1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2011, 2012 STRATO. All rights reserved.
4 */
5
6 #include <linux/blkdev.h>
7 #include <linux/ratelimit.h>
8 #include <linux/sched/mm.h>
9 #include <crypto/hash.h>
10 #include "ctree.h"
11 #include "discard.h"
12 #include "volumes.h"
13 #include "disk-io.h"
14 #include "ordered-data.h"
15 #include "transaction.h"
16 #include "backref.h"
17 #include "extent_io.h"
18 #include "dev-replace.h"
19 #include "raid56.h"
20 #include "block-group.h"
21 #include "zoned.h"
22 #include "fs.h"
23 #include "accessors.h"
24 #include "file-item.h"
25 #include "scrub.h"
26 #include "raid-stripe-tree.h"
27
28 /*
29 * This is only the first step towards a full-features scrub. It reads all
30 * extent and super block and verifies the checksums. In case a bad checksum
31 * is found or the extent cannot be read, good data will be written back if
32 * any can be found.
33 *
34 * Future enhancements:
35 * - In case an unrepairable extent is encountered, track which files are
36 * affected and report them
37 * - track and record media errors, throw out bad devices
38 * - add a mode to also read unallocated space
39 */
40
41 struct scrub_ctx;
42
43 /*
44 * The following value only influences the performance.
45 *
46 * This determines how many stripes would be submitted in one go,
47 * which is 512KiB (BTRFS_STRIPE_LEN * SCRUB_STRIPES_PER_GROUP).
48 */
49 #define SCRUB_STRIPES_PER_GROUP 8
50
51 /*
52 * How many groups we have for each sctx.
53 *
54 * This would be 8M per device, the same value as the old scrub in-flight bios
55 * size limit.
56 */
57 #define SCRUB_GROUPS_PER_SCTX 16
58
59 #define SCRUB_TOTAL_STRIPES (SCRUB_GROUPS_PER_SCTX * SCRUB_STRIPES_PER_GROUP)
60
61 /*
62 * The following value times PAGE_SIZE needs to be large enough to match the
63 * largest node/leaf/sector size that shall be supported.
64 */
65 #define SCRUB_MAX_SECTORS_PER_BLOCK (BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
66
67 /* Represent one sector and its needed info to verify the content. */
68 struct scrub_sector_verification {
69 union {
70 /*
71 * Csum pointer for data csum verification. Should point to a
72 * sector csum inside scrub_stripe::csums.
73 *
74 * NULL if this data sector has no csum.
75 */
76 u8 *csum;
77
78 /*
79 * Extra info for metadata verification. All sectors inside a
80 * tree block share the same generation.
81 */
82 u64 generation;
83 };
84 };
85
86 enum scrub_stripe_flags {
87 /* Set when @mirror_num, @dev, @physical and @logical are set. */
88 SCRUB_STRIPE_FLAG_INITIALIZED,
89
90 /* Set when the read-repair is finished. */
91 SCRUB_STRIPE_FLAG_REPAIR_DONE,
92
93 /*
94 * Set for data stripes if it's triggered from P/Q stripe.
95 * During such scrub, we should not report errors in data stripes, nor
96 * update the accounting.
97 */
98 SCRUB_STRIPE_FLAG_NO_REPORT,
99 };
100
101 /*
102 * We have multiple bitmaps for one scrub_stripe.
103 * However each bitmap has at most (BTRFS_STRIPE_LEN / blocksize) bits,
104 * which is normally 16, and much smaller than BITS_PER_LONG (32 or 64).
105 *
106 * So to reduce memory usage for each scrub_stripe, we pack those bitmaps
107 * into a larger one.
108 *
109 * These enum records where the sub-bitmap are inside the larger one.
110 * Each subbitmap starts at scrub_bitmap_nr_##name * nr_sectors bit.
111 */
112 enum {
113 /* Which blocks are covered by extent items. */
114 scrub_bitmap_nr_has_extent = 0,
115
116 /* Which blocks are metadata. */
117 scrub_bitmap_nr_is_metadata,
118
119 /*
120 * Which blocks have errors, including IO, csum, and metadata
121 * errors.
122 * This sub-bitmap is the OR results of the next few error related
123 * sub-bitmaps.
124 */
125 scrub_bitmap_nr_error,
126 scrub_bitmap_nr_io_error,
127 scrub_bitmap_nr_csum_error,
128 scrub_bitmap_nr_meta_error,
129 scrub_bitmap_nr_meta_gen_error,
130 scrub_bitmap_nr_last,
131 };
132
133 #define SCRUB_STRIPE_MAX_FOLIOS (BTRFS_STRIPE_LEN / PAGE_SIZE)
134
135 /*
136 * Represent one contiguous range with a length of BTRFS_STRIPE_LEN.
137 */
138 struct scrub_stripe {
139 struct scrub_ctx *sctx;
140 struct btrfs_block_group *bg;
141
142 struct folio *folios[SCRUB_STRIPE_MAX_FOLIOS];
143 struct scrub_sector_verification *sectors;
144
145 struct btrfs_device *dev;
146 u64 logical;
147 u64 physical;
148
149 u16 mirror_num;
150
151 /* Should be BTRFS_STRIPE_LEN / sectorsize. */
152 u16 nr_sectors;
153
154 /*
155 * How many data/meta extents are in this stripe. Only for scrub status
156 * reporting purposes.
157 */
158 u16 nr_data_extents;
159 u16 nr_meta_extents;
160
161 atomic_t pending_io;
162 wait_queue_head_t io_wait;
163 wait_queue_head_t repair_wait;
164
165 /*
166 * Indicate the states of the stripe. Bits are defined in
167 * scrub_stripe_flags enum.
168 */
169 unsigned long state;
170
171 /* The large bitmap contains all the sub-bitmaps. */
172 unsigned long bitmaps[BITS_TO_LONGS(scrub_bitmap_nr_last *
173 (BTRFS_STRIPE_LEN / BTRFS_MIN_BLOCKSIZE))];
174
175 /*
176 * For writeback (repair or replace) error reporting.
177 * This one is protected by a spinlock, thus can not be packed into
178 * the larger bitmap.
179 */
180 unsigned long write_error_bitmap;
181
182 /* Writeback can be concurrent, thus we need to protect the bitmap. */
183 spinlock_t write_error_lock;
184
185 /*
186 * Checksum for the whole stripe if this stripe is inside a data block
187 * group.
188 */
189 u8 *csums;
190
191 struct work_struct work;
192 };
193
194 struct scrub_ctx {
195 struct scrub_stripe stripes[SCRUB_TOTAL_STRIPES];
196 struct scrub_stripe *raid56_data_stripes;
197 struct btrfs_fs_info *fs_info;
198 struct btrfs_path extent_path;
199 struct btrfs_path csum_path;
200 int first_free;
201 int cur_stripe;
202 atomic_t cancel_req;
203 int readonly;
204
205 /* State of IO submission throttling affecting the associated device */
206 ktime_t throttle_deadline;
207 u64 throttle_sent;
208
209 bool is_dev_replace;
210 u64 write_pointer;
211
212 struct mutex wr_lock;
213 struct btrfs_device *wr_tgtdev;
214
215 /*
216 * statistics
217 */
218 struct btrfs_scrub_progress stat;
219 spinlock_t stat_lock;
220
221 /*
222 * Use a ref counter to avoid use-after-free issues. Scrub workers
223 * decrement bios_in_flight and workers_pending and then do a wakeup
224 * on the list_wait wait queue. We must ensure the main scrub task
225 * doesn't free the scrub context before or while the workers are
226 * doing the wakeup() call.
227 */
228 refcount_t refs;
229 };
230
231 #define scrub_calc_start_bit(stripe, name, block_nr) \
232 ({ \
233 unsigned int __start_bit; \
234 \
235 ASSERT(block_nr < stripe->nr_sectors, \
236 "nr_sectors=%u block_nr=%u", stripe->nr_sectors, block_nr); \
237 __start_bit = scrub_bitmap_nr_##name * stripe->nr_sectors + block_nr; \
238 __start_bit; \
239 })
240
241 #define IMPLEMENT_SCRUB_BITMAP_OPS(name) \
242 static inline void scrub_bitmap_set_##name(struct scrub_stripe *stripe, \
243 unsigned int block_nr, \
244 unsigned int nr_blocks) \
245 { \
246 const unsigned int start_bit = scrub_calc_start_bit(stripe, \
247 name, block_nr); \
248 \
249 bitmap_set(stripe->bitmaps, start_bit, nr_blocks); \
250 } \
251 static inline void scrub_bitmap_clear_##name(struct scrub_stripe *stripe, \
252 unsigned int block_nr, \
253 unsigned int nr_blocks) \
254 { \
255 const unsigned int start_bit = scrub_calc_start_bit(stripe, name, \
256 block_nr); \
257 \
258 bitmap_clear(stripe->bitmaps, start_bit, nr_blocks); \
259 } \
260 static inline bool scrub_bitmap_test_bit_##name(struct scrub_stripe *stripe, \
261 unsigned int block_nr) \
262 { \
263 const unsigned int start_bit = scrub_calc_start_bit(stripe, name, \
264 block_nr); \
265 \
266 return test_bit(start_bit, stripe->bitmaps); \
267 } \
268 static inline void scrub_bitmap_set_bit_##name(struct scrub_stripe *stripe, \
269 unsigned int block_nr) \
270 { \
271 const unsigned int start_bit = scrub_calc_start_bit(stripe, name, \
272 block_nr); \
273 \
274 set_bit(start_bit, stripe->bitmaps); \
275 } \
276 static inline void scrub_bitmap_clear_bit_##name(struct scrub_stripe *stripe, \
277 unsigned int block_nr) \
278 { \
279 const unsigned int start_bit = scrub_calc_start_bit(stripe, name, \
280 block_nr); \
281 \
282 clear_bit(start_bit, stripe->bitmaps); \
283 } \
284 static inline unsigned long scrub_bitmap_read_##name(struct scrub_stripe *stripe) \
285 { \
286 const unsigned int nr_blocks = stripe->nr_sectors; \
287 \
288 ASSERT(nr_blocks > 0 && nr_blocks <= BITS_PER_LONG, \
289 "nr_blocks=%u BITS_PER_LONG=%u", \
290 nr_blocks, BITS_PER_LONG); \
291 \
292 return bitmap_read(stripe->bitmaps, nr_blocks * scrub_bitmap_nr_##name, \
293 stripe->nr_sectors); \
294 } \
295 static inline bool scrub_bitmap_empty_##name(struct scrub_stripe *stripe) \
296 { \
297 unsigned long bitmap = scrub_bitmap_read_##name(stripe); \
298 \
299 return bitmap_empty(&bitmap, stripe->nr_sectors); \
300 } \
301 static inline unsigned int scrub_bitmap_weight_##name(struct scrub_stripe *stripe) \
302 { \
303 unsigned long bitmap = scrub_bitmap_read_##name(stripe); \
304 \
305 return bitmap_weight(&bitmap, stripe->nr_sectors); \
306 }
307 IMPLEMENT_SCRUB_BITMAP_OPS(has_extent);
308 IMPLEMENT_SCRUB_BITMAP_OPS(is_metadata);
309 IMPLEMENT_SCRUB_BITMAP_OPS(error);
310 IMPLEMENT_SCRUB_BITMAP_OPS(io_error);
311 IMPLEMENT_SCRUB_BITMAP_OPS(csum_error);
312 IMPLEMENT_SCRUB_BITMAP_OPS(meta_error);
313 IMPLEMENT_SCRUB_BITMAP_OPS(meta_gen_error);
314
315 struct scrub_warning {
316 struct btrfs_path *path;
317 u64 extent_item_size;
318 const char *errstr;
319 u64 physical;
320 u64 logical;
321 struct btrfs_device *dev;
322 };
323
324 struct scrub_error_records {
325 /*
326 * Bitmap recording which blocks hit errors (IO/csum/...) during the
327 * initial read.
328 */
329 unsigned long init_error_bitmap;
330
331 unsigned int nr_io_errors;
332 unsigned int nr_csum_errors;
333 unsigned int nr_meta_errors;
334 unsigned int nr_meta_gen_errors;
335 };
336
release_scrub_stripe(struct scrub_stripe * stripe)337 static void release_scrub_stripe(struct scrub_stripe *stripe)
338 {
339 if (!stripe)
340 return;
341
342 for (int i = 0; i < SCRUB_STRIPE_MAX_FOLIOS; i++) {
343 if (stripe->folios[i])
344 folio_put(stripe->folios[i]);
345 stripe->folios[i] = NULL;
346 }
347 kfree(stripe->sectors);
348 kfree(stripe->csums);
349 stripe->sectors = NULL;
350 stripe->csums = NULL;
351 stripe->sctx = NULL;
352 stripe->state = 0;
353 }
354
init_scrub_stripe(struct btrfs_fs_info * fs_info,struct scrub_stripe * stripe)355 static int init_scrub_stripe(struct btrfs_fs_info *fs_info,
356 struct scrub_stripe *stripe)
357 {
358 const u32 min_folio_shift = PAGE_SHIFT + fs_info->block_min_order;
359 int ret;
360
361 memset(stripe, 0, sizeof(*stripe));
362
363 stripe->nr_sectors = BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
364 stripe->state = 0;
365
366 init_waitqueue_head(&stripe->io_wait);
367 init_waitqueue_head(&stripe->repair_wait);
368 atomic_set(&stripe->pending_io, 0);
369 spin_lock_init(&stripe->write_error_lock);
370
371 ASSERT(BTRFS_STRIPE_LEN >> min_folio_shift <= SCRUB_STRIPE_MAX_FOLIOS);
372 ret = btrfs_alloc_folio_array(BTRFS_STRIPE_LEN >> min_folio_shift,
373 fs_info->block_min_order, stripe->folios);
374 if (ret < 0)
375 goto error;
376
377 stripe->sectors = kcalloc(stripe->nr_sectors,
378 sizeof(struct scrub_sector_verification),
379 GFP_KERNEL);
380 if (!stripe->sectors)
381 goto error;
382
383 stripe->csums = kcalloc(BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits,
384 fs_info->csum_size, GFP_KERNEL);
385 if (!stripe->csums)
386 goto error;
387 return 0;
388 error:
389 release_scrub_stripe(stripe);
390 return -ENOMEM;
391 }
392
wait_scrub_stripe_io(struct scrub_stripe * stripe)393 static void wait_scrub_stripe_io(struct scrub_stripe *stripe)
394 {
395 wait_event(stripe->io_wait, atomic_read(&stripe->pending_io) == 0);
396 }
397
398 static void scrub_put_ctx(struct scrub_ctx *sctx);
399
__scrub_blocked_if_needed(struct btrfs_fs_info * fs_info)400 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
401 {
402 while (atomic_read(&fs_info->scrub_pause_req)) {
403 mutex_unlock(&fs_info->scrub_lock);
404 wait_event(fs_info->scrub_pause_wait,
405 atomic_read(&fs_info->scrub_pause_req) == 0);
406 mutex_lock(&fs_info->scrub_lock);
407 }
408 }
409
scrub_pause_on(struct btrfs_fs_info * fs_info)410 static void scrub_pause_on(struct btrfs_fs_info *fs_info)
411 {
412 atomic_inc(&fs_info->scrubs_paused);
413 wake_up(&fs_info->scrub_pause_wait);
414 }
415
scrub_pause_off(struct btrfs_fs_info * fs_info)416 static void scrub_pause_off(struct btrfs_fs_info *fs_info)
417 {
418 mutex_lock(&fs_info->scrub_lock);
419 __scrub_blocked_if_needed(fs_info);
420 atomic_dec(&fs_info->scrubs_paused);
421 mutex_unlock(&fs_info->scrub_lock);
422
423 wake_up(&fs_info->scrub_pause_wait);
424 }
425
scrub_blocked_if_needed(struct btrfs_fs_info * fs_info)426 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
427 {
428 scrub_pause_on(fs_info);
429 scrub_pause_off(fs_info);
430 }
431
scrub_free_ctx(struct scrub_ctx * sctx)432 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
433 {
434 int i;
435
436 if (!sctx)
437 return;
438
439 for (i = 0; i < SCRUB_TOTAL_STRIPES; i++)
440 release_scrub_stripe(&sctx->stripes[i]);
441
442 kvfree(sctx);
443 }
444
scrub_put_ctx(struct scrub_ctx * sctx)445 static void scrub_put_ctx(struct scrub_ctx *sctx)
446 {
447 if (refcount_dec_and_test(&sctx->refs))
448 scrub_free_ctx(sctx);
449 }
450
scrub_setup_ctx(struct btrfs_fs_info * fs_info,bool is_dev_replace)451 static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
452 struct btrfs_fs_info *fs_info, bool is_dev_replace)
453 {
454 struct scrub_ctx *sctx;
455 int i;
456
457 /* Since sctx has inline 128 stripes, it can go beyond 64K easily. Use
458 * kvzalloc().
