xref: /linux/fs/btrfs/bio.c (revision 6b4926494ed872803bb0b3c59440ac25c35c9869)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  * Copyright (C) 2022 Christoph Hellwig.
5  */
6 
7 #include <linux/bio.h>
8 #include "bio.h"
9 #include "ctree.h"
10 #include "volumes.h"
11 #include "raid56.h"
12 #include "async-thread.h"
13 #include "dev-replace.h"
14 #include "zoned.h"
15 #include "file-item.h"
16 #include "raid-stripe-tree.h"
17 
18 static struct bio_set btrfs_bioset;
19 static struct bio_set btrfs_clone_bioset;
20 static struct bio_set btrfs_repair_bioset;
21 static mempool_t btrfs_failed_bio_pool;
22 
23 struct btrfs_failed_bio {
24 	struct btrfs_bio *bbio;
25 	int num_copies;
26 	atomic_t repair_count;
27 };
28 
29 /* Is this a data path I/O that needs storage layer checksum and repair? */
is_data_bbio(struct btrfs_bio * bbio)30 static inline bool is_data_bbio(struct btrfs_bio *bbio)
31 {
32 	return bbio->inode && is_data_inode(bbio->inode);
33 }
34 
bbio_has_ordered_extent(struct btrfs_bio * bbio)35 static bool bbio_has_ordered_extent(struct btrfs_bio *bbio)
36 {
37 	return is_data_bbio(bbio) && btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE;
38 }
39 
40 /*
41  * Initialize a btrfs_bio structure.  This skips the embedded bio itself as it
42  * is already initialized by the block layer.
43  */
btrfs_bio_init(struct btrfs_bio * bbio,struct btrfs_fs_info * fs_info,btrfs_bio_end_io_t end_io,void * private)44 void btrfs_bio_init(struct btrfs_bio *bbio, struct btrfs_fs_info *fs_info,
45 		    btrfs_bio_end_io_t end_io, void *private)
46 {
47 	memset(bbio, 0, offsetof(struct btrfs_bio, bio));
48 	bbio->fs_info = fs_info;
49 	bbio->end_io = end_io;
50 	bbio->private = private;
51 	atomic_set(&bbio->pending_ios, 1);
52 	WRITE_ONCE(bbio->status, BLK_STS_OK);
53 }
54 
55 /*
56  * Allocate a btrfs_bio structure.  The btrfs_bio is the main I/O container for
57  * btrfs, and is used for all I/O submitted through btrfs_submit_bbio().
58  *
59  * Just like the underlying bio_alloc_bioset it will not fail as it is backed by
60  * a mempool.
61  */
btrfs_bio_alloc(unsigned int nr_vecs,blk_opf_t opf,struct btrfs_fs_info * fs_info,btrfs_bio_end_io_t end_io,void * private)62 struct btrfs_bio *btrfs_bio_alloc(unsigned int nr_vecs, blk_opf_t opf,
63 				  struct btrfs_fs_info *fs_info,
64 				  btrfs_bio_end_io_t end_io, void *private)
65 {
66 	struct btrfs_bio *bbio;
67 	struct bio *bio;
68 
69 	bio = bio_alloc_bioset(NULL, nr_vecs, opf, GFP_NOFS, &btrfs_bioset);
70 	bbio = btrfs_bio(bio);
71 	btrfs_bio_init(bbio, fs_info, end_io, private);
72 	return bbio;
73 }
74 
btrfs_split_bio(struct btrfs_fs_info * fs_info,struct btrfs_bio * orig_bbio,u64 map_length)75 static struct btrfs_bio *btrfs_split_bio(struct btrfs_fs_info *fs_info,
76 					 struct btrfs_bio *orig_bbio,
77 					 u64 map_length)
78 {
79 	struct btrfs_bio *bbio;
80 	struct bio *bio;
81 
82 	bio = bio_split(&orig_bbio->bio, map_length >> SECTOR_SHIFT, GFP_NOFS,
83 			&btrfs_clone_bioset);
84 	bbio = btrfs_bio(bio);
85 	btrfs_bio_init(bbio, fs_info, NULL, orig_bbio);
86 	bbio->inode = orig_bbio->inode;
87 	bbio->file_offset = orig_bbio->file_offset;
88 	orig_bbio->file_offset += map_length;
89 	if (bbio_has_ordered_extent(bbio)) {
90 		refcount_inc(&orig_bbio->ordered->refs);
91 		bbio->ordered = orig_bbio->ordered;
92 	}
93 	atomic_inc(&orig_bbio->pending_ios);
94 	return bbio;
95 }
96 
97 /* Free a bio that was never submitted to the underlying device. */
btrfs_cleanup_bio(struct btrfs_bio * bbio)98 static void btrfs_cleanup_bio(struct btrfs_bio *bbio)
99 {
100 	if (bbio_has_ordered_extent(bbio))
101 		btrfs_put_ordered_extent(bbio->ordered);
102 	bio_put(&bbio->bio);
103 }
104 
__btrfs_bio_end_io(struct btrfs_bio * bbio)105 static void __btrfs_bio_end_io(struct btrfs_bio *bbio)
106 {
107 	if (bbio_has_ordered_extent(bbio)) {
108 		struct btrfs_ordered_extent *ordered = bbio->ordered;
109 
110 		bbio->end_io(bbio);
111 		btrfs_put_ordered_extent(ordered);
112 	} else {
113 		bbio->end_io(bbio);
114 	}
115 }
116 
btrfs_bio_end_io(struct btrfs_bio * bbio,blk_status_t status)117 void btrfs_bio_end_io(struct btrfs_bio *bbio, blk_status_t status)
118 {
119 	bbio->bio.bi_status = status;
120 	if (bbio->bio.bi_pool == &btrfs_clone_bioset) {
121 		struct btrfs_bio *orig_bbio = bbio->private;
122 
123 		btrfs_cleanup_bio(bbio);
124 		bbio = orig_bbio;
125 	}
126 
127 	/*
128 	 * At this point, bbio always points to the original btrfs_bio. Save
129 	 * the first error in it.
