_info, nr_pages, true); 760 761 /* 762 * We need to make sure any outstanding async pages are now 763 * processed before we continue. This is because things like 764 * sync_inode() try to be smart and skip writing if the inode is 765 * marked clean. We don't use filemap_fwrite for flushing 766 * because we want to control how many pages we write out at a 767 * time, thus this is the only safe way to make sure we've 768 * waited for outstanding compressed workers to have started 769 * their jobs and thus have ordered extents set up properly. 770 * 771 * This exists because we do not want to wait for each 772 * individual inode to finish its async work, we simply want to 773 * start the IO on everybody, and then come back here and wait 774 * for all of the async work to catch up. Once we're done with 775 * that we know we'll have ordered extents for everything and we 776 * can decide if we wait for that or not. 777 * 778 * If we choose to replace this in the future, make absolutely 779 * sure that the proper waiting is being done in the async case, 780 * as there have been bugs in that area before. 781 */ 782 async_pages = atomic_read(&fs_info->async_delalloc_pages); 783 if (!async_pages) 784 goto skip_async; 785 786 /* 787 * We don't want to wait forever, if we wrote less pages in this 788 * loop than we have outstanding, only wait for that number of 789 * pages, otherwise we can wait for all async pages to finish 790 * before continuing. 791 */ 792 if (async_pages > nr_pages) 793 async_pages -= nr_pages; 794 else 795 async_pages = 0; 796 wait_event(fs_info->async_submit_wait, 797 atomic_read(&fs_info->async_delalloc_pages) <= 798 async_pages); 799 skip_async: 800 loops++; 801 if (wait_ordered && !trans) { 802 btrfs_wait_ordered_roots(fs_info, items, NULL); 803 } else { 804 time_left = schedule_timeout_killable(1); 805 if (time_left) 806 break; 807 } 808 809 /* 810 * If we are for preemption we just want a one-shot of delalloc 811 * flushing so we can stop flushing if we decide we don't need 812 * to anymore. 813 */ 814 if (for_preempt) 815 break; 816 817 spin_lock(&space_info->lock); 818 if (list_empty(&space_info->tickets) && 819 list_empty(&space_info->priority_tickets)) { 820 spin_unlock(&space_info->lock); 821 break; 822 } 823 spin_unlock(&space_info->lock); 824 825 delalloc_bytes = percpu_counter_sum_positive( 826 &fs_info->delalloc_bytes); 827 ordered_bytes = percpu_counter_sum_positive( 828 &fs_info->ordered_bytes); 829 } 830 } 831 832 /* 833 * Try to flush some data based on policy set by @state. This is only advisory 834 * and may fail for various reasons. The caller is supposed to examine the 835 * state of @space_info to detect the outcome. 836 */ 837 static void flush_space(struct btrfs_space_info *space_info, u64 num_bytes, 838 enum btrfs_flush_state state, bool for_preempt) 839 { 840 struct btrfs_fs_info *fs_info = space_info->fs_info; 841 struct btrfs_root *root = fs_info->tree_root; 842 struct btrfs_trans_handle *trans; 843 int nr; 844 int ret = 0; 845 846 switch (state) { 847 case FLUSH_DELAYED_ITEMS_NR: 848 case FLUSH_DELAYED_ITEMS: 849 if (state == FLUSH_DELAYED_ITEMS_NR) 850 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2; 851 else 852 nr = -1; 853 854 trans = btrfs_join_transaction_nostart(root); 855 if (IS_ERR(trans)) { 856 ret = PTR_ERR(trans); 857 if (ret == -ENOENT) 858 ret = 0; 859 break; 860 } 861 ret = btrfs_run_delayed_items_nr(trans, nr); 862 btrfs_end_transaction(trans); 863 break; 864 case FLUSH_DELALLOC: 865 case FLUSH_DELALLOC_WAIT: 866 case FLUSH_DELALLOC_FULL: 867 if (state == FLUSH_DELALLOC_FULL) 868 num_bytes = U64_MAX; 869 shrink_delalloc(space_info, num_bytes, 870 state != FLUSH_DELALLOC, for_preempt); 871 break; 872 case FLUSH_DELAYED_REFS_NR: 873 case FLUSH_DELAYED_REFS: 874 trans = btrfs_join_transaction_nostart(root); 875 if (IS_ERR(trans)) { 876 ret = PTR_ERR(trans); 877 if (ret == -ENOENT) 878 ret = 0; 879 break; 880 } 881 if (state == FLUSH_DELAYED_REFS_NR) 882 btrfs_run_delayed_refs(trans, num_bytes); 883 else 884 btrfs_run_delayed_refs(trans, 0); 885 btrfs_end_transaction(trans); 886 break; 887 case ALLOC_CHUNK: 888 case ALLOC_CHUNK_FORCE: 889 trans = btrfs_join_transaction(root); 890 if (IS_ERR(trans)) { 891 ret = PTR_ERR(trans); 892 break; 893 } 894 ret = btrfs_chunk_alloc(trans, space_info, 895 btrfs_get_alloc_profile(fs_info, space_info->flags), 896 (state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE : 897 CHUNK_ALLOC_FORCE); 898 btrfs_end_transaction(trans); 899 900 if (ret > 0 || ret == -ENOSPC) 901 ret = 0; 902 break; 903 case RUN_DELAYED_IPUTS: 904 /* 905 * If we have pending delayed iputs then we could free up a 906 * bunch of pinned space, so make sure we run the iputs before 907 * we do our pinned bytes check below. 908 */ 909 btrfs_run_delayed_iputs(fs_info); 910 btrfs_wait_on_delayed_iputs(fs_info); 911 break; 912 case COMMIT_TRANS: 913 ASSERT(current->journal_info == NULL); 914 /* 915 * We don't want to start a new transaction, just attach to the 916 * current one or wait it fully commits in case its commit is 917 * happening at the moment. Note: we don't use a nostart join 918 * because that does not wait for a transaction to fully commit 919 * (only for it to be unblocked, state TRANS_STATE_UNBLOCKED). 920 */ 921 ret = btrfs_commit_current_transaction(root); 922 break; 923 case RESET_ZONES: 924 ret = btrfs_reset_unused_block_groups(space_info, num_bytes); 925 break; 926 default: 927 ret = -ENOSPC; 928 break; 929 } 930 931 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state, 932 ret, for_preempt); 933 return; 934 } 935 936 static u64 btrfs_calc_reclaim_metadata_size(const struct btrfs_space_info *space_info) 937 { 938 u64 used; 939 u64 avail; 940 u64 to_reclaim = space_info->reclaim_size; 941 942 lockdep_assert_held(&space_info->lock); 943 944 avail = calc_available_free_space(space_info, BTRFS_RESERVE_FLUSH_ALL); 945 used = btrfs_space_info_used(space_info, true); 946 947 /* 948 * We may be flushing because suddenly we have less space than we had 949 * before, and now we're well over-committed based on our current free 950 * space. If that's the case add in our overage so we make sure to put 951 * appropriate pressure on the flushing state machine. 