xref: /linux/fs/btrfs/compression.c (revision 51d90a15fedf8366cb96ef68d0ea2d0bf15417d2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/pagemap.h>
11 #include <linux/pagevec.h>
12 #include <linux/highmem.h>
13 #include <linux/kthread.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/psi.h>
20 #include <linux/slab.h>
21 #include <linux/sched/mm.h>
22 #include <linux/log2.h>
23 #include <linux/shrinker.h>
24 #include <crypto/hash.h>
25 #include "misc.h"
26 #include "ctree.h"
27 #include "fs.h"
28 #include "btrfs_inode.h"
29 #include "bio.h"
30 #include "ordered-data.h"
31 #include "compression.h"
32 #include "extent_io.h"
33 #include "extent_map.h"
34 #include "subpage.h"
35 #include "messages.h"
36 #include "super.h"
37 
38 static struct bio_set btrfs_compressed_bioset;
39 
40 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
41 
btrfs_compress_type2str(enum btrfs_compression_type type)42 const char* btrfs_compress_type2str(enum btrfs_compression_type type)
43 {
44 	switch (type) {
45 	case BTRFS_COMPRESS_ZLIB:
46 	case BTRFS_COMPRESS_LZO:
47 	case BTRFS_COMPRESS_ZSTD:
48 	case BTRFS_COMPRESS_NONE:
49 		return btrfs_compress_types[type];
50 	default:
51 		break;
52 	}
53 
54 	return NULL;
55 }
56 
to_compressed_bio(struct btrfs_bio * bbio)57 static inline struct compressed_bio *to_compressed_bio(struct btrfs_bio *bbio)
58 {
59 	return container_of(bbio, struct compressed_bio, bbio);
60 }
61 
alloc_compressed_bio(struct btrfs_inode * inode,u64 start,blk_opf_t op,btrfs_bio_end_io_t end_io)62 static struct compressed_bio *alloc_compressed_bio(struct btrfs_inode *inode,
63 						   u64 start, blk_opf_t op,
64 						   btrfs_bio_end_io_t end_io)
65 {
66 	struct btrfs_bio *bbio;
67 
68 	bbio = btrfs_bio(bio_alloc_bioset(NULL, BTRFS_MAX_COMPRESSED_PAGES, op,
69 					  GFP_NOFS, &btrfs_compressed_bioset));
70 	btrfs_bio_init(bbio, inode, start, end_io, NULL);
71 	return to_compressed_bio(bbio);
72 }
73 
btrfs_compress_is_valid_type(const char * str,size_t len)74 bool btrfs_compress_is_valid_type(const char *str, size_t len)
75 {
76 	int i;
77 
78 	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
79 		size_t comp_len = strlen(btrfs_compress_types[i]);
80 
81 		if (len < comp_len)
82 			continue;
83 
84 		if (!strncmp(btrfs_compress_types[i], str, comp_len))
85 			return true;
86 	}
87 	return false;
88 }
89 
compression_compress_pages(int type,struct list_head * ws,struct btrfs_inode * inode,u64 start,struct folio ** folios,unsigned long * out_folios,unsigned long * total_in,unsigned long * total_out)90 static int compression_compress_pages(int type, struct list_head *ws,
91 				      struct btrfs_inode *inode, u64 start,
92 				      struct folio **folios, unsigned long *out_folios,
93 				      unsigned long *total_in, unsigned long *total_out)
94 {
95 	switch (type) {
96 	case BTRFS_COMPRESS_ZLIB:
97 		return zlib_compress_folios(ws, inode, start, folios,
98 					    out_folios, total_in, total_out);
99 	case BTRFS_COMPRESS_LZO:
100 		return lzo_compress_folios(ws, inode, start, folios,
101 					   out_folios, total_in, total_out);
102 	case BTRFS_COMPRESS_ZSTD:
103 		return zstd_compress_folios(ws, inode, start, folios,
104 					    out_folios, total_in, total_out);
105 	case BTRFS_COMPRESS_NONE:
106 	default:
107 		/*
108 		 * This can happen when compression races with remount setting
109 		 * it to 'no compress', while caller doesn't call
110 		 * inode_need_compress() to check if we really need to
111 		 * compress.
112 		 *
113 		 * Not a big deal, just need to inform caller that we
114 		 * haven't allocated any pages yet.
115 		 */
116 		*out_folios = 0;
117 		return -E2BIG;
118 	}
119 }
120 
compression_decompress_bio(struct list_head * ws,struct compressed_bio * cb)121 static int compression_decompress_bio(struct list_head *ws,
122 				      struct compressed_bio *cb)
123 {
124 	switch (cb->compress_type) {
125 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
126 	case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb);
127 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
128 	case BTRFS_COMPRESS_NONE:
129 	default:
130 		/*
131 		 * This can't happen, the type is validated several times
132 		 * before we get here.
133 		 */
134 		BUG();
135 	}
136 }
137 
compression_decompress(int type,struct list_head * ws,const u8 * data_in,struct folio * dest_folio,unsigned long dest_pgoff,size_t srclen,size_t destlen)138 static int compression_decompress(int type, struct list_head *ws,
139 		const u8 *data_in, struct folio *dest_folio,
140 		unsigned long dest_pgoff, size_t srclen, size_t destlen)
141 {
142 	switch (type) {
143 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_folio,
144 						dest_pgoff, srclen, destlen);
145 	case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_folio,
146 						dest_pgoff, srclen, destlen);
147 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_folio,
148 						dest_pgoff, srclen, destlen);
149 	case BTRFS_COMPRESS_NONE:
150 	default:
151 		/*
152 		 * This can't happen, the type is validated several times
153 		 * before we get here.
154 		 */
155 		BUG();
156 	}
157 }
158 
btrfs_free_compressed_folios(struct compressed_bio * cb)159 static void btrfs_free_compressed_folios(struct compressed_bio *cb)
160 {
161 	for (unsigned int i = 0; i < cb->nr_folios; i++)
162 		btrfs_free_compr_folio(cb->compressed_folios[i]);
163 	kfree(cb->compressed_folios);
164 }
165 
166 static int btrfs_decompress_bio(struct compressed_bio *cb);
167 
168 /*
169  * Global cache of last unused pages for compression/decompression.
170  */
171 static struct btrfs_compr_pool {
172 	struct shrinker *shrinker;
173 	spinlock_t lock;
174 	struct list_head list;
175 	int count;
176 	int thresh;
177 } compr_pool;
178 
btrfs_compr_pool_count(struct shrinker * sh,struct shrink_control * sc)179 static unsigned long btrfs_compr_pool_count(struct shrinker *sh, struct shrink_control *sc)
180 {
181 	int ret;
182 
183 	/*
184 	 * We must not read the values more than once if 'ret' gets expanded in
185 	 * the return statement so we don't accidentally return a negative
186 	 * number, even if the first condition finds it positive.
