1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2011 Fujitsu. All rights reserved.
4 * Written by Miao Xie <miaox@cn.fujitsu.com>
5 */
6
7 #include <linux/slab.h>
8 #include <linux/iversion.h>
9 #include "ctree.h"
10 #include "fs.h"
11 #include "messages.h"
12 #include "misc.h"
13 #include "delayed-inode.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "qgroup.h"
17 #include "locking.h"
18 #include "inode-item.h"
19 #include "space-info.h"
20 #include "accessors.h"
21 #include "file-item.h"
22
23 #define BTRFS_DELAYED_WRITEBACK 512
24 #define BTRFS_DELAYED_BACKGROUND 128
25 #define BTRFS_DELAYED_BATCH 16
26
27 static struct kmem_cache *delayed_node_cache;
28
btrfs_delayed_inode_init(void)29 int __init btrfs_delayed_inode_init(void)
30 {
31 delayed_node_cache = KMEM_CACHE(btrfs_delayed_node, 0);
32 if (!delayed_node_cache)
33 return -ENOMEM;
34 return 0;
35 }
36
btrfs_delayed_inode_exit(void)37 void __cold btrfs_delayed_inode_exit(void)
38 {
39 kmem_cache_destroy(delayed_node_cache);
40 }
41
btrfs_init_delayed_root(struct btrfs_delayed_root * delayed_root)42 void btrfs_init_delayed_root(struct btrfs_delayed_root *delayed_root)
43 {
44 atomic_set(&delayed_root->items, 0);
45 atomic_set(&delayed_root->items_seq, 0);
46 delayed_root->nodes = 0;
47 spin_lock_init(&delayed_root->lock);
48 init_waitqueue_head(&delayed_root->wait);
49 INIT_LIST_HEAD(&delayed_root->node_list);
50 INIT_LIST_HEAD(&delayed_root->prepare_list);
51 }
52
btrfs_init_delayed_node(struct btrfs_delayed_node * delayed_node,struct btrfs_root * root,u64 inode_id)53 static inline void btrfs_init_delayed_node(
54 struct btrfs_delayed_node *delayed_node,
55 struct btrfs_root *root, u64 inode_id)
56 {
57 delayed_node->root = root;
58 delayed_node->inode_id = inode_id;
59 refcount_set(&delayed_node->refs, 0);
60 delayed_node->ins_root = RB_ROOT_CACHED;
61 delayed_node->del_root = RB_ROOT_CACHED;
62 mutex_init(&delayed_node->mutex);
63 INIT_LIST_HEAD(&delayed_node->n_list);
64 INIT_LIST_HEAD(&delayed_node->p_list);
65 }
66
btrfs_get_delayed_node(struct btrfs_inode * btrfs_inode)67 static struct btrfs_delayed_node *btrfs_get_delayed_node(
68 struct btrfs_inode *btrfs_inode)
69 {
70 struct btrfs_root *root = btrfs_inode->root;
71 u64 ino = btrfs_ino(btrfs_inode);
72 struct btrfs_delayed_node *node;
73
74 node = READ_ONCE(btrfs_inode->delayed_node);
75 if (node) {
76 refcount_inc(&node->refs);
77 return node;
78 }
79
80 xa_lock(&root->delayed_nodes);
81 node = xa_load(&root->delayed_nodes, ino);
82
83 if (node) {
84 if (btrfs_inode->delayed_node) {
85 refcount_inc(&node->refs); /* can be accessed */
86 BUG_ON(btrfs_inode->delayed_node != node);
87 xa_unlock(&root->delayed_nodes);
88 return node;
89 }
90
91 /*
92 * It's possible that we're racing into the middle of removing
93 * this node from the xarray. In this case, the refcount
94 * was zero and it should never go back to one. Just return
95 * NULL like it was never in the xarray at all; our release
96 * function is in the process of removing it.
97 *
98 * Some implementations of refcount_inc refuse to bump the
99 * refcount once it has hit zero. If we don't do this dance
100 * here, refcount_inc() may decide to just WARN_ONCE() instead
101 * of actually bumping the refcount.
102 *
103 * If this node is properly in the xarray, we want to bump the
104 * refcount twice, once for the inode and once for this get
105 * operation.
106 */
107 if (refcount_inc_not_zero(&node->refs)) {
108 refcount_inc(&node->refs);
109 btrfs_inode->delayed_node = node;
110 } else {
111 node = NULL;
112 }
113
114 xa_unlock(&root->delayed_nodes);
115 return node;
116 }
117 xa_unlock(&root->delayed_nodes);
118
119 return NULL;
120 }
121
122 /* Will return either the node or PTR_ERR(-ENOMEM) */
btrfs_get_or_create_delayed_node(struct btrfs_inode * btrfs_inode)123 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
124 struct btrfs_inode *btrfs_inode)
125 {
126 struct btrfs_delayed_node *node;
127 struct btrfs_root *root = btrfs_inode->root;
128 u64 ino = btrfs_ino(btrfs_inode);
129 int ret;
130 void *ptr;
131
132 again:
133 node = btrfs_get_delayed_node(btrfs_inode);
134 if (node)
135 return node;
136
137 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
138 if (!node)
139 return ERR_PTR(-ENOMEM);
140 btrfs_init_delayed_node(node, root, ino);
141
142 /* Cached in the inode and can be accessed. */
143 refcount_set(&node->refs, 2);
144
145 /* Allocate and reserve the slot, from now it can return a NULL from xa_load(). */
146 ret = xa_reserve(&root->delayed_nodes, ino, GFP_NOFS);
147 if (ret == -ENOMEM) {
148 kmem_cache_free(delayed_node_cache, node);
149 return ERR_PTR(-ENOMEM);
150 }
151 xa_lock(&root->delayed_nodes);
152 ptr = xa_load(&root->delayed_nodes, ino);
153 if (ptr) {
154 /* Somebody inserted it, go back and read it. */
155 xa_unlock(&root->delayed_nodes);
156 kmem_cache_free(delayed_node_cache, node);
157 node = NULL;
158 goto again;
159 }
160 ptr = __xa_store(&root->delayed_nodes, ino, node, GFP_ATOMIC);
161 ASSERT(xa_err(ptr) != -EINVAL);
162 ASSERT(xa_err(ptr) != -ENOMEM);
163 ASSERT(ptr == NULL);
164 btrfs_inode->delayed_node = node;
165 xa_unlock(&root->delayed_nodes);
166
167 return node;
168 }
169
170 /*
171 * Call it when holding delayed_node->mutex
172 *
173 * If mod = 1, add this node into the prepared list.
174 */
btrfs_queue_delayed_node(struct btrfs_delayed_root * root,struct btrfs_delayed_node * node,int mod)175 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
176 struct btrfs_delayed_node *node,
177 int mod)
178 {
179 spin_lock(&root->lock);
180 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
181 if (!list_empty(&node->p_list))
182 list_move_tail(&node->p_list, &root->prepare_list);
183 else if (mod)
184 list_add_tail(&node->p_list, &root->prepare_list);
185 } else {
186 list_add_tail(&node->n_list, &root->node_list);
187 list_add_tail(&node->p_list, &root->prepare_list);
188 refcount_inc(&node->refs); /* inserted into list */
189 root->nodes++;
190 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
191 }
192 spin_unlock(&root->lock);
193 }
194
195 /* Call it when holding delayed_node->mutex */
btrfs_dequeue_delayed_node(struct btrfs_delayed_root * root,struct btrfs_delayed_node * node)196 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
197 struct btrfs_delayed_node *node)
198 {
199 spin_lock(&root->lock);
200 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
201 root->nodes--;
202 refcount_dec(&node->refs); /* not in the list */
203 list_del_init(&node->n_list);
204 if (!list_empty(&node->p_list))
205 list_del_init(&node->p_list);
206 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
207 }
208 spin_unlock(&root->lock);
209 }
210
btrfs_first_delayed_node(struct btrfs_delayed_root * delayed_root)211 static struct btrfs_delayed_node *btrfs_first_delayed_node(
212 struct btrfs_delayed_root *delayed_root)
213 {
214 struct list_head *p;
215 struct btrfs_delayed_node *node = NULL;
216
217 spin_lock(&delayed_root->lock);
218 if (list_empty(&delayed_root->node_list))
219 goto out;
220
221 p = delayed_root->node_list.next;
222 node = list_entry(p, struct btrfs_delayed_node, n_list);
223 refcount_inc(&node->refs);
224 out:
225 spin_unlock(&delayed_root->lock);
226
227 return node;
228 }
229
btrfs_next_delayed_node(struct btrfs_delayed_node * node)230 static struct btrfs_delayed_node *btrfs_next_delayed_node(
231 struct btrfs_delayed_node *node)
232 {
233 struct btrfs_delayed_root *delayed_root;
234 struct list_head *p;
235 struct btrfs_delayed_node *next = NULL;
236
237 delayed_root = node->root->fs_info->delayed_root;
238 spin_lock(&delayed_root->lock);
239 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
240 /* not in the list */
241 if (list_empty(&delayed_root->node_list))
242 goto out;
243 p = delayed_root->node_list.next;
244 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
245 goto out;
246 else
247 p = node->n_list.next;
248
249 next = list_entry(p, struct btrfs_delayed_node, n_list);
250 refcount_inc(&next->refs);
251 out:
252 spin_unlock(&delayed_root->lock);
253
254 return next;
255 }
256
__btrfs_release_delayed_node(struct btrfs_delayed_node * delayed_node,int mod)257 static void __btrfs_release_delayed_node(
258 struct btrfs_delayed_node *delayed_node,
259 int mod)
260 {
261 struct btrfs_delayed_root *delayed_root;
262
263 if (!delayed_node)
264 return;
265
266 delayed_root = delayed_node->root->fs_info->delayed_root;
267
268 mutex_lock(&delayed_node->mutex);
269 if (delayed_node->count)
270 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
271 else
272 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
273 mutex_unlock(&delayed_node->mutex);
274
275 if (refcount_dec_and_test(&delayed_node->refs)) {
276 struct btrfs_root *root = delayed_node->root;
277
278 xa_erase(&root->delayed_nodes, delayed_node->inode_id);
279 /*
280 * Once our refcount goes to zero, nobody is allowed to bump it
281 * back up. We can delete it now.