459 */
460 sctx = kvzalloc(sizeof(*sctx), GFP_KERNEL);
461 if (!sctx)
462 goto nomem;
463 refcount_set(&sctx->refs, 1);
464 sctx->is_dev_replace = is_dev_replace;
465 sctx->fs_info = fs_info;
466 sctx->extent_path.search_commit_root = true;
467 sctx->extent_path.skip_locking = true;
468 sctx->csum_path.search_commit_root = true;
469 sctx->csum_path.skip_locking = true;
470 for (i = 0; i < SCRUB_TOTAL_STRIPES; i++) {
471 int ret;
472
473 ret = init_scrub_stripe(fs_info, &sctx->stripes[i]);
474 if (ret < 0)
475 goto nomem;
476 sctx->stripes[i].sctx = sctx;
477 }
478 sctx->first_free = 0;
479 atomic_set(&sctx->cancel_req, 0);
480
481 spin_lock_init(&sctx->stat_lock);
482 sctx->throttle_deadline = 0;
483
484 mutex_init(&sctx->wr_lock);
485 if (is_dev_replace) {
486 WARN_ON(!fs_info->dev_replace.tgtdev);
487 sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
488 }
489
490 return sctx;
491
492 nomem:
493 scrub_free_ctx(sctx);
494 return ERR_PTR(-ENOMEM);
495 }
496
scrub_print_warning_inode(u64 inum,u64 offset,u64 num_bytes,u64 root,void * warn_ctx)497 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
498 u64 root, void *warn_ctx)
499 {
500 u32 nlink;
501 int ret;
502 int i;
503 unsigned nofs_flag;
504 struct extent_buffer *eb;
505 struct btrfs_inode_item *inode_item;
506 struct scrub_warning *swarn = warn_ctx;
507 struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
508 struct inode_fs_paths *ipath __free(inode_fs_paths) = NULL;
509 struct btrfs_root *local_root;
510 struct btrfs_key key;
511
512 local_root = btrfs_get_fs_root(fs_info, root, true);
513 if (IS_ERR(local_root)) {
514 ret = PTR_ERR(local_root);
515 goto err;
516 }
517
518 /*
519 * this makes the path point to (inum INODE_ITEM ioff)
520 */
521 key.objectid = inum;
522 key.type = BTRFS_INODE_ITEM_KEY;
523 key.offset = 0;
524
525 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
526 if (ret) {
527 btrfs_put_root(local_root);
528 btrfs_release_path(swarn->path);
529 goto err;
530 }
531
532 eb = swarn->path->nodes[0];
533 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
534 struct btrfs_inode_item);
535 nlink = btrfs_inode_nlink(eb, inode_item);
536 btrfs_release_path(swarn->path);
537
538 /*
539 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
540 * uses GFP_NOFS in this context, so we keep it consistent but it does
541 * not seem to be strictly necessary.
542 */
543 nofs_flag = memalloc_nofs_save();
544 ipath = init_ipath(4096, local_root, swarn->path);
545 memalloc_nofs_restore(nofs_flag);
546 if (IS_ERR(ipath)) {
547 btrfs_put_root(local_root);
548 ret = PTR_ERR(ipath);
549 ipath = NULL;
550 goto err;
551 }
552 ret = paths_from_inode(inum, ipath);
553
554 if (ret < 0)
555 goto err;
556
557 /*
558 * we deliberately ignore the bit ipath might have been too small to
559 * hold all of the paths here
560 */
561 for (i = 0; i < ipath->fspath->elem_cnt; ++i)
562 btrfs_warn(fs_info,
563 "scrub: %s at logical %llu on dev %s, physical %llu root %llu inode %llu offset %llu length %u links %u (path: %s)",
564 swarn->errstr, swarn->logical,
565 btrfs_dev_name(swarn->dev),
566 swarn->physical,
567 root, inum, offset,
568 fs_info->sectorsize, nlink,
569 (char *)(unsigned long)ipath->fspath->val[i]);
570
571 btrfs_put_root(local_root);
572 return 0;
573
574 err:
575 btrfs_warn(fs_info,
576 "scrub: %s at logical %llu on dev %s, physical %llu root %llu inode %llu offset %llu: path resolving failed with ret=%d",
577 swarn->errstr, swarn->logical,
578 btrfs_dev_name(swarn->dev),
579 swarn->physical,
580 root, inum, offset, ret);
581
582 return 0;
583 }
584
scrub_print_common_warning(const char * errstr,struct btrfs_device * dev,bool is_super,u64 logical,u64 physical)585 static void scrub_print_common_warning(const char *errstr, struct btrfs_device *dev,
586 bool is_super, u64 logical, u64 physical)
587 {
588 struct btrfs_fs_info *fs_info = dev->fs_info;
589 BTRFS_PATH_AUTO_FREE(path);
590 struct btrfs_key found_key;
591 struct extent_buffer *eb;
592 struct btrfs_extent_item *ei;
593 struct scrub_warning swarn;
594 u64 flags = 0;
595 u32 item_size;
596 int ret;
597
598 /* Super block error, no need to search extent tree. */
599 if (is_super) {
600 btrfs_warn(fs_info, "scrub: %s on device %s, physical %llu",
601 errstr, btrfs_dev_name(dev), physical);
602 return;
603 }
604 path = btrfs_alloc_path();
605 if (!path)
606 return;
607
608 swarn.physical = physical;
609 swarn.logical = logical;
610 swarn.errstr = errstr;
611 swarn.dev = NULL;
612
613 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
614 &flags);
615 if (ret < 0)
616 return;
617
618 swarn.extent_item_size = found_key.offset;
619
620 eb = path->nodes[0];
621 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
622 item_size = btrfs_item_size(eb, path->slots[0]);
623
624 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
625 unsigned long ptr = 0;
626 u8 ref_level;
627 u64 ref_root;
628
629 while (true) {
630 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
631 item_size, &ref_root,
632 &ref_level);
633 if (ret < 0) {
634 btrfs_warn(fs_info,
635 "scrub: failed to resolve tree backref for logical %llu: %d",
636 swarn.logical, ret);
637 break;
638 }
639 if (ret > 0)
640 break;
641 btrfs_warn(fs_info,
642 "scrub: %s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
643 errstr, swarn.logical, btrfs_dev_name(dev),
644 swarn.physical, (ref_level ? "node" : "leaf"),
645 ref_level, ref_root);
646 }
647 btrfs_release_path(path);
648 } else {
649 struct btrfs_backref_walk_ctx ctx = { 0 };
650
651 btrfs_release_path(path);
652
653 ctx.bytenr = found_key.objectid;
654 ctx.extent_item_pos = swarn.logical - found_key.objectid;
655 ctx.fs_info = fs_info;
656
657 swarn.path = path;
658 swarn.dev = dev;
659
660 iterate_extent_inodes(&ctx, true, scrub_print_warning_inode, &swarn);
661 }
662 }
663
fill_writer_pointer_gap(struct scrub_ctx * sctx,u64 physical)664 static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
665 {
666 int ret = 0;
667 u64 length;
668
669 if (!btrfs_is_zoned(sctx->fs_info))
670 return 0;
671
672 if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
673 return 0;
674
675 if (sctx->write_pointer < physical) {
676 length = physical - sctx->write_pointer;
677
678 ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
679 sctx->write_pointer, length);
680 if (!ret)
681 sctx->write_pointer = physical;
682 }
683 return ret;
684 }
685
scrub_stripe_get_kaddr(struct scrub_stripe * stripe,int sector_nr)686 static void *scrub_stripe_get_kaddr(struct scrub_stripe *stripe, int sector_nr)
687 {
688 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
689 const u32 min_folio_shift = PAGE_SHIFT + fs_info->block_min_order;
690 u32 offset = (sector_nr << fs_info->sectorsize_bits);
691 const struct folio *folio = stripe->folios[offset >> min_folio_shift];
692
693 /* stripe->folios[] is allocated by us and no highmem is allowed. */
694 ASSERT(folio);
695 ASSERT(!folio_test_highmem(folio));
696 return folio_address(folio) + offset_in_folio(folio, offset);
697 }
698
scrub_stripe_get_paddr(struct scrub_stripe * stripe,int sector_nr)699 static phys_addr_t scrub_stripe_get_paddr(struct scrub_stripe *stripe, int sector_nr)
700 {
701 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
702 const u32 min_folio_shift = PAGE_SHIFT + fs_info->block_min_order;
703 u32 offset = (sector_nr << fs_info->sectorsize_bits);
704 const struct folio *folio = stripe->folios[offset >> min_folio_shift];
705
706 /* stripe->folios[] is allocated by us and no highmem is allowed. */
707 ASSERT(folio);
708 ASSERT(!folio_test_highmem(folio));
709 /* And the range must be contained inside the folio. */
710 ASSERT(offset_in_folio(folio, offset) + fs_info->sectorsize <= folio_size(folio));
711 return page_to_phys(folio_page(folio, 0)) + offset_in_folio(folio, offset);
712 }
713
scrub_verify_one_metadata(struct scrub_stripe * stripe,int sector_nr)714 static void scrub_verify_one_metadata(struct scrub_stripe *stripe, int sector_nr)
715 {
716 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
717 const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
718 const u64 logical = stripe->logical + (sector_nr << fs_info->sectorsize_bits);
719 void *first_kaddr = scrub_stripe_get_kaddr(stripe, sector_nr);
720 struct btrfs_header *header = first_kaddr;
721 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
722 u8 on_disk_csum[BTRFS_CSUM_SIZE];
723 u8 calculated_csum[BTRFS_CSUM_SIZE];
724
725 /*
726 * Here we don't have a good way to attach the pages (and subpages)
727 * to a dummy extent buffer, thus we have to directly grab the members
728 * from pages.
729 */
730 memcpy(on_disk_csum, header->csum, fs_info->csum_size);
731
732 if (logical != btrfs_stack_header_bytenr(header)) {
733 scrub_bitmap_set_meta_error(stripe, sector_nr, sectors_per_tree);
734 scrub_bitmap_set_error(stripe, sector_nr, sectors_per_tree);
735 btrfs_warn_rl(fs_info,
736 "scrub: tree block %llu mirror %u has bad bytenr, has %llu want %llu",
737 logical, stripe->mirror_num,
738 btrfs_stack_header_bytenr(header), logical);
739 return;
740 }
741 if (memcmp(header->fsid, fs_info->fs_devices->metadata_uuid,
742 BTRFS_FSID_SIZE) != 0) {
743 scrub_bitmap_set_meta_error(stripe, sector_nr, sectors_per_tree);
744 scrub_bitmap_set_error(stripe, sector_nr, sectors_per_tree);
745 btrfs_warn_rl(fs_info,
746 "scrub: tree block %llu mirror %u has bad fsid, has %pU want %pU",
747 logical, stripe->mirror_num,
748 header->fsid, fs_info->fs_devices->fsid);
749 return;
750 }
751 if (memcmp(header->chunk_tree_uuid, fs_info->chunk_tree_uuid,
752 BTRFS_UUID_SIZE) != 0) {
753 scrub_bitmap_set_meta_error(stripe, sector_nr, sectors_per_tree);
754 scrub_bitmap_set_error(stripe, sector_nr, sectors_per_tree);
755 btrfs_warn_rl(fs_info,
756 "scrub: tree block %llu mirror %u has bad chunk tree uuid, has %pU want %pU",
757 logical, stripe->mirror_num,
758 header->chunk_tree_uuid, fs_info->chunk_tree_uuid);
759 return;
760 }
761
762 /* Now check tree block csum. */
763 shash->tfm = fs_info->csum_shash;
764 crypto_shash_init(shash);
765 crypto_shash_update(shash, first_kaddr + BTRFS_CSUM_SIZE,
766 fs_info->sectorsize - BTRFS_CSUM_SIZE);
767
768 for (int i = sector_nr + 1; i < sector_nr + sectors_per_tree; i++) {
769 crypto_shash_update(shash, scrub_stripe_get_kaddr(stripe, i),
770 fs_info->sectorsize);
771 }
772
773 crypto_shash_final(shash, calculated_csum);
774 if (memcmp(calculated_csum, on_disk_csum, fs_info->csum_size) != 0) {
775 scrub_bitmap_set_meta_error(stripe, sector_nr, sectors_per_tree);
776 scrub_bitmap_set_error(stripe, sector_nr, sectors_per_tree);
777 btrfs_warn_rl(fs_info,
778 "scrub: tree block %llu mirror %u has bad csum, has " BTRFS_CSUM_FMT " want " BTRFS_CSUM_FMT,
779 logical, stripe->mirror_num,
780 BTRFS_CSUM_FMT_VALUE(fs_info->csum_size, on_disk_csum),
781 BTRFS_CSUM_FMT_VALUE(fs_info->csum_size, calculated_csum));
782 return;
783 }
784 if (stripe->sectors[sector_nr].generation !=
785 btrfs_stack_header_generation(header)) {
786 scrub_bitmap_set_meta_gen_error(stripe, sector_nr, sectors_per_tree);
787 scrub_bitmap_set_error(stripe, sector_nr, sectors_per_tree);
788 btrfs_warn_rl(fs_info,
789 "scrub: tree block %llu mirror %u has bad generation, has %llu want %llu",
790 logical, stripe->mirror_num,
791 btrfs_stack_header_generation(header),
792 stripe->sectors[sector_nr].generation);
793 return;
794 }
795 scrub_bitmap_clear_error(stripe, sector_nr, sectors_per_tree);
796 scrub_bitmap_clear_csum_error(stripe, sector_nr, sectors_per_tree);
797 scrub_bitmap_clear_meta_error(stripe, sector_nr, sectors_per_tree);
798 scrub_bitmap_clear_meta_gen_error(stripe, sector_nr, sectors_per_tree);
799 }
800
scrub_verify_one_sector(struct scrub_stripe * stripe,int sector_nr)801 static void scrub_verify_one_sector(struct scrub_stripe *stripe, int sector_nr)
802 {
803 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
804 struct scrub_sector_verification *sector = &stripe->sectors[sector_nr];
805 const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
806 phys_addr_t paddr = scrub_stripe_get_paddr(stripe, sector_nr);
807 u8 csum_buf[BTRFS_CSUM_SIZE];
808 int ret;
809
810 ASSERT(sector_nr >= 0 && sector_nr < stripe->nr_sectors);
811
812 /* Sector not utilized, skip it. */
813 if (!scrub_bitmap_test_bit_has_extent(stripe, sector_nr))
814 return;
815
816 /* IO error, no need to check. */
817 if (scrub_bitmap_test_bit_io_error(stripe, sector_nr))
818 return;
819
820 /* Metadata, verify the full tree block. */
821 if (scrub_bitmap_test_bit_is_metadata(stripe, sector_nr)) {
822 /*
823 * Check if the tree block crosses the stripe boundary. If
824 * crossed the boundary, we cannot verify it but only give a
825 * warning.
826 *
827 * This can only happen on a very old filesystem where chunks
828 * are not ensured to be stripe aligned.
829 */
830 if (unlikely(sector_nr + sectors_per_tree > stripe->nr_sectors)) {
831 btrfs_warn_rl(fs_info,
832 "scrub: tree block at %llu crosses stripe boundary %llu",
833 stripe->logical +
834 (sector_nr << fs_info->sectorsize_bits),
835 stripe->logical);
836 return;
837 }
838 scrub_verify_one_metadata(stripe, sector_nr);
839 return;
840 }
841
842 /*
843 * Data is easier, we just verify the data csum (if we have it). For
844 * cases without csum, we have no other choice but to trust it.
