1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Red Hat. All rights reserved. 4 */ 5 6 #include <linux/init.h> 7 #include <linux/fs.h> 8 #include <linux/slab.h> 9 #include <linux/rwsem.h> 10 #include <linux/xattr.h> 11 #include <linux/security.h> 12 #include <linux/posix_acl_xattr.h> 13 #include <linux/iversion.h> 14 #include <linux/sched/mm.h> 15 #include "ctree.h" 16 #include "fs.h" 17 #include "messages.h" 18 #include "btrfs_inode.h" 19 #include "transaction.h" 20 #include "xattr.h" 21 #include "disk-io.h" 22 #include "props.h" 23 #include "locking.h" 24 #include "accessors.h" 25 #include "dir-item.h" 26 27 int btrfs_getxattr(const struct inode *inode, const char *name, 28 void *buffer, size_t size) 29 { 30 struct btrfs_dir_item *di; 31 struct btrfs_root *root = BTRFS_I(inode)->root; 32 BTRFS_PATH_AUTO_FREE(path); 33 struct extent_buffer *leaf; 34 unsigned long data_ptr; 35 36 path = btrfs_alloc_path(); 37 if (!path) 38 return -ENOMEM; 39 40 /* lookup the xattr by name */ 41 di = btrfs_lookup_xattr(NULL, root, path, btrfs_ino(BTRFS_I(inode)), 42 name, strlen(name), 0); 43 if (!di) 44 return -ENODATA; 45 if (IS_ERR(di)) 46 return PTR_ERR(di); 47 48 leaf = path->nodes[0]; 49 /* if size is 0, that means we want the size of the attr */ 50 if (!size) 51 return btrfs_dir_data_len(leaf, di); 52 53 /* now get the data out of our dir_item */ 54 if (btrfs_dir_data_len(leaf, di) > size) 55 return -ERANGE; 56 57 /* 58 * The way things are packed into the leaf is like this 59 * |struct btrfs_dir_item|name|data| 60 * where name is the xattr name, so security.foo, and data is the 61 * content of the xattr. data_ptr points to the location in memory 62 * where the data starts in the in memory leaf 63 */ 64 data_ptr = (unsigned long)((char *)(di + 1) + 65 btrfs_dir_name_len(leaf, di)); 66 read_extent_buffer(leaf, buffer, data_ptr, 67 btrfs_dir_data_len(leaf, di)); 68 return btrfs_dir_data_len(leaf, di); 69 } 70 71 int btrfs_setxattr(struct btrfs_trans_handle *trans, struct inode *inode, 72 const char *name, const void *value, size_t size, int flags) 73 { 74 struct btrfs_dir_item *di = NULL; 75 struct btrfs_root *root = BTRFS_I(inode)->root; 76 BTRFS_PATH_AUTO_FREE(path); 77 size_t name_len = strlen(name); 78 int ret = 0; 79 80 ASSERT(trans); 81 82 if (name_len + size > BTRFS_MAX_XATTR_SIZE(root->fs_info)) 83 return -ENOSPC; 84 85 path = btrfs_alloc_path(); 86 if (!path) 87 return -ENOMEM; 88 path->skip_release_on_error = true; 89 90 if (!value) { 91 di = btrfs_lookup_xattr(trans, root, path, 92 btrfs_ino(BTRFS_I(inode)), name, name_len, -1); 93 if (!di && (flags & XATTR_REPLACE)) 94 ret = -ENODATA; 95 else if (IS_ERR(di)) 96 ret = PTR_ERR(di); 97 else if (di) 98 ret = btrfs_delete_one_dir_name(trans, root, path, di); 99 goto out; 100 } 101 102 /* 103 * For a replace we can't just do the insert blindly. 104 * Do a lookup first (read-only btrfs_search_slot), and return if xattr 105 * doesn't exist. If it exists, fall down below to the insert/replace 106 * path - we can't race with a concurrent xattr delete, because the VFS 107 * locks the inode's i_mutex before calling setxattr or removexattr. 108 */ 109 if (flags & XATTR_REPLACE) { 110 btrfs_assert_inode_locked(BTRFS_I(inode)); 111 di = btrfs_lookup_xattr(NULL, root, path, 112 btrfs_ino(BTRFS_I(inode)), name, name_len, 0); 113 if (!di) 114 ret = -ENODATA; 115 else if (IS_ERR(di)) 116 ret = PTR_ERR(di); 117 if (ret) 118 goto out; 119 btrfs_release_path(path); 120 di = NULL; 121 } 122 123 ret = btrfs_insert_xattr_item(trans, root, path, btrfs_ino(BTRFS_I(inode)), 124 name, name_len, value, size); 125 if (ret == -EOVERFLOW) { 126 /* 127 * We have an existing item in a leaf, split_leaf couldn't 128 * expand it. That item might have or not a dir_item that 129 * matches our target xattr, so lets check. 130 */ 131 ret = 0; 132 btrfs_assert_tree_write_locked(path->nodes[0]); 133 di = btrfs_match_dir_item_name(path, name, name_len); 134 if (!di && !