187 	 */
188 	ret = READ_ONCE(compr_pool.count) - READ_ONCE(compr_pool.thresh);
189 
190 	return ret > 0 ? ret : 0;
191 }
192 
btrfs_compr_pool_scan(struct shrinker * sh,struct shrink_control * sc)193 static unsigned long btrfs_compr_pool_scan(struct shrinker *sh, struct shrink_control *sc)
194 {
195 	LIST_HEAD(remove);
196 	struct list_head *tmp, *next;
197 	int freed;
198 
199 	if (compr_pool.count == 0)
200 		return SHRINK_STOP;
201 
202 	/* For now, just simply drain the whole list. */
203 	spin_lock(&compr_pool.lock);
204 	list_splice_init(&compr_pool.list, &remove);
205 	freed = compr_pool.count;
206 	compr_pool.count = 0;
207 	spin_unlock(&compr_pool.lock);
208 
209 	list_for_each_safe(tmp, next, &remove) {
210 		struct page *page = list_entry(tmp, struct page, lru);
211 
212 		ASSERT(page_ref_count(page) == 1);
213 		put_page(page);
214 	}
215 
216 	return freed;
217 }
218 
219 /*
220  * Common wrappers for page allocation from compression wrappers
221  */
btrfs_alloc_compr_folio(struct btrfs_fs_info * fs_info)222 struct folio *btrfs_alloc_compr_folio(struct btrfs_fs_info *fs_info)
223 {
224 	struct folio *folio = NULL;
225 
226 	/* For bs > ps cases, no cached folio pool for now. */
227 	if (fs_info->block_min_order)
228 		goto alloc;
229 
230 	spin_lock(&compr_pool.lock);
231 	if (compr_pool.count > 0) {
232 		folio = list_first_entry(&compr_pool.list, struct folio, lru);
233 		list_del_init(&folio->lru);
234 		compr_pool.count--;
235 	}
236 	spin_unlock(&compr_pool.lock);
237 
238 	if (folio)
239 		return folio;
240 
241 alloc:
242 	return folio_alloc(GFP_NOFS, fs_info->block_min_order);
243 }
244 
btrfs_free_compr_folio(struct folio * folio)245 void btrfs_free_compr_folio(struct folio *folio)
246 {
247 	bool do_free = false;
248 
249 	/* The folio is from bs > ps fs, no cached pool for now. */
250 	if (folio_order(folio))
251 		goto free;
252 
253 	spin_lock(&compr_pool.lock);
254 	if (compr_pool.count > compr_pool.thresh) {
255 		do_free = true;
256 	} else {
257 		list_add(&folio->lru, &compr_pool.list);
258 		compr_pool.count++;
259 	}
260 	spin_unlock(&compr_pool.lock);
261 
262 	if (!do_free)
263 		return;
264 
265 free:
266 	ASSERT(folio_ref_count(folio) == 1);
267 	folio_put(folio);
268 }
269 
end_bbio_compressed_read(struct btrfs_bio * bbio)270 static void end_bbio_compressed_read(struct btrfs_bio *bbio)
271 {
272 	struct compressed_bio *cb = to_compressed_bio(bbio);
273 	blk_status_t status = bbio->bio.bi_status;
274 
275 	if (!status)
276 		status = errno_to_blk_status(btrfs_decompress_bio(cb));
277 
278 	btrfs_free_compressed_folios(cb);
279 	btrfs_bio_end_io(cb->orig_bbio, status);
280 	bio_put(&bbio->bio);
281 }
282 
283 /*
284  * Clear the writeback bits on all of the file
285  * pages for a compressed write
286  */
end_compressed_writeback(const struct compressed_bio * cb)287 static noinline void end_compressed_writeback(const struct compressed_bio *cb)
288 {
289 	struct inode *inode = &cb->bbio.inode->vfs_inode;
290 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
291 	pgoff_t index = cb->start >> PAGE_SHIFT;
292 	const pgoff_t end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
293 	struct folio_batch fbatch;
294 	int i;
295 	int ret;
296 
297 	ret = blk_status_to_errno(cb->bbio.bio.bi_status);
298 	if (ret)
299 		mapping_set_error(inode->i_mapping, ret);
300 
301 	folio_batch_init(&fbatch);
302 	while (index <= end_index) {
303 		ret = filemap_get_folios(inode->i_mapping, &index, end_index,
304 				&fbatch);
305 
306 		if (ret == 0)
307 			return;
308 
309 		for (i = 0; i < ret; i++) {
310 			struct folio *folio = fbatch.folios[i];
311 
312 			btrfs_folio_clamp_clear_writeback(fs_info, folio,
313 							  cb->start, cb->len);
314 		}
315 		folio_batch_release(&fbatch);
316 	}
317 	/* the inode may be gone now */
318 }
319 
320 /*
321  * Do the cleanup once all the compressed pages hit the disk.  This will clear
322  * writeback on the file pages and free the compressed pages.
323  *
324  * This also calls the writeback end hooks for the file pages so that metadata
325  * and checksums can be updated in the file.
326  */
end_bbio_compressed_write(struct btrfs_bio * bbio)327 static void end_bbio_compressed_write(struct btrfs_bio *bbio)
328 {
329 	struct compressed_bio *cb = to_compressed_bio(bbio);
330 
331 	btrfs_finish_ordered_extent(cb->bbio.ordered, NULL, cb->start, cb->len,
332 				    cb->bbio.bio.bi_status == BLK_STS_OK);
333 
334 	if (cb->writeback)
335 		end_compressed_writeback(cb);
336 	/* Note, our inode could be gone now. */
337 	btrfs_free_compressed_folios(cb);
338 	bio_put(&cb->bbio.bio);
339 }
340 
btrfs_add_compressed_bio_folios(struct compressed_bio * cb)341 static void btrfs_add_compressed_bio_folios(struct compressed_bio *cb)
342 {
343 	struct bio *bio = &cb->bbio.bio;
344 	u32 offset = 0;
345 	unsigned int findex = 0;
346 
347 	while (offset < cb->compressed_len) {
348 		struct folio *folio = cb->compressed_folios[findex];
349 		u32 len = min_t(u32, cb->compressed_len - offset, folio_size(folio));
350 		int ret;
351 
352 		/* Maximum compressed extent is smaller than bio size limit. */
353 		ret = bio_add_folio(bio, folio, len, 0);
354 		ASSERT(ret);
355 		offset += len;
356 		findex++;
357 	}
358 }
359 
360 /*
361  * worker function to build and submit bios for previously compressed pages.
362  * The corresponding pages in the inode should be marked for writeback
363  * and the compressed pages should have a reference on them for dropping
364  * when the IO is complete.
365  *
366  * This also checksums the file bytes and gets things ready for
367  * the end io hooks.
368  */
btrfs_submit_compressed_write(struct btrfs_ordered_extent * ordered,struct folio ** compressed_folios,unsigned int nr_folios,blk_opf_t write_flags,bool writeback)369 void btrfs_submit_compressed_write(struct btrfs_ordered_extent *ordered,
370 				   struct folio **compressed_folios,
371 				   unsigned int nr_folios,
372 				   blk_opf_t write_flags,
373 				   bool writeback)
374 {
375 	struct btrfs_inode *inode = ordered->inode;
376 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
377 	struct compressed_bio *cb;
378 
379 	ASSERT(IS_ALIGNED(ordered->file_offset, fs_info->sectorsize));
380 	ASSERT(IS_ALIGNED(ordered->num_bytes, fs_info->sectorsize));
381 
382 	cb = alloc_compressed_bio(inode, ordered->file_offset,
383 				  REQ_OP_WRITE | write_flags,
384 				  end_bbio_compressed_write);
385 	cb->start = ordered->file_offset;
386 	cb->len = ordered->num_bytes;
387 	cb->compressed_folios = compressed_folios;
388 	cb->compressed_len = ordered->disk_num_bytes;
389 	cb->writeback = writeback;
390 	cb->nr_folios = nr_folios;
391 	cb->bbio.bio.bi_iter.bi_sector = ordered->disk_bytenr >> SECTOR_SHIFT;
392 	cb->bbio.ordered = ordered;
393 	btrfs_add_compressed_bio_folios(cb);
394 
395 	btrfs_submit_bbio(&cb->bbio, 0);
396 }
397 
398 /*
399  * Add extra pages in the same compressed file extent so that we don't need to
400  * re-read the same extent again and again.
401  *
402  * NOTE: this won't work well for subpage, as for subpage read, we lock the
403  * full page then submit bio for each compressed/regular extents.
404  *
405  * This means, if we have several sectors in the same page points to the same
406  * on-disk compressed data, we will re-read the same extent many times and
407  * this function can only help for the next page.
408  */
add_ra_bio_pages(struct inode * inode,u64 compressed_end,struct compressed_bio * cb,int * memstall,unsigned long * pflags)409 static noinline int add_ra_bio_pages(struct inode *inode,
410 				     u64 compressed_end,
411 				     struct compressed_bio *cb,
412 				     int *memstall, unsigned long *pflags)
413 {
414 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
415 	pgoff_t end_index;
416 	struct bio *orig_bio = &cb->orig_bbio->bio;
417 	u64 cur = cb->orig_bbio->file_offset + orig_bio->bi_iter.bi_size;
418 	u64 isize = i_size_read(inode);
419 	int ret;
420 	struct folio *folio;
421 	struct extent_map *em;
422 	struct address_space *mapping = inode->i_mapping;
423 	struct extent_map_tree *em_tree;
424 	struct extent_io_tree *tree;
425 	int sectors_missed = 0;
426 
427 	em_tree = &BTRFS_I(inode)->extent_tree;
428 	tree = &BTRFS_I(inode)->io_tree;
429 
430 	if (isize == 0)
431 		return 0;
432 
433 	/*
434 	 * For current subpage support, we only support 64K page size,
435 	 * which means maximum compressed extent size (128K) is just 2x page
436 	 * size.