845 */
846 if (!sector->csum) {
847 scrub_bitmap_clear_bit_error(stripe, sector_nr);
848 return;
849 }
850
851 ret = btrfs_check_block_csum(fs_info, paddr, csum_buf, sector->csum);
852 if (ret < 0) {
853 scrub_bitmap_set_bit_csum_error(stripe, sector_nr);
854 scrub_bitmap_set_bit_error(stripe, sector_nr);
855 } else {
856 scrub_bitmap_clear_bit_csum_error(stripe, sector_nr);
857 scrub_bitmap_clear_bit_error(stripe, sector_nr);
858 }
859 }
860
861 /* Verify specified sectors of a stripe. */
scrub_verify_one_stripe(struct scrub_stripe * stripe,unsigned long bitmap)862 static void scrub_verify_one_stripe(struct scrub_stripe *stripe, unsigned long bitmap)
863 {
864 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
865 const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
866 int sector_nr;
867
868 for_each_set_bit(sector_nr, &bitmap, stripe->nr_sectors) {
869 scrub_verify_one_sector(stripe, sector_nr);
870 if (scrub_bitmap_test_bit_is_metadata(stripe, sector_nr))
871 sector_nr += sectors_per_tree - 1;
872 }
873 }
874
calc_sector_number(struct scrub_stripe * stripe,struct bio_vec * first_bvec)875 static int calc_sector_number(struct scrub_stripe *stripe, struct bio_vec *first_bvec)
876 {
877 int i;
878
879 for (i = 0; i < stripe->nr_sectors; i++) {
880 if (scrub_stripe_get_kaddr(stripe, i) == bvec_virt(first_bvec))
881 break;
882 }
883 ASSERT(i < stripe->nr_sectors);
884 return i;
885 }
886
887 /*
888 * Repair read is different to the regular read:
889 *
890 * - Only reads the failed sectors
891 * - May have extra blocksize limits
892 */
scrub_repair_read_endio(struct btrfs_bio * bbio)893 static void scrub_repair_read_endio(struct btrfs_bio *bbio)
894 {
895 struct scrub_stripe *stripe = bbio->private;
896 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
897 struct bio_vec *bvec;
898 int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
899 u32 bio_size = 0;
900 int i;
901
902 ASSERT(sector_nr < stripe->nr_sectors);
903
904 bio_for_each_bvec_all(bvec, &bbio->bio, i)
905 bio_size += bvec->bv_len;
906
907 if (bbio->bio.bi_status) {
908 scrub_bitmap_set_io_error(stripe, sector_nr,
909 bio_size >> fs_info->sectorsize_bits);
910 scrub_bitmap_set_error(stripe, sector_nr,
911 bio_size >> fs_info->sectorsize_bits);
912 } else {
913 scrub_bitmap_clear_io_error(stripe, sector_nr,
914 bio_size >> fs_info->sectorsize_bits);
915 }
916 bio_put(&bbio->bio);
917 if (atomic_dec_and_test(&stripe->pending_io))
918 wake_up(&stripe->io_wait);
919 }
920
calc_next_mirror(int mirror,int num_copies)921 static int calc_next_mirror(int mirror, int num_copies)
922 {
923 ASSERT(mirror <= num_copies);
924 return (mirror + 1 > num_copies) ? 1 : mirror + 1;
925 }
926
scrub_bio_add_sector(struct btrfs_bio * bbio,struct scrub_stripe * stripe,int sector_nr)927 static void scrub_bio_add_sector(struct btrfs_bio *bbio, struct scrub_stripe *stripe,
928 int sector_nr)
929 {
930 struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info;
931 void *kaddr = scrub_stripe_get_kaddr(stripe, sector_nr);
932 int ret;
933
934 ret = bio_add_page(&bbio->bio, virt_to_page(kaddr), fs_info->sectorsize,
935 offset_in_page(kaddr));
936 /*
937 * Caller should ensure the bbio has enough size.
938 * And we cannot use __bio_add_page(), which doesn't do any merge.
939 *
940 * Meanwhile for scrub_submit_initial_read() we fully rely on the merge
941 * to create the minimal amount of bio vectors, for fs block size < page
942 * size cases.
943 */
944 ASSERT(ret == fs_info->sectorsize);
945 }
946
alloc_scrub_bbio(struct btrfs_fs_info * fs_info,unsigned int nr_vecs,blk_opf_t opf,u64 logical,btrfs_bio_end_io_t end_io,void * private)947 static struct btrfs_bio *alloc_scrub_bbio(struct btrfs_fs_info *fs_info,
948 unsigned int nr_vecs, blk_opf_t opf,
949 u64 logical,
950 btrfs_bio_end_io_t end_io, void *private)
951 {
952 struct btrfs_bio *bbio;
953
954 bbio = btrfs_bio_alloc(nr_vecs, opf, BTRFS_I(fs_info->btree_inode),
955 logical, end_io, private);
956 bbio->is_scrub = true;
957 bbio->bio.bi_iter.bi_sector = logical >> SECTOR_SHIFT;
958 return bbio;
959 }
960
scrub_stripe_submit_repair_read(struct scrub_stripe * stripe,int mirror,int blocksize,bool wait)961 static void scrub_stripe_submit_repair_read(struct scrub_stripe *stripe,
962 int mirror, int blocksize, bool wait)
963 {
964 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
965 struct btrfs_bio *bbio = NULL;
966 const unsigned long old_error_bitmap = scrub_bitmap_read_error(stripe);
967 int i;
968
969 ASSERT(stripe->mirror_num >= 1, "stripe->mirror_num=%d", stripe->mirror_num);
970 ASSERT(atomic_read(&stripe->pending_io) == 0,
971 "atomic_read(&stripe->pending_io)=%d", atomic_read(&stripe->pending_io));
972
973 for_each_set_bit(i, &old_error_bitmap, stripe->nr_sectors) {
974 /* The current sector cannot be merged, submit the bio. */
975 if (bbio && ((i > 0 && !test_bit(i - 1, &old_error_bitmap)) ||
976 bbio->bio.bi_iter.bi_size >= blocksize)) {
977 ASSERT(bbio->bio.bi_iter.bi_size);
978 atomic_inc(&stripe->pending_io);
979 btrfs_submit_bbio(bbio, mirror);
980 if (wait)
981 wait_scrub_stripe_io(stripe);
982 bbio = NULL;
983 }
984
985 if (!bbio)
986 bbio = alloc_scrub_bbio(fs_info, stripe->nr_sectors, REQ_OP_READ,
987 stripe->logical + (i << fs_info->sectorsize_bits),
988 scrub_repair_read_endio, stripe);
989
990 scrub_bio_add_sector(bbio, stripe, i);
991 }
992 if (bbio) {
993 ASSERT(bbio->bio.bi_iter.bi_size);
994 atomic_inc(&stripe->pending_io);
995 btrfs_submit_bbio(bbio, mirror);
996 if (wait)
997 wait_scrub_stripe_io(stripe);
998 }
999 }
1000
scrub_stripe_report_errors(struct scrub_ctx * sctx,struct scrub_stripe * stripe,const struct scrub_error_records * errors)1001 static void scrub_stripe_report_errors(struct scrub_ctx *sctx,
1002 struct scrub_stripe *stripe,
1003 const struct scrub_error_records *errors)
1004 {
1005 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1006 DEFAULT_RATELIMIT_BURST);
1007 struct btrfs_fs_info *fs_info = sctx->fs_info;
1008 struct btrfs_device *dev = NULL;
1009 const unsigned long extent_bitmap = scrub_bitmap_read_has_extent(stripe);
1010 const unsigned long error_bitmap = scrub_bitmap_read_error(stripe);
1011 u64 physical = 0;
1012 int nr_data_sectors = 0;
1013 int nr_meta_sectors = 0;
1014 int nr_nodatacsum_sectors = 0;
1015 int nr_repaired_sectors = 0;
1016 int sector_nr;
1017
1018 if (test_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state))
1019 return;
1020
1021 /*
1022 * Init needed infos for error reporting.
1023 *
1024 * Although our scrub_stripe infrastructure is mostly based on btrfs_submit_bio()
1025 * thus no need for dev/physical, error reporting still needs dev and physical.
1026 */
1027 if (!bitmap_empty(&errors->init_error_bitmap, stripe->nr_sectors)) {
1028 u64 mapped_len = fs_info->sectorsize;
1029 struct btrfs_io_context *bioc = NULL;
1030 int stripe_index = stripe->mirror_num - 1;
1031 int ret;
1032
1033 /* For scrub, our mirror_num should always start at 1. */
1034 ASSERT(stripe->mirror_num >= 1, "stripe->mirror_num=%d", stripe->mirror_num);
1035 ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1036 stripe->logical, &mapped_len, &bioc,
1037 NULL, NULL);
1038 /*
1039 * If we failed, dev will be NULL, and later detailed reports
1040 * will just be skipped.
1041 */
1042 if (ret < 0)
1043 goto skip;
1044 physical = bioc->stripes[stripe_index].physical;
1045 dev = bioc->stripes[stripe_index].dev;
1046 btrfs_put_bioc(bioc);
1047 }
1048
1049 skip:
1050 for_each_set_bit(sector_nr, &extent_bitmap, stripe->nr_sectors) {
1051 bool repaired = false;
1052
1053 if (scrub_bitmap_test_bit_is_metadata(stripe, sector_nr)) {
1054 nr_meta_sectors++;
1055 } else {
1056 nr_data_sectors++;
1057 if (!stripe->sectors[sector_nr].csum)
1058 nr_nodatacsum_sectors++;
1059 }
1060
1061 if (test_bit(sector_nr, &errors->init_error_bitmap) &&
1062 !test_bit(sector_nr, &error_bitmap)) {
1063 nr_repaired_sectors++;
1064 repaired = true;
1065 }
1066
1067 /* Good sector from the beginning, nothing need to be done. */
1068 if (!test_bit(sector_nr, &errors->init_error_bitmap))
1069 continue;
1070
1071 /*
1072 * Report error for the corrupted sectors. If repaired, just
1073 * output the message of repaired message.
1074 */
1075 if (repaired) {
1076 if (dev) {
1077 btrfs_err_rl(fs_info,
1078 "scrub: fixed up error at logical %llu on dev %s physical %llu",
1079 stripe->logical, btrfs_dev_name(dev),
1080 physical);
1081 } else {
1082 btrfs_err_rl(fs_info,
1083 "scrub: fixed up error at logical %llu on mirror %u",
1084 stripe->logical, stripe->mirror_num);
1085 }
1086 continue;
1087 }
1088
1089 /* The remaining are all for unrepaired. */
1090 if (dev) {
1091 btrfs_err_rl(fs_info,
1092 "scrub: unable to fixup (regular) error at logical %llu on dev %s physical %llu",
1093 stripe->logical, btrfs_dev_name(dev),
1094 physical);
1095 } else {
1096 btrfs_err_rl(fs_info,
1097 "scrub: unable to fixup (regular) error at logical %llu on mirror %u",
1098 stripe->logical, stripe->mirror_num);
1099 }
1100
1101 if (scrub_bitmap_test_bit_io_error(stripe, sector_nr))
1102 if (__ratelimit(&rs) && dev)
1103 scrub_print_common_warning("i/o error", dev, false,
1104 stripe->logical, physical);
1105 if (scrub_bitmap_test_bit_csum_error(stripe, sector_nr))
1106 if (__ratelimit(&rs) && dev)
1107 scrub_print_common_warning("checksum error", dev, false,
1108 stripe->logical, physical);
1109 if (scrub_bitmap_test_bit_meta_error(stripe, sector_nr))
1110 if (__ratelimit(&rs) && dev)
1111 scrub_print_common_warning("header error", dev, false,
1112 stripe->logical, physical);
1113 if (scrub_bitmap_test_bit_meta_gen_error(stripe, sector_nr))
1114 if (__ratelimit(&rs) && dev)
1115 scrub_print_common_warning("generation error", dev, false,
1116 stripe->logical, physical);
1117 }
1118
1119 /* Update the device stats. */
1120 for (int i = 0; i < errors->nr_io_errors; i++)
1121 btrfs_dev_stat_inc_and_print(stripe->dev, BTRFS_DEV_STAT_READ_ERRS);
1122 for (int i = 0; i < errors->nr_csum_errors; i++)
1123 btrfs_dev_stat_inc_and_print(stripe->dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
1124 /* Generation mismatch error is based on each metadata, not each block. */
1125 for (int i = 0; i < errors->nr_meta_gen_errors;
1126 i += (fs_info->nodesize >> fs_info->sectorsize_bits))
1127 btrfs_dev_stat_inc_and_print(stripe->dev, BTRFS_DEV_STAT_GENERATION_ERRS);
1128
1129 spin_lock(&sctx->stat_lock);
1130 sctx->stat.data_extents_scrubbed += stripe->nr_data_extents;
1131 sctx->stat.tree_extents_scrubbed += stripe->nr_meta_extents;
1132 sctx->stat.data_bytes_scrubbed += nr_data_sectors << fs_info->sectorsize_bits;
1133 sctx->stat.tree_bytes_scrubbed += nr_meta_sectors << fs_info->sectorsize_bits;
1134 sctx->stat.no_csum += nr_nodatacsum_sectors;
1135 sctx->stat.read_errors += errors->nr_io_errors;
1136 sctx->stat.csum_errors += errors->nr_csum_errors;
1137 sctx->stat.verify_errors += errors->nr_meta_errors +
1138 errors->nr_meta_gen_errors;
1139 sctx->stat.uncorrectable_errors +=
1140 bitmap_weight(&error_bitmap, stripe->nr_sectors);
1141 sctx->stat.corrected_errors += nr_repaired_sectors;
1142 spin_unlock(&sctx->stat_lock);
1143 }
1144
1145 static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
1146 unsigned long write_bitmap, bool dev_replace);
1147
1148 /*
1149 * The main entrance for all read related scrub work, including:
1150 *
1151 * - Wait for the initial read to finish
1152 * - Verify and locate any bad sectors
1153 * - Go through the remaining mirrors and try to read as large blocksize as
1154 * possible
1155 * - Go through all mirrors (including the failed mirror) sector-by-sector
1156 * - Submit writeback for repaired sectors
1157 *
1158 * Writeback for dev-replace does not happen here, it needs extra
1159 * synchronization for zoned devices.
1160 */
scrub_stripe_read_repair_worker(struct work_struct * work)1161 static void scrub_stripe_read_repair_worker(struct work_struct *work)
1162 {
1163 struct scrub_stripe *stripe = container_of(work, struct scrub_stripe, work);
1164 struct scrub_ctx *sctx = stripe->sctx;
1165 struct btrfs_fs_info *fs_info = sctx->fs_info;
1166 struct scrub_error_records errors = { 0 };
1167 int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
1168 stripe->bg->length);
1169 unsigned long repaired;
1170 unsigned long error;
1171 int mirror;
1172 int i;
1173
1174 ASSERT(stripe->mirror_num >= 1, "stripe->mirror_num=%d", stripe->mirror_num);
1175
1176 wait_scrub_stripe_io(stripe);
1177 scrub_verify_one_stripe(stripe, scrub_bitmap_read_has_extent(stripe));
1178 /* Save the initial failed bitmap for later repair and report usage. */
1179 errors.init_error_bitmap = scrub_bitmap_read_error(stripe);
1180 errors.nr_io_errors = scrub_bitmap_weight_io_error(stripe);
1181 errors.nr_csum_errors = scrub_bitmap_weight_csum_error(stripe);
1182 errors.nr_meta_errors = scrub_bitmap_weight_meta_error(stripe);
1183 errors.nr_meta_gen_errors = scrub_bitmap_weight_meta_gen_error(stripe);
1184
1185 if (bitmap_empty(&errors.init_error_bitmap, stripe->nr_sectors))
1186 goto out;
1187
1188 /*
1189 * Try all remaining mirrors.
1190 *
1191 * Here we still try to read as large block as possible, as this is
1192 * faster and we have extra safety nets to rely on.
1193 */
1194 for (mirror = calc_next_mirror(stripe->mirror_num, num_copies);
1195 mirror != stripe->mirror_num;
1196 mirror = calc_next_mirror(mirror, num_copies)) {
1197 const unsigned long old_error_bitmap = scrub_bitmap_read_error(stripe);
1198
1199 scrub_stripe_submit_repair_read(stripe, mirror,
1200 BTRFS_STRIPE_LEN, false);
1201 wait_scrub_stripe_io(stripe);
1202 scrub_verify_one_stripe(stripe, old_error_bitmap);
1203 if (scrub_bitmap_empty_error(stripe))
1204 goto out;
1205 }
1206
1207 /*
1208 * Last safety net, try re-checking all mirrors, including the failed
1209 * one, sector-by-sector.
1210 *
1211 * As if one sector failed the drive's internal csum, the whole read
1212 * containing the offending sector would be marked as error.
1213 * Thus here we do sector-by-sector read.
1214 *
1215 * This can be slow, thus we only try it as the last resort.
1216 */
1217
1218 for (i = 0, mirror = stripe->mirror_num;
1219 i < num_copies;
1220 i++, mirror = calc_next_mirror(mirror, num_copies)) {
1221 const unsigned long old_error_bitmap = scrub_bitmap_read_error(stripe);
1222
1223 scrub_stripe_submit_repair_read(stripe, mirror,
1224 fs_info->sectorsize, true);
1225 wait_scrub_stripe_io(stripe);
1226 scrub_verify_one_stripe(stripe, old_error_bitmap);
1227 if (scrub_bitmap_empty_error(stripe))
1228 goto out;
1229 }
1230 out:
1231 error = scrub_bitmap_read_error(stripe);
1232 /*
1233 * Submit the repaired sectors. For zoned case, we cannot do repair
1234 * in-place, but queue the bg to be relocated.