130 	 */
131 	if (status != BLK_STS_OK)
132 		cmpxchg(&bbio->status, BLK_STS_OK, status);
133 
134 	if (atomic_dec_and_test(&bbio->pending_ios)) {
135 		/* Load split bio's error which might be set above. */
136 		if (status == BLK_STS_OK)
137 			bbio->bio.bi_status = READ_ONCE(bbio->status);
138 		__btrfs_bio_end_io(bbio);
139 	}
140 }
141 
next_repair_mirror(struct btrfs_failed_bio * fbio,int cur_mirror)142 static int next_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror)
143 {
144 	if (cur_mirror == fbio->num_copies)
145 		return cur_mirror + 1 - fbio->num_copies;
146 	return cur_mirror + 1;
147 }
148 
prev_repair_mirror(struct btrfs_failed_bio * fbio,int cur_mirror)149 static int prev_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror)
150 {
151 	if (cur_mirror == 1)
152 		return fbio->num_copies;
153 	return cur_mirror - 1;
154 }
155 
btrfs_repair_done(struct btrfs_failed_bio * fbio)156 static void btrfs_repair_done(struct btrfs_failed_bio *fbio)
157 {
158 	if (atomic_dec_and_test(&fbio->repair_count)) {
159 		btrfs_bio_end_io(fbio->bbio, fbio->bbio->bio.bi_status);
160 		mempool_free(fbio, &btrfs_failed_bio_pool);
161 	}
162 }
163 
btrfs_end_repair_bio(struct btrfs_bio * repair_bbio,struct btrfs_device * dev)164 static void btrfs_end_repair_bio(struct btrfs_bio *repair_bbio,
165 				 struct btrfs_device *dev)
166 {
167 	struct btrfs_failed_bio *fbio = repair_bbio->private;
168 	struct btrfs_inode *inode = repair_bbio->inode;
169 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
170 	struct bio_vec *bv = bio_first_bvec_all(&repair_bbio->bio);
171 	int mirror = repair_bbio->mirror_num;
172 
173 	/*
174 	 * We can only trigger this for data bio, which doesn't support larger
175 	 * folios yet.
176 	 */
177 	ASSERT(folio_order(page_folio(bv->bv_page)) == 0);
178 
179 	if (repair_bbio->bio.bi_status ||
180 	    !btrfs_data_csum_ok(repair_bbio, dev, 0, bv)) {
181 		bio_reset(&repair_bbio->bio, NULL, REQ_OP_READ);
182 		repair_bbio->bio.bi_iter = repair_bbio->saved_iter;
183 
184 		mirror = next_repair_mirror(fbio, mirror);
185 		if (mirror == fbio->bbio->mirror_num) {
186 			btrfs_debug(fs_info, "no mirror left");
187 			fbio->bbio->bio.bi_status = BLK_STS_IOERR;
188 			goto done;
189 		}
190 
191 		btrfs_submit_bbio(repair_bbio, mirror);
192 		return;
193 	}
194 
195 	do {
196 		mirror = prev_repair_mirror(fbio, mirror);
197 		btrfs_repair_io_failure(fs_info, btrfs_ino(inode),
198 				  repair_bbio->file_offset, fs_info->sectorsize,
199 				  repair_bbio->saved_iter.bi_sector << SECTOR_SHIFT,
200 				  page_folio(bv->bv_page), bv->bv_offset, mirror);
201 	} while (mirror != fbio->bbio->mirror_num);
202 
203 done:
204 	btrfs_repair_done(fbio);
205 	bio_put(&repair_bbio->bio);
206 }
207 
208 /*
209  * Try to kick off a repair read to the next available mirror for a bad sector.
210  *
211  * This primarily tries to recover good data to serve the actual read request,
212  * but also tries to write the good data back to the bad mirror(s) when a
213  * read succeeded to restore the redundancy.
