1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2009 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/rbtree.h>
11 #include <linux/slab.h>
12 #include <linux/error-injection.h>
13 #include "ctree.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "volumes.h"
17 #include "locking.h"
18 #include "btrfs_inode.h"
19 #include "async-thread.h"
20 #include "free-space-cache.h"
21 #include "qgroup.h"
22 #include "print-tree.h"
23 #include "delalloc-space.h"
24 #include "block-group.h"
25 #include "backref.h"
26 #include "misc.h"
27 #include "subpage.h"
28 #include "zoned.h"
29 #include "inode-item.h"
30 #include "space-info.h"
31 #include "fs.h"
32 #include "accessors.h"
33 #include "extent-tree.h"
34 #include "root-tree.h"
35 #include "file-item.h"
36 #include "relocation.h"
37 #include "super.h"
38 #include "tree-checker.h"
39 #include "raid-stripe-tree.h"
40
41 /*
42 * Relocation overview
43 *
44 * [What does relocation do]
45 *
46 * The objective of relocation is to relocate all extents of the target block
47 * group to other block groups.
48 * This is utilized by resize (shrink only), profile converting, compacting
49 * space, or balance routine to spread chunks over devices.
50 *
51 * Before | After
52 * ------------------------------------------------------------------
53 * BG A: 10 data extents | BG A: deleted
54 * BG B: 2 data extents | BG B: 10 data extents (2 old + 8 relocated)
55 * BG C: 1 extents | BG C: 3 data extents (1 old + 2 relocated)
56 *
57 * [How does relocation work]
58 *
59 * 1. Mark the target block group read-only
60 * New extents won't be allocated from the target block group.
61 *
62 * 2.1 Record each extent in the target block group
63 * To build a proper map of extents to be relocated.
64 *
65 * 2.2 Build data reloc tree and reloc trees
66 * Data reloc tree will contain an inode, recording all newly relocated
67 * data extents.
68 * There will be only one data reloc tree for one data block group.
69 *
70 * Reloc tree will be a special snapshot of its source tree, containing
71 * relocated tree blocks.
72 * Each tree referring to a tree block in target block group will get its
73 * reloc tree built.
74 *
75 * 2.3 Swap source tree with its corresponding reloc tree
76 * Each involved tree only refers to new extents after swap.
77 *
78 * 3. Cleanup reloc trees and data reloc tree.
79 * As old extents in the target block group are still referenced by reloc
80 * trees, we need to clean them up before really freeing the target block
81 * group.
82 *
83 * The main complexity is in steps 2.2 and 2.3.
84 *
85 * The entry point of relocation is relocate_block_group() function.
86 */
87
88 #define RELOCATION_RESERVED_NODES 256
89 /*
90 * map address of tree root to tree
91 */
92 struct mapping_node {
93 union {
94 /* Use rb_simple_node for search/insert */
95 struct {
96 struct rb_node rb_node;
97 u64 bytenr;
98 };
99
100 struct rb_simple_node simple_node;
101 };
102 void *data;
103 };
104
105 struct mapping_tree {
106 struct rb_root rb_root;
107 spinlock_t lock;
108 };
109
110 /*
111 * present a tree block to process
112 */
113 struct tree_block {
114 union {
115 /* Use rb_simple_node for search/insert */
116 struct {
117 struct rb_node rb_node;
118 u64 bytenr;
119 };
120
121 struct rb_simple_node simple_node;
122 };
123 u64 owner;
124 struct btrfs_key key;
125 u8 level;
126 bool key_ready;
127 };
128
129 #define MAX_EXTENTS 128
130
131 struct file_extent_cluster {
132 u64 start;
133 u64 end;
134 u64 boundary[MAX_EXTENTS];
135 unsigned int nr;
136 u64 owning_root;
137 };
138
139 /* Stages of data relocation. */
140 enum reloc_stage {
141 MOVE_DATA_EXTENTS,
142 UPDATE_DATA_PTRS
143 };
144
145 struct reloc_control {
146 /* block group to relocate */
147 struct btrfs_block_group *block_group;
148 /* extent tree */
149 struct btrfs_root *extent_root;
150 /* inode for moving data */
151 struct inode *data_inode;
152
153 struct btrfs_block_rsv *block_rsv;
154
155 struct btrfs_backref_cache backref_cache;
156
157 struct file_extent_cluster cluster;
158 /* tree blocks have been processed */
159 struct extent_io_tree processed_blocks;
160 /* map start of tree root to corresponding reloc tree */
161 struct mapping_tree reloc_root_tree;
162 /* list of reloc trees */
163 struct list_head reloc_roots;
164 /* list of subvolume trees that get relocated */
165 struct list_head dirty_subvol_roots;
166 /* size of metadata reservation for merging reloc trees */
167 u64 merging_rsv_size;
168 /* size of relocated tree nodes */
169 u64 nodes_relocated;
170 /* reserved size for block group relocation*/
171 u64 reserved_bytes;
172
173 u64 search_start;
174 u64 extents_found;
175
176 enum reloc_stage stage;
177 bool create_reloc_tree;
178 bool merge_reloc_tree;
179 bool found_file_extent;
180 };
181
mark_block_processed(struct reloc_control * rc,struct btrfs_backref_node * node)182 static void mark_block_processed(struct reloc_control *rc,
183 struct btrfs_backref_node *node)
184 {
185 u32 blocksize;
186
187 if (node->level == 0 ||
188 in_range(node->bytenr, rc->block_group->start,
189 rc->block_group->length)) {
190 blocksize = rc->extent_root->fs_info->nodesize;
191 btrfs_set_extent_bit(&rc->processed_blocks, node->bytenr,
192 node->bytenr + blocksize - 1, EXTENT_DIRTY,
193 NULL);
194 }
195 node->processed = 1;
196 }
197
198 /*
199 * walk up backref nodes until reach node presents tree root
200 */
walk_up_backref(struct btrfs_backref_node * node,struct btrfs_backref_edge * edges[],int * index)201 static struct btrfs_backref_node *walk_up_backref(
202 struct btrfs_backref_node *node,
203 struct btrfs_backref_edge *edges[], int *index)
204 {
205 struct btrfs_backref_edge *edge;
206 int idx = *index;
207
208 while (!list_empty(&node->upper)) {
209 edge = list_first_entry(&node->upper, struct btrfs_backref_edge,
210 list[LOWER]);
211 edges[idx++] = edge;
212 node = edge->node[UPPER];
213 }
214 BUG_ON(node->detached);
215 *index = idx;
216 return node;
217 }
218
219 /*
220 * walk down backref nodes to find start of next reference path
221 */
walk_down_backref(struct btrfs_backref_edge * edges[],int * index)222 static struct btrfs_backref_node *walk_down_backref(
223 struct btrfs_backref_edge *edges[], int *index)
224 {
225 struct btrfs_backref_edge *edge;
226 struct btrfs_backref_node *lower;
227 int idx = *index;
228
229 while (idx > 0) {
230 edge = edges[idx - 1];
231 lower = edge->node[LOWER];
232 if (list_is_last(&edge->list[LOWER], &lower->upper)) {
233 idx--;
234 continue;
235 }
236 edge = list_first_entry(&edge->list[LOWER], struct btrfs_backref_edge,
237 list[LOWER]);
238 edges[idx - 1] = edge;
239 *index = idx;
240 return edge->node[UPPER];
241 }
242 *index = 0;
243 return NULL;
244 }
245
reloc_root_is_dead(const struct btrfs_root * root)246 static bool reloc_root_is_dead(const struct btrfs_root *root)
247 {
248 /*
249 * Pair with set_bit/clear_bit in clean_dirty_subvols and
250 * btrfs_update_reloc_root. We need to see the updated bit before
251 * trying to access reloc_root
252 */
253 smp_rmb();
254 if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
255 return true;
256 return false;
257 }
258
259 /*
260 * Check if this subvolume tree has valid reloc tree.
261 *
262 * Reloc tree after swap is considered dead, thus not considered as valid.
263 * This is enough for most callers, as they don't distinguish dead reloc root
264 * from no reloc root. But btrfs_should_ignore_reloc_root() below is a
265 * special case.
266 */
have_reloc_root(const struct btrfs_root * root)267 static bool have_reloc_root(const struct btrfs_root *root)
268 {
269 if (reloc_root_is_dead(root))
270 return false;
271 if (!root->reloc_root)
272 return false;
273 return true;
274 }
275
btrfs_should_ignore_reloc_root(const struct btrfs_root * root)276 bool btrfs_should_ignore_reloc_root(const struct btrfs_root *root)
277 {
278 struct btrfs_root *reloc_root;
279
280 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
281 return false;
282
283 /* This root has been merged with its reloc tree, we can ignore it */
284 if (reloc_root_is_dead(root))
285 return true;
286
287 reloc_root = root->reloc_root;
288 if (!reloc_root)
289 return false;
290
291 if (btrfs_header_generation(reloc_root->commit_root) ==
292 root->fs_info->running_transaction->transid)
293 return false;
294 /*
295 * If there is reloc tree and it was created in previous transaction
296 * backref lookup can find the reloc tree, so backref node for the fs
297 * tree root is useless for relocation.
298 */
299 return true;
300 }
301
302 /*
303 * find reloc tree by address of tree root
304 */
find_reloc_root(struct btrfs_fs_info * fs_info,u64 bytenr)305 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr)
306 {
307 struct reloc_control *rc = fs_info->reloc_ctl;
308 struct rb_node *rb_node;
309 struct mapping_node *node;
310 struct btrfs_root *root = NULL;
311
312 ASSERT(rc);
313 spin_lock(&rc->reloc_root_tree.lock);
314 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr);
315 if (rb_node) {
316 node = rb_entry(rb_node, struct mapping_node, rb_node);
317 root = node->data;
318 }
319 spin_unlock(&rc->reloc_root_tree.lock);
320 return btrfs_grab_root(root);
321 }
322
323 /*
324 * For useless nodes, do two major clean ups:
325 *
326 * - Cleanup the children edges and nodes
327 * If child node is also orphan (no parent) during cleanup, then the child
328 * node will also be cleaned up.
329 *
330 * - Freeing up leaves (level 0), keeps nodes detached
331 * For nodes, the node is still cached as "detached"
332 *
333 * Return false if @node is not in the @useless_nodes list.
334 * Return true if @node is in the @useless_nodes list.
335 */
handle_useless_nodes(struct reloc_control * rc,struct btrfs_backref_node * node)336 static bool handle_useless_nodes(struct reloc_control *rc,
337 struct btrfs_backref_node *node)
338 {
339 struct btrfs_backref_cache *cache = &rc->backref_cache;
340 struct list_head *useless_node = &cache->useless_node;
341 bool ret = false;
342
343 while (!list_empty(useless_node)) {
344 struct btrfs_backref_node *cur;
345
346 cur = list_first_entry(useless_node, struct btrfs_backref_node,
347 list);
348 list_del_init(&cur->list);
349
350 /* Only tree root nodes can be added to @useless_nodes */
351 ASSERT(list_empty(&cur->upper));
352
353 if (cur == node)
354 ret = true;
355
356 /* Cleanup the lower edges */
357 while (!list_empty(&cur->lower)) {
358 struct btrfs_backref_edge *edge;
359 struct btrfs_backref_node *lower;
360
361 edge = list_first_entry(&cur->lower, struct btrfs_backref_edge,
362 list[UPPER]);
363 list_del(&edge->list[UPPER]);
364 list_del(&edge->list[LOWER]);
365 lower = edge->node[LOWER];
366 btrfs_backref_free_edge(cache, edge);
367
368 /* Child node is also orphan, queue for cleanup */
369 if (list_empty(&lower->upper))
370 list_add(&lower->list, useless_node);
371 }
372 /* Mark this block processed for relocation */
373 mark_block_processed(rc, cur);
374
375 /*
376 * Backref nodes for tree leaves are deleted from the cache.
377 * Backref nodes for upper level tree blocks are left in the
378 * cache to avoid unnecessary backref lookup.
379 */
380 if (cur->level > 0) {
381 cur->detached = 1;
382 } else {
383 rb_erase(&cur->rb_node, &cache->rb_root);
384 btrfs_backref_free_node(cache, cur);
385 }
386 }
387 return ret;
388 }
389
390 /*
391 * Build backref tree for a given tree block. Root of the backref tree
392 * corresponds the tree block, leaves of the backref tree correspond roots of
393 * b-trees that reference the tree block.
394 *
395 * The basic idea of this function is check backrefs of a given block to find
396 * upper level blocks that reference the block, and then check backrefs of
397 * these upper level blocks recursively. The recursion stops when tree root is
398 * reached or backrefs for the block is cached.
399 *
400 * NOTE: if we find that backrefs for a block are cached, we know backrefs for
401 * all upper level blocks that directly/indirectly reference the block are also
402 * cached.
403 */
build_backref_tree(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_key * node_key,int level,u64 bytenr)404 static noinline_for_stack struct btrfs_backref_node *build_backref_tree(
405 struct btrfs_trans_handle *trans,
406 struct reloc_control *rc, struct btrfs_key *node_key,
407 int level, u64 bytenr)
408 {
409 struct btrfs_backref_iter *iter;
410 struct btrfs_backref_cache *cache = &rc->backref_cache;
411 /* For searching parent of TREE_BLOCK_REF */
412 struct btrfs_path *path;
413 struct btrfs_backref_node *cur;
414 struct btrfs_backref_node *node = NULL;
415 struct btrfs_backref_edge *edge;
416 int ret;
417
418 iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info);
419 if (!iter)
420 return ERR_PTR(-ENOMEM);
421 path = btrfs_alloc_path();
422 if (!path) {
423 ret = -ENOMEM;
424 goto out;
425 }
426
427 node = btrfs_backref_alloc_node(cache, bytenr, level);
428 if (!node) {
429 ret = -ENOMEM;
430 goto out;
431 }
432
433 cur = node;
434
435 /* Breadth-first search to build backref cache */
436 do {
437 ret = btrfs_backref_add_tree_node(trans, cache, path, iter,
438 node_key, cur);
439 if (ret < 0)
440 goto out;
441
442 edge = list_first_entry_or_null(&cache->pending_edge,
443 struct btrfs_backref_edge, list[UPPER]);
444 /*
445 * The pending list isn't empty, take the first block to
446 * process
447 */
448 if (edge) {
449 list_del_init(&edge->list[UPPER]);
450 cur = edge->node[UPPER];
451 }
452 } while (edge);
453
454 /* Finish the upper linkage of newly added edges/nodes */
455 ret = btrfs_backref_finish_upper_links(cache, node);
456 if (ret < 0)
457 goto out;
458
459 if (handle_useless_nodes(rc, node))
460 node = NULL;
461 out:
462 btrfs_free_path(iter->path);
463 kfree(iter);
464 btrfs_free_path(path);
465 if (ret) {
466 btrfs_backref_error_cleanup(cache, node);
467 return ERR_PTR(ret);
468 }
469 ASSERT(!node || !node->detached);
470 ASSERT(list_empty(&cache->useless_node) &&
471 list_empty(&cache->pending_edge));
472 return node;
473 }
474
475 /*
476 * helper to add 'address of tree root -> reloc tree' mapping
477 */
__add_reloc_root(struct btrfs_root * root)478 static int __add_reloc_root(struct btrfs_root *root)
479 {
480 struct btrfs_fs_info *fs_info = root->fs_info;
481 struct rb_node *rb_node;
482 struct mapping_node *node;
483 struct reloc_control *rc = fs_info->reloc_ctl;
484
485 node = kmalloc(sizeof(*node), GFP_NOFS);
486 if (!node)
487 return -ENOMEM;
488
489 node->bytenr = root->commit_root->start;
490 node->data = root;
491
492 spin_lock(&rc->reloc_root_tree.lock);
493 rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root, &node->simple_node);
494 spin_unlock(&rc->reloc_root_tree.lock);
495 if (rb_node) {
496 btrfs_err(fs_info,
497 "Duplicate root found for start=%llu while inserting into relocation tree",
498 node->bytenr);
499 return -EEXIST;
500 }
501
502 list_add_tail(&root->root_list, &rc->reloc_roots);
503 return 0;
504 }
505
506 /*
507 * helper to delete the 'address of tree root -> reloc tree'
508 * mapping
509 */
__del_reloc_root(struct btrfs_root * root)510 static void __del_reloc_root(struct btrfs_root *root)
511 {
512 struct btrfs_fs_info *fs_info = root->fs_info;
513 struct rb_node *rb_node;
514 struct mapping_node AUTO_KFREE(node);
515 struct reloc_control *rc = fs_info->reloc_ctl;
516 bool put_ref = false;
517
518 if (rc && root->node) {
519 spin_lock(&rc->reloc_root_tree.lock);
520 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
521 root->commit_root->start);
522 if (rb_node) {
523 node = rb_entry(rb_node, struct mapping_node, rb_node);
524 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
525 RB_CLEAR_NODE(&node->rb_node);
526 }
527 spin_unlock(&rc->reloc_root_tree.lock);
528 ASSERT(!node || (struct btrfs_root *)node->data == root);
529 }
530
531 /*
532 * We only put the reloc root here if it's on the list. There's a lot
533 * of places where the pattern is to splice the rc->reloc_roots, process
534 * the reloc roots, and then add the reloc root back onto
535 * rc->reloc_roots. If we call __del_reloc_root while it's off of the
536 * list we don't want the reference being dropped, because the guy
537 * messing with the list is in charge of the reference.
538 */
539 spin_lock(&fs_info->trans_lock);
540 if (!list_empty(&root->root_list)) {
541 put_ref = true;
542 list_del_init(&root->root_list);
543 }
544 spin_unlock(&fs_info->trans_lock);
545 if (put_ref)
546 btrfs_put_root(root);
547 }
548
549 /*
550 * helper to update the 'address of tree root -> reloc tree'
551 * mapping
552 */
__update_reloc_root(struct btrfs_root * root)553 static int __update_reloc_root(struct btrfs_root *root)
554 {
555 struct btrfs_fs_info *fs_info = root->fs_info;
556 struct rb_node *rb_node;
557 struct mapping_node *node = NULL;
558 struct reloc_control *rc = fs_info->reloc_ctl;
559
560 spin_lock(&rc->reloc_root_tree.lock);
561 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
562 root->commit_root->start);
563 if (rb_node) {
564 node = rb_entry(rb_node, struct mapping_node, rb_node);
565 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
566 }
567 spin_unlock(&rc->reloc_root_tree.lock);
568
569 if (!node)
570 return 0;
571 BUG_ON((struct btrfs_root *)node->data != root);
572
573 spin_lock(&rc->reloc_root_tree.lock);
574 node->bytenr = root->node->start;
575 rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root, &node->simple_node);
576 spin_unlock(&rc->reloc_root_tree.lock);
577 if (rb_node)
578 btrfs_backref_panic(fs_info, node->bytenr, -EEXIST);
579 return 0;
580 }
581
create_reloc_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 objectid)582 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
583 struct btrfs_root *root, u64 objectid)
584 {
585 struct btrfs_fs_info *fs_info = root->fs_info;
586 struct btrfs_root *reloc_root;
587 struct extent_buffer *eb;
588 struct btrfs_root_item AUTO_KFREE(root_item);
589 struct btrfs_key root_key;
590 int ret = 0;
591
592 root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
593 if (!root_item)
594 return ERR_PTR(-ENOMEM);
595
596 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
597 root_key.type = BTRFS_ROOT_ITEM_KEY;
598 root_key.offset = objectid;
599
600 if (btrfs_root_id(root) == objectid) {
601 u64 commit_root_gen;
602
603 /*
604 * Relocation will wait for cleaner thread, and any half-dropped
605 * subvolume will be fully cleaned up at mount time.
