1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007,2008 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
9 #include <linux/mm.h>
10 #include <linux/error-injection.h>
11 #include "messages.h"
12 #include "ctree.h"
13 #include "disk-io.h"
14 #include "transaction.h"
15 #include "print-tree.h"
16 #include "locking.h"
17 #include "volumes.h"
18 #include "qgroup.h"
19 #include "tree-mod-log.h"
20 #include "tree-checker.h"
21 #include "fs.h"
22 #include "accessors.h"
23 #include "extent-tree.h"
24 #include "relocation.h"
25 #include "file-item.h"
26
27 static struct kmem_cache *btrfs_path_cachep;
28
29 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
30 *root, struct btrfs_path *path, int level);
31 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
32 const struct btrfs_key *ins_key, struct btrfs_path *path,
33 int data_size, bool extend);
34 static int push_node_left(struct btrfs_trans_handle *trans,
35 struct extent_buffer *dst,
36 struct extent_buffer *src, bool empty);
37 static int balance_node_right(struct btrfs_trans_handle *trans,
38 struct extent_buffer *dst_buf,
39 struct extent_buffer *src_buf);
40 /*
41 * The leaf data grows from end-to-front in the node. this returns the address
42 * of the start of the last item, which is the stop of the leaf data stack.
43 */
leaf_data_end(const struct extent_buffer * leaf)44 static unsigned int leaf_data_end(const struct extent_buffer *leaf)
45 {
46 u32 nr = btrfs_header_nritems(leaf);
47
48 if (nr == 0)
49 return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
50 return btrfs_item_offset(leaf, nr - 1);
51 }
52
53 /*
54 * Move data in a @leaf (using memmove, safe for overlapping ranges).
55 *
56 * @leaf: leaf that we're doing a memmove on
57 * @dst_offset: item data offset we're moving to
58 * @src_offset: item data offset were' moving from
59 * @len: length of the data we're moving
60 *
61 * Wrapper around memmove_extent_buffer() that takes into account the header on
62 * the leaf. The btrfs_item offset's start directly after the header, so we
63 * have to adjust any offsets to account for the header in the leaf. This
64 * handles that math to simplify the callers.
65 */
memmove_leaf_data(const struct extent_buffer * leaf,unsigned long dst_offset,unsigned long src_offset,unsigned long len)66 static inline void memmove_leaf_data(const struct extent_buffer *leaf,
67 unsigned long dst_offset,
68 unsigned long src_offset,
69 unsigned long len)
70 {
71 memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, 0) + dst_offset,
72 btrfs_item_nr_offset(leaf, 0) + src_offset, len);
73 }
74
75 /*
76 * Copy item data from @src into @dst at the given @offset.
77 *
78 * @dst: destination leaf that we're copying into
79 * @src: source leaf that we're copying from
80 * @dst_offset: item data offset we're copying to
81 * @src_offset: item data offset were' copying from
82 * @len: length of the data we're copying
83 *
84 * Wrapper around copy_extent_buffer() that takes into account the header on
85 * the leaf. The btrfs_item offset's start directly after the header, so we
86 * have to adjust any offsets to account for the header in the leaf. This
87 * handles that math to simplify the callers.
88 */
copy_leaf_data(const struct extent_buffer * dst,const struct extent_buffer * src,unsigned long dst_offset,unsigned long src_offset,unsigned long len)89 static inline void copy_leaf_data(const struct extent_buffer *dst,
90 const struct extent_buffer *src,
91 unsigned long dst_offset,
92 unsigned long src_offset, unsigned long len)
93 {
94 copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, 0) + dst_offset,
95 btrfs_item_nr_offset(src, 0) + src_offset, len);
96 }
97
98 /*
99 * Move items in a @leaf (using memmove).
100 *
101 * @dst: destination leaf for the items
102 * @dst_item: the item nr we're copying into
103 * @src_item: the item nr we're copying from
104 * @nr_items: the number of items to copy
105 *
106 * Wrapper around memmove_extent_buffer() that does the math to get the
107 * appropriate offsets into the leaf from the item numbers.
108 */
memmove_leaf_items(const struct extent_buffer * leaf,int dst_item,int src_item,int nr_items)109 static inline void memmove_leaf_items(const struct extent_buffer *leaf,
110 int dst_item, int src_item, int nr_items)
111 {
112 memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, dst_item),
113 btrfs_item_nr_offset(leaf, src_item),
114 nr_items * sizeof(struct btrfs_item));
115 }
116
117 /*
118 * Copy items from @src into @dst at the given @offset.
119 *
120 * @dst: destination leaf for the items
121 * @src: source leaf for the items
122 * @dst_item: the item nr we're copying into
123 * @src_item: the item nr we're copying from
124 * @nr_items: the number of items to copy
125 *
126 * Wrapper around copy_extent_buffer() that does the math to get the
127 * appropriate offsets into the leaf from the item numbers.
128 */
copy_leaf_items(const struct extent_buffer * dst,const struct extent_buffer * src,int dst_item,int src_item,int nr_items)129 static inline void copy_leaf_items(const struct extent_buffer *dst,
130 const struct extent_buffer *src,
131 int dst_item, int src_item, int nr_items)
132 {
133 copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, dst_item),
134 btrfs_item_nr_offset(src, src_item),
135 nr_items * sizeof(struct btrfs_item));
136 }
137
btrfs_alloc_path(void)138 struct btrfs_path *btrfs_alloc_path(void)
139 {
140 might_sleep();
141
142 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
143 }
144
145 /* this also releases the path */
btrfs_free_path(struct btrfs_path * p)146 void btrfs_free_path(struct btrfs_path *p)
147 {
148 if (!p)
149 return;
150 btrfs_release_path(p);
151 kmem_cache_free(btrfs_path_cachep, p);
152 }
153
154 /*
155 * path release drops references on the extent buffers in the path
156 * and it drops any locks held by this path
157 *
158 * It is safe to call this on paths that no locks or extent buffers held.
159 */
btrfs_release_path(struct btrfs_path * p)160 noinline void btrfs_release_path(struct btrfs_path *p)
161 {
162 int i;
163
164 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
165 p->slots[i] = 0;
166 if (!p->nodes[i])
167 continue;
168 if (p->locks[i]) {
169 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
170 p->locks[i] = 0;
171 }
172 free_extent_buffer(p->nodes[i]);
173 p->nodes[i] = NULL;
174 }
175 }
176
177 /*
178 * safely gets a reference on the root node of a tree. A lock
179 * is not taken, so a concurrent writer may put a different node
180 * at the root of the tree. See btrfs_lock_root_node for the
181 * looping required.
182 *
183 * The extent buffer returned by this has a reference taken, so
184 * it won't disappear. It may stop being the root of the tree
185 * at any time because there are no locks held.
186 */
btrfs_root_node(struct btrfs_root * root)187 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
188 {
189 struct extent_buffer *eb;
190
191 while (1) {
192 rcu_read_lock();
193 eb = rcu_dereference(root->node);
194
195 /*
196 * RCU really hurts here, we could free up the root node because
197 * it was COWed but we may not get the new root node yet so do
198 * the inc_not_zero dance and if it doesn't work then
199 * synchronize_rcu and try again.
200 */
201 if (refcount_inc_not_zero(&eb->refs)) {
202 rcu_read_unlock();
203 break;
204 }
205 rcu_read_unlock();
206 synchronize_rcu();
207 }
208 return eb;
209 }
210
211 /*
212 * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
213 * just get put onto a simple dirty list. Transaction walks this list to make
214 * sure they get properly updated on disk.
215 */
add_root_to_dirty_list(struct btrfs_root * root)216 static void add_root_to_dirty_list(struct btrfs_root *root)
217 {
218 struct btrfs_fs_info *fs_info = root->fs_info;
219
220 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
221 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
222 return;
223
224 spin_lock(&fs_info->trans_lock);
225 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
226 /* Want the extent tree to be the last on the list */
227 if (btrfs_root_id(root) == BTRFS_EXTENT_TREE_OBJECTID)
228 list_move_tail(&root->dirty_list,
229 &fs_info->dirty_cowonly_roots);
230 else
231 list_move(&root->dirty_list,
232 &fs_info->dirty_cowonly_roots);
233 }
234 spin_unlock(&fs_info->trans_lock);
235 }
236
237 /*
238 * used by snapshot creation to make a copy of a root for a tree with
239 * a given objectid. The buffer with the new root node is returned in
240 * cow_ret, and this func returns zero on success or a negative error code.
241 */
btrfs_copy_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer ** cow_ret,u64 new_root_objectid)242 int btrfs_copy_root(struct btrfs_trans_handle *trans,
243 struct btrfs_root *root,
244 struct extent_buffer *buf,
245 struct extent_buffer **cow_ret, u64 new_root_objectid)
246 {
247 struct btrfs_fs_info *fs_info = root->fs_info;
248 struct extent_buffer *cow;
249 int ret = 0;
250 int level;
251 struct btrfs_disk_key disk_key;
252 u64 reloc_src_root = 0;
253
254 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
255 trans->transid != fs_info->running_transaction->transid);
256 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
257 trans->transid != btrfs_get_root_last_trans(root));
258
259 level = btrfs_header_level(buf);
260 if (level == 0)
261 btrfs_item_key(buf, &disk_key, 0);
262 else
263 btrfs_node_key(buf, &disk_key, 0);
264
265 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
266 reloc_src_root = btrfs_header_owner(buf);
267 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
268 &disk_key, level, buf->start, 0,
269 reloc_src_root, BTRFS_NESTING_NEW_ROOT);
270 if (IS_ERR(cow))
271 return PTR_ERR(cow);
272
273 copy_extent_buffer_full(cow, buf);
274 btrfs_set_header_bytenr(cow, cow->start);
275 btrfs_set_header_generation(cow, trans->transid);
276 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
277 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
278 BTRFS_HEADER_FLAG_RELOC);
279 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
280 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
281 else
282 btrfs_set_header_owner(cow, new_root_objectid);
283
284 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
285
286 if (unlikely(btrfs_header_generation(buf) > trans->transid)) {
287 btrfs_tree_unlock(cow);
288 free_extent_buffer(cow);
289 ret = -EUCLEAN;
290 btrfs_abort_transaction(trans, ret);
291 return ret;
292 }
293
294 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
295 ret = btrfs_inc_ref(trans, root, cow, 1);
296 if (unlikely(ret))
297 btrfs_abort_transaction(trans, ret);
298 } else {
299 ret = btrfs_inc_ref(trans, root, cow, 0);
300 if (unlikely(ret))
301 btrfs_abort_transaction(trans, ret);
302 }
303 if (ret) {
304 btrfs_tree_unlock(cow);
305 free_extent_buffer(cow);
306 return ret;
307 }
308
309 btrfs_mark_buffer_dirty(trans, cow);
310 *cow_ret = cow;
311 return 0;
312 }
313
314 /*
315 * check if the tree block can be shared by multiple trees
316 */
btrfs_block_can_be_shared(const struct btrfs_trans_handle * trans,const struct btrfs_root * root,const struct extent_buffer * buf)317 bool btrfs_block_can_be_shared(const struct btrfs_trans_handle *trans,
318 const struct btrfs_root *root,
319 const struct extent_buffer *buf)
320 {
321 const u64 buf_gen = btrfs_header_generation(buf);
322
323 /*
324 * Tree blocks not in shareable trees and tree roots are never shared.
325 * If a block was allocated after the last snapshot and the block was
326 * not allocated by tree relocation, we know the block is not shared.
327 */
328
329 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
330 return false;
331
332 if (buf == root->node)
333 return false;
334
335 if (buf_gen > btrfs_root_last_snapshot(&root->root_item) &&
336 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))
337 return false;
338
339 if (buf != root->commit_root)
340 return true;
341
342 /*
343 * An extent buffer that used to be the commit root may still be shared
344 * because the tree height may have increased and it became a child of a
345 * higher level root. This can happen when snapshotting a subvolume
346 * created in the current transaction.
347 */
348 if (buf_gen == trans->transid)
349 return true;
350
351 return false;
352 }
353
update_ref_for_cow(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * cow,int * last_ref)354 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
355 struct btrfs_root *root,
356 struct extent_buffer *buf,
357 struct extent_buffer *cow,
358 int *last_ref)
359 {
360 struct btrfs_fs_info *fs_info = root->fs_info;
361 u64 refs;
362 u64 owner;
363 u64 flags;
364 int ret;
365
366 /*
367 * Backrefs update rules:
368 *
369 * Always use full backrefs for extent pointers in tree block
370 * allocated by tree relocation.
371 *
372 * If a shared tree block is no longer referenced by its owner
373 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
374 * use full backrefs for extent pointers in tree block.
375 *
376 * If a tree block is been relocating
377 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
378 * use full backrefs for extent pointers in tree block.
379 * The reason for this is some operations (such as drop tree)
380 * are only allowed for blocks use full backrefs.
381 */
382
383 if (btrfs_block_can_be_shared(trans, root, buf)) {
384 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
385 btrfs_header_level(buf), 1,
386 &refs, &flags, NULL);
387 if (ret)
388 return ret;
389 if (unlikely(refs == 0)) {
390 btrfs_crit(fs_info,
391 "found 0 references for tree block at bytenr %llu level %d root %llu",
392 buf->start, btrfs_header_level(buf),
393 btrfs_root_id(root));
394 ret = -EUCLEAN;
395 btrfs_abort_transaction(trans, ret);
396 return ret;
397 }
398 } else {
399 refs = 1;
400 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID ||
401 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
402 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
403 else
404 flags = 0;
405 }
406
407 owner = btrfs_header_owner(buf);
408 if (unlikely(owner == BTRFS_TREE_RELOC_OBJECTID &&
409 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))) {
410 btrfs_crit(fs_info,
411 "found tree block at bytenr %llu level %d root %llu refs %llu flags %llx without full backref flag set",
412 buf->start, btrfs_header_level(buf),
413 btrfs_root_id(root), refs, flags);
414 ret = -EUCLEAN;
415 btrfs_abort_transaction(trans, ret);
416 return ret;
417 }
418
419 if (refs > 1) {
420 if ((owner == btrfs_root_id(root) ||
421 btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) &&
422 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
423 ret = btrfs_inc_ref(trans, root, buf, 1);
424 if (ret)
425 return ret;
426
427 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) {
428 ret = btrfs_dec_ref(trans, root, buf, 0);
429 if (ret)
430 return ret;
431 ret = btrfs_inc_ref(trans, root, cow, 1);
432 if (ret)
433 return ret;
434 }
435 ret = btrfs_set_disk_extent_flags(trans, buf,
436 BTRFS_BLOCK_FLAG_FULL_BACKREF);
437 if (ret)
438 return ret;
439 } else {
440
441 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
442 ret = btrfs_inc_ref(trans, root, cow, 1);
443 else
444 ret = btrfs_inc_ref(trans, root, cow, 0);
445 if (ret)
446 return ret;
447 }
448 } else {
449 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
450 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
451 ret = btrfs_inc_ref(trans, root, cow, 1);
452 else
453 ret = btrfs_inc_ref(trans, root, cow, 0);
454 if (ret)
455 return ret;
456 ret = btrfs_dec_ref(trans, root, buf, 1);
457 if (ret)
458 return ret;
459 }
460 btrfs_clear_buffer_dirty(trans, buf);
461 *last_ref = 1;
462 }
463 return 0;
464 }
465
466 /*
467 * does the dirty work in cow of a single block. The parent block (if
468 * supplied) is updated to point to the new cow copy. The new buffer is marked
469 * dirty and returned locked. If you modify the block it needs to be marked
470 * dirty again.
471 *
472 * search_start -- an allocation hint for the new block
473 *
474 * empty_size -- a hint that you plan on doing more cow. This is the size in
475 * bytes the allocator should try to find free next to the block it returns.
476 * This is just a hint and may be ignored by the allocator.
477 */
btrfs_force_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * parent,int parent_slot,struct extent_buffer ** cow_ret,u64 search_start,u64 empty_size,enum btrfs_lock_nesting nest)478 int btrfs_force_cow_block(struct btrfs_trans_handle *trans,
479 struct btrfs_root *root,
480 struct extent_buffer *buf,
481 struct extent_buffer *parent, int parent_slot,
482 struct extent_buffer **cow_ret,
483 u64 search_start, u64 empty_size,
484 enum btrfs_lock_nesting nest)
485 {
486 struct btrfs_fs_info *fs_info = root->fs_info;
487 struct btrfs_disk_key disk_key;
488 struct extent_buffer *cow;
489 int level, ret;
490 int last_ref = 0;
491 int unlock_orig = 0;
492 u64 parent_start = 0;
493 u64 reloc_src_root = 0;
494
495 if (*cow_ret == buf)
496 unlock_orig = 1;
497
498 btrfs_assert_tree_write_locked(buf);
499
500 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
501 trans->transid != fs_info->running_transaction->transid);
502 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
503 trans->transid != btrfs_get_root_last_trans(root));
504
505 level = btrfs_header_level(buf);
506
507 if (level == 0)
508 btrfs_item_key(buf, &disk_key, 0);
509 else
510 btrfs_node_key(buf, &disk_key, 0);
511
512 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) {
513 if (parent)
514 parent_start = parent->start;
515 reloc_src_root = btrfs_header_owner(buf);
516 }
517 cow = btrfs_alloc_tree_block(trans, root, parent_start,
518 btrfs_root_id(root), &disk_key, level,
519 search_start, empty_size, reloc_src_root, nest);
520 if (IS_ERR(cow))
521 return PTR_ERR(cow);
522
523 /* cow is set to blocking by btrfs_init_new_buffer */
524
525 copy_extent_buffer_full(cow, buf);
526 btrfs_set_header_bytenr(cow, cow->start);
527 btrfs_set_header_generation(cow, trans->transid);
528 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
529 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
530 BTRFS_HEADER_FLAG_RELOC);
531 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
532 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
533 else
534 btrfs_set_header_owner(cow, btrfs_root_id(root));
535
536 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
537
538 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
539 if (unlikely(ret)) {
540 btrfs_abort_transaction(trans, ret);
541 goto error_unlock_cow;
542 }
543
544 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
545 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
546 if (unlikely(ret)) {
547 btrfs_abort_transaction(trans, ret);
548 goto error_unlock_cow;
549 }
550 }
551
552 if (buf == root->node) {
553 WARN_ON(parent && parent != buf);
554 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID ||
555 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
556 parent_start = buf->start;
557
558 ret = btrfs_tree_mod_log_insert_root(root->node, cow, true);
559 if (unlikely(ret < 0)) {
560 btrfs_abort_transaction(trans, ret);
561 goto error_unlock_cow;
562 }
563 refcount_inc(&cow->refs);
564 rcu_assign_pointer(root->node, cow);
565
566 ret = btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
567 parent_start, last_ref);
568 free_extent_buffer(buf);
569 add_root_to_dirty_list(root);
570 if (unlikely(ret < 0)) {
571 btrfs_abort_transaction(trans, ret);
572 goto error_unlock_cow;
573 }
574 } else {
575 WARN_ON(trans->transid != btrfs_header_generation(parent));
576 ret = btrfs_tree_mod_log_insert_key(parent, parent_slot,
577 BTRFS_MOD_LOG_KEY_REPLACE);
578 if (unlikely(ret)) {
579 btrfs_abort_transaction(trans, ret);
580 goto error_unlock_cow;
581 }
582 btrfs_set_node_blockptr(parent, parent_slot,
583 cow->start);
584 btrfs_set_node_ptr_generation(parent, parent_slot,
585 trans->transid);
586 btrfs_mark_buffer_dirty(trans, parent);
587 if (last_ref) {
588 ret = btrfs_tree_mod_log_free_eb(buf);
589 if (unlikely(ret)) {
590 btrfs_abort_transaction(trans, ret);
591 goto error_unlock_cow;
592 }
593 }
594 ret = btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
595 parent_start, last_ref);
596 if (unlikely(ret < 0)) {
597 btrfs_abort_transaction(trans, ret);
598 goto error_unlock_cow;
599 }
600 }
601
602 trace_btrfs_cow_block(root, buf, cow);
603 if (unlock_orig)
604 btrfs_tree_unlock(buf);
605 free_extent_buffer_stale(buf);
606 btrfs_mark_buffer_dirty(trans, cow);
607 *cow_ret = cow;
608 return 0;
609
610 error_unlock_cow:
611 btrfs_tree_unlock(cow);
612 free_extent_buffer(cow);
613 return ret;
614 }
615
should_cow_block(const struct btrfs_trans_handle * trans,const struct btrfs_root * root,const struct extent_buffer * buf)616 static inline bool should_cow_block(const struct btrfs_trans_handle *trans,
617 const struct btrfs_root *root,
618 const struct extent_buffer *buf)
619 {
620 if (btrfs_is_testing(root->fs_info))
621 return false;
622
623 /*
624 * We do not need to cow a block if
625 * 1) this block is not created or changed in this transaction;
626 * 2) this block does not belong to TREE_RELOC tree;
627 * 3) the root is not forced COW.
628 *
629 * What is forced COW:
630 * when we create snapshot during committing the transaction,
631 * after we've finished copying src root, we must COW the shared
632 * block to ensure the metadata consistency.
633 */
634
635 if (btrfs_header_generation(buf) != trans->transid)
636 return true;
637
638 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN))
639 return true;
640
641 /* Ensure we can see the FORCE_COW bit. */
642 smp_mb__before_atomic();
643 if (test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
644 return true;
645
646 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
647 return false;
648
649 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))
650 return true;
651
652 return false;
653 }
654
655 /*
656 * COWs a single block, see btrfs_force_cow_block() for the real work.