952 */ 953 if (space_info->total_bytes + avail < used) 954 to_reclaim += used - (space_info->total_bytes + avail); 955 956 return to_reclaim; 957 } 958 959 static bool need_preemptive_reclaim(const struct btrfs_space_info *space_info) 960 { 961 struct btrfs_fs_info *fs_info = space_info->fs_info; 962 const u64 global_rsv_size = btrfs_block_rsv_reserved(&fs_info->global_block_rsv); 963 u64 ordered, delalloc; 964 u64 thresh; 965 u64 used; 966 967 lockdep_assert_held(&space_info->lock); 968 969 /* 970 * We have tickets queued, bail so we don't compete with the async 971 * flushers. 972 */ 973 if (space_info->reclaim_size) 974 return false; 975 976 thresh = mult_perc(space_info->total_bytes, 90); 977 978 /* If we're just plain full then async reclaim just slows us down. */ 979 if ((space_info->bytes_used + space_info->bytes_reserved + 980 global_rsv_size) >= thresh) 981 return false; 982 983 used = space_info->bytes_may_use + space_info->bytes_pinned; 984 985 /* The total flushable belongs to the global rsv, don't flush. */ 986 if (global_rsv_size >= used) 987 return false; 988 989 /* 990 * 128MiB is 1/4 of the maximum global rsv size. If we have less than 991 * that devoted to other reservations then there's no sense in flushing, 992 * we don't have a lot of things that need flushing. 993 */ 994 if (used - global_rsv_size <= SZ_128M) 995 return false; 996 997 /* 998 * If we have over half of the free space occupied by reservations or 999 * pinned then we want to start flushing. 1000 * 1001 * We do not do the traditional thing here, which is to say 1002 * 1003 * if (used >= ((total_bytes + avail) / 2)) 1004 * return 1; 1005 * 1006 * because this doesn't quite work how we want. If we had more than 50% 1007 * of the space_info used by bytes_used and we had 0 available we'd just 1008 * constantly run the background flusher. Instead we want it to kick in 1009 * if our reclaimable space exceeds our clamped free space. 1010 * 1011 * Our clamping range is 2^1 -> 2^8. Practically speaking that means 1012 * the following: 1013 * 1014 * Amount of RAM Minimum threshold Maximum threshold 1015 * 1016 * 256GiB 1GiB 128GiB 1017 * 128GiB 512MiB 64GiB 1018 * 64GiB 256MiB 32GiB 1019 * 32GiB 128MiB 16GiB 1020 * 16GiB 64MiB 8GiB 1021 * 1022 * These are the range our thresholds will fall in, corresponding to how 1023 * much delalloc we need for the background flusher to kick in. 1024 */ 1025 1026 thresh = calc_available_free_space(space_info, BTRFS_RESERVE_FLUSH_ALL); 1027 used = space_info->bytes_used + space_info->bytes_reserved + 1028 space_info->bytes_readonly + global_rsv_size; 1029 if (used < space_info->total_bytes) 1030 thresh += space_info->total_bytes - used; 1031 thresh >>= space_info->clamp; 1032 1033 used = space_info->bytes_pinned; 1034 1035 /* 1036 * If we have more ordered bytes than delalloc bytes then we're either 1037 * doing a lot of DIO, or we simply don't have a lot of delalloc waiting 1038 * around. Preemptive flushing is only useful in that it can free up 1039 * space before tickets need to wait for things to finish. In the case 1040 * of ordered extents, preemptively waiting on ordered extents gets us 1041 * nothing, if our reservations are tied up in ordered extents we'll 1042 * simply have to slow down writers by forcing them to wait on ordered 1043 * extents. 1044 * 1045 * In the case that ordered is larger than delalloc, only include the 1046 * block reserves that we would actually be able to directly reclaim 1047 * from. In this case if we're heavy on metadata operations this will 1048 * clearly be heavy enough to warrant preemptive flushing. In the case 1049 * of heavy DIO or ordered reservations, preemptive flushing will just 1050 * waste time and cause us to slow down. 1051 * 1052 * We want to make sure we truly are maxed out on ordered however, so 1053 * cut ordered in half, and if it's still higher than delalloc then we 1054 * can keep flushing. This is to avoid the case where we start 1055 * flushing, and now delalloc == ordered and we stop preemptively 1056 * flushing when we could still have several gigs of delalloc to flush. 1057 */ 1058 ordered = percpu_counter_read_positive(&fs_info->ordered_bytes) >> 1; 1059 delalloc = percpu_counter_read_positive(&fs_info->delalloc_bytes); 1060 if (ordered >= delalloc) 1061 used += btrfs_block_rsv_reserved(&fs_info->delayed_refs_rsv) + 1062 btrfs_block_rsv_reserved(&fs_info->delayed_block_rsv); 1063 else 1064 used += space_info->bytes_may_use - global_rsv_size; 1065 1066 return (used >= thresh && !btrfs_fs_closing(fs_info) && 1067 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)); 1068 } 1069 1070 static bool steal_from_global_rsv(struct btrfs_space_info *space_info, 1071 struct reserve_ticket *ticket) 1072 { 1073 struct btrfs_fs_info *fs_info = space_info->fs_info; 1074 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 1075 u64 min_bytes; 1076 1077 lockdep_assert_held(&space_info->lock); 1078 1079 if (!ticket->steal) 1080 return false; 1081 1082 if (global_rsv->space_info != space_info) 1083 return false; 1084 1085 spin_lock(&global_rsv->lock); 1086 min_bytes = mult_perc(global_rsv->size, 10); 1087 if (global_rsv->reserved < min_bytes + ticket->bytes) { 1088 spin_unlock(&global_rsv->lock); 1089 return false; 1090 } 1091 global_rsv->reserved -= ticket->bytes; 1092 if (global_rsv->reserved < global_rsv->size) 1093 global_rsv->full = false; 1094 spin_unlock(&global_rsv->lock); 1095 1096 remove_ticket(space_info, ticket, 0); 1097 space_info->tickets_id++; 1098 1099 return true; 1100 } 1101 1102 /* 1103 * We've exhausted our flushing, start failing tickets. 1104 * 1105 * @space_info - the space info we were flushing 1106 * 1107 * We call this when we've exhausted our flushing ability and haven't made 1108 * progress in satisfying tickets. The reservation code handles tickets in 1109 * order, so if there is a large ticket first and then smaller ones we could 1110 * very well satisfy the smaller tickets. This will attempt to wake up any 1111 * tickets in the list to catch this case. 1112 * 1113 * This function returns true if it was able to make progress by clearing out 1114 * other tickets, or if it stumbles across a ticket that was smaller than the 1115 * first ticket. 