606 * So here we shouldn't hit a subvolume with non-zero drop_progress.
607 *
608 * If this isn't the case, error out since it can make us attempt to
609 * drop references for extents that were already dropped before.
610 */
611 if (unlikely(btrfs_disk_key_objectid(&root->root_item.drop_progress))) {
612 struct btrfs_key cpu_key;
613
614 btrfs_disk_key_to_cpu(&cpu_key, &root->root_item.drop_progress);
615 btrfs_err(fs_info,
616 "cannot relocate partially dropped subvolume %llu, drop progress key " BTRFS_KEY_FMT,
617 objectid, BTRFS_KEY_FMT_VALUE(&cpu_key));
618 return ERR_PTR(-EUCLEAN);
619 }
620
621 /* called by btrfs_init_reloc_root */
622 ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
623 BTRFS_TREE_RELOC_OBJECTID);
624 if (ret)
625 return ERR_PTR(ret);
626
627 /*
628 * Set the last_snapshot field to the generation of the commit
629 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
630 * correctly (returns true) when the relocation root is created
631 * either inside the critical section of a transaction commit
632 * (through transaction.c:qgroup_account_snapshot()) and when
633 * it's created before the transaction commit is started.
634 */
635 commit_root_gen = btrfs_header_generation(root->commit_root);
636 btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
637 } else {
638 /*
639 * called by btrfs_reloc_post_snapshot_hook.
640 * the source tree is a reloc tree, all tree blocks
641 * modified after it was created have RELOC flag
642 * set in their headers. so it's OK to not update
643 * the 'last_snapshot'.
644 */
645 ret = btrfs_copy_root(trans, root, root->node, &eb,
646 BTRFS_TREE_RELOC_OBJECTID);
647 if (ret)
648 return ERR_PTR(ret);
649 }
650
651 /*
652 * We have changed references at this point, we must abort the
653 * transaction if anything fails (i.e. 'goto abort').
654 */
655
656 memcpy(root_item, &root->root_item, sizeof(*root_item));
657 btrfs_set_root_bytenr(root_item, eb->start);
658 btrfs_set_root_level(root_item, btrfs_header_level(eb));
659 btrfs_set_root_generation(root_item, trans->transid);
660
661 if (btrfs_root_id(root) == objectid) {
662 btrfs_set_root_refs(root_item, 0);
663 memset(&root_item->drop_progress, 0,
664 sizeof(struct btrfs_disk_key));
665 btrfs_set_root_drop_level(root_item, 0);
666 }
667
668 btrfs_tree_unlock(eb);
669 free_extent_buffer(eb);
670
671 ret = btrfs_insert_root(trans, fs_info->tree_root,
672 &root_key, root_item);
673 if (ret)
674 goto abort;
675
676 reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key);
677 if (IS_ERR(reloc_root)) {
678 ret = PTR_ERR(reloc_root);
679 goto abort;
680 }
681 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
682 btrfs_set_root_last_trans(reloc_root, trans->transid);
683 return reloc_root;
684
685 abort:
686 btrfs_abort_transaction(trans, ret);
687 return ERR_PTR(ret);
688 }
689
690 /*
691 * create reloc tree for a given fs tree. reloc tree is just a
692 * snapshot of the fs tree with special root objectid.
693 *
694 * The reloc_root comes out of here with two references, one for
695 * root->reloc_root, and another for being on the rc->reloc_roots list.
696 */
btrfs_init_reloc_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)697 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
698 struct btrfs_root *root)
699 {
700 struct btrfs_fs_info *fs_info = root->fs_info;
701 struct btrfs_root *reloc_root;
702 struct reloc_control *rc = fs_info->reloc_ctl;
703 struct btrfs_block_rsv *rsv;
704 int clear_rsv = 0;
705 int ret;
706
707 if (!rc)
708 return 0;
709
710 /*
711 * The subvolume has reloc tree but the swap is finished, no need to
712 * create/update the dead reloc tree
713 */
714 if (reloc_root_is_dead(root))
715 return 0;
716
717 /*
718 * This is subtle but important. We do not do
719 * record_root_in_transaction for reloc roots, instead we record their
720 * corresponding fs root, and then here we update the last trans for the
721 * reloc root. This means that we have to do this for the entire life
722 * of the reloc root, regardless of which stage of the relocation we are
723 * in.
724 */
725 if (root->reloc_root) {
726 reloc_root = root->reloc_root;
727 btrfs_set_root_last_trans(reloc_root, trans->transid);
728 return 0;
729 }
730
731 /*
732 * We are merging reloc roots, we do not need new reloc trees. Also
733 * reloc trees never need their own reloc tree.
734 */
735 if (!rc->create_reloc_tree || btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
736 return 0;
737
738 if (!trans->reloc_reserved) {
739 rsv = trans->block_rsv;
740 trans->block_rsv = rc->block_rsv;
741 clear_rsv = 1;
742 }
743 reloc_root = create_reloc_root(trans, root, btrfs_root_id(root));
744 if (clear_rsv)
745 trans->block_rsv = rsv;
746 if (IS_ERR(reloc_root))
747 return PTR_ERR(reloc_root);
748
749 ret = __add_reloc_root(reloc_root);
750 ASSERT(ret != -EEXIST);
751 if (ret) {
752 /* Pairs with create_reloc_root */
753 btrfs_put_root(reloc_root);
754 return ret;
755 }
756 root->reloc_root = btrfs_grab_root(reloc_root);
757 return 0;
758 }
759
760 /*
761 * update root item of reloc tree
762 */
btrfs_update_reloc_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)763 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
764 struct btrfs_root *root)
765 {
766 struct btrfs_fs_info *fs_info = root->fs_info;
767 struct btrfs_root *reloc_root;
768 struct btrfs_root_item *root_item;
769 int ret;
770
771 if (!have_reloc_root(root))
772 return 0;
773
774 reloc_root = root->reloc_root;
775 root_item = &reloc_root->root_item;
776
777 /*
778 * We are probably ok here, but __del_reloc_root() will drop its ref of
779 * the root. We have the ref for root->reloc_root, but just in case
780 * hold it while we update the reloc root.
781 */
782 btrfs_grab_root(reloc_root);
783
784 /* root->reloc_root will stay until current relocation finished */
785 if (fs_info->reloc_ctl && fs_info->reloc_ctl->merge_reloc_tree &&
786 btrfs_root_refs(root_item) == 0) {
787 set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
788 /*
789 * Mark the tree as dead before we change reloc_root so
790 * have_reloc_root will not touch it from now on.
791 */
792 smp_wmb();
793 __del_reloc_root(reloc_root);
794 }
795
796 if (reloc_root->commit_root != reloc_root->node) {
797 __update_reloc_root(reloc_root);
798 btrfs_set_root_node(root_item, reloc_root->node);
799 free_extent_buffer(reloc_root->commit_root);
800 reloc_root->commit_root = btrfs_root_node(reloc_root);
801 }
802
803 ret = btrfs_update_root(trans, fs_info->tree_root,
804 &reloc_root->root_key, root_item);
805 btrfs_put_root(reloc_root);
806 return ret;
807 }
808
809 /*
810 * get new location of data
811 */
get_new_location(struct inode * reloc_inode,u64 * new_bytenr,u64 bytenr,u64 num_bytes)812 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
813 u64 bytenr, u64 num_bytes)
814 {
815 struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
816 BTRFS_PATH_AUTO_FREE(path);
817 struct btrfs_file_extent_item *fi;
818 struct extent_buffer *leaf;
819 int ret;
820
821 path = btrfs_alloc_path();
822 if (!path)
823 return -ENOMEM;
824
825 bytenr -= BTRFS_I(reloc_inode)->reloc_block_group_start;
826 ret = btrfs_lookup_file_extent(NULL, root, path,
827 btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
828 if (ret < 0)
829 return ret;
830 if (ret > 0)
831 return -ENOENT;
832
833 leaf = path->nodes[0];
834 fi = btrfs_item_ptr(leaf, path->slots[0],
835 struct btrfs_file_extent_item);
836
837 BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
838 btrfs_file_extent_compression(leaf, fi) ||
839 btrfs_file_extent_encryption(leaf, fi) ||
840 btrfs_file_extent_other_encoding(leaf, fi));
841
842 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi))
843 return -EINVAL;
844
845 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
846 return 0;
847 }
848
849 /*
850 * update file extent items in the tree leaf to point to
851 * the new locations.
852 */
853 static noinline_for_stack
replace_file_extents(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_root * root,struct extent_buffer * leaf)854 int replace_file_extents(struct btrfs_trans_handle *trans,
855 struct reloc_control *rc,
856 struct btrfs_root *root,
857 struct extent_buffer *leaf)
858 {
859 struct btrfs_fs_info *fs_info = root->fs_info;
860 struct btrfs_key key;
861 struct btrfs_file_extent_item *fi;
862 struct btrfs_inode *inode = NULL;
863 u64 parent;
864 u64 bytenr;
865 u64 new_bytenr = 0;
866 u64 num_bytes;
867 u64 end;
868 u32 nritems;
869 u32 i;
870 int ret = 0;
871 int first = 1;
872
873 if (rc->stage != UPDATE_DATA_PTRS)
874 return 0;
875
876 /* reloc trees always use full backref */
877 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
878 parent = leaf->start;
879 else
880 parent = 0;
881
882 nritems = btrfs_header_nritems(leaf);
883 for (i = 0; i < nritems; i++) {
884 struct btrfs_ref ref = { 0 };
885
886 cond_resched();
887 btrfs_item_key_to_cpu(leaf, &key, i);
888 if (key.type != BTRFS_EXTENT_DATA_KEY)
889 continue;
890 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
891 if (btrfs_file_extent_type(leaf, fi) ==
892 BTRFS_FILE_EXTENT_INLINE)
893 continue;
894 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
895 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
896 if (bytenr == 0)
897 continue;
898 if (!in_range(bytenr, rc->block_group->start,
899 rc->block_group->length))
900 continue;
901
902 /*
903 * if we are modifying block in fs tree, wait for read_folio
904 * to complete and drop the extent cache
905 */
906 if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID) {
907 if (first) {
908 inode = btrfs_find_first_inode(root, key.objectid);
909 first = 0;
910 } else if (inode && btrfs_ino(inode) < key.objectid) {
911 btrfs_add_delayed_iput(inode);
912 inode = btrfs_find_first_inode(root, key.objectid);
913 }
914 if (inode && btrfs_ino(inode) == key.objectid) {
915 struct extent_state *cached_state = NULL;
916
917 end = key.offset +
918 btrfs_file_extent_num_bytes(leaf, fi);
919 WARN_ON(!IS_ALIGNED(key.offset,
920 fs_info->sectorsize));
921 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
922 end--;
923 /* Take mmap lock to serialize with reflinks. */
924 if (!down_read_trylock(&inode->i_mmap_lock))
925 continue;
926 ret = btrfs_try_lock_extent(&inode->io_tree, key.offset,
927 end, &cached_state);
928 if (!ret) {
929 up_read(&inode->i_mmap_lock);
930 continue;
931 }
932
933 btrfs_drop_extent_map_range(inode, key.offset, end, true);
934 btrfs_unlock_extent(&inode->io_tree, key.offset, end,
935 &cached_state);
936 up_read(&inode->i_mmap_lock);
937 }
938 }
939
940 ret = get_new_location(rc->data_inode, &new_bytenr,
941 bytenr, num_bytes);
942 if (ret) {
943 /*
944 * Don't have to abort since we've not changed anything
945 * in the file extent yet.
946 */
947 break;
948 }
949
950 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
951
952 key.offset -= btrfs_file_extent_offset(leaf, fi);
953 ref.action = BTRFS_ADD_DELAYED_REF;
954 ref.bytenr = new_bytenr;
955 ref.num_bytes = num_bytes;
956 ref.parent = parent;
957 ref.owning_root = btrfs_root_id(root);
958 ref.ref_root = btrfs_header_owner(leaf);
959 btrfs_init_data_ref(&ref, key.objectid, key.offset,
960 btrfs_root_id(root), false);
961 ret = btrfs_inc_extent_ref(trans, &ref);
962 if (unlikely(ret)) {
963 btrfs_abort_transaction(trans, ret);
964 break;
965 }
966
967 ref.action = BTRFS_DROP_DELAYED_REF;
968 ref.bytenr = bytenr;
969 ref.num_bytes = num_bytes;
970 ref.parent = parent;
971 ref.owning_root = btrfs_root_id(root);
972 ref.ref_root = btrfs_header_owner(leaf);
973 btrfs_init_data_ref(&ref, key.objectid, key.offset,
974 btrfs_root_id(root), false);
975 ret = btrfs_free_extent(trans, &ref);
976 if (unlikely(ret)) {
977 btrfs_abort_transaction(trans, ret);
978 break;
979 }
980 }
981 if (inode)
982 btrfs_add_delayed_iput(inode);
983 return ret;
984 }
985
memcmp_node_keys(const struct extent_buffer * eb,int slot,const struct btrfs_path * path,int level)986 static noinline_for_stack int memcmp_node_keys(const struct extent_buffer *eb,
987 int slot, const struct btrfs_path *path,
988 int level)
989 {
990 struct btrfs_disk_key key1;
991 struct btrfs_disk_key key2;
992 btrfs_node_key(eb, &key1, slot);
993 btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
994 return memcmp(&key1, &key2, sizeof(key1));
995 }
996
997 /*
998 * try to replace tree blocks in fs tree with the new blocks
999 * in reloc tree. tree blocks haven't been modified since the
1000 * reloc tree was create can be replaced.
1001 *
1002 * if a block was replaced, level of the block + 1 is returned.
1003 * if no block got replaced, 0 is returned. if there are other
1004 * errors, a negative error number is returned.
1005 */
1006 static noinline_for_stack
replace_path(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_root * dest,struct btrfs_root * src,struct btrfs_path * path,struct btrfs_key * next_key,int lowest_level,int max_level)1007 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1008 struct btrfs_root *dest, struct btrfs_root *src,
1009 struct btrfs_path *path, struct btrfs_key *next_key,
1010 int lowest_level, int max_level)
1011 {
1012 struct btrfs_fs_info *fs_info = dest->fs_info;
1013 struct extent_buffer *eb;
1014 struct extent_buffer *parent;
1015 struct btrfs_ref ref = { 0 };
1016 struct btrfs_key key;
1017 u64 old_bytenr;
1018 u64 new_bytenr;
1019 u64 old_ptr_gen;
1020 u64 new_ptr_gen;
1021 u64 last_snapshot;
1022 u32 blocksize;
1023 int cow = 0;
1024 int level;
1025 int ret;
1026 int slot;
1027
1028 ASSERT(btrfs_root_id(src) == BTRFS_TREE_RELOC_OBJECTID);
1029 ASSERT(btrfs_root_id(dest) != BTRFS_TREE_RELOC_OBJECTID);
1030
1031 last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1032 again:
1033 slot = path->slots[lowest_level];
1034 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1035
1036 eb = btrfs_lock_root_node(dest);
1037 level = btrfs_header_level(eb);
1038
1039 if (level < lowest_level) {
1040 btrfs_tree_unlock(eb);
1041 free_extent_buffer(eb);
1042 return 0;
1043 }
1044
1045 if (cow) {
1046 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb,
1047 BTRFS_NESTING_COW);
1048 if (ret) {
1049 btrfs_tree_unlock(eb);
1050 free_extent_buffer(eb);
1051 return ret;
1052 }
1053 }
1054
1055 if (next_key) {
1056 next_key->objectid = (u64)-1;
1057 next_key->type = (u8)-1;
1058 next_key->offset = (u64)-1;
1059 }
1060
1061 parent = eb;
1062 while (1) {
1063 level = btrfs_header_level(parent);
1064 ASSERT(level >= lowest_level);
1065
1066 ret = btrfs_bin_search(parent, 0, &key, &slot);
1067 if (ret < 0)
1068 break;
1069 if (ret && slot > 0)
1070 slot--;
1071
1072 if (next_key && slot + 1 < btrfs_header_nritems(parent))
1073 btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1074
1075 old_bytenr = btrfs_node_blockptr(parent, slot);
1076 blocksize = fs_info->nodesize;
1077 old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1078
1079 if (level <= max_level) {
1080 eb = path->nodes[level];
1081 new_bytenr = btrfs_node_blockptr(eb,
1082 path->slots[level]);
1083 new_ptr_gen = btrfs_node_ptr_generation(eb,
1084 path->slots[level]);
1085 } else {
1086 new_bytenr = 0;
1087 new_ptr_gen = 0;
1088 }
1089
1090 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1091 ret = level;
1092 break;
1093 }
1094
1095 if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1096 memcmp_node_keys(parent, slot, path, level)) {
1097 if (level <= lowest_level) {
1098 ret = 0;
1099 break;
1100 }
1101
1102 eb = btrfs_read_node_slot(parent, slot);
1103 if (IS_ERR(eb)) {
1104 ret = PTR_ERR(eb);
1105 break;
1106 }
1107 btrfs_tree_lock(eb);
1108 if (cow) {
1109 ret = btrfs_cow_block(trans, dest, eb, parent,
1110 slot, &eb,
1111 BTRFS_NESTING_COW);
1112 if (ret) {
1113 btrfs_tree_unlock(eb);
1114 free_extent_buffer(eb);
1115 break;
1116 }
1117 }
1118
1119 btrfs_tree_unlock(parent);
1120 free_extent_buffer(parent);
1121
1122 parent = eb;
1123 continue;
1124 }
1125
1126 if (!cow) {
1127 btrfs_tree_unlock(parent);
1128 free_extent_buffer(parent);
1129 cow = 1;
1130 goto again;
1131 }
1132
1133 btrfs_node_key_to_cpu(path->nodes[level], &key,
1134 path->slots[level]);
1135 btrfs_release_path(path);
1136
1137 path->lowest_level = level;
1138 set_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1139 ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1140 clear_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1141 path->lowest_level = 0;
1142 if (ret) {
1143 if (ret > 0)
1144 ret = -ENOENT;
1145 break;
1146 }
1147
1148 /*
1149 * Info qgroup to trace both subtrees.
1150 *
1151 * We must trace both trees.
1152 * 1) Tree reloc subtree
1153 * If not traced, we will leak data numbers
1154 * 2) Fs subtree
1155 * If not traced, we will double count old data
1156 *
1157 * We don't scan the subtree right now, but only record
1158 * the swapped tree blocks.