657 * This version of it has extra checks so that a block isn't COWed more than
658 * once per transaction, as long as it hasn't been written yet
659 */
btrfs_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * parent,int parent_slot,struct extent_buffer ** cow_ret,enum btrfs_lock_nesting nest)660 int btrfs_cow_block(struct btrfs_trans_handle *trans,
661 struct btrfs_root *root, struct extent_buffer *buf,
662 struct extent_buffer *parent, int parent_slot,
663 struct extent_buffer **cow_ret,
664 enum btrfs_lock_nesting nest)
665 {
666 struct btrfs_fs_info *fs_info = root->fs_info;
667 u64 search_start;
668
669 if (unlikely(test_bit(BTRFS_ROOT_DELETING, &root->state))) {
670 btrfs_abort_transaction(trans, -EUCLEAN);
671 btrfs_crit(fs_info,
672 "attempt to COW block %llu on root %llu that is being deleted",
673 buf->start, btrfs_root_id(root));
674 return -EUCLEAN;
675 }
676
677 /*
678 * COWing must happen through a running transaction, which always
679 * matches the current fs generation (it's a transaction with a state
680 * less than TRANS_STATE_UNBLOCKED). If it doesn't, then turn the fs
681 * into error state to prevent the commit of any transaction.
682 */
683 if (unlikely(trans->transaction != fs_info->running_transaction ||
684 trans->transid != fs_info->generation)) {
685 btrfs_abort_transaction(trans, -EUCLEAN);
686 btrfs_crit(fs_info,
687 "unexpected transaction when attempting to COW block %llu on root %llu, transaction %llu running transaction %llu fs generation %llu",
688 buf->start, btrfs_root_id(root), trans->transid,
689 fs_info->running_transaction->transid,
690 fs_info->generation);
691 return -EUCLEAN;
692 }
693
694 if (!should_cow_block(trans, root, buf)) {
695 *cow_ret = buf;
696 return 0;
697 }
698
699 search_start = round_down(buf->start, SZ_1G);
700
701 /*
702 * Before CoWing this block for later modification, check if it's
703 * the subtree root and do the delayed subtree trace if needed.
704 *
705 * Also We don't care about the error, as it's handled internally.
706 */
707 btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
708 return btrfs_force_cow_block(trans, root, buf, parent, parent_slot,
709 cow_ret, search_start, 0, nest);
710 }
711 ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);
712
713 /*
714 * same as comp_keys only with two btrfs_key's
715 */
btrfs_comp_cpu_keys(const struct btrfs_key * k1,const struct btrfs_key * k2)716 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
717 {
718 if (k1->objectid > k2->objectid)
719 return 1;
720 if (k1->objectid < k2->objectid)
721 return -1;
722 if (k1->type > k2->type)
723 return 1;
724 if (k1->type < k2->type)
725 return -1;
726 if (k1->offset > k2->offset)
727 return 1;
728 if (k1->offset < k2->offset)
729 return -1;
730 return 0;
731 }
732
733 /*
734 * Search for a key in the given extent_buffer.
735 *
736 * The lower boundary for the search is specified by the slot number @first_slot.
737 * Use a value of 0 to search over the whole extent buffer. Works for both
738 * leaves and nodes.
739 *
740 * The slot in the extent buffer is returned via @slot. If the key exists in the
741 * extent buffer, then @slot will point to the slot where the key is, otherwise
742 * it points to the slot where you would insert the key.
743 *
744 * Slot may point to the total number of items (i.e. one position beyond the last
745 * key) if the key is bigger than the last key in the extent buffer.
746 */
btrfs_bin_search(const struct extent_buffer * eb,int first_slot,const struct btrfs_key * key,int * slot)747 int btrfs_bin_search(const struct extent_buffer *eb, int first_slot,
748 const struct btrfs_key *key, int *slot)
749 {
750 unsigned long p;
751 int item_size;
752 /*
753 * Use unsigned types for the low and high slots, so that we get a more
754 * efficient division in the search loop below.
755 */
756 u32 low = first_slot;
757 u32 high = btrfs_header_nritems(eb);
758 int ret;
759 const int key_size = sizeof(struct btrfs_disk_key);
760
761 if (unlikely(low > high)) {
762 btrfs_err(eb->fs_info,
763 "%s: low (%u) > high (%u) eb %llu owner %llu level %d",
764 __func__, low, high, eb->start,
765 btrfs_header_owner(eb), btrfs_header_level(eb));
766 return -EINVAL;
767 }
768
769 if (btrfs_header_level(eb) == 0) {
770 p = offsetof(struct btrfs_leaf, items);
771 item_size = sizeof(struct btrfs_item);
772 } else {
773 p = offsetof(struct btrfs_node, ptrs);
774 item_size = sizeof(struct btrfs_key_ptr);
775 }
776
777 while (low < high) {
778 const int unit_size = eb->folio_size;
779 unsigned long oil;
780 unsigned long offset;
781 struct btrfs_disk_key *tmp;
782 struct btrfs_disk_key unaligned;
783 int mid;
784
785 mid = (low + high) / 2;
786 offset = p + mid * item_size;
787 oil = get_eb_offset_in_folio(eb, offset);
788
789 if (oil + key_size <= unit_size) {
790 const unsigned long idx = get_eb_folio_index(eb, offset);
791 char *kaddr = folio_address(eb->folios[idx]);
792
793 oil = get_eb_offset_in_folio(eb, offset);
794 tmp = (struct btrfs_disk_key *)(kaddr + oil);
795 } else {
796 read_extent_buffer(eb, &unaligned, offset, key_size);
797 tmp = &unaligned;
798 }
799
800 ret = btrfs_comp_keys(tmp, key);
801
802 if (ret < 0)
803 low = mid + 1;
804 else if (ret > 0)
805 high = mid;
806 else {
807 *slot = mid;
808 return 0;
809 }
810 }
811 *slot = low;
812 return 1;
813 }
814
root_add_used_bytes(struct btrfs_root * root)815 static void root_add_used_bytes(struct btrfs_root *root)
816 {
817 spin_lock(&root->accounting_lock);
818 btrfs_set_root_used(&root->root_item,
819 btrfs_root_used(&root->root_item) + root->fs_info->nodesize);
820 spin_unlock(&root->accounting_lock);
821 }
822
root_sub_used_bytes(struct btrfs_root * root)823 static void root_sub_used_bytes(struct btrfs_root *root)
824 {
825 spin_lock(&root->accounting_lock);
826 btrfs_set_root_used(&root->root_item,
827 btrfs_root_used(&root->root_item) - root->fs_info->nodesize);
828 spin_unlock(&root->accounting_lock);
829 }
830
831 /* given a node and slot number, this reads the blocks it points to. The
832 * extent buffer is returned with a reference taken (but unlocked).
833 */
btrfs_read_node_slot(struct extent_buffer * parent,int slot)834 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
835 int slot)
836 {
837 int level = btrfs_header_level(parent);
838 struct btrfs_tree_parent_check check = { 0 };
839 struct extent_buffer *eb;
840
841 if (slot < 0 || slot >= btrfs_header_nritems(parent))
842 return ERR_PTR(-ENOENT);
843
844 ASSERT(level);
845
846 check.level = level - 1;
847 check.transid = btrfs_node_ptr_generation(parent, slot);
848 check.owner_root = btrfs_header_owner(parent);
849 check.has_first_key = true;
850 btrfs_node_key_to_cpu(parent, &check.first_key, slot);
851
852 eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
853 &check);
854 if (IS_ERR(eb))
855 return eb;
856 if (unlikely(!extent_buffer_uptodate(eb))) {
857 free_extent_buffer(eb);
858 return ERR_PTR(-EIO);
859 }
860
861 return eb;
862 }
863
864 /*
865 * node level balancing, used to make sure nodes are in proper order for
866 * item deletion. We balance from the top down, so we have to make sure
867 * that a deletion won't leave an node completely empty later on.
868 */
balance_level(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)869 static noinline int balance_level(struct btrfs_trans_handle *trans,
870 struct btrfs_root *root,
871 struct btrfs_path *path, int level)
872 {
873 struct btrfs_fs_info *fs_info = root->fs_info;
874 struct extent_buffer *right = NULL;
875 struct extent_buffer *mid;
876 struct extent_buffer *left = NULL;
877 struct extent_buffer *parent = NULL;
878 int ret = 0;
879 int wret;
880 int pslot;
881 int orig_slot = path->slots[level];
882 u64 orig_ptr;
883
884 ASSERT(level > 0);
885
886 mid = path->nodes[level];
887
888 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
889 WARN_ON(btrfs_header_generation(mid) != trans->transid);
890
891 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
892
893 if (level < BTRFS_MAX_LEVEL - 1) {
894 parent = path->nodes[level + 1];
895 pslot = path->slots[level + 1];
896 }
897
898 /*
899 * deal with the case where there is only one pointer in the root
900 * by promoting the node below to a root
901 */
902 if (!parent) {
903 struct extent_buffer *child;
904
905 if (btrfs_header_nritems(mid) != 1)
906 return 0;
907
908 /* promote the child to a root */
909 child = btrfs_read_node_slot(mid, 0);
910 if (IS_ERR(child)) {
911 ret = PTR_ERR(child);
912 goto out;
913 }
914
915 btrfs_tree_lock(child);
916 ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
917 BTRFS_NESTING_COW);
918 if (ret) {
919 btrfs_tree_unlock(child);
920 free_extent_buffer(child);
921 goto out;
922 }
923
924 ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
925 if (unlikely(ret < 0)) {
926 btrfs_tree_unlock(child);
927 free_extent_buffer(child);
928 btrfs_abort_transaction(trans, ret);
929 goto out;
930 }
931 rcu_assign_pointer(root->node, child);
932
933 add_root_to_dirty_list(root);
934 btrfs_tree_unlock(child);
935
936 path->locks[level] = 0;
937 path->nodes[level] = NULL;
938 btrfs_clear_buffer_dirty(trans, mid);
939 btrfs_tree_unlock(mid);
940 /* once for the path */
941 free_extent_buffer(mid);
942
943 root_sub_used_bytes(root);
944 ret = btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
945 /* once for the root ptr */
946 free_extent_buffer_stale(mid);
947 if (unlikely(ret < 0)) {
948 btrfs_abort_transaction(trans, ret);
949 goto out;
950 }
951 return 0;
952 }
953 if (btrfs_header_nritems(mid) >
954 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
955 return 0;
956
957 if (pslot) {
958 left = btrfs_read_node_slot(parent, pslot - 1);
959 if (IS_ERR(left)) {
960 ret = PTR_ERR(left);
961 left = NULL;
962 goto out;
963 }
964
965 btrfs_tree_lock_nested(left, BTRFS_NESTING_LEFT);
966 wret = btrfs_cow_block(trans, root, left,
967 parent, pslot - 1, &left,
968 BTRFS_NESTING_LEFT_COW);
969 if (wret) {
970 ret = wret;
971 goto out;
972 }
973 }
974
975 if (pslot + 1 < btrfs_header_nritems(parent)) {
976 right = btrfs_read_node_slot(parent, pslot + 1);
977 if (IS_ERR(right)) {
978 ret = PTR_ERR(right);
979 right = NULL;
980 goto out;
981 }
982
983 btrfs_tree_lock_nested(right, BTRFS_NESTING_RIGHT);
984 wret = btrfs_cow_block(trans, root, right,
985 parent, pslot + 1, &right,
986 BTRFS_NESTING_RIGHT_COW);
987 if (wret) {
988 ret = wret;
989 goto out;
990 }
991 }
992
993 /* first, try to make some room in the middle buffer */
994 if (left) {
995 orig_slot += btrfs_header_nritems(left);
996 wret = push_node_left(trans, left, mid, 1);
997 if (wret < 0)
998 ret = wret;
999 }
1000
1001 /*
1002 * then try to empty the right most buffer into the middle
1003 */
1004 if (right) {
1005 wret = push_node_left(trans, mid, right, 1);
1006 if (wret < 0 && wret != -ENOSPC)
1007 ret = wret;
1008 if (btrfs_header_nritems(right) == 0) {
1009 btrfs_clear_buffer_dirty(trans, right);
1010 btrfs_tree_unlock(right);
1011 ret = btrfs_del_ptr(trans, root, path, level + 1, pslot + 1);
1012 if (ret < 0) {
1013 free_extent_buffer_stale(right);
1014 right = NULL;
1015 goto out;
1016 }
1017 root_sub_used_bytes(root);
1018 ret = btrfs_free_tree_block(trans, btrfs_root_id(root),
1019 right, 0, 1);
1020 free_extent_buffer_stale(right);
1021 right = NULL;
1022 if (unlikely(ret < 0)) {
1023 btrfs_abort_transaction(trans, ret);
1024 goto out;
1025 }
1026 } else {
1027 struct btrfs_disk_key right_key;
1028 btrfs_node_key(right, &right_key, 0);
1029 ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1030 BTRFS_MOD_LOG_KEY_REPLACE);
1031 if (unlikely(ret < 0)) {
1032 btrfs_abort_transaction(trans, ret);
1033 goto out;
1034 }
1035 btrfs_set_node_key(parent, &right_key, pslot + 1);
1036 btrfs_mark_buffer_dirty(trans, parent);
1037 }
1038 }
1039 if (btrfs_header_nritems(mid) == 1) {
1040 /*
1041 * we're not allowed to leave a node with one item in the
1042 * tree during a delete. A deletion from lower in the tree
1043 * could try to delete the only pointer in this node.
1044 * So, pull some keys from the left.
1045 * There has to be a left pointer at this point because
1046 * otherwise we would have pulled some pointers from the
1047 * right
1048 */
1049 if (unlikely(!left)) {
1050 btrfs_crit(fs_info,
1051 "missing left child when middle child only has 1 item, parent bytenr %llu level %d mid bytenr %llu root %llu",
1052 parent->start, btrfs_header_level(parent),
1053 mid->start, btrfs_root_id(root));
1054 ret = -EUCLEAN;
1055 btrfs_abort_transaction(trans, ret);
1056 goto out;
1057 }
1058 wret = balance_node_right(trans, mid, left);
1059 if (wret < 0) {
1060 ret = wret;
1061 goto out;
1062 }
1063 if (wret == 1) {
1064 wret = push_node_left(trans, left, mid, 1);
1065 if (wret < 0)
1066 ret = wret;
1067 }
1068 BUG_ON(wret == 1);
1069 }
1070 if (btrfs_header_nritems(mid) == 0) {
1071 btrfs_clear_buffer_dirty(trans, mid);
1072 btrfs_tree_unlock(mid);
1073 ret = btrfs_del_ptr(trans, root, path, level + 1, pslot);
1074 if (ret < 0) {
1075 free_extent_buffer_stale(mid);
1076 mid = NULL;
1077 goto out;
1078 }
1079 root_sub_used_bytes(root);
1080 ret = btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1081 free_extent_buffer_stale(mid);
1082 mid = NULL;
1083 if (unlikely(ret < 0)) {
1084 btrfs_abort_transaction(trans, ret);
1085 goto out;
1086 }
1087 } else {
1088 /* update the parent key to reflect our changes */
1089 struct btrfs_disk_key mid_key;
1090 btrfs_node_key(mid, &mid_key, 0);
1091 ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1092 BTRFS_MOD_LOG_KEY_REPLACE);
1093 if (unlikely(ret < 0)) {
1094 btrfs_abort_transaction(trans, ret);
1095 goto out;
1096 }
1097 btrfs_set_node_key(parent, &mid_key, pslot);
1098 btrfs_mark_buffer_dirty(trans, parent);
1099 }
1100
1101 /* update the path */
1102 if (left) {
1103 if (btrfs_header_nritems(left) > orig_slot) {
1104 refcount_inc(&left->refs);
1105 /* left was locked after cow */
1106 path->nodes[level] = left;
1107 path->slots[level + 1] -= 1;
1108 path->slots[level] = orig_slot;
1109 if (mid) {
1110 btrfs_tree_unlock(mid);
1111 free_extent_buffer(mid);
1112 }
1113 } else {
1114 orig_slot -= btrfs_header_nritems(left);
1115 path->slots[level] = orig_slot;
1116 }
1117 }
1118 /* double check we haven't messed things up */
1119 if (orig_ptr !=
1120 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1121 BUG();
1122 out:
1123 if (right) {
1124 btrfs_tree_unlock(right);
1125 free_extent_buffer(right);
1126 }
1127 if (left) {
1128 if (path->nodes[level] != left)
1129 btrfs_tree_unlock(left);
1130 free_extent_buffer(left);
1131 }
1132 return ret;
1133 }
1134
1135 /* Node balancing for insertion. Here we only split or push nodes around
1136 * when they are completely full. This is also done top down, so we
1137 * have to be pessimistic.
1138 */
push_nodes_for_insert(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)1139 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1140 struct btrfs_root *root,
1141 struct btrfs_path *path, int level)
1142 {
1143 struct btrfs_fs_info *fs_info = root->fs_info;
1144 struct extent_buffer *right = NULL;
1145 struct extent_buffer *mid;
1146 struct extent_buffer *left = NULL;
1147 struct extent_buffer *parent = NULL;
1148 int ret = 0;
1149 int wret;
1150 int pslot;
1151 int orig_slot = path->slots[level];
1152
1153 if (level == 0)
1154 return 1;
1155
1156 mid = path->nodes[level];
1157 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1158
1159 if (level < BTRFS_MAX_LEVEL - 1) {
1160 parent = path->nodes[level + 1];
1161 pslot = path->slots[level + 1];
1162 }
1163
1164 if (!parent)
1165 return 1;
1166
1167 /* first, try to make some room in the middle buffer */
1168 if (pslot) {
1169 u32 left_nr;
1170
1171 left = btrfs_read_node_slot(parent, pslot - 1);
1172 if (IS_ERR(left))
1173 return PTR_ERR(left);
1174
1175 btrfs_tree_lock_nested(left, BTRFS_NESTING_LEFT);
1176
1177 left_nr = btrfs_header_nritems(left);
1178 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1179 wret = 1;
1180 } else {
1181 ret = btrfs_cow_block(trans, root, left, parent,
1182 pslot - 1, &left,
1183 BTRFS_NESTING_LEFT_COW);
1184 if (ret)
1185 wret = 1;
1186 else {
1187 wret = push_node_left(trans, left, mid, 0);
1188 }
1189 }
1190 if (wret < 0)
1191 ret = wret;
1192 if (wret == 0) {
1193 struct btrfs_disk_key disk_key;
1194 orig_slot += left_nr;
1195 btrfs_node_key(mid, &disk_key, 0);
1196 ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1197 BTRFS_MOD_LOG_KEY_REPLACE);
1198 if (unlikely(ret < 0)) {
1199 btrfs_tree_unlock(left);
1200 free_extent_buffer(left);
1201 btrfs_abort_transaction(trans, ret);
1202 return ret;
1203 }
1204 btrfs_set_node_key(parent, &disk_key, pslot);
1205 btrfs_mark_buffer_dirty(trans, parent);
1206 if (btrfs_header_nritems(left) > orig_slot) {
1207 path->nodes[level] = left;
1208 path->slots[level + 1] -= 1;
1209 path->slots[level] = orig_slot;
1210 btrfs_tree_unlock(mid);
1211 free_extent_buffer(mid);
1212 } else {
1213 orig_slot -=
1214 btrfs_header_nritems(left);
1215 path->slots[level] = orig_slot;
1216 btrfs_tree_unlock(left);
1217 free_extent_buffer(left);
1218 }
1219 return 0;
1220 }
1221 btrfs_tree_unlock(left);
1222 free_extent_buffer(left);
1223 }
1224
1225 /*
1226 * then try to empty the right most buffer into the middle
1227 */
1228 if (pslot + 1 < btrfs_header_nritems(parent)) {
1229 u32 right_nr;
1230
1231 right = btrfs_read_node_slot(parent, pslot + 1);
1232 if (IS_ERR(right))
1233 return PTR_ERR(right);
1234
1235 btrfs_tree_lock_nested(right, BTRFS_NESTING_RIGHT);
1236
1237 right_nr = btrfs_header_nritems(right);
1238 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1239 wret = 1;
1240 } else {
1241 ret = btrfs_cow_block(trans, root, right,
1242 parent, pslot + 1,
1243 &right, BTRFS_NESTING_RIGHT_COW);
1244 if (ret)
1245 wret = 1;
1246 else {
1247 wret = balance_node_right(trans, right, mid);
1248 }
1249 }
1250 if (wret < 0)
1251 ret = wret;
1252 if (wret == 0) {
1253 struct btrfs_disk_key disk_key;
1254
1255 btrfs_node_key(right, &disk_key, 0);
1256 ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1257 BTRFS_MOD_LOG_KEY_REPLACE);
1258 if (unlikely(ret < 0)) {
1259 btrfs_tree_unlock(right);
1260 free_extent_buffer(right);
1261 btrfs_abort_transaction(trans, ret);
1262 return ret;
1263 }
1264 btrfs_set_node_key(parent, &disk_key, pslot + 1);
1265 btrfs_mark_buffer_dirty(trans, parent);
1266
1267 if (btrfs_header_nritems(mid) <= orig_slot) {
1268 path->nodes[level] = right;
1269 path->slots[level + 1] += 1;
1270 path->slots[level] = orig_slot -
1271 btrfs_header_nritems(mid);
1272 btrfs_tree_unlock(mid);
1273 free_extent_buffer(mid);
1274 } else {
1275 btrfs_tree_unlock(right);
1276 free_extent_buffer(right);
1277 }
1278 return 0;
1279 }
1280 btrfs_tree_unlock(right);
1281 free_extent_buffer(right);
1282 }
1283 return 1;
1284 }
1285
1286 /*
1287 * readahead one full node of leaves, finding things that are close
1288 * to the block in 'slot', and triggering ra on them.