1235 */
1236 bitmap_andnot(&repaired, &errors.init_error_bitmap, &error,
1237 stripe->nr_sectors);
1238 if (!sctx->readonly && !bitmap_empty(&repaired, stripe->nr_sectors)) {
1239 if (btrfs_is_zoned(fs_info)) {
1240 btrfs_repair_one_zone(fs_info, sctx->stripes[0].bg->start);
1241 } else {
1242 scrub_write_sectors(sctx, stripe, repaired, false);
1243 wait_scrub_stripe_io(stripe);
1244 }
1245 }
1246
1247 scrub_stripe_report_errors(sctx, stripe, &errors);
1248 set_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state);
1249 wake_up(&stripe->repair_wait);
1250 }
1251
scrub_read_endio(struct btrfs_bio * bbio)1252 static void scrub_read_endio(struct btrfs_bio *bbio)
1253 {
1254 struct scrub_stripe *stripe = bbio->private;
1255 struct bio_vec *bvec;
1256 int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
1257 int num_sectors;
1258 u32 bio_size = 0;
1259 int i;
1260
1261 ASSERT(sector_nr < stripe->nr_sectors);
1262 bio_for_each_bvec_all(bvec, &bbio->bio, i)
1263 bio_size += bvec->bv_len;
1264 num_sectors = bio_size >> stripe->bg->fs_info->sectorsize_bits;
1265
1266 if (bbio->bio.bi_status) {
1267 scrub_bitmap_set_io_error(stripe, sector_nr, num_sectors);
1268 scrub_bitmap_set_error(stripe, sector_nr, num_sectors);
1269 } else {
1270 scrub_bitmap_clear_io_error(stripe, sector_nr, num_sectors);
1271 }
1272 bio_put(&bbio->bio);
1273 if (atomic_dec_and_test(&stripe->pending_io)) {
1274 wake_up(&stripe->io_wait);
1275 INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
1276 queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
1277 }
1278 }
1279
scrub_write_endio(struct btrfs_bio * bbio)1280 static void scrub_write_endio(struct btrfs_bio *bbio)
1281 {
1282 struct scrub_stripe *stripe = bbio->private;
1283 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1284 struct bio_vec *bvec;
1285 int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
1286 u32 bio_size = 0;
1287 int i;
1288
1289 bio_for_each_bvec_all(bvec, &bbio->bio, i)
1290 bio_size += bvec->bv_len;
1291
1292 if (bbio->bio.bi_status) {
1293 unsigned long flags;
1294
1295 spin_lock_irqsave(&stripe->write_error_lock, flags);
1296 bitmap_set(&stripe->write_error_bitmap, sector_nr,
1297 bio_size >> fs_info->sectorsize_bits);
1298 spin_unlock_irqrestore(&stripe->write_error_lock, flags);
1299 for (i = 0; i < (bio_size >> fs_info->sectorsize_bits); i++)
1300 btrfs_dev_stat_inc_and_print(stripe->dev,
1301 BTRFS_DEV_STAT_WRITE_ERRS);
1302 }
1303 bio_put(&bbio->bio);
1304
1305 if (atomic_dec_and_test(&stripe->pending_io))
1306 wake_up(&stripe->io_wait);
1307 }
1308
scrub_submit_write_bio(struct scrub_ctx * sctx,struct scrub_stripe * stripe,struct btrfs_bio * bbio,bool dev_replace)1309 static void scrub_submit_write_bio(struct scrub_ctx *sctx,
1310 struct scrub_stripe *stripe,
1311 struct btrfs_bio *bbio, bool dev_replace)
1312 {
1313 struct btrfs_fs_info *fs_info = sctx->fs_info;
1314 u32 bio_len = bbio->bio.bi_iter.bi_size;
1315 u32 bio_off = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT) -
1316 stripe->logical;
1317
1318 fill_writer_pointer_gap(sctx, stripe->physical + bio_off);
1319 atomic_inc(&stripe->pending_io);
1320 btrfs_submit_repair_write(bbio, stripe->mirror_num, dev_replace);
1321 if (!btrfs_is_zoned(fs_info))
1322 return;
1323 /*
1324 * For zoned writeback, queue depth must be 1, thus we must wait for
1325 * the write to finish before the next write.
1326 */
1327 wait_scrub_stripe_io(stripe);
1328
1329 /*
1330 * And also need to update the write pointer if write finished
1331 * successfully.
1332 */
1333 if (!test_bit(bio_off >> fs_info->sectorsize_bits,
1334 &stripe->write_error_bitmap))
1335 sctx->write_pointer += bio_len;
1336 }
1337
1338 /*
1339 * Submit the write bio(s) for the sectors specified by @write_bitmap.
1340 *
1341 * Here we utilize btrfs_submit_repair_write(), which has some extra benefits:
1342 *
1343 * - Only needs logical bytenr and mirror_num
1344 * Just like the scrub read path
1345 *
1346 * - Would only result in writes to the specified mirror
1347 * Unlike the regular writeback path, which would write back to all stripes
1348 *
1349 * - Handle dev-replace and read-repair writeback differently
1350 */
scrub_write_sectors(struct scrub_ctx * sctx,struct scrub_stripe * stripe,unsigned long write_bitmap,bool dev_replace)1351 static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
1352 unsigned long write_bitmap, bool dev_replace)
1353 {
1354 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1355 struct btrfs_bio *bbio = NULL;
1356 int sector_nr;
1357
1358 for_each_set_bit(sector_nr, &write_bitmap, stripe->nr_sectors) {
1359 /* We should only writeback sectors covered by an extent. */
1360 ASSERT(scrub_bitmap_test_bit_has_extent(stripe, sector_nr));
1361
1362 /* Cannot merge with previous sector, submit the current one. */
1363 if (bbio && sector_nr && !test_bit(sector_nr - 1, &write_bitmap)) {
1364 scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
1365 bbio = NULL;
1366 }
1367 if (!bbio)
1368 bbio = alloc_scrub_bbio(fs_info, stripe->nr_sectors, REQ_OP_WRITE,
1369 stripe->logical + (sector_nr << fs_info->sectorsize_bits),
1370 scrub_write_endio, stripe);
1371 scrub_bio_add_sector(bbio, stripe, sector_nr);
1372 }
1373 if (bbio)
1374 scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
1375 }
1376
1377 /*
1378 * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
1379 * second. Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
1380 */
scrub_throttle_dev_io(struct scrub_ctx * sctx,struct btrfs_device * device,unsigned int bio_size)1381 static void scrub_throttle_dev_io(struct scrub_ctx *sctx, struct btrfs_device *device,
1382 unsigned int bio_size)
1383 {
1384 const int time_slice = 1000;
1385 s64 delta;
1386 ktime_t now;
1387 u32 div;
1388 u64 bwlimit;
1389
1390 bwlimit = READ_ONCE(device->scrub_speed_max);
1391 if (bwlimit == 0)
1392 return;
1393
1394 /*
1395 * Slice is divided into intervals when the IO is submitted, adjust by
1396 * bwlimit and maximum of 64 intervals.
1397 */
1398 div = clamp(bwlimit / (16 * 1024 * 1024), 1, 64);
1399
1400 /* Start new epoch, set deadline */
1401 now = ktime_get();
1402 if (sctx->throttle_deadline == 0) {
1403 sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
1404 sctx->throttle_sent = 0;
1405 }
1406
1407 /* Still in the time to send? */
1408 if (ktime_before(now, sctx->throttle_deadline)) {
1409 /* If current bio is within the limit, send it */
1410 sctx->throttle_sent += bio_size;
1411 if (sctx->throttle_sent <= div_u64(bwlimit, div))
1412 return;
1413
1414 /* We're over the limit, sleep until the rest of the slice */
1415 delta = ktime_ms_delta(sctx->throttle_deadline, now);
1416 } else {
1417 /* New request after deadline, start new epoch */
1418 delta = 0;
1419 }
1420
1421 if (delta) {
1422 long timeout;
1423
1424 timeout = div_u64(delta * HZ, 1000);
1425 schedule_timeout_interruptible(timeout);
1426 }
1427
1428 /* Next call will start the deadline period */
1429 sctx->throttle_deadline = 0;
1430 }
1431
1432 /*
1433 * Given a physical address, this will calculate it's
1434 * logical offset. if this is a parity stripe, it will return
1435 * the most left data stripe's logical offset.
1436 *
1437 * return 0 if it is a data stripe, 1 means parity stripe.
1438 */
get_raid56_logic_offset(u64 physical,int num,struct btrfs_chunk_map * map,u64 * offset,u64 * stripe_start)1439 static int get_raid56_logic_offset(u64 physical, int num,
1440 struct btrfs_chunk_map *map, u64 *offset,
1441 u64 *stripe_start)
1442 {
1443 int i;
1444 int j = 0;
1445 u64 last_offset;
1446 const int data_stripes = nr_data_stripes(map);
1447
1448 last_offset = (physical - map->stripes[num].physical) * data_stripes;
1449 if (stripe_start)
1450 *stripe_start = last_offset;
1451
1452 *offset = last_offset;
1453 for (i = 0; i < data_stripes; i++) {
1454 u32 stripe_nr;
1455 u32 stripe_index;
1456 u32 rot;
1457
1458 *offset = last_offset + btrfs_stripe_nr_to_offset(i);
1459
1460 stripe_nr = (u32)(*offset >> BTRFS_STRIPE_LEN_SHIFT) / data_stripes;
1461
1462 /* Work out the disk rotation on this stripe-set */
1463 rot = stripe_nr % map->num_stripes;
1464 /* calculate which stripe this data locates */
1465 rot += i;
1466 stripe_index = rot % map->num_stripes;
1467 if (stripe_index == num)
1468 return 0;
1469 if (stripe_index < num)
1470 j++;
1471 }
1472 *offset = last_offset + btrfs_stripe_nr_to_offset(j);
1473 return 1;
1474 }
1475
1476 /*
1477 * Return 0 if the extent item range covers any byte of the range.
1478 * Return <0 if the extent item is before @search_start.
1479 * Return >0 if the extent item is after @start_start + @search_len.
1480 */
compare_extent_item_range(struct btrfs_path * path,u64 search_start,u64 search_len)1481 static int compare_extent_item_range(struct btrfs_path *path,
1482 u64 search_start, u64 search_len)
1483 {
1484 struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info;
1485 u64 len;
1486 struct btrfs_key key;
1487
1488 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1489 ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY ||
1490 key.type == BTRFS_METADATA_ITEM_KEY, "key.type=%u", key.type);
1491 if (key.type == BTRFS_METADATA_ITEM_KEY)
1492 len = fs_info->nodesize;
1493 else
1494 len = key.offset;
1495
1496 if (key.objectid + len <= search_start)
1497 return -1;
1498 if (key.objectid >= search_start + search_len)
1499 return 1;
1500 return 0;
1501 }
1502
1503 /*
1504 * Locate one extent item which covers any byte in range
1505 * [@search_start, @search_start + @search_length)
1506 *
1507 * If the path is not initialized, we will initialize the search by doing
1508 * a btrfs_search_slot().
1509 * If the path is already initialized, we will use the path as the initial
1510 * slot, to avoid duplicated btrfs_search_slot() calls.
1511 *
1512 * NOTE: If an extent item starts before @search_start, we will still
1513 * return the extent item. This is for data extent crossing stripe boundary.
1514 *
1515 * Return 0 if we found such extent item, and @path will point to the extent item.
1516 * Return >0 if no such extent item can be found, and @path will be released.
1517 * Return <0 if hit fatal error, and @path will be released.
1518 */
find_first_extent_item(struct btrfs_root * extent_root,struct btrfs_path * path,u64 search_start,u64 search_len)1519 static int find_first_extent_item(struct btrfs_root *extent_root,
1520 struct btrfs_path *path,
1521 u64 search_start, u64 search_len)
1522 {
1523 struct btrfs_fs_info *fs_info = extent_root->fs_info;
1524 struct btrfs_key key;
1525 int ret;
1526
1527 /* Continue using the existing path */
1528 if (path->nodes[0])
1529 goto search_forward;
1530
1531 key.objectid = search_start;
1532 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1533 key.type = BTRFS_METADATA_ITEM_KEY;
1534 else
1535 key.type = BTRFS_EXTENT_ITEM_KEY;
1536 key.offset = (u64)-1;
1537
1538 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
1539 if (ret < 0)
1540 return ret;
1541 if (unlikely(ret == 0)) {
1542 /*
1543 * Key with offset -1 found, there would have to exist an extent
1544 * item with such offset, but this is out of the valid range.
1545 */
1546 btrfs_release_path(path);
1547 return -EUCLEAN;
1548 }
1549
1550 /*
1551 * Here we intentionally pass 0 as @min_objectid, as there could be
1552 * an extent item starting before @search_start.
1553 */
1554 ret = btrfs_previous_extent_item(extent_root, path, 0);
1555 if (ret < 0)
1556 return ret;
1557 /*
1558 * No matter whether we have found an extent item, the next loop will
1559 * properly do every check on the key.
1560 */
1561 search_forward:
1562 while (true) {
1563 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1564 if (key.objectid >= search_start + search_len)
1565 break;
1566 if (key.type != BTRFS_METADATA_ITEM_KEY &&
1567 key.type != BTRFS_EXTENT_ITEM_KEY)
1568 goto next;
1569
1570 ret = compare_extent_item_range(path, search_start, search_len);
1571 if (ret == 0)
1572 return ret;
1573 if (ret > 0)
1574 break;
1575 next:
1576 ret = btrfs_next_item(extent_root, path);
1577 if (ret) {
1578 /* Either no more items or a fatal error. */
1579 btrfs_release_path(path);
1580 return ret;
1581 }
1582 }
1583 btrfs_release_path(path);
1584 return 1;
1585 }
1586
get_extent_info(struct btrfs_path * path,u64 * extent_start_ret,u64 * size_ret,u64 * flags_ret,u64 * generation_ret)1587 static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret,
1588 u64 *size_ret, u64 *flags_ret, u64 *generation_ret)
1589 {
1590 struct btrfs_key key;
1591 struct btrfs_extent_item *ei;
1592
1593 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1594 ASSERT(key.type == BTRFS_METADATA_ITEM_KEY ||
1595 key.type == BTRFS_EXTENT_ITEM_KEY, "key.type=%u", key.type);
1596 *extent_start_ret = key.objectid;
1597 if (key.type == BTRFS_METADATA_ITEM_KEY)
1598 *size_ret = path->nodes[0]->fs_info->nodesize;
1599 else
1600 *size_ret = key.offset;
1601 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item);
1602 *flags_ret = btrfs_extent_flags(path->nodes[0], ei);
1603 *generation_ret = btrfs_extent_generation(path->nodes[0], ei);
1604 }
1605
sync_write_pointer_for_zoned(struct scrub_ctx * sctx,u64 logical,u64 physical,u64 physical_end)1606 static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
1607 u64 physical, u64 physical_end)
1608 {
1609 struct btrfs_fs_info *fs_info = sctx->fs_info;
1610 int ret = 0;
1611
1612 if (!btrfs_is_zoned(fs_info))
1613 return 0;
1614
1615 mutex_lock(&sctx->wr_lock);
1616 if (sctx->write_pointer < physical_end) {
1617 ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
1618 physical,
1619 sctx->write_pointer);
1620 if (ret)
1621 btrfs_err(fs_info, "scrub: zoned: failed to recover write pointer");
1622 }
1623 mutex_unlock(&sctx->wr_lock);
1624 btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);
1625
1626 return ret;
1627 }
1628
fill_one_extent_info(struct btrfs_fs_info * fs_info,struct scrub_stripe * stripe,u64 extent_start,u64 extent_len,u64 extent_flags,u64 extent_gen)1629 static void fill_one_extent_info(struct btrfs_fs_info *fs_info,
1630 struct scrub_stripe *stripe,
1631 u64 extent_start, u64 extent_len,
1632 u64 extent_flags, u64 extent_gen)
1633 {
1634 for (u64 cur_logical = max(stripe->logical, extent_start);
1635 cur_logical < min(stripe->logical + BTRFS_STRIPE_LEN,
1636 extent_start + extent_len);
1637 cur_logical += fs_info->sectorsize) {
1638 const int nr_sector = (cur_logical - stripe->logical) >>
1639 fs_info->sectorsize_bits;
1640 struct scrub_sector_verification *sector =
1641 &stripe->sectors[nr_sector];
1642
1643 scrub_bitmap_set_bit_has_extent(stripe, nr_sector);
1644 if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1645 scrub_bitmap_set_bit_is_metadata(stripe, nr_sector);
1646 sector->generation = extent_gen;
1647 }
1648 }
1649 }
1650
scrub_stripe_reset_bitmaps(struct scrub_stripe * stripe)1651 static void scrub_stripe_reset_bitmaps(struct scrub_stripe *stripe)
1652 {
1653 ASSERT(stripe->nr_sectors);
1654 bitmap_zero(stripe->bitmaps, scrub_bitmap_nr_last * stripe->nr_sectors);
1655 }
1656
1657 /*
1658 * Locate one stripe which has at least one extent in its range.