437 	 * This makes readahead less effective, so here disable readahead for
438 	 * subpage for now, until full compressed write is supported.
439 	 */
440 	if (fs_info->sectorsize < PAGE_SIZE)
441 		return 0;
442 
443 	/* For bs > ps cases, we don't support readahead for compressed folios for now. */
444 	if (fs_info->block_min_order)
445 		return 0;
446 
447 	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
448 
449 	while (cur < compressed_end) {
450 		pgoff_t page_end;
451 		pgoff_t pg_index = cur >> PAGE_SHIFT;
452 		u32 add_size;
453 
454 		if (pg_index > end_index)
455 			break;
456 
457 		folio = filemap_get_folio(mapping, pg_index);
458 		if (!IS_ERR(folio)) {
459 			u64 folio_sz = folio_size(folio);
460 			u64 offset = offset_in_folio(folio, cur);
461 
462 			folio_put(folio);
463 			sectors_missed += (folio_sz - offset) >>
464 					  fs_info->sectorsize_bits;
465 
466 			/* Beyond threshold, no need to continue */
467 			if (sectors_missed > 4)
468 				break;
469 
470 			/*
471 			 * Jump to next page start as we already have page for
472 			 * current offset.
473 			 */
474 			cur += (folio_sz - offset);
475 			continue;
476 		}
477 
478 		folio = filemap_alloc_folio(mapping_gfp_constraint(mapping, ~__GFP_FS),
479 					    0, NULL);
480 		if (!folio)
481 			break;
482 
483 		if (filemap_add_folio(mapping, folio, pg_index, GFP_NOFS)) {
484 			/* There is already a page, skip to page end */
485 			cur += folio_size(folio);
486 			folio_put(folio);
487 			continue;
488 		}
489 
490 		if (!*memstall && folio_test_workingset(folio)) {
491 			psi_memstall_enter(pflags);
492 			*memstall = 1;
493 		}
494 
495 		ret = set_folio_extent_mapped(folio);
496 		if (ret < 0) {
497 			folio_unlock(folio);
498 			folio_put(folio);
499 			break;
500 		}
501 
502 		page_end = (pg_index << PAGE_SHIFT) + folio_size(folio) - 1;
503 		btrfs_lock_extent(tree, cur, page_end, NULL);
504 		read_lock(&em_tree->lock);
505 		em = btrfs_lookup_extent_mapping(em_tree, cur, page_end + 1 - cur);
506 		read_unlock(&em_tree->lock);
507 
508 		/*
509 		 * At this point, we have a locked page in the page cache for
510 		 * these bytes in the file.  But, we have to make sure they map
511 		 * to this compressed extent on disk.
512 		 */
513 		if (!em || cur < em->start ||
514 		    (cur + fs_info->sectorsize > btrfs_extent_map_end(em)) ||
515 		    (btrfs_extent_map_block_start(em) >> SECTOR_SHIFT) !=
516 		    orig_bio->bi_iter.bi_sector) {
517 			btrfs_free_extent_map(em);
518 			btrfs_unlock_extent(tree, cur, page_end, NULL);
519 			folio_unlock(folio);
520 			folio_put(folio);
521 			break;
522 		}
523 		add_size = min(em->start + em->len, page_end + 1) - cur;
524 		btrfs_free_extent_map(em);
525 		btrfs_unlock_extent(tree, cur, page_end, NULL);
526 
527 		if (folio_contains(folio, end_index)) {
528 			size_t zero_offset = offset_in_folio(folio, isize);
529 
530 			if (zero_offset) {
531 				int zeros;
532 				zeros = folio_size(folio) - zero_offset;
533 				folio_zero_range(folio, zero_offset, zeros);
534 			}
535 		}
536 
537 		if (!bio_add_folio(orig_bio, folio, add_size,
538 				   offset_in_folio(folio, cur))) {
539 			folio_unlock(folio);
540 			folio_put(folio);
541 			break;
542 		}
543 		/*
544 		 * If it's subpage, we also need to increase its
545 		 * subpage::readers number, as at endio we will decrease
546 		 * subpage::readers and to unlock the page.
547 		 */
548 		if (fs_info->sectorsize < PAGE_SIZE)
549 			btrfs_folio_set_lock(fs_info, folio, cur, add_size);
550 		folio_put(folio);
551 		cur += add_size;
552 	}
553 	return 0;
554 }
555 
556 /*
557  * for a compressed read, the bio we get passed has all the inode pages
558  * in it.  We don't actually do IO on those pages but allocate new ones
559  * to hold the compressed pages on disk.
560  *
561  * bio->bi_iter.bi_sector points to the compressed extent on disk
562  * bio->bi_io_vec points to all of the inode pages
563  *
564  * After the compressed pages are read, we copy the bytes into the
565  * bio we were passed and then call the bio end_io calls
566  */
btrfs_submit_compressed_read(struct btrfs_bio * bbio)567 void btrfs_submit_compressed_read(struct btrfs_bio *bbio)
568 {
569 	struct btrfs_inode *inode = bbio->inode;
570 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
571 	struct extent_map_tree *em_tree = &inode->extent_tree;
572 	struct compressed_bio *cb;
573 	unsigned int compressed_len;
574 	u64 file_offset = bbio->file_offset;
575 	u64 em_len;
576 	u64 em_start;
577 	struct extent_map *em;
578 	unsigned long pflags;
579 	int memstall = 0;
580 	blk_status_t status;
581 	int ret;
582 
583 	/* we need the actual starting offset of this extent in the file */
584 	read_lock(&em_tree->lock);
585 	em = btrfs_lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize);
586 	read_unlock(&em_tree->lock);
587 	if (!em) {
588 		status = BLK_STS_IOERR;
589 		goto out;
590 	}
591 
592 	ASSERT(btrfs_extent_map_is_compressed(em));
593 	compressed_len = em->disk_num_bytes;
594 
595 	cb = alloc_compressed_bio(inode, file_offset, REQ_OP_READ,
596 				  end_bbio_compressed_read);
597 
598 	cb->start = em->start - em->offset;
599 	em_len = em->len;
600 	em_start = em->start;
601 
602 	cb->len = bbio->bio.bi_iter.bi_size;
603 	cb->compressed_len = compressed_len;
604 	cb->compress_type = btrfs_extent_map_compression(em);
605 	cb->orig_bbio = bbio;
606 	cb->bbio.csum_search_commit_root = bbio->csum_search_commit_root;
607 
608 	btrfs_free_extent_map(em);
609 
610 	cb->nr_folios = DIV_ROUND_UP(compressed_len, btrfs_min_folio_size(fs_info));
611 	cb->compressed_folios = kcalloc(cb->nr_folios, sizeof(struct folio *), GFP_NOFS);
612 	if (!cb->compressed_folios) {
613 		status = BLK_STS_RESOURCE;
614 		goto out_free_bio;
615 	}
616 
617 	ret = btrfs_alloc_folio_array(cb->nr_folios, fs_info->block_min_order,
618 				      cb->compressed_folios);
619 	if (ret) {
620 		status = BLK_STS_RESOURCE;
621 		goto out_free_compressed_pages;
622 	}
623 
624 	add_ra_bio_pages(&inode->vfs_inode, em_start + em_len, cb, &memstall,
625 			 &pflags);
626 
627 	/* include any pages we added in add_ra-bio_pages */
628 	cb->len = bbio->bio.bi_iter.bi_size;
629 	cb->bbio.bio.bi_iter.bi_sector = bbio->bio.bi_iter.bi_sector;
630 	btrfs_add_compressed_bio_folios(cb);
631 
632 	if (memstall)
633 		psi_memstall_leave(&pflags);
634 
635 	btrfs_submit_bbio(&cb->bbio, 0);
636 	return;
637 
638 out_free_compressed_pages:
639 	kfree(cb->compressed_folios);
640 out_free_bio:
641 	bio_put(&cb->bbio.bio);
642 out:
643 	btrfs_bio_end_io(bbio, status);
644 }
645 
646 /*
647  * Heuristic uses systematic sampling to collect data from the input data
648  * range, the logic can be tuned by the following constants:
649  *
650  * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
651  * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
652  */
653 #define SAMPLING_READ_SIZE	(16)
654 #define SAMPLING_INTERVAL	(256)
655 
656 /*
657  * For statistical analysis of the input data we consider bytes that form a
658  * Galois Field of 256 objects. Each object has an attribute count, ie. how
659  * many times the object appeared in the sample.
