1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 * Copyright (C) 2022 Christoph Hellwig.
5 */
6
7 #include <linux/bio.h>
8 #include "bio.h"
9 #include "ctree.h"
10 #include "volumes.h"
11 #include "raid56.h"
12 #include "async-thread.h"
13 #include "dev-replace.h"
14 #include "zoned.h"
15 #include "file-item.h"
16 #include "raid-stripe-tree.h"
17
18 static struct bio_set btrfs_bioset;
19 static struct bio_set btrfs_clone_bioset;
20 static struct bio_set btrfs_repair_bioset;
21 static mempool_t btrfs_failed_bio_pool;
22
23 struct btrfs_failed_bio {
24 struct btrfs_bio *bbio;
25 int num_copies;
26 atomic_t repair_count;
27 };
28
29 /* Is this a data path I/O that needs storage layer checksum and repair? */
is_data_bbio(struct btrfs_bio * bbio)30 static inline bool is_data_bbio(struct btrfs_bio *bbio)
31 {
32 return bbio->inode && is_data_inode(bbio->inode);
33 }
34
bbio_has_ordered_extent(struct btrfs_bio * bbio)35 static bool bbio_has_ordered_extent(struct btrfs_bio *bbio)
36 {
37 return is_data_bbio(bbio) && btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE;
38 }
39
40 /*
41 * Initialize a btrfs_bio structure. This skips the embedded bio itself as it
42 * is already initialized by the block layer.
43 */
btrfs_bio_init(struct btrfs_bio * bbio,struct btrfs_fs_info * fs_info,btrfs_bio_end_io_t end_io,void * private)44 void btrfs_bio_init(struct btrfs_bio *bbio, struct btrfs_fs_info *fs_info,
45 btrfs_bio_end_io_t end_io, void *private)
46 {
47 memset(bbio, 0, offsetof(struct btrfs_bio, bio));
48 bbio->fs_info = fs_info;
49 bbio->end_io = end_io;
50 bbio->private = private;
51 atomic_set(&bbio->pending_ios, 1);
52 WRITE_ONCE(bbio->status, BLK_STS_OK);
53 }
54
55 /*
56 * Allocate a btrfs_bio structure. The btrfs_bio is the main I/O container for
57 * btrfs, and is used for all I/O submitted through btrfs_submit_bbio().
58 *
59 * Just like the underlying bio_alloc_bioset it will not fail as it is backed by
60 * a mempool.
61 */
btrfs_bio_alloc(unsigned int nr_vecs,blk_opf_t opf,struct btrfs_fs_info * fs_info,btrfs_bio_end_io_t end_io,void * private)62 struct btrfs_bio *btrfs_bio_alloc(unsigned int nr_vecs, blk_opf_t opf,
63 struct btrfs_fs_info *fs_info,
64 btrfs_bio_end_io_t end_io, void *private)
65 {
66 struct btrfs_bio *bbio;
67 struct bio *bio;
68
69 bio = bio_alloc_bioset(NULL, nr_vecs, opf, GFP_NOFS, &btrfs_bioset);
70 bbio = btrfs_bio(bio);
71 btrfs_bio_init(bbio, fs_info, end_io, private);
72 return bbio;
73 }
74
btrfs_split_bio(struct btrfs_fs_info * fs_info,struct btrfs_bio * orig_bbio,u64 map_length)75 static struct btrfs_bio *btrfs_split_bio(struct btrfs_fs_info *fs_info,
76 struct btrfs_bio *orig_bbio,
77 u64 map_length)
78 {
79 struct btrfs_bio *bbio;
80 struct bio *bio;
81
82 bio = bio_split(&orig_bbio->bio, map_length >> SECTOR_SHIFT, GFP_NOFS,
83 &btrfs_clone_bioset);
84 bbio = btrfs_bio(bio);
85 btrfs_bio_init(bbio, fs_info, NULL, orig_bbio);
86 bbio->inode = orig_bbio->inode;
87 bbio->file_offset = orig_bbio->file_offset;
88 orig_bbio->file_offset += map_length;
89 if (bbio_has_ordered_extent(bbio)) {
90 refcount_inc(&orig_bbio->ordered->refs);
91 bbio->ordered = orig_bbio->ordered;
92 }
93 atomic_inc(&orig_bbio->pending_ios);
94 return bbio;
95 }
96
97 /* Free a bio that was never submitted to the underlying device. */
btrfs_cleanup_bio(struct btrfs_bio * bbio)98 static void btrfs_cleanup_bio(struct btrfs_bio *bbio)
99 {
100 if (bbio_has_ordered_extent(bbio))
101 btrfs_put_ordered_extent(bbio->ordered);
102 bio_put(&bbio->bio);
103 }
104
__btrfs_bio_end_io(struct btrfs_bio * bbio)105 static void __btrfs_bio_end_io(struct btrfs_bio *bbio)
106 {
107 if (bbio_has_ordered_extent(bbio)) {
108 struct btrfs_ordered_extent *ordered = bbio->ordered;
109
110 bbio->end_io(bbio);
111 btrfs_put_ordered_extent(ordered);
112 } else {
113 bbio->end_io(bbio);
114 }
115 }
116
btrfs_bio_end_io(struct btrfs_bio * bbio,blk_status_t status)117 void btrfs_bio_end_io(struct btrfs_bio *bbio, blk_status_t status)
118 {
119 bbio->bio.bi_status = status;
120 if (bbio->bio.bi_pool == &btrfs_clone_bioset) {
121 struct btrfs_bio *orig_bbio = bbio->private;
122
123 btrfs_cleanup_bio(bbio);
124 bbio = orig_bbio;
125 }
126
127 /*
128 * At this point, bbio always points to the original btrfs_bio. Save
129 * the first error in it.