1659 *
1660 * Return 0 if found such stripe, and store its info into @stripe.
1661 * Return >0 if there is no such stripe in the specified range.
1662 * Return <0 for error.
1663 */
scrub_find_fill_first_stripe(struct btrfs_block_group * bg,struct btrfs_path * extent_path,struct btrfs_path * csum_path,struct btrfs_device * dev,u64 physical,int mirror_num,u64 logical_start,u32 logical_len,struct scrub_stripe * stripe)1664 static int scrub_find_fill_first_stripe(struct btrfs_block_group *bg,
1665 struct btrfs_path *extent_path,
1666 struct btrfs_path *csum_path,
1667 struct btrfs_device *dev, u64 physical,
1668 int mirror_num, u64 logical_start,
1669 u32 logical_len,
1670 struct scrub_stripe *stripe)
1671 {
1672 struct btrfs_fs_info *fs_info = bg->fs_info;
1673 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bg->start);
1674 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bg->start);
1675 const u64 logical_end = logical_start + logical_len;
1676 u64 cur_logical = logical_start;
1677 u64 stripe_end;
1678 u64 extent_start;
1679 u64 extent_len;
1680 u64 extent_flags;
1681 u64 extent_gen;
1682 int ret;
1683
1684 if (unlikely(!extent_root || !csum_root)) {
1685 btrfs_err(fs_info, "scrub: no valid extent or csum root found");
1686 return -EUCLEAN;
1687 }
1688 memset(stripe->sectors, 0, sizeof(struct scrub_sector_verification) *
1689 stripe->nr_sectors);
1690 scrub_stripe_reset_bitmaps(stripe);
1691
1692 /* The range must be inside the bg. */
1693 ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length,
1694 "bg->start=%llu logical_start=%llu logical_end=%llu end=%llu",
1695 bg->start, logical_start, logical_end, bg->start + bg->length);
1696
1697 ret = find_first_extent_item(extent_root, extent_path, logical_start,
1698 logical_len);
1699 /* Either error or not found. */
1700 if (ret)
1701 goto out;
1702 get_extent_info(extent_path, &extent_start, &extent_len, &extent_flags,
1703 &extent_gen);
1704 if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1705 stripe->nr_meta_extents++;
1706 if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1707 stripe->nr_data_extents++;
1708 cur_logical = max(extent_start, cur_logical);
1709
1710 /*
1711 * Round down to stripe boundary.
1712 *
1713 * The extra calculation against bg->start is to handle block groups
1714 * whose logical bytenr is not BTRFS_STRIPE_LEN aligned.
1715 */
1716 stripe->logical = round_down(cur_logical - bg->start, BTRFS_STRIPE_LEN) +
1717 bg->start;
1718 stripe->physical = physical + stripe->logical - logical_start;
1719 stripe->dev = dev;
1720 stripe->bg = bg;
1721 stripe->mirror_num = mirror_num;
1722 stripe_end = stripe->logical + BTRFS_STRIPE_LEN - 1;
1723
1724 /* Fill the first extent info into stripe->sectors[] array. */
1725 fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1726 extent_flags, extent_gen);
1727 cur_logical = extent_start + extent_len;
1728
1729 /* Fill the extent info for the remaining sectors. */
1730 while (cur_logical <= stripe_end) {
1731 ret = find_first_extent_item(extent_root, extent_path, cur_logical,
1732 stripe_end - cur_logical + 1);
1733 if (ret < 0)
1734 goto out;
1735 if (ret > 0) {
1736 ret = 0;
1737 break;
1738 }
1739 get_extent_info(extent_path, &extent_start, &extent_len,
1740 &extent_flags, &extent_gen);
1741 if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1742 stripe->nr_meta_extents++;
1743 if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1744 stripe->nr_data_extents++;
1745 fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1746 extent_flags, extent_gen);
1747 cur_logical = extent_start + extent_len;
1748 }
1749
1750 /* Now fill the data csum. */
1751 if (bg->flags & BTRFS_BLOCK_GROUP_DATA) {
1752 int sector_nr;
1753 unsigned long csum_bitmap = 0;
1754
1755 /* Csum space should have already been allocated. */
1756 ASSERT(stripe->csums);
1757
1758 /*
1759 * Our csum bitmap should be large enough, as BTRFS_STRIPE_LEN
1760 * should contain at most 16 sectors.
1761 */
1762 ASSERT(BITS_PER_LONG >= BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
1763
1764 ret = btrfs_lookup_csums_bitmap(csum_root, csum_path,
1765 stripe->logical, stripe_end,
1766 stripe->csums, &csum_bitmap);
1767 if (ret < 0)
1768 goto out;
1769 if (ret > 0)
1770 ret = 0;
1771
1772 for_each_set_bit(sector_nr, &csum_bitmap, stripe->nr_sectors) {
1773 stripe->sectors[sector_nr].csum = stripe->csums +
1774 sector_nr * fs_info->csum_size;
1775 }
1776 }
1777 set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
1778 out:
1779 return ret;
1780 }
1781
scrub_reset_stripe(struct scrub_stripe * stripe)1782 static void scrub_reset_stripe(struct scrub_stripe *stripe)
1783 {
1784 scrub_stripe_reset_bitmaps(stripe);
1785
1786 stripe->nr_meta_extents = 0;
1787 stripe->nr_data_extents = 0;
1788 stripe->state = 0;
1789
1790 for (int i = 0; i < stripe->nr_sectors; i++) {
1791 stripe->sectors[i].csum = NULL;
1792 stripe->sectors[i].generation = 0;
1793 }
1794 }
1795
stripe_length(const struct scrub_stripe * stripe)1796 static u32 stripe_length(const struct scrub_stripe *stripe)
1797 {
1798 ASSERT(stripe->bg);
1799
1800 return min(BTRFS_STRIPE_LEN,
1801 stripe->bg->start + stripe->bg->length - stripe->logical);
1802 }
1803
scrub_submit_extent_sector_read(struct scrub_stripe * stripe)1804 static void scrub_submit_extent_sector_read(struct scrub_stripe *stripe)
1805 {
1806 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1807 struct btrfs_bio *bbio = NULL;
1808 unsigned int nr_sectors = stripe_length(stripe) >> fs_info->sectorsize_bits;
1809 const unsigned long has_extent = scrub_bitmap_read_has_extent(stripe);
1810 u64 stripe_len = BTRFS_STRIPE_LEN;
1811 int mirror = stripe->mirror_num;
1812 int i;
1813
1814 atomic_inc(&stripe->pending_io);
1815
1816 for_each_set_bit(i, &has_extent, stripe->nr_sectors) {
1817 /* We're beyond the chunk boundary, no need to read anymore. */
1818 if (i >= nr_sectors)
1819 break;
1820
1821 /* The current sector cannot be merged, submit the bio. */
1822 if (bbio &&
1823 ((i > 0 && !test_bit(i - 1, &has_extent)) ||
1824 bbio->bio.bi_iter.bi_size >= stripe_len)) {
1825 ASSERT(bbio->bio.bi_iter.bi_size);
1826 atomic_inc(&stripe->pending_io);
1827 btrfs_submit_bbio(bbio, mirror);
1828 bbio = NULL;
1829 }
1830
1831 if (!bbio) {
1832 struct btrfs_io_stripe io_stripe = {};
1833 struct btrfs_io_context *bioc = NULL;
1834 const u64 logical = stripe->logical +
1835 (i << fs_info->sectorsize_bits);
1836 int ret;
1837
1838 io_stripe.rst_search_commit_root = true;
1839 stripe_len = (nr_sectors - i) << fs_info->sectorsize_bits;
1840 /*
1841 * For RST cases, we need to manually split the bbio to
1842 * follow the RST boundary.
1843 */
1844 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
1845 &stripe_len, &bioc, &io_stripe, &mirror);
1846 btrfs_put_bioc(bioc);
1847 if (ret < 0) {
1848 if (ret != -ENODATA) {
1849 /*
1850 * Earlier btrfs_get_raid_extent_offset()
1851 * returned -ENODATA, which means there's
1852 * no entry for the corresponding range
1853 * in the stripe tree. But if it's in
1854 * the extent tree, then it's a preallocated
1855 * extent and not an error.
1856 */
1857 scrub_bitmap_set_bit_io_error(stripe, i);
1858 scrub_bitmap_set_bit_error(stripe, i);
1859 }
1860 continue;
1861 }
1862
1863 bbio = alloc_scrub_bbio(fs_info, stripe->nr_sectors, REQ_OP_READ,
1864 logical, scrub_read_endio, stripe);
1865 }
1866
1867 scrub_bio_add_sector(bbio, stripe, i);
1868 }
1869
1870 if (bbio) {
1871 ASSERT(bbio->bio.bi_iter.bi_size);
1872 atomic_inc(&stripe->pending_io);
1873 btrfs_submit_bbio(bbio, mirror);
1874 }
1875
1876 if (atomic_dec_and_test(&stripe->pending_io)) {
1877 wake_up(&stripe->io_wait);
1878 INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
1879 queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
1880 }
1881 }
1882
scrub_submit_initial_read(struct scrub_ctx * sctx,struct scrub_stripe * stripe)1883 static void scrub_submit_initial_read(struct scrub_ctx *sctx,
1884 struct scrub_stripe *stripe)
1885 {
1886 struct btrfs_fs_info *fs_info = sctx->fs_info;
1887 struct btrfs_bio *bbio;
1888 const u32 min_folio_shift = PAGE_SHIFT + fs_info->block_min_order;
1889 unsigned int nr_sectors = stripe_length(stripe) >> fs_info->sectorsize_bits;
1890 int mirror = stripe->mirror_num;
1891
1892 ASSERT(stripe->bg);
1893 ASSERT(stripe->mirror_num > 0);
1894 ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
1895
1896 if (btrfs_need_stripe_tree_update(fs_info, stripe->bg->flags)) {
1897 scrub_submit_extent_sector_read(stripe);
1898 return;
1899 }
1900
1901 bbio = alloc_scrub_bbio(fs_info, BTRFS_STRIPE_LEN >> min_folio_shift, REQ_OP_READ,
1902 stripe->logical, scrub_read_endio, stripe);
1903 /* Read the whole range inside the chunk boundary. */
1904 for (unsigned int cur = 0; cur < nr_sectors; cur++)
1905 scrub_bio_add_sector(bbio, stripe, cur);
1906 atomic_inc(&stripe->pending_io);
1907
1908 /*
1909 * For dev-replace, either user asks to avoid the source dev, or
1910 * the device is missing, we try the next mirror instead.
1911 */
1912 if (sctx->is_dev_replace &&
1913 (fs_info->dev_replace.cont_reading_from_srcdev_mode ==
1914 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID ||
1915 !stripe->dev->bdev)) {
1916 int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
1917 stripe->bg->length);
1918
1919 mirror = calc_next_mirror(mirror, num_copies);
1920 }
1921 btrfs_submit_bbio(bbio, mirror);
1922 }
1923
stripe_has_metadata_error(struct scrub_stripe * stripe)1924 static bool stripe_has_metadata_error(struct scrub_stripe *stripe)
1925 {
1926 const unsigned long error = scrub_bitmap_read_error(stripe);
1927 int i;
1928
1929 for_each_set_bit(i, &error, stripe->nr_sectors) {
1930 if (scrub_bitmap_test_bit_is_metadata(stripe, i)) {
1931 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1932
1933 btrfs_err(fs_info,
1934 "scrub: stripe %llu has unrepaired metadata sector at logical %llu",
1935 stripe->logical,
1936 stripe->logical + (i << fs_info->sectorsize_bits));
1937 return true;
1938 }
1939 }
1940 return false;
1941 }
1942
submit_initial_group_read(struct scrub_ctx * sctx,unsigned int first_slot,unsigned int nr_stripes)1943 static void submit_initial_group_read(struct scrub_ctx *sctx,
1944 unsigned int first_slot,
1945 unsigned int nr_stripes)
1946 {
1947 struct blk_plug plug;
1948
1949 ASSERT(first_slot < SCRUB_TOTAL_STRIPES);
1950 ASSERT(first_slot + nr_stripes <= SCRUB_TOTAL_STRIPES);
1951
1952 scrub_throttle_dev_io(sctx, sctx->stripes[0].dev,
1953 btrfs_stripe_nr_to_offset(nr_stripes));
1954 blk_start_plug(&plug);
1955 for (int i = 0; i < nr_stripes; i++) {
1956 struct scrub_stripe *stripe = &sctx->stripes[first_slot + i];
1957
1958 /* Those stripes should be initialized. */
1959 ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
1960 scrub_submit_initial_read(sctx, stripe);
1961 }
1962 blk_finish_plug(&plug);
1963 }
1964
flush_scrub_stripes(struct scrub_ctx * sctx)1965 static int flush_scrub_stripes(struct scrub_ctx *sctx)
1966 {
1967 struct btrfs_fs_info *fs_info = sctx->fs_info;
1968 struct scrub_stripe *stripe;
1969 const int nr_stripes = sctx->cur_stripe;
1970 int ret = 0;
1971
1972 if (!nr_stripes)
1973 return 0;
1974
1975 ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &sctx->stripes[0].state));
1976
1977 /* Submit the stripes which are populated but not submitted. */
1978 if (nr_stripes % SCRUB_STRIPES_PER_GROUP) {
1979 const int first_slot = round_down(nr_stripes, SCRUB_STRIPES_PER_GROUP);
1980
1981 submit_initial_group_read(sctx, first_slot, nr_stripes - first_slot);
1982 }
1983
1984 for (int i = 0; i < nr_stripes; i++) {
1985 stripe = &sctx->stripes[i];
1986
1987 wait_event(stripe->repair_wait,
1988 test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
1989 }
1990
1991 /* Submit for dev-replace. */
1992 if (sctx->is_dev_replace) {
1993 /*
1994 * For dev-replace, if we know there is something wrong with
1995 * metadata, we should immediately abort.
1996 */
1997 for (int i = 0; i < nr_stripes; i++) {
1998 if (unlikely(stripe_has_metadata_error(&sctx->stripes[i]))) {
1999 ret = -EIO;
2000 goto out;
2001 }
2002 }
2003 for (int i = 0; i < nr_stripes; i++) {
2004 unsigned long good;
2005 unsigned long has_extent;
2006 unsigned long error;
2007
2008 stripe = &sctx->stripes[i];
2009
2010 ASSERT(stripe->dev == fs_info->dev_replace.srcdev);
2011
2012 has_extent = scrub_bitmap_read_has_extent(stripe);
2013 error = scrub_bitmap_read_error(stripe);
2014 bitmap_andnot(&good, &has_extent, &error, stripe->nr_sectors);
2015 scrub_write_sectors(sctx, stripe, good, true);
2016 }
2017 }
2018
2019 /* Wait for the above writebacks to finish. */
2020 for (int i = 0; i < nr_stripes; i++) {
2021 stripe = &sctx->stripes[i];
2022
2023 wait_scrub_stripe_io(stripe);
2024 spin_lock(&sctx->stat_lock);
2025 sctx->stat.last_physical = stripe->physical + stripe_length(stripe);
2026 spin_unlock(&sctx->stat_lock);
2027 scrub_reset_stripe(stripe);
2028 }
2029 out:
2030 sctx->cur_stripe = 0;
2031 return ret;
2032 }
2033
raid56_scrub_wait_endio(struct bio * bio)2034 static void raid56_scrub_wait_endio(struct bio *bio)
2035 {
2036 complete(bio->bi_private);
2037 }
2038
queue_scrub_stripe(struct scrub_ctx * sctx,struct btrfs_block_group * bg,struct btrfs_device * dev,int mirror_num,u64 logical,u32 length,u64 physical,u64 * found_logical_ret)2039 static int queue_scrub_stripe(struct scrub_ctx *sctx, struct btrfs_block_group *bg,
2040 struct btrfs_device *dev, int mirror_num,
2041 u64 logical, u32 length, u64 physical,
2042 u64 *found_logical_ret)
2043 {
2044 struct scrub_stripe *stripe;
2045 int ret;
2046
2047 /*
2048 * There should always be one slot left, as caller filling the last
2049 * slot should flush them all.