214  */
repair_one_sector(struct btrfs_bio * failed_bbio,u32 bio_offset,struct bio_vec * bv,struct btrfs_failed_bio * fbio)215 static struct btrfs_failed_bio *repair_one_sector(struct btrfs_bio *failed_bbio,
216 						  u32 bio_offset,
217 						  struct bio_vec *bv,
218 						  struct btrfs_failed_bio *fbio)
219 {
220 	struct btrfs_inode *inode = failed_bbio->inode;
221 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
222 	const u32 sectorsize = fs_info->sectorsize;
223 	const u64 logical = (failed_bbio->saved_iter.bi_sector << SECTOR_SHIFT);
224 	struct btrfs_bio *repair_bbio;
225 	struct bio *repair_bio;
226 	int num_copies;
227 	int mirror;
228 
229 	btrfs_debug(fs_info, "repair read error: read error at %llu",
230 		    failed_bbio->file_offset + bio_offset);
231 
232 	num_copies = btrfs_num_copies(fs_info, logical, sectorsize);
233 	if (num_copies == 1) {
234 		btrfs_debug(fs_info, "no copy to repair from");
235 		failed_bbio->bio.bi_status = BLK_STS_IOERR;
236 		return fbio;
237 	}
238 
239 	if (!fbio) {
240 		fbio = mempool_alloc(&btrfs_failed_bio_pool, GFP_NOFS);
241 		fbio->bbio = failed_bbio;
242 		fbio->num_copies = num_copies;
243 		atomic_set(&fbio->repair_count, 1);
244 	}
245 
246 	atomic_inc(&fbio->repair_count);
247 
248 	repair_bio = bio_alloc_bioset(NULL, 1, REQ_OP_READ, GFP_NOFS,
249 				      &btrfs_repair_bioset);
250 	repair_bio->bi_iter.bi_sector = failed_bbio->saved_iter.bi_sector;
251 	__bio_add_page(repair_bio, bv->bv_page, bv->bv_len, bv->bv_offset);
252 
253 	repair_bbio = btrfs_bio(repair_bio);
254 	btrfs_bio_init(repair_bbio, fs_info, NULL, fbio);
255 	repair_bbio->inode = failed_bbio->inode;
256 	repair_bbio->file_offset = failed_bbio->file_offset + bio_offset;
257 
258 	mirror = next_repair_mirror(fbio, failed_bbio->mirror_num);
259 	btrfs_debug(fs_info, "submitting repair read to mirror %d", mirror);
260 	btrfs_submit_bbio(repair_bbio, mirror);
261 	return fbio;
262 }
263 
btrfs_check_read_bio(struct btrfs_bio * bbio,struct btrfs_device * dev)264 static void btrfs_check_read_bio(struct btrfs_bio *bbio, struct btrfs_device *dev)
265 {
266 	struct btrfs_inode *inode = bbio->inode;
267 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
268 	u32 sectorsize = fs_info->sectorsize;
269 	struct bvec_iter *iter = &bbio->saved_iter;
270 	blk_status_t status = bbio->bio.bi_status;
271 	struct btrfs_failed_bio *fbio = NULL;
272 	u32 offset = 0;
273 
274 	/* Read-repair requires the inode field to be set by the submitter. */
275 	ASSERT(inode);
276 
277 	/*
278 	 * Hand off repair bios to the repair code as there is no upper level
279 	 * submitter for them.
280 	 */
281 	if (bbio->bio.bi_pool == &btrfs_repair_bioset) {
282 		btrfs_end_repair_bio(bbio, dev);
283 		return;
284 	}
285 
286 	/* Clear the I/O error. A failed repair will reset it. */
287 	bbio->bio.bi_status = BLK_STS_OK;
288 
289 	while (iter->bi_size) {
290 		struct bio_vec bv = bio_iter_iovec(&bbio->bio, *iter);
291 
292 		bv.bv_len = min(bv.bv_len, sectorsize);
293 		if (status || !btrfs_data_csum_ok(bbio, dev, offset, &bv))
294 			fbio = repair_one_sector(bbio, offset, &bv, fbio);
295 
296 		bio_advance_iter_single(&bbio->bio, iter, sectorsize);
297 		offset += sectorsize;
298 	}
299 
300 	if (bbio->csum != bbio->csum_inline)
301 		kfree(bbio->csum);
302 
303 	if (fbio)
304 		btrfs_repair_done(fbio);
305 	else
306 		btrfs_bio_end_io(bbio, bbio->bio.bi_status);
307 }
308 
btrfs_log_dev_io_error(struct bio * bio,struct btrfs_device * dev)309 static void btrfs_log_dev_io_error(struct bio *bio, struct btrfs_device *dev)
310 {
311 	if (!dev || !dev->bdev)
312 		return;
313 	if (bio->bi_status != BLK_STS_IOERR && bio->bi_status != BLK_STS_TARGET)
314 		return;
315 
316 	if (btrfs_op(bio) == BTRFS_MAP_WRITE)
317 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
318 	else if (!(bio->bi_opf & REQ_RAHEAD))
319 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