660  */
661 #define BUCKET_SIZE		(256)
662 
663 /*
664  * The size of the sample is based on a statistical sampling rule of thumb.
665  * The common way is to perform sampling tests as long as the number of
666  * elements in each cell is at least 5.
667  *
668  * Instead of 5, we choose 32 to obtain more accurate results.
669  * If the data contain the maximum number of symbols, which is 256, we obtain a
670  * sample size bound by 8192.
671  *
672  * For a sample of at most 8KB of data per data range: 16 consecutive bytes
673  * from up to 512 locations.
674  */
675 #define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
676 				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
677 
678 struct bucket_item {
679 	u32 count;
680 };
681 
682 struct heuristic_ws {
683 	/* Partial copy of input data */
684 	u8 *sample;
685 	u32 sample_size;
686 	/* Buckets store counters for each byte value */
687 	struct bucket_item *bucket;
688 	/* Sorting buffer */
689 	struct bucket_item *bucket_b;
690 	struct list_head list;
691 };
692 
free_heuristic_ws(struct list_head * ws)693 static void free_heuristic_ws(struct list_head *ws)
694 {
695 	struct heuristic_ws *workspace;
696 
697 	workspace = list_entry(ws, struct heuristic_ws, list);
698 
699 	kvfree(workspace->sample);
700 	kfree(workspace->bucket);
701 	kfree(workspace->bucket_b);
702 	kfree(workspace);
703 }
704 
alloc_heuristic_ws(struct btrfs_fs_info * fs_info)705 static struct list_head *alloc_heuristic_ws(struct btrfs_fs_info *fs_info)
706 {
707 	struct heuristic_ws *ws;
708 
709 	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
710 	if (!ws)
711 		return ERR_PTR(-ENOMEM);
712 
713 	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
714 	if (!ws->sample)
715 		goto fail;
716 
717 	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
718 	if (!ws->bucket)
719 		goto fail;
720 
721 	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
722 	if (!ws->bucket_b)
723 		goto fail;
724 
725 	INIT_LIST_HEAD(&ws->list);
726 	return &ws->list;
727 fail:
728 	free_heuristic_ws(&ws->list);
729 	return ERR_PTR(-ENOMEM);
730 }
731 
732 const struct btrfs_compress_levels btrfs_heuristic_compress = { 0 };
733 
734 static const struct btrfs_compress_levels * const btrfs_compress_levels[] = {
735 	/* The heuristic is represented as compression type 0 */
736 	&btrfs_heuristic_compress,
737 	&btrfs_zlib_compress,
738 	&btrfs_lzo_compress,
739 	&btrfs_zstd_compress,
740 };
741 
alloc_workspace(struct btrfs_fs_info * fs_info,int type,int level)742 static struct list_head *alloc_workspace(struct btrfs_fs_info *fs_info, int type, int level)
743 {
744 	switch (type) {
745 	case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(fs_info);
746 	case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(fs_info, level);
747 	case BTRFS_COMPRESS_LZO:  return lzo_alloc_workspace(fs_info);
748 	case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(fs_info, level);
749 	default:
750 		/*
751 		 * This can't happen, the type is validated several times
752 		 * before we get here.
753 		 */
754 		BUG();
755 	}
756 }
757 
free_workspace(int type,struct list_head * ws)758 static void free_workspace(int type, struct list_head *ws)
759 {
760 	switch (type) {
761 	case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
762 	case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
763 	case BTRFS_COMPRESS_LZO:  return lzo_free_workspace(ws);
764 	case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
765 	default:
766 		/*
767 		 * This can't happen, the type is validated several times
768 		 * before we get here.
769 		 */
770 		BUG();
771 	}
772 }
773 
alloc_workspace_manager(struct btrfs_fs_info * fs_info,enum btrfs_compression_type type)774 static int alloc_workspace_manager(struct btrfs_fs_info *fs_info,
775 				   enum btrfs_compression_type type)
776 {
777 	struct workspace_manager *gwsm;
778 	struct list_head *workspace;
779 
780 	ASSERT(fs_info->compr_wsm[type] == NULL);
781 	gwsm = kzalloc(sizeof(*gwsm), GFP_KERNEL);
782 	if (!gwsm)
783 		return -ENOMEM;
784 
785 	INIT_LIST_HEAD(&gwsm->idle_ws);
786 	spin_lock_init(&gwsm->ws_lock);
787 	atomic_set(&gwsm->total_ws, 0);
788 	init_waitqueue_head(&gwsm->ws_wait);
789 	fs_info->compr_wsm[type] = gwsm;
790 
791 	/*
792 	 * Preallocate one workspace for each compression type so we can
793 	 * guarantee forward progress in the worst case
794 	 */
795 	workspace = alloc_workspace(fs_info, type, 0);
796 	if (IS_ERR(workspace)) {
797 		btrfs_warn(fs_info,
798 	"cannot preallocate compression workspace for %s, will try later",
799 			   btrfs_compress_type2str(type));
800 	} else {
801 		atomic_set(&gwsm->total_ws, 1);
802 		gwsm->free_ws = 1;
803 		list_add(workspace, &gwsm->idle_ws);
804 	}
805 	return 0;
806 }
807 
free_workspace_manager(struct btrfs_fs_info * fs_info,enum btrfs_compression_type type)808 static void free_workspace_manager(struct btrfs_fs_info *fs_info,
809 				   enum btrfs_compression_type type)
810 {
811 	struct list_head *ws;
812 	struct workspace_manager *gwsm = fs_info->compr_wsm[type];
813 
814 	/* ZSTD uses its own workspace manager, should enter here. */
815 	ASSERT(type != BTRFS_COMPRESS_ZSTD && type < BTRFS_NR_COMPRESS_TYPES);
816 	if (!gwsm)
817 		return;
818 	fs_info->compr_wsm[type] = NULL;
819 	while (!list_empty(&gwsm->idle_ws)) {
820 		ws = gwsm->idle_ws.next;
821 		list_del(ws);
822 		free_workspace(type, ws);
823 		atomic_dec(&gwsm->total_ws);
824 	}
825 	kfree(gwsm);
826 }
827 
828 /*
829  * This finds an available workspace or allocates a new one.
830  * If it's not possible to allocate a new one, waits until there's one.
831  * Preallocation makes a forward progress guarantees and we do not return
832  * errors.