1159 * The real subtree rescan is delayed until we have new
1160 * CoW on the subtree root node before transaction commit.
1161 */
1162 ret = btrfs_qgroup_add_swapped_blocks(dest,
1163 rc->block_group, parent, slot,
1164 path->nodes[level], path->slots[level],
1165 last_snapshot);
1166 if (ret < 0)
1167 break;
1168 /*
1169 * swap blocks in fs tree and reloc tree.
1170 */
1171 btrfs_set_node_blockptr(parent, slot, new_bytenr);
1172 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1173
1174 btrfs_set_node_blockptr(path->nodes[level],
1175 path->slots[level], old_bytenr);
1176 btrfs_set_node_ptr_generation(path->nodes[level],
1177 path->slots[level], old_ptr_gen);
1178
1179 ref.action = BTRFS_ADD_DELAYED_REF;
1180 ref.bytenr = old_bytenr;
1181 ref.num_bytes = blocksize;
1182 ref.parent = path->nodes[level]->start;
1183 ref.owning_root = btrfs_root_id(src);
1184 ref.ref_root = btrfs_root_id(src);
1185 btrfs_init_tree_ref(&ref, level - 1, 0, true);
1186 ret = btrfs_inc_extent_ref(trans, &ref);
1187 if (unlikely(ret)) {
1188 btrfs_abort_transaction(trans, ret);
1189 break;
1190 }
1191
1192 ref.action = BTRFS_ADD_DELAYED_REF;
1193 ref.bytenr = new_bytenr;
1194 ref.num_bytes = blocksize;
1195 ref.parent = 0;
1196 ref.owning_root = btrfs_root_id(dest);
1197 ref.ref_root = btrfs_root_id(dest);
1198 btrfs_init_tree_ref(&ref, level - 1, 0, true);
1199 ret = btrfs_inc_extent_ref(trans, &ref);
1200 if (unlikely(ret)) {
1201 btrfs_abort_transaction(trans, ret);
1202 break;
1203 }
1204
1205 /* We don't know the real owning_root, use 0. */
1206 ref.action = BTRFS_DROP_DELAYED_REF;
1207 ref.bytenr = new_bytenr;
1208 ref.num_bytes = blocksize;
1209 ref.parent = path->nodes[level]->start;
1210 ref.owning_root = 0;
1211 ref.ref_root = btrfs_root_id(src);
1212 btrfs_init_tree_ref(&ref, level - 1, 0, true);
1213 ret = btrfs_free_extent(trans, &ref);
1214 if (unlikely(ret)) {
1215 btrfs_abort_transaction(trans, ret);
1216 break;
1217 }
1218
1219 /* We don't know the real owning_root, use 0. */
1220 ref.action = BTRFS_DROP_DELAYED_REF;
1221 ref.bytenr = old_bytenr;
1222 ref.num_bytes = blocksize;
1223 ref.parent = 0;
1224 ref.owning_root = 0;
1225 ref.ref_root = btrfs_root_id(dest);
1226 btrfs_init_tree_ref(&ref, level - 1, 0, true);
1227 ret = btrfs_free_extent(trans, &ref);
1228 if (unlikely(ret)) {
1229 btrfs_abort_transaction(trans, ret);
1230 break;
1231 }
1232
1233 btrfs_unlock_up_safe(path, 0);
1234
1235 ret = level;
1236 break;
1237 }
1238 btrfs_tree_unlock(parent);
1239 free_extent_buffer(parent);
1240 return ret;
1241 }
1242
1243 /*
1244 * helper to find next relocated block in reloc tree
1245 */
1246 static noinline_for_stack
walk_up_reloc_tree(struct btrfs_root * root,struct btrfs_path * path,int * level)1247 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1248 int *level)
1249 {
1250 struct extent_buffer *eb;
1251 int i;
1252 u64 last_snapshot;
1253 u32 nritems;
1254
1255 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1256
1257 for (i = 0; i < *level; i++) {
1258 free_extent_buffer(path->nodes[i]);
1259 path->nodes[i] = NULL;
1260 }
1261
1262 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1263 eb = path->nodes[i];
1264 nritems = btrfs_header_nritems(eb);
1265 while (path->slots[i] + 1 < nritems) {
1266 path->slots[i]++;
1267 if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1268 last_snapshot)
1269 continue;
1270
1271 *level = i;
1272 return 0;
1273 }
1274 free_extent_buffer(path->nodes[i]);
1275 path->nodes[i] = NULL;
1276 }
1277 return 1;
1278 }
1279
1280 /*
1281 * walk down reloc tree to find relocated block of lowest level
1282 */
1283 static noinline_for_stack
walk_down_reloc_tree(struct btrfs_root * root,struct btrfs_path * path,int * level)1284 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1285 int *level)
1286 {
1287 struct extent_buffer *eb = NULL;
1288 int i;
1289 u64 ptr_gen = 0;
1290 u64 last_snapshot;
1291 u32 nritems;
1292
1293 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1294
1295 for (i = *level; i > 0; i--) {
1296 eb = path->nodes[i];
1297 nritems = btrfs_header_nritems(eb);
1298 while (path->slots[i] < nritems) {
1299 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1300 if (ptr_gen > last_snapshot)
1301 break;
1302 path->slots[i]++;
1303 }
1304 if (path->slots[i] >= nritems) {
1305 if (i == *level)
1306 break;
1307 *level = i + 1;
1308 return 0;
1309 }
1310 if (i == 1) {
1311 *level = i;
1312 return 0;
1313 }
1314
1315 eb = btrfs_read_node_slot(eb, path->slots[i]);
1316 if (IS_ERR(eb))
1317 return PTR_ERR(eb);
1318 BUG_ON(btrfs_header_level(eb) != i - 1);
1319 path->nodes[i - 1] = eb;
1320 path->slots[i - 1] = 0;
1321 }
1322 return 1;
1323 }
1324
1325 /*
1326 * invalidate extent cache for file extents whose key in range of
1327 * [min_key, max_key)
1328 */
invalidate_extent_cache(struct btrfs_root * root,const struct btrfs_key * min_key,const struct btrfs_key * max_key)1329 static int invalidate_extent_cache(struct btrfs_root *root,
1330 const struct btrfs_key *min_key,
1331 const struct btrfs_key *max_key)
1332 {
1333 struct btrfs_fs_info *fs_info = root->fs_info;
1334 struct btrfs_inode *inode = NULL;
1335 u64 objectid;
1336 u64 start, end;
1337 u64 ino;
1338
1339 objectid = min_key->objectid;
1340 while (1) {
1341 struct extent_state *cached_state = NULL;
1342
1343 cond_resched();
1344 if (inode)
1345 iput(&inode->vfs_inode);
1346
1347 if (objectid > max_key->objectid)
1348 break;
1349
1350 inode = btrfs_find_first_inode(root, objectid);
1351 if (!inode)
1352 break;
1353 ino = btrfs_ino(inode);
1354
1355 if (ino > max_key->objectid) {
1356 iput(&inode->vfs_inode);
1357 break;
1358 }
1359
1360 objectid = ino + 1;
1361 if (!S_ISREG(inode->vfs_inode.i_mode))
1362 continue;
1363
1364 if (unlikely(min_key->objectid == ino)) {
1365 if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1366 continue;
1367 if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1368 start = 0;
1369 else {
1370 start = min_key->offset;
1371 WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
1372 }
1373 } else {
1374 start = 0;
1375 }
1376
1377 if (unlikely(max_key->objectid == ino)) {
1378 if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1379 continue;
1380 if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1381 end = (u64)-1;
1382 } else {
1383 if (max_key->offset == 0)
1384 continue;
1385 end = max_key->offset;
1386 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1387 end--;
1388 }
1389 } else {
1390 end = (u64)-1;
1391 }
1392
1393 /* the lock_extent waits for read_folio to complete */
1394 btrfs_lock_extent(&inode->io_tree, start, end, &cached_state);
1395 btrfs_drop_extent_map_range(inode, start, end, true);
1396 btrfs_unlock_extent(&inode->io_tree, start, end, &cached_state);
1397 }
1398 return 0;
1399 }
1400
find_next_key(struct btrfs_path * path,int level,struct btrfs_key * key)1401 static int find_next_key(struct btrfs_path *path, int level,
1402 struct btrfs_key *key)
1403
1404 {
1405 while (level < BTRFS_MAX_LEVEL) {
1406 if (!path->nodes[level])
1407 break;
1408 if (path->slots[level] + 1 <
1409 btrfs_header_nritems(path->nodes[level])) {
1410 btrfs_node_key_to_cpu(path->nodes[level], key,
1411 path->slots[level] + 1);
1412 return 0;
1413 }
1414 level++;
1415 }
1416 return 1;
1417 }
1418
1419 /*
1420 * Insert current subvolume into reloc_control::dirty_subvol_roots
1421 */
insert_dirty_subvol(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_root * root)1422 static int insert_dirty_subvol(struct btrfs_trans_handle *trans,
1423 struct reloc_control *rc,
1424 struct btrfs_root *root)
1425 {
1426 struct btrfs_root *reloc_root = root->reloc_root;
1427 struct btrfs_root_item *reloc_root_item;
1428 int ret;
1429
1430 /* @root must be a subvolume tree root with a valid reloc tree */
1431 ASSERT(btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID);
1432 ASSERT(reloc_root);
1433
1434 reloc_root_item = &reloc_root->root_item;
1435 memset(&reloc_root_item->drop_progress, 0,
1436 sizeof(reloc_root_item->drop_progress));
1437 btrfs_set_root_drop_level(reloc_root_item, 0);
1438 btrfs_set_root_refs(reloc_root_item, 0);
1439 ret = btrfs_update_reloc_root(trans, root);
1440 if (ret)
1441 return ret;
1442
1443 if (list_empty(&root->reloc_dirty_list)) {
1444 btrfs_grab_root(root);
1445 list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
1446 }
1447
1448 return 0;
1449 }
1450
clean_dirty_subvols(struct reloc_control * rc)1451 static int clean_dirty_subvols(struct reloc_control *rc)
1452 {
1453 struct btrfs_root *root;
1454 struct btrfs_root *next;
1455 int ret = 0;
1456 int ret2;
1457
1458 list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
1459 reloc_dirty_list) {
1460 if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID) {
1461 /* Merged subvolume, cleanup its reloc root */
1462 struct btrfs_root *reloc_root = root->reloc_root;
1463
1464 list_del_init(&root->reloc_dirty_list);
1465 root->reloc_root = NULL;
1466 /*
1467 * Need barrier to ensure clear_bit() only happens after
1468 * root->reloc_root = NULL. Pairs with have_reloc_root.
1469 */
1470 smp_wmb();
1471 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1472 if (reloc_root) {
1473 /*
1474 * btrfs_drop_snapshot drops our ref we hold for
1475 * ->reloc_root. If it fails however we must
1476 * drop the ref ourselves.
1477 */
1478 ret2 = btrfs_drop_snapshot(reloc_root, false, true);
1479 if (ret2 < 0) {
1480 btrfs_put_root(reloc_root);
1481 if (!ret)
1482 ret = ret2;
1483 }
1484 }
1485 btrfs_put_root(root);
1486 } else {
1487 /* Orphan reloc tree, just clean it up */
1488 ret2 = btrfs_drop_snapshot(root, false, true);
1489 if (ret2 < 0) {
1490 btrfs_put_root(root);
1491 if (!ret)
1492 ret = ret2;
1493 }
1494 }
1495 }
1496 return ret;
1497 }
1498
1499 /*
1500 * merge the relocated tree blocks in reloc tree with corresponding
1501 * fs tree.
1502 */
merge_reloc_root(struct reloc_control * rc,struct btrfs_root * root)1503 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1504 struct btrfs_root *root)
1505 {
1506 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1507 struct btrfs_key key;
1508 struct btrfs_key next_key;
1509 struct btrfs_trans_handle *trans = NULL;
1510 struct btrfs_root *reloc_root;
1511 struct btrfs_root_item *root_item;
1512 struct btrfs_path *path;
1513 struct extent_buffer *leaf;
1514 int reserve_level;
1515 int level;
1516 int max_level;
1517 int replaced = 0;
1518 int ret = 0;
1519 u32 min_reserved;
1520
1521 path = btrfs_alloc_path();
1522 if (!path)
1523 return -ENOMEM;
1524 path->reada = READA_FORWARD;
1525
1526 reloc_root = root->reloc_root;
1527 root_item = &reloc_root->root_item;
1528
1529 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
1530 level = btrfs_root_level(root_item);
1531 refcount_inc(&reloc_root->node->refs);
1532 path->nodes[level] = reloc_root->node;
1533 path->slots[level] = 0;
1534 } else {
1535 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
1536
1537 level = btrfs_root_drop_level(root_item);
1538 BUG_ON(level == 0);
1539 path->lowest_level = level;
1540 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
1541 path->lowest_level = 0;
1542 if (ret < 0) {
1543 btrfs_free_path(path);
1544 return ret;
1545 }
1546
1547 btrfs_node_key_to_cpu(path->nodes[level], &next_key,
1548 path->slots[level]);
1549 WARN_ON(memcmp(&key, &next_key, sizeof(key)));
1550
1551 btrfs_unlock_up_safe(path, 0);
1552 }
1553
1554 /*
1555 * In merge_reloc_root(), we modify the upper level pointer to swap the
1556 * tree blocks between reloc tree and subvolume tree. Thus for tree
1557 * block COW, we COW at most from level 1 to root level for each tree.
1558 *
1559 * Thus the needed metadata size is at most root_level * nodesize,
1560 * and * 2 since we have two trees to COW.
1561 */
1562 reserve_level = max_t(int, 1, btrfs_root_level(root_item));
1563 min_reserved = fs_info->nodesize * reserve_level * 2;
1564 memset(&next_key, 0, sizeof(next_key));
1565
1566 while (1) {
1567 ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
1568 min_reserved,
1569 BTRFS_RESERVE_FLUSH_LIMIT);
1570 if (ret)
1571 goto out;
1572 trans = btrfs_start_transaction(root, 0);
1573 if (IS_ERR(trans)) {
1574 ret = PTR_ERR(trans);
1575 trans = NULL;
1576 goto out;
1577 }
1578
1579 /*
1580 * At this point we no longer have a reloc_control, so we can't
1581 * depend on btrfs_init_reloc_root to update our last_trans.
1582 *
1583 * But that's ok, we started the trans handle on our
1584 * corresponding fs_root, which means it's been added to the
1585 * dirty list. At commit time we'll still call
1586 * btrfs_update_reloc_root() and update our root item
1587 * appropriately.
1588 */
1589 btrfs_set_root_last_trans(reloc_root, trans->transid);
1590 trans->block_rsv = rc->block_rsv;
1591
1592 replaced = 0;
1593 max_level = level;
1594
1595 ret = walk_down_reloc_tree(reloc_root, path, &level);
1596 if (ret < 0)
1597 goto out;
1598 if (ret > 0)
1599 break;
1600
1601 if (!find_next_key(path, level, &key) &&
1602 btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
1603 ret = 0;
1604 } else {
1605 ret = replace_path(trans, rc, root, reloc_root, path,
1606 &next_key, level, max_level);
1607 }
1608 if (ret < 0)
1609 goto out;
1610 if (ret > 0) {
1611 level = ret;
1612 btrfs_node_key_to_cpu(path->nodes[level], &key,
1613 path->slots[level]);
1614 replaced = 1;
1615 }
1616
1617 ret = walk_up_reloc_tree(reloc_root, path, &level);
1618 if (ret > 0)
1619 break;
1620
1621 BUG_ON(level == 0);
1622 /*
1623 * save the merging progress in the drop_progress.
1624 * this is OK since root refs == 1 in this case.
1625 */
1626 btrfs_node_key(path->nodes[level], &root_item->drop_progress,
1627 path->slots[level]);
1628 btrfs_set_root_drop_level(root_item, level);
1629
1630 btrfs_end_transaction_throttle(trans);
1631 trans = NULL;
1632
1633 btrfs_btree_balance_dirty(fs_info);
1634
1635 if (replaced && rc->stage == UPDATE_DATA_PTRS)
1636 invalidate_extent_cache(root, &key, &next_key);
1637 }
1638
1639 /*
1640 * handle the case only one block in the fs tree need to be
1641 * relocated and the block is tree root.
1642 */
1643 leaf = btrfs_lock_root_node(root);
1644 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf,
1645 BTRFS_NESTING_COW);
1646 btrfs_tree_unlock(leaf);
1647 free_extent_buffer(leaf);
1648 out:
1649 btrfs_free_path(path);
1650
1651 if (ret == 0) {
1652 ret = insert_dirty_subvol(trans, rc, root);
1653 if (ret)
1654 btrfs_abort_transaction(trans, ret);
1655 }
1656
1657 if (trans)
1658 btrfs_end_transaction_throttle(trans);
1659
1660 btrfs_btree_balance_dirty(fs_info);
1661
1662 if (replaced && rc->stage == UPDATE_DATA_PTRS)
1663 invalidate_extent_cache(root, &key, &next_key);
1664
1665 return ret;
1666 }
1667
1668 static noinline_for_stack
prepare_to_merge(struct reloc_control * rc,int err)1669 int prepare_to_merge(struct reloc_control *rc, int err)
1670 {
1671 struct btrfs_root *root = rc->extent_root;
1672 struct btrfs_fs_info *fs_info = root->fs_info;
1673 struct btrfs_root *reloc_root;
1674 struct btrfs_trans_handle *trans;
1675 LIST_HEAD(reloc_roots);
1676 u64 num_bytes = 0;
1677 int ret;
1678
1679 mutex_lock(&fs_info->reloc_mutex);
1680 rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
1681 rc->merging_rsv_size += rc->nodes_relocated * 2;
1682 mutex_unlock(&fs_info->reloc_mutex);
1683
1684 again:
1685 if (!err) {
1686 num_bytes = rc->merging_rsv_size;
1687 ret = btrfs_block_rsv_add(fs_info, rc->block_rsv, num_bytes,
1688 BTRFS_RESERVE_FLUSH_ALL);
1689 if (ret)
1690 err = ret;
1691 }
1692
1693 trans = btrfs_join_transaction(rc->extent_root);
1694 if (IS_ERR(trans)) {
1695 if (!err)
1696 btrfs_block_rsv_release(fs_info, rc->block_rsv,
1697 num_bytes, NULL);
1698 return PTR_ERR(trans);
1699 }
1700
1701 if (!err) {
1702 if (num_bytes != rc->merging_rsv_size) {
1703 btrfs_end_transaction(trans);
1704 btrfs_block_rsv_release(fs_info, rc->block_rsv,
1705 num_bytes, NULL);
1706 goto again;
1707 }
1708 }
1709
1710 rc->merge_reloc_tree = true;
1711
1712 while (!list_empty(&rc->reloc_roots)) {
1713 reloc_root = list_first_entry(&rc->reloc_roots,
1714 struct btrfs_root, root_list);
1715 list_del_init(&reloc_root->root_list);
1716
1717 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1718 false);
1719 if (IS_ERR(root)) {
1720 /*
1721 * Even if we have an error we need this reloc root
1722 * back on our list so we can clean up properly.