1116 */ 1117 static bool maybe_fail_all_tickets(struct btrfs_space_info *space_info) 1118 { 1119 struct btrfs_fs_info *fs_info = space_info->fs_info; 1120 struct reserve_ticket *ticket; 1121 u64 tickets_id = space_info->tickets_id; 1122 const int abort_error = BTRFS_FS_ERROR(fs_info); 1123 1124 trace_btrfs_fail_all_tickets(fs_info, space_info); 1125 1126 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 1127 btrfs_info(fs_info, "cannot satisfy tickets, dumping space info"); 1128 __btrfs_dump_space_info(space_info); 1129 } 1130 1131 while (!list_empty(&space_info->tickets) && 1132 tickets_id == space_info->tickets_id) { 1133 ticket = list_first_entry(&space_info->tickets, 1134 struct reserve_ticket, list); 1135 if (unlikely(abort_error)) { 1136 remove_ticket(space_info, ticket, abort_error); 1137 } else { 1138 if (steal_from_global_rsv(space_info, ticket)) 1139 return true; 1140 1141 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 1142 btrfs_info(fs_info, "failing ticket with %llu bytes", 1143 ticket->bytes); 1144 1145 remove_ticket(space_info, ticket, -ENOSPC); 1146 1147 /* 1148 * We're just throwing tickets away, so more flushing may 1149 * not trip over btrfs_try_granting_tickets, so we need 1150 * to call it here to see if we can make progress with 1151 * the next ticket in the list. 1152 */ 1153 btrfs_try_granting_tickets(space_info); 1154 } 1155 } 1156 return (tickets_id != space_info->tickets_id); 1157 } 1158 1159 static void do_async_reclaim_metadata_space(struct btrfs_space_info *space_info) 1160 { 1161 struct btrfs_fs_info *fs_info = space_info->fs_info; 1162 u64 to_reclaim; 1163 enum btrfs_flush_state flush_state; 1164 int commit_cycles = 0; 1165 u64 last_tickets_id; 1166 enum btrfs_flush_state final_state; 1167 1168 if (btrfs_is_zoned(fs_info)) 1169 final_state = RESET_ZONES; 1170 else 1171 final_state = COMMIT_TRANS; 1172 1173 spin_lock(&space_info->lock); 1174 to_reclaim = btrfs_calc_reclaim_metadata_size(space_info); 1175 if (!to_reclaim) { 1176 space_info->flush = false; 1177 spin_unlock(&space_info->lock); 1178 return; 1179 } 1180 last_tickets_id = space_info->tickets_id; 1181 spin_unlock(&space_info->lock); 1182 1183 flush_state = FLUSH_DELAYED_ITEMS_NR; 1184 do { 1185 flush_space(space_info, to_reclaim, flush_state, false); 1186 spin_lock(&space_info->lock); 1187 if (list_empty(&space_info->tickets)) { 1188 space_info->flush = false; 1189 spin_unlock(&space_info->lock); 1190 return; 1191 } 1192 to_reclaim = btrfs_calc_reclaim_metadata_size(space_info); 1193 if (last_tickets_id == space_info->tickets_id) { 1194 flush_state++; 1195 } else { 1196 last_tickets_id = space_info->tickets_id; 1197 flush_state = FLUSH_DELAYED_ITEMS_NR; 1198 if (commit_cycles) 1199 commit_cycles--; 1200 } 1201 1202 /* 1203 * We do not want to empty the system of delalloc unless we're 1204 * under heavy pressure, so allow one trip through the flushing 1205 * logic before we start doing a FLUSH_DELALLOC_FULL. 1206 */ 1207 if (flush_state == FLUSH_DELALLOC_FULL && !commit_cycles) 1208 flush_state++; 1209 1210 /* 1211 * We don't want to force a chunk allocation until we've tried 1212 * pretty hard to reclaim space. Think of the case where we 1213 * freed up a bunch of space and so have a lot of pinned space 1214 * to reclaim. We would rather use that than possibly create a 1215 * underutilized metadata chunk. So if this is our first run 1216 * through the flushing state machine skip ALLOC_CHUNK_FORCE and 1217 * commit the transaction. If nothing has changed the next go 1218 * around then we can force a chunk allocation. 1219 */ 1220 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles) 1221 flush_state++; 1222 1223 if (flush_state > final_state) { 1224 commit_cycles++; 1225 if (commit_cycles > 2) { 1226 if (maybe_fail_all_tickets(space_info)) { 1227 flush_state = FLUSH_DELAYED_ITEMS_NR; 1228 commit_cycles--; 1229 } else { 1230 space_info->flush = false; 1231 } 1232 } else { 1233 flush_state = FLUSH_DELAYED_ITEMS_NR; 1234 } 1235 } 1236 spin_unlock(&space_info->lock); 1237 } while (flush_state <= final_state); 1238 } 1239 1240 /* 1241 * This is for normal flushers, it can wait as much time as needed. We will 1242 * loop and continuously try to flush as long as we are making progress. We 1243 * count progress as clearing off tickets each time we have to loop. 1244 */ 1245 static void btrfs_async_reclaim_metadata_space(struct work_struct *work) 1246 { 1247 struct btrfs_fs_info *fs_info; 1248 struct btrfs_space_info *space_info; 1249 1250 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work); 1251 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 1252 do_async_reclaim_metadata_space(space_info); 1253 for (int i = 0; i < BTRFS_SPACE_INFO_SUB_GROUP_MAX; i++) { 1254 if (space_info->sub_group[i]) 1255 do_async_reclaim_metadata_space(space_info->sub_group[i]); 1256 } 1257 } 1258 1259 /* 1260 * This handles pre-flushing of metadata space before we get to the point that 1261 * we need to start blocking threads on tickets. The logic here is different 1262 * from the other flush paths because it doesn't rely on tickets to tell us how 1263 * much we need to flush, instead it attempts to keep us below the 80% full 1264 * watermark of space by flushing whichever reservation pool is currently the 1265 * largest. 1266 */ 1267 static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work) 1268 { 1269 struct btrfs_fs_info *fs_info; 1270 struct btrfs_space_info *space_info; 1271 struct btrfs_block_rsv *delayed_block_rsv; 1272 struct btrfs_block_rsv *delayed_refs_rsv; 1273 struct btrfs_block_rsv *global_rsv; 1274 struct btrfs_block_rsv *trans_rsv; 1275 int loops = 0; 1276 1277 fs_info = container_of(work, struct btrfs_fs_info, 1278 preempt_reclaim_work); 1279 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 1280 delayed_block_rsv = &fs_info->delayed_block_rsv; 1281 delayed_refs_rsv = &fs_info->delayed_refs_rsv; 1282 global_rsv = &fs_info->global_block_rsv; 1283 trans_rsv = &fs_info->trans_block_rsv; 1284 1285 spin_lock(&space_info->lock); 1286 while (need_preemptive_reclaim(space_info)) { 1287 enum btrfs_flush_state flush; 1288 u64 delalloc_size = 0; 1289 u64 to_reclaim, block_rsv_size; 1290 const u64 global_rsv_size = btrfs_block_rsv_reserved(global_rsv); 1291 const u64 bytes_may_use = space_info->bytes_may_use; 1292 const u64 bytes_pinned = space_info->bytes_pinned; 1293 1294 spin_unlock(&space_info->lock); 1295 /* 1296 * We don't have a precise counter for the metadata being 1297 * reserved for delalloc, so we'll approximate it by subtracting 1298 * out the block rsv's space from the bytes_may_use. If that 1299 * amount is higher than the individual reserves, then we can 1300 * assume it's tied up in delalloc reservations. 