2050 */
2051 ASSERT(sctx->cur_stripe < SCRUB_TOTAL_STRIPES);
2052
2053 /* @found_logical_ret must be specified. */
2054 ASSERT(found_logical_ret);
2055
2056 stripe = &sctx->stripes[sctx->cur_stripe];
2057 scrub_reset_stripe(stripe);
2058 ret = scrub_find_fill_first_stripe(bg, &sctx->extent_path,
2059 &sctx->csum_path, dev, physical,
2060 mirror_num, logical, length, stripe);
2061 /* Either >0 as no more extents or <0 for error. */
2062 if (ret)
2063 return ret;
2064 *found_logical_ret = stripe->logical;
2065 sctx->cur_stripe++;
2066
2067 /* We filled one group, submit it. */
2068 if (sctx->cur_stripe % SCRUB_STRIPES_PER_GROUP == 0) {
2069 const int first_slot = sctx->cur_stripe - SCRUB_STRIPES_PER_GROUP;
2070
2071 submit_initial_group_read(sctx, first_slot, SCRUB_STRIPES_PER_GROUP);
2072 }
2073
2074 /* Last slot used, flush them all. */
2075 if (sctx->cur_stripe == SCRUB_TOTAL_STRIPES)
2076 return flush_scrub_stripes(sctx);
2077 return 0;
2078 }
2079
2080 /*
2081 * Return 0 if we should not cancel the scrub.
2082 * Return <0 if we need to cancel the scrub, returned value will
2083 * indicate the reason:
2084 * - -ECANCELED - Being explicitly canceled through ioctl.
2085 * - -EINTR - Being interrupted by signal or fs/process freezing.
2086 */
should_cancel_scrub(const struct scrub_ctx * sctx)2087 static int should_cancel_scrub(const struct scrub_ctx *sctx)
2088 {
2089 struct btrfs_fs_info *fs_info = sctx->fs_info;
2090
2091 if (atomic_read(&fs_info->scrub_cancel_req) ||
2092 atomic_read(&sctx->cancel_req))
2093 return -ECANCELED;
2094
2095 /*
2096 * The user (e.g. fsfreeze command) or power management (PM)
2097 * suspend/hibernate can freeze the fs. And PM suspend/hibernate will
2098 * also freeze all user processes.
2099 *
2100 * A user process can only be frozen when it is in user space, thus we
2101 * have to cancel the run so that the process can return to the user
2102 * space.
2103 *
2104 * Furthermore we have to check both filesystem and process freezing,
2105 * as PM can be configured to freeze the filesystems before processes.
2106 *
2107 * If we only check fs freezing, then suspend without fs freezing
2108 * will timeout, as the process is still in kernel space.
2109 *
2110 * If we only check process freezing, then suspend with fs freezing
2111 * will timeout, as the running scrub will prevent the fs from being frozen.
2112 */
2113 if (fs_info->sb->s_writers.frozen > SB_UNFROZEN ||
2114 freezing(current) || signal_pending(current))
2115 return -EINTR;
2116 return 0;
2117 }
2118
scrub_raid56_cached_parity(struct scrub_ctx * sctx,struct btrfs_device * scrub_dev,struct btrfs_chunk_map * map,u64 full_stripe_start,unsigned long * extent_bitmap)2119 static int scrub_raid56_cached_parity(struct scrub_ctx *sctx,
2120 struct btrfs_device *scrub_dev,
2121 struct btrfs_chunk_map *map,
2122 u64 full_stripe_start,
2123 unsigned long *extent_bitmap)
2124 {
2125 DECLARE_COMPLETION_ONSTACK(io_done);
2126 struct btrfs_fs_info *fs_info = sctx->fs_info;
2127 struct btrfs_io_context *bioc = NULL;
2128 struct btrfs_raid_bio *rbio;
2129 struct bio bio;
2130 const int data_stripes = nr_data_stripes(map);
2131 u64 length = btrfs_stripe_nr_to_offset(data_stripes);
2132 int ret;
2133
2134 bio_init(&bio, NULL, NULL, 0, REQ_OP_READ);
2135 bio.bi_iter.bi_sector = full_stripe_start >> SECTOR_SHIFT;
2136 bio.bi_private = &io_done;
2137 bio.bi_end_io = raid56_scrub_wait_endio;
2138
2139 btrfs_bio_counter_inc_blocked(fs_info);
2140 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, full_stripe_start,
2141 &length, &bioc, NULL, NULL);
2142 if (ret < 0)
2143 goto out;
2144 /* For RAID56 write there must be an @bioc allocated. */
2145 ASSERT(bioc);
2146 rbio = raid56_parity_alloc_scrub_rbio(&bio, bioc, scrub_dev, extent_bitmap,
2147 BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
2148 btrfs_put_bioc(bioc);
2149 if (!rbio) {
2150 ret = -ENOMEM;
2151 goto out;
2152 }
2153 /* Use the recovered stripes as cache to avoid read them from disk again. */
2154 for (int i = 0; i < data_stripes; i++) {
2155 struct scrub_stripe *stripe = &sctx->raid56_data_stripes[i];
2156
2157 raid56_parity_cache_data_folios(rbio, stripe->folios,
2158 full_stripe_start + (i << BTRFS_STRIPE_LEN_SHIFT));
2159 }
2160 raid56_parity_submit_scrub_rbio(rbio);
2161 wait_for_completion_io(&io_done);
2162 ret = blk_status_to_errno(bio.bi_status);
2163 out:
2164 btrfs_bio_counter_dec(fs_info);
2165 bio_uninit(&bio);
2166 return ret;
2167 }
2168
scrub_raid56_parity_stripe(struct scrub_ctx * sctx,struct btrfs_device * scrub_dev,struct btrfs_block_group * bg,struct btrfs_chunk_map * map,u64 full_stripe_start)2169 static int scrub_raid56_parity_stripe(struct scrub_ctx *sctx,
2170 struct btrfs_device *scrub_dev,
2171 struct btrfs_block_group *bg,
2172 struct btrfs_chunk_map *map,
2173 u64 full_stripe_start)
2174 {
2175 struct btrfs_fs_info *fs_info = sctx->fs_info;
2176 struct btrfs_path extent_path = { 0 };
2177 struct btrfs_path csum_path = { 0 };
2178 struct scrub_stripe *stripe;
2179 bool all_empty = true;
2180 const int data_stripes = nr_data_stripes(map);
2181 unsigned long extent_bitmap = 0;
2182 int ret;
2183
2184 ASSERT(sctx->raid56_data_stripes);
2185
2186 ret = should_cancel_scrub(sctx);
2187 if (ret < 0)
2188 return ret;
2189
2190 if (atomic_read(&fs_info->scrub_pause_req))
2191 scrub_blocked_if_needed(fs_info);
2192
2193 spin_lock(&bg->lock);
2194 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) {
2195 spin_unlock(&bg->lock);
2196 return 0;
2197 }
2198 spin_unlock(&bg->lock);
2199
2200 /*
2201 * For data stripe search, we cannot reuse the same extent/csum paths,
2202 * as the data stripe bytenr may be smaller than previous extent. Thus
2203 * we have to use our own extent/csum paths.
2204 */
2205 extent_path.search_commit_root = true;
2206 extent_path.skip_locking = true;
2207 csum_path.search_commit_root = true;
2208 csum_path.skip_locking = true;
2209
2210 for (int i = 0; i < data_stripes; i++) {
2211 int stripe_index;
2212 int rot;
2213 u64 physical;
2214
2215 stripe = &sctx->raid56_data_stripes[i];
2216 rot = div_u64(full_stripe_start - bg->start,
2217 data_stripes) >> BTRFS_STRIPE_LEN_SHIFT;
2218 stripe_index = (i + rot) % map->num_stripes;
2219 physical = map->stripes[stripe_index].physical +
2220 btrfs_stripe_nr_to_offset(rot);
2221
2222 scrub_reset_stripe(stripe);
2223 set_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state);
2224 ret = scrub_find_fill_first_stripe(bg, &extent_path, &csum_path,
2225 map->stripes[stripe_index].dev, physical, 1,
2226 full_stripe_start + btrfs_stripe_nr_to_offset(i),
2227 BTRFS_STRIPE_LEN, stripe);
2228 if (ret < 0)
2229 goto out;
2230 /*
2231 * No extent in this data stripe, need to manually mark them
2232 * initialized to make later read submission happy.
2233 */
2234 if (ret > 0) {
2235 stripe->logical = full_stripe_start +
2236 btrfs_stripe_nr_to_offset(i);
2237 stripe->dev = map->stripes[stripe_index].dev;
2238 stripe->mirror_num = 1;
2239 set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
2240 }
2241 }
2242
2243 /* Check if all data stripes are empty. */
2244 for (int i = 0; i < data_stripes; i++) {
2245 stripe = &sctx->raid56_data_stripes[i];
2246 if (!scrub_bitmap_empty_has_extent(stripe)) {
2247 all_empty = false;
2248 break;
2249 }
2250 }
2251 if (all_empty) {
2252 ret = 0;
2253 goto out;
2254 }
2255
2256 for (int i = 0; i < data_stripes; i++) {
2257 stripe = &sctx->raid56_data_stripes[i];
2258 scrub_submit_initial_read(sctx, stripe);
2259 }
2260 for (int i = 0; i < data_stripes; i++) {
2261 stripe = &sctx->raid56_data_stripes[i];
2262
2263 wait_event(stripe->repair_wait,
2264 test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
2265 }
2266 /* For now, no zoned support for RAID56. */
2267 ASSERT(!btrfs_is_zoned(sctx->fs_info));
2268
2269 /*
2270 * Now all data stripes are properly verified. Check if we have any
2271 * unrepaired, if so abort immediately or we could further corrupt the
2272 * P/Q stripes.
2273 *
2274 * During the loop, also populate extent_bitmap.
2275 */
2276 for (int i = 0; i < data_stripes; i++) {
2277 unsigned long error;
2278 unsigned long has_extent;
2279
2280 stripe = &sctx->raid56_data_stripes[i];
2281
2282 error = scrub_bitmap_read_error(stripe);
2283 has_extent = scrub_bitmap_read_has_extent(stripe);
2284
2285 /*
2286 * We should only check the errors where there is an extent.
2287 * As we may hit an empty data stripe while it's missing.
2288 */
2289 bitmap_and(&error, &error, &has_extent, stripe->nr_sectors);
2290 if (unlikely(!bitmap_empty(&error, stripe->nr_sectors))) {
2291 btrfs_err(fs_info,
2292 "scrub: unrepaired sectors detected, full stripe %llu data stripe %u errors %*pbl",
2293 full_stripe_start, i, stripe->nr_sectors,
2294 &error);
2295 ret = -EIO;
2296 goto out;
2297 }
2298 bitmap_or(&extent_bitmap, &extent_bitmap, &has_extent,
2299 stripe->nr_sectors);
2300 }
2301
2302 /* Now we can check and regenerate the P/Q stripe. */
2303 ret = scrub_raid56_cached_parity(sctx, scrub_dev, map, full_stripe_start,
2304 &extent_bitmap);
2305 out:
2306 btrfs_release_path(&extent_path);
2307 btrfs_release_path(&csum_path);
2308 return ret;
2309 }
2310
2311 /*
2312 * Scrub one range which can only has simple mirror based profile.
2313 * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in
2314 * RAID0/RAID10).
2315 *
2316 * Since we may need to handle a subset of block group, we need @logical_start
2317 * and @logical_length parameter.
2318 */
scrub_simple_mirror(struct scrub_ctx * sctx,struct btrfs_block_group * bg,u64 logical_start,u64 logical_length,struct btrfs_device * device,u64 physical,int mirror_num)2319 static int scrub_simple_mirror(struct scrub_ctx *sctx,
2320 struct btrfs_block_group *bg,
2321 u64 logical_start, u64 logical_length,
2322 struct btrfs_device *device,
2323 u64 physical, int mirror_num)
2324 {
2325 struct btrfs_fs_info *fs_info = sctx->fs_info;
2326 const u64 logical_end = logical_start + logical_length;
2327 u64 cur_logical = logical_start;
2328 int ret = 0;
2329
2330 /* The range must be inside the bg */
2331 ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
2332
2333 /* Go through each extent items inside the logical range */
2334 while (cur_logical < logical_end) {
2335 u64 found_logical = U64_MAX;
2336 u64 cur_physical = physical + cur_logical - logical_start;
2337
2338 ret = should_cancel_scrub(sctx);
2339 if (ret < 0)
2340 break;
2341
2342 if (atomic_read(&fs_info->scrub_pause_req))
2343 scrub_blocked_if_needed(fs_info);
2344
2345 spin_lock(&bg->lock);
2346 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) {
2347 spin_unlock(&bg->lock);
2348 ret = 0;
2349 break;
2350 }
2351 spin_unlock(&bg->lock);
2352
2353 ret = queue_scrub_stripe(sctx, bg, device, mirror_num,
2354 cur_logical, logical_end - cur_logical,
2355 cur_physical, &found_logical);
2356 if (ret > 0) {
2357 /* No more extent, just update the accounting */
2358 spin_lock(&sctx->stat_lock);
2359 sctx->stat.last_physical = physical + logical_length;
2360 spin_unlock(&sctx->stat_lock);
2361 ret = 0;
2362 break;
2363 }
2364 if (ret < 0)
2365 break;
2366
2367 /* queue_scrub_stripe() returned 0, @found_logical must be updated. */
2368 ASSERT(found_logical != U64_MAX);
2369 cur_logical = found_logical + BTRFS_STRIPE_LEN;
2370
2371 /* Don't hold CPU for too long time */
2372 cond_resched();
2373 }
2374 return ret;
2375 }
2376
2377 /* Calculate the full stripe length for simple stripe based profiles */
simple_stripe_full_stripe_len(const struct btrfs_chunk_map * map)2378 static u64 simple_stripe_full_stripe_len(const struct btrfs_chunk_map *map)
2379 {
2380 ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2381 BTRFS_BLOCK_GROUP_RAID10));
2382
2383 return btrfs_stripe_nr_to_offset(map->num_stripes / map->sub_stripes);
2384 }
2385
2386 /* Get the logical bytenr for the stripe */
simple_stripe_get_logical(struct btrfs_chunk_map * map,struct btrfs_block_group * bg,int stripe_index)2387 static u64 simple_stripe_get_logical(struct btrfs_chunk_map *map,
2388 struct btrfs_block_group *bg,
2389 int stripe_index)
2390 {
2391 ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2392 BTRFS_BLOCK_GROUP_RAID10));
2393 ASSERT(stripe_index < map->num_stripes);
2394
2395 /*
2396 * (stripe_index / sub_stripes) gives how many data stripes we need to
2397 * skip.
2398 */
2399 return btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes) +
2400 bg->start;
2401 }
2402
2403 /* Get the mirror number for the stripe */
simple_stripe_mirror_num(struct btrfs_chunk_map * map,int stripe_index)2404 static int simple_stripe_mirror_num(struct btrfs_chunk_map *map, int stripe_index)
2405 {
2406 ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2407 BTRFS_BLOCK_GROUP_RAID10));
2408 ASSERT(stripe_index < map->num_stripes);
2409
2410 /* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */
2411 return stripe_index % map->sub_stripes + 1;
2412 }
2413
scrub_simple_stripe(struct scrub_ctx * sctx,struct btrfs_block_group * bg,struct btrfs_chunk_map * map,struct btrfs_device * device,int stripe_index)2414 static int scrub_simple_stripe(struct scrub_ctx *sctx,
2415 struct btrfs_block_group *bg,
2416 struct btrfs_chunk_map *map,
2417 struct btrfs_device *device,
2418 int stripe_index)
2419 {
2420 const u64 logical_increment = simple_stripe_full_stripe_len(map);
2421 const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index);
2422 const u64 orig_physical = map->stripes[stripe_index].physical;
2423 const int mirror_num = simple_stripe_mirror_num(map, stripe_index);
2424 u64 cur_logical = orig_logical;
2425 u64 cur_physical = orig_physical;
2426 int ret = 0;
2427
2428 while (cur_logical < bg->start + bg->length) {
2429 /*
2430 * Inside each stripe, RAID0 is just SINGLE, and RAID10 is
2431 * just RAID1, so we can reuse scrub_simple_mirror() to scrub
2432 * this stripe.
