1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/slab.h> 8 #include <linux/sched.h> 9 #include <linux/sched/mm.h> 10 #include <linux/writeback.h> 11 #include <linux/pagemap.h> 12 #include <linux/blkdev.h> 13 #include <linux/uuid.h> 14 #include <linux/timekeeping.h> 15 #include "misc.h" 16 #include "ctree.h" 17 #include "disk-io.h" 18 #include "transaction.h" 19 #include "locking.h" 20 #include "tree-log.h" 21 #include "volumes.h" 22 #include "dev-replace.h" 23 #include "qgroup.h" 24 #include "block-group.h" 25 #include "space-info.h" 26 #include "fs.h" 27 #include "accessors.h" 28 #include "extent-tree.h" 29 #include "root-tree.h" 30 #include "dir-item.h" 31 #include "uuid-tree.h" 32 #include "ioctl.h" 33 #include "relocation.h" 34 #include "scrub.h" 35 #include "ordered-data.h" 36 #include "delayed-inode.h" 37 38 static struct kmem_cache *btrfs_trans_handle_cachep; 39 40 /* 41 * Transaction states and transitions 42 * 43 * No running transaction (fs tree blocks are not modified) 44 * | 45 * | To next stage: 46 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart(). 47 * V 48 * Transaction N [[TRANS_STATE_RUNNING]] 49 * | 50 * | New trans handles can be attached to transaction N by calling all 51 * | start_transaction() variants. 52 * | 53 * | To next stage: 54 * | Call btrfs_commit_transaction() on any trans handle attached to 55 * | transaction N 56 * V 57 * Transaction N [[TRANS_STATE_COMMIT_PREP]] 58 * | 59 * | If there are simultaneous calls to btrfs_commit_transaction() one will win 60 * | the race and the rest will wait for the winner to commit the transaction. 61 * | 62 * | The winner will wait for previous running transaction to completely finish 63 * | if there is one. 64 * | 65 * Transaction N [[TRANS_STATE_COMMIT_START]] 66 * | 67 * | Then one of the following happens: 68 * | - Wait for all other trans handle holders to release. 69 * | The btrfs_commit_transaction() caller will do the commit work. 70 * | - Wait for current transaction to be committed by others. 71 * | Other btrfs_commit_transaction() caller will do the commit work. 72 * | 73 * | At this stage, only btrfs_join_transaction*() variants can attach 74 * | to this running transaction. 75 * | All other variants will wait for current one to finish and attach to 76 * | transaction N+1. 77 * | 78 * | To next stage: 79 * | Caller is chosen to commit transaction N, and all other trans handle 80 * | haven been released. 81 * V 82 * Transaction N [[TRANS_STATE_COMMIT_DOING]] 83 * | 84 * | The heavy lifting transaction work is started. 85 * | From running delayed refs (modifying extent tree) to creating pending 86 * | snapshots, running qgroups. 87 * | In short, modify supporting trees to reflect modifications of subvolume 88 * | trees. 89 * | 90 * | At this stage, all start_transaction() calls will wait for this 91 * | transaction to finish and attach to transaction N+1. 92 * | 93 * | To next stage: 94 * | Until all supporting trees are updated. 95 * V 96 * Transaction N [[TRANS_STATE_UNBLOCKED]] 97 * | Transaction N+1 98 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]] 99 * | need to write them back to disk and update | 100 * | super blocks. | 101 * | | 102 * | At this stage, new transaction is allowed to | 103 * | start. | 104 * | All new start_transaction() calls will be | 105 * | attached to transid N+1. | 106 * | | 107 * | To next stage: | 108 * | Until all tree blocks and super blocks are | 109 * | written to block devices | 110 * V | 111 * Transaction N [[TRANS_STATE_COMPLETED]] V 112 * All tree blocks and super blocks are written. Transaction N+1 113 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]] 114 * data structures will be cleaned up. | Life goes on 115 */ 116 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = { 117 [TRANS_STATE_RUNNING] = 0U, 118 [TRANS_STATE_COMMIT_PREP] = 0U, 119 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH), 120 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START | 121 __TRANS_ATTACH | 122 __TRANS_JOIN | 123 __TRANS_JOIN_NOSTART), 124 [TRANS_STATE_UNBLOCKED] = (__TRANS_START | 125 __TRANS_ATTACH | 126 __TRANS_JOIN | 127 __TRANS_JOIN_NOLOCK | 128 __TRANS_JOIN_NOSTART), 129 [TRANS_STATE_SUPER_COMMITTED] = (__TRANS_START | 130 __TRANS_ATTACH | 131 __TRANS_JOIN | 132 __TRANS_JOIN_NOLOCK | 133 __TRANS_JOIN_NOSTART), 134 [TRANS_STATE_COMPLETED] = (__TRANS_START | 135 __TRANS_ATTACH | 136 __TRANS_JOIN | 137 __TRANS_JOIN_NOLOCK | 138 __TRANS_JOIN_NOSTART), 139 }; 140 141 void btrfs_put_transaction(struct btrfs_transaction *transaction) 142 { 143 if (refcount_dec_and_test(&transaction->use_count)) { 144 BUG_ON(!list_empty(&transaction->list)); 145 WARN_ON(!xa_empty(&transaction->delayed_refs.head_refs)); 146 WARN_ON(!xa_empty(&transaction->delayed_refs.dirty_extents)); 147 if (transaction->delayed_refs.pending_csums) 148 btrfs_err(transaction->fs_info, 149 "pending csums is %llu", 150 transaction->delayed_refs.pending_csums); 151 /* 152 * If any block groups are found in ->deleted_bgs then it's 153 * because the transaction was aborted and a commit did not 154 * happen (things failed before writing the new superblock 155 * and calling btrfs_finish_extent_commit()), so we can not 156 * discard the physical locations of the block groups. 157 */ 158 while (!list_empty(&transaction->deleted_bgs)) { 159 struct btrfs_block_group *cache; 160 161 cache = list_first_entry(&transaction->deleted_bgs, 162 struct btrfs_block_group, 163 bg_list); 164 /* 165 * Not strictly necessary to lock, as no other task will be using a 166 * block_group on the deleted_bgs list during a transaction abort. 167 */ 168 spin_lock(&transaction->fs_info->unused_bgs_lock); 169 list_del_init(&cache->bg_list); 170 spin_unlock(&transaction->fs_info->unused_bgs_lock); 171 btrfs_unfreeze_block_group(cache); 172 btrfs_put_block_group(cache); 173 } 174 WARN_ON(!list_empty(&transaction->dev_update_list)); 175 kfree(transaction); 176 } 177 } 178 179 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans) 180 { 181 struct btrfs_transaction *cur_trans = trans->transaction; 182 struct btrfs_fs_info *fs_info = trans->fs_info; 183 struct btrfs_root *root, *tmp; 184 185 /* 186 * At this point no one can be using this transaction to modify any tree 187 * and no one can start another transaction to modify any tree either. 188 */ 189 ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING, 190 "cur_trans->state=%d", cur_trans->state); 191 192 down_write(&fs_info->commit_root_sem); 193 194 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) 195 fs_info->last_reloc_trans = trans->transid; 196 197 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits, 198 dirty_list) { 199 list_del_init(&root->dirty_list); 200 free_extent_buffer(root->commit_root); 201 root->commit_root = btrfs_root_node(root); 202 btrfs_extent_io_tree_release(&root->dirty_log_pages); 203 btrfs_qgroup_clean_swapped_blocks(root); 204 } 205 206 /* We can free old roots now. */ 207 spin_lock(&cur_trans->dropped_roots_lock); 208 while (!list_empty(&cur_trans->dropped_roots)) { 209 root = list_first_entry(&cur_trans->dropped_roots, 210 struct btrfs_root, root_list); 211 list_del_init(&root->root_list); 212 spin_unlock(&cur_trans->dropped_roots_lock); 213 btrfs_free_log(trans, root); 214 btrfs_drop_and_free_fs_root(fs_info, root); 215 spin_lock(&cur_trans->dropped_roots_lock); 216 } 217 spin_unlock(&cur_trans->dropped_roots_lock); 218 219 up_write(&fs_info->commit_root_sem); 220 } 221 222 static inline void extwriter_counter_inc(struct btrfs_transaction *trans, 223 unsigned int type) 224 { 225 if (type & TRANS_EXTWRITERS) 226 atomic_inc(&trans->num_extwriters); 227 } 228 229 static inline void extwriter_counter_dec(struct btrfs_transaction *trans, 230 unsigned int type) 231 { 232 if (type & TRANS_EXTWRITERS) 233 atomic_dec(&trans->num_extwriters); 234 } 235 236 static inline void extwriter_counter_init(struct btrfs_transaction *trans, 237 unsigned int type) 238 { 239 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0)); 240 } 241 242 static inline int extwriter_counter_read(struct btrfs_transaction *trans) 243 { 244 return atomic_read(&trans->num_extwriters); 245 } 246 247 /* 248 * To be called after doing the chunk btree updates right after allocating a new 249 * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a 250 * chunk after all chunk btree updates and after finishing the second phase of 251 * chunk allocation (btrfs_create_pending_block_groups()) in case some block 252 * group had its chunk item insertion delayed to the second phase. 253 */ 254 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans) 255 { 256 struct btrfs_fs_info *fs_info = trans->fs_info; 257 258 if (!trans->chunk_bytes_reserved) 259 return; 260 261 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv, 262 trans->chunk_bytes_reserved, NULL); 263 trans->chunk_bytes_reserved = 0; 264 } 265 266 /* 267 * either allocate a new transaction or hop into the existing one 268 */ 269 static noinline int join_transaction(struct btrfs_fs_info *fs_info, 270 unsigned int type) 271 { 272 struct btrfs_transaction *cur_trans; 273 274 spin_lock(&fs_info->trans_lock); 275 loop: 276 /* The file system has been taken offline. No new transactions. */ 277 if (BTRFS_FS_ERROR(fs_info)) { 278 spin_unlock(&fs_info->trans_lock); 279 return -EROFS; 280 } 281 282 cur_trans = fs_info->running_transaction; 283 if (cur_trans) { 284 if (TRANS_ABORTED(cur_trans)) { 285 const int abort_error = cur_trans->aborted; 286 287 spin_unlock(&fs_info->trans_lock); 288 return abort_error; 289 } 290 if (btrfs_blocked_trans_types[cur_trans->state] & type) { 291 spin_unlock(&fs_info->trans_lock); 292 return -EBUSY; 293 } 294 refcount_inc(&cur_trans->use_count); 295 atomic_inc(&cur_trans->num_writers); 296 extwriter_counter_inc(cur_trans, type); 297 spin_unlock(&fs_info->trans_lock); 298 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers); 299 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters); 300 return 0; 301 } 302 spin_unlock(&fs_info->trans_lock); 303 304 /* 305 * If we are ATTACH or TRANS_JOIN_NOSTART, we just want to catch the 306 * current transaction, and commit it. If there is no transaction, just 307 * return ENOENT. 308 */ 309 if (type == TRANS_ATTACH || type == TRANS_JOIN_NOSTART) 310 return -ENOENT; 311 312 /* 313 * JOIN_NOLOCK only happens during the transaction commit, so 314 * it is impossible that ->running_transaction is NULL 315 */ 316 BUG_ON(type == TRANS_JOIN_NOLOCK); 317 318 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS); 319 if (!cur_trans) 320 return -ENOMEM; 321 322 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers); 323 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters); 324 325 spin_lock(&fs_info->trans_lock); 326 if (fs_info->running_transaction) { 327 /* 328 * someone started a transaction after we unlocked. Make sure 329 * to redo the checks above 330 */ 331 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters); 332 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers); 333 kfree(cur_trans); 334 goto loop; 335 } else if (BTRFS_FS_ERROR(fs_info)) { 336 spin_unlock(&fs_info->trans_lock); 337 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters); 338 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers); 339 kfree(cur_trans); 340 return -EROFS; 341 } 342 343 cur_trans->fs_info = fs_info; 344 atomic_set(&cur_trans->pending_ordered, 0); 345 init_waitqueue_head(&cur_trans->pending_wait); 346 atomic_set(&cur_trans->num_writers, 1); 347 extwriter_counter_init(cur_trans, type); 348 init_waitqueue_head(&cur_trans->writer_wait); 349 init_waitqueue_head(&cur_trans->commit_wait); 350 cur_trans->state = TRANS_STATE_RUNNING; 351 /* 352 * One for this trans handle, one so it will live on until we 353 * commit the transaction. 