1301 */ 1302 block_rsv_size = global_rsv_size + 1303 btrfs_block_rsv_reserved(delayed_block_rsv) + 1304 btrfs_block_rsv_reserved(delayed_refs_rsv) + 1305 btrfs_block_rsv_reserved(trans_rsv); 1306 if (block_rsv_size < bytes_may_use) 1307 delalloc_size = bytes_may_use - block_rsv_size; 1308 1309 /* 1310 * We don't want to include the global_rsv in our calculation, 1311 * because that's space we can't touch. Subtract it from the 1312 * block_rsv_size for the next checks. 1313 */ 1314 block_rsv_size -= global_rsv_size; 1315 1316 /* 1317 * We really want to avoid flushing delalloc too much, as it 1318 * could result in poor allocation patterns, so only flush it if 1319 * it's larger than the rest of the pools combined. 1320 */ 1321 if (delalloc_size > block_rsv_size) { 1322 to_reclaim = delalloc_size; 1323 flush = FLUSH_DELALLOC; 1324 } else if (bytes_pinned > 1325 (btrfs_block_rsv_reserved(delayed_block_rsv) + 1326 btrfs_block_rsv_reserved(delayed_refs_rsv))) { 1327 to_reclaim = bytes_pinned; 1328 flush = COMMIT_TRANS; 1329 } else if (btrfs_block_rsv_reserved(delayed_block_rsv) > 1330 btrfs_block_rsv_reserved(delayed_refs_rsv)) { 1331 to_reclaim = btrfs_block_rsv_reserved(delayed_block_rsv); 1332 flush = FLUSH_DELAYED_ITEMS_NR; 1333 } else { 1334 to_reclaim = btrfs_block_rsv_reserved(delayed_refs_rsv); 1335 flush = FLUSH_DELAYED_REFS_NR; 1336 } 1337 1338 loops++; 1339 1340 /* 1341 * We don't want to reclaim everything, just a portion, so scale 1342 * down the to_reclaim by 1/4. If it takes us down to 0, 1343 * reclaim 1 items worth. 1344 */ 1345 to_reclaim >>= 2; 1346 if (!to_reclaim) 1347 to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1); 1348 flush_space(space_info, to_reclaim, flush, true); 1349 cond_resched(); 1350 spin_lock(&space_info->lock); 1351 } 1352 1353 /* We only went through once, back off our clamping. */ 1354 if (loops == 1 && !space_info->reclaim_size) 1355 space_info->clamp = max(1, space_info->clamp - 1); 1356 trace_btrfs_done_preemptive_reclaim(fs_info, space_info); 1357 spin_unlock(&space_info->lock); 1358 } 1359 1360 /* 1361 * FLUSH_DELALLOC_WAIT: 1362 * Space is freed from flushing delalloc in one of two ways. 1363 * 1364 * 1) compression is on and we allocate less space than we reserved 1365 * 2) we are overwriting existing space 1366 * 1367 * For #1 that extra space is reclaimed as soon as the delalloc pages are 1368 * COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent 1369 * length to ->bytes_reserved, and subtracts the reserved space from 1370 * ->bytes_may_use. 1371 * 1372 * For #2 this is trickier. Once the ordered extent runs we will drop the 1373 * extent in the range we are overwriting, which creates a delayed ref for 1374 * that freed extent. This however is not reclaimed until the transaction 1375 * commits, thus the next stages. 1376 * 1377 * RUN_DELAYED_IPUTS 1378 * If we are freeing inodes, we want to make sure all delayed iputs have 1379 * completed, because they could have been on an inode with i_nlink == 0, and 1380 * thus have been truncated and freed up space. But again this space is not 1381 * immediately reusable, it comes in the form of a delayed ref, which must be 1382 * run and then the transaction must be committed. 1383 * 1384 * COMMIT_TRANS 1385 * This is where we reclaim all of the pinned space generated by running the 1386 * iputs 1387 * 1388 * RESET_ZONES 1389 * This state works only for the zoned mode. We scan the unused block group 1390 * list and reset the zones and reuse the block group. 1391 * 1392 * ALLOC_CHUNK_FORCE 1393 * For data we start with alloc chunk force, however we could have been full 1394 * before, and then the transaction commit could have freed new block groups, 1395 * so if we now have space to allocate do the force chunk allocation. 1396 */ 1397 static const enum btrfs_flush_state data_flush_states[] = { 1398 FLUSH_DELALLOC_FULL, 1399 RUN_DELAYED_IPUTS, 1400 COMMIT_TRANS, 1401 RESET_ZONES, 1402 ALLOC_CHUNK_FORCE, 1403 }; 1404 1405 static void do_async_reclaim_data_space(struct btrfs_space_info *space_info) 1406 { 1407 struct btrfs_fs_info *fs_info = space_info->fs_info; 1408 u64 last_tickets_id; 1409 enum btrfs_flush_state flush_state = 0; 1410 1411 spin_lock(&space_info->lock); 1412 if (list_empty(&space_info->tickets)) { 1413 space_info->flush = false; 1414 spin_unlock(&space_info->lock); 1415 return; 1416 } 1417 last_tickets_id = space_info->tickets_id; 1418 spin_unlock(&space_info->lock); 1419 1420 while (!space_info->full) { 1421 flush_space(space_info, U64_MAX, ALLOC_CHUNK_FORCE, false); 1422 spin_lock(&space_info->lock); 1423 if (list_empty(&space_info->tickets)) { 1424 space_info->flush = false; 1425 spin_unlock(&space_info->lock); 1426 return; 1427 } 1428 1429 /* Something happened, fail everything and bail. */ 1430 if (unlikely(BTRFS_FS_ERROR(fs_info))) 1431 goto aborted_fs; 1432 last_tickets_id = space_info->tickets_id; 1433 spin_unlock(&space_info->lock); 1434 } 1435 1436 while (flush_state < ARRAY_SIZE(data_flush_states)) { 1437 flush_space(space_info, U64_MAX, 1438 data_flush_states[flush_state], false); 1439 spin_lock(&space_info->lock); 1440 if (list_empty(&space_info->tickets)) { 1441 space_info->flush = false; 1442 spin_unlock(&space_info->lock); 1443 return; 1444 } 1445 1446 if (last_tickets_id == space_info->tickets_id) { 1447 flush_state++; 1448 } else { 1449 last_tickets_id = space_info->tickets_id; 1450 flush_state = 0; 1451 } 1452 1453 if (flush_state >= ARRAY_SIZE(data_flush_states)) { 1454 if (space_info->full) { 1455 if (maybe_fail_all_tickets(space_info)) 1456 flush_state = 0; 1457 else 1458 space_info->flush = false; 1459 } else { 1460 flush_state = 0; 1461 } 1462 1463 /* Something happened, fail everything and bail. */ 1464 if (unlikely(BTRFS_FS_ERROR(fs_info))) 1465 goto aborted_fs; 1466 1467 } 1468 spin_unlock(&space_info->lock); 1469 } 1470 return; 1471 1472 aborted_fs: 1473 maybe_fail_all_tickets(space_info); 1474 space_info->flush = false; 1475 spin_unlock(&space_info->lock); 1476 } 1477 1478 static void btrfs_async_reclaim_data_space(struct work_struct *work) 1479 { 1480 struct btrfs_fs_info *fs_info; 1481 struct btrfs_space_info *space_info; 1482 1483 fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work); 1484 space_info = fs_info->data_sinfo; 1485 do_async_reclaim_data_space(space_info); 1486 for (int i = 0; i < BTRFS_SPACE_INFO_SUB_GROUP_MAX; i++) 1487 