1289 */
reada_for_search(struct btrfs_fs_info * fs_info,const struct btrfs_path * path,int level,int slot,u64 objectid)1290 static void reada_for_search(struct btrfs_fs_info *fs_info,
1291 const struct btrfs_path *path,
1292 int level, int slot, u64 objectid)
1293 {
1294 struct extent_buffer *node;
1295 struct btrfs_disk_key disk_key;
1296 u32 nritems;
1297 u64 search;
1298 u64 target;
1299 u64 nread = 0;
1300 u64 nread_max;
1301 u32 nr;
1302 u32 blocksize;
1303 u32 nscan = 0;
1304
1305 if (level != 1 && path->reada != READA_FORWARD_ALWAYS)
1306 return;
1307
1308 if (!path->nodes[level])
1309 return;
1310
1311 node = path->nodes[level];
1312
1313 /*
1314 * Since the time between visiting leaves is much shorter than the time
1315 * between visiting nodes, limit read ahead of nodes to 1, to avoid too
1316 * much IO at once (possibly random).
1317 */
1318 if (path->reada == READA_FORWARD_ALWAYS) {
1319 if (level > 1)
1320 nread_max = node->fs_info->nodesize;
1321 else
1322 nread_max = SZ_128K;
1323 } else {
1324 nread_max = SZ_64K;
1325 }
1326
1327 search = btrfs_node_blockptr(node, slot);
1328 blocksize = fs_info->nodesize;
1329 if (path->reada != READA_FORWARD_ALWAYS) {
1330 struct extent_buffer *eb;
1331
1332 eb = find_extent_buffer(fs_info, search);
1333 if (eb) {
1334 free_extent_buffer(eb);
1335 return;
1336 }
1337 }
1338
1339 target = search;
1340
1341 nritems = btrfs_header_nritems(node);
1342 nr = slot;
1343
1344 while (1) {
1345 if (path->reada == READA_BACK) {
1346 if (nr == 0)
1347 break;
1348 nr--;
1349 } else if (path->reada == READA_FORWARD ||
1350 path->reada == READA_FORWARD_ALWAYS) {
1351 nr++;
1352 if (nr >= nritems)
1353 break;
1354 }
1355 if (path->reada == READA_BACK && objectid) {
1356 btrfs_node_key(node, &disk_key, nr);
1357 if (btrfs_disk_key_objectid(&disk_key) != objectid)
1358 break;
1359 }
1360 search = btrfs_node_blockptr(node, nr);
1361 if (path->reada == READA_FORWARD_ALWAYS ||
1362 (search <= target && target - search <= 65536) ||
1363 (search > target && search - target <= 65536)) {
1364 btrfs_readahead_node_child(node, nr);
1365 nread += blocksize;
1366 }
1367 nscan++;
1368 if (nread > nread_max || nscan > 32)
1369 break;
1370 }
1371 }
1372
reada_for_balance(const struct btrfs_path * path,int level)1373 static noinline void reada_for_balance(const struct btrfs_path *path, int level)
1374 {
1375 struct extent_buffer *parent;
1376 int slot;
1377 int nritems;
1378
1379 parent = path->nodes[level + 1];
1380 if (!parent)
1381 return;
1382
1383 nritems = btrfs_header_nritems(parent);
1384 slot = path->slots[level + 1];
1385
1386 if (slot > 0)
1387 btrfs_readahead_node_child(parent, slot - 1);
1388 if (slot + 1 < nritems)
1389 btrfs_readahead_node_child(parent, slot + 1);
1390 }
1391
1392
1393 /*
1394 * when we walk down the tree, it is usually safe to unlock the higher layers
1395 * in the tree. The exceptions are when our path goes through slot 0, because
1396 * operations on the tree might require changing key pointers higher up in the
1397 * tree.
1398 *
1399 * callers might also have set path->keep_locks, which tells this code to keep
1400 * the lock if the path points to the last slot in the block. This is part of
1401 * walking through the tree, and selecting the next slot in the higher block.
1402 *
1403 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
1404 * if lowest_unlock is 1, level 0 won't be unlocked
1405 */
unlock_up(struct btrfs_path * path,int level,int lowest_unlock,int min_write_lock_level,int * write_lock_level)1406 static noinline void unlock_up(struct btrfs_path *path, int level,
1407 int lowest_unlock, int min_write_lock_level,
1408 int *write_lock_level)
1409 {
1410 int i;
1411 int skip_level = level;
1412 bool check_skip = true;
1413
1414 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1415 if (!path->nodes[i])
1416 break;
1417 if (!path->locks[i])
1418 break;
1419
1420 if (check_skip) {
1421 if (path->slots[i] == 0) {
1422 skip_level = i + 1;
1423 continue;
1424 }
1425
1426 if (path->keep_locks) {
1427 u32 nritems;
1428
1429 nritems = btrfs_header_nritems(path->nodes[i]);
1430 if (nritems < 1 || path->slots[i] >= nritems - 1) {
1431 skip_level = i + 1;
1432 continue;
1433 }
1434 }
1435 }
1436
1437 if (i >= lowest_unlock && i > skip_level) {
1438 check_skip = false;
1439 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1440 path->locks[i] = 0;
1441 if (write_lock_level &&
1442 i > min_write_lock_level &&
1443 i <= *write_lock_level) {
1444 *write_lock_level = i - 1;
1445 }
1446 }
1447 }
1448 }
1449
1450 /*
1451 * Helper function for btrfs_search_slot() and other functions that do a search
1452 * on a btree. The goal is to find a tree block in the cache (the radix tree at
1453 * fs_info->buffer_radix), but if we can't find it, or it's not up to date, read
1454 * its pages from disk.
1455 *
1456 * Returns -EAGAIN, with the path unlocked, if the caller needs to repeat the
1457 * whole btree search, starting again from the current root node.
1458 */
1459 static int
read_block_for_search(struct btrfs_root * root,struct btrfs_path * p,struct extent_buffer ** eb_ret,int slot,const struct btrfs_key * key)1460 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
1461 struct extent_buffer **eb_ret, int slot,
1462 const struct btrfs_key *key)
1463 {
1464 struct btrfs_fs_info *fs_info = root->fs_info;
1465 struct btrfs_tree_parent_check check = { 0 };
1466 u64 blocknr;
1467 struct extent_buffer *tmp = NULL;
1468 int ret = 0;
1469 int ret2;
1470 int parent_level;
1471 bool read_tmp = false;
1472 bool tmp_locked = false;
1473 bool path_released = false;
1474
1475 blocknr = btrfs_node_blockptr(*eb_ret, slot);
1476 parent_level = btrfs_header_level(*eb_ret);
1477 btrfs_node_key_to_cpu(*eb_ret, &check.first_key, slot);
1478 check.has_first_key = true;
1479 check.level = parent_level - 1;
1480 check.transid = btrfs_node_ptr_generation(*eb_ret, slot);
1481 check.owner_root = btrfs_root_id(root);
1482
1483 /*
1484 * If we need to read an extent buffer from disk and we are holding locks
1485 * on upper level nodes, we unlock all the upper nodes before reading the
1486 * extent buffer, and then return -EAGAIN to the caller as it needs to
1487 * restart the search. We don't release the lock on the current level
1488 * because we need to walk this node to figure out which blocks to read.
1489 */
1490 tmp = find_extent_buffer(fs_info, blocknr);
1491 if (tmp) {
1492 if (p->reada == READA_FORWARD_ALWAYS)
1493 reada_for_search(fs_info, p, parent_level, slot, key->objectid);
1494
1495 /* first we do an atomic uptodate check */
1496 if (btrfs_buffer_uptodate(tmp, check.transid, true) > 0) {
1497 /*
1498 * Do extra check for first_key, eb can be stale due to
1499 * being cached, read from scrub, or have multiple
1500 * parents (shared tree blocks).
1501 */
1502 if (unlikely(btrfs_verify_level_key(tmp, &check))) {
1503 ret = -EUCLEAN;
1504 goto out;
1505 }
1506 *eb_ret = tmp;
1507 tmp = NULL;
1508 ret = 0;
1509 goto out;
1510 }
1511
1512 if (p->nowait) {
1513 ret = -EAGAIN;
1514 goto out;
1515 }
1516
1517 if (!p->skip_locking) {
1518 btrfs_unlock_up_safe(p, parent_level + 1);
1519 btrfs_maybe_reset_lockdep_class(root, tmp);
1520 tmp_locked = true;
1521 btrfs_tree_read_lock(tmp);
1522 btrfs_release_path(p);
1523 ret = -EAGAIN;
1524 path_released = true;
1525 }
1526
1527 /* Now we're allowed to do a blocking uptodate check. */
1528 ret2 = btrfs_read_extent_buffer(tmp, &check);
1529 if (ret2) {
1530 ret = ret2;
1531 goto out;
1532 }
1533
1534 if (ret == 0) {
1535 ASSERT(!tmp_locked);
1536 *eb_ret = tmp;
1537 tmp = NULL;
1538 }
1539 goto out;
1540 } else if (p->nowait) {
1541 ret = -EAGAIN;
1542 goto out;
1543 }
1544
1545 if (!p->skip_locking) {
1546 btrfs_unlock_up_safe(p, parent_level + 1);
1547 ret = -EAGAIN;
1548 }
1549
1550 if (p->reada != READA_NONE)
1551 reada_for_search(fs_info, p, parent_level, slot, key->objectid);
1552
1553 tmp = btrfs_find_create_tree_block(fs_info, blocknr, check.owner_root, check.level);
1554 if (IS_ERR(tmp)) {
1555 ret = PTR_ERR(tmp);
1556 tmp = NULL;
1557 goto out;
1558 }
1559 read_tmp = true;
1560
1561 if (!p->skip_locking) {
1562 ASSERT(ret == -EAGAIN);
1563 btrfs_maybe_reset_lockdep_class(root, tmp);
1564 tmp_locked = true;
1565 btrfs_tree_read_lock(tmp);
1566 btrfs_release_path(p);
1567 path_released = true;
1568 }
1569
1570 /* Now we're allowed to do a blocking uptodate check. */
1571 ret2 = btrfs_read_extent_buffer(tmp, &check);
1572 if (ret2) {
1573 ret = ret2;
1574 goto out;
1575 }
1576
1577 /*
1578 * If the read above didn't mark this buffer up to date,
1579 * it will never end up being up to date. Set ret to EIO now
1580 * and give up so that our caller doesn't loop forever
1581 * on our EAGAINs.
1582 */
1583 if (unlikely(!extent_buffer_uptodate(tmp))) {
1584 ret = -EIO;
1585 goto out;
1586 }
1587
1588 if (ret == 0) {
1589 ASSERT(!tmp_locked);
1590 *eb_ret = tmp;
1591 tmp = NULL;
1592 }
1593 out:
1594 if (tmp) {
1595 if (tmp_locked)
1596 btrfs_tree_read_unlock(tmp);
1597 if (read_tmp && ret && ret != -EAGAIN)
1598 free_extent_buffer_stale(tmp);
1599 else
1600 free_extent_buffer(tmp);
1601 }
1602 if (ret && !path_released)
1603 btrfs_release_path(p);
1604
1605 return ret;
1606 }
1607
1608 /*
1609 * helper function for btrfs_search_slot. This does all of the checks
1610 * for node-level blocks and does any balancing required based on
1611 * the ins_len.
1612 *
1613 * If no extra work was required, zero is returned. If we had to
1614 * drop the path, -EAGAIN is returned and btrfs_search_slot must
1615 * start over
1616 */
1617 static int
setup_nodes_for_search(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * p,struct extent_buffer * b,int level,int ins_len,int * write_lock_level)1618 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1619 struct btrfs_root *root, struct btrfs_path *p,
1620 struct extent_buffer *b, int level, int ins_len,
1621 int *write_lock_level)
1622 {
1623 struct btrfs_fs_info *fs_info = root->fs_info;
1624 int ret = 0;
1625
1626 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1627 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
1628
1629 if (*write_lock_level < level + 1) {
1630 *write_lock_level = level + 1;
1631 btrfs_release_path(p);
1632 return -EAGAIN;
1633 }
1634
1635 reada_for_balance(p, level);
1636 ret = split_node(trans, root, p, level);
1637
1638 b = p->nodes[level];
1639 } else if (ins_len < 0 && btrfs_header_nritems(b) <
1640 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
1641
1642 if (*write_lock_level < level + 1) {
1643 *write_lock_level = level + 1;
1644 btrfs_release_path(p);
1645 return -EAGAIN;
1646 }
1647
1648 reada_for_balance(p, level);
1649 ret = balance_level(trans, root, p, level);
1650 if (ret)
1651 return ret;
1652
1653 b = p->nodes[level];
1654 if (!b) {
1655 btrfs_release_path(p);
1656 return -EAGAIN;
1657 }
1658 BUG_ON(btrfs_header_nritems(b) == 1);
1659 }
1660 return ret;
1661 }
1662
btrfs_find_item(struct btrfs_root * fs_root,struct btrfs_path * path,u64 iobjectid,u64 ioff,u8 key_type,struct btrfs_key * found_key)1663 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
1664 u64 iobjectid, u64 ioff, u8 key_type,
1665 struct btrfs_key *found_key)
1666 {
1667 int ret;
1668 struct btrfs_key key;
1669 struct extent_buffer *eb;
1670
1671 ASSERT(path);
1672 ASSERT(found_key);
1673
1674 key.type = key_type;
1675 key.objectid = iobjectid;
1676 key.offset = ioff;
1677
1678 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1679 if (ret < 0)
1680 return ret;
1681
1682 eb = path->nodes[0];
1683 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1684 ret = btrfs_next_leaf(fs_root, path);
1685 if (ret)
1686 return ret;
1687 eb = path->nodes[0];
1688 }
1689
1690 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1691 if (found_key->type != key.type ||
1692 found_key->objectid != key.objectid)
1693 return 1;
1694
1695 return 0;
1696 }
1697
btrfs_search_slot_get_root(struct btrfs_root * root,struct btrfs_path * p,int write_lock_level)1698 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
1699 struct btrfs_path *p,
1700 int write_lock_level)
1701 {
1702 struct extent_buffer *b;
1703 int root_lock = 0;
1704 int level = 0;
1705
1706 if (p->search_commit_root) {
1707 b = root->commit_root;
1708 refcount_inc(&b->refs);
1709 level = btrfs_header_level(b);
1710 /*
1711 * Ensure that all callers have set skip_locking when
1712 * p->search_commit_root = 1.
1713 */
1714 ASSERT(p->skip_locking == 1);
1715
1716 goto out;
1717 }
1718
1719 if (p->skip_locking) {
1720 b = btrfs_root_node(root);
1721 level = btrfs_header_level(b);
1722 goto out;
1723 }
1724
1725 /* We try very hard to do read locks on the root */
1726 root_lock = BTRFS_READ_LOCK;
1727
1728 /*
1729 * If the level is set to maximum, we can skip trying to get the read
1730 * lock.
1731 */
1732 if (write_lock_level < BTRFS_MAX_LEVEL) {
1733 /*
1734 * We don't know the level of the root node until we actually
1735 * have it read locked
1736 */
1737 if (p->nowait) {
1738 b = btrfs_try_read_lock_root_node(root);
1739 if (IS_ERR(b))
1740 return b;
1741 } else {
1742 b = btrfs_read_lock_root_node(root);
1743 }
1744 level = btrfs_header_level(b);
1745 if (level > write_lock_level)
1746 goto out;
1747
1748 /* Whoops, must trade for write lock */
1749 btrfs_tree_read_unlock(b);
1750 free_extent_buffer(b);
1751 }
1752
1753 b = btrfs_lock_root_node(root);
1754 root_lock = BTRFS_WRITE_LOCK;
1755
1756 /* The level might have changed, check again */
1757 level = btrfs_header_level(b);
1758
1759 out:
1760 /*
1761 * The root may have failed to write out at some point, and thus is no
1762 * longer valid, return an error in this case.
1763 */
1764 if (unlikely(!extent_buffer_uptodate(b))) {
1765 if (root_lock)
1766 btrfs_tree_unlock_rw(b, root_lock);
1767 free_extent_buffer(b);
1768 return ERR_PTR(-EIO);
1769 }
1770
1771 p->nodes[level] = b;
1772 if (!p->skip_locking)
1773 p->locks[level] = root_lock;
1774 /*
1775 * Callers are responsible for dropping b's references.
1776 */
1777 return b;
1778 }
1779
1780 /*
1781 * Replace the extent buffer at the lowest level of the path with a cloned
1782 * version. The purpose is to be able to use it safely, after releasing the
1783 * commit root semaphore, even if relocation is happening in parallel, the
1784 * transaction used for relocation is committed and the extent buffer is
1785 * reallocated in the next transaction.
1786 *
1787 * This is used in a context where the caller does not prevent transaction
1788 * commits from happening, either by holding a transaction handle or holding
1789 * some lock, while it's doing searches through a commit root.
1790 * At the moment it's only used for send operations.
1791 */
finish_need_commit_sem_search(struct btrfs_path * path)1792 static int finish_need_commit_sem_search(struct btrfs_path *path)
1793 {
1794 const int i = path->lowest_level;
1795 const int slot = path->slots[i];
1796 struct extent_buffer *lowest = path->nodes[i];
1797 struct extent_buffer *clone;
1798
1799 ASSERT(path->need_commit_sem);
1800
1801 if (!lowest)
1802 return 0;
1803
1804 lockdep_assert_held_read(&lowest->fs_info->commit_root_sem);
1805
1806 clone = btrfs_clone_extent_buffer(lowest);
1807 if (!clone)
1808 return -ENOMEM;
1809
1810 btrfs_release_path(path);
1811 path->nodes[i] = clone;
1812 path->slots[i] = slot;
1813
1814 return 0;
1815 }
1816
search_for_key_slot(const struct extent_buffer * eb,int search_low_slot,const struct btrfs_key * key,int prev_cmp,int * slot)1817 static inline int search_for_key_slot(const struct extent_buffer *eb,
1818 int search_low_slot,
1819 const struct btrfs_key *key,
1820 int prev_cmp,
1821 int *slot)
1822 {
1823 /*
1824 * If a previous call to btrfs_bin_search() on a parent node returned an
1825 * exact match (prev_cmp == 0), we can safely assume the target key will
1826 * always be at slot 0 on lower levels, since each key pointer
1827 * (struct btrfs_key_ptr) refers to the lowest key accessible from the
1828 * subtree it points to. Thus we can skip searching lower levels.
1829 */
1830 if (prev_cmp == 0) {
1831 *slot = 0;
1832 return 0;
1833 }
1834
1835 return btrfs_bin_search(eb, search_low_slot, key, slot);
1836 }
1837
search_leaf(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct btrfs_key * key,struct btrfs_path * path,int ins_len,int prev_cmp)1838 static int search_leaf(struct btrfs_trans_handle *trans,
1839 struct btrfs_root *root,
1840 const struct btrfs_key *key,
1841 struct btrfs_path *path,
1842 int ins_len,
1843 int prev_cmp)
1844 {
1845 struct extent_buffer *leaf = path->nodes[0];
1846 int leaf_free_space = -1;
1847 int search_low_slot = 0;
1848 int ret;
1849 bool do_bin_search = true;
1850
1851 /*
1852 * If we are doing an insertion, the leaf has enough free space and the
1853 * destination slot for the key is not slot 0, then we can unlock our
1854 * write lock on the parent, and any other upper nodes, before doing the
1855 * binary search on the leaf (with search_for_key_slot()), allowing other
1856 * tasks to lock the parent and any other upper nodes.
1857 */
1858 if (ins_len > 0) {
1859 /*
1860 * Cache the leaf free space, since we will need it later and it
1861 * will not change until then.
1862 */
1863 leaf_free_space = btrfs_leaf_free_space(leaf);
1864
1865 /*
1866 * !path->locks[1] means we have a single node tree, the leaf is
1867 * the root of the tree.
1868 */
1869 if (path->locks[1] && leaf_free_space >= ins_len) {
1870 struct btrfs_disk_key first_key;
1871
1872 ASSERT(btrfs_header_nritems(leaf) > 0);
1873 btrfs_item_key(leaf, &first_key, 0);
1874
1875 /*
1876 * Doing the extra comparison with the first key is cheap,
1877 * taking into account that the first key is very likely
1878 * already in a cache line because it immediately follows
1879 * the extent buffer's header and we have recently accessed
1880 * the header's level field.
1881 */
1882 ret = btrfs_comp_keys(&first_key, key);
1883 if (ret < 0) {
1884 /*
1885 * The first key is smaller than the key we want
1886 * to insert, so we are safe to unlock all upper
1887 * nodes and we have to do the binary search.
1888 *
1889 * We do use btrfs_unlock_up_safe() and not
1890 * unlock_up() because the later does not unlock
1891 * nodes with a slot of 0 - we can safely unlock
1892 * any node even if its slot is 0 since in this
1893 * case the key does not end up at slot 0 of the
1894 * leaf and there's no need to split the leaf.
1895 */
1896 btrfs_unlock_up_safe(path, 1);
1897 search_low_slot = 1;
1898 } else {
1899 /*
1900 * The first key is >= then the key we want to
1901 * insert, so we can skip the binary search as
1902 * the target key will be at slot 0.
1903 *
1904 * We can not unlock upper nodes when the key is
1905 * less than the first key, because we will need
1906 * to update the key at slot 0 of the parent node
1907 * and possibly of other upper nodes too.