833  */
btrfs_get_workspace(struct btrfs_fs_info * fs_info,int type,int level)834 struct list_head *btrfs_get_workspace(struct btrfs_fs_info *fs_info, int type, int level)
835 {
836 	struct workspace_manager *wsm = fs_info->compr_wsm[type];
837 	struct list_head *workspace;
838 	int cpus = num_online_cpus();
839 	unsigned nofs_flag;
840 	struct list_head *idle_ws;
841 	spinlock_t *ws_lock;
842 	atomic_t *total_ws;
843 	wait_queue_head_t *ws_wait;
844 	int *free_ws;
845 
846 	ASSERT(wsm);
847 	idle_ws	 = &wsm->idle_ws;
848 	ws_lock	 = &wsm->ws_lock;
849 	total_ws = &wsm->total_ws;
850 	ws_wait	 = &wsm->ws_wait;
851 	free_ws	 = &wsm->free_ws;
852 
853 again:
854 	spin_lock(ws_lock);
855 	if (!list_empty(idle_ws)) {
856 		workspace = idle_ws->next;
857 		list_del(workspace);
858 		(*free_ws)--;
859 		spin_unlock(ws_lock);
860 		return workspace;
861 
862 	}
863 	if (atomic_read(total_ws) > cpus) {
864 		DEFINE_WAIT(wait);
865 
866 		spin_unlock(ws_lock);
867 		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
868 		if (atomic_read(total_ws) > cpus && !*free_ws)
869 			schedule();
870 		finish_wait(ws_wait, &wait);
871 		goto again;
872 	}
873 	atomic_inc(total_ws);
874 	spin_unlock(ws_lock);
875 
876 	/*
877 	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
878 	 * to turn it off here because we might get called from the restricted
879 	 * context of btrfs_compress_bio/btrfs_compress_pages
880 	 */
881 	nofs_flag = memalloc_nofs_save();
882 	workspace = alloc_workspace(fs_info, type, level);
883 	memalloc_nofs_restore(nofs_flag);
884 
885 	if (IS_ERR(workspace)) {
886 		atomic_dec(total_ws);
887 		wake_up(ws_wait);
888 
889 		/*
890 		 * Do not return the error but go back to waiting. There's a
891 		 * workspace preallocated for each type and the compression
892 		 * time is bounded so we get to a workspace eventually. This
893 		 * makes our caller's life easier.
894 		 *
895 		 * To prevent silent and low-probability deadlocks (when the
896 		 * initial preallocation fails), check if there are any
897 		 * workspaces at all.
898 		 */
899 		if (atomic_read(total_ws) == 0) {
900 			static DEFINE_RATELIMIT_STATE(_rs,
901 					/* once per minute */ 60 * HZ,
902 					/* no burst */ 1);
903 
904 			if (__ratelimit(&_rs))
905 				btrfs_warn(fs_info,
906 				"no compression workspaces, low memory, retrying");
907 		}
908 		goto again;
909 	}
910 	return workspace;
911 }
912 
get_workspace(struct btrfs_fs_info * fs_info,int type,int level)913 static struct list_head *get_workspace(struct btrfs_fs_info *fs_info, int type, int level)
914 {
915 	switch (type) {
916 	case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(fs_info, type, level);
917 	case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(fs_info, level);
918 	case BTRFS_COMPRESS_LZO:  return btrfs_get_workspace(fs_info, type, level);
919 	case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(fs_info, level);
920 	default:
921 		/*
922 		 * This can't happen, the type is validated several times
923 		 * before we get here.
924 		 */
925 		BUG();
926 	}
927 }
928 
929 /*
930  * put a workspace struct back on the list or free it if we have enough
931  * idle ones sitting around
932  */
btrfs_put_workspace(struct btrfs_fs_info * fs_info,int type,struct list_head * ws)933 void btrfs_put_workspace(struct btrfs_fs_info *fs_info, int type, struct list_head *ws)
934 {
935 	struct workspace_manager *gwsm = fs_info->compr_wsm[type];
936 	struct list_head *idle_ws;
937 	spinlock_t *ws_lock;
938 	atomic_t *total_ws;
939 	wait_queue_head_t *ws_wait;
940 	int *free_ws;
941 
942 	ASSERT(gwsm);
943 	idle_ws	 = &gwsm->idle_ws;
944 	ws_lock	 = &gwsm->ws_lock;
945 	total_ws = &gwsm->total_ws;
946 	ws_wait	 = &gwsm->ws_wait;
947 	free_ws	 = &gwsm->free_ws;
948 
949 	spin_lock(ws_lock);
950 	if (*free_ws <= num_online_cpus()) {
951 		list_add(ws, idle_ws);
952 		(*free_ws)++;
953 		spin_unlock(ws_lock);
954 		goto wake;
955 	}
956 	spin_unlock(ws_lock);
957 
958 	free_workspace(type, ws);
959 	atomic_dec(total_ws);
960 wake:
961 	cond_wake_up(ws_wait);
962 }
963 
put_workspace(struct btrfs_fs_info * fs_info,int type,struct list_head * ws)964 static void put_workspace(struct btrfs_fs_info *fs_info, int type, struct list_head *ws)
965 {
966 	switch (type) {
967 	case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(fs_info, type, ws);
968 	case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(fs_info, type, ws);
969 	case BTRFS_COMPRESS_LZO:  return btrfs_put_workspace(fs_info, type, ws);
970 	case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(fs_info, ws);
971 	default:
972 		/*
973 		 * This can't happen, the type is validated several times
974 		 * before we get here.
975 		 */
976 		BUG();
977 	}
978 }
979 
980 /*
981  * Adjust @level according to the limits of the compression algorithm or
982  * fallback to default
983  */
btrfs_compress_set_level(unsigned int type,int level)984 static int btrfs_compress_set_level(unsigned int type, int level)
985 {
986 	const struct btrfs_compress_levels *levels = btrfs_compress_levels[type];
987 
988 	if (level == 0)
989 		level = levels->default_level;
990 	else
991 		level = clamp(level, levels->min_level, levels->max_level);
992 
993 	return level;
994 }
995 
996 /*
997  * Check whether the @level is within the valid range for the given type.
998  */
btrfs_compress_level_valid(unsigned int type,int level)999 bool btrfs_compress_level_valid(unsigned int type, int level)
1000 {
1001 	const struct btrfs_compress_levels *levels = btrfs_compress_levels[type];
1002 
1003 	return levels->min_level <= level && level <= levels->max_level;
1004 }
1005 
1006 /* Wrapper around find_get_page(), with extra error message. */
btrfs_compress_filemap_get_folio(struct address_space * mapping,u64 start,struct folio ** in_folio_ret)1007 int btrfs_compress_filemap_get_folio(struct address_space *mapping, u64 start,
1008 				     struct folio **in_folio_ret)
1009 {
1010 	struct folio *in_folio;
1011 
1012 	/*
1013 	 * The compressed write path should have the folio locked already, thus
1014 	 * we only need to grab one reference.
1015 	 */
1016 	in_folio = filemap_get_folio(mapping, start >> PAGE_SHIFT);
1017 	if (IS_ERR(in_folio)) {
1018 		struct btrfs_inode *inode = BTRFS_I(mapping->host);
1019 
1020 		btrfs_crit(inode->root->fs_info,
1021 		"failed to get page cache, root %lld ino %llu file offset %llu",
1022 			   btrfs_root_id(inode->root), btrfs_ino(inode), start);
1023 		return -ENOENT;
1024 	}
1025 	*in_folio_ret = in_folio;
1026 	return 0;
1027 }
1028 
1029 /*
1030  * Given an address space and start and length, compress the bytes into @pages
1031  * that are allocated on demand.
1032  *
1033  * @type_level is encoded algorithm and level, where level 0 means whatever
1034  * default the algorithm chooses and is opaque here;
1035  * - compression algo are 0-3
1036  * - the level are bits 4-7
1037  *
1038  * @out_folios is an in/out parameter, holds maximum number of folios to allocate
1039  * and returns number of actually allocated folios
1040  *
1041  * @total_in is used to return the number of bytes actually read.  It
1042  * may be smaller than the input length if we had to exit early because we
1043  * ran out of room in the folios array or because we cross the
1044  * max_out threshold.