1723 */
1724 list_add(&reloc_root->root_list, &reloc_roots);
1725 btrfs_abort_transaction(trans, (int)PTR_ERR(root));
1726 if (!err)
1727 err = PTR_ERR(root);
1728 break;
1729 }
1730
1731 if (unlikely(root->reloc_root != reloc_root)) {
1732 if (root->reloc_root) {
1733 btrfs_err(fs_info,
1734 "reloc tree mismatch, root %lld has reloc root key (%lld %u %llu) gen %llu, expect reloc root key (%lld %u %llu) gen %llu",
1735 btrfs_root_id(root),
1736 btrfs_root_id(root->reloc_root),
1737 root->reloc_root->root_key.type,
1738 root->reloc_root->root_key.offset,
1739 btrfs_root_generation(
1740 &root->reloc_root->root_item),
1741 btrfs_root_id(reloc_root),
1742 reloc_root->root_key.type,
1743 reloc_root->root_key.offset,
1744 btrfs_root_generation(
1745 &reloc_root->root_item));
1746 } else {
1747 btrfs_err(fs_info,
1748 "reloc tree mismatch, root %lld has no reloc root, expect reloc root key (%lld %u %llu) gen %llu",
1749 btrfs_root_id(root),
1750 btrfs_root_id(reloc_root),
1751 reloc_root->root_key.type,
1752 reloc_root->root_key.offset,
1753 btrfs_root_generation(
1754 &reloc_root->root_item));
1755 }
1756 list_add(&reloc_root->root_list, &reloc_roots);
1757 btrfs_put_root(root);
1758 btrfs_abort_transaction(trans, -EUCLEAN);
1759 if (!err)
1760 err = -EUCLEAN;
1761 break;
1762 }
1763
1764 /*
1765 * set reference count to 1, so btrfs_recover_relocation
1766 * knows it should resumes merging
1767 */
1768 if (!err)
1769 btrfs_set_root_refs(&reloc_root->root_item, 1);
1770 ret = btrfs_update_reloc_root(trans, root);
1771
1772 /*
1773 * Even if we have an error we need this reloc root back on our
1774 * list so we can clean up properly.
1775 */
1776 list_add(&reloc_root->root_list, &reloc_roots);
1777 btrfs_put_root(root);
1778
1779 if (unlikely(ret)) {
1780 btrfs_abort_transaction(trans, ret);
1781 if (!err)
1782 err = ret;
1783 break;
1784 }
1785 }
1786
1787 list_splice(&reloc_roots, &rc->reloc_roots);
1788
1789 if (!err)
1790 err = btrfs_commit_transaction(trans);
1791 else
1792 btrfs_end_transaction(trans);
1793 return err;
1794 }
1795
1796 static noinline_for_stack
free_reloc_roots(struct list_head * list)1797 void free_reloc_roots(struct list_head *list)
1798 {
1799 struct btrfs_root *reloc_root, *tmp;
1800
1801 list_for_each_entry_safe(reloc_root, tmp, list, root_list)
1802 __del_reloc_root(reloc_root);
1803 }
1804
1805 static noinline_for_stack
merge_reloc_roots(struct reloc_control * rc)1806 void merge_reloc_roots(struct reloc_control *rc)
1807 {
1808 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1809 struct btrfs_root *root;
1810 struct btrfs_root *reloc_root;
1811 LIST_HEAD(reloc_roots);
1812 int found = 0;
1813 int ret = 0;
1814 again:
1815 root = rc->extent_root;
1816
1817 /*
1818 * this serializes us with btrfs_record_root_in_transaction,
1819 * we have to make sure nobody is in the middle of
1820 * adding their roots to the list while we are
1821 * doing this splice
1822 */
1823 mutex_lock(&fs_info->reloc_mutex);
1824 list_splice_init(&rc->reloc_roots, &reloc_roots);
1825 mutex_unlock(&fs_info->reloc_mutex);
1826
1827 while (!list_empty(&reloc_roots)) {
1828 found = 1;
1829 reloc_root = list_first_entry(&reloc_roots, struct btrfs_root, root_list);
1830
1831 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1832 false);
1833 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
1834 if (WARN_ON(IS_ERR(root))) {
1835 /*
1836 * For recovery we read the fs roots on mount,
1837 * and if we didn't find the root then we marked
1838 * the reloc root as a garbage root. For normal
1839 * relocation obviously the root should exist in
1840 * memory. However there's no reason we can't
1841 * handle the error properly here just in case.
1842 */
1843 ret = PTR_ERR(root);
1844 goto out;
1845 }
1846 if (WARN_ON(root->reloc_root != reloc_root)) {
1847 /*
1848 * This can happen if on-disk metadata has some
1849 * corruption, e.g. bad reloc tree key offset.
1850 */
1851 ret = -EINVAL;
1852 goto out;
1853 }
1854 ret = merge_reloc_root(rc, root);
1855 btrfs_put_root(root);
1856 if (ret) {
1857 if (list_empty(&reloc_root->root_list))
1858 list_add_tail(&reloc_root->root_list,
1859 &reloc_roots);
1860 goto out;
1861 }
1862 } else {
1863 if (!IS_ERR(root)) {
1864 if (root->reloc_root == reloc_root) {
1865 root->reloc_root = NULL;
1866 btrfs_put_root(reloc_root);
1867 }
1868 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE,
1869 &root->state);
1870 btrfs_put_root(root);
1871 }
1872
1873 list_del_init(&reloc_root->root_list);
1874 /* Don't forget to queue this reloc root for cleanup */
1875 list_add_tail(&reloc_root->reloc_dirty_list,
1876 &rc->dirty_subvol_roots);
1877 }
1878 }
1879
1880 if (found) {
1881 found = 0;
1882 goto again;
1883 }
1884 out:
1885 if (ret) {
1886 btrfs_handle_fs_error(fs_info, ret, NULL);
1887 free_reloc_roots(&reloc_roots);
1888
1889 /* new reloc root may be added */
1890 mutex_lock(&fs_info->reloc_mutex);
1891 list_splice_init(&rc->reloc_roots, &reloc_roots);
1892 mutex_unlock(&fs_info->reloc_mutex);
1893 free_reloc_roots(&reloc_roots);
1894 }
1895
1896 /*
1897 * We used to have
1898 *
1899 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
1900 *
1901 * here, but it's wrong. If we fail to start the transaction in
1902 * prepare_to_merge() we will have only 0 ref reloc roots, none of which
1903 * have actually been removed from the reloc_root_tree rb tree. This is
1904 * fine because we're bailing here, and we hold a reference on the root
1905 * for the list that holds it, so these roots will be cleaned up when we
1906 * do the reloc_dirty_list afterwards. Meanwhile the root->reloc_root
1907 * will be cleaned up on unmount.
1908 *
1909 * The remaining nodes will be cleaned up by free_reloc_control.
1910 */
1911 }
1912
free_block_list(struct rb_root * blocks)1913 static void free_block_list(struct rb_root *blocks)
1914 {
1915 struct tree_block *block;
1916 struct rb_node *rb_node;
1917 while ((rb_node = rb_first(blocks))) {
1918 block = rb_entry(rb_node, struct tree_block, rb_node);
1919 rb_erase(rb_node, blocks);
1920 kfree(block);
1921 }
1922 }
1923
record_reloc_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * reloc_root)1924 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
1925 struct btrfs_root *reloc_root)
1926 {
1927 struct btrfs_fs_info *fs_info = reloc_root->fs_info;
1928 struct btrfs_root *root;
1929 int ret;
1930
1931 if (btrfs_get_root_last_trans(reloc_root) == trans->transid)
1932 return 0;
1933
1934 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false);
1935
1936 /*
1937 * This should succeed, since we can't have a reloc root without having
1938 * already looked up the actual root and created the reloc root for this
1939 * root.
1940 *
1941 * However if there's some sort of corruption where we have a ref to a
1942 * reloc root without a corresponding root this could return ENOENT.
1943 */
1944 if (IS_ERR(root)) {
1945 DEBUG_WARN("error %ld reading root for reloc root", PTR_ERR(root));
1946 return PTR_ERR(root);
1947 }
1948 if (unlikely(root->reloc_root != reloc_root)) {
1949 DEBUG_WARN("unexpected reloc root found");
1950 btrfs_err(fs_info,
1951 "root %llu has two reloc roots associated with it",
1952 reloc_root->root_key.offset);
1953 btrfs_put_root(root);
1954 return -EUCLEAN;
1955 }
1956 ret = btrfs_record_root_in_trans(trans, root);
1957 btrfs_put_root(root);
1958
1959 return ret;
1960 }
1961
1962 static noinline_for_stack
select_reloc_root(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_backref_node * node,struct btrfs_backref_edge * edges[])1963 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
1964 struct reloc_control *rc,
1965 struct btrfs_backref_node *node,
1966 struct btrfs_backref_edge *edges[])
1967 {
1968 struct btrfs_backref_node *next;
1969 struct btrfs_root *root;
1970 int index = 0;
1971 int ret;
1972
1973 next = walk_up_backref(node, edges, &index);
1974 root = next->root;
1975
1976 /*
1977 * If there is no root, then our references for this block are
1978 * incomplete, as we should be able to walk all the way up to a block
1979 * that is owned by a root.
1980 *
1981 * This path is only for SHAREABLE roots, so if we come upon a
1982 * non-SHAREABLE root then we have backrefs that resolve improperly.
1983 *
1984 * Both of these cases indicate file system corruption, or a bug in the
1985 * backref walking code.
1986 */
1987 if (unlikely(!root)) {
1988 btrfs_err(trans->fs_info,
1989 "bytenr %llu doesn't have a backref path ending in a root",
1990 node->bytenr);
1991 return ERR_PTR(-EUCLEAN);
1992 }
1993 if (unlikely(!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))) {
1994 btrfs_err(trans->fs_info,
1995 "bytenr %llu has multiple refs with one ending in a non-shareable root",
1996 node->bytenr);
1997 return ERR_PTR(-EUCLEAN);
1998 }
1999
2000 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) {
2001 ret = record_reloc_root_in_trans(trans, root);
2002 if (ret)
2003 return ERR_PTR(ret);
2004 goto found;
2005 }
2006
2007 ret = btrfs_record_root_in_trans(trans, root);
2008 if (ret)
2009 return ERR_PTR(ret);
2010 root = root->reloc_root;
2011
2012 /*
2013 * We could have raced with another thread which failed, so
2014 * root->reloc_root may not be set, return ENOENT in this case.
2015 */
2016 if (!root)
2017 return ERR_PTR(-ENOENT);
2018
2019 if (unlikely(next->new_bytenr)) {
2020 /*
2021 * We just created the reloc root, so we shouldn't have
2022 * ->new_bytenr set yet. If it is then we have multiple roots
2023 * pointing at the same bytenr which indicates corruption, or
2024 * we've made a mistake in the backref walking code.
2025 */
2026 ASSERT(next->new_bytenr == 0);
2027 btrfs_err(trans->fs_info,
2028 "bytenr %llu possibly has multiple roots pointing at the same bytenr %llu",
2029 node->bytenr, next->bytenr);
2030 return ERR_PTR(-EUCLEAN);
2031 }
2032
2033 next->new_bytenr = root->node->start;
2034 btrfs_put_root(next->root);
2035 next->root = btrfs_grab_root(root);
2036 ASSERT(next->root);
2037 mark_block_processed(rc, next);
2038 found:
2039 next = node;
2040 /* setup backref node path for btrfs_reloc_cow_block */
2041 while (1) {
2042 rc->backref_cache.path[next->level] = next;
2043 if (--index < 0)
2044 break;
2045 next = edges[index]->node[UPPER];
2046 }
2047 return root;
2048 }
2049
2050 /*
2051 * Select a tree root for relocation.
2052 *
2053 * Return NULL if the block is not shareable. We should use do_relocation() in
2054 * this case.
2055 *
2056 * Return a tree root pointer if the block is shareable.
2057 * Return -ENOENT if the block is root of reloc tree.
2058 */
2059 static noinline_for_stack
select_one_root(struct btrfs_backref_node * node)2060 struct btrfs_root *select_one_root(struct btrfs_backref_node *node)
2061 {
2062 struct btrfs_backref_node *next;
2063 struct btrfs_root *root;
2064 struct btrfs_root *fs_root = NULL;
2065 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2066 int index = 0;
2067
2068 next = node;
2069 while (1) {
2070 cond_resched();
2071 next = walk_up_backref(next, edges, &index);
2072 root = next->root;
2073
2074 /*
2075 * This can occur if we have incomplete extent refs leading all
2076 * the way up a particular path, in this case return -EUCLEAN.
2077 */
2078 if (unlikely(!root))
2079 return ERR_PTR(-EUCLEAN);
2080
2081 /* No other choice for non-shareable tree */
2082 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2083 return root;
2084
2085 if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID)
2086 fs_root = root;
2087
2088 if (next != node)
2089 return NULL;
2090
2091 next = walk_down_backref(edges, &index);
2092 if (!next || next->level <= node->level)
2093 break;
2094 }
2095
2096 if (!fs_root)
2097 return ERR_PTR(-ENOENT);
2098 return fs_root;
2099 }
2100
calcu_metadata_size(struct reloc_control * rc,struct btrfs_backref_node * node)2101 static noinline_for_stack u64 calcu_metadata_size(struct reloc_control *rc,
2102 struct btrfs_backref_node *node)
2103 {
2104 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2105 struct btrfs_backref_node *next = node;
2106 struct btrfs_backref_edge *edge;
2107 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2108 u64 num_bytes = 0;
2109 int index = 0;
2110
2111 BUG_ON(node->processed);
2112
2113 while (next) {
2114 cond_resched();
2115 while (1) {
2116 if (next->processed)
2117 break;
2118
2119 num_bytes += fs_info->nodesize;
2120
2121 if (list_empty(&next->upper))
2122 break;
2123
2124 edge = list_first_entry(&next->upper, struct btrfs_backref_edge,
2125 list[LOWER]);
2126 edges[index++] = edge;
2127 next = edge->node[UPPER];
2128 }
2129 next = walk_down_backref(edges, &index);
2130 }
2131 return num_bytes;
2132 }
2133
refill_metadata_space(struct btrfs_trans_handle * trans,struct reloc_control * rc,u64 num_bytes)2134 static int refill_metadata_space(struct btrfs_trans_handle *trans,
2135 struct reloc_control *rc, u64 num_bytes)
2136 {
2137 struct btrfs_fs_info *fs_info = trans->fs_info;
2138 int ret;
2139
2140 trans->block_rsv = rc->block_rsv;
2141 rc->reserved_bytes += num_bytes;
2142
2143 /*
2144 * We are under a transaction here so we can only do limited flushing.
2145 * If we get an enospc just kick back -EAGAIN so we know to drop the
2146 * transaction and try to refill when we can flush all the things.
2147 */
2148 ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, num_bytes,
2149 BTRFS_RESERVE_FLUSH_LIMIT);
2150 if (ret) {
2151 u64 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2152
2153 while (tmp <= rc->reserved_bytes)
2154 tmp <<= 1;
2155 /*
2156 * only one thread can access block_rsv at this point,
2157 * so we don't need hold lock to protect block_rsv.
2158 * we expand more reservation size here to allow enough
2159 * space for relocation and we will return earlier in
2160 * enospc case.
2161 */
2162 rc->block_rsv->size = tmp + fs_info->nodesize *
2163 RELOCATION_RESERVED_NODES;
2164 return -EAGAIN;
2165 }
2166
2167 return 0;
2168 }
2169
reserve_metadata_space(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_backref_node * node)2170 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2171 struct reloc_control *rc,
2172 struct btrfs_backref_node *node)
2173 {
2174 u64 num_bytes;
2175
2176 num_bytes = calcu_metadata_size(rc, node) * 2;
2177 return refill_metadata_space(trans, rc, num_bytes);
2178 }
2179
2180 /*
2181 * relocate a block tree, and then update pointers in upper level
2182 * blocks that reference the block to point to the new location.
2183 *
2184 * if called by link_to_upper, the block has already been relocated.
2185 * in that case this function just updates pointers.
2186 */
do_relocation(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_backref_node * node,struct btrfs_key * key,struct btrfs_path * path,int lowest)2187 static int do_relocation(struct btrfs_trans_handle *trans,
2188 struct reloc_control *rc,
2189 struct btrfs_backref_node *node,
2190 struct btrfs_key *key,
2191 struct btrfs_path *path, int lowest)
2192 {
2193 struct btrfs_backref_node *upper;
2194 struct btrfs_backref_edge *edge;
2195 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2196 struct btrfs_root *root;
2197 struct extent_buffer *eb;
2198 u32 blocksize;
2199 u64 bytenr;
2200 int slot;
2201 int ret = 0;
2202
2203 /*
2204 * If we are lowest then this is the first time we're processing this
2205 * block, and thus shouldn't have an eb associated with it yet.
2206 */
2207 ASSERT(!lowest || !node->eb);
2208
2209 path->lowest_level = node->level + 1;
2210 rc->backref_cache.path[node->level] = node;
2211 list_for_each_entry(edge, &node->upper, list[LOWER]) {
2212 cond_resched();
2213
2214 upper = edge->node[UPPER];
2215 root = select_reloc_root(trans, rc, upper, edges);
2216 if (IS_ERR(root)) {
2217 ret = PTR_ERR(root);
2218 goto next;
2219 }
2220
2221 if (upper->eb && !upper->locked) {
2222 if (!lowest) {
2223 ret = btrfs_bin_search(upper->eb, 0, key, &slot);
2224 if (ret < 0)
2225 goto next;
2226 BUG_ON(ret);
2227 bytenr = btrfs_node_blockptr(upper->eb, slot);
2228 if (node->eb->start == bytenr)
2229 goto next;
2230 }
2231 btrfs_backref_drop_node_buffer(upper);
2232 }
2233
2234 if (!upper->eb) {
2235 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2236 if (ret) {
2237 if (ret > 0)
2238 ret = -ENOENT;
2239
2240 btrfs_release_path(path);
2241 break;
2242 }
2243
2244 if (!upper->eb) {
2245 upper->eb = path->nodes[upper->level];
2246 path->nodes[upper->level] = NULL;
2247 } else {
2248 BUG_ON(upper->eb != path->nodes[upper->level]);
2249 }
2250
2251 upper->locked = 1;
2252 path->locks[upper->level] = 0;
2253
2254 slot = path->slots[upper->level];
2255 btrfs_release_path(path);
2256 } else {
2257 ret = btrfs_bin_search(upper->eb, 0, key, &slot);
2258 if (ret < 0)
2259 goto next;
2260 BUG_ON(ret);
2261 }
2262
2263 bytenr = btrfs_node_blockptr(upper->eb, slot);
2264 if (lowest) {
2265 if (unlikely(bytenr != node->bytenr)) {
2266 btrfs_err(root->fs_info,
2267 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2268 bytenr, node->bytenr, slot,
2269 upper->eb->start);
2270 ret = -EIO;
2271 goto next;
2272 }
2273 } else {
2274 if (node->eb->start == bytenr)
2275 goto next;
2276 }
2277
2278 blocksize = root->fs_info->nodesize;
2279 eb = btrfs_read_node_slot(upper->eb, slot);
2280 if (IS_ERR(eb)) {
2281 ret = PTR_ERR(eb);
2282 goto next;
2283 }
2284 btrfs_tree_lock(eb);
2285
2286 if (!node->eb) {
2287 ret = btrfs_cow_block(trans, root, eb, upper->eb,
2288 slot, &eb, BTRFS_NESTING_COW);
2289 btrfs_tree_unlock(eb);
2290 free_extent_buffer(eb);
2291 if (ret < 0)
2292 goto next;
2293 /*
2294 * We've just COWed this block, it should have updated
2295 * the correct backref node entry.