130 */
131 if (status != BLK_STS_OK)
132 cmpxchg(&bbio->status, BLK_STS_OK, status);
133
134 if (atomic_dec_and_test(&bbio->pending_ios)) {
135 /* Load split bio's error which might be set above. */
136 if (status == BLK_STS_OK)
137 bbio->bio.bi_status = READ_ONCE(bbio->status);
138 __btrfs_bio_end_io(bbio);
139 }
140 }
141
next_repair_mirror(struct btrfs_failed_bio * fbio,int cur_mirror)142 static int next_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror)
143 {
144 if (cur_mirror == fbio->num_copies)
145 return cur_mirror + 1 - fbio->num_copies;
146 return cur_mirror + 1;
147 }
148
prev_repair_mirror(struct btrfs_failed_bio * fbio,int cur_mirror)149 static int prev_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror)
150 {
151 if (cur_mirror == 1)
152 return fbio->num_copies;
153 return cur_mirror - 1;
154 }
155
btrfs_repair_done(struct btrfs_failed_bio * fbio)156 static void btrfs_repair_done(struct btrfs_failed_bio *fbio)
157 {
158 if (atomic_dec_and_test(&fbio->repair_count)) {
159 btrfs_bio_end_io(fbio->bbio, fbio->bbio->bio.bi_status);
160 mempool_free(fbio, &btrfs_failed_bio_pool);
161 }
162 }
163
btrfs_end_repair_bio(struct btrfs_bio * repair_bbio,struct btrfs_device * dev)164 static void btrfs_end_repair_bio(struct btrfs_bio *repair_bbio,
165 struct btrfs_device *dev)
166 {
167 struct btrfs_failed_bio *fbio = repair_bbio->private;
168 struct btrfs_inode *inode = repair_bbio->inode;
169 struct btrfs_fs_info *fs_info = inode->root->fs_info;
170 struct bio_vec *bv = bio_first_bvec_all(&repair_bbio->bio);
171 int mirror = repair_bbio->mirror_num;
172
173 /*
174 * We can only trigger this for data bio, which doesn't support larger
175 * folios yet.
176 */
177 ASSERT(folio_order(page_folio(bv->bv_page)) == 0);
178
179 if (repair_bbio->bio.bi_status ||
180 !btrfs_data_csum_ok(repair_bbio, dev, 0, bv)) {
181 bio_reset(&repair_bbio->bio, NULL, REQ_OP_READ);
182 repair_bbio->bio.bi_iter = repair_bbio->saved_iter;
183
184 mirror = next_repair_mirror(fbio, mirror);
185 if (mirror == fbio->bbio->mirror_num) {
186 btrfs_debug(fs_info, "no mirror left");
187 fbio->bbio->bio.bi_status = BLK_STS_IOERR;
188 goto done;
189 }
190
191 btrfs_submit_bbio(repair_bbio, mirror);
192 return;
193 }
194
195 do {
196 mirror = prev_repair_mirror(fbio, mirror);
197 btrfs_repair_io_failure(fs_info, btrfs_ino(inode),
198 repair_bbio->file_offset, fs_info->sectorsize,
199 repair_bbio->saved_iter.bi_sector << SECTOR_SHIFT,
200 page_folio(bv->bv_page), bv->bv_offset, mirror);
201 } while (mirror != fbio->bbio->mirror_num);
202
203 done:
204 btrfs_repair_done(fbio);
205 bio_put(&repair_bbio->bio);
206 }
207
208 /*
209 * Try to kick off a repair read to the next available mirror for a bad sector.
210 *
211 * This primarily tries to recover good data to serve the actual read request,
212 * but also tries to write the good data back to the bad mirror(s) when a
213 * read succeeded to restore the redundancy.