354 */ 355 refcount_set(&cur_trans->use_count, 2); 356 cur_trans->flags = 0; 357 cur_trans->start_time = ktime_get_seconds(); 358 359 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs)); 360 361 xa_init(&cur_trans->delayed_refs.head_refs); 362 xa_init(&cur_trans->delayed_refs.dirty_extents); 363 364 /* 365 * although the tree mod log is per file system and not per transaction, 366 * the log must never go across transaction boundaries. 367 */ 368 smp_mb(); 369 if (!list_empty(&fs_info->tree_mod_seq_list)) 370 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n"); 371 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) 372 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n"); 373 atomic64_set(&fs_info->tree_mod_seq, 0); 374 375 spin_lock_init(&cur_trans->delayed_refs.lock); 376 377 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 378 INIT_LIST_HEAD(&cur_trans->dev_update_list); 379 INIT_LIST_HEAD(&cur_trans->switch_commits); 380 INIT_LIST_HEAD(&cur_trans->dirty_bgs); 381 INIT_LIST_HEAD(&cur_trans->io_bgs); 382 INIT_LIST_HEAD(&cur_trans->dropped_roots); 383 mutex_init(&cur_trans->cache_write_mutex); 384 spin_lock_init(&cur_trans->dirty_bgs_lock); 385 INIT_LIST_HEAD(&cur_trans->deleted_bgs); 386 spin_lock_init(&cur_trans->dropped_roots_lock); 387 list_add_tail(&cur_trans->list, &fs_info->trans_list); 388 btrfs_extent_io_tree_init(fs_info, &cur_trans->dirty_pages, 389 IO_TREE_TRANS_DIRTY_PAGES); 390 btrfs_extent_io_tree_init(fs_info, &cur_trans->pinned_extents, 391 IO_TREE_FS_PINNED_EXTENTS); 392 btrfs_set_fs_generation(fs_info, fs_info->generation + 1); 393 cur_trans->transid = fs_info->generation; 394 fs_info->running_transaction = cur_trans; 395 cur_trans->aborted = 0; 396 spin_unlock(&fs_info->trans_lock); 397 398 return 0; 399 } 400 401 /* 402 * This does all the record keeping required to make sure that a shareable root 403 * is properly recorded in a given transaction. This is required to make sure 404 * the old root from before we joined the transaction is deleted when the 405 * transaction commits. 406 */ 407 static int record_root_in_trans(struct btrfs_trans_handle *trans, 408 struct btrfs_root *root, 409 bool force) 410 { 411 struct btrfs_fs_info *fs_info = root->fs_info; 412 int ret = 0; 413 414 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 415 btrfs_get_root_last_trans(root) < trans->transid) || force) { 416 WARN_ON(!force && root->commit_root != root->node); 417 418 /* 419 * see below for IN_TRANS_SETUP usage rules 420 * we have the reloc mutex held now, so there 421 * is only one writer in this function 422 */ 423 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 424 425 /* make sure readers find IN_TRANS_SETUP before 426 * they find our root->last_trans update 427 */ 428 smp_wmb(); 429 430 spin_lock(&fs_info->fs_roots_radix_lock); 431 if (btrfs_get_root_last_trans(root) == trans->transid && !force) { 432 spin_unlock(&fs_info->fs_roots_radix_lock); 433 return 0; 434 } 435 radix_tree_tag_set(&fs_info->fs_roots_radix, 436 (unsigned long)btrfs_root_id(root), 437 BTRFS_ROOT_TRANS_TAG); 438 spin_unlock(&fs_info->fs_roots_radix_lock); 439 btrfs_set_root_last_trans(root, trans->transid); 440 441 /* this is pretty tricky. We don't want to 442 * take the relocation lock in btrfs_record_root_in_trans 443 * unless we're really doing the first setup for this root in 444 * this transaction. 445 * 446 * Normally we'd use root->last_trans as a flag to decide 447 * if we want to take the expensive mutex. 448 * 449 * But, we have to set root->last_trans before we 450 * init the relocation root, otherwise, we trip over warnings 451 * in ctree.c. The solution used here is to flag ourselves 452 * with root IN_TRANS_SETUP. When this is 1, we're still 453 * fixing up the reloc trees and everyone must wait. 454 * 455 * When this is zero, they can trust root->last_trans and fly 456 * through btrfs_record_root_in_trans without having to take the 457 * lock. smp_wmb() makes sure that all the writes above are 458 * done before we pop in the zero below 459 */ 460 ret = btrfs_init_reloc_root(trans, root); 461 smp_mb__before_atomic(); 462 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 463 } 464 return ret; 465 } 466 467 468 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans, 469 struct btrfs_root *root) 470 { 471 struct btrfs_fs_info *fs_info = root->fs_info; 472 struct btrfs_transaction *cur_trans = trans->transaction; 473 474 /* Add ourselves to the transaction dropped list */ 475 spin_lock(&cur_trans->dropped_roots_lock); 476 list_add_tail(&root->root_list, &cur_trans->dropped_roots); 477 spin_unlock(&cur_trans->dropped_roots_lock); 478 479 /* Make sure we don't try to update the root at commit time */ 480 spin_lock(&fs_info->fs_roots_radix_lock); 481 radix_tree_tag_clear(&fs_info->fs_roots_radix, 482 (unsigned long)btrfs_root_id(root), 483 BTRFS_ROOT_TRANS_TAG); 484 spin_unlock(&fs_info->fs_roots_radix_lock); 485 } 486 487 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 488 struct btrfs_root *root) 489 { 490 struct btrfs_fs_info *fs_info = root->fs_info; 491 int ret; 492 493 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 494 return 0; 495 496 /* 497 * see record_root_in_trans for comments about IN_TRANS_SETUP usage 498 * and barriers 499 */ 500 smp_rmb(); 501 if (btrfs_get_root_last_trans(root) == trans->transid && 502 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state)) 503 return 0; 504 505 mutex_lock(&fs_info->reloc_mutex); 506 ret = record_root_in_trans(trans, root, 0); 507 mutex_unlock(&fs_info->reloc_mutex); 508 509 return ret; 510 } 511 512 static inline int is_transaction_blocked(struct btrfs_transaction *trans) 513 { 514 return (trans->state >= TRANS_STATE_COMMIT_START && 515 trans->state < TRANS_STATE_UNBLOCKED && 516 !TRANS_ABORTED(trans)); 517 } 518 519 /* wait for commit against the current transaction to become unblocked 520 * when this is done, it is safe to start a new transaction, but the current 521 * transaction might not be fully on disk. 522 */ 523 static void wait_current_trans(struct btrfs_fs_info *fs_info) 524 { 525 struct btrfs_transaction *cur_trans; 526 527 spin_lock(&fs_info->trans_lock); 528 cur_trans = fs_info->running_transaction; 529 if (cur_trans && is_transaction_blocked(cur_trans)) { 530 refcount_inc(&cur_trans->use_count); 531 spin_unlock(&fs_info->trans_lock); 532 533 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED); 534 wait_event(fs_info->transaction_wait, 535 cur_trans->state >= TRANS_STATE_UNBLOCKED || 536 TRANS_ABORTED(cur_trans)); 537 btrfs_put_transaction(cur_trans); 538 } else { 539 spin_unlock(&fs_info->trans_lock); 540 } 541 } 542 543 static bool may_wait_transaction(struct btrfs_fs_info *fs_info, int type) 544 { 545 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 546 return false; 547 548 if (type == TRANS_START) 549 return true; 550 551 return false; 552 } 553 554 static inline bool need_reserve_reloc_root(struct btrfs_root *root) 555 { 556 struct btrfs_fs_info *fs_info = root->fs_info; 557 558 if (!fs_info->reloc_ctl || 559 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) || 560 btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID || 561 root->reloc_root) 562 return false; 563 564 return true; 565 } 566 567 static int btrfs_reserve_trans_metadata(struct btrfs_fs_info *fs_info, 568 enum btrfs_reserve_flush_enum flush, 569 u64 num_bytes, 570 u64 *delayed_refs_bytes) 571 { 572 struct btrfs_space_info *si = fs_info->trans_block_rsv.space_info; 573 u64 bytes = num_bytes + *delayed_refs_bytes; 574 int ret; 575 576 /* 577 * We want to reserve all the bytes we may need all at once, so we only 578 * do 1 enospc flushing cycle per transaction start. 579 */ 580 ret = btrfs_reserve_metadata_bytes(si, bytes, flush); 581 582 /* 583 * If we are an emergency flush, which can steal from the global block 584 * reserve, then attempt to not reserve space for the delayed refs, as 585 * we will consume space for them from the global block reserve. 586 */ 587 if (ret && flush == BTRFS_RESERVE_FLUSH_ALL_STEAL) { 588 bytes -= *delayed_refs_bytes; 589 *delayed_refs_bytes = 0; 590 ret = btrfs_reserve_metadata_bytes(si, bytes, flush); 591 } 592 593 return ret; 594 } 595 596 static struct btrfs_trans_handle * 597 start_transaction(struct btrfs_root *root, unsigned int num_items, 598 unsigned int type, enum btrfs_reserve_flush_enum flush, 599 bool enforce_qgroups) 600 { 601 struct btrfs_fs_info *fs_info = root->fs_info; 602 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv; 603 struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv; 604 struct btrfs_trans_handle *h; 605 struct btrfs_transaction *cur_trans; 606 u64 num_bytes = 0; 607 u64 qgroup_reserved = 0; 608 u64 delayed_refs_bytes = 0; 609 bool reloc_reserved = false; 610 bool do_chunk_alloc = false; 611 int ret; 612 613 if (BTRFS_FS_ERROR(fs_info)) 614 return ERR_PTR(-EROFS); 615 616 if (current->journal_info) { 617 WARN_ON(type & TRANS_EXTWRITERS); 618 h = current->journal_info; 619 refcount_inc(&h->use_count); 620 WARN_ON(refcount_read(&h->use_count) > 2); 621 h->orig_rsv = h->block_rsv; 622 h->block_rsv = NULL; 623 goto got_it; 624 } 625 626 /* 627 * Do the reservation before we join the transaction so we can do all 628 * the appropriate flushing if need be. 629 */ 630 if (num_items && root != fs_info->chunk_root) { 631 qgroup_reserved = num_items * fs_info->nodesize; 632 /* 633 * Use prealloc for now, as there might be a currently running 634 * transaction that could free this reserved space prematurely 635 * by committing. 636 */ 637 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserved, 638 enforce_qgroups, false); 639 if (ret) 640 return ERR_PTR(ret); 641 642 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items); 643 /* 644 * If we plan to insert/update/delete "num_items" from a btree, 645 * we will also generate delayed refs for extent buffers in the 646 * respective btree paths, so reserve space for the delayed refs 647 * that will be generated by the caller as it modifies btrees. 648 * Try to reserve them to avoid excessive use of the global 649 * block reserve. 