if (space_info->sub_group[i]) 1488 do_async_reclaim_data_space(space_info->sub_group[i]); 1489 } 1490 1491 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info) 1492 { 1493 INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space); 1494 INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space); 1495 INIT_WORK(&fs_info->preempt_reclaim_work, 1496 btrfs_preempt_reclaim_metadata_space); 1497 } 1498 1499 static const enum btrfs_flush_state priority_flush_states[] = { 1500 FLUSH_DELAYED_ITEMS_NR, 1501 FLUSH_DELAYED_ITEMS, 1502 RESET_ZONES, 1503 ALLOC_CHUNK, 1504 }; 1505 1506 static const enum btrfs_flush_state evict_flush_states[] = { 1507 FLUSH_DELAYED_ITEMS_NR, 1508 FLUSH_DELAYED_ITEMS, 1509 FLUSH_DELAYED_REFS_NR, 1510 FLUSH_DELAYED_REFS, 1511 FLUSH_DELALLOC, 1512 FLUSH_DELALLOC_WAIT, 1513 FLUSH_DELALLOC_FULL, 1514 ALLOC_CHUNK, 1515 COMMIT_TRANS, 1516 RESET_ZONES, 1517 }; 1518 1519 static bool is_ticket_served(struct reserve_ticket *ticket) 1520 { 1521 bool ret; 1522 1523 spin_lock(&ticket->lock); 1524 ret = (ticket->bytes == 0); 1525 spin_unlock(&ticket->lock); 1526 1527 return ret; 1528 } 1529 1530 static void priority_reclaim_metadata_space(struct btrfs_space_info *space_info, 1531 struct reserve_ticket *ticket, 1532 const enum btrfs_flush_state *states, 1533 int states_nr) 1534 { 1535 struct btrfs_fs_info *fs_info = space_info->fs_info; 1536 u64 to_reclaim; 1537 int flush_state = 0; 1538 1539 /* 1540 * This is the priority reclaim path, so to_reclaim could be >0 still 1541 * because we may have only satisfied the priority tickets and still 1542 * left non priority tickets on the list. We would then have 1543 * to_reclaim but ->bytes == 0. 1544 */ 1545 if (is_ticket_served(ticket)) 1546 return; 1547 1548 spin_lock(&space_info->lock); 1549 to_reclaim = btrfs_calc_reclaim_metadata_size(space_info); 1550 spin_unlock(&space_info->lock); 1551 1552 while (flush_state < states_nr) { 1553 flush_space(space_info, to_reclaim, states[flush_state], false); 1554 if (is_ticket_served(ticket)) 1555 return; 1556 flush_state++; 1557 } 1558 1559 spin_lock(&space_info->lock); 1560 /* 1561 * Attempt to steal from the global rsv if we can, except if the fs was 1562 * turned into error mode due to a transaction abort when flushing space 1563 * above, in that case fail with the abort error instead of returning 1564 * success to the caller if we can steal from the global rsv - this is 1565 * just to have caller fail immediately instead of later when trying to 1566 * modify the fs, making it easier to debug -ENOSPC problems. 1567 */ 1568 if (unlikely(BTRFS_FS_ERROR(fs_info))) 1569 remove_ticket(space_info, ticket, BTRFS_FS_ERROR(fs_info)); 1570 else if (!steal_from_global_rsv(space_info, ticket)) 1571 remove_ticket(space_info, ticket, -ENOSPC); 1572 1573 /* 1574 * We must run try_granting_tickets here because we could be a large 1575 * ticket in front of a smaller ticket that can now be satisfied with 1576 * the available space. 1577 */ 1578 btrfs_try_granting_tickets(space_info); 1579 spin_unlock(&space_info->lock); 1580 } 1581 1582 static void priority_reclaim_data_space(struct btrfs_space_info *space_info, 1583 struct reserve_ticket *ticket) 1584 { 1585 /* We could have been granted before we got here. */ 1586 if (is_ticket_served(ticket)) 1587 return; 1588 1589 spin_lock(&space_info->lock); 1590 while (!space_info->full) { 1591 spin_unlock(&space_info->lock); 1592 flush_space(space_info, U64_MAX, ALLOC_CHUNK_FORCE, false); 1593 if (is_ticket_served(ticket)) 1594 return; 1595 spin_lock(&space_info->lock); 1596 } 1597 1598 remove_ticket(space_info, ticket, -ENOSPC); 1599 btrfs_try_granting_tickets(space_info); 1600 spin_unlock(&space_info->lock); 1601 } 1602 1603 static void wait_reserve_ticket(struct btrfs_space_info *space_info, 1604 struct reserve_ticket *ticket) 1605 1606 { 1607 DEFINE_WAIT(wait); 1608 1609 spin_lock(&ticket->lock); 1610 while (ticket->bytes > 0 && ticket->error == 0) { 1611 int ret; 1612 1613 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE); 1614 spin_unlock(&ticket->lock); 1615 if (ret) { 1616 /* 1617 * Delete us from the list. After we unlock the space 1618 * info, we don't want the async reclaim job to reserve 1619 * space for this ticket. If that would happen, then the 1620 * ticket's task would not known that space was reserved 1621 * despite getting an error, resulting in a space leak 1622 * (bytes_may_use counter of our space_info). 1623 */ 1624 spin_lock(&space_info->lock); 1625 remove_ticket(space_info, ticket, -EINTR); 1626 spin_unlock(&space_info->lock); 1627 return; 1628 } 1629 1630 schedule(); 1631 1632 finish_wait(&ticket->wait, &wait); 1633 spin_lock(&ticket->lock); 1634 } 1635 spin_unlock(&ticket->lock); 1636 } 1637 1638 /* 1639 * Do the appropriate flushing and waiting for a ticket. 1640 * 1641 * @space_info: space info for the reservation 1642 * @ticket: ticket for the reservation 1643 * @start_ns: timestamp when the reservation started 1644 * @orig_bytes: amount of bytes originally reserved 1645 * @flush: how much we can flush 1646 * 1647 * This does the work of figuring out how to flush for the ticket, waiting for 1648 * the reservation, and returning the appropriate error if there is one. 1649 */ 1650 static int handle_reserve_ticket(struct btrfs_space_info *space_info, 1651 struct reserve_ticket *ticket, 1652 u64 start_ns, u64 orig_bytes, 1653 enum btrfs_reserve_flush_enum flush) 1654 { 1655 int ret; 1656 1657 switch (flush) { 1658 case BTRFS_RESERVE_FLUSH_DATA: 1659 case BTRFS_RESERVE_FLUSH_ALL: 1660 case BTRFS_RESERVE_FLUSH_ALL_STEAL: 1661 wait_reserve_ticket(space_info, ticket); 1662 break; 1663 case BTRFS_RESERVE_FLUSH_LIMIT: 1664 priority_reclaim_metadata_space(space_info, ticket, 1665 priority_flush_states, 1666 ARRAY_SIZE(priority_flush_states)); 1667 break; 1668 case BTRFS_RESERVE_FLUSH_EVICT: 1669 priority_reclaim_metadata_space(space_info, ticket, 1670 evict_flush_states, 1671 ARRAY_SIZE(evict_flush_states)); 1672 break; 1673 case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE: 1674 priority_reclaim_data_space(space_info, ticket); 1675 break; 1676 default: 1677 ASSERT(0, "flush=%d", flush); 1678 break; 1679 } 1680 1681 ret = ticket->error; 1682 ASSERT(list_empty(&ticket->list)); 1683 /* 1684 * Check that we can't have an error set if the reservation succeeded, 1685 * as that would confuse tasks and lead them to error out without 1686 * releasing reserved space (if an error happens the expectation is that 1687 * space wasn't reserved at all). 