320 	if (bio->bi_opf & REQ_PREFLUSH)
321 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_FLUSH_ERRS);
322 }
323 
btrfs_end_io_wq(struct btrfs_fs_info * fs_info,struct bio * bio)324 static struct workqueue_struct *btrfs_end_io_wq(struct btrfs_fs_info *fs_info,
325 						struct bio *bio)
326 {
327 	if (bio->bi_opf & REQ_META)
328 		return fs_info->endio_meta_workers;
329 	return fs_info->endio_workers;
330 }
331 
btrfs_end_bio_work(struct work_struct * work)332 static void btrfs_end_bio_work(struct work_struct *work)
333 {
334 	struct btrfs_bio *bbio = container_of(work, struct btrfs_bio, end_io_work);
335 
336 	/* Metadata reads are checked and repaired by the submitter. */
337 	if (is_data_bbio(bbio))
338 		btrfs_check_read_bio(bbio, bbio->bio.bi_private);
339 	else
340 		btrfs_bio_end_io(bbio, bbio->bio.bi_status);
341 }
342 
btrfs_simple_end_io(struct bio * bio)343 static void btrfs_simple_end_io(struct bio *bio)
344 {
345 	struct btrfs_bio *bbio = btrfs_bio(bio);
346 	struct btrfs_device *dev = bio->bi_private;
347 	struct btrfs_fs_info *fs_info = bbio->fs_info;
348 
349 	btrfs_bio_counter_dec(fs_info);
350 
351 	if (bio->bi_status)
352 		btrfs_log_dev_io_error(bio, dev);
353 
354 	if (bio_op(bio) == REQ_OP_READ) {
355 		INIT_WORK(&bbio->end_io_work, btrfs_end_bio_work);
356 		queue_work(btrfs_end_io_wq(fs_info, bio), &bbio->end_io_work);
357 	} else {
358 		if (bio_op(bio) == REQ_OP_ZONE_APPEND && !bio->bi_status)
359 			btrfs_record_physical_zoned(bbio);
360 		btrfs_bio_end_io(bbio, bbio->bio.bi_status);
361 	}
362 }
363 
btrfs_raid56_end_io(struct bio * bio)364 static void btrfs_raid56_end_io(struct bio *bio)
365 {
366 	struct btrfs_io_context *bioc = bio->bi_private;
367 	struct btrfs_bio *bbio = btrfs_bio(bio);
368 
369 	btrfs_bio_counter_dec(bioc->fs_info);
370 	bbio->mirror_num = bioc->mirror_num;
371 	if (bio_op(bio) == REQ_OP_READ && is_data_bbio(bbio))
372 		btrfs_check_read_bio(bbio, NULL);
373 	else
374 		btrfs_bio_end_io(bbio, bbio->bio.bi_status);
375 
376 	btrfs_put_bioc(bioc);
377 }
378 
btrfs_orig_write_end_io(struct bio * bio)379 static void btrfs_orig_write_end_io(struct bio *bio)
380 {
381 	struct btrfs_io_stripe *stripe = bio->bi_private;
382 	struct btrfs_io_context *bioc = stripe->bioc;
383 	struct btrfs_bio *bbio = btrfs_bio(bio);
384 
385 	btrfs_bio_counter_dec(bioc->fs_info);
386 
387 	if (bio->bi_status) {
388 		atomic_inc(&bioc->error);
389 		btrfs_log_dev_io_error(bio, stripe->dev);
390 	}
391 
392 	/*
393 	 * Only send an error to the higher layers if it is beyond the tolerance
394 	 * threshold.
395 	 */
396 	if (atomic_read(&bioc->error) > bioc->max_errors)
397 		bio->bi_status = BLK_STS_IOERR;
398 	else
399 		bio->bi_status = BLK_STS_OK;
400 
401 	if (bio_op(bio) == REQ_OP_ZONE_APPEND && !bio->bi_status)
402 		stripe->physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
403 
404 	btrfs_bio_end_io(bbio, bbio->bio.bi_status);
405 	btrfs_put_bioc(bioc);
406 }
407 
btrfs_clone_write_end_io(struct bio * bio)408 static void btrfs_clone_write_end_io(struct bio *bio)
409 {
410 	struct btrfs_io_stripe *stripe = bio->bi_private;
411 
412 	if (bio->bi_status) {
413 		atomic_inc(&stripe->bioc->error);
414 		btrfs_log_dev_io_error(bio, stripe->dev);
415 	} else if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
416 		stripe->physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
417 	}
418 
419 	/* Pass on control to the original bio this one was cloned from */
420 	bio_endio(stripe->bioc->orig_bio);
421 	bio_put(bio);
422 }
423 
btrfs_submit_dev_bio(struct btrfs_device * dev,struct bio * bio)424 static void btrfs_submit_dev_bio(struct btrfs_device *dev, struct bio *bio)
425 {
426 	if (!dev || !dev->bdev ||
427 	    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
428 	    (btrfs_op(bio) == BTRFS_MAP_WRITE &&
429 	     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
430 		bio_io_error(bio);