282 */
283 ASSERT(refcount_read(&delayed_node->refs) == 0);
284 kmem_cache_free(delayed_node_cache, delayed_node);
285 }
286 }
287
btrfs_release_delayed_node(struct btrfs_delayed_node * node)288 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
289 {
290 __btrfs_release_delayed_node(node, 0);
291 }
292
btrfs_first_prepared_delayed_node(struct btrfs_delayed_root * delayed_root)293 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
294 struct btrfs_delayed_root *delayed_root)
295 {
296 struct list_head *p;
297 struct btrfs_delayed_node *node = NULL;
298
299 spin_lock(&delayed_root->lock);
300 if (list_empty(&delayed_root->prepare_list))
301 goto out;
302
303 p = delayed_root->prepare_list.next;
304 list_del_init(p);
305 node = list_entry(p, struct btrfs_delayed_node, p_list);
306 refcount_inc(&node->refs);
307 out:
308 spin_unlock(&delayed_root->lock);
309
310 return node;
311 }
312
btrfs_release_prepared_delayed_node(struct btrfs_delayed_node * node)313 static inline void btrfs_release_prepared_delayed_node(
314 struct btrfs_delayed_node *node)
315 {
316 __btrfs_release_delayed_node(node, 1);
317 }
318
btrfs_alloc_delayed_item(u16 data_len,struct btrfs_delayed_node * node,enum btrfs_delayed_item_type type)319 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u16 data_len,
320 struct btrfs_delayed_node *node,
321 enum btrfs_delayed_item_type type)
322 {
323 struct btrfs_delayed_item *item;
324
325 item = kmalloc(struct_size(item, data, data_len), GFP_NOFS);
326 if (item) {
327 item->data_len = data_len;
328 item->type = type;
329 item->bytes_reserved = 0;
330 item->delayed_node = node;
331 RB_CLEAR_NODE(&item->rb_node);
332 INIT_LIST_HEAD(&item->log_list);
333 item->logged = false;
334 refcount_set(&item->refs, 1);
335 }
336 return item;
337 }
338
339 /*
340 * Look up the delayed item by key.
341 *
342 * @delayed_node: pointer to the delayed node
343 * @index: the dir index value to lookup (offset of a dir index key)
344 *
345 * Note: if we don't find the right item, we will return the prev item and
346 * the next item.
347 */
__btrfs_lookup_delayed_item(struct rb_root * root,u64 index)348 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
349 struct rb_root *root,
350 u64 index)
351 {
352 struct rb_node *node = root->rb_node;
353 struct btrfs_delayed_item *delayed_item = NULL;
354
355 while (node) {
356 delayed_item = rb_entry(node, struct btrfs_delayed_item,
357 rb_node);
358 if (delayed_item->index < index)
359 node = node->rb_right;
360 else if (delayed_item->index > index)
361 node = node->rb_left;
362 else
363 return delayed_item;
364 }
365
366 return NULL;
367 }
368
btrfs_delayed_item_cmp(const struct rb_node * new,const struct rb_node * exist)369 static int btrfs_delayed_item_cmp(const struct rb_node *new,
370 const struct rb_node *exist)
371 {
372 const struct btrfs_delayed_item *new_item =
373 rb_entry(new, struct btrfs_delayed_item, rb_node);
374 const struct btrfs_delayed_item *exist_item =
375 rb_entry(exist, struct btrfs_delayed_item, rb_node);
376
377 if (new_item->index < exist_item->index)
378 return -1;
379 if (new_item->index > exist_item->index)
380 return 1;
381 return 0;
382 }
383
__btrfs_add_delayed_item(struct btrfs_delayed_node * delayed_node,struct btrfs_delayed_item * ins)384 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
385 struct btrfs_delayed_item *ins)
386 {
387 struct rb_root_cached *root;
388 struct rb_node *exist;
389
390 if (ins->type == BTRFS_DELAYED_INSERTION_ITEM)
391 root = &delayed_node->ins_root;
392 else
393 root = &delayed_node->del_root;
394
395 exist = rb_find_add_cached(&ins->rb_node, root, btrfs_delayed_item_cmp);
396 if (exist)
397 return -EEXIST;
398
399 if (ins->type == BTRFS_DELAYED_INSERTION_ITEM &&
400 ins->index >= delayed_node->index_cnt)
401 delayed_node->index_cnt = ins->index + 1;
402
403 delayed_node->count++;
404 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
405 return 0;
406 }
407
finish_one_item(struct btrfs_delayed_root * delayed_root)408 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
409 {
410 int seq = atomic_inc_return(&delayed_root->items_seq);
411
412 /* atomic_dec_return implies a barrier */
413 if ((atomic_dec_return(&delayed_root->items) <
414 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
415 cond_wake_up_nomb(&delayed_root->wait);
416 }
417
__btrfs_remove_delayed_item(struct btrfs_delayed_item * delayed_item)418 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
419 {
420 struct btrfs_delayed_node *delayed_node = delayed_item->delayed_node;
421 struct rb_root_cached *root;
422 struct btrfs_delayed_root *delayed_root;
423
424 /* Not inserted, ignore it. */
425 if (RB_EMPTY_NODE(&delayed_item->rb_node))
426 return;
427
428 /* If it's in a rbtree, then we need to have delayed node locked. */
429 lockdep_assert_held(&delayed_node->mutex);
430
431 delayed_root = delayed_node->root->fs_info->delayed_root;
432
433 if (delayed_item->type == BTRFS_DELAYED_INSERTION_ITEM)
434 root = &delayed_node->ins_root;
435 else
436 root = &delayed_node->del_root;
437
438 rb_erase_cached(&delayed_item->rb_node, root);
439 RB_CLEAR_NODE(&delayed_item->rb_node);
440 delayed_node->count--;
441
442 finish_one_item(delayed_root);
443 }
444
btrfs_release_delayed_item(struct btrfs_delayed_item * item)445 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
446 {
447 if (item) {
448 __btrfs_remove_delayed_item(item);
449 if (refcount_dec_and_test(&item->refs))
450 kfree(item);
451 }
452 }
453
__btrfs_first_delayed_insertion_item(struct btrfs_delayed_node * delayed_node)454 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
455 struct btrfs_delayed_node *delayed_node)
456 {
457 struct rb_node *p;
458 struct btrfs_delayed_item *item = NULL;
459
460 p = rb_first_cached(&delayed_node->ins_root);
461 if (p)
462 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
463
464 return item;
465 }
466
__btrfs_first_delayed_deletion_item(struct btrfs_delayed_node * delayed_node)467 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
468 struct btrfs_delayed_node *delayed_node)
469 {
470 struct rb_node *p;
471 struct btrfs_delayed_item *item = NULL;
472
473 p = rb_first_cached(&delayed_node->del_root);
474 if (p)
475 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
476
477 return item;
478 }
479
__btrfs_next_delayed_item(struct btrfs_delayed_item * item)480 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
481 struct btrfs_delayed_item *item)
482 {
483 struct rb_node *p;
484 struct btrfs_delayed_item *next = NULL;
485
486 p = rb_next(&item->rb_node);
487 if (p)
488 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
489
490 return next;
491 }
492
btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle * trans,struct btrfs_delayed_item * item)493 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
494 struct btrfs_delayed_item *item)
495 {
496 struct btrfs_block_rsv *src_rsv;
497 struct btrfs_block_rsv *dst_rsv;
498 struct btrfs_fs_info *fs_info = trans->fs_info;
499 u64 num_bytes;
500 int ret;
501
502 if (!trans->bytes_reserved)
503 return 0;
504
505 src_rsv = trans->block_rsv;
506 dst_rsv = &fs_info->delayed_block_rsv;
507
508 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
509
510 /*
511 * Here we migrate space rsv from transaction rsv, since have already
512 * reserved space when starting a transaction. So no need to reserve
513 * qgroup space here.
514 */
515 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
516 if (!ret) {
517 trace_btrfs_space_reservation(fs_info, "delayed_item",
518 item->delayed_node->inode_id,
519 num_bytes, 1);
520 /*
521 * For insertions we track reserved metadata space by accounting
522 * for the number of leaves that will be used, based on the delayed
523 * node's curr_index_batch_size and index_item_leaves fields.
524 */
525 if (item->type == BTRFS_DELAYED_DELETION_ITEM)
526 item->bytes_reserved = num_bytes;
527 }
528
529 return ret;
530 }
531
btrfs_delayed_item_release_metadata(struct btrfs_root * root,struct btrfs_delayed_item * item)532 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
533 struct btrfs_delayed_item *item)
534 {
535 struct btrfs_block_rsv *rsv;
536 struct btrfs_fs_info *fs_info = root->fs_info;
537
538 if (!item->bytes_reserved)
539 return;
540
541 rsv = &fs_info->delayed_block_rsv;
542 /*
543 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
544 * to release/reserve qgroup space.