650 */ 651 delayed_refs_bytes = btrfs_calc_delayed_ref_bytes(fs_info, num_items); 652 653 /* 654 * Do the reservation for the relocation root creation 655 */ 656 if (need_reserve_reloc_root(root)) { 657 num_bytes += fs_info->nodesize; 658 reloc_reserved = true; 659 } 660 661 ret = btrfs_reserve_trans_metadata(fs_info, flush, num_bytes, 662 &delayed_refs_bytes); 663 if (ret) 664 goto reserve_fail; 665 666 btrfs_block_rsv_add_bytes(trans_rsv, num_bytes, true); 667 668 if (trans_rsv->space_info->force_alloc) 669 do_chunk_alloc = true; 670 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL && 671 !btrfs_block_rsv_full(delayed_refs_rsv)) { 672 /* 673 * Some people call with btrfs_start_transaction(root, 0) 674 * because they can be throttled, but have some other mechanism 675 * for reserving space. We still want these guys to refill the 676 * delayed block_rsv so just add 1 items worth of reservation 677 * here. 678 */ 679 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush); 680 if (ret) 681 goto reserve_fail; 682 } 683 again: 684 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS); 685 if (!h) { 686 ret = -ENOMEM; 687 goto alloc_fail; 688 } 689 690 /* 691 * If we are JOIN_NOLOCK we're already committing a transaction and 692 * waiting on this guy, so we don't need to do the sb_start_intwrite 693 * because we're already holding a ref. We need this because we could 694 * have raced in and did an fsync() on a file which can kick a commit 695 * and then we deadlock with somebody doing a freeze. 696 * 697 * If we are ATTACH, it means we just want to catch the current 698 * transaction and commit it, so we needn't do sb_start_intwrite(). 699 */ 700 if (type & __TRANS_FREEZABLE) 701 sb_start_intwrite(fs_info->sb); 702 703 if (may_wait_transaction(fs_info, type)) 704 wait_current_trans(fs_info); 705 706 do { 707 ret = join_transaction(fs_info, type); 708 if (ret == -EBUSY) { 709 wait_current_trans(fs_info); 710 if (unlikely(type == TRANS_ATTACH || 711 type == TRANS_JOIN_NOSTART)) 712 ret = -ENOENT; 713 } 714 } while (ret == -EBUSY); 715 716 if (ret < 0) 717 goto join_fail; 718 719 cur_trans = fs_info->running_transaction; 720 721 h->transid = cur_trans->transid; 722 h->transaction = cur_trans; 723 refcount_set(&h->use_count, 1); 724 h->fs_info = root->fs_info; 725 726 h->type = type; 727 INIT_LIST_HEAD(&h->new_bgs); 728 btrfs_init_metadata_block_rsv(fs_info, &h->delayed_rsv, BTRFS_BLOCK_RSV_DELOPS); 729 730 smp_mb(); 731 if (cur_trans->state >= TRANS_STATE_COMMIT_START && 732 may_wait_transaction(fs_info, type)) { 733 current->journal_info = h; 734 btrfs_commit_transaction(h); 735 goto again; 736 } 737 738 if (num_bytes) { 739 trace_btrfs_space_reservation(fs_info, "transaction", 740 h->transid, num_bytes, 1); 741 h->block_rsv = trans_rsv; 742 h->bytes_reserved = num_bytes; 743 if (delayed_refs_bytes > 0) { 744 trace_btrfs_space_reservation(fs_info, 745 "local_delayed_refs_rsv", 746 h->transid, 747 delayed_refs_bytes, 1); 748 h->delayed_refs_bytes_reserved = delayed_refs_bytes; 749 btrfs_block_rsv_add_bytes(&h->delayed_rsv, delayed_refs_bytes, true); 750 delayed_refs_bytes = 0; 751 } 752 h->reloc_reserved = reloc_reserved; 753 } 754 755 got_it: 756 if (!current->journal_info) 757 current->journal_info = h; 758 759 /* 760 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to 761 * ALLOC_FORCE the first run through, and then we won't allocate for 762 * anybody else who races in later. We don't care about the return 763 * value here. 764 */ 765 if (do_chunk_alloc && num_bytes) { 766 struct btrfs_space_info *space_info = h->block_rsv->space_info; 767 u64 flags = space_info->flags; 768 769 btrfs_chunk_alloc(h, space_info, btrfs_get_alloc_profile(fs_info, flags), 770 CHUNK_ALLOC_NO_FORCE); 771 } 772 773 /* 774 * btrfs_record_root_in_trans() needs to alloc new extents, and may 775 * call btrfs_join_transaction() while we're also starting a 776 * transaction. 777 * 778 * Thus it need to be called after current->journal_info initialized, 779 * or we can deadlock. 780 */ 781 ret = btrfs_record_root_in_trans(h, root); 782 if (ret) { 783 /* 784 * The transaction handle is fully initialized and linked with 785 * other structures so it needs to be ended in case of errors, 786 * not just freed. 787 */ 788 btrfs_end_transaction(h); 789 goto reserve_fail; 790 } 791 /* 792 * Now that we have found a transaction to be a part of, convert the 793 * qgroup reservation from prealloc to pertrans. A different transaction 794 * can't race in and free our pertrans out from under us. 795 */ 796 if (qgroup_reserved) 797 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved); 798 799 return h; 800 801 join_fail: 802 if (type & __TRANS_FREEZABLE) 803 sb_end_intwrite(fs_info->sb); 804 kmem_cache_free(btrfs_trans_handle_cachep, h); 805 alloc_fail: 806 if (num_bytes) 807 btrfs_block_rsv_release(fs_info, trans_rsv, num_bytes, NULL); 808 if (delayed_refs_bytes) 809 btrfs_space_info_free_bytes_may_use(trans_rsv->space_info, delayed_refs_bytes); 810 reserve_fail: 811 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved); 812 return ERR_PTR(ret); 813 } 814 815 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 816 unsigned int num_items) 817 { 818 return start_transaction(root, num_items, TRANS_START, 819 BTRFS_RESERVE_FLUSH_ALL, true); 820 } 821 822 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv( 823 struct btrfs_root *root, 824 unsigned int num_items) 825 { 826 return start_transaction(root, num_items, TRANS_START, 827 BTRFS_RESERVE_FLUSH_ALL_STEAL, false); 828 } 829 830 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 831 { 832 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH, 833 true); 834 } 835 836 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root) 837 { 838 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 839 BTRFS_RESERVE_NO_FLUSH, true); 840 } 841 842 /* 843 * Similar to regular join but it never starts a transaction when none is 844 * running or when there's a running one at a state >= TRANS_STATE_UNBLOCKED. 845 * This is similar to btrfs_attach_transaction() but it allows the join to 846 * happen if the transaction commit already started but it's not yet in the 847 * "doing" phase (the state is < TRANS_STATE_COMMIT_DOING). 848 */ 849 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root) 850 { 851 return start_transaction(root, 0, TRANS_JOIN_NOSTART, 852 BTRFS_RESERVE_NO_FLUSH, true); 853 } 854 855 /* 856 * Catch the running transaction. 857 * 858 * It is used when we want to commit the current the transaction, but 859 * don't want to start a new one. 860 * 861 * Note: If this function return -ENOENT, it just means there is no 862 * running transaction. But it is possible that the inactive transaction 863 * is still in the memory, not fully on disk. If you hope there is no 864 * inactive transaction in the fs when -ENOENT is returned, you should 865 * invoke 866 * btrfs_attach_transaction_barrier() 867 */ 868 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) 869 { 870 return start_transaction(root, 0, TRANS_ATTACH, 871 BTRFS_RESERVE_NO_FLUSH, true); 872 } 873 874 /* 875 * Catch the running transaction. 876 * 877 * It is similar to the above function, the difference is this one 878 * will wait for all the inactive transactions until they fully 879 * complete. 880 */ 881 struct btrfs_trans_handle * 882 btrfs_attach_transaction_barrier(struct btrfs_root *root) 883 { 884 struct btrfs_trans_handle *trans; 885 886 trans = start_transaction(root, 0, TRANS_ATTACH, 887 BTRFS_RESERVE_NO_FLUSH, true); 888 if (trans == ERR_PTR(-ENOENT)) { 889 int ret; 890 891 ret = btrfs_wait_for_commit(root->fs_info, 0); 892 if (ret) 893 return ERR_PTR(ret); 894 } 895 896 return trans; 897 } 898 899 /* Wait for a transaction commit to reach at least the given state. */ 900 static noinline void wait_for_commit(struct btrfs_transaction *commit, 901 const enum btrfs_trans_state min_state) 902 { 903 struct btrfs_fs_info *fs_info = commit->fs_info; 904 u64 transid = commit->transid; 905 bool put = false; 906 907 /* 908 * At the moment this function is called with min_state either being 909 * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED. 910 */ 911 if (min_state == TRANS_STATE_COMPLETED) 912 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED); 913 else 914 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 915 916 while (1) { 917 wait_event(commit->commit_wait, commit->state >= min_state); 918 if (put) 919 btrfs_put_transaction(commit); 920 921 if (min_state < TRANS_STATE_COMPLETED) 922 break; 923 924 /* 925 * A transaction isn't really completed until all of the 926 * previous transactions are completed, but with fsync we can 927 * end up with SUPER_COMMITTED transactions before a COMPLETED 928 * transaction. Wait for those. 929 */ 930 931 spin_lock(&fs_info->trans_lock); 932 commit = list_first_entry_or_null(&fs_info->trans_list, 933 struct btrfs_transaction, 934 list); 935 if (!commit || commit->transid > transid) { 936 spin_unlock(&fs_info->trans_lock); 937 break; 938 } 939 refcount_inc(&commit->use_count); 940 put = true; 941 spin_unlock(&fs_info->trans_lock); 942 } 943 } 944 945 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid) 946 { 947 struct btrfs_transaction *cur_trans = NULL, *t; 948 int ret = 0; 949 950 if (transid) { 951 if (transid <= btrfs_get_last_trans_committed(fs_info)) 952 goto out; 953 954 /* find specified transaction */ 955 spin_lock(&fs_info->trans_lock); 956 list_for_each_entry(t, &fs_info->trans_list, list) { 957 if (t->transid == transid) { 958 cur_trans = t; 959 refcount_inc(&cur_trans->use_count); 960 ret = 0; 961 break; 962 } 963 if (t->transid > transid) { 964 ret = 0; 965 break; 966 } 967 } 968 spin_unlock(&fs_info->trans_lock); 969 970 /* 971 * The specified transaction doesn't exist, or we 972 * raced with btrfs_commit_transaction 973 */ 974 if (!cur_trans) { 975 if (transid > btrfs_get_last_trans_committed(fs_info)) 976 ret = -EINVAL; 977 goto out; 978 } 979 } else { 980 /* find newest transaction that is committing | committed */ 981 spin_lock(&fs_info->trans_lock); 982 list_for_each_entry_reverse(t, &fs_info->trans_list, 983 list) { 984 if (t->state >= TRANS_STATE_COMMIT_START) { 985 if (t->state == TRANS_STATE_COMPLETED) 986 break; 987 cur_trans = t; 988 refcount_inc(&cur_trans->use_count); 989 break; 990 } 991 } 992 spin_unlock(&fs_info->trans_lock); 993 if (!cur_trans) 994 goto out; /* nothing committing|committed */ 995 } 996 997 wait_for_commit(cur_trans, TRANS_STATE_COMPLETED); 998 ret = cur_trans->aborted; 999 btrfs_put_transaction(cur_trans); 1000 out: 1001 return ret; 1002 } 1003 1004 void btrfs_throttle(struct btrfs_fs_info *fs_info) 1005 { 1006 wait_current_trans(fs_info); 1007 } 1008 1009 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans) 1010 { 1011 struct btrfs_transaction *cur_trans = trans->transaction; 1012 1013 if (cur_trans->state >= TRANS_STATE_COMMIT_START || 1014 test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags)) 1015 return true; 1016 1017 if (btrfs_check_space_for_delayed_refs(trans->fs_info)) 1018 return true; 1019 1020 return !!btrfs_block_rsv_check(&trans->fs_info->global_block_rsv, 50); 1021 } 1022 1023 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans) 1024 1025 { 1026 struct btrfs_fs_info *fs_info = trans->fs_info; 1027 1028 if (!trans->block_rsv) { 1029 ASSERT(trans->bytes_reserved == 0, 1030 "trans->bytes_reserved=%llu", trans->bytes_reserved); 1031 ASSERT(trans->delayed_refs_bytes_reserved == 0, 1032 "trans->delayed_refs_bytes_reserved=%llu", 1033 trans->delayed_refs_bytes_reserved); 1034 return; 1035 } 1036 1037 if (!trans->bytes_reserved) { 1038 ASSERT(trans->delayed_refs_bytes_reserved == 0, 1039 "trans->delayed_refs_bytes_reserved=%llu", 