214 */
repair_one_sector(struct btrfs_bio * failed_bbio,u32 bio_offset,struct bio_vec * bv,struct btrfs_failed_bio * fbio)215 static struct btrfs_failed_bio *repair_one_sector(struct btrfs_bio *failed_bbio,
216 u32 bio_offset,
217 struct bio_vec *bv,
218 struct btrfs_failed_bio *fbio)
219 {
220 struct btrfs_inode *inode = failed_bbio->inode;
221 struct btrfs_fs_info *fs_info = inode->root->fs_info;
222 const u32 sectorsize = fs_info->sectorsize;
223 const u64 logical = (failed_bbio->saved_iter.bi_sector << SECTOR_SHIFT);
224 struct btrfs_bio *repair_bbio;
225 struct bio *repair_bio;
226 int num_copies;
227 int mirror;
228
229 btrfs_debug(fs_info, "repair read error: read error at %llu",
230 failed_bbio->file_offset + bio_offset);
231
232 num_copies = btrfs_num_copies(fs_info, logical, sectorsize);
233 if (num_copies == 1) {
234 btrfs_debug(fs_info, "no copy to repair from");
235 failed_bbio->bio.bi_status = BLK_STS_IOERR;
236 return fbio;
237 }
238
239 if (!fbio) {
240 fbio = mempool_alloc(&btrfs_failed_bio_pool, GFP_NOFS);
241 fbio->bbio = failed_bbio;
242 fbio->num_copies = num_copies;
243 atomic_set(&fbio->repair_count, 1);
244 }
245
246 atomic_inc(&fbio->repair_count);
247
248 repair_bio = bio_alloc_bioset(NULL, 1, REQ_OP_READ, GFP_NOFS,
249 &btrfs_repair_bioset);
250 repair_bio->bi_iter.bi_sector = failed_bbio->saved_iter.bi_sector;
251 __bio_add_page(repair_bio, bv->bv_page, bv->bv_len, bv->bv_offset);
252
253 repair_bbio = btrfs_bio(repair_bio);
254 btrfs_bio_init(repair_bbio, fs_info, NULL, fbio);
255 repair_bbio->inode = failed_bbio->inode;
256 repair_bbio->file_offset = failed_bbio->file_offset + bio_offset;
257
258 mirror = next_repair_mirror(fbio, failed_bbio->mirror_num);
259 btrfs_debug(fs_info, "submitting repair read to mirror %d", mirror);
260 btrfs_submit_bbio(repair_bbio, mirror);
261 return fbio;
262 }
263
btrfs_check_read_bio(struct btrfs_bio * bbio,struct btrfs_device * dev)264 static void btrfs_check_read_bio(struct btrfs_bio *bbio, struct btrfs_device *dev)
265 {
266 struct btrfs_inode *inode = bbio->inode;
267 struct btrfs_fs_info *fs_info = inode->root->fs_info;
268 u32 sectorsize = fs_info->sectorsize;
269 struct bvec_iter *iter = &bbio->saved_iter;
270 blk_status_t status = bbio->bio.bi_status;
271 struct btrfs_failed_bio *fbio = NULL;
272 u32 offset = 0;
273
274 /* Read-repair requires the inode field to be set by the submitter. */
275 ASSERT(inode);
276
277 /*
278 * Hand off repair bios to the repair code as there is no upper level
279 * submitter for them.
280 */
281 if (bbio->bio.bi_pool == &btrfs_repair_bioset) {
282 btrfs_end_repair_bio(bbio, dev);
283 return;
284 }
285
286 /* Clear the I/O error. A failed repair will reset it. */
287 bbio->bio.bi_status = BLK_STS_OK;
288
289 while (iter->bi_size) {
290 struct bio_vec bv = bio_iter_iovec(&bbio->bio, *iter);
291
292 bv.bv_len = min(bv.bv_len, sectorsize);
293 if (status || !btrfs_data_csum_ok(bbio, dev, offset, &bv))
294 fbio = repair_one_sector(bbio, offset, &bv, fbio);
295
296 bio_advance_iter_single(&bbio->bio, iter, sectorsize);
297 offset += sectorsize;
298 }
299
300 if (bbio->csum != bbio->csum_inline)