545 */
546 trace_btrfs_space_reservation(fs_info, "delayed_item",
547 item->delayed_node->inode_id,
548 item->bytes_reserved, 0);
549 btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
550 }
551
btrfs_delayed_item_release_leaves(struct btrfs_delayed_node * node,unsigned int num_leaves)552 static void btrfs_delayed_item_release_leaves(struct btrfs_delayed_node *node,
553 unsigned int num_leaves)
554 {
555 struct btrfs_fs_info *fs_info = node->root->fs_info;
556 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, num_leaves);
557
558 /* There are no space reservations during log replay, bail out. */
559 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
560 return;
561
562 trace_btrfs_space_reservation(fs_info, "delayed_item", node->inode_id,
563 bytes, 0);
564 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, bytes, NULL);
565 }
566
btrfs_delayed_inode_reserve_metadata(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_delayed_node * node)567 static int btrfs_delayed_inode_reserve_metadata(
568 struct btrfs_trans_handle *trans,
569 struct btrfs_root *root,
570 struct btrfs_delayed_node *node)
571 {
572 struct btrfs_fs_info *fs_info = root->fs_info;
573 struct btrfs_block_rsv *src_rsv;
574 struct btrfs_block_rsv *dst_rsv;
575 u64 num_bytes;
576 int ret;
577
578 src_rsv = trans->block_rsv;
579 dst_rsv = &fs_info->delayed_block_rsv;
580
581 num_bytes = btrfs_calc_metadata_size(fs_info, 1);
582
583 /*
584 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
585 * which doesn't reserve space for speed. This is a problem since we
586 * still need to reserve space for this update, so try to reserve the
587 * space.
588 *
589 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
590 * we always reserve enough to update the inode item.
591 */
592 if (!src_rsv || (!trans->bytes_reserved &&
593 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
594 ret = btrfs_qgroup_reserve_meta(root, num_bytes,
595 BTRFS_QGROUP_RSV_META_PREALLOC, true);
596 if (ret < 0)
597 return ret;
598 ret = btrfs_block_rsv_add(fs_info, dst_rsv, num_bytes,
599 BTRFS_RESERVE_NO_FLUSH);
600 /* NO_FLUSH could only fail with -ENOSPC */
601 ASSERT(ret == 0 || ret == -ENOSPC);
602 if (ret)
603 btrfs_qgroup_free_meta_prealloc(root, num_bytes);
604 } else {
605 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
606 }
607
608 if (!ret) {
609 trace_btrfs_space_reservation(fs_info, "delayed_inode",
610 node->inode_id, num_bytes, 1);
611 node->bytes_reserved = num_bytes;
612 }
613
614 return ret;
615 }
616
btrfs_delayed_inode_release_metadata(struct btrfs_fs_info * fs_info,struct btrfs_delayed_node * node,bool qgroup_free)617 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
618 struct btrfs_delayed_node *node,
619 bool qgroup_free)
620 {
621 struct btrfs_block_rsv *rsv;
622
623 if (!node->bytes_reserved)
624 return;
625
626 rsv = &fs_info->delayed_block_rsv;
627 trace_btrfs_space_reservation(fs_info, "delayed_inode",
628 node->inode_id, node->bytes_reserved, 0);
629 btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
630 if (qgroup_free)
631 btrfs_qgroup_free_meta_prealloc(node->root,
632 node->bytes_reserved);
633 else
634 btrfs_qgroup_convert_reserved_meta(node->root,
635 node->bytes_reserved);
636 node->bytes_reserved = 0;
637 }
638
639 /*
640 * Insert a single delayed item or a batch of delayed items, as many as possible
641 * that fit in a leaf. The delayed items (dir index keys) are sorted by their key
642 * in the rbtree, and if there's a gap between two consecutive dir index items,
643 * then it means at some point we had delayed dir indexes to add but they got
644 * removed (by btrfs_delete_delayed_dir_index()) before we attempted to flush them
645 * into the subvolume tree. Dir index keys also have their offsets coming from a
646 * monotonically increasing counter, so we can't get new keys with an offset that
647 * fits within a gap between delayed dir index items.
648 */
btrfs_insert_delayed_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_item * first_item)649 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
650 struct btrfs_root *root,
651 struct btrfs_path *path,
652 struct btrfs_delayed_item *first_item)
653 {
654 struct btrfs_fs_info *fs_info = root->fs_info;
655 struct btrfs_delayed_node *node = first_item->delayed_node;
656 LIST_HEAD(item_list);
657 struct btrfs_delayed_item *curr;
658 struct btrfs_delayed_item *next;
659 const int max_size = BTRFS_LEAF_DATA_SIZE(fs_info);
660 struct btrfs_item_batch batch;
661 struct btrfs_key first_key;
662 const u32 first_data_size = first_item->data_len;
663 int total_size;
664 char *ins_data = NULL;
665 int ret;
666 bool continuous_keys_only = false;
667
668 lockdep_assert_held(&node->mutex);
669
670 /*
671 * During normal operation the delayed index offset is continuously
672 * increasing, so we can batch insert all items as there will not be any
673 * overlapping keys in the tree.
674 *
675 * The exception to this is log replay, where we may have interleaved
676 * offsets in the tree, so our batch needs to be continuous keys only in
677 * order to ensure we do not end up with out of order items in our leaf.
678 */
679 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
680 continuous_keys_only = true;
681
682 /*
683 * For delayed items to insert, we track reserved metadata bytes based
684 * on the number of leaves that we will use.
685 * See btrfs_insert_delayed_dir_index() and
686 * btrfs_delayed_item_reserve_metadata()).
687 */
688 ASSERT(first_item->bytes_reserved == 0);
689
690 list_add_tail(&first_item->tree_list, &item_list);
691 batch.total_data_size = first_data_size;
692 batch.nr = 1;
693 total_size = first_data_size + sizeof(struct btrfs_item);
694 curr = first_item;
695
696 while (true) {
697 int next_size;
698
699 next = __btrfs_next_delayed_item(curr);
700 if (!next)
701 break;
702
703 /*
704 * We cannot allow gaps in the key space if we're doing log
705 * replay.
706 */
707 if (continuous_keys_only && (next->index != curr->index + 1))
708 break;
709
710 ASSERT(next->bytes_reserved == 0);
711
712 next_size = next->data_len + sizeof(struct btrfs_item);
713 if (total_size + next_size > max_size)
714 break;
715
716 list_add_tail(&next->tree_list, &item_list);
717 batch.nr++;
718 total_size += next_size;
719 batch.total_data_size += next->data_len;
720 curr = next;
721 }
722
723 if (batch.nr == 1) {
724 first_key.objectid = node->inode_id;
725 first_key.type = BTRFS_DIR_INDEX_KEY;
726 first_key.offset = first_item->index;
727 batch.keys = &first_key;
728 batch.data_sizes = &first_data_size;
729 } else {
730 struct btrfs_key *ins_keys;
731 u32 *ins_sizes;
732 int i = 0;
733
734 ins_data = kmalloc(batch.nr * sizeof(u32) +
735 batch.nr * sizeof(struct btrfs_key), GFP_NOFS);
736 if (!ins_data) {
737 ret = -ENOMEM;
738 goto out;
739 }
740 ins_sizes = (u32 *)ins_data;
741 ins_keys = (struct btrfs_key *)(ins_data + batch.nr * sizeof(u32));
742 batch.keys = ins_keys;
743 batch.data_sizes = ins_sizes;
744 list_for_each_entry(curr, &item_list, tree_list) {
745 ins_keys[i].objectid = node->inode_id;
746 ins_keys[i].type = BTRFS_DIR_INDEX_KEY;
747 ins_keys[i].offset = curr->index;
748 ins_sizes[i] = curr->data_len;
749 i++;
750 }
751 }
752
753 ret = btrfs_insert_empty_items(trans, root, path, &batch);
754 if (ret)
755 goto out;
756
757 list_for_each_entry(curr, &item_list, tree_list) {
758 char *data_ptr;
759
760 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
761 write_extent_buffer(path->nodes[0], &curr->data,
762 (unsigned long)data_ptr, curr->data_len);
763 path->slots[0]++;
764 }
765
766 /*
767 * Now release our path before releasing the delayed items and their
768 * metadata reservations, so that we don't block other tasks for more
769 * time than needed.
770 */
771 btrfs_release_path(path);
772
773 ASSERT(node->index_item_leaves > 0);
774
775 /*
776 * For normal operations we will batch an entire leaf's worth of delayed
777 * items, so if there are more items to process we can decrement
778 * index_item_leaves by 1 as we inserted 1 leaf's worth of items.
779 *
780 * However for log replay we may not have inserted an entire leaf's
781 * worth of items, we may have not had continuous items, so decrementing
782 * here would mess up the index_item_leaves accounting. For this case
783 * only clean up the accounting when there are no items left.
784 */
785 if (next && !continuous_keys_only) {
786 /*
787 * We inserted one batch of items into a leaf a there are more
788 * items to flush in a future batch, now release one unit of
789 * metadata space from the delayed block reserve, corresponding
790 * the leaf we just flushed to.
791 */
792 btrfs_delayed_item_release_leaves(node, 1);
793 node->index_item_leaves--;
794 } else if (!next) {
795 /*
796 * There are no more items to insert. We can have a number of
797 * reserved leaves > 1 here - this happens when many dir index
798 * items are added and then removed before they are flushed (file
799 * names with a very short life, never span a transaction). So
800 * release all remaining leaves.