1045  *
1046  * @total_out is an in/out parameter, must be set to the input length and will
1047  * be also used to return the total number of compressed bytes
1048  */
btrfs_compress_folios(unsigned int type,int level,struct btrfs_inode * inode,u64 start,struct folio ** folios,unsigned long * out_folios,unsigned long * total_in,unsigned long * total_out)1049 int btrfs_compress_folios(unsigned int type, int level, struct btrfs_inode *inode,
1050 			 u64 start, struct folio **folios, unsigned long *out_folios,
1051 			 unsigned long *total_in, unsigned long *total_out)
1052 {
1053 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1054 	const unsigned long orig_len = *total_out;
1055 	struct list_head *workspace;
1056 	int ret;
1057 
1058 	level = btrfs_compress_set_level(type, level);
1059 	workspace = get_workspace(fs_info, type, level);
1060 	ret = compression_compress_pages(type, workspace, inode, start, folios,
1061 					 out_folios, total_in, total_out);
1062 	/* The total read-in bytes should be no larger than the input. */
1063 	ASSERT(*total_in <= orig_len);
1064 	put_workspace(fs_info, type, workspace);
1065 	return ret;
1066 }
1067 
btrfs_decompress_bio(struct compressed_bio * cb)1068 static int btrfs_decompress_bio(struct compressed_bio *cb)
1069 {
1070 	struct btrfs_fs_info *fs_info = cb_to_fs_info(cb);
1071 	struct list_head *workspace;
1072 	int ret;
1073 	int type = cb->compress_type;
1074 
1075 	workspace = get_workspace(fs_info, type, 0);
1076 	ret = compression_decompress_bio(workspace, cb);
1077 	put_workspace(fs_info, type, workspace);
1078 
1079 	if (!ret)
1080 		zero_fill_bio(&cb->orig_bbio->bio);
1081 	return ret;
1082 }
1083 
1084 /*
1085  * a less complex decompression routine.  Our compressed data fits in a
1086  * single page, and we want to read a single page out of it.
1087  * dest_pgoff tells us the offset into the destination folio where we write the
1088  * decompressed data.
1089  */
btrfs_decompress(int type,const u8 * data_in,struct folio * dest_folio,unsigned long dest_pgoff,size_t srclen,size_t destlen)1090 int btrfs_decompress(int type, const u8 *data_in, struct folio *dest_folio,
1091 		     unsigned long dest_pgoff, size_t srclen, size_t destlen)
1092 {
1093 	struct btrfs_fs_info *fs_info = folio_to_fs_info(dest_folio);
1094 	struct list_head *workspace;
1095 	const u32 sectorsize = fs_info->sectorsize;
1096 	int ret;
1097 
1098 	/*
1099 	 * The full destination folio range should not exceed the folio size.
1100 	 * And the @destlen should not exceed sectorsize, as this is only called for
1101 	 * inline file extents, which should not exceed sectorsize.
1102 	 */
1103 	ASSERT(dest_pgoff + destlen <= folio_size(dest_folio) && destlen <= sectorsize);
1104 
1105 	workspace = get_workspace(fs_info, type, 0);
1106 	ret = compression_decompress(type, workspace, data_in, dest_folio,
1107 				     dest_pgoff, srclen, destlen);
1108 	put_workspace(fs_info, type, workspace);
1109 
1110 	return ret;
1111 }
1112 
btrfs_alloc_compress_wsm(struct btrfs_fs_info * fs_info)1113 int btrfs_alloc_compress_wsm(struct btrfs_fs_info *fs_info)
1114 {
1115 	int ret;
1116 
1117 	ret = alloc_workspace_manager(fs_info, BTRFS_COMPRESS_NONE);
1118 	if (ret < 0)
1119 		goto error;
1120 	ret = alloc_workspace_manager(fs_info, BTRFS_COMPRESS_ZLIB);
1121 	if (ret < 0)
1122 		goto error;
1123 	ret = alloc_workspace_manager(fs_info, BTRFS_COMPRESS_LZO);
1124 	if (ret < 0)
1125 		goto error;
1126 	ret = zstd_alloc_workspace_manager(fs_info);
1127 	if (ret < 0)
1128 		goto error;
1129 	return 0;
1130 error:
1131 	btrfs_free_compress_wsm(fs_info);
1132 	return ret;
1133 }
1134 
btrfs_free_compress_wsm(struct btrfs_fs_info * fs_info)1135 void btrfs_free_compress_wsm(struct btrfs_fs_info *fs_info)
1136 {
1137 	free_workspace_manager(fs_info, BTRFS_COMPRESS_NONE);
1138 	free_workspace_manager(fs_info, BTRFS_COMPRESS_ZLIB);
1139 	free_workspace_manager(fs_info, BTRFS_COMPRESS_LZO);
1140 	zstd_free_workspace_manager(fs_info);
1141 }
1142 
btrfs_init_compress(void)1143 int __init btrfs_init_compress(void)
1144 {
1145 	if (bioset_init(&btrfs_compressed_bioset, BIO_POOL_SIZE,
1146 			offsetof(struct compressed_bio, bbio.bio),
1147 			BIOSET_NEED_BVECS))
1148 		return -ENOMEM;
1149 
1150 	compr_pool.shrinker = shrinker_alloc(SHRINKER_NONSLAB, "btrfs-compr-pages");
1151 	if (!compr_pool.shrinker)
1152 		return -ENOMEM;
1153 
1154 	spin_lock_init(&compr_pool.lock);
1155 	INIT_LIST_HEAD(&compr_pool.list);
1156 	compr_pool.count = 0;
1157 	/* 128K / 4K = 32, for 8 threads is 256 pages. */
1158 	compr_pool.thresh = BTRFS_MAX_COMPRESSED / PAGE_SIZE * 8;
1159 	compr_pool.shrinker->count_objects = btrfs_compr_pool_count;
1160 	compr_pool.shrinker->scan_objects = btrfs_compr_pool_scan;
1161 	compr_pool.shrinker->batch = 32;
1162 	compr_pool.shrinker->seeks = DEFAULT_SEEKS;
1163 	shrinker_register(compr_pool.shrinker);
1164 
1165 	return 0;
1166 }
1167 
btrfs_exit_compress(void)1168 void __cold btrfs_exit_compress(void)
1169 {
1170 	/* For now scan drains all pages and does not touch the parameters. */
1171 	btrfs_compr_pool_scan(NULL, NULL);
1172 	shrinker_free(compr_pool.shrinker);
1173 
1174 	bioset_exit(&btrfs_compressed_bioset);
1175 }
1176 
1177 /*
1178  * The bvec is a single page bvec from a bio that contains folios from a filemap.
1179  *
1180  * Since the folio may be a large one, and if the bv_page is not a head page of
1181  * a large folio, then page->index is unreliable.
1182  *
1183  * Thus we need this helper to grab the proper file offset.
1184  */
file_offset_from_bvec(const struct bio_vec * bvec)1185 static u64 file_offset_from_bvec(const struct bio_vec *bvec)
1186 {
1187 	const struct page *page = bvec->bv_page;
1188 	const struct folio *folio = page_folio(page);
1189 
1190 	return (page_pgoff(folio, page) << PAGE_SHIFT) + bvec->bv_offset;
1191 }
1192 
1193 /*
1194  * Copy decompressed data from working buffer to pages.
1195  *
1196  * @buf:		The decompressed data buffer
1197  * @buf_len:		The decompressed data length
1198  * @decompressed:	Number of bytes that are already decompressed inside the
1199  * 			compressed extent
1200  * @cb:			The compressed extent descriptor
1201  * @orig_bio:		The original bio that the caller wants to read for
1202  *
1203  * An easier to understand graph is like below:
1204  *
1205  * 		|<- orig_bio ->|     |<- orig_bio->|
1206  * 	|<-------      full decompressed extent      ----->|
1207  * 	|<-----------    @cb range   ---->|
1208  * 	|			|<-- @buf_len -->|
1209  * 	|<--- @decompressed --->|
1210  *
1211  * Note that, @cb can be a subpage of the full decompressed extent, but
1212  * @cb->start always has the same as the orig_file_offset value of the full
1213  * decompressed extent.
1214  *
1215  * When reading compressed extent, we have to read the full compressed extent,
1216  * while @orig_bio may only want part of the range.
1217  * Thus this function will ensure only data covered by @orig_bio will be copied
1218  * to.
1219  *
1220  * Return 0 if we have copied all needed contents for @orig_bio.
1221  * Return >0 if we need continue decompress.