2296 */
2297 ASSERT(node->eb == eb);
2298 } else {
2299 struct btrfs_ref ref = {
2300 .action = BTRFS_ADD_DELAYED_REF,
2301 .bytenr = node->eb->start,
2302 .num_bytes = blocksize,
2303 .parent = upper->eb->start,
2304 .owning_root = btrfs_header_owner(upper->eb),
2305 .ref_root = btrfs_header_owner(upper->eb),
2306 };
2307
2308 btrfs_set_node_blockptr(upper->eb, slot,
2309 node->eb->start);
2310 btrfs_set_node_ptr_generation(upper->eb, slot,
2311 trans->transid);
2312 btrfs_mark_buffer_dirty(trans, upper->eb);
2313
2314 btrfs_init_tree_ref(&ref, node->level,
2315 btrfs_root_id(root), false);
2316 ret = btrfs_inc_extent_ref(trans, &ref);
2317 if (!ret)
2318 ret = btrfs_drop_subtree(trans, root, eb,
2319 upper->eb);
2320 if (unlikely(ret))
2321 btrfs_abort_transaction(trans, ret);
2322 }
2323 next:
2324 if (!upper->pending)
2325 btrfs_backref_drop_node_buffer(upper);
2326 else
2327 btrfs_backref_unlock_node_buffer(upper);
2328 if (ret)
2329 break;
2330 }
2331
2332 if (!ret && node->pending) {
2333 btrfs_backref_drop_node_buffer(node);
2334 list_del_init(&node->list);
2335 node->pending = 0;
2336 }
2337
2338 path->lowest_level = 0;
2339
2340 /*
2341 * We should have allocated all of our space in the block rsv and thus
2342 * shouldn't ENOSPC.
2343 */
2344 ASSERT(ret != -ENOSPC);
2345 return ret;
2346 }
2347
link_to_upper(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_backref_node * node,struct btrfs_path * path)2348 static int link_to_upper(struct btrfs_trans_handle *trans,
2349 struct reloc_control *rc,
2350 struct btrfs_backref_node *node,
2351 struct btrfs_path *path)
2352 {
2353 struct btrfs_key key;
2354
2355 btrfs_node_key_to_cpu(node->eb, &key, 0);
2356 return do_relocation(trans, rc, node, &key, path, 0);
2357 }
2358
finish_pending_nodes(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_path * path,int err)2359 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2360 struct reloc_control *rc,
2361 struct btrfs_path *path, int err)
2362 {
2363 LIST_HEAD(list);
2364 struct btrfs_backref_cache *cache = &rc->backref_cache;
2365 struct btrfs_backref_node *node;
2366 int level;
2367 int ret;
2368
2369 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2370 while (!list_empty(&cache->pending[level])) {
2371 node = list_first_entry(&cache->pending[level],
2372 struct btrfs_backref_node, list);
2373 list_move_tail(&node->list, &list);
2374 BUG_ON(!node->pending);
2375
2376 if (!err) {
2377 ret = link_to_upper(trans, rc, node, path);
2378 if (ret < 0)
2379 err = ret;
2380 }
2381 }
2382 list_splice_init(&list, &cache->pending[level]);
2383 }
2384 return err;
2385 }
2386
2387 /*
2388 * mark a block and all blocks directly/indirectly reference the block
2389 * as processed.
2390 */
update_processed_blocks(struct reloc_control * rc,struct btrfs_backref_node * node)2391 static void update_processed_blocks(struct reloc_control *rc,
2392 struct btrfs_backref_node *node)
2393 {
2394 struct btrfs_backref_node *next = node;
2395 struct btrfs_backref_edge *edge;
2396 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2397 int index = 0;
2398
2399 while (next) {
2400 cond_resched();
2401 while (1) {
2402 if (next->processed)
2403 break;
2404
2405 mark_block_processed(rc, next);
2406
2407 if (list_empty(&next->upper))
2408 break;
2409
2410 edge = list_first_entry(&next->upper, struct btrfs_backref_edge,
2411 list[LOWER]);
2412 edges[index++] = edge;
2413 next = edge->node[UPPER];
2414 }
2415 next = walk_down_backref(edges, &index);
2416 }
2417 }
2418
tree_block_processed(u64 bytenr,struct reloc_control * rc)2419 static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2420 {
2421 u32 blocksize = rc->extent_root->fs_info->nodesize;
2422
2423 if (btrfs_test_range_bit(&rc->processed_blocks, bytenr,
2424 bytenr + blocksize - 1, EXTENT_DIRTY, NULL))
2425 return 1;
2426 return 0;
2427 }
2428
get_tree_block_key(struct btrfs_fs_info * fs_info,struct tree_block * block)2429 static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2430 struct tree_block *block)
2431 {
2432 struct btrfs_tree_parent_check check = {
2433 .level = block->level,
2434 .owner_root = block->owner,
2435 .transid = block->key.offset
2436 };
2437 struct extent_buffer *eb;
2438
2439 eb = read_tree_block(fs_info, block->bytenr, &check);
2440 if (IS_ERR(eb))
2441 return PTR_ERR(eb);
2442 if (unlikely(!extent_buffer_uptodate(eb))) {
2443 free_extent_buffer(eb);
2444 return -EIO;
2445 }
2446 if (block->level == 0)
2447 btrfs_item_key_to_cpu(eb, &block->key, 0);
2448 else
2449 btrfs_node_key_to_cpu(eb, &block->key, 0);
2450 free_extent_buffer(eb);
2451 block->key_ready = true;
2452 return 0;
2453 }
2454
2455 /*
2456 * helper function to relocate a tree block
2457 */
relocate_tree_block(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_backref_node * node,struct btrfs_key * key,struct btrfs_path * path)2458 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2459 struct reloc_control *rc,
2460 struct btrfs_backref_node *node,
2461 struct btrfs_key *key,
2462 struct btrfs_path *path)
2463 {
2464 struct btrfs_root *root;
2465 int ret = 0;
2466
2467 if (!node)
2468 return 0;
2469
2470 /*
2471 * If we fail here we want to drop our backref_node because we are going
2472 * to start over and regenerate the tree for it.
2473 */
2474 ret = reserve_metadata_space(trans, rc, node);
2475 if (ret)
2476 goto out;
2477
2478 BUG_ON(node->processed);
2479 root = select_one_root(node);
2480 if (IS_ERR(root)) {
2481 ret = PTR_ERR(root);
2482
2483 /* See explanation in select_one_root for the -EUCLEAN case. */
2484 ASSERT(ret == -ENOENT);
2485 if (ret == -ENOENT) {
2486 ret = 0;
2487 update_processed_blocks(rc, node);
2488 }
2489 goto out;
2490 }
2491
2492 if (root) {
2493 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2494 /*
2495 * This block was the root block of a root, and this is
2496 * the first time we're processing the block and thus it
2497 * should not have had the ->new_bytenr modified.
2498 *
2499 * However in the case of corruption we could have
2500 * multiple refs pointing to the same block improperly,
2501 * and thus we would trip over these checks. ASSERT()
2502 * for the developer case, because it could indicate a
2503 * bug in the backref code, however error out for a
2504 * normal user in the case of corruption.
2505 */
2506 ASSERT(node->new_bytenr == 0);
2507 if (unlikely(node->new_bytenr)) {
2508 btrfs_err(root->fs_info,
2509 "bytenr %llu has improper references to it",
2510 node->bytenr);
2511 ret = -EUCLEAN;
2512 goto out;
2513 }
2514 ret = btrfs_record_root_in_trans(trans, root);
2515 if (ret)
2516 goto out;
2517 /*
2518 * Another thread could have failed, need to check if we
2519 * have reloc_root actually set.
2520 */
2521 if (!root->reloc_root) {
2522 ret = -ENOENT;
2523 goto out;
2524 }
2525 root = root->reloc_root;
2526 node->new_bytenr = root->node->start;
2527 btrfs_put_root(node->root);
2528 node->root = btrfs_grab_root(root);
2529 ASSERT(node->root);
2530 } else {
2531 btrfs_err(root->fs_info,
2532 "bytenr %llu resolved to a non-shareable root",
2533 node->bytenr);
2534 ret = -EUCLEAN;
2535 goto out;
2536 }
2537 if (!ret)
2538 update_processed_blocks(rc, node);
2539 } else {
2540 ret = do_relocation(trans, rc, node, key, path, 1);
2541 }
2542 out:
2543 if (ret || node->level == 0)
2544 btrfs_backref_cleanup_node(&rc->backref_cache, node);
2545 return ret;
2546 }
2547
relocate_cowonly_block(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct tree_block * block,struct btrfs_path * path)2548 static int relocate_cowonly_block(struct btrfs_trans_handle *trans,
2549 struct reloc_control *rc, struct tree_block *block,
2550 struct btrfs_path *path)
2551 {
2552 struct btrfs_fs_info *fs_info = trans->fs_info;
2553 struct btrfs_root *root;
2554 u64 num_bytes;
2555 int nr_levels;
2556 int ret;
2557
2558 root = btrfs_get_fs_root(fs_info, block->owner, true);
2559 if (IS_ERR(root))
2560 return PTR_ERR(root);
2561
2562 nr_levels = max(btrfs_header_level(root->node) - block->level, 0) + 1;
2563
2564 num_bytes = fs_info->nodesize * nr_levels;
2565 ret = refill_metadata_space(trans, rc, num_bytes);
2566 if (ret) {
2567 btrfs_put_root(root);
2568 return ret;
2569 }
2570 path->lowest_level = block->level;
2571 if (root == root->fs_info->chunk_root)
2572 btrfs_reserve_chunk_metadata(trans, false);
2573
2574 ret = btrfs_search_slot(trans, root, &block->key, path, 0, 1);
2575 path->lowest_level = 0;
2576 btrfs_release_path(path);
2577
2578 if (root == root->fs_info->chunk_root)
2579 btrfs_trans_release_chunk_metadata(trans);
2580 if (ret > 0)
2581 ret = 0;
2582 btrfs_put_root(root);
2583
2584 return ret;
2585 }
2586
2587 /*
2588 * relocate a list of blocks
2589 */
2590 static noinline_for_stack
relocate_tree_blocks(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct rb_root * blocks)2591 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2592 struct reloc_control *rc, struct rb_root *blocks)
2593 {
2594 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2595 struct btrfs_backref_node *node;
2596 struct btrfs_path *path;
2597 struct tree_block *block;
2598 struct tree_block *next;
2599 int ret = 0;
2600
2601 path = btrfs_alloc_path();
2602 if (!path) {
2603 ret = -ENOMEM;
2604 goto out_free_blocks;
2605 }
2606
2607 /* Kick in readahead for tree blocks with missing keys */
2608 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2609 if (!block->key_ready)
2610 btrfs_readahead_tree_block(fs_info, block->bytenr,
2611 block->owner, 0,
2612 block->level);
2613 }
2614
2615 /* Get first keys */
2616 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2617 if (!block->key_ready) {
2618 ret = get_tree_block_key(fs_info, block);
2619 if (ret)
2620 goto out_free_path;
2621 }
2622 }
2623
2624 /* Do tree relocation */
2625 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2626 /*
2627 * For COWonly blocks, or the data reloc tree, we only need to
2628 * COW down to the block, there's no need to generate a backref
2629 * tree.
2630 */
2631 if (block->owner &&
2632 (!btrfs_is_fstree(block->owner) ||
2633 block->owner == BTRFS_DATA_RELOC_TREE_OBJECTID)) {
2634 ret = relocate_cowonly_block(trans, rc, block, path);
2635 if (ret)
2636 break;
2637 continue;
2638 }
2639
2640 node = build_backref_tree(trans, rc, &block->key,
2641 block->level, block->bytenr);
2642 if (IS_ERR(node)) {
2643 ret = PTR_ERR(node);
2644 goto out;
2645 }
2646
2647 ret = relocate_tree_block(trans, rc, node, &block->key,
2648 path);
2649 if (ret < 0)
2650 break;
2651 }
2652 out:
2653 ret = finish_pending_nodes(trans, rc, path, ret);
2654
2655 out_free_path:
2656 btrfs_free_path(path);
2657 out_free_blocks:
2658 free_block_list(blocks);
2659 return ret;
2660 }
2661
prealloc_file_extent_cluster(struct reloc_control * rc)2662 static noinline_for_stack int prealloc_file_extent_cluster(struct reloc_control *rc)
2663 {
2664 const struct file_extent_cluster *cluster = &rc->cluster;
2665 struct btrfs_inode *inode = BTRFS_I(rc->data_inode);
2666 u64 alloc_hint = 0;
2667 u64 start;
2668 u64 end;
2669 u64 offset = inode->reloc_block_group_start;
2670 u64 num_bytes;
2671 int nr;
2672 int ret = 0;
2673 u64 prealloc_start = cluster->start - offset;
2674 u64 prealloc_end = cluster->end - offset;
2675 u64 cur_offset = prealloc_start;
2676
2677 /*
2678 * For blocksize < folio size case (either bs < page size or large folios),
2679 * beyond i_size, all blocks are filled with zero.
2680 *
2681 * If the current cluster covers the above range, btrfs_do_readpage()
2682 * will skip the read, and relocate_one_folio() will later writeback
2683 * the padding zeros as new data, causing data corruption.
2684 *
2685 * Here we have to invalidate the cache covering our cluster.
2686 */
2687 ret = filemap_invalidate_inode(&inode->vfs_inode, true, prealloc_start,
2688 prealloc_end);
2689 if (ret < 0)
2690 return ret;
2691
2692 BUG_ON(cluster->start != cluster->boundary[0]);
2693 ret = btrfs_alloc_data_chunk_ondemand(inode,
2694 prealloc_end + 1 - prealloc_start);
2695 if (ret)
2696 return ret;
2697
2698 btrfs_inode_lock(inode, 0);
2699 for (nr = 0; nr < cluster->nr; nr++) {
2700 struct extent_state *cached_state = NULL;
2701
2702 start = cluster->boundary[nr] - offset;
2703 if (nr + 1 < cluster->nr)
2704 end = cluster->boundary[nr + 1] - 1 - offset;
2705 else
2706 end = cluster->end - offset;
2707
2708 btrfs_lock_extent(&inode->io_tree, start, end, &cached_state);
2709 num_bytes = end + 1 - start;
2710 ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start,
2711 num_bytes, num_bytes,
2712 end + 1, &alloc_hint);
2713 cur_offset = end + 1;
2714 btrfs_unlock_extent(&inode->io_tree, start, end, &cached_state);
2715 if (ret)
2716 break;
2717 }
2718 btrfs_inode_unlock(inode, 0);
2719
2720 if (cur_offset < prealloc_end)
2721 btrfs_free_reserved_data_space_noquota(inode,
2722 prealloc_end + 1 - cur_offset);
2723 return ret;
2724 }
2725
setup_relocation_extent_mapping(struct reloc_control * rc)2726 static noinline_for_stack int setup_relocation_extent_mapping(struct reloc_control *rc)
2727 {
2728 struct btrfs_inode *inode = BTRFS_I(rc->data_inode);
2729 struct extent_map *em;
2730 struct extent_state *cached_state = NULL;
2731 u64 offset = inode->reloc_block_group_start;
2732 u64 start = rc->cluster.start - offset;
2733 u64 end = rc->cluster.end - offset;
2734 int ret = 0;
2735
2736 em = btrfs_alloc_extent_map();
2737 if (!em)
2738 return -ENOMEM;
2739
2740 em->start = start;
2741 em->len = end + 1 - start;
2742 em->disk_bytenr = rc->cluster.start;
2743 em->disk_num_bytes = em->len;
2744 em->ram_bytes = em->len;
2745 em->flags |= EXTENT_FLAG_PINNED;
2746
2747 btrfs_lock_extent(&inode->io_tree, start, end, &cached_state);
2748 ret = btrfs_replace_extent_map_range(inode, em, false);
2749 btrfs_unlock_extent(&inode->io_tree, start, end, &cached_state);
2750 btrfs_free_extent_map(em);
2751
2752 return ret;
2753 }
2754
2755 /*
2756 * Allow error injection to test balance/relocation cancellation
2757 */
btrfs_should_cancel_balance(const struct btrfs_fs_info * fs_info)2758 noinline int btrfs_should_cancel_balance(const struct btrfs_fs_info *fs_info)
2759 {
2760 return atomic_read(&fs_info->balance_cancel_req) ||
2761 atomic_read(&fs_info->reloc_cancel_req) ||
2762 fatal_signal_pending(current);
2763 }
2764 ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE);
2765
get_cluster_boundary_end(const struct file_extent_cluster * cluster,int cluster_nr)2766 static u64 get_cluster_boundary_end(const struct file_extent_cluster *cluster,
2767 int cluster_nr)
2768 {
2769 /* Last extent, use cluster end directly */
2770 if (cluster_nr >= cluster->nr - 1)
2771 return cluster->end;
2772
2773 /* Use next boundary start*/
2774 return cluster->boundary[cluster_nr + 1] - 1;
2775 }
2776
relocate_one_folio(struct reloc_control * rc,struct file_ra_state * ra,int * cluster_nr,u64 * file_offset_ret)2777 static int relocate_one_folio(struct reloc_control *rc,
2778 struct file_ra_state *ra,
2779 int *cluster_nr, u64 *file_offset_ret)
2780 {
2781 const struct file_extent_cluster *cluster = &rc->cluster;
2782 struct inode *inode = rc->data_inode;
2783 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2784 const u64 orig_file_offset = *file_offset_ret;
2785 u64 offset = BTRFS_I(inode)->reloc_block_group_start;
2786 const pgoff_t last_index = (cluster->end - offset) >> PAGE_SHIFT;
2787 const pgoff_t index = orig_file_offset >> PAGE_SHIFT;
2788 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2789 struct folio *folio;
2790 u64 folio_start;
2791 u64 folio_end;
2792 u64 cur;
2793 int ret;
2794 const bool use_rst = btrfs_need_stripe_tree_update(fs_info, rc->block_group->flags);
2795
2796 ASSERT(index <= last_index);
2797 again:
2798 folio = filemap_lock_folio(inode->i_mapping, index);
2799 if (IS_ERR(folio)) {
2800
2801 /*
2802 * On relocation we're doing readahead on the relocation inode,
2803 * but if the filesystem is backed by a RAID stripe tree we can
2804 * get ENOENT (e.g. due to preallocated extents not being
2805 * mapped in the RST) from the lookup.