301 kfree(bbio->csum);
302
303 if (fbio)
304 btrfs_repair_done(fbio);
305 else
306 btrfs_bio_end_io(bbio, bbio->bio.bi_status);
307 }
308
btrfs_log_dev_io_error(struct bio * bio,struct btrfs_device * dev)309 static void btrfs_log_dev_io_error(struct bio *bio, struct btrfs_device *dev)
310 {
311 if (!dev || !dev->bdev)
312 return;
313 if (bio->bi_status != BLK_STS_IOERR && bio->bi_status != BLK_STS_TARGET)
314 return;
315
316 if (btrfs_op(bio) == BTRFS_MAP_WRITE)
317 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
318 else if (!(bio->bi_opf & REQ_RAHEAD))
319 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
320 if (bio->bi_opf & REQ_PREFLUSH)
321 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_FLUSH_ERRS);
322 }
323
btrfs_end_io_wq(struct btrfs_fs_info * fs_info,struct bio * bio)324 static struct workqueue_struct *btrfs_end_io_wq(struct btrfs_fs_info *fs_info,
325 struct bio *bio)
326 {
327 if (bio->bi_opf & REQ_META)
328 return fs_info->endio_meta_workers;
329 return fs_info->endio_workers;
330 }
331
btrfs_end_bio_work(struct work_struct * work)332 static void btrfs_end_bio_work(struct work_struct *work)
333 {
334 struct btrfs_bio *bbio = container_of(work, struct btrfs_bio, end_io_work);
335
336 /* Metadata reads are checked and repaired by the submitter. */
337 if (is_data_bbio(bbio))
338 btrfs_check_read_bio(bbio, bbio->bio.bi_private);
339 else
340 btrfs_bio_end_io(bbio, bbio->bio.bi_status);
341 }
342
btrfs_simple_end_io(struct bio * bio)343 static void btrfs_simple_end_io(struct bio *bio)
344 {
345 struct btrfs_bio *bbio = btrfs_bio(bio);
346 struct btrfs_device *dev = bio->bi_private;
347 struct btrfs_fs_info *fs_info = bbio->fs_info;
348
349 btrfs_bio_counter_dec(fs_info);
350
351 if (bio->bi_status)
352 btrfs_log_dev_io_error(bio, dev);
353
354 if (bio_op(bio) == REQ_OP_READ) {
355 INIT_WORK(&bbio->end_io_work, btrfs_end_bio_work);
356 queue_work(btrfs_end_io_wq(fs_info, bio), &bbio->end_io_work);
357 } else {
358 if (bio_op(bio) == REQ_OP_ZONE_APPEND && !bio->bi_status)
359 btrfs_record_physical_zoned(bbio);
360 btrfs_bio_end_io(bbio, bbio->bio.bi_status);
361 }
362 }
363
btrfs_raid56_end_io(struct bio * bio)364 static void btrfs_raid56_end_io(struct bio *bio)
365 {
366 struct btrfs_io_context *bioc = bio->bi_private;
367 struct btrfs_bio *bbio = btrfs_bio(bio);
368
369 btrfs_bio_counter_dec(bioc->fs_info);
370 bbio->mirror_num = bioc->mirror_num;
371 if (bio_op(bio) == REQ_OP_READ && is_data_bbio(bbio))
372 btrfs_check_read_bio(bbio, NULL);
373 else
374 btrfs_bio_end_io(bbio, bbio->bio.bi_status);
375
376 btrfs_put_bioc(bioc);
377 }
378
btrfs_orig_write_end_io(struct bio * bio)379 static void btrfs_orig_write_end_io(struct bio *bio)
380 {
381 struct btrfs_io_stripe *stripe = bio->bi_private;
382 struct btrfs_io_context *bioc = stripe->bioc;
383 struct btrfs_bio *bbio = btrfs_bio(bio);
384
385 btrfs_bio_counter_dec(bioc->fs_info);
386
387 if (bio->bi_status) {
388 atomic_inc(&bioc->error);
389 btrfs_log_dev_io_error(bio, stripe->dev);
390 }
391
392 /*
393 * Only send an error to the higher layers if it is beyond the tolerance
394 * threshold.