(flags & XATTR_REPLACE)) { 135 ret = -ENOSPC; 136 goto out; 137 } 138 } else if (ret == -EEXIST) { 139 ret = 0; 140 di = btrfs_match_dir_item_name(path, name, name_len); 141 ASSERT(di); /* logic error */ 142 } else if (ret) { 143 goto out; 144 } 145 146 if (di && (flags & XATTR_CREATE)) { 147 ret = -EEXIST; 148 goto out; 149 } 150 151 if (di) { 152 /* 153 * We're doing a replace, and it must be atomic, that is, at 154 * any point in time we have either the old or the new xattr 155 * value in the tree. We don't want readers (getxattr and 156 * listxattrs) to miss a value, this is specially important 157 * for ACLs. 158 */ 159 const int slot = path->slots[0]; 160 struct extent_buffer *leaf = path->nodes[0]; 161 const u16 old_data_len = btrfs_dir_data_len(leaf, di); 162 const u32 item_size = btrfs_item_size(leaf, slot); 163 const u32 data_size = sizeof(*di) + name_len + size; 164 unsigned long data_ptr; 165 char *ptr; 166 167 if (size > old_data_len) { 168 if (btrfs_leaf_free_space(leaf) < 169 (size - old_data_len)) { 170 ret = -ENOSPC; 171 goto out; 172 } 173 } 174 175 if (old_data_len + name_len + sizeof(*di) == item_size) { 176 /* No other xattrs packed in the same leaf item. */ 177 if (size > old_data_len) 178 btrfs_extend_item(trans, path, size - old_data_len); 179 else if (size < old_data_len) 180 btrfs_truncate_item(trans, path, data_size, 1); 181 } else { 182 /* There are other xattrs packed in the same item. */ 183 ret = btrfs_delete_one_dir_name(trans, root, path, di); 184 if (ret) 185 goto out; 186 btrfs_extend_item(trans, path, data_size); 187 } 188 189 ptr = btrfs_item_ptr(leaf, slot, char); 190 ptr += btrfs_item_size(leaf, slot) - data_size; 191 di = (struct btrfs_dir_item *)ptr; 192 btrfs_set_dir_data_len(leaf, di, size); 193 data_ptr = ((unsigned long)(di + 1)) + name_len; 194 write_extent_buffer(leaf, value, data_ptr, size); 195 } else { 196 /* 197 * Insert, and we had space for the xattr, so path->slots[0] is 198 * where our xattr dir_item is and btrfs_insert_xattr_item() 199 * filled it. 200 */ 201 } 202 out: 203 if (!ret) { 204 set_bit(BTRFS_INODE_COPY_EVERYTHING, 205 &BTRFS_I(inode)->runtime_flags); 206 clear_bit(BTRFS_INODE_NO_XATTRS, &BTRFS_I(inode)->runtime_flags); 207 } 208 return ret; 209 } 210 211 /* 212 * @value: "" makes the attribute to empty, NULL removes it 213 */ 214 int btrfs_setxattr_trans(struct inode *inode, const char *name, 215 const void *value, size_t size, int flags) 216 { 217 struct btrfs_root *root = BTRFS_I(inode)->root; 218 struct btrfs_trans_handle *trans; 219 const bool start_trans = (current->journal_info == NULL); 220 int ret; 221 222 if (start_trans) { 223 /* 224 * 1 unit for inserting/updating/deleting the xattr 225 * 1 unit for the inode item update 226 */ 227 trans = btrfs_start_transaction(root, 2); 228 if (IS_ERR(trans)) 229 return PTR_ERR(trans); 230 } else { 231 /* 232 * This can happen when smack is enabled and a directory is being 233 * created. It happens through d_instantiate_new(), which calls 234 * smack_d_instantiate(), which in turn calls __vfs_setxattr() to 235 * set the transmute xattr (XATTR_NAME_SMACKTRANSMUTE) on the 236 * inode. We have already reserved space for the xattr and inode 237 * update at btrfs_mkdir(), so just use the transaction handle. 