1040 trans->delayed_refs_bytes_reserved); 1041 return; 1042 } 1043 1044 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv); 1045 trace_btrfs_space_reservation(fs_info, "transaction", 1046 trans->transid, trans->bytes_reserved, 0); 1047 btrfs_block_rsv_release(fs_info, trans->block_rsv, 1048 trans->bytes_reserved, NULL); 1049 trans->bytes_reserved = 0; 1050 1051 if (!trans->delayed_refs_bytes_reserved) 1052 return; 1053 1054 trace_btrfs_space_reservation(fs_info, "local_delayed_refs_rsv", 1055 trans->transid, 1056 trans->delayed_refs_bytes_reserved, 0); 1057 btrfs_block_rsv_release(fs_info, &trans->delayed_rsv, 1058 trans->delayed_refs_bytes_reserved, NULL); 1059 trans->delayed_refs_bytes_reserved = 0; 1060 } 1061 1062 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 1063 int throttle) 1064 { 1065 struct btrfs_fs_info *info = trans->fs_info; 1066 struct btrfs_transaction *cur_trans = trans->transaction; 1067 int ret = 0; 1068 1069 if (refcount_read(&trans->use_count) > 1) { 1070 refcount_dec(&trans->use_count); 1071 trans->block_rsv = trans->orig_rsv; 1072 return 0; 1073 } 1074 1075 btrfs_trans_release_metadata(trans); 1076 trans->block_rsv = NULL; 1077 1078 btrfs_create_pending_block_groups(trans); 1079 1080 btrfs_trans_release_chunk_metadata(trans); 1081 1082 if (trans->type & __TRANS_FREEZABLE) 1083 sb_end_intwrite(info->sb); 1084 1085 WARN_ON(cur_trans != info->running_transaction); 1086 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 1087 atomic_dec(&cur_trans->num_writers); 1088 extwriter_counter_dec(cur_trans, trans->type); 1089 1090 cond_wake_up(&cur_trans->writer_wait); 1091 1092 btrfs_lockdep_release(info, btrfs_trans_num_extwriters); 1093 btrfs_lockdep_release(info, btrfs_trans_num_writers); 1094 1095 btrfs_put_transaction(cur_trans); 1096 1097 if (current->journal_info == trans) 1098 current->journal_info = NULL; 1099 1100 if (throttle) 1101 btrfs_run_delayed_iputs(info); 1102 1103 if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) { 1104 wake_up_process(info->transaction_kthread); 1105 if (TRANS_ABORTED(trans)) 1106 ret = trans->aborted; 1107 else 1108 ret = -EROFS; 1109 } 1110 1111 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1112 return ret; 1113 } 1114 1115 int btrfs_end_transaction(struct btrfs_trans_handle *trans) 1116 { 1117 return __btrfs_end_transaction(trans, 0); 1118 } 1119 1120 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans) 1121 { 1122 return __btrfs_end_transaction(trans, 1); 1123 } 1124 1125 /* 1126 * when btree blocks are allocated, they have some corresponding bits set for 1127 * them in one of two extent_io trees. This is used to make sure all of 1128 * those extents are sent to disk but does not wait on them 1129 */ 1130 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info, 1131 struct extent_io_tree *dirty_pages, int mark) 1132 { 1133 int ret = 0; 1134 struct address_space *mapping = fs_info->btree_inode->i_mapping; 1135 struct extent_state *cached_state = NULL; 1136 u64 start = 0; 1137 u64 end; 1138 1139 while (btrfs_find_first_extent_bit(dirty_pages, start, &start, &end, 1140 mark, &cached_state)) { 1141 bool wait_writeback = false; 1142 1143 ret = btrfs_convert_extent_bit(dirty_pages, start, end, 1144 EXTENT_NEED_WAIT, 1145 mark, &cached_state); 1146 /* 1147 * convert_extent_bit can return -ENOMEM, which is most of the 1148 * time a temporary error. So when it happens, ignore the error 1149 * and wait for writeback of this range to finish - because we 1150 * failed to set the bit EXTENT_NEED_WAIT for the range, a call 1151 * to __btrfs_wait_marked_extents() would not know that 1152 * writeback for this range started and therefore wouldn't 1153 * wait for it to finish - we don't want to commit a 1154 * superblock that points to btree nodes/leafs for which 1155 * writeback hasn't finished yet (and without errors). 1156 * We cleanup any entries left in the io tree when committing 1157 * the transaction (through extent_io_tree_release()). 1158 */ 1159 if (ret == -ENOMEM) { 1160 ret = 0; 1161 wait_writeback = true; 1162 } 1163 if (!ret) 1164 ret = filemap_fdatawrite_range(mapping, start, end); 1165 if (!ret && wait_writeback) 1166 btrfs_btree_wait_writeback_range(fs_info, start, end); 1167 btrfs_free_extent_state(cached_state); 1168 if (ret) 1169 break; 1170 cached_state = NULL; 1171 cond_resched(); 1172 start = end + 1; 1173 } 1174 return ret; 1175 } 1176 1177 /* 1178 * when btree blocks are allocated, they have some corresponding bits set for 1179 * them in one of two extent_io trees. This is used to make sure all of 1180 * those extents are on disk for transaction or log commit. We wait 1181 * on all the pages and clear them from the dirty pages state tree 1182 */ 1183 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info, 1184 struct extent_io_tree *dirty_pages) 1185 { 1186 struct extent_state *cached_state = NULL; 1187 u64 start = 0; 1188 u64 end; 1189 int ret = 0; 1190 1191 while (btrfs_find_first_extent_bit(dirty_pages, start, &start, &end, 1192 EXTENT_NEED_WAIT, &cached_state)) { 1193 /* 1194 * Ignore -ENOMEM errors returned by clear_extent_bit(). 1195 * When committing the transaction, we'll remove any entries 1196 * left in the io tree. For a log commit, we don't remove them 1197 * after committing the log because the tree can be accessed 1198 * concurrently - we do it only at transaction commit time when 1199 * it's safe to do it (through extent_io_tree_release()). 1200 */ 1201 ret = btrfs_clear_extent_bit(dirty_pages, start, end, 1202 EXTENT_NEED_WAIT, &cached_state); 1203 if (ret == -ENOMEM) 1204 ret = 0; 1205 if (!ret) 1206 btrfs_btree_wait_writeback_range(fs_info, start, end); 1207 btrfs_free_extent_state(cached_state); 1208 if (ret) 1209 break; 1210 cached_state = NULL; 1211 cond_resched(); 1212 start = end + 1; 1213 } 1214 return ret; 1215 } 1216 1217 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info, 1218 struct extent_io_tree *dirty_pages) 1219 { 1220 bool errors = false; 1221 int ret; 1222 1223 ret = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1224 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags)) 1225 errors = true; 1226 1227 if (errors && !ret) 1228 ret = -EIO; 1229 return ret; 1230 } 1231 1232 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark) 1233 { 1234 struct btrfs_fs_info *fs_info = log_root->fs_info; 1235 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages; 1236 bool errors = false; 1237 int ret; 1238 1239 ASSERT(btrfs_root_id(log_root) == BTRFS_TREE_LOG_OBJECTID, 1240 "root_id(log_root)=%llu", btrfs_root_id(log_root)); 1241 1242 ret = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1243 if ((mark & EXTENT_DIRTY_LOG1) && 1244 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags)) 1245 errors = true; 1246 1247 if ((mark & EXTENT_DIRTY_LOG2) && 1248 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags)) 1249 errors = true; 1250 1251 if (errors && !ret) 1252 ret = -EIO; 1253 return ret; 1254 } 1255 1256 /* 1257 * When btree blocks are allocated the corresponding extents are marked dirty. 1258 * This function ensures such extents are persisted on disk for transaction or 1259 * log commit. 1260 * 1261 * @trans: transaction whose dirty pages we'd like to write 1262 */ 1263 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans) 1264 { 1265 int ret; 1266 int ret2; 1267 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages; 1268 struct btrfs_fs_info *fs_info = trans->fs_info; 1269 struct blk_plug plug; 1270 1271 blk_start_plug(&plug); 1272 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY); 1273 blk_finish_plug(&plug); 1274 ret2 = btrfs_wait_extents(fs_info, dirty_pages); 1275 1276 btrfs_extent_io_tree_release(&trans->transaction->dirty_pages); 1277 1278 if (ret) 1279 return ret; 1280 else if (ret2) 1281 return ret2; 1282 else 1283 return 0; 1284 } 1285 1286 /* 1287 * this is used to update the root pointer in the tree of tree roots. 1288 * 1289 * But, in the case of the extent allocation tree, updating the root 1290 * pointer may allocate blocks which may change the root of the extent 1291 * allocation tree. 1292 * 1293 * So, this loops and repeats and makes sure the cowonly root didn't 1294 * change while the root pointer was being updated in the metadata. 1295 */ 1296 static int update_cowonly_root(struct btrfs_trans_handle *trans, 1297 struct btrfs_root *root) 1298 { 1299 int ret; 1300 u64 old_root_bytenr; 1301 u64 old_root_used; 1302 struct btrfs_fs_info *fs_info = root->fs_info; 1303 struct btrfs_root *tree_root = fs_info->tree_root; 1304 1305 old_root_used = btrfs_root_used(&root->root_item); 1306 1307 while (1) { 1308 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 1309 if (old_root_bytenr == root->node->start && 1310 old_root_used == btrfs_root_used(&root->root_item)) 1311 break; 1312 1313 btrfs_set_root_node(&root->root_item, root->node); 1314 ret = btrfs_update_root(trans, tree_root, 1315 &root->root_key, 1316 &root->root_item); 1317 if (ret) 1318 return ret; 1319 1320 old_root_used = btrfs_root_used(&root->root_item); 1321 } 1322 1323 return 0; 1324 } 1325 1326 /* 1327 * update all the cowonly tree roots on disk 1328 * 1329 * The error handling in this function may not be obvious. Any of the 1330 * failures will cause the file system to go offline. We still need 1331 * to clean up the delayed refs. 1332 */ 1333 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans) 1334 { 1335 struct btrfs_fs_info *fs_info = trans->fs_info; 1336 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs; 1337 struct list_head *io_bgs = &trans->transaction->io_bgs; 1338 struct extent_buffer *eb; 1339 int ret; 1340 1341 /* 1342 * At this point no one can be using this transaction to modify any tree 1343 * and no one can start another transaction to modify any tree either. 1344 */ 1345 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING, 1346 "trans->transaction->state=%d", trans->transaction->state); 1347 1348 eb = btrfs_lock_root_node(fs_info->tree_root); 1349 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 1350 0, &eb, BTRFS_NESTING_COW); 1351 btrfs_tree_unlock(eb); 1352 free_extent_buffer(eb); 1353 1354 if (ret) 1355 return ret; 1356 1357 ret = btrfs_run_dev_stats(trans); 1358 if (ret) 1359 return ret; 1360 ret = btrfs_run_dev_replace(trans); 1361 if (ret) 1362 return ret; 1363 ret = btrfs_run_qgroups(trans); 1364 if (ret) 1365 return ret; 1366 1367 ret = btrfs_setup_space_cache(trans); 1368 if (ret) 1369 return ret; 1370 1371 again: 1372 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 1373 struct btrfs_root *root; 1374 1375 root = list_first_entry(&fs_info->dirty_cowonly_roots, 1376 struct btrfs_root, dirty_list); 1377 clear_bit(BTRFS_ROOT_DIRTY, &root->state); 1378 list_move_tail(&root->dirty_list, 1379 &trans->transaction->switch_commits); 1380 1381 ret = update_cowonly_root(trans, root); 1382 if (ret) 1383 return ret; 1384 } 1385 1386 /* Now flush any delayed refs generated by updating all of the roots */ 1387 ret = btrfs_run_delayed_refs(trans, U64_MAX); 1388 if (ret) 1389 return ret; 1390 1391 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) { 1392 ret = btrfs_write_dirty_block_groups(trans); 1393 if (ret) 1394 return ret; 1395 1396 /* 1397 * We're writing the dirty block groups, which could generate 1398 * delayed refs, which could generate more dirty block groups, 1399 * so we want to keep this flushing in this loop to make sure 1400 * everything gets run. 1401 */ 1402 ret = btrfs_run_delayed_refs(trans, U64_MAX); 1403 if (ret) 1404 return ret; 1405 } 1406 1407 if (!list_empty(&fs_info->dirty_cowonly_roots)) 1408 goto again; 1409 1410 /* Update dev-replace pointer once everything is committed */ 1411 fs_info->dev_replace.committed_cursor_left = 1412 fs_info->dev_replace.cursor_left_last_write_of_item; 1413 1414 return 0; 1415 } 1416 1417 /* 1418 * If we had a pending drop we need to see if there are any others left in our 1419 * dead roots list, and if not clear our bit and wake any waiters. 