801 */
802 btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
803 node->index_item_leaves = 0;
804 }
805
806 list_for_each_entry_safe(curr, next, &item_list, tree_list) {
807 list_del(&curr->tree_list);
808 btrfs_release_delayed_item(curr);
809 }
810 out:
811 kfree(ins_data);
812 return ret;
813 }
814
btrfs_insert_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_root * root,struct btrfs_delayed_node * node)815 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
816 struct btrfs_path *path,
817 struct btrfs_root *root,
818 struct btrfs_delayed_node *node)
819 {
820 int ret = 0;
821
822 while (ret == 0) {
823 struct btrfs_delayed_item *curr;
824
825 mutex_lock(&node->mutex);
826 curr = __btrfs_first_delayed_insertion_item(node);
827 if (!curr) {
828 mutex_unlock(&node->mutex);
829 break;
830 }
831 ret = btrfs_insert_delayed_item(trans, root, path, curr);
832 mutex_unlock(&node->mutex);
833 }
834
835 return ret;
836 }
837
btrfs_batch_delete_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_item * item)838 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
839 struct btrfs_root *root,
840 struct btrfs_path *path,
841 struct btrfs_delayed_item *item)
842 {
843 const u64 ino = item->delayed_node->inode_id;
844 struct btrfs_fs_info *fs_info = root->fs_info;
845 struct btrfs_delayed_item *curr, *next;
846 struct extent_buffer *leaf = path->nodes[0];
847 LIST_HEAD(batch_list);
848 int nitems, slot, last_slot;
849 int ret;
850 u64 total_reserved_size = item->bytes_reserved;
851
852 ASSERT(leaf != NULL);
853
854 slot = path->slots[0];
855 last_slot = btrfs_header_nritems(leaf) - 1;
856 /*
857 * Our caller always gives us a path pointing to an existing item, so
858 * this can not happen.
859 */
860 ASSERT(slot <= last_slot);
861 if (WARN_ON(slot > last_slot))
862 return -ENOENT;
863
864 nitems = 1;
865 curr = item;
866 list_add_tail(&curr->tree_list, &batch_list);
867
868 /*
869 * Keep checking if the next delayed item matches the next item in the
870 * leaf - if so, we can add it to the batch of items to delete from the
871 * leaf.
872 */
873 while (slot < last_slot) {
874 struct btrfs_key key;
875
876 next = __btrfs_next_delayed_item(curr);
877 if (!next)
878 break;
879
880 slot++;
881 btrfs_item_key_to_cpu(leaf, &key, slot);
882 if (key.objectid != ino ||
883 key.type != BTRFS_DIR_INDEX_KEY ||
884 key.offset != next->index)
885 break;
886 nitems++;
887 curr = next;
888 list_add_tail(&curr->tree_list, &batch_list);
889 total_reserved_size += curr->bytes_reserved;
890 }
891
892 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
893 if (ret)
894 return ret;
895
896 /* In case of BTRFS_FS_LOG_RECOVERING items won't have reserved space */
897 if (total_reserved_size > 0) {
898 /*
899 * Check btrfs_delayed_item_reserve_metadata() to see why we
900 * don't need to release/reserve qgroup space.
901 */
902 trace_btrfs_space_reservation(fs_info, "delayed_item", ino,
903 total_reserved_size, 0);
904 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv,
905 total_reserved_size, NULL);
906 }
907
908 list_for_each_entry_safe(curr, next, &batch_list, tree_list) {
909 list_del(&curr->tree_list);
910 btrfs_release_delayed_item(curr);
911 }
912
913 return 0;
914 }
915
btrfs_delete_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_root * root,struct btrfs_delayed_node * node)916 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
917 struct btrfs_path *path,
918 struct btrfs_root *root,
919 struct btrfs_delayed_node *node)
920 {
921 struct btrfs_key key;
922 int ret = 0;
923
924 key.objectid = node->inode_id;
925 key.type = BTRFS_DIR_INDEX_KEY;
926
927 while (ret == 0) {
928 struct btrfs_delayed_item *item;
929
930 mutex_lock(&node->mutex);
931 item = __btrfs_first_delayed_deletion_item(node);
932 if (!item) {
933 mutex_unlock(&node->mutex);
934 break;
935 }
936
937 key.offset = item->index;
938 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
939 if (ret > 0) {
940 /*
941 * There's no matching item in the leaf. This means we
942 * have already deleted this item in a past run of the
943 * delayed items. We ignore errors when running delayed
944 * items from an async context, through a work queue job
945 * running btrfs_async_run_delayed_root(), and don't
946 * release delayed items that failed to complete. This
947 * is because we will retry later, and at transaction
948 * commit time we always run delayed items and will
949 * then deal with errors if they fail to run again.
950 *
951 * So just release delayed items for which we can't find
952 * an item in the tree, and move to the next item.
953 */
954 btrfs_release_path(path);
955 btrfs_release_delayed_item(item);
956 ret = 0;
957 } else if (ret == 0) {
958 ret = btrfs_batch_delete_items(trans, root, path, item);
959 btrfs_release_path(path);
960 }
961
962 /*
963 * We unlock and relock on each iteration, this is to prevent
964 * blocking other tasks for too long while we are being run from
965 * the async context (work queue job). Those tasks are typically
966 * running system calls like creat/mkdir/rename/unlink/etc which
967 * need to add delayed items to this delayed node.
968 */
969 mutex_unlock(&node->mutex);
970 }
971
972 return ret;
973 }
974
btrfs_release_delayed_inode(struct btrfs_delayed_node * delayed_node)975 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
976 {
977 struct btrfs_delayed_root *delayed_root;
978
979 if (delayed_node &&
980 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
981 ASSERT(delayed_node->root);
982 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
983 delayed_node->count--;
984
985 delayed_root = delayed_node->root->fs_info->delayed_root;
986 finish_one_item(delayed_root);
987 }
988 }
989
btrfs_release_delayed_iref(struct btrfs_delayed_node * delayed_node)990 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
991 {
992
993 if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) {
994 struct btrfs_delayed_root *delayed_root;
995
996 ASSERT(delayed_node->root);
997 delayed_node->count--;
998
999 delayed_root = delayed_node->root->fs_info->delayed_root;
1000 finish_one_item(delayed_root);
1001 }
1002 }
1003
__btrfs_update_delayed_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_node * node)1004 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1005 struct btrfs_root *root,
1006 struct btrfs_path *path,
1007 struct btrfs_delayed_node *node)
1008 {
1009 struct btrfs_fs_info *fs_info = root->fs_info;
1010 struct btrfs_key key;
1011 struct btrfs_inode_item *inode_item;
1012 struct extent_buffer *leaf;
1013 int mod;
1014 int ret;
1015
1016 key.objectid = node->inode_id;
1017 key.type = BTRFS_INODE_ITEM_KEY;
1018 key.offset = 0;
1019
1020 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1021 mod = -1;
1022 else
1023 mod = 1;
1024
1025 ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1026 if (ret > 0)
1027 ret = -ENOENT;
1028 if (ret < 0)
1029 goto out;
1030
1031 leaf = path->nodes[0];
1032 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1033 struct btrfs_inode_item);
1034 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1035 sizeof(struct btrfs_inode_item));
1036
1037 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1038 goto out;
1039
1040 /*
1041 * Now we're going to delete the INODE_REF/EXTREF, which should be the
1042 * only one ref left. Check if the next item is an INODE_REF/EXTREF.
1043 *
1044 * But if we're the last item already, release and search for the last
1045 * INODE_REF/EXTREF.
1046 */
1047 if (path->slots[0] + 1 >= btrfs_header_nritems(leaf)) {
1048 key.objectid = node->inode_id;
1049 key.type = BTRFS_INODE_EXTREF_KEY;
1050 key.offset = (u64)-1;
1051
1052 btrfs_release_path(path);
1053 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1054 if (ret < 0)
1055 goto err_out;
1056 ASSERT(ret > 0);
1057 ASSERT(path->slots[0] > 0);
1058 ret = 0;
1059 path->slots[0]--;
1060 leaf = path->nodes[0];
1061 } else {
1062 path->slots[0]++;
1063 }
1064 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1065 if (key.objectid != node->inode_id)
1066 goto out;
1067 if (key.type != BTRFS_INODE_REF_KEY &&
1068 key.type != BTRFS_INODE_EXTREF_KEY)
1069 goto out;
1070
1071 /*
1072 * Delayed iref deletion is for the inode who has only one link,
1073 * so there is only one iref. The case that several irefs are
1074 * in the same item doesn't exist.
1075 */
1076 ret = btrfs_del_item(trans, root, path);
1077 out:
1078 btrfs_release_delayed_iref(node);
1079 btrfs_release_path(path);
1080 err_out:
1081 btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1082 btrfs_release_delayed_inode(node);
1083
1084 /*
1085 * If we fail to update the delayed inode we need to abort the
1086 * transaction, because we could leave the inode with the improper
1087 * counts behind.
1088 */
1089 if (ret && ret != -ENOENT)
1090 btrfs_abort_transaction(trans, ret);
1091
1092 return ret;
1093 }
1094
btrfs_update_delayed_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_node * node)1095 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1096 struct btrfs_root *root,
1097 struct btrfs_path *path,
1098 struct btrfs_delayed_node *node)
1099 {
1100 int ret;
1101
1102 mutex_lock(&node->mutex);
1103 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1104 mutex_unlock(&node->mutex);
1105 return 0;
1106 }
1107
1108 ret = __btrfs_update_delayed_inode(trans, root, path, node);
1109 mutex_unlock(&node->mutex);
1110 return ret;
1111 }
1112
1113 static inline int
__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_delayed_node * node)1114 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1115 struct btrfs_path *path,
1116 struct btrfs_delayed_node *node)
1117 {
1118 int ret;
1119
1120 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1121 if (ret)
1122 return ret;
1123
1124 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1125 if (ret)
1126 return ret;
1127
1128 ret = btrfs_record_root_in_trans(trans, node->root);
1129 if (ret)
1130 return ret;
1131 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1132 return ret;
1133 }
1134
1135 /*
1136 * Called when committing the transaction.
1137 * Returns 0 on success.
1138 * Returns < 0 on error and returns with an aborted transaction with any
1139 * outstanding delayed items cleaned up.