1688 */ 1689 ASSERT(!(ticket->bytes == 0 && ticket->error), 1690 "ticket->bytes=%llu ticket->error=%d", ticket->bytes, ticket->error); 1691 trace_btrfs_reserve_ticket(space_info->fs_info, space_info->flags, 1692 orig_bytes, start_ns, flush, ticket->error); 1693 return ret; 1694 } 1695 1696 /* 1697 * This returns true if this flush state will go through the ordinary flushing 1698 * code. 1699 */ 1700 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush) 1701 { 1702 return (flush == BTRFS_RESERVE_FLUSH_ALL) || 1703 (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL); 1704 } 1705 1706 static inline void maybe_clamp_preempt(struct btrfs_space_info *space_info) 1707 { 1708 struct btrfs_fs_info *fs_info = space_info->fs_info; 1709 u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes); 1710 u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes); 1711 1712 /* 1713 * If we're heavy on ordered operations then clamping won't help us. We 1714 * need to clamp specifically to keep up with dirty'ing buffered 1715 * writers, because there's not a 1:1 correlation of writing delalloc 1716 * and freeing space, like there is with flushing delayed refs or 1717 * delayed nodes. If we're already more ordered than delalloc then 1718 * we're keeping up, otherwise we aren't and should probably clamp. 1719 */ 1720 if (ordered < delalloc) 1721 space_info->clamp = min(space_info->clamp + 1, 8); 1722 } 1723 1724 static inline bool can_steal(enum btrfs_reserve_flush_enum flush) 1725 { 1726 return (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL || 1727 flush == BTRFS_RESERVE_FLUSH_EVICT); 1728 } 1729 1730 /* 1731 * NO_FLUSH and FLUSH_EMERGENCY don't want to create a ticket, they just want to 1732 * fail as quickly as possible. 1733 */ 1734 static inline bool can_ticket(enum btrfs_reserve_flush_enum flush) 1735 { 1736 return (flush != BTRFS_RESERVE_NO_FLUSH && 1737 flush != BTRFS_RESERVE_FLUSH_EMERGENCY); 1738 } 1739 1740 /* 1741 * Try to reserve bytes from the block_rsv's space. 1742 * 1743 * @space_info: space info we want to allocate from 1744 * @orig_bytes: number of bytes we want 1745 * @flush: whether or not we can flush to make our reservation 1746 * 1747 * This will reserve orig_bytes number of bytes from the space info associated 1748 * with the block_rsv. If there is not enough space it will make an attempt to 1749 * flush out space to make room. It will do this by flushing delalloc if 1750 * possible or committing the transaction. If flush is 0 then no attempts to 1751 * regain reservations will be made and this will fail if there is not enough 1752 * space already. 1753 */ 1754 static int reserve_bytes(struct btrfs_space_info *space_info, u64 orig_bytes, 1755 enum btrfs_reserve_flush_enum flush) 1756 { 1757 struct btrfs_fs_info *fs_info = space_info->fs_info; 1758 struct work_struct *async_work; 1759 struct reserve_ticket ticket; 1760 u64 start_ns = 0; 1761 u64 used; 1762 int ret = -ENOSPC; 1763 bool pending_tickets; 1764 1765 ASSERT(orig_bytes, "orig_bytes=%llu", orig_bytes); 1766 /* 1767 * If have a transaction handle (current->journal_info != NULL), then 1768 * the flush method can not be neither BTRFS_RESERVE_FLUSH_ALL* nor 1769 * BTRFS_RESERVE_FLUSH_EVICT, as we could deadlock because those 1770 * flushing methods can trigger transaction commits. 1771 */ 1772 if (current->journal_info) { 1773 /* One assert per line for easier debugging. */ 1774 ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL, "flush=%d", flush); 1775 ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL_STEAL, "flush=%d", flush); 1776 ASSERT(flush != BTRFS_RESERVE_FLUSH_EVICT, "flush=%d", flush); 1777 } 1778 1779 if (flush == BTRFS_RESERVE_FLUSH_DATA) 1780 async_work = &fs_info->async_data_reclaim_work; 1781 else 1782 async_work = &fs_info->async_reclaim_work; 1783 1784 spin_lock(&space_info->lock); 1785 used = btrfs_space_info_used(space_info, true); 1786 1787 /* 1788 * We don't want NO_FLUSH allocations to jump everybody, they can 1789 * generally handle ENOSPC in a different way, so treat them the same as 1790 * normal flushers when it comes to skipping pending tickets. 1791 */ 1792 if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH)) 1793 pending_tickets = !list_empty(&space_info->tickets) || 1794 !list_empty(&space_info->priority_tickets); 1795 else 1796 pending_tickets = !list_empty(&space_info->priority_tickets); 1797 1798 /* 1799 * Carry on if we have enough space (short-circuit) OR call 1800 * can_overcommit() to ensure we can overcommit to continue. 1801 */ 1802 if (!pending_tickets && 1803 ((used + orig_bytes <= space_info->total_bytes) || 1804 can_overcommit(space_info, used, orig_bytes, flush))) { 1805 btrfs_space_info_update_bytes_may_use(space_info, orig_bytes); 1806 ret = 0; 1807 } 1808 1809 /* 1810 * Things are dire, we need to make a reservation so we don't abort. We 1811 * will let this reservation go through as long as we have actual space 1812 * left to allocate for the block. 1813 */ 1814 if (ret && unlikely(flush == BTRFS_RESERVE_FLUSH_EMERGENCY)) { 1815 used -= space_info->bytes_may_use; 1816 if (used + orig_bytes <= space_info->total_bytes) { 1817 btrfs_space_info_update_bytes_may_use(space_info, orig_bytes); 1818 ret = 0; 1819 } 1820 } 1821 1822 /* 1823 * If we couldn't make a reservation then setup our reservation ticket 1824 * and kick the async worker if it's not already running. 1825 * 1826 * If we are a priority flusher then we just need to add our ticket to 1827 * the list and we will do our own flushing further down. 1828 */ 1829 if (ret && can_ticket(flush)) { 1830 ticket.bytes = orig_bytes; 1831 ticket.error = 0; 1832 space_info->reclaim_size += ticket.bytes; 1833 init_waitqueue_head(&ticket.wait); 1834 spin_lock_init(&ticket.lock); 1835 ticket.steal = can_steal(flush); 1836 if (trace_btrfs_reserve_ticket_enabled()) 1837 start_ns = ktime_get_ns(); 1838 1839 if (flush == BTRFS_RESERVE_FLUSH_ALL || 1840 flush == BTRFS_RESERVE_FLUSH_ALL_STEAL || 1841 flush == BTRFS_RESERVE_FLUSH_DATA) { 1842 list_add_tail(&ticket.list, &space_info->tickets); 1843 if (!space_info->flush) { 1844 /* 1845 * We were forced to add a reserve ticket, so 1846 * our preemptive flushing is unable to keep 1847 * up. Clamp down on the threshold for the 1848 * preemptive flushing in order to keep up with 1849 * the workload. 