395 */
396 if (atomic_read(&bioc->error) > bioc->max_errors)
397 bio->bi_status = BLK_STS_IOERR;
398 else
399 bio->bi_status = BLK_STS_OK;
400
401 if (bio_op(bio) == REQ_OP_ZONE_APPEND && !bio->bi_status)
402 stripe->physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
403
404 btrfs_bio_end_io(bbio, bbio->bio.bi_status);
405 btrfs_put_bioc(bioc);
406 }
407
btrfs_clone_write_end_io(struct bio * bio)408 static void btrfs_clone_write_end_io(struct bio *bio)
409 {
410 struct btrfs_io_stripe *stripe = bio->bi_private;
411
412 if (bio->bi_status) {
413 atomic_inc(&stripe->bioc->error);
414 btrfs_log_dev_io_error(bio, stripe->dev);
415 } else if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
416 stripe->physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
417 }
418
419 /* Pass on control to the original bio this one was cloned from */
420 bio_endio(stripe->bioc->orig_bio);
421 bio_put(bio);
422 }
423
btrfs_submit_dev_bio(struct btrfs_device * dev,struct bio * bio)424 static void btrfs_submit_dev_bio(struct btrfs_device *dev, struct bio *bio)
425 {
426 if (!dev || !dev->bdev ||
427 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
428 (btrfs_op(bio) == BTRFS_MAP_WRITE &&
429 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
430 bio_io_error(bio);
431 return;
432 }
433
434 bio_set_dev(bio, dev->bdev);
435
436 /*
437 * For zone append writing, bi_sector must point the beginning of the
438 * zone
439 */
440 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
441 u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
442 u64 zone_start = round_down(physical, dev->fs_info->zone_size);
443
444 ASSERT(btrfs_dev_is_sequential(dev, physical));
445 bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
446 }
447 btrfs_debug_in_rcu(dev->fs_info,
448 "%s: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
449 __func__, bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
450 (unsigned long)dev->bdev->bd_dev, btrfs_dev_name(dev),
451 dev->devid, bio->bi_iter.bi_size);
452
453 if (bio->bi_opf & REQ_BTRFS_CGROUP_PUNT)
454 blkcg_punt_bio_submit(bio);
455 else
456 submit_bio(bio);
457 }
458
btrfs_submit_mirrored_bio(struct btrfs_io_context * bioc,int dev_nr)459 static void btrfs_submit_mirrored_bio(struct btrfs_io_context *bioc, int dev_nr)
460 {
461 struct bio *orig_bio = bioc->orig_bio, *bio;
462
463 ASSERT(bio_op(orig_bio) != REQ_OP_READ);
464
465 /* Reuse the bio embedded into the btrfs_bio for the last mirror */
466 if (dev_nr == bioc->num_stripes - 1) {
467 bio = orig_bio;
468 bio->bi_end_io = btrfs_orig_write_end_io;
469 } else {
470 bio = bio_alloc_clone(NULL, orig_bio, GFP_NOFS, &fs_bio_set);
471 bio_inc_remaining(orig_bio);
472 bio->bi_end_io = btrfs_clone_write_end_io;
473 }
474
475 bio->bi_private = &bioc->stripes[dev_nr];
476 bio->bi_iter.bi_sector = bioc->stripes[dev_nr].physical >> SECTOR_SHIFT;
477 bioc->stripes[dev_nr].bioc = bioc;
478 bioc->size = bio->bi_iter.bi_size;
479 btrfs_submit_dev_bio(bioc->stripes[dev_nr].dev, bio);
480 }
481
btrfs_submit_bio(struct bio * bio,struct btrfs_io_context * bioc,struct btrfs_io_stripe * smap,int mirror_num)482 static void btrfs_submit_bio(struct bio *bio, struct btrfs_io_context *bioc,
483 struct btrfs_io_stripe *smap, int mirror_num)
484 {
485 if (!bioc) {
486 /* Single mirror read/write fast path. */
487 btrfs_bio(bio)->mirror_num = mirror_num;
488 bio->bi_iter.bi_sector = smap->physical >> SECTOR_SHIFT;
489 if (bio_op(bio) != REQ_OP_READ)
490 btrfs_bio(bio)->orig_physical = smap->physical;
491 bio->bi_private = smap->dev;
492 bio->bi_end_io = btrfs_simple_end_io;
493 btrfs_submit_dev_bio(smap->dev, bio);
494 } else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
495 /* Parity RAID write or read recovery. */
496 bio->bi_private = bioc;
497 bio->bi_end_io = btrfs_raid56_end_io;
498 if (bio_op(bio) == REQ_OP_READ)
499 raid56_parity_recover(bio, bioc, mirror_num);
500 else
501 raid56_parity_write(bio, bioc);
502 } else {
503 /* Write to multiple mirrors. */
504 int total_devs = bioc->num_stripes;
505
506 bioc->orig_bio = bio;
507 for (int dev_nr = 0; dev_nr < total_devs; dev_nr++)
508 btrfs_submit_mirrored_bio(bioc, dev_nr);
509 }
510 }
511
btrfs_bio_csum(struct btrfs_bio * bbio)512 static blk_status_t btrfs_bio_csum(struct btrfs_bio *bbio)
513 {
514 if (bbio->bio.bi_opf & REQ_META)
515 return btree_csum_one_bio(bbio);
516 return btrfs_csum_one_bio(bbio);
517 }
518
519 /*
520 * Async submit bios are used to offload expensive checksumming onto the worker
521 * threads.
522 */
523 struct async_submit_bio {
524 struct btrfs_bio *bbio;
525 struct btrfs_io_context *bioc;
526 struct btrfs_io_stripe smap;
527 int mirror_num;
528 struct btrfs_work work;
529 };
530
531 /*
532 * In order to insert checksums into the metadata in large chunks, we wait
533 * until bio submission time. All the pages in the bio are checksummed and
534 * sums are attached onto the ordered extent record.
535 *
536 * At IO completion time the csums attached on the ordered extent record are
537 * inserted into the btree.