238 * We don't join or start a transaction, as that will reset the 239 * block_rsv of the handle and trigger a warning for the start 240 * case. 241 */ 242 ASSERT(strncmp(name, XATTR_SECURITY_PREFIX, 243 XATTR_SECURITY_PREFIX_LEN) == 0); 244 trans = current->journal_info; 245 } 246 247 ret = btrfs_setxattr(trans, inode, name, value, size, flags); 248 if (ret) 249 goto out; 250 251 inode_inc_iversion(inode); 252 inode_set_ctime_current(inode); 253 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 254 if (ret) 255 btrfs_abort_transaction(trans, ret); 256 out: 257 if (start_trans) 258 btrfs_end_transaction(trans); 259 return ret; 260 } 261 262 ssize_t btrfs_listxattr(struct dentry *dentry, char *buffer, size_t size) 263 { 264 struct btrfs_key found_key; 265 struct btrfs_key key; 266 struct inode *inode = d_inode(dentry); 267 struct btrfs_root *root = BTRFS_I(inode)->root; 268 BTRFS_PATH_AUTO_FREE(path); 269 int iter_ret = 0; 270 int ret = 0; 271 size_t total_size = 0, size_left = size; 272 273 /* 274 * ok we want all objects associated with this id. 275 * NOTE: we set key.offset = 0; because we want to start with the 276 * first xattr that we find and walk forward 277 */ 278 key.objectid = btrfs_ino(BTRFS_I(inode)); 279 key.type = BTRFS_XATTR_ITEM_KEY; 280 key.offset = 0; 281 282 path = btrfs_alloc_path(); 283 if (!path) 284 return -ENOMEM; 285 path->reada = READA_FORWARD; 286 287 /* search for our xattrs */ 288 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 289 struct extent_buffer *leaf; 290 int slot; 291 struct btrfs_dir_item *di; 292 u32 item_size; 293 u32 cur; 294 295 leaf = path->nodes[0]; 296 slot = path->slots[0]; 297 298 /* check to make sure this item is what we want */ 299 if (found_key.objectid != key.objectid) 300 break; 301 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 302 break; 303 if (found_key.type < BTRFS_XATTR_ITEM_KEY) 304 continue; 305 306 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 307 item_size = btrfs_item_size(leaf, slot); 308 cur = 0; 309 while (cur < item_size) { 310 u16 name_len = btrfs_dir_name_len(leaf, di); 311 u16 data_len = btrfs_dir_data_len(leaf, di); 312 u32 this_len = sizeof(*di) + name_len + data_len; 313 unsigned long name_ptr = (unsigned long)(di + 1); 314 315 total_size += name_len + 1; 316 /* 317 * We are just looking for how big our buffer needs to 318 * be. 319 */ 320 if (!size) 321 goto next; 322 323 if (!buffer || (name_len + 1) > size_left) { 324 iter_ret = -ERANGE; 325 break; 326 } 327 328 read_extent_buffer(leaf, buffer, name_ptr, name_len); 329 buffer[name_len] = '\0'; 330 331 size_left -= name_len + 1; 332 buffer += name_len + 1; 333 next: 334 cur += this_len; 335 di = (struct btrfs_dir_item *)((char *)di + this_len); 336 } 337 } 338 339 if (iter_ret < 0) 340 ret = iter_ret; 341 else 342 ret = total_size; 343 344 return ret; 345 } 346 347 static int btrfs_xattr_handler_get(const struct xattr_handler *handler, 348 struct dentry *unused, struct inode *inode, 349 const char *name, void *buffer, size_t size) 350 { 351 name = xattr_full_name(handler, name); 352 return btrfs_getxattr(inode, name, buffer, size); 353 } 354 355 static int btrfs_xattr_handler_set(const struct xattr_handler *handler, 356 struct mnt_idmap *idmap, 357 struct dentry *unused, struct inode *inode, 358 const char *name, const void *buffer, 359 size_t size, int flags) 360 { 361 if (btrfs_root_readonly(BTRFS_I(inode)->root)) 362 return -EROFS; 363 364 name = xattr_full_name(handler, name); 365 return btrfs_setxattr_trans(inode, name, buffer, size, flags); 366 } 367 368 static int btrfs_xattr_handler_get_security(const struct xattr_handler *handler, 369 struct dentry *unused, 370 struct inode *inode, 371 const char *name, void *buffer, 372 size_t size) 373 { 374 int ret; 375 bool is_cap = false; 376 377 name = xattr_full_name(handler, name); 378 379 /* 380 * security.capability doesn't cache the results, so calls into us 381 * constantly to see if there's a capability xattr. Cache the result 382 * here in order to avoid wasting time doing lookups for xattrs we know 383 * don't exist. 