1850 */ 1851 maybe_clamp_preempt(space_info); 1852 1853 space_info->flush = true; 1854 trace_btrfs_trigger_flush(fs_info, 1855 space_info->flags, 1856 orig_bytes, flush, 1857 "enospc"); 1858 queue_work(system_dfl_wq, async_work); 1859 } 1860 } else { 1861 list_add_tail(&ticket.list, 1862 &space_info->priority_tickets); 1863 } 1864 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 1865 /* 1866 * We will do the space reservation dance during log replay, 1867 * which means we won't have fs_info->fs_root set, so don't do 1868 * the async reclaim as we will panic. 1869 */ 1870 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) && 1871 !work_busy(&fs_info->preempt_reclaim_work) && 1872 need_preemptive_reclaim(space_info)) { 1873 trace_btrfs_trigger_flush(fs_info, space_info->flags, 1874 orig_bytes, flush, "preempt"); 1875 queue_work(system_dfl_wq, 1876 &fs_info->preempt_reclaim_work); 1877 } 1878 } 1879 spin_unlock(&space_info->lock); 1880 if (!ret || !can_ticket(flush)) 1881 return ret; 1882 1883 return handle_reserve_ticket(space_info, &ticket, start_ns, orig_bytes, flush); 1884 } 1885 1886 /* 1887 * Try to reserve metadata bytes from the block_rsv's space. 1888 * 1889 * @space_info: the space_info we're allocating for 1890 * @orig_bytes: number of bytes we want 1891 * @flush: whether or not we can flush to make our reservation 1892 * 1893 * This will reserve orig_bytes number of bytes from the space info associated 1894 * with the block_rsv. If there is not enough space it will make an attempt to 1895 * flush out space to make room. It will do this by flushing delalloc if 1896 * possible or committing the transaction. If flush is 0 then no attempts to 1897 * regain reservations will be made and this will fail if there is not enough 1898 * space already. 1899 */ 1900 int btrfs_reserve_metadata_bytes(struct btrfs_space_info *space_info, 1901 u64 orig_bytes, 1902 enum btrfs_reserve_flush_enum flush) 1903 { 1904 int ret; 1905 1906 ret = reserve_bytes(space_info, orig_bytes, flush); 1907 if (ret == -ENOSPC) { 1908 struct btrfs_fs_info *fs_info = space_info->fs_info; 1909 1910 trace_btrfs_space_reservation(fs_info, "space_info:enospc", 1911 space_info->flags, orig_bytes, 1); 1912 1913 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 1914 btrfs_dump_space_info(space_info, orig_bytes, false); 1915 } 1916 return ret; 1917 } 1918 1919 /* 1920 * Try to reserve data bytes for an allocation. 1921 * 1922 * @space_info: the space_info we're allocating for 1923 * @bytes: number of bytes we need 1924 * @flush: how we are allowed to flush 1925 * 1926 * This will reserve bytes from the data space info. If there is not enough 1927 * space then we will attempt to flush space as specified by flush. 1928 */ 1929 int btrfs_reserve_data_bytes(struct btrfs_space_info *space_info, u64 bytes, 1930 enum btrfs_reserve_flush_enum flush) 1931 { 1932 struct btrfs_fs_info *fs_info = space_info->fs_info; 1933 int ret; 1934 1935 ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA || 1936 flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE || 1937 flush == BTRFS_RESERVE_NO_FLUSH, "flush=%d", flush); 1938 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA, 1939 "current->journal_info=0x%lx flush=%d", 1940 (unsigned long)current->journal_info, flush); 1941 1942 ret = reserve_bytes(space_info, bytes, flush); 1943 if (ret == -ENOSPC) { 1944 trace_btrfs_space_reservation(fs_info, "space_info:enospc", 1945 space_info->flags, bytes, 1); 1946 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 1947 btrfs_dump_space_info(space_info, bytes, false); 1948 } 1949 return ret; 1950 } 1951 1952 /* Dump all the space infos when we abort a transaction due to ENOSPC. */ 1953 __cold void btrfs_dump_space_info_for_trans_abort(struct btrfs_fs_info *fs_info) 1954 { 1955 struct btrfs_space_info *space_info; 1956 1957 btrfs_info(fs_info, "dumping space info:"); 1958 list_for_each_entry(space_info, &fs_info->space_info, list) { 1959 spin_lock(&space_info->lock); 1960 __btrfs_dump_space_info(space_info); 1961 spin_unlock(&space_info->lock); 1962 } 1963 dump_global_block_rsv(fs_info); 1964 } 1965 1966 /* 1967 * Account the unused space of all the readonly block group in the space_info. 1968 * takes mirrors into account. 1969 */ 1970 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 1971 { 1972 struct btrfs_block_group *block_group; 1973 u64 free_bytes = 0; 1974 int factor; 1975 1976 /* It's df, we don't care if it's racy */ 1977 if (data_race(list_empty(&sinfo->ro_bgs))) 1978 return 0; 1979 1980 spin_lock(&sinfo->lock); 1981 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 1982 spin_lock(&block_group->lock); 1983 1984 if (!block_group->ro) { 1985 spin_unlock(&block_group->lock); 1986 continue; 1987 } 1988 1989 factor = btrfs_bg_type_to_factor(block_group->flags); 1990 free_bytes += (block_group->length - 1991 block_group->used) * factor; 1992 1993 spin_unlock(&block_group->lock); 1994 } 1995 spin_unlock(&sinfo->lock); 1996 1997 return free_bytes; 1998 } 1999 2000 static u64 calc_pct_ratio(u64 x, u64 y) 2001 { 2002 int ret; 2003 2004 if (!y) 2005 return 0; 2006 again: 2007 ret = check_mul_overflow(100, x, &x); 2008 if (ret) 2009 goto lose_precision; 2010 return div64_u64(x, y); 2011 lose_precision: 2012 x >>= 10; 2013 y >>= 10; 2014 if (!y) 2015 y = 1; 2016 goto again; 2017 } 2018 2019 /* 2020 * A reasonable buffer for unallocated space is 10 data block_groups. 2021 * If we claw this back repeatedly, we can still achieve efficient 2022 * utilization when near full, and not do too much reclaim while 2023 * always maintaining a solid buffer for workloads that quickly 2024 * allocate and pressure the unallocated space. 2025 */ 2026 static u64 calc_unalloc_target(struct btrfs_fs_info *fs_info) 2027 { 2028 u64 chunk_sz = calc_effective_data_chunk_size(fs_info); 2029 2030 return BTRFS_UNALLOC_BLOCK_GROUP_TARGET * chunk_sz; 2031 } 2032 2033 /* 2034 * The fundamental goal of automatic reclaim is to protect the filesystem's 2035 * unallocated space and thus minimize the probability of the filesystem going 2036 * read only when a metadata allocation failure causes a transaction abort. 