2433 */
2434 ret = scrub_simple_mirror(sctx, bg, cur_logical,
2435 BTRFS_STRIPE_LEN, device, cur_physical,
2436 mirror_num);
2437 if (ret)
2438 return ret;
2439 /* Skip to next stripe which belongs to the target device */
2440 cur_logical += logical_increment;
2441 /* For physical offset, we just go to next stripe */
2442 cur_physical += BTRFS_STRIPE_LEN;
2443 }
2444 return ret;
2445 }
2446
scrub_stripe(struct scrub_ctx * sctx,struct btrfs_block_group * bg,struct btrfs_chunk_map * map,struct btrfs_device * scrub_dev,int stripe_index)2447 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2448 struct btrfs_block_group *bg,
2449 struct btrfs_chunk_map *map,
2450 struct btrfs_device *scrub_dev,
2451 int stripe_index)
2452 {
2453 struct btrfs_fs_info *fs_info = sctx->fs_info;
2454 const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
2455 const u64 chunk_logical = bg->start;
2456 int ret;
2457 int ret2;
2458 u64 physical = map->stripes[stripe_index].physical;
2459 const u64 dev_stripe_len = btrfs_calc_stripe_length(map);
2460 const u64 physical_end = physical + dev_stripe_len;
2461 u64 logical;
2462 u64 logic_end;
2463 /* The logical increment after finishing one stripe */
2464 u64 increment;
2465 /* Offset inside the chunk */
2466 u64 offset;
2467 u64 stripe_logical;
2468
2469 /* Extent_path should be released by now. */
2470 ASSERT(sctx->extent_path.nodes[0] == NULL);
2471
2472 scrub_blocked_if_needed(fs_info);
2473
2474 if (sctx->is_dev_replace &&
2475 btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
2476 mutex_lock(&sctx->wr_lock);
2477 sctx->write_pointer = physical;
2478 mutex_unlock(&sctx->wr_lock);
2479 }
2480
2481 /* Prepare the extra data stripes used by RAID56. */
2482 if (profile & BTRFS_BLOCK_GROUP_RAID56_MASK) {
2483 ASSERT(sctx->raid56_data_stripes == NULL);
2484
2485 sctx->raid56_data_stripes = kcalloc(nr_data_stripes(map),
2486 sizeof(struct scrub_stripe),
2487 GFP_KERNEL);
2488 if (!sctx->raid56_data_stripes) {
2489 ret = -ENOMEM;
2490 goto out;
2491 }
2492 for (int i = 0; i < nr_data_stripes(map); i++) {
2493 ret = init_scrub_stripe(fs_info,
2494 &sctx->raid56_data_stripes[i]);
2495 if (ret < 0)
2496 goto out;
2497 sctx->raid56_data_stripes[i].bg = bg;
2498 sctx->raid56_data_stripes[i].sctx = sctx;
2499 }
2500 }
2501 /*
2502 * There used to be a big double loop to handle all profiles using the
2503 * same routine, which grows larger and more gross over time.
2504 *
2505 * So here we handle each profile differently, so simpler profiles
2506 * have simpler scrubbing function.
2507 */
2508 if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 |
2509 BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2510 /*
2511 * Above check rules out all complex profile, the remaining
2512 * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple
2513 * mirrored duplication without stripe.
2514 *
2515 * Only @physical and @mirror_num needs to calculated using
2516 * @stripe_index.
2517 */
2518 ret = scrub_simple_mirror(sctx, bg, bg->start, bg->length,
2519 scrub_dev, map->stripes[stripe_index].physical,
2520 stripe_index + 1);
2521 offset = 0;
2522 goto out;
2523 }
2524 if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
2525 ret = scrub_simple_stripe(sctx, bg, map, scrub_dev, stripe_index);
2526 offset = btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes);
2527 goto out;
2528 }
2529
2530 /* Only RAID56 goes through the old code */
2531 ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
2532 ret = 0;
2533
2534 /* Calculate the logical end of the stripe */
2535 get_raid56_logic_offset(physical_end, stripe_index,
2536 map, &logic_end, NULL);
2537 logic_end += chunk_logical;
2538
2539 /* Initialize @offset in case we need to go to out: label */
2540 get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL);
2541 increment = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
2542
2543 /*
2544 * Due to the rotation, for RAID56 it's better to iterate each stripe
2545 * using their physical offset.
2546 */
2547 while (physical < physical_end) {
2548 ret = get_raid56_logic_offset(physical, stripe_index, map,
2549 &logical, &stripe_logical);
2550 logical += chunk_logical;
2551 if (ret) {
2552 /* it is parity strip */
2553 stripe_logical += chunk_logical;
2554 ret = scrub_raid56_parity_stripe(sctx, scrub_dev, bg,
2555 map, stripe_logical);
2556 spin_lock(&sctx->stat_lock);
2557 sctx->stat.last_physical = min(physical + BTRFS_STRIPE_LEN,
2558 physical_end);
2559 spin_unlock(&sctx->stat_lock);
2560 if (ret)
2561 goto out;
2562 goto next;
2563 }
2564
2565 /*
2566 * Now we're at a data stripe, scrub each extents in the range.
2567 *
2568 * At this stage, if we ignore the repair part, inside each data
2569 * stripe it is no different than SINGLE profile.
2570 * We can reuse scrub_simple_mirror() here, as the repair part
2571 * is still based on @mirror_num.
2572 */
2573 ret = scrub_simple_mirror(sctx, bg, logical, BTRFS_STRIPE_LEN,
2574 scrub_dev, physical, 1);
2575 if (ret < 0)
2576 goto out;
2577 next:
2578 logical += increment;
2579 physical += BTRFS_STRIPE_LEN;
2580 spin_lock(&sctx->stat_lock);
2581 sctx->stat.last_physical = physical;
2582 spin_unlock(&sctx->stat_lock);
2583 }
2584 out:
2585 ret2 = flush_scrub_stripes(sctx);
2586 if (!ret)
2587 ret = ret2;
2588 btrfs_release_path(&sctx->extent_path);
2589 btrfs_release_path(&sctx->csum_path);
2590
2591 if (sctx->raid56_data_stripes) {
2592 for (int i = 0; i < nr_data_stripes(map); i++)
2593 release_scrub_stripe(&sctx->raid56_data_stripes[i]);
2594 kfree(sctx->raid56_data_stripes);
2595 sctx->raid56_data_stripes = NULL;
2596 }
2597
2598 if (sctx->is_dev_replace && ret >= 0) {
2599 ret2 = sync_write_pointer_for_zoned(sctx,
2600 chunk_logical + offset,
2601 map->stripes[stripe_index].physical,
2602 physical_end);
2603 if (ret2)
2604 ret = ret2;
2605 }
2606
2607 return ret < 0 ? ret : 0;
2608 }
2609
scrub_chunk(struct scrub_ctx * sctx,struct btrfs_block_group * bg,struct btrfs_device * scrub_dev,u64 dev_offset,u64 dev_extent_len)2610 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2611 struct btrfs_block_group *bg,
2612 struct btrfs_device *scrub_dev,
2613 u64 dev_offset,
2614 u64 dev_extent_len)
2615 {
2616 struct btrfs_fs_info *fs_info = sctx->fs_info;
2617 struct btrfs_chunk_map *map;
2618 int i;
2619 int ret = 0;
2620
2621 map = btrfs_find_chunk_map(fs_info, bg->start, bg->length);
2622 if (!map) {
2623 /*
2624 * Might have been an unused block group deleted by the cleaner
2625 * kthread or relocation.
2626 */
2627 spin_lock(&bg->lock);
2628 if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags))
2629 ret = -EINVAL;
2630 spin_unlock(&bg->lock);
2631
2632 return ret;
2633 }
2634 if (map->start != bg->start)
2635 goto out;
2636 if (map->chunk_len < dev_extent_len)
2637 goto out;
2638
2639 for (i = 0; i < map->num_stripes; ++i) {
2640 if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2641 map->stripes[i].physical == dev_offset) {
2642 ret = scrub_stripe(sctx, bg, map, scrub_dev, i);
2643 if (ret)
2644 goto out;
2645 }
2646 }
2647 out:
2648 btrfs_free_chunk_map(map);
2649
2650 return ret;
2651 }
2652
finish_extent_writes_for_zoned(struct btrfs_root * root,struct btrfs_block_group * cache)2653 static int finish_extent_writes_for_zoned(struct btrfs_root *root,
2654 struct btrfs_block_group *cache)
2655 {
2656 struct btrfs_fs_info *fs_info = cache->fs_info;
2657
2658 if (!btrfs_is_zoned(fs_info))
2659 return 0;
2660
2661 btrfs_wait_block_group_reservations(cache);
2662 btrfs_wait_nocow_writers(cache);
2663 btrfs_wait_ordered_roots(fs_info, U64_MAX, cache);
2664
2665 return btrfs_commit_current_transaction(root);
2666 }
2667
2668 static noinline_for_stack
scrub_enumerate_chunks(struct scrub_ctx * sctx,struct btrfs_device * scrub_dev,u64 start,u64 end)2669 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2670 struct btrfs_device *scrub_dev, u64 start, u64 end)
2671 {
2672 struct btrfs_dev_extent *dev_extent = NULL;
2673 BTRFS_PATH_AUTO_FREE(path);
2674 struct btrfs_fs_info *fs_info = sctx->fs_info;
2675 struct btrfs_root *root = fs_info->dev_root;
2676 u64 chunk_offset;
2677 int ret = 0;
2678 int ro_set;
2679 int slot;
2680 struct extent_buffer *l;
2681 struct btrfs_key key;
2682 struct btrfs_key found_key;
2683 struct btrfs_block_group *cache;
2684 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2685
2686 path = btrfs_alloc_path();
2687 if (!path)
2688 return -ENOMEM;
2689
2690 path->reada = READA_FORWARD;
2691 path->search_commit_root = true;
2692 path->skip_locking = true;
2693
2694 key.objectid = scrub_dev->devid;
2695 key.type = BTRFS_DEV_EXTENT_KEY;
2696 key.offset = 0ull;
2697
2698 while (1) {
2699 u64 dev_extent_len;
2700
2701 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2702 if (ret < 0)
2703 break;
2704 if (ret > 0) {
2705 if (path->slots[0] >=
2706 btrfs_header_nritems(path->nodes[0])) {
2707 ret = btrfs_next_leaf(root, path);
2708 if (ret < 0)
2709 break;
2710 if (ret > 0) {
2711 ret = 0;
2712 break;
2713 }
2714 } else {
2715 ret = 0;
2716 }
2717 }
2718
2719 l = path->nodes[0];
2720 slot = path->slots[0];
2721
2722 btrfs_item_key_to_cpu(l, &found_key, slot);
2723
2724 if (found_key.objectid != scrub_dev->devid)
2725 break;
2726
2727 if (found_key.type != BTRFS_DEV_EXTENT_KEY)
2728 break;
2729
2730 if (found_key.offset >= end)
2731 break;
2732
2733 if (found_key.offset < key.offset)
2734 break;
2735
2736 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2737 dev_extent_len = btrfs_dev_extent_length(l, dev_extent);
2738
2739 if (found_key.offset + dev_extent_len <= start)
2740 goto skip;
2741
2742 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2743
2744 /*
2745 * get a reference on the corresponding block group to prevent
2746 * the chunk from going away while we scrub it
2747 */
2748 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2749
2750 /* some chunks are removed but not committed to disk yet,
2751 * continue scrubbing */
2752 if (!cache)
2753 goto skip;
2754
2755 ASSERT(cache->start <= chunk_offset);
2756 /*
2757 * We are using the commit root to search for device extents, so
2758 * that means we could have found a device extent item from a
2759 * block group that was deleted in the current transaction. The
2760 * logical start offset of the deleted block group, stored at
2761 * @chunk_offset, might be part of the logical address range of
2762 * a new block group (which uses different physical extents).
2763 * In this case btrfs_lookup_block_group() has returned the new
2764 * block group, and its start address is less than @chunk_offset.
2765 *
2766 * We skip such new block groups, because it's pointless to
2767 * process them, as we won't find their extents because we search
2768 * for them using the commit root of the extent tree. For a device
2769 * replace it's also fine to skip it, we won't miss copying them
2770 * to the target device because we have the write duplication
2771 * setup through the regular write path (by btrfs_map_block()),
2772 * and we have committed a transaction when we started the device
2773 * replace, right after setting up the device replace state.
2774 */
2775 if (cache->start < chunk_offset) {
2776 btrfs_put_block_group(cache);
2777 goto skip;
2778 }
2779
2780 if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
2781 if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) {
2782 btrfs_put_block_group(cache);
2783 goto skip;
2784 }
2785 }
2786
2787 /*
2788 * Make sure that while we are scrubbing the corresponding block
2789 * group doesn't get its logical address and its device extents
2790 * reused for another block group, which can possibly be of a
2791 * different type and different profile. We do this to prevent
2792 * false error detections and crashes due to bogus attempts to
2793 * repair extents.
2794 */
2795 spin_lock(&cache->lock);
2796 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) {
2797 spin_unlock(&cache->lock);
2798 btrfs_put_block_group(cache);
2799 goto skip;
2800 }
2801 btrfs_freeze_block_group(cache);
2802 spin_unlock(&cache->lock);
2803
2804 /*
2805 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
2806 * to avoid deadlock caused by:
2807 * btrfs_inc_block_group_ro()
2808 * -> btrfs_wait_for_commit()
2809 * -> btrfs_commit_transaction()
2810 * -> btrfs_scrub_pause()
2811 */
2812 scrub_pause_on(fs_info);
2813
2814 /*
2815 * Don't do chunk preallocation for scrub.
2816 *
2817 * This is especially important for SYSTEM bgs, or we can hit
2818 * -EFBIG from btrfs_finish_chunk_alloc() like:
2819 * 1. The only SYSTEM bg is marked RO.
2820 * Since SYSTEM bg is small, that's pretty common.
2821 * 2. New SYSTEM bg will be allocated
2822 * Due to regular version will allocate new chunk.
2823 * 3. New SYSTEM bg is empty and will get cleaned up
2824 * Before cleanup really happens, it's marked RO again.
2825 * 4. Empty SYSTEM bg get scrubbed
2826 * We go back to 2.
2827 *
2828 * This can easily boost the amount of SYSTEM chunks if cleaner
2829 * thread can't be triggered fast enough, and use up all space
2830 * of btrfs_super_block::sys_chunk_array
2831 *
2832 * While for dev replace, we need to try our best to mark block
2833 * group RO, to prevent race between:
2834 * - Write duplication
2835 * Contains latest data
2836 * - Scrub copy
2837 * Contains data from commit tree
2838 *
2839 * If target block group is not marked RO, nocow writes can
2840 * be overwritten by scrub copy, causing data corruption.
2841 * So for dev-replace, it's not allowed to continue if a block
2842 * group is not RO.
2843 */
2844 ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
2845 if (!ret && sctx->is_dev_replace) {
2846 ret = finish_extent_writes_for_zoned(root, cache);
2847 if (ret) {
2848 btrfs_dec_block_group_ro(cache);
2849 scrub_pause_off(fs_info);
2850 btrfs_put_block_group(cache);
2851 break;
2852 }
2853 }
2854
2855 if (ret == 0) {
2856 ro_set = 1;
2857 } else if (ret == -ENOSPC && !sctx->is_dev_replace &&
2858 !(cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) {
2859 /*
2860 * btrfs_inc_block_group_ro return -ENOSPC when it
2861 * failed in creating new chunk for metadata.
2862 * It is not a problem for scrub, because
2863 * metadata are always cowed, and our scrub paused
2864 * commit_transactions.
2865 *
2866 * For RAID56 chunks, we have to mark them read-only
2867 * for scrub, as later we would use our own cache
2868 * out of RAID56 realm.
2869 * Thus we want the RAID56 bg to be marked RO to
2870 * prevent RMW from screwing up out cache.
2871 */
2872 ro_set = 0;
2873 } else if (ret == -ETXTBSY) {
2874 btrfs_warn(fs_info,
2875 "scrub: skipping scrub of block group %llu due to active swapfile",
2876 cache->start);
2877 scrub_pause_off(fs_info);
2878 ret = 0;
2879 goto skip_unfreeze;
2880 } else {
2881 btrfs_warn(fs_info, "scrub: failed setting block group ro: %d",
2882 ret);
2883 btrfs_unfreeze_block_group(cache);
2884 btrfs_put_block_group(cache);
2885 scrub_pause_off(fs_info);
2886 break;
2887 }
2888
2889 /*
2890 * Now the target block is marked RO, wait for nocow writes to
2891 * finish before dev-replace.
2892 * COW is fine, as COW never overwrites extents in commit tree.