384 */ 385 if (strcmp(name, XATTR_NAME_CAPS) == 0) { 386 is_cap = true; 387 if (test_bit(BTRFS_INODE_NO_CAP_XATTR, &BTRFS_I(inode)->runtime_flags)) 388 return -ENODATA; 389 } 390 391 ret = btrfs_getxattr(inode, name, buffer, size); 392 if (ret == -ENODATA && is_cap) 393 set_bit(BTRFS_INODE_NO_CAP_XATTR, &BTRFS_I(inode)->runtime_flags); 394 return ret; 395 } 396 397 static int btrfs_xattr_handler_set_security(const struct xattr_handler *handler, 398 struct mnt_idmap *idmap, 399 struct dentry *unused, 400 struct inode *inode, 401 const char *name, 402 const void *buffer, 403 size_t size, int flags) 404 { 405 if (btrfs_root_readonly(BTRFS_I(inode)->root)) 406 return -EROFS; 407 408 name = xattr_full_name(handler, name); 409 if (strcmp(name, XATTR_NAME_CAPS) == 0) 410 clear_bit(BTRFS_INODE_NO_CAP_XATTR, &BTRFS_I(inode)->runtime_flags); 411 412 return btrfs_setxattr_trans(inode, name, buffer, size, flags); 413 } 414 415 static int btrfs_xattr_handler_set_prop(const struct xattr_handler *handler, 416 struct mnt_idmap *idmap, 417 struct dentry *unused, struct inode *inode, 418 const char *name, const void *value, 419 size_t size, int flags) 420 { 421 int ret; 422 struct btrfs_trans_handle *trans; 423 struct btrfs_root *root = BTRFS_I(inode)->root; 424 425 name = xattr_full_name(handler, name); 426 ret = btrfs_validate_prop(BTRFS_I(inode), name, value, size); 427 if (ret) 428 return ret; 429 430 if (btrfs_ignore_prop(BTRFS_I(inode), name)) 431 return 0; 432 433 trans = btrfs_start_transaction(root, 2); 434 if (IS_ERR(trans)) 435 return PTR_ERR(trans); 436 437 ret = btrfs_set_prop(trans, BTRFS_I(inode), name, value, size, flags); 438 if (!ret) { 439 inode_inc_iversion(inode); 440 inode_set_ctime_current(inode); 441 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 442 if (ret) 443 btrfs_abort_transaction(trans, ret); 444 } 445 446 btrfs_end_transaction(trans); 447 448 return ret; 449 } 450 451 static const struct xattr_handler btrfs_security_xattr_handler = { 452 .prefix = XATTR_SECURITY_PREFIX, 453 .get = btrfs_xattr_handler_get_security, 454 .set = btrfs_xattr_handler_set_security, 455 }; 456 457 static const struct xattr_handler btrfs_trusted_xattr_handler = { 458 .prefix = XATTR_TRUSTED_PREFIX, 459 .get = btrfs_xattr_handler_get, 460 .set = btrfs_xattr_handler_set, 461 }; 462 463 static const struct xattr_handler btrfs_user_xattr_handler = { 464 .prefix = XATTR_USER_PREFIX, 465 .get = btrfs_xattr_handler_get, 466 .set = btrfs_xattr_handler_set, 467 }; 468 469 static const struct xattr_handler btrfs_btrfs_xattr_handler = { 470 .prefix = XATTR_BTRFS_PREFIX, 471 .get = btrfs_xattr_handler_get, 472 .set = btrfs_xattr_handler_set_prop, 473 }; 474 475 const struct xattr_handler * const btrfs_xattr_handlers[] = { 476 &btrfs_security_xattr_handler, 477 &btrfs_trusted_xattr_handler, 478 &btrfs_user_xattr_handler, 479 &btrfs_btrfs_xattr_handler, 480 NULL, 481 }; 482 483 static int btrfs_initxattrs(struct inode *inode, 484 const struct xattr *xattr_array, void *fs_private) 485 { 486 struct btrfs_trans_handle *trans = fs_private; 487 const struct xattr *xattr; 488 unsigned int nofs_flag; 489 char *name; 490 int ret = 0; 491 492 /* 493 * We're holding a transaction handle, so use a NOFS memory allocation 494 * context to avoid deadlock if reclaim happens. 495 */ 496 nofs_flag = memalloc_nofs_save(); 497 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 498 const size_t name_len = XATTR_SECURITY_PREFIX_LEN + 499 strlen(xattr->name) + 1; 500 501 name = kmalloc(name_len, GFP_KERNEL); 502 if (!name) { 503 ret = -ENOMEM; 504 break; 505 } 506 scnprintf(name, name_len, "%s%s", XATTR_SECURITY_PREFIX, xattr->name); 507 508 if (strcmp(name, XATTR_NAME_CAPS) == 0) 509 clear_bit(BTRFS_INODE_NO_CAP_XATTR, &BTRFS_I(inode)->runtime_flags); 510 511 ret = btrfs_setxattr(trans, inode, name, xattr->value, 512 xattr->value_len, 0); 513 kfree(name); 514 if (ret < 0) 515 break; 516 } 517 memalloc_nofs_restore(nofs_flag); 518 return ret; 519 } 520 521 int btrfs_xattr_security_init(struct btrfs_trans_handle *trans, 522 struct inode *inode, struct inode *dir, 523 const struct qstr *qstr) 524 { 525 return security_inode_init_security(inode, dir, qstr, 526 &btrfs_initxattrs, trans); 527 } 528