1420 */ 1421 void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info) 1422 { 1423 /* 1424 * We put the drop in progress roots at the front of the list, so if the 1425 * first entry doesn't have UNFINISHED_DROP set we can wake everybody 1426 * up. 1427 */ 1428 spin_lock(&fs_info->trans_lock); 1429 if (!list_empty(&fs_info->dead_roots)) { 1430 struct btrfs_root *root = list_first_entry(&fs_info->dead_roots, 1431 struct btrfs_root, 1432 root_list); 1433 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) { 1434 spin_unlock(&fs_info->trans_lock); 1435 return; 1436 } 1437 } 1438 spin_unlock(&fs_info->trans_lock); 1439 1440 btrfs_wake_unfinished_drop(fs_info); 1441 } 1442 1443 /* 1444 * dead roots are old snapshots that need to be deleted. This allocates 1445 * a dirty root struct and adds it into the list of dead roots that need to 1446 * be deleted 1447 */ 1448 void btrfs_add_dead_root(struct btrfs_root *root) 1449 { 1450 struct btrfs_fs_info *fs_info = root->fs_info; 1451 1452 spin_lock(&fs_info->trans_lock); 1453 if (list_empty(&root->root_list)) { 1454 btrfs_grab_root(root); 1455 1456 /* We want to process the partially complete drops first. */ 1457 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) 1458 list_add(&root->root_list, &fs_info->dead_roots); 1459 else 1460 list_add_tail(&root->root_list, &fs_info->dead_roots); 1461 } 1462 spin_unlock(&fs_info->trans_lock); 1463 } 1464 1465 /* 1466 * Update each subvolume root and its relocation root, if it exists, in the tree 1467 * of tree roots. Also free log roots if they exist. 1468 */ 1469 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans) 1470 { 1471 struct btrfs_fs_info *fs_info = trans->fs_info; 1472 struct btrfs_root *gang[8]; 1473 int i; 1474 int ret; 1475 1476 /* 1477 * At this point no one can be using this transaction to modify any tree 1478 * and no one can start another transaction to modify any tree either. 1479 */ 1480 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING, 1481 "trans->transaction->state=%d", trans->transaction->state); 1482 1483 spin_lock(&fs_info->fs_roots_radix_lock); 1484 while (1) { 1485 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 1486 (void **)gang, 0, 1487 ARRAY_SIZE(gang), 1488 BTRFS_ROOT_TRANS_TAG); 1489 if (ret == 0) 1490 break; 1491 for (i = 0; i < ret; i++) { 1492 struct btrfs_root *root = gang[i]; 1493 int ret2; 1494 1495 /* 1496 * At this point we can neither have tasks logging inodes 1497 * from a root nor trying to commit a log tree. 1498 */ 1499 ASSERT(atomic_read(&root->log_writers) == 0, 1500 "atomic_read(&root->log_writers)=%d", 1501 atomic_read(&root->log_writers)); 1502 ASSERT(atomic_read(&root->log_commit[0]) == 0, 1503 "atomic_read(&root->log_commit[0])=%d", 1504 atomic_read(&root->log_commit[0])); 1505 ASSERT(atomic_read(&root->log_commit[1]) == 0, 1506 "atomic_read(&root->log_commit[1])=%d", 1507 atomic_read(&root->log_commit[1])); 1508 1509 radix_tree_tag_clear(&fs_info->fs_roots_radix, 1510 (unsigned long)btrfs_root_id(root), 1511 BTRFS_ROOT_TRANS_TAG); 1512 btrfs_qgroup_free_meta_all_pertrans(root); 1513 spin_unlock(&fs_info->fs_roots_radix_lock); 1514 1515 btrfs_free_log(trans, root); 1516 ret2 = btrfs_update_reloc_root(trans, root); 1517 if (ret2) 1518 return ret2; 1519 1520 /* see comments in should_cow_block() */ 1521 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1522 smp_mb__after_atomic(); 1523 1524 if (root->commit_root != root->node) { 1525 list_add_tail(&root->dirty_list, 1526 &trans->transaction->switch_commits); 1527 btrfs_set_root_node(&root->root_item, 1528 root->node); 1529 } 1530 1531 ret2 = btrfs_update_root(trans, fs_info->tree_root, 1532 &root->root_key, 1533 &root->root_item); 1534 if (ret2) 1535 return ret2; 1536 spin_lock(&fs_info->fs_roots_radix_lock); 1537 } 1538 } 1539 spin_unlock(&fs_info->fs_roots_radix_lock); 1540 return 0; 1541 } 1542 1543 /* 1544 * Do all special snapshot related qgroup dirty hack. 1545 * 1546 * Will do all needed qgroup inherit and dirty hack like switch commit 1547 * roots inside one transaction and write all btree into disk, to make 1548 * qgroup works. 1549 */ 1550 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans, 1551 struct btrfs_root *src, 1552 struct btrfs_root *parent, 1553 struct btrfs_qgroup_inherit *inherit, 1554 u64 dst_objectid) 1555 { 1556 struct btrfs_fs_info *fs_info = src->fs_info; 1557 int ret; 1558 1559 /* 1560 * Save some performance in the case that qgroups are not enabled. If 1561 * this check races with the ioctl, rescan will kick in anyway. 1562 */ 1563 if (!btrfs_qgroup_full_accounting(fs_info)) 1564 return 0; 1565 1566 /* 1567 * Ensure dirty @src will be committed. Or, after coming 1568 * commit_fs_roots() and switch_commit_roots(), any dirty but not 1569 * recorded root will never be updated again, causing an outdated root 1570 * item. 1571 */ 1572 ret = record_root_in_trans(trans, src, 1); 1573 if (ret) 1574 return ret; 1575 1576 /* 1577 * btrfs_qgroup_inherit relies on a consistent view of the usage for the 1578 * src root, so we must run the delayed refs here. 1579 * 1580 * However this isn't particularly fool proof, because there's no 1581 * synchronization keeping us from changing the tree after this point 1582 * before we do the qgroup_inherit, or even from making changes while 1583 * we're doing the qgroup_inherit. But that's a problem for the future, 1584 * for now flush the delayed refs to narrow the race window where the 1585 * qgroup counters could end up wrong. 1586 */ 1587 ret = btrfs_run_delayed_refs(trans, U64_MAX); 1588 if (unlikely(ret)) { 1589 btrfs_abort_transaction(trans, ret); 1590 return ret; 1591 } 1592 1593 ret = commit_fs_roots(trans); 1594 if (ret) 1595 goto out; 1596 ret = btrfs_qgroup_account_extents(trans); 1597 if (ret < 0) 1598 goto out; 1599 1600 /* Now qgroup are all updated, we can inherit it to new qgroups */ 1601 ret = btrfs_qgroup_inherit(trans, btrfs_root_id(src), dst_objectid, 1602 btrfs_root_id(parent), inherit); 1603 if (ret < 0) 1604 goto out; 1605 1606 /* 1607 * Now we do a simplified commit transaction, which will: 1608 * 1) commit all subvolume and extent tree 1609 * To ensure all subvolume and extent tree have a valid 1610 * commit_root to accounting later insert_dir_item() 1611 * 2) write all btree blocks onto disk 1612 * This is to make sure later btree modification will be cowed 1613 * Or commit_root can be populated and cause wrong qgroup numbers 1614 * In this simplified commit, we don't really care about other trees 1615 * like chunk and root tree, as they won't affect qgroup. 1616 * And we don't write super to avoid half committed status. 1617 */ 1618 ret = commit_cowonly_roots(trans); 1619 if (ret) 1620 goto out; 1621 switch_commit_roots(trans); 1622 ret = btrfs_write_and_wait_transaction(trans); 1623 if (ret) 1624 btrfs_handle_fs_error(fs_info, ret, 1625 "Error while writing out transaction for qgroup"); 1626 1627 out: 1628 /* 1629 * Force parent root to be updated, as we recorded it before so its 1630 * last_trans == cur_transid. 1631 * Or it won't be committed again onto disk after later 1632 * insert_dir_item() 1633 */ 1634 if (!ret) 1635 ret = record_root_in_trans(trans, parent, 1); 1636 return ret; 1637 } 1638 1639 /* 1640 * new snapshots need to be created at a very specific time in the 1641 * transaction commit. This does the actual creation. 1642 * 1643 * Note: 1644 * If the error which may affect the commitment of the current transaction 1645 * happens, we should return the error number. If the error which just affect 1646 * the creation of the pending snapshots, just return 0. 1647 */ 1648 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 1649 struct btrfs_pending_snapshot *pending) 1650 { 1651 1652 struct btrfs_fs_info *fs_info = trans->fs_info; 1653 struct btrfs_key key; 1654 struct btrfs_root_item *new_root_item; 1655 struct btrfs_root *tree_root = fs_info->tree_root; 1656 struct btrfs_root *root = pending->root; 1657 struct btrfs_root *parent_root; 1658 struct btrfs_block_rsv *rsv; 1659 struct btrfs_inode *parent_inode = pending->dir; 1660 BTRFS_PATH_AUTO_FREE(path); 1661 struct btrfs_dir_item *dir_item; 1662 struct extent_buffer *tmp; 1663 struct extent_buffer *old; 1664 struct timespec64 cur_time; 1665 int ret = 0; 1666 u64 to_reserve = 0; 1667 u64 index = 0; 1668 u64 objectid; 1669 u64 root_flags; 1670 unsigned int nofs_flags; 1671 struct fscrypt_name fname; 1672 1673 ASSERT(pending->path); 1674 path = pending->path; 1675 1676 ASSERT(pending->root_item); 1677 new_root_item = pending->root_item; 1678 1679 /* 1680 * We're inside a transaction and must make sure that any potential 1681 * allocations with GFP_KERNEL in fscrypt won't recurse back to 1682 * filesystem. 1683 */ 1684 nofs_flags = memalloc_nofs_save(); 1685 pending->error = fscrypt_setup_filename(&parent_inode->vfs_inode, 1686 &pending->dentry->d_name, 0, 1687 &fname); 1688 memalloc_nofs_restore(nofs_flags); 1689 if (pending->error) 1690 goto free_pending; 1691 1692 pending->error = btrfs_get_free_objectid(tree_root, &objectid); 1693 if (pending->error) 1694 goto free_fname; 1695 1696 /* 1697 * Make qgroup to skip current new snapshot's qgroupid, as it is 1698 * accounted by later btrfs_qgroup_inherit(). 