538 */
run_one_async_start(struct btrfs_work * work)539 static void run_one_async_start(struct btrfs_work *work)
540 {
541 struct async_submit_bio *async =
542 container_of(work, struct async_submit_bio, work);
543 blk_status_t ret;
544
545 ret = btrfs_bio_csum(async->bbio);
546 if (ret)
547 async->bbio->bio.bi_status = ret;
548 }
549
550 /*
551 * In order to insert checksums into the metadata in large chunks, we wait
552 * until bio submission time. All the pages in the bio are checksummed and
553 * sums are attached onto the ordered extent record.
554 *
555 * At IO completion time the csums attached on the ordered extent record are
556 * inserted into the tree.
557 *
558 * If called with @do_free == true, then it will free the work struct.
559 */
run_one_async_done(struct btrfs_work * work,bool do_free)560 static void run_one_async_done(struct btrfs_work *work, bool do_free)
561 {
562 struct async_submit_bio *async =
563 container_of(work, struct async_submit_bio, work);
564 struct bio *bio = &async->bbio->bio;
565
566 if (do_free) {
567 kfree(container_of(work, struct async_submit_bio, work));
568 return;
569 }
570
571 /* If an error occurred we just want to clean up the bio and move on. */
572 if (bio->bi_status) {
573 btrfs_bio_end_io(async->bbio, async->bbio->bio.bi_status);
574 return;
575 }
576
577 /*
578 * All of the bios that pass through here are from async helpers.
579 * Use REQ_BTRFS_CGROUP_PUNT to issue them from the owning cgroup's
580 * context. This changes nothing when cgroups aren't in use.
581 */
582 bio->bi_opf |= REQ_BTRFS_CGROUP_PUNT;
583 btrfs_submit_bio(bio, async->bioc, &async->smap, async->mirror_num);
584 }
585
should_async_write(struct btrfs_bio * bbio)586 static bool should_async_write(struct btrfs_bio *bbio)
587 {
588 bool auto_csum_mode = true;
589
590 #ifdef CONFIG_BTRFS_DEBUG
591 struct btrfs_fs_devices *fs_devices = bbio->fs_info->fs_devices;
592 enum btrfs_offload_csum_mode csum_mode = READ_ONCE(fs_devices->offload_csum_mode);
593
594 if (csum_mode == BTRFS_OFFLOAD_CSUM_FORCE_OFF)
595 return false;
596
597 auto_csum_mode = (csum_mode == BTRFS_OFFLOAD_CSUM_AUTO);
598 #endif
599
600 /* Submit synchronously if the checksum implementation is fast. */
601 if (auto_csum_mode && test_bit(BTRFS_FS_CSUM_IMPL_FAST, &bbio->fs_info->flags))
602 return false;
603
604 /*
605 * Try to defer the submission to a workqueue to parallelize the
606 * checksum calculation unless the I/O is issued synchronously.
607 */
608 if (op_is_sync(bbio->bio.bi_opf))
609 return false;
610
611 /* Zoned devices require I/O to be submitted in order. */
612 if ((bbio->bio.bi_opf & REQ_META) && btrfs_is_zoned(bbio->fs_info))
613 return false;
614
615 return true;
616 }
617
618 /*
619 * Submit bio to an async queue.
620 *
621 * Return true if the work has been successfully submitted, else false.
622 */
btrfs_wq_submit_bio(struct btrfs_bio * bbio,struct btrfs_io_context * bioc,struct btrfs_io_stripe * smap,int mirror_num)623 static bool btrfs_wq_submit_bio(struct btrfs_bio *bbio,
624 struct btrfs_io_context *bioc,
625 struct btrfs_io_stripe *smap, int mirror_num)
626 {
627 struct btrfs_fs_info *fs_info = bbio->fs_info;
628 struct async_submit_bio *async;
629
630 async = kmalloc(sizeof(*async), GFP_NOFS);
631 if (!async)
632 return false;
633
634 async->bbio = bbio;
635 async->bioc = bioc;
636 async->smap = *smap;
637 async->mirror_num = mirror_num;
638
639 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done);
640 btrfs_queue_work(fs_info->workers, &async->work);
641 return true;
642 }
643
btrfs_append_map_length(struct btrfs_bio * bbio,u64 map_length)644 static u64 btrfs_append_map_length(struct btrfs_bio *bbio, u64 map_length)
645 {
646 unsigned int nr_segs;
647 int sector_offset;
648
649 map_length = min(map_length, bbio->fs_info->max_zone_append_size);
650 sector_offset = bio_split_rw_at(&bbio->bio, &bbio->fs_info->limits,
651 &nr_segs, map_length);
652 if (sector_offset)
653 return sector_offset << SECTOR_SHIFT;
654 return map_length;
655 }
656
btrfs_submit_chunk(struct btrfs_bio * bbio,int mirror_num)657 static bool btrfs_submit_chunk(struct btrfs_bio *bbio, int mirror_num)
658 {
659 struct btrfs_inode *inode = bbio->inode;
660 struct btrfs_fs_info *fs_info = bbio->fs_info;
661 struct bio *bio = &bbio->bio;
662 u64 logical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
663 u64 length = bio->bi_iter.bi_size;
664 u64 map_length = length;
665 bool use_append = btrfs_use_zone_append(bbio);
666 struct btrfs_io_context *bioc = NULL;
667 struct btrfs_io_stripe smap;
668 blk_status_t ret;
669 int error;
670
671 if (!bbio->inode || btrfs_is_data_reloc_root(inode->root))
672 smap.rst_search_commit_root = true;
673 else
674 smap.rst_search_commit_root = false;
675
676 btrfs_bio_counter_inc_blocked(fs_info);
677 error = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
678 &bioc, &smap, &mirror_num);
679 if (error) {
680 ret = errno_to_blk_status(error);
681 goto fail;
682 }
683
684 map_length = min(map_length, length);
685 if (use_append)
686 map_length = btrfs_append_map_length(bbio, map_length);
687
688 if (map_length < length) {
689 bbio = btrfs_split_bio(fs_info, bbio, map_length);
690 bio = &bbio->bio;
691 }
692
693 /*
694 * Save the iter for the end_io handler and preload the checksums for
695 * data reads.