2806 *
2807 * But readahead doesn't handle the error and submits invalid
2808 * reads to the device, causing a assertion failures.
2809 */
2810 if (!use_rst)
2811 page_cache_sync_readahead(inode->i_mapping, ra, NULL,
2812 index, last_index + 1 - index);
2813 folio = __filemap_get_folio(inode->i_mapping, index,
2814 FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
2815 mask);
2816 if (IS_ERR(folio))
2817 return PTR_ERR(folio);
2818 }
2819
2820 if (folio_test_readahead(folio) && !use_rst)
2821 page_cache_async_readahead(inode->i_mapping, ra, NULL,
2822 folio, last_index + 1 - index);
2823
2824 if (!folio_test_uptodate(folio)) {
2825 btrfs_read_folio(NULL, folio);
2826 folio_lock(folio);
2827 if (unlikely(!folio_test_uptodate(folio))) {
2828 ret = -EIO;
2829 goto release_folio;
2830 }
2831 if (folio->mapping != inode->i_mapping) {
2832 folio_unlock(folio);
2833 folio_put(folio);
2834 goto again;
2835 }
2836 }
2837
2838 /*
2839 * We could have lost folio private when we dropped the lock to read the
2840 * folio above, make sure we set_folio_extent_mapped() here so we have any
2841 * of the subpage blocksize stuff we need in place.
2842 */
2843 ret = set_folio_extent_mapped(folio);
2844 if (ret < 0)
2845 goto release_folio;
2846
2847 folio_start = folio_pos(folio);
2848 folio_end = folio_start + folio_size(folio) - 1;
2849
2850 /*
2851 * Start from the cluster, as for subpage case, the cluster can start
2852 * inside the folio.
2853 */
2854 cur = max(folio_start, cluster->boundary[*cluster_nr] - offset);
2855 while (cur <= folio_end) {
2856 struct extent_state *cached_state = NULL;
2857 u64 extent_start = cluster->boundary[*cluster_nr] - offset;
2858 u64 extent_end = get_cluster_boundary_end(cluster,
2859 *cluster_nr) - offset;
2860 u64 clamped_start = max(folio_start, extent_start);
2861 u64 clamped_end = min(folio_end, extent_end);
2862 u32 clamped_len = clamped_end + 1 - clamped_start;
2863
2864 /* Reserve metadata for this range */
2865 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
2866 clamped_len, clamped_len,
2867 false);
2868 if (ret)
2869 goto release_folio;
2870
2871 /* Mark the range delalloc and dirty for later writeback */
2872 btrfs_lock_extent(&BTRFS_I(inode)->io_tree, clamped_start,
2873 clamped_end, &cached_state);
2874 ret = btrfs_set_extent_delalloc(BTRFS_I(inode), clamped_start,
2875 clamped_end, 0, &cached_state);
2876 if (ret) {
2877 btrfs_clear_extent_bit(&BTRFS_I(inode)->io_tree,
2878 clamped_start, clamped_end,
2879 EXTENT_LOCKED | EXTENT_BOUNDARY,
2880 &cached_state);
2881 btrfs_delalloc_release_metadata(BTRFS_I(inode),
2882 clamped_len, true);
2883 btrfs_delalloc_release_extents(BTRFS_I(inode),
2884 clamped_len);
2885 goto release_folio;
2886 }
2887 btrfs_folio_set_dirty(fs_info, folio, clamped_start, clamped_len);
2888
2889 /*
2890 * Set the boundary if it's inside the folio.
2891 * Data relocation requires the destination extents to have the
2892 * same size as the source.
2893 * EXTENT_BOUNDARY bit prevents current extent from being merged
2894 * with previous extent.
2895 */
2896 if (in_range(cluster->boundary[*cluster_nr] - offset,
2897 folio_start, folio_size(folio))) {
2898 u64 boundary_start = cluster->boundary[*cluster_nr] -
2899 offset;
2900 u64 boundary_end = boundary_start +
2901 fs_info->sectorsize - 1;
2902
2903 btrfs_set_extent_bit(&BTRFS_I(inode)->io_tree,
2904 boundary_start, boundary_end,
2905 EXTENT_BOUNDARY, NULL);
2906 }
2907 btrfs_unlock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end,
2908 &cached_state);
2909 btrfs_delalloc_release_extents(BTRFS_I(inode), clamped_len);
2910 cur += clamped_len;
2911
2912 /* Crossed extent end, go to next extent */
2913 if (cur >= extent_end) {
2914 (*cluster_nr)++;
2915 /* Just finished the last extent of the cluster, exit. */
2916 if (*cluster_nr >= cluster->nr)
2917 break;
2918 }
2919 }
2920 folio_unlock(folio);
2921 folio_put(folio);
2922
2923 balance_dirty_pages_ratelimited(inode->i_mapping);
2924 btrfs_throttle(fs_info);
2925 if (btrfs_should_cancel_balance(fs_info))
2926 ret = -ECANCELED;
2927 *file_offset_ret = folio_end + 1;
2928 return ret;
2929
2930 release_folio:
2931 folio_unlock(folio);
2932 folio_put(folio);
2933 return ret;
2934 }
2935
relocate_file_extent_cluster(struct reloc_control * rc)2936 static int relocate_file_extent_cluster(struct reloc_control *rc)
2937 {
2938 struct inode *inode = rc->data_inode;
2939 const struct file_extent_cluster *cluster = &rc->cluster;
2940 u64 offset = BTRFS_I(inode)->reloc_block_group_start;
2941 u64 cur_file_offset = cluster->start - offset;
2942 struct file_ra_state AUTO_KFREE(ra);
2943 int cluster_nr = 0;
2944 int ret = 0;
2945
2946 if (!cluster->nr)
2947 return 0;
2948
2949 ra = kzalloc(sizeof(*ra), GFP_NOFS);
2950 if (!ra)
2951 return -ENOMEM;
2952
2953 ret = prealloc_file_extent_cluster(rc);
2954 if (ret)
2955 return ret;
2956
2957 file_ra_state_init(ra, inode->i_mapping);
2958
2959 ret = setup_relocation_extent_mapping(rc);
2960 if (ret)
2961 return ret;
2962
2963 while (cur_file_offset < cluster->end - offset) {
2964 ret = relocate_one_folio(rc, ra, &cluster_nr, &cur_file_offset);
2965 if (ret)
2966 break;
2967 }
2968 if (ret == 0)
2969 WARN_ON(cluster_nr != cluster->nr);
2970 return ret;
2971 }
2972
relocate_data_extent(struct reloc_control * rc,const struct btrfs_key * extent_key)2973 static noinline_for_stack int relocate_data_extent(struct reloc_control *rc,
2974 const struct btrfs_key *extent_key)
2975 {
2976 struct inode *inode = rc->data_inode;
2977 struct file_extent_cluster *cluster = &rc->cluster;
2978 int ret;
2979 struct btrfs_root *root = BTRFS_I(inode)->root;
2980
2981 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
2982 ret = relocate_file_extent_cluster(rc);
2983 if (ret)
2984 return ret;
2985 cluster->nr = 0;
2986 }
2987
2988 /*
2989 * Under simple quotas, we set root->relocation_src_root when we find
2990 * the extent. If adjacent extents have different owners, we can't merge
2991 * them while relocating. Handle this by storing the owning root that
2992 * started a cluster and if we see an extent from a different root break
2993 * cluster formation (just like the above case of non-adjacent extents).
2994 *
2995 * Without simple quotas, relocation_src_root is always 0, so we should
2996 * never see a mismatch, and it should have no effect on relocation
2997 * clusters.
2998 */
2999 if (cluster->nr > 0 && cluster->owning_root != root->relocation_src_root) {
3000 u64 tmp = root->relocation_src_root;
3001
3002 /*
3003 * root->relocation_src_root is the state that actually affects
3004 * the preallocation we do here, so set it to the root owning
3005 * the cluster we need to relocate.
3006 */
3007 root->relocation_src_root = cluster->owning_root;
3008 ret = relocate_file_extent_cluster(rc);
3009 if (ret)
3010 return ret;
3011 cluster->nr = 0;
3012 /* And reset it back for the current extent's owning root. */
3013 root->relocation_src_root = tmp;
3014 }
3015
3016 if (!cluster->nr) {
3017 cluster->start = extent_key->objectid;
3018 cluster->owning_root = root->relocation_src_root;
3019 }
3020 else
3021 BUG_ON(cluster->nr >= MAX_EXTENTS);
3022 cluster->end = extent_key->objectid + extent_key->offset - 1;
3023 cluster->boundary[cluster->nr] = extent_key->objectid;
3024 cluster->nr++;
3025
3026 if (cluster->nr >= MAX_EXTENTS) {
3027 ret = relocate_file_extent_cluster(rc);
3028 if (ret)
3029 return ret;
3030 cluster->nr = 0;
3031 }
3032 return 0;
3033 }
3034
3035 /*
3036 * helper to add a tree block to the list.
3037 * the major work is getting the generation and level of the block
3038 */
add_tree_block(struct reloc_control * rc,const struct btrfs_key * extent_key,struct btrfs_path * path,struct rb_root * blocks)3039 static int add_tree_block(struct reloc_control *rc,
3040 const struct btrfs_key *extent_key,
3041 struct btrfs_path *path,
3042 struct rb_root *blocks)
3043 {
3044 struct extent_buffer *eb;
3045 struct btrfs_extent_item *ei;
3046 struct btrfs_tree_block_info *bi;
3047 struct tree_block *block;
3048 struct rb_node *rb_node;
3049 u32 item_size;
3050 int level = -1;
3051 u64 generation;
3052 u64 owner = 0;
3053
3054 eb = path->nodes[0];
3055 item_size = btrfs_item_size(eb, path->slots[0]);
3056
3057 if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3058 item_size >= sizeof(*ei) + sizeof(*bi)) {
3059 unsigned long ptr = 0, end;
3060
3061 ei = btrfs_item_ptr(eb, path->slots[0],
3062 struct btrfs_extent_item);
3063 end = (unsigned long)ei + item_size;
3064 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3065 bi = (struct btrfs_tree_block_info *)(ei + 1);
3066 level = btrfs_tree_block_level(eb, bi);
3067 ptr = (unsigned long)(bi + 1);
3068 } else {
3069 level = (int)extent_key->offset;
3070 ptr = (unsigned long)(ei + 1);
3071 }
3072 generation = btrfs_extent_generation(eb, ei);
3073
3074 /*
3075 * We're reading random blocks without knowing their owner ahead
3076 * of time. This is ok most of the time, as all reloc roots and
3077 * fs roots have the same lock type. However normal trees do
3078 * not, and the only way to know ahead of time is to read the
3079 * inline ref offset. We know it's an fs root if
3080 *
3081 * 1. There's more than one ref.
3082 * 2. There's a SHARED_DATA_REF_KEY set.
3083 * 3. FULL_BACKREF is set on the flags.
3084 *
3085 * Otherwise it's safe to assume that the ref offset == the
3086 * owner of this block, so we can use that when calling
3087 * read_tree_block.
3088 */
3089 if (btrfs_extent_refs(eb, ei) == 1 &&
3090 !(btrfs_extent_flags(eb, ei) &
3091 BTRFS_BLOCK_FLAG_FULL_BACKREF) &&
3092 ptr < end) {
3093 struct btrfs_extent_inline_ref *iref;
3094 int type;
3095
3096 iref = (struct btrfs_extent_inline_ref *)ptr;
3097 type = btrfs_get_extent_inline_ref_type(eb, iref,
3098 BTRFS_REF_TYPE_BLOCK);
3099 if (type == BTRFS_REF_TYPE_INVALID)
3100 return -EINVAL;
3101 if (type == BTRFS_TREE_BLOCK_REF_KEY)
3102 owner = btrfs_extent_inline_ref_offset(eb, iref);
3103 }
3104 } else {
3105 btrfs_print_leaf(eb);
3106 btrfs_err(rc->block_group->fs_info,
3107 "unrecognized tree backref at tree block %llu slot %u",
3108 eb->start, path->slots[0]);
3109 btrfs_release_path(path);
3110 return -EUCLEAN;
3111 }
3112
3113 btrfs_release_path(path);
3114
3115 BUG_ON(level == -1);
3116
3117 block = kmalloc(sizeof(*block), GFP_NOFS);
3118 if (!block)
3119 return -ENOMEM;
3120
3121 block->bytenr = extent_key->objectid;
3122 block->key.objectid = rc->extent_root->fs_info->nodesize;
3123 block->key.offset = generation;
3124 block->level = level;
3125 block->key_ready = false;
3126 block->owner = owner;
3127
3128 rb_node = rb_simple_insert(blocks, &block->simple_node);
3129 if (rb_node)
3130 btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr,
3131 -EEXIST);
3132
3133 return 0;
3134 }
3135
3136 /*
3137 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3138 */
__add_tree_block(struct reloc_control * rc,u64 bytenr,u32 blocksize,struct rb_root * blocks)3139 static int __add_tree_block(struct reloc_control *rc,
3140 u64 bytenr, u32 blocksize,
3141 struct rb_root *blocks)
3142 {
3143 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3144 BTRFS_PATH_AUTO_FREE(path);
3145 struct btrfs_key key;
3146 int ret;
3147 bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3148
3149 if (tree_block_processed(bytenr, rc))
3150 return 0;
3151
3152 if (rb_simple_search(blocks, bytenr))
3153 return 0;
3154
3155 path = btrfs_alloc_path();
3156 if (!path)
3157 return -ENOMEM;
3158 again:
3159 key.objectid = bytenr;
3160 if (skinny) {
3161 key.type = BTRFS_METADATA_ITEM_KEY;
3162 key.offset = (u64)-1;
3163 } else {
3164 key.type = BTRFS_EXTENT_ITEM_KEY;
3165 key.offset = blocksize;
3166 }
3167
3168 path->search_commit_root = true;
3169 path->skip_locking = true;
3170 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3171 if (ret < 0)
3172 return ret;
3173
3174 if (ret > 0 && skinny) {
3175 if (path->slots[0]) {
3176 path->slots[0]--;
3177 btrfs_item_key_to_cpu(path->nodes[0], &key,
3178 path->slots[0]);
3179 if (key.objectid == bytenr &&
3180 (key.type == BTRFS_METADATA_ITEM_KEY ||
3181 (key.type == BTRFS_EXTENT_ITEM_KEY &&
3182 key.offset == blocksize)))
3183 ret = 0;
3184 }
3185
3186 if (ret) {
3187 skinny = false;
3188 btrfs_release_path(path);
3189 goto again;
3190 }
3191 }
3192 if (ret) {
3193 ASSERT(ret == 1);
3194 btrfs_print_leaf(path->nodes[0]);
3195 btrfs_err(fs_info,
3196 "tree block extent item (%llu) is not found in extent tree",
3197 bytenr);
3198 WARN_ON(1);
3199 return -EINVAL;
3200 }
3201
3202 return add_tree_block(rc, &key, path, blocks);
3203 }
3204
delete_block_group_cache(struct btrfs_block_group * block_group,struct inode * inode,u64 ino)3205 static int delete_block_group_cache(struct btrfs_block_group *block_group,
3206 struct inode *inode,
3207 u64 ino)
3208 {
3209 struct btrfs_fs_info *fs_info = block_group->fs_info;
3210 struct btrfs_root *root = fs_info->tree_root;
3211 struct btrfs_trans_handle *trans;
3212 struct btrfs_inode *btrfs_inode;
3213 int ret = 0;
3214
3215 if (inode)
3216 goto truncate;
3217
3218 btrfs_inode = btrfs_iget(ino, root);
3219 if (IS_ERR(btrfs_inode))
3220 return -ENOENT;
3221 inode = &btrfs_inode->vfs_inode;
3222
3223 truncate:
3224 ret = btrfs_check_trunc_cache_free_space(fs_info,
3225 &fs_info->global_block_rsv);
3226 if (ret)
3227 goto out;
3228
3229 trans = btrfs_join_transaction(root);
3230 if (IS_ERR(trans)) {
3231 ret = PTR_ERR(trans);
3232 goto out;
3233 }
3234
3235 ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3236
3237 btrfs_end_transaction(trans);
3238 btrfs_btree_balance_dirty(fs_info);
3239 out:
3240 iput(inode);
3241 return ret;
3242 }
3243
3244 /*
3245 * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
3246 * cache inode, to avoid free space cache data extent blocking data relocation.