1699 */ 1700 btrfs_set_skip_qgroup(trans, objectid); 1701 1702 btrfs_reloc_pre_snapshot(pending, &to_reserve); 1703 1704 if (to_reserve > 0) { 1705 pending->error = btrfs_block_rsv_add(fs_info, 1706 &pending->block_rsv, 1707 to_reserve, 1708 BTRFS_RESERVE_NO_FLUSH); 1709 if (pending->error) 1710 goto clear_skip_qgroup; 1711 } 1712 1713 rsv = trans->block_rsv; 1714 trans->block_rsv = &pending->block_rsv; 1715 trans->bytes_reserved = trans->block_rsv->reserved; 1716 trace_btrfs_space_reservation(fs_info, "transaction", 1717 trans->transid, 1718 trans->bytes_reserved, 1); 1719 parent_root = parent_inode->root; 1720 ret = record_root_in_trans(trans, parent_root, 0); 1721 if (ret) 1722 goto fail; 1723 cur_time = current_time(&parent_inode->vfs_inode); 1724 1725 /* 1726 * insert the directory item 1727 */ 1728 ret = btrfs_set_inode_index(parent_inode, &index); 1729 if (unlikely(ret)) { 1730 btrfs_abort_transaction(trans, ret); 1731 goto fail; 1732 } 1733 1734 /* check if there is a file/dir which has the same name. */ 1735 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, 1736 btrfs_ino(parent_inode), 1737 &fname.disk_name, 0); 1738 if (dir_item != NULL && !IS_ERR(dir_item)) { 1739 pending->error = -EEXIST; 1740 goto dir_item_existed; 1741 } else if (IS_ERR(dir_item)) { 1742 ret = PTR_ERR(dir_item); 1743 btrfs_abort_transaction(trans, ret); 1744 goto fail; 1745 } 1746 btrfs_release_path(path); 1747 1748 ret = btrfs_create_qgroup(trans, objectid); 1749 if (ret && ret != -EEXIST) { 1750 if (unlikely(ret != -ENOTCONN || btrfs_qgroup_enabled(fs_info))) { 1751 btrfs_abort_transaction(trans, ret); 1752 goto fail; 1753 } 1754 } 1755 1756 /* 1757 * pull in the delayed directory update 1758 * and the delayed inode item 1759 * otherwise we corrupt the FS during 1760 * snapshot 1761 */ 1762 ret = btrfs_run_delayed_items(trans); 1763 if (unlikely(ret)) { 1764 btrfs_abort_transaction(trans, ret); 1765 goto fail; 1766 } 1767 1768 ret = record_root_in_trans(trans, root, 0); 1769 if (unlikely(ret)) { 1770 btrfs_abort_transaction(trans, ret); 1771 goto fail; 1772 } 1773 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1774 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1775 btrfs_check_and_init_root_item(new_root_item); 1776 1777 root_flags = btrfs_root_flags(new_root_item); 1778 if (pending->readonly) 1779 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1780 else 1781 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1782 btrfs_set_root_flags(new_root_item, root_flags); 1783 1784 btrfs_set_root_generation_v2(new_root_item, 1785 trans->transid); 1786 generate_random_guid(new_root_item->uuid); 1787 memcpy(new_root_item->parent_uuid, root->root_item.uuid, 1788 BTRFS_UUID_SIZE); 1789 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) { 1790 memset(new_root_item->received_uuid, 0, 1791 sizeof(new_root_item->received_uuid)); 1792 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); 1793 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); 1794 btrfs_set_root_stransid(new_root_item, 0); 1795 btrfs_set_root_rtransid(new_root_item, 0); 1796 } 1797 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec); 1798 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec); 1799 btrfs_set_root_otransid(new_root_item, trans->transid); 1800 1801 old = btrfs_lock_root_node(root); 1802 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old, 1803 BTRFS_NESTING_COW); 1804 if (unlikely(ret)) { 1805 btrfs_tree_unlock(old); 1806 free_extent_buffer(old); 1807 btrfs_abort_transaction(trans, ret); 1808 goto fail; 1809 } 1810 1811 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1812 /* clean up in any case */ 1813 btrfs_tree_unlock(old); 1814 free_extent_buffer(old); 1815 if (unlikely(ret)) { 1816 btrfs_abort_transaction(trans, ret); 1817 goto fail; 1818 } 1819 /* see comments in should_cow_block() */ 1820 set_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1821 smp_mb__after_atomic(); 1822 1823 btrfs_set_root_node(new_root_item, tmp); 1824 /* record when the snapshot was created in key.offset */ 1825 key.objectid = objectid; 1826 key.type = BTRFS_ROOT_ITEM_KEY; 1827 key.offset = trans->transid; 1828 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1829 btrfs_tree_unlock(tmp); 1830 free_extent_buffer(tmp); 1831 if (unlikely(ret)) { 1832 btrfs_abort_transaction(trans, ret); 1833 goto fail; 1834 } 1835 1836 /* 1837 * insert root back/forward references 1838 */ 1839 ret = btrfs_add_root_ref(trans, objectid, 1840 btrfs_root_id(parent_root), 1841 btrfs_ino(parent_inode), index, 1842 &fname.disk_name); 1843 if (unlikely(ret)) { 1844 btrfs_abort_transaction(trans, ret); 1845 goto fail; 1846 } 1847 1848 key.offset = (u64)-1; 1849 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, &pending->anon_dev); 1850 if (IS_ERR(pending->snap)) { 1851 ret = PTR_ERR(pending->snap); 1852 pending->snap = NULL; 1853 btrfs_abort_transaction(trans, ret); 1854 goto fail; 1855 } 1856 1857 ret = btrfs_reloc_post_snapshot(trans, pending); 1858 if (unlikely(ret)) { 1859 btrfs_abort_transaction(trans, ret); 1860 goto fail; 1861 } 1862 1863 /* 1864 * Do special qgroup accounting for snapshot, as we do some qgroup 1865 * snapshot hack to do fast snapshot. 1866 * To co-operate with that hack, we do hack again. 1867 * Or snapshot will be greatly slowed down by a subtree qgroup rescan 1868 */ 1869 if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_FULL) 1870 ret = qgroup_account_snapshot(trans, root, parent_root, 1871 pending->inherit, objectid); 1872 else if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE) 1873 ret = btrfs_qgroup_inherit(trans, btrfs_root_id(root), objectid, 1874 btrfs_root_id(parent_root), pending->inherit); 1875 if (ret < 0) 1876 goto fail; 1877 1878 ret = btrfs_insert_dir_item(trans, &fname.disk_name, 1879 parent_inode, &key, BTRFS_FT_DIR, 1880 index); 1881 if (unlikely(ret)) { 1882 btrfs_abort_transaction(trans, ret); 1883 goto fail; 1884 } 1885 1886 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 1887 fname.disk_name.len * 2); 1888 inode_set_mtime_to_ts(&parent_inode->vfs_inode, 1889 inode_set_ctime_current(&parent_inode->vfs_inode)); 1890 ret = btrfs_update_inode_fallback(trans, parent_inode); 1891 if (unlikely(ret)) { 1892 btrfs_abort_transaction(trans, ret); 1893 goto fail; 1894 } 1895 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid, 1896 BTRFS_UUID_KEY_SUBVOL, 1897 objectid); 1898 if (unlikely(ret)) { 1899 btrfs_abort_transaction(trans, ret); 1900 goto fail; 1901 } 1902 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) { 1903 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid, 1904 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 1905 objectid); 1906 if (unlikely(ret && ret != -EEXIST)) { 1907 btrfs_abort_transaction(trans, ret); 1908 goto fail; 1909 } 1910 } 1911 1912 fail: 1913 pending->error = ret; 1914 dir_item_existed: 1915 trans->block_rsv = rsv; 1916 trans->bytes_reserved = 0; 1917 clear_skip_qgroup: 1918 btrfs_clear_skip_qgroup(trans); 1919 free_fname: 1920 fscrypt_free_filename(&fname); 1921 free_pending: 1922 kfree(new_root_item); 1923 pending->root_item = NULL; 1924 pending->path = NULL; 1925 1926 return ret; 1927 } 1928 1929 /* 1930 * create all the snapshots we've scheduled for creation 1931 */ 1932 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans) 1933 { 1934 struct btrfs_pending_snapshot *pending, *next; 1935 struct list_head *head = &trans->transaction->pending_snapshots; 1936 int ret = 0; 1937 1938 list_for_each_entry_safe(pending, next, head, list) { 1939 list_del(&pending->list); 1940 ret = create_pending_snapshot(trans, pending); 1941 if (ret) 1942 break; 1943 } 1944 return ret; 1945 } 1946 1947 static void update_super_roots(struct btrfs_fs_info *fs_info) 1948 { 1949 struct btrfs_root_item *root_item; 1950 struct btrfs_super_block *super; 1951 1952 super = fs_info->super_copy; 1953 1954 root_item = &fs_info->chunk_root->root_item; 1955 super->chunk_root = root_item->bytenr; 1956 super->chunk_root_generation = root_item->generation; 1957 super->chunk_root_level = root_item->level; 1958 1959 root_item = &fs_info->tree_root->root_item; 1960 super->root = root_item->bytenr; 1961 super->generation = root_item->generation; 1962 super->root_level = root_item->level; 1963 if (btrfs_test_opt(fs_info, SPACE_CACHE)) 1964 super->cache_generation = root_item->generation; 1965 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags)) 1966 super->cache_generation = 0; 1967 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags)) 1968 super->uuid_tree_generation = root_item->generation; 1969 } 1970 1971 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1972 { 1973 struct btrfs_transaction *trans; 1974 int ret = 0; 1975 1976 spin_lock(&info->trans_lock); 1977 trans = info->running_transaction; 1978 if (trans) 1979 ret = is_transaction_blocked(trans); 1980 spin_unlock(&info->trans_lock); 1981 return ret; 1982 } 1983 1984 void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans) 1985 { 1986 struct btrfs_fs_info *fs_info = trans->fs_info; 1987 struct btrfs_transaction *cur_trans; 1988 1989 /* Kick the transaction kthread. */ 1990 set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags); 1991 wake_up_process(fs_info->transaction_kthread); 1992 1993 /* take transaction reference */ 1994 cur_trans = trans->transaction; 1995 refcount_inc(&cur_trans->use_count); 1996 1997 btrfs_end_transaction(trans); 1998 1999 /* 2000 * Wait for the current transaction commit to start and block 2001 * subsequent transaction joins 2002 */ 2003 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 2004 wait_event(fs_info->transaction_blocked_wait, 2005 cur_trans->state >= TRANS_STATE_COMMIT_START || 2006 TRANS_ABORTED(cur_trans)); 2007 btrfs_put_transaction(cur_trans); 2008 } 2009 2010 /* 2011 * If there is a running transaction commit it or if it's already committing, 2012 * wait for its commit to complete. Does not start and commit a new transaction 2013 * if there isn't any running. 2014 */ 2015 int btrfs_commit_current_transaction(struct btrfs_root *root) 2016 { 2017 struct btrfs_trans_handle *trans; 2018 2019 trans = btrfs_attach_transaction_barrier(root); 2020 if (IS_ERR(trans)) { 2021 int ret = PTR_ERR(trans); 2022 2023 return (ret == -ENOENT) ? 0 : ret; 2024 } 2025 2026 return btrfs_commit_transaction(trans); 2027 } 2028 2029 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err) 2030 { 2031 struct btrfs_fs_info *fs_info = trans->fs_info; 2032 struct btrfs_transaction *cur_trans = trans->transaction; 2033 2034 WARN_ON(refcount_read(&trans->use_count) > 1); 2035 2036 btrfs_abort_transaction(trans, err); 2037 2038 spin_lock(&fs_info->trans_lock); 2039 2040 /* 2041 * If the transaction is removed from the list, it means this 2042 * transaction has been committed successfully, so it is impossible 2043 * to call the cleanup function. 2044 */ 2045 BUG_ON(list_empty(&cur_trans->list)); 2046 2047 if (cur_trans == fs_info->running_transaction) { 2048 cur_trans->state = TRANS_STATE_COMMIT_DOING; 2049 spin_unlock(&fs_info->trans_lock); 2050 2051 /* 2052 * The thread has already released the lockdep map as reader 2053 * already in btrfs_commit_transaction(). 