431 		return;
432 	}
433 
434 	bio_set_dev(bio, dev->bdev);
435 
436 	/*
437 	 * For zone append writing, bi_sector must point the beginning of the
438 	 * zone
439 	 */
440 	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
441 		u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
442 		u64 zone_start = round_down(physical, dev->fs_info->zone_size);
443 
444 		ASSERT(btrfs_dev_is_sequential(dev, physical));
445 		bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
446 	}
447 	btrfs_debug_in_rcu(dev->fs_info,
448 	"%s: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
449 		__func__, bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
450 		(unsigned long)dev->bdev->bd_dev, btrfs_dev_name(dev),
451 		dev->devid, bio->bi_iter.bi_size);
452 
453 	if (bio->bi_opf & REQ_BTRFS_CGROUP_PUNT)
454 		blkcg_punt_bio_submit(bio);
455 	else
456 		submit_bio(bio);
457 }
458 
btrfs_submit_mirrored_bio(struct btrfs_io_context * bioc,int dev_nr)459 static void btrfs_submit_mirrored_bio(struct btrfs_io_context *bioc, int dev_nr)
460 {
461 	struct bio *orig_bio = bioc->orig_bio, *bio;
462 
463 	ASSERT(bio_op(orig_bio) != REQ_OP_READ);
464 
465 	/* Reuse the bio embedded into the btrfs_bio for the last mirror */
466 	if (dev_nr == bioc->num_stripes - 1) {
467 		bio = orig_bio;
468 		bio->bi_end_io = btrfs_orig_write_end_io;
469 	} else {
470 		bio = bio_alloc_clone(NULL, orig_bio, GFP_NOFS, &fs_bio_set);
471 		bio_inc_remaining(orig_bio);
472 		bio->bi_end_io = btrfs_clone_write_end_io;
473 	}
474 
475 	bio->bi_private = &bioc->stripes[dev_nr];
476 	bio->bi_iter.bi_sector = bioc->stripes[dev_nr].physical >> SECTOR_SHIFT;
477 	bioc->stripes[dev_nr].bioc = bioc;
478 	bioc->size = bio->bi_iter.bi_size;
479 	btrfs_submit_dev_bio(bioc->stripes[dev_nr].dev, bio);
480 }
481 
btrfs_submit_bio(struct bio * bio,struct btrfs_io_context * bioc,struct btrfs_io_stripe * smap,int mirror_num)482 static void btrfs_submit_bio(struct bio *bio, struct btrfs_io_context *bioc,
483 			     struct btrfs_io_stripe *smap, int mirror_num)
484 {
485 	if (!bioc) {
486 		/* Single mirror read/write fast path. */
487 		btrfs_bio(bio)->mirror_num = mirror_num;
488 		bio->bi_iter.bi_sector = smap->physical >> SECTOR_SHIFT;
489 		if (bio_op(bio) != REQ_OP_READ)
490 			btrfs_bio(bio)->orig_physical = smap->physical;
491 		bio->bi_private = smap->dev;
492 		bio->bi_end_io = btrfs_simple_end_io;
493 		btrfs_submit_dev_bio(smap->dev, bio);
494 	} else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
495 		/* Parity RAID write or read recovery. */
496 		bio->bi_private = bioc;
497 		bio->bi_end_io = btrfs_raid56_end_io;
498 		if (bio_op(bio) == REQ_OP_READ)
499 			raid56_parity_recover(bio, bioc, mirror_num);
500 		else
501 			raid56_parity_write(bio, bioc);
502 	} else {
503 		/* Write to multiple mirrors. */
504 		int total_devs = bioc->num_stripes;
505 
506 		bioc->orig_bio = bio;
507 		for (int dev_nr = 0; dev_nr < total_devs; dev_nr++)
508 			btrfs_submit_mirrored_bio(bioc, dev_nr);
509 	}
510 }
511 
btrfs_bio_csum(struct btrfs_bio * bbio)512 static blk_status_t btrfs_bio_csum(struct btrfs_bio *bbio)
513 {
514 	if (bbio->bio.bi_opf & REQ_META)
515 		return btree_csum_one_bio(bbio);
516 	return btrfs_csum_one_bio(bbio);
517 }
518 
519 /*
520  * Async submit bios are used to offload expensive checksumming onto the worker
521  * threads.
522  */
523 struct async_submit_bio {
524 	struct btrfs_bio *bbio;
525 	struct btrfs_io_context *bioc;
526 	struct btrfs_io_stripe smap;
527 	int mirror_num;
528 	struct btrfs_work work;
529 };
530 
531 /*
532  * In order to insert checksums into the metadata in large chunks, we wait
533  * until bio submission time.   All the pages in the bio are checksummed and
534  * sums are attached onto the ordered extent record.
535  *
536  * At IO completion time the csums attached on the ordered extent record are
537  * inserted into the btree.