2037 * 2038 * However, relocations happen into the space_info's unused space, therefore 2039 * automatic reclaim must also back off as that space runs low. There is no 2040 * value in doing trivial "relocations" of re-writing the same block group 2041 * into a fresh one. 2042 * 2043 * Furthermore, we want to avoid doing too much reclaim even if there are good 2044 * candidates. This is because the allocator is pretty good at filling up the 2045 * holes with writes. So we want to do just enough reclaim to try and stay 2046 * safe from running out of unallocated space but not be wasteful about it. 2047 * 2048 * Therefore, the dynamic reclaim threshold is calculated as follows: 2049 * - calculate a target unallocated amount of 5 block group sized chunks 2050 * - ratchet up the intensity of reclaim depending on how far we are from 2051 * that target by using a formula of unalloc / target to set the threshold. 2052 * 2053 * Typically with 10 block groups as the target, the discrete values this comes 2054 * out to are 0, 10, 20, ... , 80, 90, and 99. 2055 */ 2056 static int calc_dynamic_reclaim_threshold(const struct btrfs_space_info *space_info) 2057 { 2058 struct btrfs_fs_info *fs_info = space_info->fs_info; 2059 u64 unalloc = atomic64_read(&fs_info->free_chunk_space); 2060 u64 target = calc_unalloc_target(fs_info); 2061 u64 alloc = space_info->total_bytes; 2062 u64 used = btrfs_space_info_used(space_info, false); 2063 u64 unused = alloc - used; 2064 u64 want = target > unalloc ? target - unalloc : 0; 2065 u64 data_chunk_size = calc_effective_data_chunk_size(fs_info); 2066 2067 /* If we have no unused space, don't bother, it won't work anyway. */ 2068 if (unused < data_chunk_size) 2069 return 0; 2070 2071 /* Cast to int is OK because want <= target. */ 2072 return calc_pct_ratio(want, target); 2073 } 2074 2075 int btrfs_calc_reclaim_threshold(const struct btrfs_space_info *space_info) 2076 { 2077 lockdep_assert_held(&space_info->lock); 2078 2079 if (READ_ONCE(space_info->dynamic_reclaim)) 2080 return calc_dynamic_reclaim_threshold(space_info); 2081 return READ_ONCE(space_info->bg_reclaim_threshold); 2082 } 2083 2084 /* 2085 * Under "urgent" reclaim, we will reclaim even fresh block groups that have 2086 * recently seen successful allocations, as we are desperate to reclaim 2087 * whatever we can to avoid ENOSPC in a transaction leading to a readonly fs. 2088 */ 2089 static bool is_reclaim_urgent(struct btrfs_space_info *space_info) 2090 { 2091 struct btrfs_fs_info *fs_info = space_info->fs_info; 2092 u64 unalloc = atomic64_read(&fs_info->free_chunk_space); 2093 u64 data_chunk_size = calc_effective_data_chunk_size(fs_info); 2094 2095 return unalloc < data_chunk_size; 2096 } 2097 2098 static void do_reclaim_sweep(struct btrfs_space_info *space_info, int raid) 2099 { 2100 struct btrfs_block_group *bg; 2101 int thresh_pct; 2102 bool try_again = true; 2103 bool urgent; 2104 2105 spin_lock(&space_info->lock); 2106 urgent = is_reclaim_urgent(space_info); 2107 thresh_pct = btrfs_calc_reclaim_threshold(space_info); 2108 spin_unlock(&space_info->lock); 2109 2110 down_read(&space_info->groups_sem); 2111 again: 2112 list_for_each_entry(bg, &space_info->block_groups[raid], list) { 2113 u64 thresh; 2114 bool reclaim = false; 2115 2116 btrfs_get_block_group(bg); 2117 spin_lock(&bg->lock); 2118 thresh = mult_perc(bg->length, thresh_pct); 2119 if (bg->used < thresh && bg->reclaim_mark) { 2120 try_again = false; 2121 reclaim = true; 2122 } 2123 bg->reclaim_mark++; 2124 spin_unlock(&bg->lock); 2125 if (reclaim) 2126 btrfs_mark_bg_to_reclaim(bg); 2127 btrfs_put_block_group(bg); 2128 } 2129 2130 /* 2131 * In situations where we are very motivated to reclaim (low unalloc) 2132 * use two passes to make the reclaim mark check best effort. 2133 * 2134 * If we have any staler groups, we don't touch the fresher ones, but if we 2135 * really need a block group, do take a fresh one. 2136 */ 2137 if (try_again && urgent) { 2138 try_again = false; 2139 goto again; 2140 } 2141 2142 up_read(&space_info->groups_sem); 2143 } 2144 2145 void btrfs_space_info_update_reclaimable(struct btrfs_space_info *space_info, s64 bytes) 2146 { 2147 u64 chunk_sz = calc_effective_data_chunk_size(space_info->fs_info); 2148 2149 lockdep_assert_held(&space_info->lock); 2150 space_info->reclaimable_bytes += bytes; 2151 2152 if (space_info->reclaimable_bytes >= chunk_sz) 2153 btrfs_set_periodic_reclaim_ready(space_info, true); 2154 } 2155 2156 void btrfs_set_periodic_reclaim_ready(struct btrfs_space_info *space_info, bool ready) 2157 { 2158 lockdep_assert_held(&space_info->lock); 2159 if (!READ_ONCE(space_info->periodic_reclaim)) 2160 return; 2161 if (ready != space_info->periodic_reclaim_ready) { 2162 space_info->periodic_reclaim_ready = ready; 2163 if (!ready) 2164 space_info->reclaimable_bytes = 0; 2165 } 2166 } 2167 2168 static bool btrfs_should_periodic_reclaim(struct btrfs_space_info *space_info) 2169 { 2170 bool ret; 2171 2172 if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM) 2173 return false; 2174 if (!READ_ONCE(space_info->periodic_reclaim)) 2175 return false; 2176 2177 spin_lock(&space_info->lock); 2178 ret = space_info->periodic_reclaim_ready; 2179 btrfs_set_periodic_reclaim_ready(space_info, false); 2180 spin_unlock(&space_info->lock); 2181 2182 return ret; 2183 } 2184 2185 void btrfs_reclaim_sweep(const struct btrfs_fs_info *fs_info) 2186 { 2187 int raid; 2188 struct btrfs_space_info *space_info; 2189 2190 list_for_each_entry(space_info, &fs_info->space_info, list) { 2191 if (!btrfs_should_periodic_reclaim(space_info)) 2192 continue; 2193 for (raid = 0; raid < BTRFS_NR_RAID_TYPES; raid++) 2194 do_reclaim_sweep(space_info, raid); 2195 } 2196 } 2197 2198 void btrfs_return_free_space(struct btrfs_space_info *space_info, u64 len) 2199 { 2200 struct btrfs_fs_info *fs_info = space_info->fs_info; 2201 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 2202 2203 lockdep_assert_held(&space_info->lock); 2204 2205 /* Prioritize the global reservation to receive the freed space. */ 2206 if (global_rsv->space_info != space_info) 2207 goto grant; 2208 2209 spin_lock(&global_rsv->lock); 2210 if (!global_rsv->full) { 2211 u64 to_add = min(len, global_rsv->size - global_rsv->reserved); 2212 2213 global_rsv->reserved += to_add; 2214 btrfs_space_info_update_bytes_may_use(space_info, to_add); 2215 if (global_rsv->reserved >= global_rsv->size) 2216 global_rsv->full = true; 2217 len -= to_add; 2218 } 2219 spin_unlock(&global_rsv->lock); 2220 2221 grant: 2222 /* Add to any tickets we may have. */ 2223 if (len) 2224 btrfs_try_granting_tickets(space_info); 2225 } 2226