2054 */ 2055 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers); 2056 wait_event(cur_trans->writer_wait, 2057 atomic_read(&cur_trans->num_writers) == 1); 2058 2059 spin_lock(&fs_info->trans_lock); 2060 } 2061 2062 /* 2063 * Now that we know no one else is still using the transaction we can 2064 * remove the transaction from the list of transactions. This avoids 2065 * the transaction kthread from cleaning up the transaction while some 2066 * other task is still using it, which could result in a use-after-free 2067 * on things like log trees, as it forces the transaction kthread to 2068 * wait for this transaction to be cleaned up by us. 2069 */ 2070 list_del_init(&cur_trans->list); 2071 2072 spin_unlock(&fs_info->trans_lock); 2073 2074 btrfs_cleanup_one_transaction(trans->transaction); 2075 2076 spin_lock(&fs_info->trans_lock); 2077 if (cur_trans == fs_info->running_transaction) 2078 fs_info->running_transaction = NULL; 2079 spin_unlock(&fs_info->trans_lock); 2080 2081 if (trans->type & __TRANS_FREEZABLE) 2082 sb_end_intwrite(fs_info->sb); 2083 btrfs_put_transaction(cur_trans); 2084 btrfs_put_transaction(cur_trans); 2085 2086 trace_btrfs_transaction_commit(fs_info); 2087 2088 if (current->journal_info == trans) 2089 current->journal_info = NULL; 2090 2091 /* 2092 * If relocation is running, we can't cancel scrub because that will 2093 * result in a deadlock. Before relocating a block group, relocation 2094 * pauses scrub, then starts and commits a transaction before unpausing 2095 * scrub. If the transaction commit is being done by the relocation 2096 * task or triggered by another task and the relocation task is waiting 2097 * for the commit, and we end up here due to an error in the commit 2098 * path, then calling btrfs_scrub_cancel() will deadlock, as we are 2099 * asking for scrub to stop while having it asked to be paused higher 2100 * above in relocation code. 2101 */ 2102 if (!test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) 2103 btrfs_scrub_cancel(fs_info); 2104 2105 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2106 } 2107 2108 /* 2109 * Release reserved delayed ref space of all pending block groups of the 2110 * transaction and remove them from the list 2111 */ 2112 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans) 2113 { 2114 struct btrfs_fs_info *fs_info = trans->fs_info; 2115 struct btrfs_block_group *block_group, *tmp; 2116 2117 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 2118 btrfs_dec_delayed_refs_rsv_bg_inserts(fs_info); 2119 /* 2120 * Not strictly necessary to lock, as no other task will be using a 2121 * block_group on the new_bgs list during a transaction abort. 2122 */ 2123 spin_lock(&fs_info->unused_bgs_lock); 2124 list_del_init(&block_group->bg_list); 2125 btrfs_put_block_group(block_group); 2126 spin_unlock(&fs_info->unused_bgs_lock); 2127 } 2128 } 2129 2130 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info) 2131 { 2132 /* 2133 * We use try_to_writeback_inodes_sb() here because if we used 2134 * btrfs_start_delalloc_roots we would deadlock with fs freeze. 2135 * Currently are holding the fs freeze lock, if we do an async flush 2136 * we'll do btrfs_join_transaction() and deadlock because we need to 2137 * wait for the fs freeze lock. Using the direct flushing we benefit 2138 * from already being in a transaction and our join_transaction doesn't 2139 * have to re-take the fs freeze lock. 2140 * 2141 * Note that try_to_writeback_inodes_sb() will only trigger writeback 2142 * if it can read lock sb->s_umount. It will always be able to lock it, 2143 * except when the filesystem is being unmounted or being frozen, but in 2144 * those cases sync_filesystem() is called, which results in calling 2145 * writeback_inodes_sb() while holding a write lock on sb->s_umount. 2146 * Note that we don't call writeback_inodes_sb() directly, because it 2147 * will emit a warning if sb->s_umount is not locked. 2148 */ 2149 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) 2150 try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC); 2151 return 0; 2152 } 2153 2154 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info) 2155 { 2156 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) 2157 btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL); 2158 } 2159 2160 /* 2161 * Add a pending snapshot associated with the given transaction handle to the 2162 * respective handle. This must be called after the transaction commit started 2163 * and while holding fs_info->trans_lock. 2164 * This serves to guarantee a caller of btrfs_commit_transaction() that it can 2165 * safely free the pending snapshot pointer in case btrfs_commit_transaction() 2166 * returns an error. 2167 */ 2168 static void add_pending_snapshot(struct btrfs_trans_handle *trans) 2169 { 2170 struct btrfs_transaction *cur_trans = trans->transaction; 2171 2172 if (!trans->pending_snapshot) 2173 return; 2174 2175 lockdep_assert_held(&trans->fs_info->trans_lock); 2176 ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_PREP, 2177 "cur_trans->state=%d", cur_trans->state); 2178 2179 list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots); 2180 } 2181 2182 static void update_commit_stats(struct btrfs_fs_info *fs_info) 2183 { 2184 ktime_t now = ktime_get_ns(); 2185 ktime_t interval = now - fs_info->commit_stats.critical_section_start_time; 2186 2187 ASSERT(fs_info->commit_stats.critical_section_start_time); 2188 2189 fs_info->commit_stats.commit_count++; 2190 fs_info->commit_stats.last_commit_dur = interval; 2191 fs_info->commit_stats.max_commit_dur = 2192 max_t(u64, fs_info->commit_stats.max_commit_dur, interval); 2193 fs_info->commit_stats.total_commit_dur += interval; 2194 fs_info->commit_stats.critical_section_start_time = 0; 2195 } 2196 2197 int btrfs_commit_transaction(struct btrfs_trans_handle *trans) 2198 { 2199 struct btrfs_fs_info *fs_info = trans->fs_info; 2200 struct btrfs_transaction *cur_trans = trans->transaction; 2201 struct btrfs_transaction *prev_trans = NULL; 2202 int ret; 2203 2204 ASSERT(refcount_read(&trans->use_count) == 1, 2205 "refcount_read(&trans->use_count)=%d", refcount_read(&trans->use_count)); 2206 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 2207 2208 clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags); 2209 2210 /* Stop the commit early if ->aborted is set */ 2211 if (TRANS_ABORTED(cur_trans)) { 2212 ret = cur_trans->aborted; 2213 goto lockdep_trans_commit_start_release; 2214 } 2215 2216 btrfs_trans_release_metadata(trans); 2217 trans->block_rsv = NULL; 2218 2219 /* 2220 * We only want one transaction commit doing the flushing so we do not 2221 * waste a bunch of time on lock contention on the extent root node. 2222 */ 2223 if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING, 2224 &cur_trans->delayed_refs.flags)) { 2225 /* 2226 * Make a pass through all the delayed refs we have so far. 2227 * Any running threads may add more while we are here. 2228 */ 2229 ret = btrfs_run_delayed_refs(trans, 0); 2230 if (ret) 2231 goto lockdep_trans_commit_start_release; 2232 } 2233 2234 btrfs_create_pending_block_groups(trans); 2235 2236 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) { 2237 int run_it = 0; 2238 2239 /* this mutex is also taken before trying to set 2240 * block groups readonly. We need to make sure 2241 * that nobody has set a block group readonly 2242 * after a extents from that block group have been 2243 * allocated for cache files. btrfs_set_block_group_ro 2244 * will wait for the transaction to commit if it 2245 * finds BTRFS_TRANS_DIRTY_BG_RUN set. 2246 * 2247 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure 2248 * only one process starts all the block group IO. It wouldn't 2249 * hurt to have more than one go through, but there's no 2250 * real advantage to it either. 2251 */ 2252 mutex_lock(&fs_info->ro_block_group_mutex); 2253 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN, 2254 &cur_trans->flags)) 2255 run_it = 1; 2256 mutex_unlock(&fs_info->ro_block_group_mutex); 2257 2258 if (run_it) { 2259 ret = btrfs_start_dirty_block_groups(trans); 2260 if (ret) 2261 goto lockdep_trans_commit_start_release; 2262 } 2263 } 2264 2265 spin_lock(&fs_info->trans_lock); 2266 if (cur_trans->state >= TRANS_STATE_COMMIT_PREP) { 2267 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED; 2268 2269 add_pending_snapshot(trans); 2270 2271 spin_unlock(&fs_info->trans_lock); 2272 refcount_inc(&cur_trans->use_count); 2273 2274 if (trans->in_fsync) 2275 want_state = TRANS_STATE_SUPER_COMMITTED; 2276 2277 btrfs_trans_state_lockdep_release(fs_info, 2278 BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 2279 ret = btrfs_end_transaction(trans); 2280 wait_for_commit(cur_trans, want_state); 2281 2282 if (TRANS_ABORTED(cur_trans)) 2283 ret = cur_trans->aborted; 2284 2285 btrfs_put_transaction(cur_trans); 2286 2287 return ret; 2288 } 2289 2290 cur_trans->state = TRANS_STATE_COMMIT_PREP; 2291 wake_up(&fs_info->transaction_blocked_wait); 2292 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 2293 2294 if (!list_is_first(&cur_trans->list, &fs_info->trans_list)) { 2295 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED; 2296 2297 if (trans->in_fsync) 2298 want_state = TRANS_STATE_SUPER_COMMITTED; 2299 2300 prev_trans = list_prev_entry(cur_trans, list); 2301 if (prev_trans->state < want_state) { 2302 refcount_inc(&prev_trans->use_count); 2303 spin_unlock(&fs_info->trans_lock); 2304 2305 wait_for_commit(prev_trans, want_state); 2306 2307 ret = READ_ONCE(prev_trans->aborted); 2308 2309 btrfs_put_transaction(prev_trans); 2310 if (ret) 2311 goto lockdep_release; 2312 spin_lock(&fs_info->trans_lock); 2313 } 2314 } else { 2315 /* 2316 * The previous transaction was aborted and was already removed 2317 * from the list of transactions at fs_info->trans_list. So we 2318 * abort to prevent writing a new superblock that reflects a 2319 * corrupt state (pointing to trees with unwritten nodes/leafs). 2320 */ 2321 if (BTRFS_FS_ERROR(fs_info)) { 2322 spin_unlock(&fs_info->trans_lock); 2323 ret = -EROFS; 2324 goto lockdep_release; 2325 } 2326 } 2327 2328 cur_trans->state = TRANS_STATE_COMMIT_START; 2329 wake_up(&fs_info->transaction_blocked_wait); 2330 spin_unlock(&fs_info->trans_lock); 2331 2332 /* 2333 * Get the time spent on the work done by the commit thread and not 2334 * the time spent waiting on a previous commit 2335 */ 2336 fs_info->commit_stats.critical_section_start_time = ktime_get_ns(); 2337 extwriter_counter_dec(cur_trans, trans->type); 2338 2339 ret = btrfs_start_delalloc_flush(fs_info); 2340 if (ret) 2341 goto lockdep_release; 2342 2343 ret = btrfs_run_delayed_items(trans); 2344 if (ret) 2345 goto lockdep_release; 2346 2347 /* 2348 * The thread has started/joined the transaction thus it holds the 2349 * lockdep map as a reader. It has to release it before acquiring the 2350 * lockdep map as a writer. 2351 */ 2352 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters); 2353 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters); 2354 wait_event(cur_trans->writer_wait, 2355 extwriter_counter_read(cur_trans) == 0); 2356 2357 /* some pending stuffs might be added after the previous flush. */ 2358 ret = btrfs_run_delayed_items(trans); 2359 if (ret) { 2360 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers); 2361 goto cleanup_transaction; 2362 } 2363 2364 btrfs_wait_delalloc_flush(fs_info); 2365 2366 /* 2367 * Wait for all ordered extents started by a fast fsync that joined this 2368 * transaction. Otherwise if this transaction commits before the ordered 2369 * extents complete we lose logged data after a power failure. 2370 */ 2371 btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered); 2372 wait_event(cur_trans->pending_wait, 2373 atomic_read(&cur_trans->pending_ordered) == 0); 2374 2375 btrfs_scrub_pause(fs_info); 2376 /* 2377 * Ok now we need to make sure to block out any other joins while we 2378 * commit the transaction. We could have started a join before setting 2379 * COMMIT_DOING so make sure to wait for num_writers to == 1 again. 2380 */ 2381 spin_lock(&fs_info->trans_lock); 2382 add_pending_snapshot(trans); 2383 cur_trans->state = TRANS_STATE_COMMIT_DOING; 2384 spin_unlock(&fs_info->trans_lock); 2385 2386 /* 2387 * The thread has started/joined the transaction thus it holds the 2388 * lockdep map as a reader. It has to release it before acquiring the 2389 * lockdep map as a writer. 