538  */
run_one_async_start(struct btrfs_work * work)539 static void run_one_async_start(struct btrfs_work *work)
540 {
541 	struct async_submit_bio *async =
542 		container_of(work, struct async_submit_bio, work);
543 	blk_status_t ret;
544 
545 	ret = btrfs_bio_csum(async->bbio);
546 	if (ret)
547 		async->bbio->bio.bi_status = ret;
548 }
549 
550 /*
551  * In order to insert checksums into the metadata in large chunks, we wait
552  * until bio submission time.   All the pages in the bio are checksummed and
553  * sums are attached onto the ordered extent record.
554  *
555  * At IO completion time the csums attached on the ordered extent record are
556  * inserted into the tree.
557  *
558  * If called with @do_free == true, then it will free the work struct.
559  */
run_one_async_done(struct btrfs_work * work,bool do_free)560 static void run_one_async_done(struct btrfs_work *work, bool do_free)
561 {
562 	struct async_submit_bio *async =
563 		container_of(work, struct async_submit_bio, work);
564 	struct bio *bio = &async->bbio->bio;
565 
566 	if (do_free) {
567 		kfree(container_of(work, struct async_submit_bio, work));
568 		return;
569 	}
570 
571 	/* If an error occurred we just want to clean up the bio and move on. */
572 	if (bio->bi_status) {
573 		btrfs_bio_end_io(async->bbio, async->bbio->bio.bi_status);
574 		return;
575 	}
576 
577 	/*
578 	 * All of the bios that pass through here are from async helpers.
579 	 * Use REQ_BTRFS_CGROUP_PUNT to issue them from the owning cgroup's
580 	 * context.  This changes nothing when cgroups aren't in use.
581 	 */
582 	bio->bi_opf |= REQ_BTRFS_CGROUP_PUNT;
583 	btrfs_submit_bio(bio, async->bioc, &async->smap, async->mirror_num);
584 }
585 
should_async_write(struct btrfs_bio * bbio)586 static bool should_async_write(struct btrfs_bio *bbio)
587 {
588 	bool auto_csum_mode = true;
589 
590 #ifdef CONFIG_BTRFS_DEBUG
591 	struct btrfs_fs_devices *fs_devices = bbio->fs_info->fs_devices;
592 	enum btrfs_offload_csum_mode csum_mode = READ_ONCE(fs_devices->offload_csum_mode);
593 
594 	if (csum_mode == BTRFS_OFFLOAD_CSUM_FORCE_OFF)
595 		return false;
596 
597 	auto_csum_mode = (csum_mode == BTRFS_OFFLOAD_CSUM_AUTO);
598 #endif
599 
600 	/* Submit synchronously if the checksum implementation is fast. */
601 	if (auto_csum_mode && test_bit(BTRFS_FS_CSUM_IMPL_FAST, &bbio->fs_info->flags))
602 		return false;
603 
604 	/*
605 	 * Try to defer the submission to a workqueue to parallelize the
606 	 * checksum calculation unless the I/O is issued synchronously.
607 	 */
608 	if (op_is_sync(bbio->bio.bi_opf))
609 		return false;
610 
611 	/* Zoned devices require I/O to be submitted in order. */
612 	if ((bbio->bio.bi_opf & REQ_META) && btrfs_is_zoned(bbio->fs_info))
613 		return false;
614 
615 	return true;
616 }
617 
618 /*
619  * Submit bio to an async queue.
620  *
621  * Return true if the work has been successfully submitted, else false.
622  */
btrfs_wq_submit_bio(struct btrfs_bio * bbio,struct btrfs_io_context * bioc,struct btrfs_io_stripe * smap,int mirror_num)623 static bool btrfs_wq_submit_bio(struct btrfs_bio *bbio,
624 				struct btrfs_io_context *bioc,
625 				struct btrfs_io_stripe *smap, int mirror_num)
626 {
627 	struct btrfs_fs_info *fs_info = bbio->fs_info;
628 	struct async_submit_bio *async;
629 
630 	async = kmalloc(sizeof(*async), GFP_NOFS);
631 	if (!async)
632 		return false;
633 
634 	async->bbio = bbio;
635 	async->bioc = bioc;
636 	async->smap = *smap;
637 	async->mirror_num = mirror_num;
638 
639 	btrfs_init_work(&async->work, run_one_async_start, run_one_async_done);
640 	btrfs_queue_work(fs_info->workers, &async->work);
641 	return true;
642 }
643 
btrfs_append_map_length(struct btrfs_bio * bbio,u64 map_length)644 static u64 btrfs_append_map_length(struct btrfs_bio *bbio, u64 map_length)
645 {
646 	unsigned int nr_segs;
647 	int sector_offset;
648 
649 	map_length = min(map_length, bbio->fs_info->max_zone_append_size);
650 	sector_offset = bio_split_rw_at(&bbio->bio, &bbio->fs_info->limits,
651 					&nr_segs, map_length);
652 	if (sector_offset)
653 		return sector_offset << SECTOR_SHIFT;
654 	return map_length;
655 }
656 
btrfs_submit_chunk(struct btrfs_bio * bbio,int mirror_num)657 static bool btrfs_submit_chunk(struct btrfs_bio *bbio, int mirror_num)
658 {
659 	struct btrfs_inode *inode = bbio->inode;
660 	struct btrfs_fs_info *fs_info = bbio->fs_info;
661 	struct bio *bio = &bbio->bio;
662 	u64 logical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
663 	u64 length = bio->bi_iter.bi_size;
664 	u64 map_length = length;
665 	bool use_append = btrfs_use_zone_append(bbio);
666 	struct btrfs_io_context *bioc = NULL;
667 	struct btrfs_io_stripe smap;
668 	blk_status_t ret;
669 	int error;
670 
671 	if (!bbio->inode || btrfs_is_data_reloc_root(inode->root))
672 		smap.rst_search_commit_root = true;
673 	else
674 		smap.rst_search_commit_root = false;
675 
676 	btrfs_bio_counter_inc_blocked(fs_info);
677 	error = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
678 				&bioc, &smap, &mirror_num);
679 	if (error) {
680 		ret = errno_to_blk_status(error);
681 		goto fail;
682 	}
683 
684 	map_length = min(map_length, length);
685 	if (use_append)
686 		map_length = btrfs_append_map_length(bbio, map_length);
687 
688 	if (map_length < length) {
689 		bbio = btrfs_split_bio(fs_info, bbio, map_length);
690 		bio = &bbio->bio;
691 	}
692 
693 	/*
694 	 * Save the iter for the end_io handler and preload the checksums for
695 	 * data reads.