1222  */
btrfs_decompress_buf2page(const char * buf,u32 buf_len,struct compressed_bio * cb,u32 decompressed)1223 int btrfs_decompress_buf2page(const char *buf, u32 buf_len,
1224 			      struct compressed_bio *cb, u32 decompressed)
1225 {
1226 	struct bio *orig_bio = &cb->orig_bbio->bio;
1227 	/* Offset inside the full decompressed extent */
1228 	u32 cur_offset;
1229 
1230 	cur_offset = decompressed;
1231 	/* The main loop to do the copy */
1232 	while (cur_offset < decompressed + buf_len) {
1233 		struct bio_vec bvec;
1234 		size_t copy_len;
1235 		u32 copy_start;
1236 		/* Offset inside the full decompressed extent */
1237 		u32 bvec_offset;
1238 		void *kaddr;
1239 
1240 		bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter);
1241 		/*
1242 		 * cb->start may underflow, but subtracting that value can still
1243 		 * give us correct offset inside the full decompressed extent.
1244 		 */
1245 		bvec_offset = file_offset_from_bvec(&bvec) - cb->start;
1246 
1247 		/* Haven't reached the bvec range, exit */
1248 		if (decompressed + buf_len <= bvec_offset)
1249 			return 1;
1250 
1251 		copy_start = max(cur_offset, bvec_offset);
1252 		copy_len = min(bvec_offset + bvec.bv_len,
1253 			       decompressed + buf_len) - copy_start;
1254 		ASSERT(copy_len);
1255 
1256 		/*
1257 		 * Extra range check to ensure we didn't go beyond
1258 		 * @buf + @buf_len.
1259 		 */
1260 		ASSERT(copy_start - decompressed < buf_len);
1261 
1262 		kaddr = bvec_kmap_local(&bvec);
1263 		memcpy(kaddr, buf + copy_start - decompressed, copy_len);
1264 		kunmap_local(kaddr);
1265 
1266 		cur_offset += copy_len;
1267 		bio_advance(orig_bio, copy_len);
1268 		/* Finished the bio */
1269 		if (!orig_bio->bi_iter.bi_size)
1270 			return 0;
1271 	}
1272 	return 1;
1273 }
1274 
1275 /*
1276  * Shannon Entropy calculation
1277  *
1278  * Pure byte distribution analysis fails to determine compressibility of data.
1279  * Try calculating entropy to estimate the average minimum number of bits
1280  * needed to encode the sampled data.
1281  *
1282  * For convenience, return the percentage of needed bits, instead of amount of
1283  * bits directly.
1284  *
1285  * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1286  *			    and can be compressible with high probability
1287  *
1288  * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1289  *
1290  * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1291  */
1292 #define ENTROPY_LVL_ACEPTABLE		(65)
1293 #define ENTROPY_LVL_HIGH		(80)
1294 
1295 /*
1296  * For increased precision in shannon_entropy calculation,
1297  * let's do pow(n, M) to save more digits after comma:
1298  *
1299  * - maximum int bit length is 64
1300  * - ilog2(MAX_SAMPLE_SIZE)	-> 13
1301  * - 13 * 4 = 52 < 64		-> M = 4
1302  *
1303  * So use pow(n, 4).
1304  */
ilog2_w(u64 n)1305 static inline u32 ilog2_w(u64 n)
1306 {
1307 	return ilog2(n * n * n * n);
1308 }
1309 
shannon_entropy(struct heuristic_ws * ws)1310 static u32 shannon_entropy(struct heuristic_ws *ws)
1311 {
1312 	const u32 entropy_max = 8 * ilog2_w(2);
1313 	u32 entropy_sum = 0;
1314 	u32 p, p_base, sz_base;
1315 	u32 i;
1316 
1317 	sz_base = ilog2_w(ws->sample_size);
1318 	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1319 		p = ws->bucket[i].count;
1320 		p_base = ilog2_w(p);
1321 		entropy_sum += p * (sz_base - p_base);
1322 	}
1323 
1324 	entropy_sum /= ws->sample_size;
1325 	return entropy_sum * 100 / entropy_max;
1326 }
1327 
1328 #define RADIX_BASE		4U
1329 #define COUNTERS_SIZE		(1U << RADIX_BASE)
1330 
get4bits(u64 num,int shift)1331 static u8 get4bits(u64 num, int shift) {
1332 	u8 low4bits;
1333 
1334 	num >>= shift;
1335 	/* Reverse order */
1336 	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1337 	return low4bits;
1338 }
1339 
1340 /*
1341  * Use 4 bits as radix base
1342  * Use 16 u32 counters for calculating new position in buf array
1343  *
1344  * @array     - array that will be sorted
1345  * @array_buf - buffer array to store sorting results
1346  *              must be equal in size to @array
1347  * @num       - array size
1348  */
radix_sort(struct bucket_item * array,struct bucket_item * array_buf,int num)1349 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1350 		       int num)
1351 {
1352 	u64 max_num;
1353 	u64 buf_num;
1354 	u32 counters[COUNTERS_SIZE];
1355 	u32 new_addr;
1356 	u32 addr;
1357 	int bitlen;
1358 	int shift;
1359 	int i;
1360 
1361 	/*
1362 	 * Try avoid useless loop iterations for small numbers stored in big
1363 	 * counters.  Example: 48 33 4 ... in 64bit array
1364 	 */
1365 	max_num = array[0].count;
1366 	for (i = 1; i < num; i++) {
1367 		buf_num = array[i].count;
1368 		if (buf_num > max_num)
1369 			max_num = buf_num;
1370 	}
1371 
1372 	buf_num = ilog2(max_num);
1373 	bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1374 
1375 	shift = 0;
1376 	while (shift < bitlen) {
1377 		memset(counters, 0, sizeof(counters));
1378 
1379 		for (i = 0; i < num; i++) {
1380 			buf_num = array[i].count;
1381 			addr = get4bits(buf_num, shift);
1382 			counters[addr]++;
1383 		}
1384 
1385 		for (i = 1; i < COUNTERS_SIZE; i++)
1386 			counters[i] += counters[i - 1];
1387 
1388 		for (i = num - 1; i >= 0; i--) {
1389 			buf_num = array[i].count;
1390 			addr = get4bits(buf_num, shift);
1391 			counters[addr]--;
1392 			new_addr = counters[addr];
1393 			array_buf[new_addr] = array[i];
1394 		}
1395 
1396 		shift += RADIX_BASE;
1397 
1398 		/*
1399 		 * Normal radix expects to move data from a temporary array, to
1400 		 * the main one.  But that requires some CPU time. Avoid that
1401 		 * by doing another sort iteration to original array instead of
1402 		 * memcpy()
1403 		 */
1404 		memset(counters, 0, sizeof(counters));
1405 
1406 		for (i = 0; i < num; i ++) {
1407 			buf_num = array_buf[i].count;
1408 			addr = get4bits(buf_num, shift);
1409 			counters[addr]++;
1410 		}
1411 
1412 		for (i = 1; i < COUNTERS_SIZE; i++)
1413 			counters[i] += counters[i - 1];
1414 
1415 		for (i = num - 1; i >= 0; i--) {
1416 			buf_num = array_buf[i].count;
1417 			addr = get4bits(buf_num, shift);
1418 			counters[addr]--;
1419 			new_addr = counters[addr];
1420 			array[new_addr] = array_buf[i];
1421 		}
1422 
1423 		shift += RADIX_BASE;
1424 	}
1425 }
1426 
1427 /*
1428  * Size of the core byte set - how many bytes cover 90% of the sample
1429  *
1430  * There are several types of structured binary data that use nearly all byte
1431  * values. The distribution can be uniform and counts in all buckets will be
1432  * nearly the same (eg. encrypted data). Unlikely to be compressible.
1433  *
1434  * Other possibility is normal (Gaussian) distribution, where the data could
1435  * be potentially compressible, but we have to take a few more steps to decide
1436  * how much.