1140 */
__btrfs_run_delayed_items(struct btrfs_trans_handle * trans,int nr)1141 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1142 {
1143 struct btrfs_fs_info *fs_info = trans->fs_info;
1144 struct btrfs_delayed_root *delayed_root;
1145 struct btrfs_delayed_node *curr_node, *prev_node;
1146 struct btrfs_path *path;
1147 struct btrfs_block_rsv *block_rsv;
1148 int ret = 0;
1149 bool count = (nr > 0);
1150
1151 if (TRANS_ABORTED(trans))
1152 return -EIO;
1153
1154 path = btrfs_alloc_path();
1155 if (!path)
1156 return -ENOMEM;
1157
1158 block_rsv = trans->block_rsv;
1159 trans->block_rsv = &fs_info->delayed_block_rsv;
1160
1161 delayed_root = fs_info->delayed_root;
1162
1163 curr_node = btrfs_first_delayed_node(delayed_root);
1164 while (curr_node && (!count || nr--)) {
1165 ret = __btrfs_commit_inode_delayed_items(trans, path,
1166 curr_node);
1167 if (ret) {
1168 btrfs_abort_transaction(trans, ret);
1169 break;
1170 }
1171
1172 prev_node = curr_node;
1173 curr_node = btrfs_next_delayed_node(curr_node);
1174 /*
1175 * See the comment below about releasing path before releasing
1176 * node. If the commit of delayed items was successful the path
1177 * should always be released, but in case of an error, it may
1178 * point to locked extent buffers (a leaf at the very least).
1179 */
1180 ASSERT(path->nodes[0] == NULL);
1181 btrfs_release_delayed_node(prev_node);
1182 }
1183
1184 /*
1185 * Release the path to avoid a potential deadlock and lockdep splat when
1186 * releasing the delayed node, as that requires taking the delayed node's
1187 * mutex. If another task starts running delayed items before we take
1188 * the mutex, it will first lock the mutex and then it may try to lock
1189 * the same btree path (leaf).
1190 */
1191 btrfs_free_path(path);
1192
1193 if (curr_node)
1194 btrfs_release_delayed_node(curr_node);
1195 trans->block_rsv = block_rsv;
1196
1197 return ret;
1198 }
1199
btrfs_run_delayed_items(struct btrfs_trans_handle * trans)1200 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1201 {
1202 return __btrfs_run_delayed_items(trans, -1);
1203 }
1204
btrfs_run_delayed_items_nr(struct btrfs_trans_handle * trans,int nr)1205 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1206 {
1207 return __btrfs_run_delayed_items(trans, nr);
1208 }
1209
btrfs_commit_inode_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)1210 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1211 struct btrfs_inode *inode)
1212 {
1213 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1214 BTRFS_PATH_AUTO_FREE(path);
1215 struct btrfs_block_rsv *block_rsv;
1216 int ret;
1217
1218 if (!delayed_node)
1219 return 0;
1220
1221 mutex_lock(&delayed_node->mutex);
1222 if (!delayed_node->count) {
1223 mutex_unlock(&delayed_node->mutex);
1224 btrfs_release_delayed_node(delayed_node);
1225 return 0;
1226 }
1227 mutex_unlock(&delayed_node->mutex);
1228
1229 path = btrfs_alloc_path();
1230 if (!path) {
1231 btrfs_release_delayed_node(delayed_node);
1232 return -ENOMEM;
1233 }
1234
1235 block_rsv = trans->block_rsv;
1236 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1237
1238 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1239
1240 btrfs_release_delayed_node(delayed_node);
1241 trans->block_rsv = block_rsv;
1242
1243 return ret;
1244 }
1245
btrfs_commit_inode_delayed_inode(struct btrfs_inode * inode)1246 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1247 {
1248 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1249 struct btrfs_trans_handle *trans;
1250 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1251 struct btrfs_path *path;
1252 struct btrfs_block_rsv *block_rsv;
1253 int ret;
1254
1255 if (!delayed_node)
1256 return 0;
1257
1258 mutex_lock(&delayed_node->mutex);
1259 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1260 mutex_unlock(&delayed_node->mutex);
1261 btrfs_release_delayed_node(delayed_node);
1262 return 0;
1263 }
1264 mutex_unlock(&delayed_node->mutex);
1265
1266 trans = btrfs_join_transaction(delayed_node->root);
1267 if (IS_ERR(trans)) {
1268 ret = PTR_ERR(trans);
1269 goto out;
1270 }
1271
1272 path = btrfs_alloc_path();
1273 if (!path) {
1274 ret = -ENOMEM;
1275 goto trans_out;
1276 }
1277
1278 block_rsv = trans->block_rsv;
1279 trans->block_rsv = &fs_info->delayed_block_rsv;
1280
1281 mutex_lock(&delayed_node->mutex);
1282 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1283 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1284 path, delayed_node);
1285 else
1286 ret = 0;
1287 mutex_unlock(&delayed_node->mutex);
1288
1289 btrfs_free_path(path);
1290 trans->block_rsv = block_rsv;
1291 trans_out:
1292 btrfs_end_transaction(trans);
1293 btrfs_btree_balance_dirty(fs_info);
1294 out:
1295 btrfs_release_delayed_node(delayed_node);
1296
1297 return ret;
1298 }
1299
btrfs_remove_delayed_node(struct btrfs_inode * inode)1300 void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1301 {
1302 struct btrfs_delayed_node *delayed_node;
1303
1304 delayed_node = READ_ONCE(inode->delayed_node);
1305 if (!delayed_node)
1306 return;
1307
1308 inode->delayed_node = NULL;
1309 btrfs_release_delayed_node(delayed_node);
1310 }
1311
1312 struct btrfs_async_delayed_work {
1313 struct btrfs_delayed_root *delayed_root;
1314 int nr;
1315 struct btrfs_work work;
1316 };
1317
btrfs_async_run_delayed_root(struct btrfs_work * work)1318 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1319 {
1320 struct btrfs_async_delayed_work *async_work;
1321 struct btrfs_delayed_root *delayed_root;
1322 struct btrfs_trans_handle *trans;
1323 struct btrfs_path *path;
1324 struct btrfs_delayed_node *delayed_node = NULL;
1325 struct btrfs_root *root;
1326 struct btrfs_block_rsv *block_rsv;
1327 int total_done = 0;
1328
1329 async_work = container_of(work, struct btrfs_async_delayed_work, work);
1330 delayed_root = async_work->delayed_root;
1331
1332 path = btrfs_alloc_path();
1333 if (!path)
1334 goto out;
1335
1336 do {
1337 if (atomic_read(&delayed_root->items) <
1338 BTRFS_DELAYED_BACKGROUND / 2)
1339 break;
1340
1341 delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1342 if (!delayed_node)
1343 break;
1344
1345 root = delayed_node->root;
1346
1347 trans = btrfs_join_transaction(root);
1348 if (IS_ERR(trans)) {
1349 btrfs_release_path(path);
1350 btrfs_release_prepared_delayed_node(delayed_node);
1351 total_done++;
1352 continue;
1353 }
1354
1355 block_rsv = trans->block_rsv;
1356 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1357
1358 __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1359
1360 trans->block_rsv = block_rsv;
1361 btrfs_end_transaction(trans);
1362 btrfs_btree_balance_dirty_nodelay(root->fs_info);
1363
1364 btrfs_release_path(path);
1365 btrfs_release_prepared_delayed_node(delayed_node);
1366 total_done++;
1367
1368 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1369 || total_done < async_work->nr);
1370
1371 btrfs_free_path(path);
1372 out:
1373 wake_up(&delayed_root->wait);
1374 kfree(async_work);
1375 }
1376
1377
btrfs_wq_run_delayed_node(struct btrfs_delayed_root * delayed_root,struct btrfs_fs_info * fs_info,int nr)1378 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1379 struct btrfs_fs_info *fs_info, int nr)
1380 {
1381 struct btrfs_async_delayed_work *async_work;
1382
1383 async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1384 if (!async_work)
1385 return -ENOMEM;
1386
1387 async_work->delayed_root = delayed_root;
1388 btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL);
1389 async_work->nr = nr;
1390
1391 btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1392 return 0;
1393 }
1394
btrfs_assert_delayed_root_empty(struct btrfs_fs_info * fs_info)1395 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1396 {
1397 WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1398 }
1399
could_end_wait(struct btrfs_delayed_root * delayed_root,int seq)1400 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1401 {
1402 int val = atomic_read(&delayed_root->items_seq);
1403
1404 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1405 return 1;
1406
1407 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1408 return 1;
1409
1410 return 0;
1411 }
1412
btrfs_balance_delayed_items(struct btrfs_fs_info * fs_info)1413 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1414 {
1415 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1416
1417 if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1418 btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1419 return;
1420
1421 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1422 int seq;
1423 int ret;
1424
1425 seq = atomic_read(&delayed_root->items_seq);
1426
1427 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1428 if (ret)
1429 return;
1430
1431 wait_event_interruptible(delayed_root->wait,
1432 could_end_wait(delayed_root, seq));
1433 return;
1434 }
1435
1436 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1437 }
1438
btrfs_release_dir_index_item_space(struct btrfs_trans_handle * trans)1439 static void btrfs_release_dir_index_item_space(struct btrfs_trans_handle *trans)
1440 {
1441 struct btrfs_fs_info *fs_info = trans->fs_info;
1442 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
1443
1444 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1445 return;
1446
1447 /*
1448 * Adding the new dir index item does not require touching another
1449 * leaf, so we can release 1 unit of metadata that was previously
1450 * reserved when starting the transaction. This applies only to
1451 * the case where we had a transaction start and excludes the
1452 * transaction join case (when replaying log trees).