696 	 */
697 	if (bio_op(bio) == REQ_OP_READ && is_data_bbio(bbio)) {
698 		bbio->saved_iter = bio->bi_iter;
699 		ret = btrfs_lookup_bio_sums(bbio);
700 		if (ret)
701 			goto fail;
702 	}
703 
704 	if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
705 		if (use_append) {
706 			bio->bi_opf &= ~REQ_OP_WRITE;
707 			bio->bi_opf |= REQ_OP_ZONE_APPEND;
708 		}
709 
710 		if (is_data_bbio(bbio) && bioc &&
711 		    btrfs_need_stripe_tree_update(bioc->fs_info, bioc->map_type)) {
712 			/*
713 			 * No locking for the list update, as we only add to
714 			 * the list in the I/O submission path, and list
715 			 * iteration only happens in the completion path, which
716 			 * can't happen until after the last submission.
717 			 */
718 			btrfs_get_bioc(bioc);
719 			list_add_tail(&bioc->rst_ordered_entry, &bbio->ordered->bioc_list);
720 		}
721 
722 		/*
723 		 * Csum items for reloc roots have already been cloned at this
724 		 * point, so they are handled as part of the no-checksum case.
725 		 */
726 		if (inode && !(inode->flags & BTRFS_INODE_NODATASUM) &&
727 		    !test_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state) &&
728 		    !btrfs_is_data_reloc_root(inode->root)) {
729 			if (should_async_write(bbio) &&
730 			    btrfs_wq_submit_bio(bbio, bioc, &smap, mirror_num))
731 				goto done;
732 
733 			ret = btrfs_bio_csum(bbio);
734 			if (ret)
735 				goto fail;
736 		} else if (use_append ||
737 			   (btrfs_is_zoned(fs_info) && inode &&
738 			    inode->flags & BTRFS_INODE_NODATASUM)) {
739 			ret = btrfs_alloc_dummy_sum(bbio);
740 			if (ret)
741 				goto fail;
742 		}
743 	}
744 
745 	btrfs_submit_bio(bio, bioc, &smap, mirror_num);
746 done:
747 	return map_length == length;
748 
749 fail:
750 	btrfs_bio_counter_dec(fs_info);
751 	/*
752 	 * We have split the original bbio, now we have to end both the current
753 	 * @bbio and remaining one, as the remaining one will never be submitted.
754 	 */
755 	if (map_length < length) {
756 		struct btrfs_bio *remaining = bbio->private;
757 
758 		ASSERT(bbio->bio.bi_pool == &btrfs_clone_bioset);
759 		ASSERT(remaining);
760 
761 		btrfs_bio_end_io(remaining, ret);
762 	}
763 	btrfs_bio_end_io(bbio, ret);
764 	/* Do not submit another chunk */
765 	return true;
766 }
767 
btrfs_submit_bbio(struct btrfs_bio * bbio,int mirror_num)768 void btrfs_submit_bbio(struct btrfs_bio *bbio, int mirror_num)
769 {
770 	/* If bbio->inode is not populated, its file_offset must be 0. */
771 	ASSERT(bbio->inode || bbio->file_offset == 0);
772 
773 	while (!btrfs_submit_chunk(bbio, mirror_num))
774 		;
775 }
776 
777 /*
778  * Submit a repair write.
779  *
780  * This bypasses btrfs_submit_bbio() deliberately, as that writes all copies in a
781  * RAID setup.  Here we only want to write the one bad copy, so we do the
782  * mapping ourselves and submit the bio directly.
783  *
784  * The I/O is issued synchronously to block the repair read completion from
785  * freeing the bio.