3247 */
delete_v1_space_cache(struct extent_buffer * leaf,struct btrfs_block_group * block_group,u64 data_bytenr)3248 static int delete_v1_space_cache(struct extent_buffer *leaf,
3249 struct btrfs_block_group *block_group,
3250 u64 data_bytenr)
3251 {
3252 u64 space_cache_ino;
3253 struct btrfs_file_extent_item *ei;
3254 struct btrfs_key key;
3255 bool found = false;
3256 int i;
3257 int ret;
3258
3259 if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID)
3260 return 0;
3261
3262 for (i = 0; i < btrfs_header_nritems(leaf); i++) {
3263 u8 type;
3264
3265 btrfs_item_key_to_cpu(leaf, &key, i);
3266 if (key.type != BTRFS_EXTENT_DATA_KEY)
3267 continue;
3268 ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
3269 type = btrfs_file_extent_type(leaf, ei);
3270
3271 if ((type == BTRFS_FILE_EXTENT_REG ||
3272 type == BTRFS_FILE_EXTENT_PREALLOC) &&
3273 btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) {
3274 found = true;
3275 space_cache_ino = key.objectid;
3276 break;
3277 }
3278 }
3279 if (!found)
3280 return -ENOENT;
3281 ret = delete_block_group_cache(block_group, NULL, space_cache_ino);
3282 return ret;
3283 }
3284
3285 /*
3286 * helper to find all tree blocks that reference a given data extent
3287 */
add_data_references(struct reloc_control * rc,const struct btrfs_key * extent_key,struct btrfs_path * path,struct rb_root * blocks)3288 static noinline_for_stack int add_data_references(struct reloc_control *rc,
3289 const struct btrfs_key *extent_key,
3290 struct btrfs_path *path,
3291 struct rb_root *blocks)
3292 {
3293 struct btrfs_backref_walk_ctx ctx = { 0 };
3294 struct ulist_iterator leaf_uiter;
3295 struct ulist_node *ref_node = NULL;
3296 const u32 blocksize = rc->extent_root->fs_info->nodesize;
3297 int ret = 0;
3298
3299 btrfs_release_path(path);
3300
3301 ctx.bytenr = extent_key->objectid;
3302 ctx.skip_inode_ref_list = true;
3303 ctx.fs_info = rc->extent_root->fs_info;
3304
3305 ret = btrfs_find_all_leafs(&ctx);
3306 if (ret < 0)
3307 return ret;
3308
3309 ULIST_ITER_INIT(&leaf_uiter);
3310 while ((ref_node = ulist_next(ctx.refs, &leaf_uiter))) {
3311 struct btrfs_tree_parent_check check = { 0 };
3312 struct extent_buffer *eb;
3313
3314 eb = read_tree_block(ctx.fs_info, ref_node->val, &check);
3315 if (IS_ERR(eb)) {
3316 ret = PTR_ERR(eb);
3317 break;
3318 }
3319 ret = delete_v1_space_cache(eb, rc->block_group,
3320 extent_key->objectid);
3321 free_extent_buffer(eb);
3322 if (ret < 0)
3323 break;
3324 ret = __add_tree_block(rc, ref_node->val, blocksize, blocks);
3325 if (ret < 0)
3326 break;
3327 }
3328 if (ret < 0)
3329 free_block_list(blocks);
3330 ulist_free(ctx.refs);
3331 return ret;
3332 }
3333
3334 /*
3335 * helper to find next unprocessed extent
3336 */
3337 static noinline_for_stack
find_next_extent(struct reloc_control * rc,struct btrfs_path * path,struct btrfs_key * extent_key)3338 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3339 struct btrfs_key *extent_key)
3340 {
3341 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3342 struct btrfs_key key;
3343 struct extent_buffer *leaf;
3344 u64 start, end, last;
3345 int ret;
3346
3347 last = rc->block_group->start + rc->block_group->length;
3348 while (1) {
3349 bool block_found;
3350
3351 cond_resched();
3352 if (rc->search_start >= last) {
3353 ret = 1;
3354 break;
3355 }
3356
3357 key.objectid = rc->search_start;
3358 key.type = BTRFS_EXTENT_ITEM_KEY;
3359 key.offset = 0;
3360
3361 path->search_commit_root = true;
3362 path->skip_locking = true;
3363 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3364 0, 0);
3365 if (ret < 0)
3366 break;
3367 next:
3368 leaf = path->nodes[0];
3369 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3370 ret = btrfs_next_leaf(rc->extent_root, path);
3371 if (ret != 0)
3372 break;
3373 leaf = path->nodes[0];
3374 }
3375
3376 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3377 if (key.objectid >= last) {
3378 ret = 1;
3379 break;
3380 }
3381
3382 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3383 key.type != BTRFS_METADATA_ITEM_KEY) {
3384 path->slots[0]++;
3385 goto next;
3386 }
3387
3388 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3389 key.objectid + key.offset <= rc->search_start) {
3390 path->slots[0]++;
3391 goto next;
3392 }
3393
3394 if (key.type == BTRFS_METADATA_ITEM_KEY &&
3395 key.objectid + fs_info->nodesize <=
3396 rc->search_start) {
3397 path->slots[0]++;
3398 goto next;
3399 }
3400
3401 block_found = btrfs_find_first_extent_bit(&rc->processed_blocks,
3402 key.objectid, &start, &end,
3403 EXTENT_DIRTY, NULL);
3404
3405 if (block_found && start <= key.objectid) {
3406 btrfs_release_path(path);
3407 rc->search_start = end + 1;
3408 } else {
3409 if (key.type == BTRFS_EXTENT_ITEM_KEY)
3410 rc->search_start = key.objectid + key.offset;
3411 else
3412 rc->search_start = key.objectid +
3413 fs_info->nodesize;
3414 memcpy(extent_key, &key, sizeof(key));
3415 return 0;
3416 }
3417 }
3418 btrfs_release_path(path);
3419 return ret;
3420 }
3421
set_reloc_control(struct reloc_control * rc)3422 static void set_reloc_control(struct reloc_control *rc)
3423 {
3424 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3425
3426 mutex_lock(&fs_info->reloc_mutex);
3427 fs_info->reloc_ctl = rc;
3428 mutex_unlock(&fs_info->reloc_mutex);
3429 }
3430
unset_reloc_control(struct reloc_control * rc)3431 static void unset_reloc_control(struct reloc_control *rc)
3432 {
3433 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3434
3435 mutex_lock(&fs_info->reloc_mutex);
3436 fs_info->reloc_ctl = NULL;
3437 mutex_unlock(&fs_info->reloc_mutex);
3438 }
3439
3440 static noinline_for_stack
prepare_to_relocate(struct reloc_control * rc)3441 int prepare_to_relocate(struct reloc_control *rc)
3442 {
3443 struct btrfs_trans_handle *trans;
3444 int ret;
3445
3446 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3447 BTRFS_BLOCK_RSV_TEMP);
3448 if (!rc->block_rsv)
3449 return -ENOMEM;
3450
3451 memset(&rc->cluster, 0, sizeof(rc->cluster));
3452 rc->search_start = rc->block_group->start;
3453 rc->extents_found = 0;
3454 rc->nodes_relocated = 0;
3455 rc->merging_rsv_size = 0;
3456 rc->reserved_bytes = 0;
3457 rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3458 RELOCATION_RESERVED_NODES;
3459 ret = btrfs_block_rsv_refill(rc->extent_root->fs_info,
3460 rc->block_rsv, rc->block_rsv->size,
3461 BTRFS_RESERVE_FLUSH_ALL);
3462 if (ret)
3463 return ret;
3464
3465 rc->create_reloc_tree = true;
3466 set_reloc_control(rc);
3467
3468 trans = btrfs_join_transaction(rc->extent_root);
3469 if (IS_ERR(trans)) {
3470 unset_reloc_control(rc);
3471 /*
3472 * extent tree is not a ref_cow tree and has no reloc_root to
3473 * cleanup. And callers are responsible to free the above
3474 * block rsv.
3475 */
3476 return PTR_ERR(trans);
3477 }
3478
3479 ret = btrfs_commit_transaction(trans);
3480 if (ret)
3481 unset_reloc_control(rc);
3482
3483 return ret;
3484 }
3485
relocate_block_group(struct reloc_control * rc)3486 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3487 {
3488 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3489 struct rb_root blocks = RB_ROOT;
3490 struct btrfs_key key;
3491 struct btrfs_trans_handle *trans = NULL;
3492 BTRFS_PATH_AUTO_FREE(path);
3493 struct btrfs_extent_item *ei;
3494 u64 flags;
3495 int ret;
3496 int err = 0;
3497 int progress = 0;
3498
3499 path = btrfs_alloc_path();
3500 if (!path)
3501 return -ENOMEM;
3502 path->reada = READA_FORWARD;
3503
3504 ret = prepare_to_relocate(rc);
3505 if (ret) {
3506 err = ret;
3507 goto out_free;
3508 }
3509
3510 while (1) {
3511 rc->reserved_bytes = 0;
3512 ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
3513 rc->block_rsv->size,
3514 BTRFS_RESERVE_FLUSH_ALL);
3515 if (ret) {
3516 err = ret;
3517 break;
3518 }
3519 progress++;
3520 trans = btrfs_start_transaction(rc->extent_root, 0);
3521 if (IS_ERR(trans)) {
3522 err = PTR_ERR(trans);
3523 trans = NULL;
3524 break;
3525 }
3526 restart:
3527 if (rc->backref_cache.last_trans != trans->transid)
3528 btrfs_backref_release_cache(&rc->backref_cache);
3529 rc->backref_cache.last_trans = trans->transid;
3530
3531 ret = find_next_extent(rc, path, &key);
3532 if (ret < 0)
3533 err = ret;
3534 if (ret != 0)
3535 break;
3536
3537 rc->extents_found++;
3538
3539 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3540 struct btrfs_extent_item);
3541 flags = btrfs_extent_flags(path->nodes[0], ei);
3542
3543 /*
3544 * If we are relocating a simple quota owned extent item, we
3545 * need to note the owner on the reloc data root so that when
3546 * we allocate the replacement item, we can attribute it to the
3547 * correct eventual owner (rather than the reloc data root).
3548 */
3549 if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE) {
3550 struct btrfs_root *root = BTRFS_I(rc->data_inode)->root;
3551 u64 owning_root_id = btrfs_get_extent_owner_root(fs_info,
3552 path->nodes[0],
3553 path->slots[0]);
3554
3555 root->relocation_src_root = owning_root_id;
3556 }
3557
3558 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3559 ret = add_tree_block(rc, &key, path, &blocks);
3560 } else if (rc->stage == UPDATE_DATA_PTRS &&
3561 (flags & BTRFS_EXTENT_FLAG_DATA)) {
3562 ret = add_data_references(rc, &key, path, &blocks);
3563 } else {
3564 btrfs_release_path(path);
3565 ret = 0;
3566 }
3567 if (ret < 0) {
3568 err = ret;
3569 break;
3570 }
3571
3572 if (!RB_EMPTY_ROOT(&blocks)) {
3573 ret = relocate_tree_blocks(trans, rc, &blocks);
3574 if (ret < 0) {
3575 if (ret != -EAGAIN) {
3576 err = ret;
3577 break;
3578 }
3579 rc->extents_found--;
3580 rc->search_start = key.objectid;
3581 }
3582 }
3583
3584 btrfs_end_transaction_throttle(trans);
3585 btrfs_btree_balance_dirty(fs_info);
3586 trans = NULL;
3587
3588 if (rc->stage == MOVE_DATA_EXTENTS &&
3589 (flags & BTRFS_EXTENT_FLAG_DATA)) {
3590 rc->found_file_extent = true;
3591 ret = relocate_data_extent(rc, &key);
3592 if (ret < 0) {
3593 err = ret;
3594 break;
3595 }
3596 }
3597 if (btrfs_should_cancel_balance(fs_info)) {
3598 err = -ECANCELED;
3599 break;
3600 }
3601 }
3602 if (trans && progress && err == -ENOSPC) {
3603 ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
3604 if (ret == 1) {
3605 err = 0;
3606 progress = 0;
3607 goto restart;
3608 }
3609 }
3610
3611 btrfs_release_path(path);
3612 btrfs_clear_extent_bit(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY, NULL);
3613
3614 if (trans) {
3615 btrfs_end_transaction_throttle(trans);
3616 btrfs_btree_balance_dirty(fs_info);
3617 }
3618
3619 if (!err) {
3620 ret = relocate_file_extent_cluster(rc);
3621 if (ret < 0)
3622 err = ret;
3623 }
3624
3625 rc->create_reloc_tree = false;
3626 set_reloc_control(rc);
3627
3628 btrfs_backref_release_cache(&rc->backref_cache);
3629 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3630
3631 /*
3632 * Even in the case when the relocation is cancelled, we should all go
3633 * through prepare_to_merge() and merge_reloc_roots().
3634 *
3635 * For error (including cancelled balance), prepare_to_merge() will
3636 * mark all reloc trees orphan, then queue them for cleanup in
3637 * merge_reloc_roots()
3638 */
3639 err = prepare_to_merge(rc, err);
3640
3641 merge_reloc_roots(rc);
3642
3643 rc->merge_reloc_tree = false;
3644 unset_reloc_control(rc);
3645 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3646
3647 /* get rid of pinned extents */
3648 trans = btrfs_join_transaction(rc->extent_root);
3649 if (IS_ERR(trans)) {
3650 err = PTR_ERR(trans);
3651 goto out_free;
3652 }
3653 ret = btrfs_commit_transaction(trans);
3654 if (ret && !err)
3655 err = ret;
3656 out_free:
3657 ret = clean_dirty_subvols(rc);
3658 if (ret < 0 && !err)
3659 err = ret;
3660 btrfs_free_block_rsv(fs_info, rc->block_rsv);
3661 return err;
3662 }
3663
__insert_orphan_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 objectid)3664 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3665 struct btrfs_root *root, u64 objectid)
3666 {
3667 BTRFS_PATH_AUTO_FREE(path);
3668 struct btrfs_inode_item *item;
3669 struct extent_buffer *leaf;
3670 int ret;
3671
3672 path = btrfs_alloc_path();
3673 if (!path)
3674 return -ENOMEM;
3675
3676 ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3677 if (ret)
3678 return ret;
3679
3680 leaf = path->nodes[0];
3681 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3682 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3683 btrfs_set_inode_generation(leaf, item, 1);
3684 btrfs_set_inode_size(leaf, item, 0);
3685 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3686 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
3687 BTRFS_INODE_PREALLOC);
3688 return 0;
3689 }
3690
delete_orphan_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 objectid)3691 static void delete_orphan_inode(struct btrfs_trans_handle *trans,
3692 struct btrfs_root *root, u64 objectid)
3693 {
3694 BTRFS_PATH_AUTO_FREE(path);
3695 struct btrfs_key key;
3696 int ret = 0;
3697
3698 path = btrfs_alloc_path();
3699 if (!path) {
3700 ret = -ENOMEM;
3701 goto out;
3702 }
3703
3704 key.objectid = objectid;
3705 key.type = BTRFS_INODE_ITEM_KEY;
3706 key.offset = 0;
3707 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3708 if (ret) {
3709 if (ret > 0)
3710 ret = -ENOENT;
3711 goto out;
3712 }
3713 ret = btrfs_del_item(trans, root, path);
3714 out:
3715 if (ret)
3716 btrfs_abort_transaction(trans, ret);
3717 }
3718
3719 /*
3720 * helper to create inode for data relocation.
3721 * the inode is in data relocation tree and its link count is 0
3722 */
create_reloc_inode(const struct btrfs_block_group * group)3723 static noinline_for_stack struct inode *create_reloc_inode(
3724 const struct btrfs_block_group *group)
3725 {
3726 struct btrfs_fs_info *fs_info = group->fs_info;
3727 struct btrfs_inode *inode = NULL;
3728 struct btrfs_trans_handle *trans;
3729 struct btrfs_root *root;
3730 u64 objectid;
3731 int ret = 0;
3732
3733 root = btrfs_grab_root(fs_info->data_reloc_root);
3734 trans = btrfs_start_transaction(root, 6);
3735 if (IS_ERR(trans)) {
3736 btrfs_put_root(root);
3737 return ERR_CAST(trans);
3738 }
3739
3740 ret = btrfs_get_free_objectid(root, &objectid);
3741 if (ret)
3742 goto out;
3743
3744 ret = __insert_orphan_inode(trans, root, objectid);
3745 if (ret)
3746 goto out;
3747
3748 inode = btrfs_iget(objectid, root);
3749 if (IS_ERR(inode)) {
3750 delete_orphan_inode(trans, root, objectid);
3751 ret = PTR_ERR(inode);
3752 inode = NULL;
3753 goto out;
3754 }
3755 inode->reloc_block_group_start = group->start;
3756
3757 ret = btrfs_orphan_add(trans, inode);
3758 out:
3759 btrfs_put_root(root);
3760 btrfs_end_transaction(trans);
3761 btrfs_btree_balance_dirty(fs_info);
3762 if (ret) {
3763 if (inode)
3764 iput(&inode->vfs_inode);
3765 return ERR_PTR(ret);
3766 }
3767 return &inode->vfs_inode;
3768 }
3769
3770 /*
3771 * Mark start of chunk relocation that is cancellable. Check if the cancellation
3772 * has been requested meanwhile and don't start in that case.
3773 * NOTE: if this returns an error, reloc_chunk_end() must not be called.
3774 *
3775 * Return:
3776 * 0 success
3777 * -EINPROGRESS operation is already in progress, that's probably a bug
3778 * -ECANCELED cancellation request was set before the operation started
3779 */
reloc_chunk_start(struct btrfs_fs_info * fs_info)3780 static int reloc_chunk_start(struct btrfs_fs_info *fs_info)
3781 {
3782 if (test_and_set_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) {
3783 /* This should not happen */
3784 btrfs_err(fs_info, "reloc already running, cannot start");
3785 return -EINPROGRESS;
3786 }
3787
3788 if (atomic_read(&fs_info->reloc_cancel_req) > 0) {
3789 btrfs_info(fs_info, "chunk relocation canceled on start");
3790 /* On cancel, clear all requests. */
3791 clear_and_wake_up_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags);
3792 atomic_set(&fs_info->reloc_cancel_req, 0);
3793 return -ECANCELED;
3794 }
3795 return 0;
3796 }
3797
3798 /*
3799 * Mark end of chunk relocation that is cancellable and wake any waiters.
3800 * NOTE: call only if a previous call to reloc_chunk_start() succeeded.
3801 */
reloc_chunk_end(struct btrfs_fs_info * fs_info)3802 static void reloc_chunk_end(struct btrfs_fs_info *fs_info)
3803 {
3804 ASSERT(test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags));
3805 /* Requested after start, clear bit first so any waiters can continue */
3806 if (atomic_read(&fs_info->reloc_cancel_req) > 0)
3807 btrfs_info(fs_info, "chunk relocation canceled during operation");
3808 clear_and_wake_up_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags);
3809 atomic_set(&fs_info->reloc_cancel_req, 0);
3810 }
3811
alloc_reloc_control(struct btrfs_fs_info * fs_info)3812 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
3813 {
3814 struct reloc_control *rc;
3815
3816 rc = kzalloc(sizeof(*rc), GFP_NOFS);
3817 if (!rc)
3818 return NULL;
3819
3820 INIT_LIST_HEAD(&rc->reloc_roots);
3821 INIT_LIST_HEAD(&rc->dirty_subvol_roots);
3822 btrfs_backref_init_cache(fs_info, &rc->backref_cache, true);
3823 rc->reloc_root_tree.rb_root = RB_ROOT;
3824 spin_lock_init(&rc->reloc_root_tree.lock);
3825 btrfs_extent_io_tree_init(fs_info, &rc->processed_blocks, IO_TREE_RELOC_BLOCKS);
3826 return rc;
3827 }
3828
free_reloc_control(struct reloc_control * rc)3829 static void free_reloc_control(struct reloc_control *rc)
3830 {
3831 struct mapping_node *node, *tmp;
3832
3833 free_reloc_roots(&rc->reloc_roots);
3834 rbtree_postorder_for_each_entry_safe(node, tmp,
3835 &rc->reloc_root_tree.rb_root, rb_node)
3836 kfree(node);
3837
3838 kfree(rc);
3839 }
3840
3841 /*
3842 * Print the block group being relocated
3843 */
describe_relocation(struct btrfs_block_group * block_group)3844 static void describe_relocation(struct btrfs_block_group *block_group)
3845 {
3846 char buf[128] = "NONE";
3847
3848 btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
3849
3850 btrfs_info(block_group->fs_info, "relocating block group %llu flags %s",
3851 block_group->start, buf);
3852 }
3853
stage_to_string(enum reloc_stage stage)3854 static const char *stage_to_string(enum reloc_stage stage)
3855 {
3856 if (stage == MOVE_DATA_EXTENTS)
3857 return "move data extents";
3858 if (stage == UPDATE_DATA_PTRS)
3859 return "update data pointers";
3860 return "unknown";
3861 }
3862
3863 /*
3864 * function to relocate all extents in a block group.
3865 */
btrfs_relocate_block_group(struct btrfs_fs_info * fs_info,u64 group_start,bool verbose)3866 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start,
3867 bool verbose)
3868 {
3869 struct btrfs_block_group *bg;
3870 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, group_start);
3871 struct reloc_control *rc;
3872 struct inode *inode;
3873 struct btrfs_path *path;
3874 int ret;
3875 bool bg_is_ro = false;
3876
3877 /*
3878 * This only gets set if we had a half-deleted snapshot on mount. We
3879 * cannot allow relocation to start while we're still trying to clean up
3880 * these pending deletions.