1908 * If the key matches the first key, then we can
1909 * unlock all the upper nodes, using
1910 * btrfs_unlock_up_safe() instead of unlock_up()
1911 * as stated above.
1912 */
1913 if (ret == 0)
1914 btrfs_unlock_up_safe(path, 1);
1915 /*
1916 * ret is already 0 or 1, matching the result of
1917 * a btrfs_bin_search() call, so there is no need
1918 * to adjust it.
1919 */
1920 do_bin_search = false;
1921 path->slots[0] = 0;
1922 }
1923 }
1924 }
1925
1926 if (do_bin_search) {
1927 ret = search_for_key_slot(leaf, search_low_slot, key,
1928 prev_cmp, &path->slots[0]);
1929 if (ret < 0)
1930 return ret;
1931 }
1932
1933 if (ins_len > 0) {
1934 /*
1935 * Item key already exists. In this case, if we are allowed to
1936 * insert the item (for example, in dir_item case, item key
1937 * collision is allowed), it will be merged with the original
1938 * item. Only the item size grows, no new btrfs item will be
1939 * added. If search_for_extension is not set, ins_len already
1940 * accounts the size btrfs_item, deduct it here so leaf space
1941 * check will be correct.
1942 */
1943 if (ret == 0 && !path->search_for_extension) {
1944 ASSERT(ins_len >= sizeof(struct btrfs_item));
1945 ins_len -= sizeof(struct btrfs_item);
1946 }
1947
1948 ASSERT(leaf_free_space >= 0);
1949
1950 if (leaf_free_space < ins_len) {
1951 int ret2;
1952
1953 ret2 = split_leaf(trans, root, key, path, ins_len, (ret == 0));
1954 ASSERT(ret2 <= 0);
1955 if (WARN_ON(ret2 > 0))
1956 ret2 = -EUCLEAN;
1957 if (ret2)
1958 ret = ret2;
1959 }
1960 }
1961
1962 return ret;
1963 }
1964
1965 /*
1966 * Look for a key in a tree and perform necessary modifications to preserve
1967 * tree invariants.
1968 *
1969 * @trans: Handle of transaction, used when modifying the tree
1970 * @p: Holds all btree nodes along the search path
1971 * @root: The root node of the tree
1972 * @key: The key we are looking for
1973 * @ins_len: Indicates purpose of search:
1974 * >0 for inserts it's size of item inserted (*)
1975 * <0 for deletions
1976 * 0 for plain searches, not modifying the tree
1977 *
1978 * (*) If size of item inserted doesn't include
1979 * sizeof(struct btrfs_item), then p->search_for_extension must
1980 * be set.
1981 * @cow: boolean should CoW operations be performed. Must always be 1
1982 * when modifying the tree.
1983 *
1984 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
1985 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
1986 *
1987 * If @key is found, 0 is returned and you can find the item in the leaf level
1988 * of the path (level 0)
1989 *
1990 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
1991 * points to the slot where it should be inserted
1992 *
1993 * If an error is encountered while searching the tree a negative error number
1994 * is returned
1995 */
btrfs_search_slot(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct btrfs_key * key,struct btrfs_path * p,int ins_len,int cow)1996 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1997 const struct btrfs_key *key, struct btrfs_path *p,
1998 int ins_len, int cow)
1999 {
2000 struct btrfs_fs_info *fs_info;
2001 struct extent_buffer *b;
2002 int slot;
2003 int ret;
2004 int level;
2005 int lowest_unlock = 1;
2006 /* everything at write_lock_level or lower must be write locked */
2007 int write_lock_level = 0;
2008 u8 lowest_level = 0;
2009 int min_write_lock_level;
2010 int prev_cmp;
2011
2012 if (!root)
2013 return -EINVAL;
2014
2015 fs_info = root->fs_info;
2016 might_sleep();
2017
2018 lowest_level = p->lowest_level;
2019 WARN_ON(lowest_level && ins_len > 0);
2020 WARN_ON(p->nodes[0] != NULL);
2021 BUG_ON(!cow && ins_len);
2022
2023 /*
2024 * For now only allow nowait for read only operations. There's no
2025 * strict reason why we can't, we just only need it for reads so it's
2026 * only implemented for reads.
2027 */
2028 ASSERT(!p->nowait || !cow);
2029
2030 if (ins_len < 0) {
2031 lowest_unlock = 2;
2032
2033 /* when we are removing items, we might have to go up to level
2034 * two as we update tree pointers Make sure we keep write
2035 * for those levels as well
2036 */
2037 write_lock_level = 2;
2038 } else if (ins_len > 0) {
2039 /*
2040 * for inserting items, make sure we have a write lock on
2041 * level 1 so we can update keys
2042 */
2043 write_lock_level = 1;
2044 }
2045
2046 if (!cow)
2047 write_lock_level = -1;
2048
2049 if (cow && (p->keep_locks || p->lowest_level))
2050 write_lock_level = BTRFS_MAX_LEVEL;
2051
2052 min_write_lock_level = write_lock_level;
2053
2054 if (p->need_commit_sem) {
2055 ASSERT(p->search_commit_root);
2056 if (p->nowait) {
2057 if (!down_read_trylock(&fs_info->commit_root_sem))
2058 return -EAGAIN;
2059 } else {
2060 down_read(&fs_info->commit_root_sem);
2061 }
2062 }
2063
2064 again:
2065 prev_cmp = -1;
2066 b = btrfs_search_slot_get_root(root, p, write_lock_level);
2067 if (IS_ERR(b)) {
2068 ret = PTR_ERR(b);
2069 goto done;
2070 }
2071
2072 while (b) {
2073 int dec = 0;
2074 int ret2;
2075
2076 level = btrfs_header_level(b);
2077
2078 if (cow) {
2079 bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2080
2081 /*
2082 * if we don't really need to cow this block
2083 * then we don't want to set the path blocking,
2084 * so we test it here
2085 */
2086 if (!should_cow_block(trans, root, b))
2087 goto cow_done;
2088
2089 /*
2090 * must have write locks on this node and the
2091 * parent
2092 */
2093 if (level > write_lock_level ||
2094 (level + 1 > write_lock_level &&
2095 level + 1 < BTRFS_MAX_LEVEL &&
2096 p->nodes[level + 1])) {
2097 write_lock_level = level + 1;
2098 btrfs_release_path(p);
2099 goto again;
2100 }
2101
2102 if (last_level)
2103 ret2 = btrfs_cow_block(trans, root, b, NULL, 0,
2104 &b, BTRFS_NESTING_COW);
2105 else
2106 ret2 = btrfs_cow_block(trans, root, b,
2107 p->nodes[level + 1],
2108 p->slots[level + 1], &b,
2109 BTRFS_NESTING_COW);
2110 if (ret2) {
2111 ret = ret2;
2112 goto done;
2113 }
2114 }
2115 cow_done:
2116 p->nodes[level] = b;
2117
2118 /*
2119 * we have a lock on b and as long as we aren't changing
2120 * the tree, there is no way to for the items in b to change.
2121 * It is safe to drop the lock on our parent before we
2122 * go through the expensive btree search on b.
2123 *
2124 * If we're inserting or deleting (ins_len != 0), then we might
2125 * be changing slot zero, which may require changing the parent.
2126 * So, we can't drop the lock until after we know which slot
2127 * we're operating on.
2128 */
2129 if (!ins_len && !p->keep_locks) {
2130 int u = level + 1;
2131
2132 if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2133 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2134 p->locks[u] = 0;
2135 }
2136 }
2137
2138 if (level == 0) {
2139 if (ins_len > 0)
2140 ASSERT(write_lock_level >= 1);
2141
2142 ret = search_leaf(trans, root, key, p, ins_len, prev_cmp);
2143 if (!p->search_for_split)
2144 unlock_up(p, level, lowest_unlock,
2145 min_write_lock_level, NULL);
2146 goto done;
2147 }
2148
2149 ret = search_for_key_slot(b, 0, key, prev_cmp, &slot);
2150 if (ret < 0)
2151 goto done;
2152 prev_cmp = ret;
2153
2154 if (ret && slot > 0) {
2155 dec = 1;
2156 slot--;
2157 }
2158 p->slots[level] = slot;
2159 ret2 = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2160 &write_lock_level);
2161 if (ret2 == -EAGAIN)
2162 goto again;
2163 if (ret2) {
2164 ret = ret2;
2165 goto done;
2166 }
2167 b = p->nodes[level];
2168 slot = p->slots[level];
2169
2170 /*
2171 * Slot 0 is special, if we change the key we have to update
2172 * the parent pointer which means we must have a write lock on
2173 * the parent
2174 */
2175 if (slot == 0 && ins_len && write_lock_level < level + 1) {
2176 write_lock_level = level + 1;
2177 btrfs_release_path(p);
2178 goto again;
2179 }
2180
2181 unlock_up(p, level, lowest_unlock, min_write_lock_level,
2182 &write_lock_level);
2183
2184 if (level == lowest_level) {
2185 if (dec)
2186 p->slots[level]++;
2187 goto done;
2188 }
2189
2190 ret2 = read_block_for_search(root, p, &b, slot, key);
2191 if (ret2 == -EAGAIN && !p->nowait)
2192 goto again;
2193 if (ret2) {
2194 ret = ret2;
2195 goto done;
2196 }
2197
2198 if (!p->skip_locking) {
2199 level = btrfs_header_level(b);
2200
2201 btrfs_maybe_reset_lockdep_class(root, b);
2202
2203 if (level <= write_lock_level) {
2204 btrfs_tree_lock(b);
2205 p->locks[level] = BTRFS_WRITE_LOCK;
2206 } else {
2207 if (p->nowait) {
2208 if (!btrfs_try_tree_read_lock(b)) {
2209 free_extent_buffer(b);
2210 ret = -EAGAIN;
2211 goto done;
2212 }
2213 } else {
2214 btrfs_tree_read_lock(b);
2215 }
2216 p->locks[level] = BTRFS_READ_LOCK;
2217 }
2218 p->nodes[level] = b;
2219 }
2220 }
2221 ret = 1;
2222 done:
2223 if (ret < 0 && !p->skip_release_on_error)
2224 btrfs_release_path(p);
2225
2226 if (p->need_commit_sem) {
2227 int ret2;
2228
2229 ret2 = finish_need_commit_sem_search(p);
2230 up_read(&fs_info->commit_root_sem);
2231 if (ret2)
2232 ret = ret2;
2233 }
2234
2235 return ret;
2236 }
2237 ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);
2238
2239 /*
2240 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2241 * current state of the tree together with the operations recorded in the tree
2242 * modification log to search for the key in a previous version of this tree, as
2243 * denoted by the time_seq parameter.
2244 *
2245 * Naturally, there is no support for insert, delete or cow operations.
2246 *
2247 * The resulting path and return value will be set up as if we called
2248 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2249 */
btrfs_search_old_slot(struct btrfs_root * root,const struct btrfs_key * key,struct btrfs_path * p,u64 time_seq)2250 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2251 struct btrfs_path *p, u64 time_seq)
2252 {
2253 struct btrfs_fs_info *fs_info = root->fs_info;
2254 struct extent_buffer *b;
2255 int slot;
2256 int ret;
2257 int level;
2258 int lowest_unlock = 1;
2259 u8 lowest_level = 0;
2260
2261 lowest_level = p->lowest_level;
2262 WARN_ON(p->nodes[0] != NULL);
2263 ASSERT(!p->nowait);
2264
2265 if (p->search_commit_root) {
2266 BUG_ON(time_seq);
2267 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2268 }
2269
2270 again:
2271 b = btrfs_get_old_root(root, time_seq);
2272 if (unlikely(!b)) {
2273 ret = -EIO;
2274 goto done;
2275 }
2276 level = btrfs_header_level(b);
2277 p->locks[level] = BTRFS_READ_LOCK;
2278
2279 while (b) {
2280 int dec = 0;
2281 int ret2;
2282
2283 level = btrfs_header_level(b);
2284 p->nodes[level] = b;
2285
2286 /*
2287 * we have a lock on b and as long as we aren't changing
2288 * the tree, there is no way to for the items in b to change.
2289 * It is safe to drop the lock on our parent before we
2290 * go through the expensive btree search on b.
2291 */
2292 btrfs_unlock_up_safe(p, level + 1);
2293
2294 ret = btrfs_bin_search(b, 0, key, &slot);
2295 if (ret < 0)
2296 goto done;
2297
2298 if (level == 0) {
2299 p->slots[level] = slot;
2300 unlock_up(p, level, lowest_unlock, 0, NULL);
2301 goto done;
2302 }
2303
2304 if (ret && slot > 0) {
2305 dec = 1;
2306 slot--;
2307 }
2308 p->slots[level] = slot;
2309 unlock_up(p, level, lowest_unlock, 0, NULL);
2310
2311 if (level == lowest_level) {
2312 if (dec)
2313 p->slots[level]++;
2314 goto done;
2315 }
2316
2317 ret2 = read_block_for_search(root, p, &b, slot, key);
2318 if (ret2 == -EAGAIN && !p->nowait)
2319 goto again;
2320 if (ret2) {
2321 ret = ret2;
2322 goto done;
2323 }
2324
2325 level = btrfs_header_level(b);
2326 btrfs_tree_read_lock(b);
2327 b = btrfs_tree_mod_log_rewind(fs_info, b, time_seq);
2328 if (!b) {
2329 ret = -ENOMEM;
2330 goto done;
2331 }
2332 p->locks[level] = BTRFS_READ_LOCK;
2333 p->nodes[level] = b;
2334 }
2335 ret = 1;
2336 done:
2337 if (ret < 0)
2338 btrfs_release_path(p);
2339
2340 return ret;
2341 }
2342
2343 /*
2344 * Search the tree again to find a leaf with smaller keys.
2345 * Returns 0 if it found something.
2346 * Returns 1 if there are no smaller keys.
2347 * Returns < 0 on error.
2348 *
2349 * This may release the path, and so you may lose any locks held at the
2350 * time you call it.
2351 */
btrfs_prev_leaf(struct btrfs_root * root,struct btrfs_path * path)2352 static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
2353 {
2354 struct btrfs_key key;
2355 struct btrfs_key orig_key;
2356 struct btrfs_disk_key found_key;
2357 int ret;
2358
2359 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
2360 orig_key = key;
2361
2362 if (key.offset > 0) {
2363 key.offset--;
2364 } else if (key.type > 0) {
2365 key.type--;
2366 key.offset = (u64)-1;
2367 } else if (key.objectid > 0) {
2368 key.objectid--;
2369 key.type = (u8)-1;
2370 key.offset = (u64)-1;
2371 } else {
2372 return 1;
2373 }
2374
2375 btrfs_release_path(path);
2376 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2377 if (ret <= 0)
2378 return ret;
2379
2380 /*
2381 * Previous key not found. Even if we were at slot 0 of the leaf we had
2382 * before releasing the path and calling btrfs_search_slot(), we now may
2383 * be in a slot pointing to the same original key - this can happen if
2384 * after we released the path, one of more items were moved from a
2385 * sibling leaf into the front of the leaf we had due to an insertion
2386 * (see push_leaf_right()).
2387 * If we hit this case and our slot is > 0 and just decrement the slot
2388 * so that the caller does not process the same key again, which may or
2389 * may not break the caller, depending on its logic.
2390 */
2391 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
2392 btrfs_item_key(path->nodes[0], &found_key, path->slots[0]);
2393 ret = btrfs_comp_keys(&found_key, &orig_key);
2394 if (ret == 0) {
2395 if (path->slots[0] > 0) {
2396 path->slots[0]--;
2397 return 0;
2398 }
2399 /*
2400 * At slot 0, same key as before, it means orig_key is
2401 * the lowest, leftmost, key in the tree. We're done.
2402 */
2403 return 1;
2404 }
2405 }
2406
2407 btrfs_item_key(path->nodes[0], &found_key, 0);
2408 ret = btrfs_comp_keys(&found_key, &key);
2409 /*
2410 * We might have had an item with the previous key in the tree right
2411 * before we released our path. And after we released our path, that
2412 * item might have been pushed to the first slot (0) of the leaf we
2413 * were holding due to a tree balance. Alternatively, an item with the
2414 * previous key can exist as the only element of a leaf (big fat item).
2415 * Therefore account for these 2 cases, so that our callers (like
2416 * btrfs_previous_item) don't miss an existing item with a key matching
2417 * the previous key we computed above.
2418 */
2419 if (ret <= 0)
2420 return 0;
2421 return 1;
2422 }
2423
2424 /*
2425 * helper to use instead of search slot if no exact match is needed but
2426 * instead the next or previous item should be returned.
2427 * When find_higher is true, the next higher item is returned, the next lower
2428 * otherwise.
2429 * When return_any and find_higher are both true, and no higher item is found,
2430 * return the next lower instead.
2431 * When return_any is true and find_higher is false, and no lower item is found,
2432 * return the next higher instead.
2433 * It returns 0 if any item is found, 1 if none is found (tree empty), and
2434 * < 0 on error
2435 */
btrfs_search_slot_for_read(struct btrfs_root * root,const struct btrfs_key * key,struct btrfs_path * p,int find_higher,int return_any)2436 int btrfs_search_slot_for_read(struct btrfs_root *root,
2437 const struct btrfs_key *key,
2438 struct btrfs_path *p, int find_higher,
2439 int return_any)
2440 {
2441 int ret;
2442 struct extent_buffer *leaf;
2443
2444 again:
2445 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2446 if (ret <= 0)
2447 return ret;
2448 /*
2449 * a return value of 1 means the path is at the position where the
2450 * item should be inserted. Normally this is the next bigger item,
2451 * but in case the previous item is the last in a leaf, path points
2452 * to the first free slot in the previous leaf, i.e. at an invalid
2453 * item.
2454 */
2455 leaf = p->nodes[0];
2456
2457 if (find_higher) {
2458 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2459 ret = btrfs_next_leaf(root, p);
2460 if (ret <= 0)
2461 return ret;
2462 if (!return_any)
2463 return 1;
2464 /*
2465 * no higher item found, return the next
2466 * lower instead
2467 */
2468 return_any = 0;
2469 find_higher = 0;
2470 btrfs_release_path(p);
2471 goto again;
2472 }
2473 } else {
2474 if (p->slots[0] == 0) {
2475 ret = btrfs_prev_leaf(root, p);
2476 if (ret < 0)
2477 return ret;
2478 if (!ret) {
2479 leaf = p->nodes[0];
2480 if (p->slots[0] == btrfs_header_nritems(leaf))
2481 p->slots[0]--;
2482 return 0;
2483 }
2484 if (!return_any)
2485 return 1;
2486 /*
2487 * no lower item found, return the next
2488 * higher instead
2489 */
2490 return_any = 0;
2491 find_higher = 1;
2492 btrfs_release_path(p);
2493 goto again;
2494 } else {
2495 --p->slots[0];
2496 }
2497 }
2498 return 0;
2499 }
2500
2501 /*
2502 * Execute search and call btrfs_previous_item to traverse backwards if the item
2503 * was not found.
2504 *
2505 * Return 0 if found, 1 if not found and < 0 if error.
2506 */
btrfs_search_backwards(struct btrfs_root * root,struct btrfs_key * key,struct btrfs_path * path)2507 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
2508 struct btrfs_path *path)
2509 {
2510 int ret;
2511
2512 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
2513 if (ret > 0)
2514 ret = btrfs_previous_item(root, path, key->objectid, key->type);
2515
2516 if (ret == 0)
2517 btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2518
2519 return ret;
2520 }
2521
2522 /*
2523 * Search for a valid slot for the given path.
2524 *
2525 * @root: The root node of the tree.
2526 * @key: Will contain a valid item if found.
2527 * @path: The starting point to validate the slot.
2528 *
2529 * Return: 0 if the item is valid
2530 * 1 if not found
2531 * <0 if error.
2532 */
btrfs_get_next_valid_item(struct btrfs_root * root,struct btrfs_key * key,struct btrfs_path * path)2533 int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
2534 struct btrfs_path *path)
2535 {
2536 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2537 int ret;
2538
2539 ret = btrfs_next_leaf(root, path);
2540 if (ret)
2541 return ret;
2542 }
2543
2544 btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2545 return 0;
2546 }
2547
2548 /*
2549 * adjust the pointers going up the tree, starting at level
2550 * making sure the right key of each node is points to 'key'.
2551 * This is used after shifting pointers to the left, so it stops
2552 * fixing up pointers when a given leaf/node is not in slot 0 of the
2553 * higher levels
2554 *
2555 */
fixup_low_keys(struct btrfs_trans_handle * trans,const struct btrfs_path * path,const struct btrfs_disk_key * key,int level)2556 static void fixup_low_keys(struct btrfs_trans_handle *trans,
2557 const struct btrfs_path *path,
2558 const struct btrfs_disk_key *key, int level)
2559 {
2560 int i;
2561 struct extent_buffer *t;
2562 int ret;
2563
2564 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2565 int tslot = path->slots[i];
2566
2567 if (!path->nodes[i])
2568 break;
2569 t = path->nodes[i];
2570 ret = btrfs_tree_mod_log_insert_key(t, tslot,
2571 BTRFS_MOD_LOG_KEY_REPLACE);
2572 BUG_ON(ret < 0);
2573 btrfs_set_node_key(t, key, tslot);
2574 btrfs_mark_buffer_dirty(trans, path->nodes[i]);
2575 if (tslot != 0)
2576 break;
2577 }
2578 }
2579
2580 /*
2581 * update item key.