696 */
697 if (bio_op(bio) == REQ_OP_READ && is_data_bbio(bbio)) {
698 bbio->saved_iter = bio->bi_iter;
699 ret = btrfs_lookup_bio_sums(bbio);
700 if (ret)
701 goto fail;
702 }
703
704 if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
705 if (use_append) {
706 bio->bi_opf &= ~REQ_OP_WRITE;
707 bio->bi_opf |= REQ_OP_ZONE_APPEND;
708 }
709
710 if (is_data_bbio(bbio) && bioc &&
711 btrfs_need_stripe_tree_update(bioc->fs_info, bioc->map_type)) {
712 /*
713 * No locking for the list update, as we only add to
714 * the list in the I/O submission path, and list
715 * iteration only happens in the completion path, which
716 * can't happen until after the last submission.
717 */
718 btrfs_get_bioc(bioc);
719 list_add_tail(&bioc->rst_ordered_entry, &bbio->ordered->bioc_list);
720 }
721
722 /*
723 * Csum items for reloc roots have already been cloned at this
724 * point, so they are handled as part of the no-checksum case.
725 */
726 if (inode && !(inode->flags & BTRFS_INODE_NODATASUM) &&
727 !test_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state) &&
728 !btrfs_is_data_reloc_root(inode->root)) {
729 if (should_async_write(bbio) &&
730 btrfs_wq_submit_bio(bbio, bioc, &smap, mirror_num))
731 goto done;
732
733 ret = btrfs_bio_csum(bbio);
734 if (ret)
735 goto fail;
736 } else if (use_append ||
737 (btrfs_is_zoned(fs_info) && inode &&
738 inode->flags & BTRFS_INODE_NODATASUM)) {
739 ret = btrfs_alloc_dummy_sum(bbio);
740 if (ret)
741 goto fail;
742 }
743 }
744
745 btrfs_submit_bio(bio, bioc, &smap, mirror_num);
746 done:
747 return map_length == length;
748
749 fail:
750 btrfs_bio_counter_dec(fs_info);
751 /*
752 * We have split the original bbio, now we have to end both the current
753 * @bbio and remaining one, as the remaining one will never be submitted.
754 */
755 if (map_length < length) {
756 struct btrfs_bio *remaining = bbio->private;
757
758 ASSERT(bbio->bio.bi_pool == &btrfs_clone_bioset);
759 ASSERT(remaining);
760
761 btrfs_bio_end_io(remaining, ret);
762 }
763 btrfs_bio_end_io(bbio, ret);
764 /* Do not submit another chunk */
765 return true;
766 }
767
btrfs_submit_bbio(struct btrfs_bio * bbio,int mirror_num)768 void btrfs_submit_bbio(struct btrfs_bio *bbio, int mirror_num)
769 {
770 /* If bbio->inode is not populated, its file_offset must be 0. */
771 ASSERT(bbio->inode || bbio->file_offset == 0);
772
773 while (!btrfs_submit_chunk(bbio, mirror_num))
774 ;
775 }
776
777 /*
778 * Submit a repair write.
779 *
780 * This bypasses btrfs_submit_bbio() deliberately, as that writes all copies in a
781 * RAID setup. Here we only want to write the one bad copy, so we do the
782 * mapping ourselves and submit the bio directly.
783 *
784 * The I/O is issued synchronously to block the repair read completion from
785 * freeing the bio.