2893 */
2894 if (sctx->is_dev_replace) {
2895 btrfs_wait_nocow_writers(cache);
2896 btrfs_wait_ordered_roots(fs_info, U64_MAX, cache);
2897 }
2898
2899 scrub_pause_off(fs_info);
2900 down_write(&dev_replace->rwsem);
2901 dev_replace->cursor_right = found_key.offset + dev_extent_len;
2902 dev_replace->cursor_left = found_key.offset;
2903 dev_replace->item_needs_writeback = 1;
2904 up_write(&dev_replace->rwsem);
2905
2906 ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset,
2907 dev_extent_len);
2908 if (sctx->is_dev_replace &&
2909 !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
2910 cache, found_key.offset))
2911 ro_set = 0;
2912
2913 down_write(&dev_replace->rwsem);
2914 dev_replace->cursor_left = dev_replace->cursor_right;
2915 dev_replace->item_needs_writeback = 1;
2916 up_write(&dev_replace->rwsem);
2917
2918 if (ro_set)
2919 btrfs_dec_block_group_ro(cache);
2920
2921 /*
2922 * We might have prevented the cleaner kthread from deleting
2923 * this block group if it was already unused because we raced
2924 * and set it to RO mode first. So add it back to the unused
2925 * list, otherwise it might not ever be deleted unless a manual
2926 * balance is triggered or it becomes used and unused again.
2927 */
2928 spin_lock(&cache->lock);
2929 if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) &&
2930 !cache->ro && cache->reserved == 0 && cache->used == 0) {
2931 spin_unlock(&cache->lock);
2932 if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
2933 btrfs_discard_queue_work(&fs_info->discard_ctl,
2934 cache);
2935 else
2936 btrfs_mark_bg_unused(cache);
2937 } else {
2938 spin_unlock(&cache->lock);
2939 }
2940 skip_unfreeze:
2941 btrfs_unfreeze_block_group(cache);
2942 btrfs_put_block_group(cache);
2943 if (ret)
2944 break;
2945 if (unlikely(sctx->is_dev_replace &&
2946 atomic64_read(&dev_replace->num_write_errors) > 0)) {
2947 ret = -EIO;
2948 break;
2949 }
2950 if (sctx->stat.malloc_errors > 0) {
2951 ret = -ENOMEM;
2952 break;
2953 }
2954 skip:
2955 key.offset = found_key.offset + dev_extent_len;
2956 btrfs_release_path(path);
2957 }
2958
2959 return ret;
2960 }
2961
scrub_one_super(struct scrub_ctx * sctx,struct btrfs_device * dev,struct page * page,u64 physical,u64 generation)2962 static int scrub_one_super(struct scrub_ctx *sctx, struct btrfs_device *dev,
2963 struct page *page, u64 physical, u64 generation)
2964 {
2965 struct btrfs_fs_info *fs_info = sctx->fs_info;
2966 struct btrfs_super_block *sb = page_address(page);
2967 int ret;
2968
2969 ret = bdev_rw_virt(dev->bdev, physical >> SECTOR_SHIFT, sb,
2970 BTRFS_SUPER_INFO_SIZE, REQ_OP_READ);
2971 if (ret < 0)
2972 return ret;
2973 ret = btrfs_check_super_csum(fs_info, sb);
2974 if (unlikely(ret != 0)) {
2975 btrfs_err_rl(fs_info,
2976 "scrub: super block at physical %llu devid %llu has bad csum",
2977 physical, dev->devid);
2978 return -EIO;
2979 }
2980 if (unlikely(btrfs_super_generation(sb) != generation)) {
2981 btrfs_err_rl(fs_info,
2982 "scrub: super block at physical %llu devid %llu has bad generation %llu expect %llu",
2983 physical, dev->devid,
2984 btrfs_super_generation(sb), generation);
2985 return -EUCLEAN;
2986 }
2987
2988 return btrfs_validate_super(fs_info, sb, -1);
2989 }
2990
scrub_supers(struct scrub_ctx * sctx,struct btrfs_device * scrub_dev)2991 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2992 struct btrfs_device *scrub_dev)
2993 {
2994 int i;
2995 u64 bytenr;
2996 u64 gen;
2997 int ret = 0;
2998 struct page *page;
2999 struct btrfs_fs_info *fs_info = sctx->fs_info;
3000
3001 if (BTRFS_FS_ERROR(fs_info))
3002 return -EROFS;
3003
3004 page = alloc_page(GFP_KERNEL);
3005 if (!page) {
3006 spin_lock(&sctx->stat_lock);
3007 sctx->stat.malloc_errors++;
3008 spin_unlock(&sctx->stat_lock);
3009 return -ENOMEM;
3010 }
3011
3012 /* Seed devices of a new filesystem has their own generation. */
3013 if (scrub_dev->fs_devices != fs_info->fs_devices)
3014 gen = scrub_dev->generation;
3015 else
3016 gen = btrfs_get_last_trans_committed(fs_info);
3017
3018 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
3019 ret = btrfs_sb_log_location(scrub_dev, i, 0, &bytenr);
3020 if (ret == -ENOENT)
3021 break;
3022
3023 if (ret) {
3024 spin_lock(&sctx->stat_lock);
3025 sctx->stat.super_errors++;
3026 spin_unlock(&sctx->stat_lock);
3027 continue;
3028 }
3029
3030 if (bytenr + BTRFS_SUPER_INFO_SIZE >
3031 scrub_dev->commit_total_bytes)
3032 break;
3033 if (!btrfs_check_super_location(scrub_dev, bytenr))
3034 continue;
3035
3036 ret = scrub_one_super(sctx, scrub_dev, page, bytenr, gen);
3037 if (ret) {
3038 spin_lock(&sctx->stat_lock);
3039 sctx->stat.super_errors++;
3040 spin_unlock(&sctx->stat_lock);
3041 }
3042 }
3043 __free_page(page);
3044 return 0;
3045 }
3046
scrub_workers_put(struct btrfs_fs_info * fs_info)3047 static void scrub_workers_put(struct btrfs_fs_info *fs_info)
3048 {
3049 if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
3050 &fs_info->scrub_lock)) {
3051 struct workqueue_struct *scrub_workers = fs_info->scrub_workers;
3052
3053 fs_info->scrub_workers = NULL;
3054 mutex_unlock(&fs_info->scrub_lock);
3055
3056 if (scrub_workers)
3057 destroy_workqueue(scrub_workers);
3058 }
3059 }
3060
3061 /*
3062 * get a reference count on fs_info->scrub_workers. start worker if necessary
3063 */
scrub_workers_get(struct btrfs_fs_info * fs_info)3064 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info)
3065 {
3066 struct workqueue_struct *scrub_workers = NULL;
3067 unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
3068 int max_active = fs_info->thread_pool_size;
3069 int ret = -ENOMEM;
3070
3071 if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
3072 return 0;
3073
3074 scrub_workers = alloc_workqueue("btrfs-scrub", flags, max_active);
3075 if (!scrub_workers)
3076 return -ENOMEM;
3077
3078 mutex_lock(&fs_info->scrub_lock);
3079 if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
3080 ASSERT(fs_info->scrub_workers == NULL);
3081 fs_info->scrub_workers = scrub_workers;
3082 refcount_set(&fs_info->scrub_workers_refcnt, 1);
3083 mutex_unlock(&fs_info->scrub_lock);
3084 return 0;
3085 }
3086 /* Other thread raced in and created the workers for us */
3087 refcount_inc(&fs_info->scrub_workers_refcnt);
3088 mutex_unlock(&fs_info->scrub_lock);
3089
3090 ret = 0;
3091
3092 destroy_workqueue(scrub_workers);
3093 return ret;
3094 }
3095
btrfs_scrub_dev(struct btrfs_fs_info * fs_info,u64 devid,u64 start,u64 end,struct btrfs_scrub_progress * progress,bool readonly,bool is_dev_replace)3096 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3097 u64 end, struct btrfs_scrub_progress *progress,
3098 bool readonly, bool is_dev_replace)
3099 {
3100 struct btrfs_dev_lookup_args args = { .devid = devid };
3101 struct scrub_ctx *sctx;
3102 int ret;
3103 struct btrfs_device *dev;
3104 unsigned int nofs_flag;
3105 bool need_commit = false;
3106
3107 /* Set the basic fallback @last_physical before we got a sctx. */
3108 if (progress)
3109 progress->last_physical = start;
3110
3111 if (btrfs_fs_closing(fs_info))
3112 return -EAGAIN;
3113
3114 /* At mount time we have ensured nodesize is in the range of [4K, 64K]. */
3115 ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN);
3116
3117 /*
3118 * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible
3119 * value (max nodesize / min sectorsize), thus nodesize should always
3120 * be fine.
3121 */
3122 ASSERT(fs_info->nodesize <=
3123 SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits);
3124
3125 /* Allocate outside of device_list_mutex */
3126 sctx = scrub_setup_ctx(fs_info, is_dev_replace);
3127 if (IS_ERR(sctx))
3128 return PTR_ERR(sctx);
3129 sctx->stat.last_physical = start;
3130
3131 ret = scrub_workers_get(fs_info);
3132 if (ret)
3133 goto out_free_ctx;
3134
3135 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3136 dev = btrfs_find_device(fs_info->fs_devices, &args);
3137 if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
3138 !is_dev_replace)) {
3139 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3140 ret = -ENODEV;
3141 goto out;
3142 }
3143
3144 if (!is_dev_replace && !readonly &&
3145 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
3146 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3147 btrfs_err(fs_info,
3148 "scrub: devid %llu: filesystem on %s is not writable",
3149 devid, btrfs_dev_name(dev));
3150 ret = -EROFS;
3151 goto out;
3152 }
3153
3154 mutex_lock(&fs_info->scrub_lock);
3155 if (unlikely(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3156 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state))) {
3157 mutex_unlock(&fs_info->scrub_lock);
3158 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3159 ret = -EIO;
3160 goto out;
3161 }
3162
3163 down_read(&fs_info->dev_replace.rwsem);
3164 if (dev->scrub_ctx ||
3165 (!is_dev_replace &&
3166 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
3167 up_read(&fs_info->dev_replace.rwsem);
3168 mutex_unlock(&fs_info->scrub_lock);
3169 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3170 ret = -EINPROGRESS;
3171 goto out;
3172 }
3173 up_read(&fs_info->dev_replace.rwsem);
3174
3175 sctx->readonly = readonly;
3176 dev->scrub_ctx = sctx;
3177 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3178
3179 /*
3180 * checking @scrub_pause_req here, we can avoid
3181 * race between committing transaction and scrubbing.
3182 */
3183 __scrub_blocked_if_needed(fs_info);
3184 atomic_inc(&fs_info->scrubs_running);
3185 mutex_unlock(&fs_info->scrub_lock);
3186
3187 /*
3188 * In order to avoid deadlock with reclaim when there is a transaction
3189 * trying to pause scrub, make sure we use GFP_NOFS for all the
3190 * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity()
3191 * invoked by our callees. The pausing request is done when the
3192 * transaction commit starts, and it blocks the transaction until scrub
3193 * is paused (done at specific points at scrub_stripe() or right above
3194 * before incrementing fs_info->scrubs_running).
3195 */
3196 nofs_flag = memalloc_nofs_save();
3197 if (!is_dev_replace) {
3198 u64 old_super_errors;
3199
3200 spin_lock(&sctx->stat_lock);
3201 old_super_errors = sctx->stat.super_errors;
3202 spin_unlock(&sctx->stat_lock);
3203
3204 btrfs_info(fs_info, "scrub: started on devid %llu", devid);
3205 /*
3206 * by holding device list mutex, we can
3207 * kick off writing super in log tree sync.
3208 */
3209 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3210 ret = scrub_supers(sctx, dev);
3211 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3212
3213 spin_lock(&sctx->stat_lock);
3214 /*
3215 * Super block errors found, but we can not commit transaction
3216 * at current context, since btrfs_commit_transaction() needs
3217 * to pause the current running scrub (hold by ourselves).
3218 */
3219 if (sctx->stat.super_errors > old_super_errors && !sctx->readonly)
3220 need_commit = true;
3221 spin_unlock(&sctx->stat_lock);
3222 }
3223
3224 if (!ret)
3225 ret = scrub_enumerate_chunks(sctx, dev, start, end);
3226 memalloc_nofs_restore(nofs_flag);
3227
3228 atomic_dec(&fs_info->scrubs_running);
3229 wake_up(&fs_info->scrub_pause_wait);
3230
3231 if (progress)
3232 memcpy(progress, &sctx->stat, sizeof(*progress));
3233
3234 if (!is_dev_replace)
3235 btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
3236 ret ? "not finished" : "finished", devid, ret);
3237
3238 mutex_lock(&fs_info->scrub_lock);
3239 dev->scrub_ctx = NULL;
3240 mutex_unlock(&fs_info->scrub_lock);
3241
3242 scrub_workers_put(fs_info);
3243 scrub_put_ctx(sctx);
3244
3245 /*
3246 * We found some super block errors before, now try to force a
3247 * transaction commit, as scrub has finished.
3248 */
3249 if (need_commit) {
3250 struct btrfs_trans_handle *trans;
3251
3252 trans = btrfs_start_transaction(fs_info->tree_root, 0);
3253 if (IS_ERR(trans)) {
3254 ret = PTR_ERR(trans);
3255 btrfs_err(fs_info,
3256 "scrub: failed to start transaction to fix super block errors: %d", ret);
3257 return ret;
3258 }
3259 ret = btrfs_commit_transaction(trans);
3260 if (ret < 0)
3261 btrfs_err(fs_info,
3262 "scrub: failed to commit transaction to fix super block errors: %d", ret);
3263 }
3264 return ret;
3265 out:
3266 scrub_workers_put(fs_info);
3267 out_free_ctx:
3268 scrub_free_ctx(sctx);
3269
3270 return ret;
3271 }
3272
btrfs_scrub_pause(struct btrfs_fs_info * fs_info)3273 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
3274 {
3275 mutex_lock(&fs_info->scrub_lock);
3276 atomic_inc(&fs_info->scrub_pause_req);
3277 while (atomic_read(&fs_info->scrubs_paused) !=
3278 atomic_read(&fs_info->scrubs_running)) {
3279 mutex_unlock(&fs_info->scrub_lock);
3280 wait_event(fs_info->scrub_pause_wait,
3281 atomic_read(&fs_info->scrubs_paused) ==
3282 atomic_read(&fs_info->scrubs_running));
3283 mutex_lock(&fs_info->scrub_lock);
3284 }
3285 mutex_unlock(&fs_info->scrub_lock);
3286 }
3287
btrfs_scrub_continue(struct btrfs_fs_info * fs_info)3288 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
3289 {
3290 atomic_dec(&fs_info->scrub_pause_req);
3291 wake_up(&fs_info->scrub_pause_wait);
3292 }
3293
btrfs_scrub_cancel(struct btrfs_fs_info * fs_info)3294 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3295 {
3296 mutex_lock(&fs_info->scrub_lock);
3297 if (!atomic_read(&fs_info->scrubs_running)) {
3298 mutex_unlock(&fs_info->scrub_lock);
3299 return -ENOTCONN;
3300 }
3301
3302 atomic_inc(&fs_info->scrub_cancel_req);
3303 while (atomic_read(&fs_info->scrubs_running)) {
3304 mutex_unlock(&fs_info->scrub_lock);
3305 wait_event(fs_info->scrub_pause_wait,
3306 atomic_read(&fs_info->scrubs_running) == 0);
3307 mutex_lock(&fs_info->scrub_lock);
3308 }
3309 atomic_dec(&fs_info->scrub_cancel_req);
3310 mutex_unlock(&fs_info->scrub_lock);
3311
3312 return 0;
3313 }
3314
btrfs_scrub_cancel_dev(struct btrfs_device * dev)3315 int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
3316 {
3317 struct btrfs_fs_info *fs_info = dev->fs_info;
3318 struct scrub_ctx *sctx;
3319
3320 mutex_lock(&fs_info->scrub_lock);
3321 sctx = dev->scrub_ctx;
3322 if (!sctx) {
3323 mutex_unlock(&fs_info->scrub_lock);
3324 return -ENOTCONN;
3325 }
3326 atomic_inc(&sctx->cancel_req);
3327 while (dev->scrub_ctx) {
3328 mutex_unlock(&fs_info->scrub_lock);
3329 wait_event(fs_info->scrub_pause_wait,
3330 dev->scrub_ctx == NULL);
3331 mutex_lock(&fs_info->scrub_lock);
3332 }
3333 mutex_unlock(&fs_info->scrub_lock);
3334
3335 return 0;
3336 }
3337
btrfs_scrub_progress(struct btrfs_fs_info * fs_info,u64 devid,struct btrfs_scrub_progress * progress)3338 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
3339 struct btrfs_scrub_progress *progress)
3340 {
3341 struct btrfs_dev_lookup_args args = { .devid = devid };
3342 struct btrfs_device *dev;
3343 struct scrub_ctx *sctx = NULL;
3344
3345 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3346 dev = btrfs_find_device(fs_info->fs_devices, &args);
3347 if (dev)
3348 sctx = dev->scrub_ctx;
3349 if (sctx)
3350 memcpy(progress, &sctx->stat, sizeof(*progress));
3351 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3352
3353 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
3354 }
3355