2582 *
2583 * This function isn't completely safe. It's the caller's responsibility
2584 * that the new key won't break the order
2585 */
btrfs_set_item_key_safe(struct btrfs_trans_handle * trans,const struct btrfs_path * path,const struct btrfs_key * new_key)2586 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
2587 const struct btrfs_path *path,
2588 const struct btrfs_key *new_key)
2589 {
2590 struct btrfs_fs_info *fs_info = trans->fs_info;
2591 struct btrfs_disk_key disk_key;
2592 struct extent_buffer *eb;
2593 int slot;
2594
2595 eb = path->nodes[0];
2596 slot = path->slots[0];
2597 if (slot > 0) {
2598 btrfs_item_key(eb, &disk_key, slot - 1);
2599 if (unlikely(btrfs_comp_keys(&disk_key, new_key) >= 0)) {
2600 btrfs_print_leaf(eb);
2601 btrfs_crit(fs_info,
2602 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2603 slot, btrfs_disk_key_objectid(&disk_key),
2604 btrfs_disk_key_type(&disk_key),
2605 btrfs_disk_key_offset(&disk_key),
2606 new_key->objectid, new_key->type,
2607 new_key->offset);
2608 BUG();
2609 }
2610 }
2611 if (slot < btrfs_header_nritems(eb) - 1) {
2612 btrfs_item_key(eb, &disk_key, slot + 1);
2613 if (unlikely(btrfs_comp_keys(&disk_key, new_key) <= 0)) {
2614 btrfs_print_leaf(eb);
2615 btrfs_crit(fs_info,
2616 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2617 slot, btrfs_disk_key_objectid(&disk_key),
2618 btrfs_disk_key_type(&disk_key),
2619 btrfs_disk_key_offset(&disk_key),
2620 new_key->objectid, new_key->type,
2621 new_key->offset);
2622 BUG();
2623 }
2624 }
2625
2626 btrfs_cpu_key_to_disk(&disk_key, new_key);
2627 btrfs_set_item_key(eb, &disk_key, slot);
2628 btrfs_mark_buffer_dirty(trans, eb);
2629 if (slot == 0)
2630 fixup_low_keys(trans, path, &disk_key, 1);
2631 }
2632
2633 /*
2634 * Check key order of two sibling extent buffers.
2635 *
2636 * Return true if something is wrong.
2637 * Return false if everything is fine.
2638 *
2639 * Tree-checker only works inside one tree block, thus the following
2640 * corruption can not be detected by tree-checker:
2641 *
2642 * Leaf @left | Leaf @right
2643 * --------------------------------------------------------------
2644 * | 1 | 2 | 3 | 4 | 5 | f6 | | 7 | 8 |
2645 *
2646 * Key f6 in leaf @left itself is valid, but not valid when the next
2647 * key in leaf @right is 7.
2648 * This can only be checked at tree block merge time.
2649 * And since tree checker has ensured all key order in each tree block
2650 * is correct, we only need to bother the last key of @left and the first
2651 * key of @right.
2652 */
check_sibling_keys(const struct extent_buffer * left,const struct extent_buffer * right)2653 static bool check_sibling_keys(const struct extent_buffer *left,
2654 const struct extent_buffer *right)
2655 {
2656 struct btrfs_key left_last;
2657 struct btrfs_key right_first;
2658 int level = btrfs_header_level(left);
2659 int nr_left = btrfs_header_nritems(left);
2660 int nr_right = btrfs_header_nritems(right);
2661
2662 /* No key to check in one of the tree blocks */
2663 if (!nr_left || !nr_right)
2664 return false;
2665
2666 if (level) {
2667 btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
2668 btrfs_node_key_to_cpu(right, &right_first, 0);
2669 } else {
2670 btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
2671 btrfs_item_key_to_cpu(right, &right_first, 0);
2672 }
2673
2674 if (unlikely(btrfs_comp_cpu_keys(&left_last, &right_first) >= 0)) {
2675 btrfs_crit(left->fs_info, "left extent buffer:");
2676 btrfs_print_tree(left, false);
2677 btrfs_crit(left->fs_info, "right extent buffer:");
2678 btrfs_print_tree(right, false);
2679 btrfs_crit(left->fs_info,
2680 "bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
2681 left_last.objectid, left_last.type,
2682 left_last.offset, right_first.objectid,
2683 right_first.type, right_first.offset);
2684 return true;
2685 }
2686 return false;
2687 }
2688
2689 /*
2690 * try to push data from one node into the next node left in the
2691 * tree.
2692 *
2693 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2694 * error, and > 0 if there was no room in the left hand block.
2695 */
push_node_left(struct btrfs_trans_handle * trans,struct extent_buffer * dst,struct extent_buffer * src,bool empty)2696 static int push_node_left(struct btrfs_trans_handle *trans,
2697 struct extent_buffer *dst,
2698 struct extent_buffer *src, bool empty)
2699 {
2700 struct btrfs_fs_info *fs_info = trans->fs_info;
2701 int push_items = 0;
2702 int src_nritems;
2703 int dst_nritems;
2704 int ret = 0;
2705
2706 src_nritems = btrfs_header_nritems(src);
2707 dst_nritems = btrfs_header_nritems(dst);
2708 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2709 WARN_ON(btrfs_header_generation(src) != trans->transid);
2710 WARN_ON(btrfs_header_generation(dst) != trans->transid);
2711
2712 if (!empty && src_nritems <= 8)
2713 return 1;
2714
2715 if (push_items <= 0)
2716 return 1;
2717
2718 if (empty) {
2719 push_items = min(src_nritems, push_items);
2720 if (push_items < src_nritems) {
2721 /* leave at least 8 pointers in the node if
2722 * we aren't going to empty it
2723 */
2724 if (src_nritems - push_items < 8) {
2725 if (push_items <= 8)
2726 return 1;
2727 push_items -= 8;
2728 }
2729 }
2730 } else
2731 push_items = min(src_nritems - 8, push_items);
2732
2733 /* dst is the left eb, src is the middle eb */
2734 if (unlikely(check_sibling_keys(dst, src))) {
2735 ret = -EUCLEAN;
2736 btrfs_abort_transaction(trans, ret);
2737 return ret;
2738 }
2739 ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
2740 if (unlikely(ret)) {
2741 btrfs_abort_transaction(trans, ret);
2742 return ret;
2743 }
2744 copy_extent_buffer(dst, src,
2745 btrfs_node_key_ptr_offset(dst, dst_nritems),
2746 btrfs_node_key_ptr_offset(src, 0),
2747 push_items * sizeof(struct btrfs_key_ptr));
2748
2749 if (push_items < src_nritems) {
2750 /*
2751 * btrfs_tree_mod_log_eb_copy handles logging the move, so we
2752 * don't need to do an explicit tree mod log operation for it.
2753 */
2754 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(src, 0),
2755 btrfs_node_key_ptr_offset(src, push_items),
2756 (src_nritems - push_items) *
2757 sizeof(struct btrfs_key_ptr));
2758 }
2759 btrfs_set_header_nritems(src, src_nritems - push_items);
2760 btrfs_set_header_nritems(dst, dst_nritems + push_items);
2761 btrfs_mark_buffer_dirty(trans, src);
2762 btrfs_mark_buffer_dirty(trans, dst);
2763
2764 return ret;
2765 }
2766
2767 /*
2768 * try to push data from one node into the next node right in the
2769 * tree.
2770 *
2771 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2772 * error, and > 0 if there was no room in the right hand block.
2773 *
2774 * this will only push up to 1/2 the contents of the left node over
2775 */
balance_node_right(struct btrfs_trans_handle * trans,struct extent_buffer * dst,struct extent_buffer * src)2776 static int balance_node_right(struct btrfs_trans_handle *trans,
2777 struct extent_buffer *dst,
2778 struct extent_buffer *src)
2779 {
2780 struct btrfs_fs_info *fs_info = trans->fs_info;
2781 int push_items = 0;
2782 int max_push;
2783 int src_nritems;
2784 int dst_nritems;
2785 int ret = 0;
2786
2787 WARN_ON(btrfs_header_generation(src) != trans->transid);
2788 WARN_ON(btrfs_header_generation(dst) != trans->transid);
2789
2790 src_nritems = btrfs_header_nritems(src);
2791 dst_nritems = btrfs_header_nritems(dst);
2792 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2793 if (push_items <= 0)
2794 return 1;
2795
2796 if (src_nritems < 4)
2797 return 1;
2798
2799 max_push = src_nritems / 2 + 1;
2800 /* don't try to empty the node */
2801 if (max_push >= src_nritems)
2802 return 1;
2803
2804 if (max_push < push_items)
2805 push_items = max_push;
2806
2807 /* dst is the right eb, src is the middle eb */
2808 if (unlikely(check_sibling_keys(src, dst))) {
2809 ret = -EUCLEAN;
2810 btrfs_abort_transaction(trans, ret);
2811 return ret;
2812 }
2813
2814 /*
2815 * btrfs_tree_mod_log_eb_copy handles logging the move, so we don't
2816 * need to do an explicit tree mod log operation for it.
2817 */
2818 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(dst, push_items),
2819 btrfs_node_key_ptr_offset(dst, 0),
2820 (dst_nritems) *
2821 sizeof(struct btrfs_key_ptr));
2822
2823 ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
2824 push_items);
2825 if (unlikely(ret)) {
2826 btrfs_abort_transaction(trans, ret);
2827 return ret;
2828 }
2829 copy_extent_buffer(dst, src,
2830 btrfs_node_key_ptr_offset(dst, 0),
2831 btrfs_node_key_ptr_offset(src, src_nritems - push_items),
2832 push_items * sizeof(struct btrfs_key_ptr));
2833
2834 btrfs_set_header_nritems(src, src_nritems - push_items);
2835 btrfs_set_header_nritems(dst, dst_nritems + push_items);
2836
2837 btrfs_mark_buffer_dirty(trans, src);
2838 btrfs_mark_buffer_dirty(trans, dst);
2839
2840 return ret;
2841 }
2842
2843 /*
2844 * helper function to insert a new root level in the tree.
2845 * A new node is allocated, and a single item is inserted to
2846 * point to the existing root
2847 *
2848 * returns zero on success or < 0 on failure.
2849 */
insert_new_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)2850 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2851 struct btrfs_root *root,
2852 struct btrfs_path *path, int level)
2853 {
2854 u64 lower_gen;
2855 struct extent_buffer *lower;
2856 struct extent_buffer *c;
2857 struct extent_buffer *old;
2858 struct btrfs_disk_key lower_key;
2859 int ret;
2860
2861 BUG_ON(path->nodes[level]);
2862 BUG_ON(path->nodes[level-1] != root->node);
2863
2864 lower = path->nodes[level-1];
2865 if (level == 1)
2866 btrfs_item_key(lower, &lower_key, 0);
2867 else
2868 btrfs_node_key(lower, &lower_key, 0);
2869
2870 c = btrfs_alloc_tree_block(trans, root, 0, btrfs_root_id(root),
2871 &lower_key, level, root->node->start, 0,
2872 0, BTRFS_NESTING_NEW_ROOT);
2873 if (IS_ERR(c))
2874 return PTR_ERR(c);
2875
2876 root_add_used_bytes(root);
2877
2878 btrfs_set_header_nritems(c, 1);
2879 btrfs_set_node_key(c, &lower_key, 0);
2880 btrfs_set_node_blockptr(c, 0, lower->start);
2881 lower_gen = btrfs_header_generation(lower);
2882 WARN_ON(lower_gen != trans->transid);
2883
2884 btrfs_set_node_ptr_generation(c, 0, lower_gen);
2885
2886 btrfs_mark_buffer_dirty(trans, c);
2887
2888 old = root->node;
2889 ret = btrfs_tree_mod_log_insert_root(root->node, c, false);
2890 if (ret < 0) {
2891 int ret2;
2892
2893 btrfs_clear_buffer_dirty(trans, c);
2894 ret2 = btrfs_free_tree_block(trans, btrfs_root_id(root), c, 0, 1);
2895 if (unlikely(ret2 < 0))
2896 btrfs_abort_transaction(trans, ret2);
2897 btrfs_tree_unlock(c);
2898 free_extent_buffer(c);
2899 return ret;
2900 }
2901 rcu_assign_pointer(root->node, c);
2902
2903 /* the super has an extra ref to root->node */
2904 free_extent_buffer(old);
2905
2906 add_root_to_dirty_list(root);
2907 refcount_inc(&c->refs);
2908 path->nodes[level] = c;
2909 path->locks[level] = BTRFS_WRITE_LOCK;
2910 path->slots[level] = 0;
2911 return 0;
2912 }
2913
2914 /*
2915 * worker function to insert a single pointer in a node.
2916 * the node should have enough room for the pointer already
2917 *
2918 * slot and level indicate where you want the key to go, and
2919 * blocknr is the block the key points to.
2920 */
insert_ptr(struct btrfs_trans_handle * trans,const struct btrfs_path * path,const struct btrfs_disk_key * key,u64 bytenr,int slot,int level)2921 static int insert_ptr(struct btrfs_trans_handle *trans,
2922 const struct btrfs_path *path,
2923 const struct btrfs_disk_key *key, u64 bytenr,
2924 int slot, int level)
2925 {
2926 struct extent_buffer *lower;
2927 int nritems;
2928 int ret;
2929
2930 BUG_ON(!path->nodes[level]);
2931 btrfs_assert_tree_write_locked(path->nodes[level]);
2932 lower = path->nodes[level];
2933 nritems = btrfs_header_nritems(lower);
2934 BUG_ON(slot > nritems);
2935 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
2936 if (slot != nritems) {
2937 if (level) {
2938 ret = btrfs_tree_mod_log_insert_move(lower, slot + 1,
2939 slot, nritems - slot);
2940 if (unlikely(ret < 0)) {
2941 btrfs_abort_transaction(trans, ret);
2942 return ret;
2943 }
2944 }
2945 memmove_extent_buffer(lower,
2946 btrfs_node_key_ptr_offset(lower, slot + 1),
2947 btrfs_node_key_ptr_offset(lower, slot),
2948 (nritems - slot) * sizeof(struct btrfs_key_ptr));
2949 }
2950 if (level) {
2951 ret = btrfs_tree_mod_log_insert_key(lower, slot,
2952 BTRFS_MOD_LOG_KEY_ADD);
2953 if (unlikely(ret < 0)) {
2954 btrfs_abort_transaction(trans, ret);
2955 return ret;
2956 }
2957 }
2958 btrfs_set_node_key(lower, key, slot);
2959 btrfs_set_node_blockptr(lower, slot, bytenr);
2960 WARN_ON(trans->transid == 0);
2961 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2962 btrfs_set_header_nritems(lower, nritems + 1);
2963 btrfs_mark_buffer_dirty(trans, lower);
2964
2965 return 0;
2966 }
2967
2968 /*
2969 * split the node at the specified level in path in two.
2970 * The path is corrected to point to the appropriate node after the split
2971 *
2972 * Before splitting this tries to make some room in the node by pushing
2973 * left and right, if either one works, it returns right away.
2974 *
2975 * returns 0 on success and < 0 on failure
2976 */
split_node(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)2977 static noinline int split_node(struct btrfs_trans_handle *trans,
2978 struct btrfs_root *root,
2979 struct btrfs_path *path, int level)
2980 {
2981 struct btrfs_fs_info *fs_info = root->fs_info;
2982 struct extent_buffer *c;
2983 struct extent_buffer *split;
2984 struct btrfs_disk_key disk_key;
2985 int mid;
2986 int ret;
2987 u32 c_nritems;
2988
2989 c = path->nodes[level];
2990 WARN_ON(btrfs_header_generation(c) != trans->transid);
2991 if (c == root->node) {
2992 /*
2993 * trying to split the root, lets make a new one
2994 *
2995 * tree mod log: We don't log_removal old root in
2996 * insert_new_root, because that root buffer will be kept as a
2997 * normal node. We are going to log removal of half of the
2998 * elements below with btrfs_tree_mod_log_eb_copy(). We're
2999 * holding a tree lock on the buffer, which is why we cannot
3000 * race with other tree_mod_log users.
3001 */
3002 ret = insert_new_root(trans, root, path, level + 1);
3003 if (ret)
3004 return ret;
3005 } else {
3006 ret = push_nodes_for_insert(trans, root, path, level);
3007 c = path->nodes[level];
3008 if (!ret && btrfs_header_nritems(c) <
3009 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3010 return 0;
3011 if (ret < 0)
3012 return ret;
3013 }
3014
3015 c_nritems = btrfs_header_nritems(c);
3016 mid = (c_nritems + 1) / 2;
3017 btrfs_node_key(c, &disk_key, mid);
3018
3019 split = btrfs_alloc_tree_block(trans, root, 0, btrfs_root_id(root),
3020 &disk_key, level, c->start, 0,
3021 0, BTRFS_NESTING_SPLIT);
3022 if (IS_ERR(split))
3023 return PTR_ERR(split);
3024
3025 root_add_used_bytes(root);
3026 ASSERT(btrfs_header_level(c) == level);
3027
3028 ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
3029 if (unlikely(ret)) {
3030 btrfs_tree_unlock(split);
3031 free_extent_buffer(split);
3032 btrfs_abort_transaction(trans, ret);
3033 return ret;
3034 }
3035 copy_extent_buffer(split, c,
3036 btrfs_node_key_ptr_offset(split, 0),
3037 btrfs_node_key_ptr_offset(c, mid),
3038 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3039 btrfs_set_header_nritems(split, c_nritems - mid);
3040 btrfs_set_header_nritems(c, mid);
3041
3042 btrfs_mark_buffer_dirty(trans, c);
3043 btrfs_mark_buffer_dirty(trans, split);
3044
3045 ret = insert_ptr(trans, path, &disk_key, split->start,
3046 path->slots[level + 1] + 1, level + 1);
3047 if (ret < 0) {
3048 btrfs_tree_unlock(split);
3049 free_extent_buffer(split);
3050 return ret;
3051 }
3052
3053 if (path->slots[level] >= mid) {
3054 path->slots[level] -= mid;
3055 btrfs_tree_unlock(c);
3056 free_extent_buffer(c);
3057 path->nodes[level] = split;
3058 path->slots[level + 1] += 1;
3059 } else {
3060 btrfs_tree_unlock(split);
3061 free_extent_buffer(split);
3062 }
3063 return 0;
3064 }
3065
3066 /*
3067 * how many bytes are required to store the items in a leaf. start
3068 * and nr indicate which items in the leaf to check. This totals up the
3069 * space used both by the item structs and the item data
3070 */
leaf_space_used(const struct extent_buffer * l,int start,int nr)3071 static int leaf_space_used(const struct extent_buffer *l, int start, int nr)
3072 {
3073 int data_len;
3074 int nritems = btrfs_header_nritems(l);
3075 int end = min(nritems, start + nr) - 1;
3076
3077 if (!nr)
3078 return 0;
3079 data_len = btrfs_item_offset(l, start) + btrfs_item_size(l, start);
3080 data_len = data_len - btrfs_item_offset(l, end);
3081 data_len += sizeof(struct btrfs_item) * nr;
3082 WARN_ON(data_len < 0);
3083 return data_len;
3084 }
3085
3086 /*
3087 * The space between the end of the leaf items and
3088 * the start of the leaf data. IOW, how much room
3089 * the leaf has left for both items and data
3090 */
btrfs_leaf_free_space(const struct extent_buffer * leaf)3091 int btrfs_leaf_free_space(const struct extent_buffer *leaf)
3092 {
3093 struct btrfs_fs_info *fs_info = leaf->fs_info;
3094 int nritems = btrfs_header_nritems(leaf);
3095 int ret;
3096
3097 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3098 if (unlikely(ret < 0)) {
3099 btrfs_crit(fs_info,
3100 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3101 ret,
3102 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3103 leaf_space_used(leaf, 0, nritems), nritems);
3104 }
3105 return ret;
3106 }
3107
3108 /*
3109 * min slot controls the lowest index we're willing to push to the
3110 * right. We'll push up to and including min_slot, but no lower
3111 */
__push_leaf_right(struct btrfs_trans_handle * trans,struct btrfs_path * path,int data_size,bool empty,struct extent_buffer * right,int free_space,u32 left_nritems,u32 min_slot)3112 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3113 struct btrfs_path *path,
3114 int data_size, bool empty,
3115 struct extent_buffer *right,
3116 int free_space, u32 left_nritems,
3117 u32 min_slot)
3118 {
3119 struct btrfs_fs_info *fs_info = right->fs_info;
3120 struct extent_buffer *left = path->nodes[0];
3121 struct extent_buffer *upper = path->nodes[1];
3122 struct btrfs_disk_key disk_key;
3123 int slot;
3124 u32 i;
3125 int push_space = 0;
3126 int push_items = 0;
3127 u32 nr;
3128 u32 right_nritems;
3129 u32 data_end;
3130 u32 this_item_size;
3131
3132 if (empty)
3133 nr = 0;
3134 else
3135 nr = max_t(u32, 1, min_slot);
3136
3137 if (path->slots[0] >= left_nritems)
3138 push_space += data_size;
3139
3140 slot = path->slots[1];
3141 i = left_nritems - 1;
3142 while (i >= nr) {
3143 if (!empty && push_items > 0) {
3144 if (path->slots[0] > i)
3145 break;
3146 if (path->slots[0] == i) {
3147 int space = btrfs_leaf_free_space(left);
3148
3149 if (space + push_space * 2 > free_space)
3150 break;
3151 }
3152 }
3153
3154 if (path->slots[0] == i)
3155 push_space += data_size;
3156
3157 this_item_size = btrfs_item_size(left, i);
3158 if (this_item_size + sizeof(struct btrfs_item) +
3159 push_space > free_space)
3160 break;
3161
3162 push_items++;
3163 push_space += this_item_size + sizeof(struct btrfs_item);
3164 if (i == 0)
3165 break;
3166 i--;
3167 }
3168
3169 if (push_items == 0)
3170 goto out_unlock;
3171
3172 WARN_ON(!empty && push_items == left_nritems);
3173
3174 /* push left to right */
3175 right_nritems = btrfs_header_nritems(right);
3176
3177 push_space = btrfs_item_data_end(left, left_nritems - push_items);
3178 push_space -= leaf_data_end(left);
3179
3180 /* make room in the right data area */
3181 data_end = leaf_data_end(right);
3182 memmove_leaf_data(right, data_end - push_space, data_end,
3183 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3184
3185 /* copy from the left data area */
3186 copy_leaf_data(right, left, BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3187 leaf_data_end(left), push_space);
3188
3189 memmove_leaf_items(right, push_items, 0, right_nritems);
3190
3191 /* copy the items from left to right */
3192 copy_leaf_items(right, left, 0, left_nritems - push_items, push_items);
3193
3194 /* update the item pointers */
3195 right_nritems += push_items;
3196 btrfs_set_header_nritems(right, right_nritems);
3197 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3198 for (i = 0; i < right_nritems; i++) {
3199 push_space -= btrfs_item_size(right, i);
3200 btrfs_set_item_offset(right, i, push_space);
3201 }
3202
3203 left_nritems -= push_items;
3204 btrfs_set_header_nritems(left, left_nritems);
3205
3206 if (left_nritems)
3207 btrfs_mark_buffer_dirty(trans, left);
3208 else
3209 btrfs_clear_buffer_dirty(trans, left);
3210
3211 btrfs_mark_buffer_dirty(trans, right);
3212
3213 btrfs_item_key(right, &disk_key, 0);
3214 btrfs_set_node_key(upper, &disk_key, slot + 1);
3215 btrfs_mark_buffer_dirty(trans, upper);
3216
3217 /* then fixup the leaf pointer in the path */
3218 if (path->slots[0] >= left_nritems) {
3219 path->slots[0] -= left_nritems;
3220 if (btrfs_header_nritems(path->nodes[0]) == 0)
3221 btrfs_clear_buffer_dirty(trans, path->nodes[0]);
3222 btrfs_tree_unlock(path->nodes[0]);
3223 free_extent_buffer(path->nodes[0]);
3224 path->nodes[0] = right;
3225 path->slots[1] += 1;
3226 } else {
3227 btrfs_tree_unlock(right);
3228 free_extent_buffer(right);
3229 }
3230 return 0;
3231
3232 out_unlock:
3233 btrfs_tree_unlock(right);
3234 free_extent_buffer(right);
3235 return 1;
3236 }
3237
3238 /*
3239 * push some data in the path leaf to the right, trying to free up at
3240 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3241 *
3242 * returns 1 if the push failed because the other node didn't have enough
3243 * room, 0 if everything worked out and < 0 if there were major errors.