786 */
btrfs_repair_io_failure(struct btrfs_fs_info * fs_info,u64 ino,u64 start,u64 length,u64 logical,struct folio * folio,unsigned int folio_offset,int mirror_num)787 int btrfs_repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
788 u64 length, u64 logical, struct folio *folio,
789 unsigned int folio_offset, int mirror_num)
790 {
791 struct btrfs_io_stripe smap = { 0 };
792 struct bio_vec bvec;
793 struct bio bio;
794 int ret = 0;
795
796 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
797 BUG_ON(!mirror_num);
798
799 if (btrfs_repair_one_zone(fs_info, logical))
800 return 0;
801
802 /*
803 * Avoid races with device replace and make sure our bioc has devices
804 * associated to its stripes that don't go away while we are doing the
805 * read repair operation.
806 */
807 btrfs_bio_counter_inc_blocked(fs_info);
808 ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num);
809 if (ret < 0)
810 goto out_counter_dec;
811
812 if (!smap.dev->bdev ||
813 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &smap.dev->dev_state)) {
814 ret = -EIO;
815 goto out_counter_dec;
816 }
817
818 bio_init(&bio, smap.dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC);
819 bio.bi_iter.bi_sector = smap.physical >> SECTOR_SHIFT;
820 ret = bio_add_folio(&bio, folio, length, folio_offset);
821 ASSERT(ret);
822 ret = submit_bio_wait(&bio);
823 if (ret) {
824 /* try to remap that extent elsewhere? */
825 btrfs_dev_stat_inc_and_print(smap.dev, BTRFS_DEV_STAT_WRITE_ERRS);
826 goto out_bio_uninit;
827 }
828
829 btrfs_info_rl_in_rcu(fs_info,
830 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
831 ino, start, btrfs_dev_name(smap.dev),
832 smap.physical >> SECTOR_SHIFT);
833 ret = 0;
834
835 out_bio_uninit:
836 bio_uninit(&bio);
837 out_counter_dec:
838 btrfs_bio_counter_dec(fs_info);
839 return ret;
840 }
841
842 /*
843 * Submit a btrfs_bio based repair write.
844 *
845 * If @dev_replace is true, the write would be submitted to dev-replace target.
846 */
btrfs_submit_repair_write(struct btrfs_bio * bbio,int mirror_num,bool dev_replace)847 void btrfs_submit_repair_write(struct btrfs_bio *bbio, int mirror_num, bool dev_replace)
848 {
849 struct btrfs_fs_info *fs_info = bbio->fs_info;
850 u64 logical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
851 u64 length = bbio->bio.bi_iter.bi_size;
852 struct btrfs_io_stripe smap = { 0 };
853 int ret;
854
855 ASSERT(fs_info);
856 ASSERT(mirror_num > 0);
857 ASSERT(btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE);
858 ASSERT(!bbio->inode);
859
860 btrfs_bio_counter_inc_blocked(fs_info);
861 ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num);
862 if (ret < 0)
863 goto fail;
864
865 if (dev_replace) {
866 ASSERT(smap.dev == fs_info->dev_replace.srcdev);
867 smap.dev = fs_info->dev_replace.tgtdev;
868 }
869 btrfs_submit_bio(&bbio->bio, NULL, &smap, mirror_num);
870 return;
871
872 fail:
873 btrfs_bio_counter_dec(fs_info);
874 btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
875 }
876
btrfs_bioset_init(void)877 int __init btrfs_bioset_init(void)
878 {
879 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
880 offsetof(struct btrfs_bio, bio),
881 BIOSET_NEED_BVECS))
882 return -ENOMEM;
883 if (bioset_init(&btrfs_clone_bioset, BIO_POOL_SIZE,
884 offsetof(struct btrfs_bio, bio), 0))
885 goto out_free_bioset;
886 if (bioset_init(&btrfs_repair_bioset, BIO_POOL_SIZE,
887 offsetof(struct btrfs_bio, bio),
888 BIOSET_NEED_BVECS))
889 goto out_free_clone_bioset;
890 if (mempool_init_kmalloc_pool(&btrfs_failed_bio_pool, BIO_POOL_SIZE,
891 sizeof(struct btrfs_failed_bio)))
892 goto out_free_repair_bioset;
893 return 0;
894
895 out_free_repair_bioset:
896 bioset_exit(&btrfs_repair_bioset);
897 out_free_clone_bioset:
898 bioset_exit(&btrfs_clone_bioset);
899 out_free_bioset:
900 bioset_exit(&btrfs_bioset);
901 return -ENOMEM;
902 }
903
btrfs_bioset_exit(void)904 void __cold btrfs_bioset_exit(void)
905 {
906 mempool_exit(&btrfs_failed_bio_pool);
907 bioset_exit(&btrfs_repair_bioset);
908 bioset_exit(&btrfs_clone_bioset);
909 bioset_exit(&btrfs_bioset);
910 }
911