1453 */
1454 trace_btrfs_space_reservation(fs_info, "transaction",
1455 trans->transid, bytes, 0);
1456 btrfs_block_rsv_release(fs_info, trans->block_rsv, bytes, NULL);
1457 ASSERT(trans->bytes_reserved >= bytes);
1458 trans->bytes_reserved -= bytes;
1459 }
1460
1461 /* Will return 0, -ENOMEM or -EEXIST (index number collision, unexpected). */
btrfs_insert_delayed_dir_index(struct btrfs_trans_handle * trans,const char * name,int name_len,struct btrfs_inode * dir,const struct btrfs_disk_key * disk_key,u8 flags,u64 index)1462 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1463 const char *name, int name_len,
1464 struct btrfs_inode *dir,
1465 const struct btrfs_disk_key *disk_key, u8 flags,
1466 u64 index)
1467 {
1468 struct btrfs_fs_info *fs_info = trans->fs_info;
1469 const unsigned int leaf_data_size = BTRFS_LEAF_DATA_SIZE(fs_info);
1470 struct btrfs_delayed_node *delayed_node;
1471 struct btrfs_delayed_item *delayed_item;
1472 struct btrfs_dir_item *dir_item;
1473 bool reserve_leaf_space;
1474 u32 data_len;
1475 int ret;
1476
1477 delayed_node = btrfs_get_or_create_delayed_node(dir);
1478 if (IS_ERR(delayed_node))
1479 return PTR_ERR(delayed_node);
1480
1481 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len,
1482 delayed_node,
1483 BTRFS_DELAYED_INSERTION_ITEM);
1484 if (!delayed_item) {
1485 ret = -ENOMEM;
1486 goto release_node;
1487 }
1488
1489 delayed_item->index = index;
1490
1491 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1492 dir_item->location = *disk_key;
1493 btrfs_set_stack_dir_transid(dir_item, trans->transid);
1494 btrfs_set_stack_dir_data_len(dir_item, 0);
1495 btrfs_set_stack_dir_name_len(dir_item, name_len);
1496 btrfs_set_stack_dir_flags(dir_item, flags);
1497 memcpy((char *)(dir_item + 1), name, name_len);
1498
1499 data_len = delayed_item->data_len + sizeof(struct btrfs_item);
1500
1501 mutex_lock(&delayed_node->mutex);
1502
1503 /*
1504 * First attempt to insert the delayed item. This is to make the error
1505 * handling path simpler in case we fail (-EEXIST). There's no risk of
1506 * any other task coming in and running the delayed item before we do
1507 * the metadata space reservation below, because we are holding the
1508 * delayed node's mutex and that mutex must also be locked before the
1509 * node's delayed items can be run.
1510 */
1511 ret = __btrfs_add_delayed_item(delayed_node, delayed_item);
1512 if (unlikely(ret)) {
1513 btrfs_err(trans->fs_info,
1514 "error adding delayed dir index item, name: %.*s, index: %llu, root: %llu, dir: %llu, dir->index_cnt: %llu, delayed_node->index_cnt: %llu, error: %d",
1515 name_len, name, index, btrfs_root_id(delayed_node->root),
1516 delayed_node->inode_id, dir->index_cnt,
1517 delayed_node->index_cnt, ret);
1518 btrfs_release_delayed_item(delayed_item);
1519 btrfs_release_dir_index_item_space(trans);
1520 mutex_unlock(&delayed_node->mutex);
1521 goto release_node;
1522 }
1523
1524 if (delayed_node->index_item_leaves == 0 ||
1525 delayed_node->curr_index_batch_size + data_len > leaf_data_size) {
1526 delayed_node->curr_index_batch_size = data_len;
1527 reserve_leaf_space = true;
1528 } else {
1529 delayed_node->curr_index_batch_size += data_len;
1530 reserve_leaf_space = false;
1531 }
1532
1533 if (reserve_leaf_space) {
1534 ret = btrfs_delayed_item_reserve_metadata(trans, delayed_item);
1535 /*
1536 * Space was reserved for a dir index item insertion when we
1537 * started the transaction, so getting a failure here should be
1538 * impossible.
1539 */
1540 if (WARN_ON(ret)) {
1541 btrfs_release_delayed_item(delayed_item);
1542 mutex_unlock(&delayed_node->mutex);
1543 goto release_node;
1544 }
1545
1546 delayed_node->index_item_leaves++;
1547 } else {
1548 btrfs_release_dir_index_item_space(trans);
1549 }
1550 mutex_unlock(&delayed_node->mutex);
1551
1552 release_node:
1553 btrfs_release_delayed_node(delayed_node);
1554 return ret;
1555 }
1556
btrfs_delete_delayed_insertion_item(struct btrfs_delayed_node * node,u64 index)1557 static int btrfs_delete_delayed_insertion_item(struct btrfs_delayed_node *node,
1558 u64 index)
1559 {
1560 struct btrfs_delayed_item *item;
1561
1562 mutex_lock(&node->mutex);
1563 item = __btrfs_lookup_delayed_item(&node->ins_root.rb_root, index);
1564 if (!item) {
1565 mutex_unlock(&node->mutex);
1566 return 1;
1567 }
1568
1569 /*
1570 * For delayed items to insert, we track reserved metadata bytes based
1571 * on the number of leaves that we will use.
1572 * See btrfs_insert_delayed_dir_index() and
1573 * btrfs_delayed_item_reserve_metadata()).
1574 */
1575 ASSERT(item->bytes_reserved == 0);
1576 ASSERT(node->index_item_leaves > 0);
1577
1578 /*
1579 * If there's only one leaf reserved, we can decrement this item from the
1580 * current batch, otherwise we can not because we don't know which leaf
1581 * it belongs to. With the current limit on delayed items, we rarely
1582 * accumulate enough dir index items to fill more than one leaf (even
1583 * when using a leaf size of 4K).
1584 */
1585 if (node->index_item_leaves == 1) {
1586 const u32 data_len = item->data_len + sizeof(struct btrfs_item);
1587
1588 ASSERT(node->curr_index_batch_size >= data_len);
1589 node->curr_index_batch_size -= data_len;
1590 }
1591
1592 btrfs_release_delayed_item(item);
1593
1594 /* If we now have no more dir index items, we can release all leaves. */
1595 if (RB_EMPTY_ROOT(&node->ins_root.rb_root)) {
1596 btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
1597 node->index_item_leaves = 0;
1598 }
1599
1600 mutex_unlock(&node->mutex);
1601 return 0;
1602 }
1603
btrfs_delete_delayed_dir_index(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,u64 index)1604 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1605 struct btrfs_inode *dir, u64 index)
1606 {
1607 struct btrfs_delayed_node *node;
1608 struct btrfs_delayed_item *item;
1609 int ret;
1610
1611 node = btrfs_get_or_create_delayed_node(dir);
1612 if (IS_ERR(node))
1613 return PTR_ERR(node);
1614
1615 ret = btrfs_delete_delayed_insertion_item(node, index);
1616 if (!ret)
1617 goto end;
1618
1619 item = btrfs_alloc_delayed_item(0, node, BTRFS_DELAYED_DELETION_ITEM);
1620 if (!item) {
1621 ret = -ENOMEM;
1622 goto end;
1623 }
1624
1625 item->index = index;
1626
1627 ret = btrfs_delayed_item_reserve_metadata(trans, item);
1628 /*
1629 * we have reserved enough space when we start a new transaction,
1630 * so reserving metadata failure is impossible.
1631 */
1632 if (ret < 0) {
1633 btrfs_err(trans->fs_info,
1634 "metadata reservation failed for delayed dir item deltiona, should have been reserved");
1635 btrfs_release_delayed_item(item);
1636 goto end;
1637 }
1638
1639 mutex_lock(&node->mutex);
1640 ret = __btrfs_add_delayed_item(node, item);
1641 if (unlikely(ret)) {
1642 btrfs_err(trans->fs_info,
1643 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1644 index, btrfs_root_id(node->root),
1645 node->inode_id, ret);
1646 btrfs_delayed_item_release_metadata(dir->root, item);
1647 btrfs_release_delayed_item(item);
1648 }
1649 mutex_unlock(&node->mutex);
1650 end:
1651 btrfs_release_delayed_node(node);
1652 return ret;
1653 }
1654
btrfs_inode_delayed_dir_index_count(struct btrfs_inode * inode)1655 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1656 {
1657 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1658
1659 if (!delayed_node)
1660 return -ENOENT;
1661
1662 /*
1663 * Since we have held i_mutex of this directory, it is impossible that
1664 * a new directory index is added into the delayed node and index_cnt
1665 * is updated now. So we needn't lock the delayed node.
1666 */
1667 if (!delayed_node->index_cnt) {
1668 btrfs_release_delayed_node(delayed_node);
1669 return -EINVAL;
1670 }
1671
1672 inode->index_cnt = delayed_node->index_cnt;
1673 btrfs_release_delayed_node(delayed_node);
1674 return 0;
1675 }
1676
btrfs_readdir_get_delayed_items(struct btrfs_inode * inode,u64 last_index,struct list_head * ins_list,struct list_head * del_list)1677 bool btrfs_readdir_get_delayed_items(struct btrfs_inode *inode,
1678 u64 last_index,
1679 struct list_head *ins_list,
1680 struct list_head *del_list)
1681 {
1682 struct btrfs_delayed_node *delayed_node;
1683 struct btrfs_delayed_item *item;
1684
1685 delayed_node = btrfs_get_delayed_node(inode);
1686 if (!delayed_node)
1687 return false;
1688
1689 /*
1690 * We can only do one readdir with delayed items at a time because of
1691 * item->readdir_list.
1692 */
1693 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
1694 btrfs_inode_lock(inode, 0);
1695
1696 mutex_lock(&delayed_node->mutex);
1697 item = __btrfs_first_delayed_insertion_item(delayed_node);
1698 while (item && item->index <= last_index) {
1699 refcount_inc(&item->refs);
1700 list_add_tail(&item->readdir_list, ins_list);
1701 item = __btrfs_next_delayed_item(item);
1702 }
1703
1704 item = __btrfs_first_delayed_deletion_item(delayed_node);
1705 while (item && item->index <= last_index) {
1706 refcount_inc(&item->refs);
1707 list_add_tail(&item->readdir_list, del_list);
1708 item = __btrfs_next_delayed_item(item);
1709 }
1710 mutex_unlock(&delayed_node->mutex);
1711 /*
1712 * This delayed node is still cached in the btrfs inode, so refs
1713 * must be > 1 now, and we needn't check it is going to be freed
1714 * or not.