3244 *
3245 * this will push starting from min_slot to the end of the leaf. It won't
3246 * push any slot lower than min_slot
3247 */
push_leaf_right(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int min_data_size,int data_size,bool empty,u32 min_slot)3248 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3249 *root, struct btrfs_path *path,
3250 int min_data_size, int data_size,
3251 bool empty, u32 min_slot)
3252 {
3253 struct extent_buffer *left = path->nodes[0];
3254 struct extent_buffer *right;
3255 struct extent_buffer *upper;
3256 int slot;
3257 int free_space;
3258 u32 left_nritems;
3259 int ret;
3260
3261 if (!path->nodes[1])
3262 return 1;
3263
3264 slot = path->slots[1];
3265 upper = path->nodes[1];
3266 if (slot >= btrfs_header_nritems(upper) - 1)
3267 return 1;
3268
3269 btrfs_assert_tree_write_locked(path->nodes[1]);
3270
3271 right = btrfs_read_node_slot(upper, slot + 1);
3272 if (IS_ERR(right))
3273 return PTR_ERR(right);
3274
3275 btrfs_tree_lock_nested(right, BTRFS_NESTING_RIGHT);
3276
3277 free_space = btrfs_leaf_free_space(right);
3278 if (free_space < data_size)
3279 goto out_unlock;
3280
3281 ret = btrfs_cow_block(trans, root, right, upper,
3282 slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
3283 if (ret)
3284 goto out_unlock;
3285
3286 left_nritems = btrfs_header_nritems(left);
3287 if (left_nritems == 0)
3288 goto out_unlock;
3289
3290 if (unlikely(check_sibling_keys(left, right))) {
3291 ret = -EUCLEAN;
3292 btrfs_abort_transaction(trans, ret);
3293 btrfs_tree_unlock(right);
3294 free_extent_buffer(right);
3295 return ret;
3296 }
3297 if (path->slots[0] == left_nritems && !empty) {
3298 /* Key greater than all keys in the leaf, right neighbor has
3299 * enough room for it and we're not emptying our leaf to delete
3300 * it, therefore use right neighbor to insert the new item and
3301 * no need to touch/dirty our left leaf. */
3302 btrfs_tree_unlock(left);
3303 free_extent_buffer(left);
3304 path->nodes[0] = right;
3305 path->slots[0] = 0;
3306 path->slots[1]++;
3307 return 0;
3308 }
3309
3310 return __push_leaf_right(trans, path, min_data_size, empty, right,
3311 free_space, left_nritems, min_slot);
3312 out_unlock:
3313 btrfs_tree_unlock(right);
3314 free_extent_buffer(right);
3315 return 1;
3316 }
3317
3318 /*
3319 * push some data in the path leaf to the left, trying to free up at
3320 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3321 *
3322 * max_slot can put a limit on how far into the leaf we'll push items. The
3323 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3324 * items
3325 */
__push_leaf_left(struct btrfs_trans_handle * trans,struct btrfs_path * path,int data_size,bool empty,struct extent_buffer * left,int free_space,u32 right_nritems,u32 max_slot)3326 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3327 struct btrfs_path *path, int data_size,
3328 bool empty, struct extent_buffer *left,
3329 int free_space, u32 right_nritems,
3330 u32 max_slot)
3331 {
3332 struct btrfs_fs_info *fs_info = left->fs_info;
3333 struct btrfs_disk_key disk_key;
3334 struct extent_buffer *right = path->nodes[0];
3335 int i;
3336 int push_space = 0;
3337 int push_items = 0;
3338 u32 old_left_nritems;
3339 u32 nr;
3340 int ret = 0;
3341 u32 this_item_size;
3342 u32 old_left_item_size;
3343
3344 if (empty)
3345 nr = min(right_nritems, max_slot);
3346 else
3347 nr = min(right_nritems - 1, max_slot);
3348
3349 for (i = 0; i < nr; i++) {
3350 if (!empty && push_items > 0) {
3351 if (path->slots[0] < i)
3352 break;
3353 if (path->slots[0] == i) {
3354 int space = btrfs_leaf_free_space(right);
3355
3356 if (space + push_space * 2 > free_space)
3357 break;
3358 }
3359 }
3360
3361 if (path->slots[0] == i)
3362 push_space += data_size;
3363
3364 this_item_size = btrfs_item_size(right, i);
3365 if (this_item_size + sizeof(struct btrfs_item) + push_space >
3366 free_space)
3367 break;
3368
3369 push_items++;
3370 push_space += this_item_size + sizeof(struct btrfs_item);
3371 }
3372
3373 if (push_items == 0) {
3374 ret = 1;
3375 goto out;
3376 }
3377 WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3378
3379 /* push data from right to left */
3380 copy_leaf_items(left, right, btrfs_header_nritems(left), 0, push_items);
3381
3382 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3383 btrfs_item_offset(right, push_items - 1);
3384
3385 copy_leaf_data(left, right, leaf_data_end(left) - push_space,
3386 btrfs_item_offset(right, push_items - 1), push_space);
3387 old_left_nritems = btrfs_header_nritems(left);
3388 BUG_ON(old_left_nritems <= 0);
3389
3390 old_left_item_size = btrfs_item_offset(left, old_left_nritems - 1);
3391 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3392 u32 ioff;
3393
3394 ioff = btrfs_item_offset(left, i);
3395 btrfs_set_item_offset(left, i,
3396 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
3397 }
3398 btrfs_set_header_nritems(left, old_left_nritems + push_items);
3399
3400 /* fixup right node */
3401 if (push_items > right_nritems)
3402 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3403 right_nritems);
3404
3405 if (push_items < right_nritems) {
3406 push_space = btrfs_item_offset(right, push_items - 1) -
3407 leaf_data_end(right);
3408 memmove_leaf_data(right,
3409 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3410 leaf_data_end(right), push_space);
3411
3412 memmove_leaf_items(right, 0, push_items,
3413 btrfs_header_nritems(right) - push_items);
3414 }
3415
3416 right_nritems -= push_items;
3417 btrfs_set_header_nritems(right, right_nritems);
3418 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3419 for (i = 0; i < right_nritems; i++) {
3420 push_space = push_space - btrfs_item_size(right, i);
3421 btrfs_set_item_offset(right, i, push_space);
3422 }
3423
3424 btrfs_mark_buffer_dirty(trans, left);
3425 if (right_nritems)
3426 btrfs_mark_buffer_dirty(trans, right);
3427 else
3428 btrfs_clear_buffer_dirty(trans, right);
3429
3430 btrfs_item_key(right, &disk_key, 0);
3431 fixup_low_keys(trans, path, &disk_key, 1);
3432
3433 /* then fixup the leaf pointer in the path */
3434 if (path->slots[0] < push_items) {
3435 path->slots[0] += old_left_nritems;
3436 btrfs_tree_unlock(path->nodes[0]);
3437 free_extent_buffer(path->nodes[0]);
3438 path->nodes[0] = left;
3439 path->slots[1] -= 1;
3440 } else {
3441 btrfs_tree_unlock(left);
3442 free_extent_buffer(left);
3443 path->slots[0] -= push_items;
3444 }
3445 BUG_ON(path->slots[0] < 0);
3446 return ret;
3447 out:
3448 btrfs_tree_unlock(left);
3449 free_extent_buffer(left);
3450 return ret;
3451 }
3452
3453 /*
3454 * push some data in the path leaf to the left, trying to free up at
3455 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3456 *
3457 * max_slot can put a limit on how far into the leaf we'll push items. The
3458 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3459 * items
3460 */
push_leaf_left(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int min_data_size,int data_size,int empty,u32 max_slot)3461 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3462 *root, struct btrfs_path *path, int min_data_size,
3463 int data_size, int empty, u32 max_slot)
3464 {
3465 struct extent_buffer *right = path->nodes[0];
3466 struct extent_buffer *left;
3467 int slot;
3468 int free_space;
3469 u32 right_nritems;
3470 int ret = 0;
3471
3472 slot = path->slots[1];
3473 if (slot == 0)
3474 return 1;
3475 if (!path->nodes[1])
3476 return 1;
3477
3478 right_nritems = btrfs_header_nritems(right);
3479 if (right_nritems == 0)
3480 return 1;
3481
3482 btrfs_assert_tree_write_locked(path->nodes[1]);
3483
3484 left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3485 if (IS_ERR(left))
3486 return PTR_ERR(left);
3487
3488 btrfs_tree_lock_nested(left, BTRFS_NESTING_LEFT);
3489
3490 free_space = btrfs_leaf_free_space(left);
3491 if (free_space < data_size) {
3492 ret = 1;
3493 goto out;
3494 }
3495
3496 ret = btrfs_cow_block(trans, root, left,
3497 path->nodes[1], slot - 1, &left,
3498 BTRFS_NESTING_LEFT_COW);
3499 if (ret) {
3500 /* we hit -ENOSPC, but it isn't fatal here */
3501 if (ret == -ENOSPC)
3502 ret = 1;
3503 goto out;
3504 }
3505
3506 if (unlikely(check_sibling_keys(left, right))) {
3507 ret = -EUCLEAN;
3508 btrfs_abort_transaction(trans, ret);
3509 goto out;
3510 }
3511 return __push_leaf_left(trans, path, min_data_size, empty, left,
3512 free_space, right_nritems, max_slot);
3513 out:
3514 btrfs_tree_unlock(left);
3515 free_extent_buffer(left);
3516 return ret;
3517 }
3518
3519 /*
3520 * split the path's leaf in two, making sure there is at least data_size
3521 * available for the resulting leaf level of the path.
3522 */
copy_for_split(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct extent_buffer * l,struct extent_buffer * right,int slot,int mid,int nritems)3523 static noinline int copy_for_split(struct btrfs_trans_handle *trans,
3524 struct btrfs_path *path,
3525 struct extent_buffer *l,
3526 struct extent_buffer *right,
3527 int slot, int mid, int nritems)
3528 {
3529 struct btrfs_fs_info *fs_info = trans->fs_info;
3530 int data_copy_size;
3531 int rt_data_off;
3532 int i;
3533 int ret;
3534 struct btrfs_disk_key disk_key;
3535
3536 nritems = nritems - mid;
3537 btrfs_set_header_nritems(right, nritems);
3538 data_copy_size = btrfs_item_data_end(l, mid) - leaf_data_end(l);
3539
3540 copy_leaf_items(right, l, 0, mid, nritems);
3541
3542 copy_leaf_data(right, l, BTRFS_LEAF_DATA_SIZE(fs_info) - data_copy_size,
3543 leaf_data_end(l), data_copy_size);
3544
3545 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_data_end(l, mid);
3546
3547 for (i = 0; i < nritems; i++) {
3548 u32 ioff;
3549
3550 ioff = btrfs_item_offset(right, i);
3551 btrfs_set_item_offset(right, i, ioff + rt_data_off);
3552 }
3553
3554 btrfs_set_header_nritems(l, mid);
3555 btrfs_item_key(right, &disk_key, 0);
3556 ret = insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
3557 if (ret < 0)
3558 return ret;
3559
3560 btrfs_mark_buffer_dirty(trans, right);
3561 btrfs_mark_buffer_dirty(trans, l);
3562 BUG_ON(path->slots[0] != slot);
3563
3564 if (mid <= slot) {
3565 btrfs_tree_unlock(path->nodes[0]);
3566 free_extent_buffer(path->nodes[0]);
3567 path->nodes[0] = right;
3568 path->slots[0] -= mid;
3569 path->slots[1] += 1;
3570 } else {
3571 btrfs_tree_unlock(right);
3572 free_extent_buffer(right);
3573 }
3574
3575 BUG_ON(path->slots[0] < 0);
3576
3577 return 0;
3578 }
3579
3580 /*
3581 * double splits happen when we need to insert a big item in the middle
3582 * of a leaf. A double split can leave us with 3 mostly empty leaves:
3583 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3584 * A B C
3585 *
3586 * We avoid this by trying to push the items on either side of our target
3587 * into the adjacent leaves. If all goes well we can avoid the double split
3588 * completely.
3589 */
push_for_double_split(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int data_size)3590 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3591 struct btrfs_root *root,
3592 struct btrfs_path *path,
3593 int data_size)
3594 {
3595 int ret;
3596 int progress = 0;
3597 int slot;
3598 u32 nritems;
3599 int space_needed = data_size;
3600
3601 slot = path->slots[0];
3602 if (slot < btrfs_header_nritems(path->nodes[0]))
3603 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3604
3605 /*
3606 * try to push all the items after our slot into the
3607 * right leaf
3608 */
3609 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
3610 if (ret < 0)
3611 return ret;
3612
3613 if (ret == 0)
3614 progress++;
3615
3616 nritems = btrfs_header_nritems(path->nodes[0]);
3617 /*
3618 * our goal is to get our slot at the start or end of a leaf. If
3619 * we've done so we're done
3620 */
3621 if (path->slots[0] == 0 || path->slots[0] == nritems)
3622 return 0;
3623
3624 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3625 return 0;
3626
3627 /* try to push all the items before our slot into the next leaf */
3628 slot = path->slots[0];
3629 space_needed = data_size;
3630 if (slot > 0)
3631 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3632 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
3633 if (ret < 0)
3634 return ret;
3635
3636 if (ret == 0)
3637 progress++;
3638
3639 if (progress)
3640 return 0;
3641 return 1;
3642 }
3643
3644 /*
3645 * split the path's leaf in two, making sure there is at least data_size
3646 * available for the resulting leaf level of the path.
3647 *
3648 * returns 0 if all went well and < 0 on failure.
3649 */
split_leaf(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct btrfs_key * ins_key,struct btrfs_path * path,int data_size,bool extend)3650 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3651 struct btrfs_root *root,
3652 const struct btrfs_key *ins_key,
3653 struct btrfs_path *path, int data_size,
3654 bool extend)
3655 {
3656 struct btrfs_disk_key disk_key;
3657 struct extent_buffer *l;
3658 u32 nritems;
3659 int mid;
3660 int slot;
3661 struct extent_buffer *right;
3662 struct btrfs_fs_info *fs_info = root->fs_info;
3663 int ret = 0;
3664 int wret;
3665 int split;
3666 int num_doubles = 0;
3667 int tried_avoid_double = 0;
3668
3669 l = path->nodes[0];
3670 slot = path->slots[0];
3671 if (extend && data_size + btrfs_item_size(l, slot) +
3672 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
3673 return -EOVERFLOW;
3674
3675 /* first try to make some room by pushing left and right */
3676 if (data_size && path->nodes[1]) {
3677 int space_needed = data_size;
3678
3679 if (slot < btrfs_header_nritems(l))
3680 space_needed -= btrfs_leaf_free_space(l);
3681
3682 wret = push_leaf_right(trans, root, path, space_needed,
3683 space_needed, 0, 0);
3684 if (wret < 0)
3685 return wret;
3686 if (wret) {
3687 space_needed = data_size;
3688 if (slot > 0)
3689 space_needed -= btrfs_leaf_free_space(l);
3690 wret = push_leaf_left(trans, root, path, space_needed,
3691 space_needed, 0, (u32)-1);
3692 if (wret < 0)
3693 return wret;
3694 }
3695 l = path->nodes[0];
3696
3697 /* did the pushes work? */
3698 if (btrfs_leaf_free_space(l) >= data_size)
3699 return 0;
3700 }
3701
3702 if (!path->nodes[1]) {
3703 ret = insert_new_root(trans, root, path, 1);
3704 if (ret)
3705 return ret;
3706 }
3707 again:
3708 split = 1;
3709 l = path->nodes[0];
3710 slot = path->slots[0];
3711 nritems = btrfs_header_nritems(l);
3712 mid = (nritems + 1) / 2;
3713
3714 if (mid <= slot) {
3715 if (nritems == 1 ||
3716 leaf_space_used(l, mid, nritems - mid) + data_size >
3717 BTRFS_LEAF_DATA_SIZE(fs_info)) {
3718 if (slot >= nritems) {
3719 split = 0;
3720 } else {
3721 mid = slot;
3722 if (mid != nritems &&
3723 leaf_space_used(l, mid, nritems - mid) +
3724 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3725 if (data_size && !tried_avoid_double)
3726 goto push_for_double;
3727 split = 2;
3728 }
3729 }
3730 }
3731 } else {
3732 if (leaf_space_used(l, 0, mid) + data_size >
3733 BTRFS_LEAF_DATA_SIZE(fs_info)) {
3734 if (!extend && data_size && slot == 0) {
3735 split = 0;
3736 } else if ((extend || !data_size) && slot == 0) {
3737 mid = 1;
3738 } else {
3739 mid = slot;
3740 if (mid != nritems &&
3741 leaf_space_used(l, mid, nritems - mid) +
3742 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3743 if (data_size && !tried_avoid_double)
3744 goto push_for_double;
3745 split = 2;
3746 }
3747 }
3748 }
3749 }
3750
3751 if (split == 0)
3752 btrfs_cpu_key_to_disk(&disk_key, ins_key);
3753 else
3754 btrfs_item_key(l, &disk_key, mid);
3755
3756 /*
3757 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
3758 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
3759 * subclasses, which is 8 at the time of this patch, and we've maxed it
3760 * out. In the future we could add a
3761 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
3762 * use BTRFS_NESTING_NEW_ROOT.
3763 */
3764 right = btrfs_alloc_tree_block(trans, root, 0, btrfs_root_id(root),
3765 &disk_key, 0, l->start, 0, 0,
3766 num_doubles ? BTRFS_NESTING_NEW_ROOT :
3767 BTRFS_NESTING_SPLIT);
3768 if (IS_ERR(right))
3769 return PTR_ERR(right);
3770
3771 root_add_used_bytes(root);
3772
3773 if (split == 0) {
3774 if (mid <= slot) {
3775 btrfs_set_header_nritems(right, 0);
3776 ret = insert_ptr(trans, path, &disk_key,
3777 right->start, path->slots[1] + 1, 1);
3778 if (ret < 0) {
3779 btrfs_tree_unlock(right);
3780 free_extent_buffer(right);
3781 return ret;
3782 }
3783 btrfs_tree_unlock(path->nodes[0]);
3784 free_extent_buffer(path->nodes[0]);
3785 path->nodes[0] = right;
3786 path->slots[0] = 0;
3787 path->slots[1] += 1;
3788 } else {
3789 btrfs_set_header_nritems(right, 0);
3790 ret = insert_ptr(trans, path, &disk_key,
3791 right->start, path->slots[1], 1);
3792 if (ret < 0) {
3793 btrfs_tree_unlock(right);
3794 free_extent_buffer(right);
3795 return ret;
3796 }
3797 btrfs_tree_unlock(path->nodes[0]);
3798 free_extent_buffer(path->nodes[0]);
3799 path->nodes[0] = right;
3800 path->slots[0] = 0;
3801 if (path->slots[1] == 0)
3802 fixup_low_keys(trans, path, &disk_key, 1);
3803 }
3804 /*
3805 * We create a new leaf 'right' for the required ins_len and
3806 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
3807 * the content of ins_len to 'right'.