1437  *
1438  * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
1439  *                       compression algo can easy fix that
1440  * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1441  *                       probability is not compressible
1442  */
1443 #define BYTE_CORE_SET_LOW		(64)
1444 #define BYTE_CORE_SET_HIGH		(200)
1445 
byte_core_set_size(struct heuristic_ws * ws)1446 static int byte_core_set_size(struct heuristic_ws *ws)
1447 {
1448 	u32 i;
1449 	u32 coreset_sum = 0;
1450 	const u32 core_set_threshold = ws->sample_size * 90 / 100;
1451 	struct bucket_item *bucket = ws->bucket;
1452 
1453 	/* Sort in reverse order */
1454 	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1455 
1456 	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1457 		coreset_sum += bucket[i].count;
1458 
1459 	if (coreset_sum > core_set_threshold)
1460 		return i;
1461 
1462 	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1463 		coreset_sum += bucket[i].count;
1464 		if (coreset_sum > core_set_threshold)
1465 			break;
1466 	}
1467 
1468 	return i;
1469 }
1470 
1471 /*
1472  * Count byte values in buckets.
1473  * This heuristic can detect textual data (configs, xml, json, html, etc).
1474  * Because in most text-like data byte set is restricted to limited number of
1475  * possible characters, and that restriction in most cases makes data easy to
1476  * compress.
1477  *
1478  * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1479  *	less - compressible
1480  *	more - need additional analysis
1481  */
1482 #define BYTE_SET_THRESHOLD		(64)
1483 
byte_set_size(const struct heuristic_ws * ws)1484 static u32 byte_set_size(const struct heuristic_ws *ws)
1485 {
1486 	u32 i;
1487 	u32 byte_set_size = 0;
1488 
1489 	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1490 		if (ws->bucket[i].count > 0)
1491 			byte_set_size++;
1492 	}
1493 
1494 	/*
1495 	 * Continue collecting count of byte values in buckets.  If the byte
1496 	 * set size is bigger then the threshold, it's pointless to continue,
1497 	 * the detection technique would fail for this type of data.
1498 	 */
1499 	for (; i < BUCKET_SIZE; i++) {
1500 		if (ws->bucket[i].count > 0) {
1501 			byte_set_size++;
1502 			if (byte_set_size > BYTE_SET_THRESHOLD)
1503 				return byte_set_size;
1504 		}
1505 	}
1506 
1507 	return byte_set_size;
1508 }
1509 
sample_repeated_patterns(struct heuristic_ws * ws)1510 static bool sample_repeated_patterns(struct heuristic_ws *ws)
1511 {
1512 	const u32 half_of_sample = ws->sample_size / 2;
1513 	const u8 *data = ws->sample;
1514 
1515 	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1516 }
1517 
heuristic_collect_sample(struct inode * inode,u64 start,u64 end,struct heuristic_ws * ws)1518 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1519 				     struct heuristic_ws *ws)
1520 {
1521 	struct page *page;
1522 	pgoff_t index, index_end;
1523 	u32 i, curr_sample_pos;
1524 	u8 *in_data;
1525 
1526 	/*
1527 	 * Compression handles the input data by chunks of 128KiB
1528 	 * (defined by BTRFS_MAX_UNCOMPRESSED)
1529 	 *
1530 	 * We do the same for the heuristic and loop over the whole range.
1531 	 *
1532 	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1533 	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1534 	 */
1535 	if (end - start > BTRFS_MAX_UNCOMPRESSED)
1536 		end = start + BTRFS_MAX_UNCOMPRESSED;
1537 
1538 	index = start >> PAGE_SHIFT;
1539 	index_end = end >> PAGE_SHIFT;
1540 
1541 	/* Don't miss unaligned end */
1542 	if (!PAGE_ALIGNED(end))
1543 		index_end++;
1544 
1545 	curr_sample_pos = 0;
1546 	while (index < index_end) {
1547 		page = find_get_page(inode->i_mapping, index);
1548 		in_data = kmap_local_page(page);
1549 		/* Handle case where the start is not aligned to PAGE_SIZE */
1550 		i = start % PAGE_SIZE;
1551 		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1552 			/* Don't sample any garbage from the last page */
1553 			if (start > end - SAMPLING_READ_SIZE)
1554 				break;
1555 			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1556 					SAMPLING_READ_SIZE);
1557 			i += SAMPLING_INTERVAL;
1558 			start += SAMPLING_INTERVAL;
1559 			curr_sample_pos += SAMPLING_READ_SIZE;
1560 		}
1561 		kunmap_local(in_data);
1562 		put_page(page);
1563 
1564 		index++;
1565 	}
1566 
1567 	ws->sample_size = curr_sample_pos;
1568 }
1569 
1570 /*
1571  * Compression heuristic.
1572  *
1573  * The following types of analysis can be performed:
1574  * - detect mostly zero data
1575  * - detect data with low "byte set" size (text, etc)
1576  * - detect data with low/high "core byte" set
1577  *
1578  * Return non-zero if the compression should be done, 0 otherwise.
1579  */
btrfs_compress_heuristic(struct btrfs_inode * inode,u64 start,u64 end)1580 int btrfs_compress_heuristic(struct btrfs_inode *inode, u64 start, u64 end)
1581 {
1582 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1583 	struct list_head *ws_list = get_workspace(fs_info, 0, 0);
1584 	struct heuristic_ws *ws;
1585 	u32 i;
1586 	u8 byte;
1587 	int ret = 0;
1588 
1589 	ws = list_entry(ws_list, struct heuristic_ws, list);
1590 
1591 	heuristic_collect_sample(&inode->vfs_inode, start, end, ws);
1592 
1593 	if (sample_repeated_patterns(ws)) {
1594 		ret = 1;
1595 		goto out;
1596 	}
1597 
1598 	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1599 
1600 	for (i = 0; i < ws->sample_size; i++) {
1601 		byte = ws->sample[i];
1602 		ws->bucket[byte].count++;
1603 	}
1604 
1605 	i = byte_set_size(ws);
1606 	if (i < BYTE_SET_THRESHOLD) {
1607 		ret = 2;
1608 		goto out;
1609 	}
1610 
1611 	i = byte_core_set_size(ws);
1612 	if (i <= BYTE_CORE_SET_LOW) {
1613 		ret = 3;
1614 		goto out;
1615 	}
1616 
1617 	if (i >= BYTE_CORE_SET_HIGH) {
1618 		ret = 0;
1619 		goto out;
1620 	}
1621 
1622 	i = shannon_entropy(ws);
1623 	if (i <= ENTROPY_LVL_ACEPTABLE) {
1624 		ret = 4;
1625 		goto out;
1626 	}
1627 
1628 	/*
1629 	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1630 	 * needed to give green light to compression.
1631 	 *
1632 	 * For now just assume that compression at that level is not worth the
1633 	 * resources because:
1634 	 *
1635 	 * 1. it is possible to defrag the data later
1636 	 *
1637 	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1638 	 * values, every bucket has counter at level ~54. The heuristic would
1639 	 * be confused. This can happen when data have some internal repeated
1640 	 * patterns like "abbacbbc...". This can be detected by analyzing
1641 	 * pairs of bytes, which is too costly.
1642 	 */
1643 	if (i < ENTROPY_LVL_HIGH) {
1644 		ret = 5;
1645 		goto out;
1646 	} else {
1647 		ret = 0;
1648 		goto out;
1649 	}
1650 
1651 out:
1652 	put_workspace(fs_info, 0, ws_list);
1653 	return ret;
1654 }
1655 
1656 /*
1657  * Convert the compression suffix (eg. after "zlib" starting with ":") to level.
1658  *
1659  * If the resulting level exceeds the algo's supported levels, it will be clamped.
1660  *
1661  * Return <0 if no valid string can be found.
1662  * Return 0 if everything is fine.
1663  */
btrfs_compress_str2level(unsigned int type,const char * str,int * level_ret)1664 int btrfs_compress_str2level(unsigned int type, const char *str, int *level_ret)
1665 {
1666 	int level = 0;
1667 	int ret;
1668 
1669 	if (!type) {
1670 		*level_ret = btrfs_compress_set_level(type, level);
1671 		return 0;
1672 	}
1673 
1674 	if (str[0] == ':') {
1675 		ret = kstrtoint(str + 1, 10, &level);
1676 		if (ret)
1677 			return ret;
1678 	}
1679 
1680 	*level_ret = btrfs_compress_set_level(type, level);
1681 	return 0;
1682 }
1683