786  */
btrfs_repair_io_failure(struct btrfs_fs_info * fs_info,u64 ino,u64 start,u64 length,u64 logical,struct folio * folio,unsigned int folio_offset,int mirror_num)787 int btrfs_repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
788 			    u64 length, u64 logical, struct folio *folio,
789 			    unsigned int folio_offset, int mirror_num)
790 {
791 	struct btrfs_io_stripe smap = { 0 };
792 	struct bio_vec bvec;
793 	struct bio bio;
794 	int ret = 0;
795 
796 	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
797 	BUG_ON(!mirror_num);
798 
799 	if (btrfs_repair_one_zone(fs_info, logical))
800 		return 0;
801 
802 	/*
803 	 * Avoid races with device replace and make sure our bioc has devices
804 	 * associated to its stripes that don't go away while we are doing the
805 	 * read repair operation.
806 	 */
807 	btrfs_bio_counter_inc_blocked(fs_info);
808 	ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num);
809 	if (ret < 0)
810 		goto out_counter_dec;
811 
812 	if (!smap.dev->bdev ||
813 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &smap.dev->dev_state)) {
814 		ret = -EIO;
815 		goto out_counter_dec;
816 	}
817 
818 	bio_init(&bio, smap.dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC);
819 	bio.bi_iter.bi_sector = smap.physical >> SECTOR_SHIFT;
820 	ret = bio_add_folio(&bio, folio, length, folio_offset);
821 	ASSERT(ret);
822 	ret = submit_bio_wait(&bio);
823 	if (ret) {
824 		/* try to remap that extent elsewhere? */
825 		btrfs_dev_stat_inc_and_print(smap.dev, BTRFS_DEV_STAT_WRITE_ERRS);
826 		goto out_bio_uninit;
827 	}
828 
829 	btrfs_info_rl_in_rcu(fs_info,
830 		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
831 			     ino, start, btrfs_dev_name(smap.dev),
832 			     smap.physical >> SECTOR_SHIFT);
833 	ret = 0;
834 
835 out_bio_uninit:
836 	bio_uninit(&bio);
837 out_counter_dec:
838 	btrfs_bio_counter_dec(fs_info);
839 	return ret;
840 }
841 
842 /*
843  * Submit a btrfs_bio based repair write.
844  *
845  * If @dev_replace is true, the write would be submitted to dev-replace target.
846  */
btrfs_submit_repair_write(struct btrfs_bio * bbio,int mirror_num,bool dev_replace)847 void btrfs_submit_repair_write(struct btrfs_bio *bbio, int mirror_num, bool dev_replace)
848 {
849 	struct btrfs_fs_info *fs_info = bbio->fs_info;
850 	u64 logical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
851 	u64 length = bbio->bio.bi_iter.bi_size;
852 	struct btrfs_io_stripe smap = { 0 };
853 	int ret;
854 
855 	ASSERT(fs_info);
856 	ASSERT(mirror_num > 0);
857 	ASSERT(btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE);
858 	ASSERT(!bbio->inode);
859 
860 	btrfs_bio_counter_inc_blocked(fs_info);
861 	ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num);
862 	if (ret < 0)
863 		goto fail;
864 
865 	if (dev_replace) {
866 		ASSERT(smap.dev == fs_info->dev_replace.srcdev);
867 		smap.dev = fs_info->dev_replace.tgtdev;
868 	}
869 	btrfs_submit_bio(&bbio->bio, NULL, &smap, mirror_num);
870 	return;
871 
872 fail:
873 	btrfs_bio_counter_dec(fs_info);
874 	btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
875 }
876 
btrfs_bioset_init(void)877 int __init btrfs_bioset_init(void)
878 {
879 	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
880 			offsetof(struct btrfs_bio, bio),
881 			BIOSET_NEED_BVECS))
882 		return -ENOMEM;
883 	if (bioset_init(&btrfs_clone_bioset, BIO_POOL_SIZE,
884 			offsetof(struct btrfs_bio, bio), 0))
885 		goto out_free_bioset;
886 	if (bioset_init(&btrfs_repair_bioset, BIO_POOL_SIZE,
887 			offsetof(struct btrfs_bio, bio),
888 			BIOSET_NEED_BVECS))
889 		goto out_free_clone_bioset;
890 	if (mempool_init_kmalloc_pool(&btrfs_failed_bio_pool, BIO_POOL_SIZE,
891 				      sizeof(struct btrfs_failed_bio)))
892 		goto out_free_repair_bioset;
893 	return 0;
894 
895 out_free_repair_bioset:
896 	bioset_exit(&btrfs_repair_bioset);
897 out_free_clone_bioset:
898 	bioset_exit(&btrfs_clone_bioset);
899 out_free_bioset:
900 	bioset_exit(&btrfs_bioset);
901 	return -ENOMEM;
902 }
903 
btrfs_bioset_exit(void)904 void __cold btrfs_bioset_exit(void)
905 {
906 	mempool_exit(&btrfs_failed_bio_pool);
907 	bioset_exit(&btrfs_repair_bioset);
908 	bioset_exit(&btrfs_clone_bioset);
909 	bioset_exit(&btrfs_bioset);
910 }
911