3808 */
3809 return ret;
3810 }
3811
3812 ret = copy_for_split(trans, path, l, right, slot, mid, nritems);
3813 if (ret < 0) {
3814 btrfs_tree_unlock(right);
3815 free_extent_buffer(right);
3816 return ret;
3817 }
3818
3819 if (split == 2) {
3820 BUG_ON(num_doubles != 0);
3821 num_doubles++;
3822 goto again;
3823 }
3824
3825 return 0;
3826
3827 push_for_double:
3828 push_for_double_split(trans, root, path, data_size);
3829 tried_avoid_double = 1;
3830 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3831 return 0;
3832 goto again;
3833 }
3834
setup_leaf_for_split(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int ins_len)3835 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3836 struct btrfs_root *root,
3837 struct btrfs_path *path, int ins_len)
3838 {
3839 struct btrfs_key key;
3840 struct extent_buffer *leaf;
3841 struct btrfs_file_extent_item *fi;
3842 u64 extent_len = 0;
3843 u32 item_size;
3844 int ret;
3845
3846 leaf = path->nodes[0];
3847 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3848
3849 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3850 key.type != BTRFS_RAID_STRIPE_KEY &&
3851 key.type != BTRFS_EXTENT_CSUM_KEY);
3852
3853 if (btrfs_leaf_free_space(leaf) >= ins_len)
3854 return 0;
3855
3856 item_size = btrfs_item_size(leaf, path->slots[0]);
3857 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3858 fi = btrfs_item_ptr(leaf, path->slots[0],
3859 struct btrfs_file_extent_item);
3860 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3861 }
3862 btrfs_release_path(path);
3863
3864 path->keep_locks = 1;
3865 path->search_for_split = 1;
3866 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3867 path->search_for_split = 0;
3868 if (ret > 0)
3869 ret = -EAGAIN;
3870 if (ret < 0)
3871 goto err;
3872
3873 ret = -EAGAIN;
3874 leaf = path->nodes[0];
3875 /* if our item isn't there, return now */
3876 if (item_size != btrfs_item_size(leaf, path->slots[0]))
3877 goto err;
3878
3879 /* the leaf has changed, it now has room. return now */
3880 if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
3881 goto err;
3882
3883 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3884 fi = btrfs_item_ptr(leaf, path->slots[0],
3885 struct btrfs_file_extent_item);
3886 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3887 goto err;
3888 }
3889
3890 ret = split_leaf(trans, root, &key, path, ins_len, 1);
3891 if (ret)
3892 goto err;
3893
3894 path->keep_locks = 0;
3895 btrfs_unlock_up_safe(path, 1);
3896 return 0;
3897 err:
3898 path->keep_locks = 0;
3899 return ret;
3900 }
3901
split_item(struct btrfs_trans_handle * trans,struct btrfs_path * path,const struct btrfs_key * new_key,unsigned long split_offset)3902 static noinline int split_item(struct btrfs_trans_handle *trans,
3903 struct btrfs_path *path,
3904 const struct btrfs_key *new_key,
3905 unsigned long split_offset)
3906 {
3907 struct extent_buffer *leaf;
3908 int orig_slot, slot;
3909 char *buf;
3910 u32 nritems;
3911 u32 item_size;
3912 u32 orig_offset;
3913 struct btrfs_disk_key disk_key;
3914
3915 leaf = path->nodes[0];
3916 /*
3917 * Shouldn't happen because the caller must have previously called
3918 * setup_leaf_for_split() to make room for the new item in the leaf.
3919 */
3920 if (WARN_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item)))
3921 return -ENOSPC;
3922
3923 orig_slot = path->slots[0];
3924 orig_offset = btrfs_item_offset(leaf, path->slots[0]);
3925 item_size = btrfs_item_size(leaf, path->slots[0]);
3926
3927 buf = kmalloc(item_size, GFP_NOFS);
3928 if (!buf)
3929 return -ENOMEM;
3930
3931 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3932 path->slots[0]), item_size);
3933
3934 slot = path->slots[0] + 1;
3935 nritems = btrfs_header_nritems(leaf);
3936 if (slot != nritems) {
3937 /* shift the items */
3938 memmove_leaf_items(leaf, slot + 1, slot, nritems - slot);
3939 }
3940
3941 btrfs_cpu_key_to_disk(&disk_key, new_key);
3942 btrfs_set_item_key(leaf, &disk_key, slot);
3943
3944 btrfs_set_item_offset(leaf, slot, orig_offset);
3945 btrfs_set_item_size(leaf, slot, item_size - split_offset);
3946
3947 btrfs_set_item_offset(leaf, orig_slot,
3948 orig_offset + item_size - split_offset);
3949 btrfs_set_item_size(leaf, orig_slot, split_offset);
3950
3951 btrfs_set_header_nritems(leaf, nritems + 1);
3952
3953 /* write the data for the start of the original item */
3954 write_extent_buffer(leaf, buf,
3955 btrfs_item_ptr_offset(leaf, path->slots[0]),
3956 split_offset);
3957
3958 /* write the data for the new item */
3959 write_extent_buffer(leaf, buf + split_offset,
3960 btrfs_item_ptr_offset(leaf, slot),
3961 item_size - split_offset);
3962 btrfs_mark_buffer_dirty(trans, leaf);
3963
3964 BUG_ON(btrfs_leaf_free_space(leaf) < 0);
3965 kfree(buf);
3966 return 0;
3967 }
3968
3969 /*
3970 * This function splits a single item into two items,
3971 * giving 'new_key' to the new item and splitting the
3972 * old one at split_offset (from the start of the item).
3973 *
3974 * The path may be released by this operation. After
3975 * the split, the path is pointing to the old item. The
3976 * new item is going to be in the same node as the old one.
3977 *
3978 * Note, the item being split must be smaller enough to live alone on
3979 * a tree block with room for one extra struct btrfs_item
3980 *
3981 * This allows us to split the item in place, keeping a lock on the
3982 * leaf the entire time.
3983 */
btrfs_split_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * new_key,unsigned long split_offset)3984 int btrfs_split_item(struct btrfs_trans_handle *trans,
3985 struct btrfs_root *root,
3986 struct btrfs_path *path,
3987 const struct btrfs_key *new_key,
3988 unsigned long split_offset)
3989 {
3990 int ret;
3991 ret = setup_leaf_for_split(trans, root, path,
3992 sizeof(struct btrfs_item));
3993 if (ret)
3994 return ret;
3995
3996 ret = split_item(trans, path, new_key, split_offset);
3997 return ret;
3998 }
3999
4000 /*
4001 * make the item pointed to by the path smaller. new_size indicates
4002 * how small to make it, and from_end tells us if we just chop bytes
4003 * off the end of the item or if we shift the item to chop bytes off
4004 * the front.
4005 */
btrfs_truncate_item(struct btrfs_trans_handle * trans,const struct btrfs_path * path,u32 new_size,int from_end)4006 void btrfs_truncate_item(struct btrfs_trans_handle *trans,
4007 const struct btrfs_path *path, u32 new_size, int from_end)
4008 {
4009 int slot;
4010 struct extent_buffer *leaf;
4011 u32 nritems;
4012 unsigned int data_end;
4013 unsigned int old_data_start;
4014 unsigned int old_size;
4015 unsigned int size_diff;
4016 int i;
4017
4018 leaf = path->nodes[0];
4019 slot = path->slots[0];
4020
4021 old_size = btrfs_item_size(leaf, slot);
4022 if (old_size == new_size)
4023 return;
4024
4025 nritems = btrfs_header_nritems(leaf);
4026 data_end = leaf_data_end(leaf);
4027
4028 old_data_start = btrfs_item_offset(leaf, slot);
4029
4030 size_diff = old_size - new_size;
4031
4032 BUG_ON(slot < 0);
4033 BUG_ON(slot >= nritems);
4034
4035 /*
4036 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4037 */
4038 /* first correct the data pointers */
4039 for (i = slot; i < nritems; i++) {
4040 u32 ioff;
4041
4042 ioff = btrfs_item_offset(leaf, i);
4043 btrfs_set_item_offset(leaf, i, ioff + size_diff);
4044 }
4045
4046 /* shift the data */
4047 if (from_end) {
4048 memmove_leaf_data(leaf, data_end + size_diff, data_end,
4049 old_data_start + new_size - data_end);
4050 } else {
4051 struct btrfs_disk_key disk_key;
4052 u64 offset;
4053
4054 btrfs_item_key(leaf, &disk_key, slot);
4055
4056 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4057 unsigned long ptr;
4058 struct btrfs_file_extent_item *fi;
4059
4060 fi = btrfs_item_ptr(leaf, slot,
4061 struct btrfs_file_extent_item);
4062 fi = (struct btrfs_file_extent_item *)(
4063 (unsigned long)fi - size_diff);
4064
4065 if (btrfs_file_extent_type(leaf, fi) ==
4066 BTRFS_FILE_EXTENT_INLINE) {
4067 ptr = btrfs_item_ptr_offset(leaf, slot);
4068 memmove_extent_buffer(leaf, ptr,
4069 (unsigned long)fi,
4070 BTRFS_FILE_EXTENT_INLINE_DATA_START);
4071 }
4072 }
4073
4074 memmove_leaf_data(leaf, data_end + size_diff, data_end,
4075 old_data_start - data_end);
4076
4077 offset = btrfs_disk_key_offset(&disk_key);
4078 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4079 btrfs_set_item_key(leaf, &disk_key, slot);
4080 if (slot == 0)
4081 fixup_low_keys(trans, path, &disk_key, 1);
4082 }
4083
4084 btrfs_set_item_size(leaf, slot, new_size);
4085 btrfs_mark_buffer_dirty(trans, leaf);
4086
4087 if (unlikely(btrfs_leaf_free_space(leaf) < 0)) {
4088 btrfs_print_leaf(leaf);
4089 BUG();
4090 }
4091 }
4092
4093 /*
4094 * make the item pointed to by the path bigger, data_size is the added size.
4095 */
btrfs_extend_item(struct btrfs_trans_handle * trans,const struct btrfs_path * path,u32 data_size)4096 void btrfs_extend_item(struct btrfs_trans_handle *trans,
4097 const struct btrfs_path *path, u32 data_size)
4098 {
4099 int slot;
4100 struct extent_buffer *leaf;
4101 u32 nritems;
4102 unsigned int data_end;
4103 unsigned int old_data;
4104 unsigned int old_size;
4105 int i;
4106
4107 leaf = path->nodes[0];
4108
4109 nritems = btrfs_header_nritems(leaf);
4110 data_end = leaf_data_end(leaf);
4111
4112 if (btrfs_leaf_free_space(leaf) < data_size) {
4113 btrfs_print_leaf(leaf);
4114 BUG();
4115 }
4116 slot = path->slots[0];
4117 old_data = btrfs_item_data_end(leaf, slot);
4118
4119 BUG_ON(slot < 0);
4120 if (unlikely(slot >= nritems)) {
4121 btrfs_print_leaf(leaf);
4122 btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4123 slot, nritems);
4124 BUG();
4125 }
4126
4127 /*
4128 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4129 */
4130 /* first correct the data pointers */
4131 for (i = slot; i < nritems; i++) {
4132 u32 ioff;
4133
4134 ioff = btrfs_item_offset(leaf, i);
4135 btrfs_set_item_offset(leaf, i, ioff - data_size);
4136 }
4137
4138 /* shift the data */
4139 memmove_leaf_data(leaf, data_end - data_size, data_end,
4140 old_data - data_end);
4141
4142 data_end = old_data;
4143 old_size = btrfs_item_size(leaf, slot);
4144 btrfs_set_item_size(leaf, slot, old_size + data_size);
4145 btrfs_mark_buffer_dirty(trans, leaf);
4146
4147 if (unlikely(btrfs_leaf_free_space(leaf) < 0)) {
4148 btrfs_print_leaf(leaf);
4149 BUG();
4150 }
4151 }
4152
4153 /*
4154 * Make space in the node before inserting one or more items.
4155 *
4156 * @trans: transaction handle
4157 * @root: root we are inserting items to
4158 * @path: points to the leaf/slot where we are going to insert new items
4159 * @batch: information about the batch of items to insert
4160 *
4161 * Main purpose is to save stack depth by doing the bulk of the work in a
4162 * function that doesn't call btrfs_search_slot
4163 */
setup_items_for_insert(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_item_batch * batch)4164 static void setup_items_for_insert(struct btrfs_trans_handle *trans,
4165 struct btrfs_root *root, struct btrfs_path *path,
4166 const struct btrfs_item_batch *batch)
4167 {
4168 struct btrfs_fs_info *fs_info = root->fs_info;
4169 int i;
4170 u32 nritems;
4171 unsigned int data_end;
4172 struct btrfs_disk_key disk_key;
4173 struct extent_buffer *leaf;
4174 int slot;
4175 u32 total_size;
4176
4177 /*
4178 * Before anything else, update keys in the parent and other ancestors
4179 * if needed, then release the write locks on them, so that other tasks
4180 * can use them while we modify the leaf.
4181 */
4182 if (path->slots[0] == 0) {
4183 btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]);
4184 fixup_low_keys(trans, path, &disk_key, 1);
4185 }
4186 btrfs_unlock_up_safe(path, 1);
4187
4188 leaf = path->nodes[0];
4189 slot = path->slots[0];
4190
4191 nritems = btrfs_header_nritems(leaf);
4192 data_end = leaf_data_end(leaf);
4193 total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4194
4195 if (unlikely(btrfs_leaf_free_space(leaf) < total_size)) {
4196 btrfs_print_leaf(leaf);
4197 btrfs_crit(fs_info, "not enough freespace need %u have %d",
4198 total_size, btrfs_leaf_free_space(leaf));
4199 BUG();
4200 }
4201
4202 if (slot != nritems) {
4203 unsigned int old_data = btrfs_item_data_end(leaf, slot);
4204
4205 if (unlikely(old_data < data_end)) {
4206 btrfs_print_leaf(leaf);
4207 btrfs_crit(fs_info,
4208 "item at slot %d with data offset %u beyond data end of leaf %u",
4209 slot, old_data, data_end);
4210 BUG();
4211 }
4212 /*
4213 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4214 */
4215 /* first correct the data pointers */
4216 for (i = slot; i < nritems; i++) {
4217 u32 ioff;
4218
4219 ioff = btrfs_item_offset(leaf, i);
4220 btrfs_set_item_offset(leaf, i,
4221 ioff - batch->total_data_size);
4222 }
4223 /* shift the items */
4224 memmove_leaf_items(leaf, slot + batch->nr, slot, nritems - slot);
4225
4226 /* shift the data */
4227 memmove_leaf_data(leaf, data_end - batch->total_data_size,
4228 data_end, old_data - data_end);
4229 data_end = old_data;
4230 }
4231
4232 /* setup the item for the new data */
4233 for (i = 0; i < batch->nr; i++) {
4234 btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]);
4235 btrfs_set_item_key(leaf, &disk_key, slot + i);
4236 data_end -= batch->data_sizes[i];
4237 btrfs_set_item_offset(leaf, slot + i, data_end);
4238 btrfs_set_item_size(leaf, slot + i, batch->data_sizes[i]);
4239 }
4240
4241 btrfs_set_header_nritems(leaf, nritems + batch->nr);
4242 btrfs_mark_buffer_dirty(trans, leaf);
4243
4244 if (unlikely(btrfs_leaf_free_space(leaf) < 0)) {
4245 btrfs_print_leaf(leaf);
4246 BUG();
4247 }
4248 }
4249
4250 /*
4251 * Insert a new item into a leaf.
4252 *
4253 * @trans: Transaction handle.
4254 * @root: The root of the btree.
4255 * @path: A path pointing to the target leaf and slot.
4256 * @key: The key of the new item.
4257 * @data_size: The size of the data associated with the new key.
4258 */
btrfs_setup_item_for_insert(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * key,u32 data_size)4259 void btrfs_setup_item_for_insert(struct btrfs_trans_handle *trans,
4260 struct btrfs_root *root,
4261 struct btrfs_path *path,
4262 const struct btrfs_key *key,
4263 u32 data_size)
4264 {
4265 struct btrfs_item_batch batch;
4266
4267 batch.keys = key;
4268 batch.data_sizes = &data_size;
4269 batch.total_data_size = data_size;
4270 batch.nr = 1;
4271
4272 setup_items_for_insert(trans, root, path, &batch);
4273 }
4274
4275 /*
4276 * Given a key and some data, insert items into the tree.
4277 * This does all the path init required, making room in the tree if needed.
4278 *
4279 * Returns: 0 on success
4280 * -EEXIST if the first key already exists
4281 * < 0 on other errors
4282 */
btrfs_insert_empty_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_item_batch * batch)4283 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4284 struct btrfs_root *root,
4285 struct btrfs_path *path,
4286 const struct btrfs_item_batch *batch)
4287 {
4288 int ret = 0;
4289 int slot;
4290 u32 total_size;
4291
4292 total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4293 ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1);
4294 if (ret == 0)
4295 return -EEXIST;
4296 if (ret < 0)
4297 return ret;
4298
4299 slot = path->slots[0];
4300 BUG_ON(slot < 0);
4301
4302 setup_items_for_insert(trans, root, path, batch);
4303 return 0;
4304 }
4305
4306 /*
4307 * Given a key and some data, insert an item into the tree.
4308 * This does all the path init required, making room in the tree if needed.
4309 */
btrfs_insert_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct btrfs_key * cpu_key,void * data,u32 data_size)4310 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4311 const struct btrfs_key *cpu_key, void *data,
4312 u32 data_size)
4313 {
4314 int ret = 0;
4315 BTRFS_PATH_AUTO_FREE(path);
4316 struct extent_buffer *leaf;
4317 unsigned long ptr;
4318
4319 path = btrfs_alloc_path();
4320 if (!path)
4321 return -ENOMEM;
4322 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4323 if (!ret) {
4324 leaf = path->nodes[0];
4325 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4326 write_extent_buffer(leaf, data, ptr, data_size);
4327 btrfs_mark_buffer_dirty(trans, leaf);
4328 }
4329 return ret;
4330 }
4331
4332 /*
4333 * This function duplicates an item, giving 'new_key' to the new item.
4334 * It guarantees both items live in the same tree leaf and the new item is
4335 * contiguous with the original item.
4336 *
4337 * This allows us to split a file extent in place, keeping a lock on the leaf
4338 * the entire time.
4339 */
btrfs_duplicate_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * new_key)4340 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4341 struct btrfs_root *root,
4342 struct btrfs_path *path,
4343 const struct btrfs_key *new_key)
4344 {
4345 struct extent_buffer *leaf;
4346 int ret;
4347 u32 item_size;
4348
4349 leaf = path->nodes[0];
4350 item_size = btrfs_item_size(leaf, path->slots[0]);
4351 ret = setup_leaf_for_split(trans, root, path,
4352 item_size + sizeof(struct btrfs_item));
4353 if (ret)
4354 return ret;
4355
4356 path->slots[0]++;
4357 btrfs_setup_item_for_insert(trans, root, path, new_key, item_size);
4358 leaf = path->nodes[0];
4359 memcpy_extent_buffer(leaf,
4360 btrfs_item_ptr_offset(leaf, path->slots[0]),
4361 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4362 item_size);
4363 return 0;
4364 }
4365
4366 /*
4367 * delete the pointer from a given node.
4368 *
4369 * the tree should have been previously balanced so the deletion does not
4370 * empty a node.
4371 *
4372 * This is exported for use inside btrfs-progs, don't un-export it.
4373 */
btrfs_del_ptr(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level,int slot)4374 int btrfs_del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4375 struct btrfs_path *path, int level, int slot)
4376 {
4377 struct extent_buffer *parent = path->nodes[level];
4378 u32 nritems;
4379 int ret;
4380
4381 nritems = btrfs_header_nritems(parent);
4382 if (slot != nritems - 1) {
4383 if (level) {
4384 ret = btrfs_tree_mod_log_insert_move(parent, slot,
4385 slot + 1, nritems - slot - 1);
4386 if (unlikely(ret < 0)) {
4387 btrfs_abort_transaction(trans, ret);
4388 return ret;
4389 }
4390 }
4391 memmove_extent_buffer(parent,
4392 btrfs_node_key_ptr_offset(parent, slot),
4393 btrfs_node_key_ptr_offset(parent, slot + 1),
4394 sizeof(struct btrfs_key_ptr) *
4395 (nritems - slot - 1));
4396 } else if (level) {
4397 ret = btrfs_tree_mod_log_insert_key(parent, slot,
4398 BTRFS_MOD_LOG_KEY_REMOVE);
4399 if (unlikely(ret < 0)) {
4400 btrfs_abort_transaction(trans, ret);
4401 return ret;
4402 }
4403 }
4404
4405 nritems--;
4406 btrfs_set_header_nritems(parent, nritems);
4407 if (nritems == 0 && parent == root->node) {
4408 BUG_ON(btrfs_header_level(root->node) != 1);
4409 /* just turn the root into a leaf and break */
4410 btrfs_set_header_level(root->node, 0);
4411 } else if (slot == 0) {
4412 struct btrfs_disk_key disk_key;
4413
4414 btrfs_node_key(parent, &disk_key, 0);
4415 fixup_low_keys(trans, path, &disk_key, level + 1);
4416 }
4417 btrfs_mark_buffer_dirty(trans, parent);
4418 return 0;
4419 }
4420
4421 /*
4422 * a helper function to delete the leaf pointed to by path->slots[1] and
4423 * path->nodes[1].