2390 */ 2391 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers); 2392 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers); 2393 wait_event(cur_trans->writer_wait, 2394 atomic_read(&cur_trans->num_writers) == 1); 2395 2396 /* 2397 * Make lockdep happy by acquiring the state locks after 2398 * btrfs_trans_num_writers is released. If we acquired the state locks 2399 * before releasing the btrfs_trans_num_writers lock then lockdep would 2400 * complain because we did not follow the reverse order unlocking rule. 2401 */ 2402 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED); 2403 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 2404 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2405 2406 /* 2407 * We've started the commit, clear the flag in case we were triggered to 2408 * do an async commit but somebody else started before the transaction 2409 * kthread could do the work. 2410 */ 2411 clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags); 2412 2413 if (TRANS_ABORTED(cur_trans)) { 2414 ret = cur_trans->aborted; 2415 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2416 goto scrub_continue; 2417 } 2418 /* 2419 * the reloc mutex makes sure that we stop 2420 * the balancing code from coming in and moving 2421 * extents around in the middle of the commit 2422 */ 2423 mutex_lock(&fs_info->reloc_mutex); 2424 2425 /* 2426 * We needn't worry about the delayed items because we will 2427 * deal with them in create_pending_snapshot(), which is the 2428 * core function of the snapshot creation. 2429 */ 2430 ret = create_pending_snapshots(trans); 2431 if (ret) 2432 goto unlock_reloc; 2433 2434 /* 2435 * We insert the dir indexes of the snapshots and update the inode 2436 * of the snapshots' parents after the snapshot creation, so there 2437 * are some delayed items which are not dealt with. Now deal with 2438 * them. 2439 * 2440 * We needn't worry that this operation will corrupt the snapshots, 2441 * because all the tree which are snapshotted will be forced to COW 2442 * the nodes and leaves. 2443 */ 2444 ret = btrfs_run_delayed_items(trans); 2445 if (ret) 2446 goto unlock_reloc; 2447 2448 ret = btrfs_run_delayed_refs(trans, U64_MAX); 2449 if (ret) 2450 goto unlock_reloc; 2451 2452 /* 2453 * make sure none of the code above managed to slip in a 2454 * delayed item 2455 */ 2456 btrfs_assert_delayed_root_empty(fs_info); 2457 2458 WARN_ON(cur_trans != trans->transaction); 2459 2460 ret = commit_fs_roots(trans); 2461 if (ret) 2462 goto unlock_reloc; 2463 2464 /* commit_fs_roots gets rid of all the tree log roots, it is now 2465 * safe to free the root of tree log roots 2466 */ 2467 btrfs_free_log_root_tree(trans, fs_info); 2468 2469 /* 2470 * Since fs roots are all committed, we can get a quite accurate 2471 * new_roots. So let's do quota accounting. 2472 */ 2473 ret = btrfs_qgroup_account_extents(trans); 2474 if (ret < 0) 2475 goto unlock_reloc; 2476 2477 ret = commit_cowonly_roots(trans); 2478 if (ret) 2479 goto unlock_reloc; 2480 2481 /* 2482 * The tasks which save the space cache and inode cache may also 2483 * update ->aborted, check it. 2484 */ 2485 if (TRANS_ABORTED(cur_trans)) { 2486 ret = cur_trans->aborted; 2487 goto unlock_reloc; 2488 } 2489 2490 cur_trans = fs_info->running_transaction; 2491 2492 btrfs_set_root_node(&fs_info->tree_root->root_item, 2493 fs_info->tree_root->node); 2494 list_add_tail(&fs_info->tree_root->dirty_list, 2495 &cur_trans->switch_commits); 2496 2497 btrfs_set_root_node(&fs_info->chunk_root->root_item, 2498 fs_info->chunk_root->node); 2499 list_add_tail(&fs_info->chunk_root->dirty_list, 2500 &cur_trans->switch_commits); 2501 2502 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2503 btrfs_set_root_node(&fs_info->block_group_root->root_item, 2504 fs_info->block_group_root->node); 2505 list_add_tail(&fs_info->block_group_root->dirty_list, 2506 &cur_trans->switch_commits); 2507 } 2508 2509 switch_commit_roots(trans); 2510 2511 ASSERT(list_empty(&cur_trans->dirty_bgs)); 2512 ASSERT(list_empty(&cur_trans->io_bgs)); 2513 update_super_roots(fs_info); 2514 2515 btrfs_set_super_log_root(fs_info->super_copy, 0); 2516 btrfs_set_super_log_root_level(fs_info->super_copy, 0); 2517 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2518 sizeof(*fs_info->super_copy)); 2519 2520 btrfs_commit_device_sizes(cur_trans); 2521 2522 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 2523 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 2524 2525 btrfs_trans_release_chunk_metadata(trans); 2526 2527 /* 2528 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and 2529 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to 2530 * make sure that before we commit our superblock, no other task can 2531 * start a new transaction and commit a log tree before we commit our 2532 * superblock. Anyone trying to commit a log tree locks this mutex before 2533 * writing its superblock. 2534 */ 2535 mutex_lock(&fs_info->tree_log_mutex); 2536 2537 spin_lock(&fs_info->trans_lock); 2538 cur_trans->state = TRANS_STATE_UNBLOCKED; 2539 fs_info->running_transaction = NULL; 2540 spin_unlock(&fs_info->trans_lock); 2541 mutex_unlock(&fs_info->reloc_mutex); 2542 2543 wake_up(&fs_info->transaction_wait); 2544 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2545 2546 /* If we have features changed, wake up the cleaner to update sysfs. */ 2547 if (test_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags) && 2548 fs_info->cleaner_kthread) 2549 wake_up_process(fs_info->cleaner_kthread); 2550 2551 ret = btrfs_write_and_wait_transaction(trans); 2552 if (ret) { 2553 btrfs_handle_fs_error(fs_info, ret, 2554 "Error while writing out transaction"); 2555 mutex_unlock(&fs_info->tree_log_mutex); 2556 goto scrub_continue; 2557 } 2558 2559 ret = write_all_supers(fs_info, 0); 2560 /* 2561 * the super is written, we can safely allow the tree-loggers 2562 * to go about their business 2563 */ 2564 mutex_unlock(&fs_info->tree_log_mutex); 2565 if (ret) 2566 goto scrub_continue; 2567 2568 update_commit_stats(fs_info); 2569 /* 2570 * We needn't acquire the lock here because there is no other task 2571 * which can change it. 2572 */ 2573 cur_trans->state = TRANS_STATE_SUPER_COMMITTED; 2574 wake_up(&cur_trans->commit_wait); 2575 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 2576 2577 ret = btrfs_finish_extent_commit(trans); 2578 if (ret) 2579 goto scrub_continue; 2580 2581 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags)) 2582 btrfs_clear_space_info_full(fs_info); 2583 2584 btrfs_set_last_trans_committed(fs_info, cur_trans->transid); 2585 /* 2586 * We needn't acquire the lock here because there is no other task 2587 * which can change it. 2588 */ 2589 cur_trans->state = TRANS_STATE_COMPLETED; 2590 wake_up(&cur_trans->commit_wait); 2591 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED); 2592 2593 spin_lock(&fs_info->trans_lock); 2594 list_del_init(&cur_trans->list); 2595 spin_unlock(&fs_info->trans_lock); 2596 2597 btrfs_put_transaction(cur_trans); 2598 btrfs_put_transaction(cur_trans); 2599 2600 if (trans->type & __TRANS_FREEZABLE) 2601 sb_end_intwrite(fs_info->sb); 2602 2603 trace_btrfs_transaction_commit(fs_info); 2604 2605 btrfs_scrub_continue(fs_info); 2606 2607 if (current->journal_info == trans) 2608 current->journal_info = NULL; 2609 2610 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2611 2612 return ret; 2613 2614 unlock_reloc: 2615 mutex_unlock(&fs_info->reloc_mutex); 2616 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2617 scrub_continue: 2618 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 2619 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED); 2620 btrfs_scrub_continue(fs_info); 2621 cleanup_transaction: 2622 btrfs_trans_release_metadata(trans); 2623 btrfs_cleanup_pending_block_groups(trans); 2624 btrfs_trans_release_chunk_metadata(trans); 2625 trans->block_rsv = NULL; 2626 btrfs_warn(fs_info, "Skipping commit of aborted transaction."); 2627 if (current->journal_info == trans) 2628 current->journal_info = NULL; 2629 cleanup_transaction(trans, ret); 2630 2631 return ret; 2632 2633 lockdep_release: 2634 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters); 2635 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers); 2636 goto cleanup_transaction; 2637 2638 lockdep_trans_commit_start_release: 2639 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 2640 btrfs_end_transaction(trans); 2641 return ret; 2642 } 2643 2644 /* 2645 * return < 0 if error 2646 * 0 if there are no more dead_roots at the time of call 2647 * 1 there are more to be processed, call me again 2648 * 2649 * The return value indicates there are certainly more snapshots to delete, but 2650 * if there comes a new one during processing, it may return 0. We don't mind, 2651 * because btrfs_commit_super will poke cleaner thread and it will process it a 2652 * few seconds later. 2653 */ 2654 int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info) 2655 { 2656 struct btrfs_root *root; 2657 int ret; 2658 2659 spin_lock(&fs_info->trans_lock); 2660 if (list_empty(&fs_info->dead_roots)) { 2661 spin_unlock(&fs_info->trans_lock); 2662 return 0; 2663 } 2664 root = list_first_entry(&fs_info->dead_roots, 2665 struct btrfs_root, root_list); 2666 list_del_init(&root->root_list); 2667 spin_unlock(&fs_info->trans_lock); 2668 2669 btrfs_debug(fs_info, "cleaner removing %llu", btrfs_root_id(root)); 2670 2671 btrfs_kill_all_delayed_nodes(root); 2672 2673 if (btrfs_header_backref_rev(root->node) < 2674 BTRFS_MIXED_BACKREF_REV) 2675 ret = btrfs_drop_snapshot(root, false, false); 2676 else 2677 ret = btrfs_drop_snapshot(root, true, false); 2678 2679 btrfs_put_root(root); 2680 return (ret < 0) ? 0 : 1; 2681 } 2682 2683 /* 2684 * We only mark the transaction aborted and then set the file system read-only. 2685 * This will prevent new transactions from starting or trying to join this 2686 * one. 2687 * 2688 * This means that error recovery at the call site is limited to freeing 2689 * any local memory allocations and passing the error code up without 2690 * further cleanup. The transaction should complete as it normally would 2691 * in the call path but will return -EIO. 2692 * 2693 * We'll complete the cleanup in btrfs_end_transaction and 2694 * btrfs_commit_transaction. 2695 */ 2696 void __cold __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 2697 const char *function, 2698 unsigned int line, int error, bool first_hit) 2699 { 2700 struct btrfs_fs_info *fs_info = trans->fs_info; 2701 2702 WRITE_ONCE(trans->aborted, error); 2703 WRITE_ONCE(trans->transaction->aborted, error); 2704 if (first_hit && error == -ENOSPC) 2705 btrfs_dump_space_info_for_trans_abort(fs_info); 2706 /* Wake up anybody who may be waiting on this transaction */ 2707 wake_up(&fs_info->transaction_wait); 2708 wake_up(&fs_info->transaction_blocked_wait); 2709 __btrfs_handle_fs_error(fs_info, function, line, error, NULL); 2710 } 2711 2712 int __init btrfs_transaction_init(void) 2713 { 2714 btrfs_trans_handle_cachep = KMEM_CACHE(btrfs_trans_handle, SLAB_TEMPORARY); 2715 if (!btrfs_trans_handle_cachep) 2716 return -ENOMEM; 2717 return 0; 2718 } 2719 2720 void __cold btrfs_transaction_exit(void) 2721 { 2722 kmem_cache_destroy(btrfs_trans_handle_cachep); 2723 } 2724