1715 *
1716 * Besides that, this function is used to read dir, we do not
1717 * insert/delete delayed items in this period. So we also needn't
1718 * requeue or dequeue this delayed node.
1719 */
1720 refcount_dec(&delayed_node->refs);
1721
1722 return true;
1723 }
1724
btrfs_readdir_put_delayed_items(struct btrfs_inode * inode,struct list_head * ins_list,struct list_head * del_list)1725 void btrfs_readdir_put_delayed_items(struct btrfs_inode *inode,
1726 struct list_head *ins_list,
1727 struct list_head *del_list)
1728 {
1729 struct btrfs_delayed_item *curr, *next;
1730
1731 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1732 list_del(&curr->readdir_list);
1733 if (refcount_dec_and_test(&curr->refs))
1734 kfree(curr);
1735 }
1736
1737 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1738 list_del(&curr->readdir_list);
1739 if (refcount_dec_and_test(&curr->refs))
1740 kfree(curr);
1741 }
1742
1743 /*
1744 * The VFS is going to do up_read(), so we need to downgrade back to a
1745 * read lock.
1746 */
1747 downgrade_write(&inode->vfs_inode.i_rwsem);
1748 }
1749
btrfs_should_delete_dir_index(const struct list_head * del_list,u64 index)1750 int btrfs_should_delete_dir_index(const struct list_head *del_list,
1751 u64 index)
1752 {
1753 struct btrfs_delayed_item *curr;
1754 int ret = 0;
1755
1756 list_for_each_entry(curr, del_list, readdir_list) {
1757 if (curr->index > index)
1758 break;
1759 if (curr->index == index) {
1760 ret = 1;
1761 break;
1762 }
1763 }
1764 return ret;
1765 }
1766
1767 /*
1768 * Read dir info stored in the delayed tree.
1769 */
btrfs_readdir_delayed_dir_index(struct dir_context * ctx,const struct list_head * ins_list)1770 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1771 const struct list_head *ins_list)
1772 {
1773 struct btrfs_dir_item *di;
1774 struct btrfs_delayed_item *curr, *next;
1775 struct btrfs_key location;
1776 char *name;
1777 int name_len;
1778 int over = 0;
1779 unsigned char d_type;
1780
1781 /*
1782 * Changing the data of the delayed item is impossible. So
1783 * we needn't lock them. And we have held i_mutex of the
1784 * directory, nobody can delete any directory indexes now.
1785 */
1786 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1787 list_del(&curr->readdir_list);
1788
1789 if (curr->index < ctx->pos) {
1790 if (refcount_dec_and_test(&curr->refs))
1791 kfree(curr);
1792 continue;
1793 }
1794
1795 ctx->pos = curr->index;
1796
1797 di = (struct btrfs_dir_item *)curr->data;
1798 name = (char *)(di + 1);
1799 name_len = btrfs_stack_dir_name_len(di);
1800
1801 d_type = fs_ftype_to_dtype(btrfs_dir_flags_to_ftype(di->type));
1802 btrfs_disk_key_to_cpu(&location, &di->location);
1803
1804 over = !dir_emit(ctx, name, name_len,
1805 location.objectid, d_type);
1806
1807 if (refcount_dec_and_test(&curr->refs))
1808 kfree(curr);
1809
1810 if (over)
1811 return 1;
1812 ctx->pos++;
1813 }
1814 return 0;
1815 }
1816
fill_stack_inode_item(struct btrfs_trans_handle * trans,struct btrfs_inode_item * inode_item,struct btrfs_inode * inode)1817 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1818 struct btrfs_inode_item *inode_item,
1819 struct btrfs_inode *inode)
1820 {
1821 struct inode *vfs_inode = &inode->vfs_inode;
1822 u64 flags;
1823
1824 btrfs_set_stack_inode_uid(inode_item, i_uid_read(vfs_inode));
1825 btrfs_set_stack_inode_gid(inode_item, i_gid_read(vfs_inode));
1826 btrfs_set_stack_inode_size(inode_item, inode->disk_i_size);
1827 btrfs_set_stack_inode_mode(inode_item, vfs_inode->i_mode);
1828 btrfs_set_stack_inode_nlink(inode_item, vfs_inode->i_nlink);
1829 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(vfs_inode));
1830 btrfs_set_stack_inode_generation(inode_item, inode->generation);
1831 btrfs_set_stack_inode_sequence(inode_item,
1832 inode_peek_iversion(vfs_inode));
1833 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1834 btrfs_set_stack_inode_rdev(inode_item, vfs_inode->i_rdev);
1835 flags = btrfs_inode_combine_flags(inode->flags, inode->ro_flags);
1836 btrfs_set_stack_inode_flags(inode_item, flags);
1837 btrfs_set_stack_inode_block_group(inode_item, 0);
1838
1839 btrfs_set_stack_timespec_sec(&inode_item->atime,
1840 inode_get_atime_sec(vfs_inode));
1841 btrfs_set_stack_timespec_nsec(&inode_item->atime,
1842 inode_get_atime_nsec(vfs_inode));
1843
1844 btrfs_set_stack_timespec_sec(&inode_item->mtime,
1845 inode_get_mtime_sec(vfs_inode));
1846 btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1847 inode_get_mtime_nsec(vfs_inode));
1848
1849 btrfs_set_stack_timespec_sec(&inode_item->ctime,
1850 inode_get_ctime_sec(vfs_inode));
1851 btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1852 inode_get_ctime_nsec(vfs_inode));
1853
1854 btrfs_set_stack_timespec_sec(&inode_item->otime, inode->i_otime_sec);
1855 btrfs_set_stack_timespec_nsec(&inode_item->otime, inode->i_otime_nsec);
1856 }
1857
btrfs_fill_inode(struct btrfs_inode * inode,u32 * rdev)1858 int btrfs_fill_inode(struct btrfs_inode *inode, u32 *rdev)
1859 {
1860 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1861 struct btrfs_delayed_node *delayed_node;
1862 struct btrfs_inode_item *inode_item;
1863 struct inode *vfs_inode = &inode->vfs_inode;
1864
1865 delayed_node = btrfs_get_delayed_node(inode);
1866 if (!delayed_node)
1867 return -ENOENT;
1868
1869 mutex_lock(&delayed_node->mutex);
1870 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1871 mutex_unlock(&delayed_node->mutex);
1872 btrfs_release_delayed_node(delayed_node);
1873 return -ENOENT;
1874 }
1875
1876 inode_item = &delayed_node->inode_item;
1877
1878 i_uid_write(vfs_inode, btrfs_stack_inode_uid(inode_item));
1879 i_gid_write(vfs_inode, btrfs_stack_inode_gid(inode_item));
1880 btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
1881 btrfs_inode_set_file_extent_range(inode, 0,
1882 round_up(i_size_read(vfs_inode), fs_info->sectorsize));
1883 vfs_inode->i_mode = btrfs_stack_inode_mode(inode_item);
1884 set_nlink(vfs_inode, btrfs_stack_inode_nlink(inode_item));
1885 inode_set_bytes(vfs_inode, btrfs_stack_inode_nbytes(inode_item));
1886 inode->generation = btrfs_stack_inode_generation(inode_item);
1887 inode->last_trans = btrfs_stack_inode_transid(inode_item);
1888
1889 inode_set_iversion_queried(vfs_inode, btrfs_stack_inode_sequence(inode_item));
1890 vfs_inode->i_rdev = 0;
1891 *rdev = btrfs_stack_inode_rdev(inode_item);
1892 btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item),
1893 &inode->flags, &inode->ro_flags);
1894
1895 inode_set_atime(vfs_inode, btrfs_stack_timespec_sec(&inode_item->atime),
1896 btrfs_stack_timespec_nsec(&inode_item->atime));
1897
1898 inode_set_mtime(vfs_inode, btrfs_stack_timespec_sec(&inode_item->mtime),
1899 btrfs_stack_timespec_nsec(&inode_item->mtime));
1900
1901 inode_set_ctime(vfs_inode, btrfs_stack_timespec_sec(&inode_item->ctime),
1902 btrfs_stack_timespec_nsec(&inode_item->ctime));
1903
1904 inode->i_otime_sec = btrfs_stack_timespec_sec(&inode_item->otime);
1905 inode->i_otime_nsec = btrfs_stack_timespec_nsec(&inode_item->otime);
1906
1907 vfs_inode->i_generation = inode->generation;
1908 if (S_ISDIR(vfs_inode->i_mode))
1909 inode->index_cnt = (u64)-1;
1910
1911 mutex_unlock(&delayed_node->mutex);
1912 btrfs_release_delayed_node(delayed_node);
1913 return 0;
1914 }
1915
btrfs_delayed_update_inode(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)1916 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1917 struct btrfs_inode *inode)
1918 {
1919 struct btrfs_root *root = inode->root;
1920 struct btrfs_delayed_node *delayed_node;
1921 int ret = 0;
1922
1923 delayed_node = btrfs_get_or_create_delayed_node(inode);
1924 if (IS_ERR(delayed_node))
1925 return PTR_ERR(delayed_node);
1926
1927 mutex_lock(&delayed_node->mutex);
1928 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1929 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1930 goto release_node;
1931 }
1932
1933 ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
1934 if (ret)
1935 goto release_node;
1936
1937 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1938 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1939 delayed_node->count++;
1940 atomic_inc(&root->fs_info->delayed_root->items);
1941 release_node:
1942 mutex_unlock(&delayed_node->mutex);
1943 btrfs_release_delayed_node(delayed_node);
1944 return ret;
1945 }
1946
btrfs_delayed_delete_inode_ref(struct btrfs_inode * inode)1947 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1948 {
1949 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1950 struct btrfs_delayed_node *delayed_node;
1951
1952 /*
1953 * we don't do delayed inode updates during log recovery because it
1954 * leads to enospc problems. This means we also can't do
1955 * delayed inode refs
1956 */
1957 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1958 return -EAGAIN;
1959
1960 delayed_node = btrfs_get_or_create_delayed_node(inode);
1961 if (IS_ERR(delayed_node))
1962 return PTR_ERR(delayed_node);
1963
1964 /*
1965 * We don't reserve space for inode ref deletion is because:
1966 * - We ONLY do async inode ref deletion for the inode who has only
1967 * one link(i_nlink == 1), it means there is only one inode ref.