4424 *
4425 * This deletes the pointer in path->nodes[1] and frees the leaf
4426 * block extent. zero is returned if it all worked out, < 0 otherwise.
4427 *
4428 * The path must have already been setup for deleting the leaf, including
4429 * all the proper balancing. path->nodes[1] must be locked.
4430 */
btrfs_del_leaf(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * leaf)4431 static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
4432 struct btrfs_root *root,
4433 struct btrfs_path *path,
4434 struct extent_buffer *leaf)
4435 {
4436 int ret;
4437
4438 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4439 ret = btrfs_del_ptr(trans, root, path, 1, path->slots[1]);
4440 if (ret < 0)
4441 return ret;
4442
4443 /*
4444 * btrfs_free_extent is expensive, we want to make sure we
4445 * aren't holding any locks when we call it
4446 */
4447 btrfs_unlock_up_safe(path, 0);
4448
4449 root_sub_used_bytes(root);
4450
4451 refcount_inc(&leaf->refs);
4452 ret = btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1);
4453 free_extent_buffer_stale(leaf);
4454 if (ret < 0)
4455 btrfs_abort_transaction(trans, ret);
4456
4457 return ret;
4458 }
4459 /*
4460 * delete the item at the leaf level in path. If that empties
4461 * the leaf, remove it from the tree
4462 */
btrfs_del_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int slot,int nr)4463 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4464 struct btrfs_path *path, int slot, int nr)
4465 {
4466 struct btrfs_fs_info *fs_info = root->fs_info;
4467 struct extent_buffer *leaf;
4468 int ret = 0;
4469 int wret;
4470 u32 nritems;
4471
4472 leaf = path->nodes[0];
4473 nritems = btrfs_header_nritems(leaf);
4474
4475 if (slot + nr != nritems) {
4476 const u32 last_off = btrfs_item_offset(leaf, slot + nr - 1);
4477 const int data_end = leaf_data_end(leaf);
4478 u32 dsize = 0;
4479 int i;
4480
4481 for (i = 0; i < nr; i++)
4482 dsize += btrfs_item_size(leaf, slot + i);
4483
4484 memmove_leaf_data(leaf, data_end + dsize, data_end,
4485 last_off - data_end);
4486
4487 for (i = slot + nr; i < nritems; i++) {
4488 u32 ioff;
4489
4490 ioff = btrfs_item_offset(leaf, i);
4491 btrfs_set_item_offset(leaf, i, ioff + dsize);
4492 }
4493
4494 memmove_leaf_items(leaf, slot, slot + nr, nritems - slot - nr);
4495 }
4496 btrfs_set_header_nritems(leaf, nritems - nr);
4497 nritems -= nr;
4498
4499 /* delete the leaf if we've emptied it */
4500 if (nritems == 0) {
4501 if (leaf == root->node) {
4502 btrfs_set_header_level(leaf, 0);
4503 } else {
4504 btrfs_clear_buffer_dirty(trans, leaf);
4505 ret = btrfs_del_leaf(trans, root, path, leaf);
4506 if (ret < 0)
4507 return ret;
4508 }
4509 } else {
4510 int used = leaf_space_used(leaf, 0, nritems);
4511 if (slot == 0) {
4512 struct btrfs_disk_key disk_key;
4513
4514 btrfs_item_key(leaf, &disk_key, 0);
4515 fixup_low_keys(trans, path, &disk_key, 1);
4516 }
4517
4518 /*
4519 * Try to delete the leaf if it is mostly empty. We do this by
4520 * trying to move all its items into its left and right neighbours.
4521 * If we can't move all the items, then we don't delete it - it's
4522 * not ideal, but future insertions might fill the leaf with more
4523 * items, or items from other leaves might be moved later into our
4524 * leaf due to deletions on those leaves.
4525 */
4526 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4527 u32 min_push_space;
4528
4529 /* push_leaf_left fixes the path.
4530 * make sure the path still points to our leaf
4531 * for possible call to btrfs_del_ptr below
4532 */
4533 slot = path->slots[1];
4534 refcount_inc(&leaf->refs);
4535 /*
4536 * We want to be able to at least push one item to the
4537 * left neighbour leaf, and that's the first item.
4538 */
4539 min_push_space = sizeof(struct btrfs_item) +
4540 btrfs_item_size(leaf, 0);
4541 wret = push_leaf_left(trans, root, path, 0,
4542 min_push_space, 1, (u32)-1);
4543 if (wret < 0 && wret != -ENOSPC)
4544 ret = wret;
4545
4546 if (path->nodes[0] == leaf &&
4547 btrfs_header_nritems(leaf)) {
4548 /*
4549 * If we were not able to push all items from our
4550 * leaf to its left neighbour, then attempt to
4551 * either push all the remaining items to the
4552 * right neighbour or none. There's no advantage
4553 * in pushing only some items, instead of all, as
4554 * it's pointless to end up with a leaf having
4555 * too few items while the neighbours can be full
4556 * or nearly full.
4557 */
4558 nritems = btrfs_header_nritems(leaf);
4559 min_push_space = leaf_space_used(leaf, 0, nritems);
4560 wret = push_leaf_right(trans, root, path, 0,
4561 min_push_space, 1, 0);
4562 if (wret < 0 && wret != -ENOSPC)
4563 ret = wret;
4564 }
4565
4566 if (btrfs_header_nritems(leaf) == 0) {
4567 path->slots[1] = slot;
4568 ret = btrfs_del_leaf(trans, root, path, leaf);
4569 if (ret < 0)
4570 return ret;
4571 free_extent_buffer(leaf);
4572 ret = 0;
4573 } else {
4574 /* if we're still in the path, make sure
4575 * we're dirty. Otherwise, one of the
4576 * push_leaf functions must have already
4577 * dirtied this buffer
4578 */
4579 if (path->nodes[0] == leaf)
4580 btrfs_mark_buffer_dirty(trans, leaf);
4581 free_extent_buffer(leaf);
4582 }
4583 } else {
4584 btrfs_mark_buffer_dirty(trans, leaf);
4585 }
4586 }
4587 return ret;
4588 }
4589
4590 /*
4591 * A helper function to walk down the tree starting at min_key, and looking
4592 * for leaves that have a minimum transaction id.
4593 * This is used by the btree defrag code, and tree logging
4594 *
4595 * This does not cow, but it does stuff the starting key it finds back
4596 * into min_key, so you can call btrfs_search_slot with cow=1 on the
4597 * key and get a writable path.
4598 *
4599 * min_trans indicates the oldest transaction that you are interested
4600 * in walking through. Any nodes or leaves older than min_trans are
4601 * skipped over (without reading them).
4602 *
4603 * returns zero if something useful was found, < 0 on error and 1 if there
4604 * was nothing in the tree that matched the search criteria.
4605 */
btrfs_search_forward(struct btrfs_root * root,struct btrfs_key * min_key,struct btrfs_path * path,u64 min_trans)4606 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4607 struct btrfs_path *path,
4608 u64 min_trans)
4609 {
4610 struct extent_buffer *cur;
4611 int slot;
4612 int sret;
4613 u32 nritems;
4614 int level;
4615 int ret = 1;
4616 int keep_locks = path->keep_locks;
4617
4618 ASSERT(!path->nowait);
4619 ASSERT(path->lowest_level == 0);
4620 path->keep_locks = 1;
4621 again:
4622 cur = btrfs_read_lock_root_node(root);
4623 level = btrfs_header_level(cur);
4624 WARN_ON(path->nodes[level]);
4625 path->nodes[level] = cur;
4626 path->locks[level] = BTRFS_READ_LOCK;
4627
4628 if (btrfs_header_generation(cur) < min_trans) {
4629 ret = 1;
4630 goto out;
4631 }
4632 while (1) {
4633 nritems = btrfs_header_nritems(cur);
4634 level = btrfs_header_level(cur);
4635 sret = btrfs_bin_search(cur, 0, min_key, &slot);
4636 if (sret < 0) {
4637 ret = sret;
4638 goto out;
4639 }
4640
4641 /* At level 0 we're done, setup the path and exit. */
4642 if (level == 0) {
4643 if (slot >= nritems)
4644 goto find_next_key;
4645 ret = 0;
4646 path->slots[level] = slot;
4647 /* Save our key for returning back. */
4648 btrfs_item_key_to_cpu(cur, min_key, slot);
4649 goto out;
4650 }
4651 if (sret && slot > 0)
4652 slot--;
4653 /*
4654 * check this node pointer against the min_trans parameters.
4655 * If it is too old, skip to the next one.
4656 */
4657 while (slot < nritems) {
4658 u64 gen;
4659
4660 gen = btrfs_node_ptr_generation(cur, slot);
4661 if (gen < min_trans) {
4662 slot++;
4663 continue;
4664 }
4665 break;
4666 }
4667 find_next_key:
4668 /*
4669 * we didn't find a candidate key in this node, walk forward
4670 * and find another one
4671 */
4672 path->slots[level] = slot;
4673 if (slot >= nritems) {
4674 sret = btrfs_find_next_key(root, path, min_key, level,
4675 min_trans);
4676 if (sret == 0) {
4677 btrfs_release_path(path);
4678 goto again;
4679 } else {
4680 goto out;
4681 }
4682 }
4683 cur = btrfs_read_node_slot(cur, slot);
4684 if (IS_ERR(cur)) {
4685 ret = PTR_ERR(cur);
4686 goto out;
4687 }
4688
4689 btrfs_tree_read_lock(cur);
4690
4691 path->locks[level - 1] = BTRFS_READ_LOCK;
4692 path->nodes[level - 1] = cur;
4693 unlock_up(path, level, 1, 0, NULL);
4694 }
4695 out:
4696 path->keep_locks = keep_locks;
4697 if (ret == 0)
4698 btrfs_unlock_up_safe(path, 1);
4699 return ret;
4700 }
4701
4702 /*
4703 * this is similar to btrfs_next_leaf, but does not try to preserve
4704 * and fixup the path. It looks for and returns the next key in the
4705 * tree based on the current path and the min_trans parameters.
4706 *
4707 * 0 is returned if another key is found, < 0 if there are any errors
4708 * and 1 is returned if there are no higher keys in the tree
4709 *
4710 * path->keep_locks should be set to 1 on the search made before
4711 * calling this function.
4712 */
btrfs_find_next_key(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * key,int level,u64 min_trans)4713 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4714 struct btrfs_key *key, int level, u64 min_trans)
4715 {
4716 int slot;
4717 struct extent_buffer *c;
4718
4719 WARN_ON(!path->keep_locks && !path->skip_locking);
4720 while (level < BTRFS_MAX_LEVEL) {
4721 if (!path->nodes[level])
4722 return 1;
4723
4724 slot = path->slots[level] + 1;
4725 c = path->nodes[level];
4726 next:
4727 if (slot >= btrfs_header_nritems(c)) {
4728 int ret;
4729 int orig_lowest;
4730 struct btrfs_key cur_key;
4731 if (level + 1 >= BTRFS_MAX_LEVEL ||
4732 !path->nodes[level + 1])
4733 return 1;
4734
4735 if (path->locks[level + 1] || path->skip_locking) {
4736 level++;
4737 continue;
4738 }
4739
4740 slot = btrfs_header_nritems(c) - 1;
4741 if (level == 0)
4742 btrfs_item_key_to_cpu(c, &cur_key, slot);
4743 else
4744 btrfs_node_key_to_cpu(c, &cur_key, slot);
4745
4746 orig_lowest = path->lowest_level;
4747 btrfs_release_path(path);
4748 path->lowest_level = level;
4749 ret = btrfs_search_slot(NULL, root, &cur_key, path,
4750 0, 0);
4751 path->lowest_level = orig_lowest;
4752 if (ret < 0)
4753 return ret;
4754
4755 c = path->nodes[level];
4756 slot = path->slots[level];
4757 if (ret == 0)
4758 slot++;
4759 goto next;
4760 }
4761
4762 if (level == 0)
4763 btrfs_item_key_to_cpu(c, key, slot);
4764 else {
4765 u64 gen = btrfs_node_ptr_generation(c, slot);
4766
4767 if (gen < min_trans) {
4768 slot++;
4769 goto next;
4770 }
4771 btrfs_node_key_to_cpu(c, key, slot);
4772 }
4773 return 0;
4774 }
4775 return 1;
4776 }
4777
btrfs_next_old_leaf(struct btrfs_root * root,struct btrfs_path * path,u64 time_seq)4778 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
4779 u64 time_seq)
4780 {
4781 int slot;
4782 int level;
4783 struct extent_buffer *c;
4784 struct extent_buffer *next;
4785 struct btrfs_fs_info *fs_info = root->fs_info;
4786 struct btrfs_key key;
4787 bool need_commit_sem = false;
4788 u32 nritems;
4789 int ret;
4790 int i;
4791
4792 /*
4793 * The nowait semantics are used only for write paths, where we don't
4794 * use the tree mod log and sequence numbers.
4795 */
4796 if (time_seq)
4797 ASSERT(!path->nowait);
4798
4799 nritems = btrfs_header_nritems(path->nodes[0]);
4800 if (nritems == 0)
4801 return 1;
4802
4803 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4804 again:
4805 level = 1;
4806 next = NULL;
4807 btrfs_release_path(path);
4808
4809 path->keep_locks = 1;
4810
4811 if (time_seq) {
4812 ret = btrfs_search_old_slot(root, &key, path, time_seq);
4813 } else {
4814 if (path->need_commit_sem) {
4815 path->need_commit_sem = 0;
4816 need_commit_sem = true;
4817 if (path->nowait) {
4818 if (!down_read_trylock(&fs_info->commit_root_sem)) {
4819 ret = -EAGAIN;
4820 goto done;
4821 }
4822 } else {
4823 down_read(&fs_info->commit_root_sem);
4824 }
4825 }
4826 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4827 }
4828 path->keep_locks = 0;
4829
4830 if (ret < 0)
4831 goto done;
4832
4833 nritems = btrfs_header_nritems(path->nodes[0]);
4834 /*
4835 * by releasing the path above we dropped all our locks. A balance
4836 * could have added more items next to the key that used to be
4837 * at the very end of the block. So, check again here and
4838 * advance the path if there are now more items available.
4839 */
4840 if (nritems > 0 && path->slots[0] < nritems - 1) {
4841 if (ret == 0)
4842 path->slots[0]++;
4843 ret = 0;
4844 goto done;
4845 }
4846 /*
4847 * So the above check misses one case:
4848 * - after releasing the path above, someone has removed the item that
4849 * used to be at the very end of the block, and balance between leafs
4850 * gets another one with bigger key.offset to replace it.
4851 *
4852 * This one should be returned as well, or we can get leaf corruption
4853 * later(esp. in __btrfs_drop_extents()).
4854 *
4855 * And a bit more explanation about this check,
4856 * with ret > 0, the key isn't found, the path points to the slot
4857 * where it should be inserted, so the path->slots[0] item must be the
4858 * bigger one.
4859 */
4860 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
4861 ret = 0;
4862 goto done;
4863 }
4864
4865 while (level < BTRFS_MAX_LEVEL) {
4866 if (!path->nodes[level]) {
4867 ret = 1;
4868 goto done;
4869 }
4870
4871 slot = path->slots[level] + 1;
4872 c = path->nodes[level];
4873 if (slot >= btrfs_header_nritems(c)) {
4874 level++;
4875 if (level == BTRFS_MAX_LEVEL) {
4876 ret = 1;
4877 goto done;
4878 }
4879 continue;
4880 }
4881
4882
4883 /*
4884 * Our current level is where we're going to start from, and to
4885 * make sure lockdep doesn't complain we need to drop our locks
4886 * and nodes from 0 to our current level.
4887 */
4888 for (i = 0; i < level; i++) {
4889 if (path->locks[level]) {
4890 btrfs_tree_read_unlock(path->nodes[i]);
4891 path->locks[i] = 0;
4892 }
4893 free_extent_buffer(path->nodes[i]);
4894 path->nodes[i] = NULL;
4895 }
4896
4897 next = c;
4898 ret = read_block_for_search(root, path, &next, slot, &key);
4899 if (ret == -EAGAIN && !path->nowait)
4900 goto again;
4901
4902 if (ret < 0) {
4903 btrfs_release_path(path);
4904 goto done;
4905 }
4906
4907 if (!path->skip_locking) {
4908 ret = btrfs_try_tree_read_lock(next);
4909 if (!ret && path->nowait) {
4910 ret = -EAGAIN;
4911 goto done;
4912 }
4913 if (!ret && time_seq) {
4914 /*
4915 * If we don't get the lock, we may be racing
4916 * with push_leaf_left, holding that lock while
4917 * itself waiting for the leaf we've currently
4918 * locked. To solve this situation, we give up
4919 * on our lock and cycle.
4920 */
4921 free_extent_buffer(next);
4922 btrfs_release_path(path);
4923 cond_resched();
4924 goto again;
4925 }
4926 if (!ret)
4927 btrfs_tree_read_lock(next);
4928 }
4929 break;
4930 }
4931 path->slots[level] = slot;
4932 while (1) {
4933 level--;
4934 path->nodes[level] = next;
4935 path->slots[level] = 0;
4936 if (!path->skip_locking)
4937 path->locks[level] = BTRFS_READ_LOCK;
4938 if (!level)
4939 break;
4940
4941 ret = read_block_for_search(root, path, &next, 0, &key);
4942 if (ret == -EAGAIN && !path->nowait)
4943 goto again;
4944
4945 if (ret < 0) {
4946 btrfs_release_path(path);
4947 goto done;
4948 }
4949
4950 if (!path->skip_locking) {
4951 if (path->nowait) {
4952 if (!btrfs_try_tree_read_lock(next)) {
4953 ret = -EAGAIN;
4954 goto done;
4955 }
4956 } else {
4957 btrfs_tree_read_lock(next);
4958 }
4959 }
4960 }
4961 ret = 0;
4962 done:
4963 unlock_up(path, 0, 1, 0, NULL);
4964 if (need_commit_sem) {
4965 int ret2;
4966
4967 path->need_commit_sem = 1;
4968 ret2 = finish_need_commit_sem_search(path);
4969 up_read(&fs_info->commit_root_sem);
4970 if (ret2)
4971 ret = ret2;
4972 }
4973
4974 return ret;
4975 }
4976
btrfs_next_old_item(struct btrfs_root * root,struct btrfs_path * path,u64 time_seq)4977 int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq)
4978 {
4979 path->slots[0]++;
4980 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
4981 return btrfs_next_old_leaf(root, path, time_seq);
4982 return 0;
4983 }
4984
4985 /*
4986 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4987 * searching until it gets past min_objectid or finds an item of 'type'
4988 *
4989 * returns 0 if something is found, 1 if nothing was found and < 0 on error
4990 */
btrfs_previous_item(struct btrfs_root * root,struct btrfs_path * path,u64 min_objectid,int type)4991 int btrfs_previous_item(struct btrfs_root *root,
4992 struct btrfs_path *path, u64 min_objectid,
4993 int type)
4994 {
4995 struct btrfs_key found_key;
4996 struct extent_buffer *leaf;
4997 u32 nritems;
4998 int ret;
4999
5000 while (1) {
5001 if (path->slots[0] == 0) {
5002 ret = btrfs_prev_leaf(root, path);
5003 if (ret != 0)
5004 return ret;
5005 } else {
5006 path->slots[0]--;
5007 }
5008 leaf = path->nodes[0];
5009 nritems = btrfs_header_nritems(leaf);
5010 if (nritems == 0)
5011 return 1;
5012 if (path->slots[0] == nritems)
5013 path->slots[0]--;
5014
5015 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5016 if (found_key.objectid < min_objectid)
5017 break;
5018 if (found_key.type == type)
5019 return 0;
5020 if (found_key.objectid == min_objectid &&
5021 found_key.type < type)
5022 break;
5023 }
5024 return 1;
5025 }
5026
5027 /*
5028 * search in extent tree to find a previous Metadata/Data extent item with
5029 * min objecitd.
5030 *
5031 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5032 */
btrfs_previous_extent_item(struct btrfs_root * root,struct btrfs_path * path,u64 min_objectid)5033 int btrfs_previous_extent_item(struct btrfs_root *root,
5034 struct btrfs_path *path, u64 min_objectid)
5035 {
5036 struct btrfs_key found_key;
5037 struct extent_buffer *leaf;
5038 u32 nritems;
5039 int ret;
5040
5041 while (1) {
5042 if (path->slots[0] == 0) {
5043 ret = btrfs_prev_leaf(root, path);
5044 if (ret != 0)
5045 return ret;
5046 } else {
5047 path->slots[0]--;
5048 }
5049 leaf = path->nodes[0];
5050 nritems = btrfs_header_nritems(leaf);
5051 if (nritems == 0)
5052 return 1;
5053 if (path->slots[0] == nritems)
5054 path->slots[0]--;
5055
5056 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5057 if (found_key.objectid < min_objectid)
5058 break;
5059 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5060 found_key.type == BTRFS_METADATA_ITEM_KEY)
5061 return 0;
5062 if (found_key.objectid == min_objectid &&
5063 found_key.type < BTRFS_EXTENT_ITEM_KEY)
5064 break;
5065 }
5066 return 1;
5067 }
5068
btrfs_ctree_init(void)5069 int __init btrfs_ctree_init(void)
5070 {
5071 btrfs_path_cachep = KMEM_CACHE(btrfs_path, 0);
5072 if (!btrfs_path_cachep)
5073 return -ENOMEM;
5074 return 0;
5075 }
5076
btrfs_ctree_exit(void)5077 void __cold btrfs_ctree_exit(void)
5078 {
5079 kmem_cache_destroy(btrfs_path_cachep);
5080 }
5081