3881 */
3882 ret = wait_on_bit(&fs_info->flags, BTRFS_FS_UNFINISHED_DROPS, TASK_INTERRUPTIBLE);
3883 if (ret)
3884 return ret;
3885
3886 /* We may have been woken up by close_ctree, so bail if we're closing. */
3887 if (btrfs_fs_closing(fs_info))
3888 return -EINTR;
3889
3890 bg = btrfs_lookup_block_group(fs_info, group_start);
3891 if (!bg)
3892 return -ENOENT;
3893
3894 /*
3895 * Relocation of a data block group creates ordered extents. Without
3896 * sb_start_write(), we can freeze the filesystem while unfinished
3897 * ordered extents are left. Such ordered extents can cause a deadlock
3898 * e.g. when syncfs() is waiting for their completion but they can't
3899 * finish because they block when joining a transaction, due to the
3900 * fact that the freeze locks are being held in write mode.
3901 */
3902 if (bg->flags & BTRFS_BLOCK_GROUP_DATA)
3903 ASSERT(sb_write_started(fs_info->sb));
3904
3905 if (btrfs_pinned_by_swapfile(fs_info, bg)) {
3906 btrfs_put_block_group(bg);
3907 return -ETXTBSY;
3908 }
3909
3910 rc = alloc_reloc_control(fs_info);
3911 if (!rc) {
3912 btrfs_put_block_group(bg);
3913 return -ENOMEM;
3914 }
3915
3916 ret = reloc_chunk_start(fs_info);
3917 if (ret < 0)
3918 goto out_put_bg;
3919
3920 rc->extent_root = extent_root;
3921 rc->block_group = bg;
3922
3923 ret = btrfs_inc_block_group_ro(rc->block_group, true);
3924 if (ret)
3925 goto out;
3926 bg_is_ro = true;
3927
3928 path = btrfs_alloc_path();
3929 if (!path) {
3930 ret = -ENOMEM;
3931 goto out;
3932 }
3933
3934 inode = lookup_free_space_inode(rc->block_group, path);
3935 btrfs_free_path(path);
3936
3937 if (!IS_ERR(inode))
3938 ret = delete_block_group_cache(rc->block_group, inode, 0);
3939 else
3940 ret = PTR_ERR(inode);
3941
3942 if (ret && ret != -ENOENT)
3943 goto out;
3944
3945 rc->data_inode = create_reloc_inode(rc->block_group);
3946 if (IS_ERR(rc->data_inode)) {
3947 ret = PTR_ERR(rc->data_inode);
3948 rc->data_inode = NULL;
3949 goto out;
3950 }
3951
3952 if (verbose)
3953 describe_relocation(rc->block_group);
3954
3955 btrfs_wait_block_group_reservations(rc->block_group);
3956 btrfs_wait_nocow_writers(rc->block_group);
3957 btrfs_wait_ordered_roots(fs_info, U64_MAX, rc->block_group);
3958
3959 ret = btrfs_zone_finish(rc->block_group);
3960 WARN_ON(ret && ret != -EAGAIN);
3961
3962 while (1) {
3963 enum reloc_stage finishes_stage;
3964
3965 mutex_lock(&fs_info->cleaner_mutex);
3966 ret = relocate_block_group(rc);
3967 mutex_unlock(&fs_info->cleaner_mutex);
3968
3969 finishes_stage = rc->stage;
3970 /*
3971 * We may have gotten ENOSPC after we already dirtied some
3972 * extents. If writeout happens while we're relocating a
3973 * different block group we could end up hitting the
3974 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
3975 * btrfs_reloc_cow_block. Make sure we write everything out
3976 * properly so we don't trip over this problem, and then break
3977 * out of the loop if we hit an error.
3978 */
3979 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
3980 int wb_ret;
3981
3982 wb_ret = btrfs_wait_ordered_range(BTRFS_I(rc->data_inode), 0,
3983 (u64)-1);
3984 if (wb_ret && ret == 0)
3985 ret = wb_ret;
3986 invalidate_mapping_pages(rc->data_inode->i_mapping,
3987 0, -1);
3988 rc->stage = UPDATE_DATA_PTRS;
3989 }
3990
3991 if (ret < 0)
3992 goto out;
3993
3994 if (rc->extents_found == 0)
3995 break;
3996
3997 if (verbose)
3998 btrfs_info(fs_info, "found %llu extents, stage: %s",
3999 rc->extents_found,
4000 stage_to_string(finishes_stage));
4001 }
4002
4003 WARN_ON(rc->block_group->pinned > 0);
4004 WARN_ON(rc->block_group->reserved > 0);
4005 WARN_ON(rc->block_group->used > 0);
4006 out:
4007 if (ret && bg_is_ro)
4008 btrfs_dec_block_group_ro(rc->block_group);
4009 iput(rc->data_inode);
4010 reloc_chunk_end(fs_info);
4011 out_put_bg:
4012 btrfs_put_block_group(bg);
4013 free_reloc_control(rc);
4014 return ret;
4015 }
4016
mark_garbage_root(struct btrfs_root * root)4017 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4018 {
4019 struct btrfs_fs_info *fs_info = root->fs_info;
4020 struct btrfs_trans_handle *trans;
4021 int ret, err;
4022
4023 trans = btrfs_start_transaction(fs_info->tree_root, 0);
4024 if (IS_ERR(trans))
4025 return PTR_ERR(trans);
4026
4027 memset(&root->root_item.drop_progress, 0,
4028 sizeof(root->root_item.drop_progress));
4029 btrfs_set_root_drop_level(&root->root_item, 0);
4030 btrfs_set_root_refs(&root->root_item, 0);
4031 ret = btrfs_update_root(trans, fs_info->tree_root,
4032 &root->root_key, &root->root_item);
4033
4034 err = btrfs_end_transaction(trans);
4035 if (err)
4036 return err;
4037 return ret;
4038 }
4039
4040 /*
4041 * recover relocation interrupted by system crash.
4042 *
4043 * this function resumes merging reloc trees with corresponding fs trees.
4044 * this is important for keeping the sharing of tree blocks
4045 */
btrfs_recover_relocation(struct btrfs_fs_info * fs_info)4046 int btrfs_recover_relocation(struct btrfs_fs_info *fs_info)
4047 {
4048 LIST_HEAD(reloc_roots);
4049 struct btrfs_key key;
4050 struct btrfs_root *fs_root;
4051 struct btrfs_root *reloc_root;
4052 struct btrfs_path *path;
4053 struct extent_buffer *leaf;
4054 struct reloc_control *rc = NULL;
4055 struct btrfs_trans_handle *trans;
4056 int ret2;
4057 int ret = 0;
4058
4059 path = btrfs_alloc_path();
4060 if (!path)
4061 return -ENOMEM;
4062 path->reada = READA_BACK;
4063
4064 key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4065 key.type = BTRFS_ROOT_ITEM_KEY;
4066 key.offset = (u64)-1;
4067
4068 while (1) {
4069 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4070 path, 0, 0);
4071 if (ret < 0)
4072 goto out;
4073 if (ret > 0) {
4074 if (path->slots[0] == 0)
4075 break;
4076 path->slots[0]--;
4077 }
4078 ret = 0;
4079 leaf = path->nodes[0];
4080 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4081 btrfs_release_path(path);
4082
4083 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4084 key.type != BTRFS_ROOT_ITEM_KEY)
4085 break;
4086
4087 reloc_root = btrfs_read_tree_root(fs_info->tree_root, &key);
4088 if (IS_ERR(reloc_root)) {
4089 ret = PTR_ERR(reloc_root);
4090 goto out;
4091 }
4092
4093 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
4094 list_add(&reloc_root->root_list, &reloc_roots);
4095
4096 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4097 fs_root = btrfs_get_fs_root(fs_info,
4098 reloc_root->root_key.offset, false);
4099 if (IS_ERR(fs_root)) {
4100 ret = PTR_ERR(fs_root);
4101 if (ret != -ENOENT)
4102 goto out;
4103 ret = mark_garbage_root(reloc_root);
4104 if (ret < 0)
4105 goto out;
4106 ret = 0;
4107 } else {
4108 btrfs_put_root(fs_root);
4109 }
4110 }
4111
4112 if (key.offset == 0)
4113 break;
4114
4115 key.offset--;
4116 }
4117 btrfs_release_path(path);
4118
4119 if (list_empty(&reloc_roots))
4120 goto out;
4121
4122 rc = alloc_reloc_control(fs_info);
4123 if (!rc) {
4124 ret = -ENOMEM;
4125 goto out;
4126 }
4127
4128 ret = reloc_chunk_start(fs_info);
4129 if (ret < 0)
4130 goto out_end;
4131
4132 rc->extent_root = btrfs_extent_root(fs_info, 0);
4133
4134 set_reloc_control(rc);
4135
4136 trans = btrfs_join_transaction(rc->extent_root);
4137 if (IS_ERR(trans)) {
4138 ret = PTR_ERR(trans);
4139 goto out_unset;
4140 }
4141
4142 rc->merge_reloc_tree = true;
4143
4144 while (!list_empty(&reloc_roots)) {
4145 reloc_root = list_first_entry(&reloc_roots, struct btrfs_root, root_list);
4146 list_del(&reloc_root->root_list);
4147
4148 if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4149 list_add_tail(&reloc_root->root_list,
4150 &rc->reloc_roots);
4151 continue;
4152 }
4153
4154 fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
4155 false);
4156 if (IS_ERR(fs_root)) {
4157 ret = PTR_ERR(fs_root);
4158 list_add_tail(&reloc_root->root_list, &reloc_roots);
4159 btrfs_end_transaction(trans);
4160 goto out_unset;
4161 }
4162
4163 ret = __add_reloc_root(reloc_root);
4164 ASSERT(ret != -EEXIST);
4165 if (ret) {
4166 list_add_tail(&reloc_root->root_list, &reloc_roots);
4167 btrfs_put_root(fs_root);
4168 btrfs_end_transaction(trans);
4169 goto out_unset;
4170 }
4171 fs_root->reloc_root = btrfs_grab_root(reloc_root);
4172 btrfs_put_root(fs_root);
4173 }
4174
4175 ret = btrfs_commit_transaction(trans);
4176 if (ret)
4177 goto out_unset;
4178
4179 merge_reloc_roots(rc);
4180
4181 unset_reloc_control(rc);
4182
4183 trans = btrfs_join_transaction(rc->extent_root);
4184 if (IS_ERR(trans)) {
4185 ret = PTR_ERR(trans);
4186 goto out_clean;
4187 }
4188 ret = btrfs_commit_transaction(trans);
4189 out_clean:
4190 ret2 = clean_dirty_subvols(rc);
4191 if (ret2 < 0 && !ret)
4192 ret = ret2;
4193 out_unset:
4194 unset_reloc_control(rc);
4195 reloc_chunk_end(fs_info);
4196 out_end:
4197 free_reloc_control(rc);
4198 out:
4199 free_reloc_roots(&reloc_roots);
4200
4201 btrfs_free_path(path);
4202
4203 if (ret == 0) {
4204 /* cleanup orphan inode in data relocation tree */
4205 fs_root = btrfs_grab_root(fs_info->data_reloc_root);
4206 ASSERT(fs_root);
4207 ret = btrfs_orphan_cleanup(fs_root);
4208 btrfs_put_root(fs_root);
4209 }
4210 return ret;
4211 }
4212
4213 /*
4214 * helper to add ordered checksum for data relocation.
4215 *
4216 * cloning checksum properly handles the nodatasum extents.
4217 * it also saves CPU time to re-calculate the checksum.
4218 */
btrfs_reloc_clone_csums(struct btrfs_ordered_extent * ordered)4219 int btrfs_reloc_clone_csums(struct btrfs_ordered_extent *ordered)
4220 {
4221 struct btrfs_inode *inode = ordered->inode;
4222 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4223 u64 disk_bytenr = ordered->file_offset + inode->reloc_block_group_start;
4224 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, disk_bytenr);
4225 LIST_HEAD(list);
4226 int ret;
4227
4228 ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4229 disk_bytenr + ordered->num_bytes - 1,
4230 &list, false);
4231 if (ret < 0) {
4232 btrfs_mark_ordered_extent_error(ordered);
4233 return ret;
4234 }
4235
4236 while (!list_empty(&list)) {
4237 struct btrfs_ordered_sum *sums =
4238 list_first_entry(&list, struct btrfs_ordered_sum, list);
4239
4240 list_del_init(&sums->list);
4241
4242 /*
4243 * We need to offset the new_bytenr based on where the csum is.
4244 * We need to do this because we will read in entire prealloc
4245 * extents but we may have written to say the middle of the
4246 * prealloc extent, so we need to make sure the csum goes with
4247 * the right disk offset.
4248 *
4249 * We can do this because the data reloc inode refers strictly
4250 * to the on disk bytes, so we don't have to worry about
4251 * disk_len vs real len like with real inodes since it's all
4252 * disk length.
4253 */
4254 sums->logical = ordered->disk_bytenr + sums->logical - disk_bytenr;
4255 btrfs_add_ordered_sum(ordered, sums);
4256 }
4257
4258 return 0;
4259 }
4260
btrfs_reloc_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct extent_buffer * buf,struct extent_buffer * cow)4261 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4262 struct btrfs_root *root,
4263 const struct extent_buffer *buf,
4264 struct extent_buffer *cow)
4265 {
4266 struct btrfs_fs_info *fs_info = root->fs_info;
4267 struct reloc_control *rc;
4268 struct btrfs_backref_node *node;
4269 int first_cow = 0;
4270 int level;
4271 int ret = 0;
4272
4273 rc = fs_info->reloc_ctl;
4274 if (!rc)
4275 return 0;
4276
4277 BUG_ON(rc->stage == UPDATE_DATA_PTRS && btrfs_is_data_reloc_root(root));
4278
4279 level = btrfs_header_level(buf);
4280 if (btrfs_header_generation(buf) <=
4281 btrfs_root_last_snapshot(&root->root_item))
4282 first_cow = 1;
4283
4284 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID && rc->create_reloc_tree) {
4285 WARN_ON(!first_cow && level == 0);
4286
4287 node = rc->backref_cache.path[level];
4288
4289 /*
4290 * If node->bytenr != buf->start and node->new_bytenr !=
4291 * buf->start then we've got the wrong backref node for what we
4292 * expected to see here and the cache is incorrect.
4293 */
4294 if (unlikely(node->bytenr != buf->start && node->new_bytenr != buf->start)) {
4295 btrfs_err(fs_info,
4296 "bytenr %llu was found but our backref cache was expecting %llu or %llu",
4297 buf->start, node->bytenr, node->new_bytenr);
4298 return -EUCLEAN;
4299 }
4300
4301 btrfs_backref_drop_node_buffer(node);
4302 refcount_inc(&cow->refs);
4303 node->eb = cow;
4304 node->new_bytenr = cow->start;
4305
4306 if (!node->pending) {
4307 list_move_tail(&node->list,
4308 &rc->backref_cache.pending[level]);
4309 node->pending = 1;
4310 }
4311
4312 if (first_cow)
4313 mark_block_processed(rc, node);
4314
4315 if (first_cow && level > 0)
4316 rc->nodes_relocated += buf->len;
4317 }
4318
4319 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4320 ret = replace_file_extents(trans, rc, root, cow);
4321 return ret;
4322 }
4323
4324 /*
4325 * called before creating snapshot. it calculates metadata reservation
4326 * required for relocating tree blocks in the snapshot
4327 */
btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot * pending,u64 * bytes_to_reserve)4328 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4329 u64 *bytes_to_reserve)
4330 {
4331 struct btrfs_root *root = pending->root;
4332 struct reloc_control *rc = root->fs_info->reloc_ctl;
4333
4334 if (!rc || !have_reloc_root(root))
4335 return;
4336
4337 if (!rc->merge_reloc_tree)
4338 return;
4339
4340 root = root->reloc_root;
4341 BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4342 /*
4343 * relocation is in the stage of merging trees. the space
4344 * used by merging a reloc tree is twice the size of
4345 * relocated tree nodes in the worst case. half for cowing
4346 * the reloc tree, half for cowing the fs tree. the space
4347 * used by cowing the reloc tree will be freed after the
4348 * tree is dropped. if we create snapshot, cowing the fs
4349 * tree may use more space than it frees. so we need
4350 * reserve extra space.
4351 */
4352 *bytes_to_reserve += rc->nodes_relocated;
4353 }
4354
4355 /*
4356 * called after snapshot is created. migrate block reservation
4357 * and create reloc root for the newly created snapshot
4358 *
4359 * This is similar to btrfs_init_reloc_root(), we come out of here with two
4360 * references held on the reloc_root, one for root->reloc_root and one for
4361 * rc->reloc_roots.
4362 */
btrfs_reloc_post_snapshot(struct btrfs_trans_handle * trans,struct btrfs_pending_snapshot * pending)4363 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4364 struct btrfs_pending_snapshot *pending)
4365 {
4366 struct btrfs_root *root = pending->root;
4367 struct btrfs_root *reloc_root;
4368 struct btrfs_root *new_root;
4369 struct reloc_control *rc = root->fs_info->reloc_ctl;
4370 int ret;
4371
4372 if (!rc || !have_reloc_root(root))
4373 return 0;
4374
4375 rc = root->fs_info->reloc_ctl;
4376 rc->merging_rsv_size += rc->nodes_relocated;
4377
4378 if (rc->merge_reloc_tree) {
4379 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4380 rc->block_rsv,
4381 rc->nodes_relocated, true);
4382 if (ret)
4383 return ret;
4384 }
4385
4386 new_root = pending->snap;
4387 reloc_root = create_reloc_root(trans, root->reloc_root, btrfs_root_id(new_root));
4388 if (IS_ERR(reloc_root))
4389 return PTR_ERR(reloc_root);
4390
4391 ret = __add_reloc_root(reloc_root);
4392 ASSERT(ret != -EEXIST);
4393 if (ret) {
4394 /* Pairs with create_reloc_root */
4395 btrfs_put_root(reloc_root);
4396 return ret;
4397 }
4398 new_root->reloc_root = btrfs_grab_root(reloc_root);
4399 return 0;
4400 }
4401
4402 /*
4403 * Get the current bytenr for the block group which is being relocated.
4404 *
4405 * Return U64_MAX if no running relocation.
4406 */
btrfs_get_reloc_bg_bytenr(const struct btrfs_fs_info * fs_info)4407 u64 btrfs_get_reloc_bg_bytenr(const struct btrfs_fs_info *fs_info)
4408 {
4409 u64 logical = U64_MAX;
4410
4411 lockdep_assert_held(&fs_info->reloc_mutex);
4412
4413 if (fs_info->reloc_ctl && fs_info->reloc_ctl->block_group)
4414 logical = fs_info->reloc_ctl->block_group->start;
4415 return logical;
4416 }
4417