1968 * And in most case, the inode ref and the inode item are in the
1969 * same leaf, and we will deal with them at the same time.
1970 * Since we are sure we will reserve the space for the inode item,
1971 * it is unnecessary to reserve space for inode ref deletion.
1972 * - If the inode ref and the inode item are not in the same leaf,
1973 * We also needn't worry about enospc problem, because we reserve
1974 * much more space for the inode update than it needs.
1975 * - At the worst, we can steal some space from the global reservation.
1976 * It is very rare.
1977 */
1978 mutex_lock(&delayed_node->mutex);
1979 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1980 goto release_node;
1981
1982 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1983 delayed_node->count++;
1984 atomic_inc(&fs_info->delayed_root->items);
1985 release_node:
1986 mutex_unlock(&delayed_node->mutex);
1987 btrfs_release_delayed_node(delayed_node);
1988 return 0;
1989 }
1990
__btrfs_kill_delayed_node(struct btrfs_delayed_node * delayed_node)1991 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1992 {
1993 struct btrfs_root *root = delayed_node->root;
1994 struct btrfs_fs_info *fs_info = root->fs_info;
1995 struct btrfs_delayed_item *curr_item, *prev_item;
1996
1997 mutex_lock(&delayed_node->mutex);
1998 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1999 while (curr_item) {
2000 prev_item = curr_item;
2001 curr_item = __btrfs_next_delayed_item(prev_item);
2002 btrfs_release_delayed_item(prev_item);
2003 }
2004
2005 if (delayed_node->index_item_leaves > 0) {
2006 btrfs_delayed_item_release_leaves(delayed_node,
2007 delayed_node->index_item_leaves);
2008 delayed_node->index_item_leaves = 0;
2009 }
2010
2011 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
2012 while (curr_item) {
2013 btrfs_delayed_item_release_metadata(root, curr_item);
2014 prev_item = curr_item;
2015 curr_item = __btrfs_next_delayed_item(prev_item);
2016 btrfs_release_delayed_item(prev_item);
2017 }
2018
2019 btrfs_release_delayed_iref(delayed_node);
2020
2021 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
2022 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
2023 btrfs_release_delayed_inode(delayed_node);
2024 }
2025 mutex_unlock(&delayed_node->mutex);
2026 }
2027
btrfs_kill_delayed_inode_items(struct btrfs_inode * inode)2028 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
2029 {
2030 struct btrfs_delayed_node *delayed_node;
2031
2032 delayed_node = btrfs_get_delayed_node(inode);
2033 if (!delayed_node)
2034 return;
2035
2036 __btrfs_kill_delayed_node(delayed_node);
2037 btrfs_release_delayed_node(delayed_node);
2038 }
2039
btrfs_kill_all_delayed_nodes(struct btrfs_root * root)2040 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
2041 {
2042 unsigned long index = 0;
2043 struct btrfs_delayed_node *delayed_nodes[8];
2044
2045 while (1) {
2046 struct btrfs_delayed_node *node;
2047 int count;
2048
2049 xa_lock(&root->delayed_nodes);
2050 if (xa_empty(&root->delayed_nodes)) {
2051 xa_unlock(&root->delayed_nodes);
2052 return;
2053 }
2054
2055 count = 0;
2056 xa_for_each_start(&root->delayed_nodes, index, node, index) {
2057 /*
2058 * Don't increase refs in case the node is dead and
2059 * about to be removed from the tree in the loop below
2060 */
2061 if (refcount_inc_not_zero(&node->refs)) {
2062 delayed_nodes[count] = node;
2063 count++;
2064 }
2065 if (count >= ARRAY_SIZE(delayed_nodes))
2066 break;
2067 }
2068 xa_unlock(&root->delayed_nodes);
2069 index++;
2070
2071 for (int i = 0; i < count; i++) {
2072 __btrfs_kill_delayed_node(delayed_nodes[i]);
2073 btrfs_release_delayed_node(delayed_nodes[i]);
2074 }
2075 }
2076 }
2077
btrfs_destroy_delayed_inodes(struct btrfs_fs_info * fs_info)2078 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
2079 {
2080 struct btrfs_delayed_node *curr_node, *prev_node;
2081
2082 curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
2083 while (curr_node) {
2084 __btrfs_kill_delayed_node(curr_node);
2085
2086 prev_node = curr_node;
2087 curr_node = btrfs_next_delayed_node(curr_node);
2088 btrfs_release_delayed_node(prev_node);
2089 }
2090 }
2091
btrfs_log_get_delayed_items(struct btrfs_inode * inode,struct list_head * ins_list,struct list_head * del_list)2092 void btrfs_log_get_delayed_items(struct btrfs_inode *inode,
2093 struct list_head *ins_list,
2094 struct list_head *del_list)
2095 {
2096 struct btrfs_delayed_node *node;
2097 struct btrfs_delayed_item *item;
2098
2099 node = btrfs_get_delayed_node(inode);
2100 if (!node)
2101 return;
2102
2103 mutex_lock(&node->mutex);
2104 item = __btrfs_first_delayed_insertion_item(node);
2105 while (item) {
2106 /*
2107 * It's possible that the item is already in a log list. This
2108 * can happen in case two tasks are trying to log the same
2109 * directory. For example if we have tasks A and task B:
2110 *
2111 * Task A collected the delayed items into a log list while
2112 * under the inode's log_mutex (at btrfs_log_inode()), but it
2113 * only releases the items after logging the inodes they point
2114 * to (if they are new inodes), which happens after unlocking
2115 * the log mutex;
2116 *
2117 * Task B enters btrfs_log_inode() and acquires the log_mutex
2118 * of the same directory inode, before task B releases the
2119 * delayed items. This can happen for example when logging some
2120 * inode we need to trigger logging of its parent directory, so
2121 * logging two files that have the same parent directory can
2122 * lead to this.
2123 *
2124 * If this happens, just ignore delayed items already in a log
2125 * list. All the tasks logging the directory are under a log
2126 * transaction and whichever finishes first can not sync the log
2127 * before the other completes and leaves the log transaction.
2128 */
2129 if (!item->logged && list_empty(&item->log_list)) {
2130 refcount_inc(&item->refs);
2131 list_add_tail(&item->log_list, ins_list);
2132 }
2133 item = __btrfs_next_delayed_item(item);
2134 }
2135
2136 item = __btrfs_first_delayed_deletion_item(node);
2137 while (item) {
2138 /* It may be non-empty, for the same reason mentioned above. */
2139 if (!item->logged && list_empty(&item->log_list)) {
2140 refcount_inc(&item->refs);
2141 list_add_tail(&item->log_list, del_list);
2142 }
2143 item = __btrfs_next_delayed_item(item);
2144 }
2145 mutex_unlock(&node->mutex);
2146
2147 /*
2148 * We are called during inode logging, which means the inode is in use
2149 * and can not be evicted before we finish logging the inode. So we never
2150 * have the last reference on the delayed inode.
2151 * Also, we don't use btrfs_release_delayed_node() because that would
2152 * requeue the delayed inode (change its order in the list of prepared
2153 * nodes) and we don't want to do such change because we don't create or
2154 * delete delayed items.
2155 */
2156 ASSERT(refcount_read(&node->refs) > 1);
2157 refcount_dec(&node->refs);
2158 }
2159
btrfs_log_put_delayed_items(struct btrfs_inode * inode,struct list_head * ins_list,struct list_head * del_list)2160 void btrfs_log_put_delayed_items(struct btrfs_inode *inode,
2161 struct list_head *ins_list,
2162 struct list_head *del_list)
2163 {
2164 struct btrfs_delayed_node *node;
2165 struct btrfs_delayed_item *item;
2166 struct btrfs_delayed_item *next;
2167
2168 node = btrfs_get_delayed_node(inode);
2169 if (!node)
2170 return;
2171
2172 mutex_lock(&node->mutex);
2173
2174 list_for_each_entry_safe(item, next, ins_list, log_list) {
2175 item->logged = true;
2176 list_del_init(&item->log_list);
2177 if (refcount_dec_and_test(&item->refs))
2178 kfree(item);
2179 }
2180
2181 list_for_each_entry_safe(item, next, del_list, log_list) {
2182 item->logged = true;
2183 list_del_init(&item->log_list);
2184 if (refcount_dec_and_test(&item->refs))
2185 kfree(item);
2186 }
2187
2188 mutex_unlock(&node->mutex);
2189
2190 /*
2191 * We are called during inode logging, which means the inode is in use
2192 * and can not be evicted before we finish logging the inode. So we never
2193 * have the last reference on the delayed inode.
2194 * Also, we don't use btrfs_release_delayed_node() because that would
2195 * requeue the delayed inode (change its order in the list of prepared
2196 * nodes) and we don't want to do such change because we don't create or
2197 * delete delayed items.
2198 */
2199 ASSERT(refcount_read(&node->refs) > 1);
2200 refcount_dec(&node->refs);
2201 }
2202