1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2011, 2012 STRATO. All rights reserved.
4 */
5
6 #include <linux/blkdev.h>
7 #include <linux/ratelimit.h>
8 #include <linux/sched/mm.h>
9 #include <crypto/hash.h>
10 #include "ctree.h"
11 #include "discard.h"
12 #include "volumes.h"
13 #include "disk-io.h"
14 #include "ordered-data.h"
15 #include "transaction.h"
16 #include "backref.h"
17 #include "extent_io.h"
18 #include "dev-replace.h"
19 #include "raid56.h"
20 #include "block-group.h"
21 #include "zoned.h"
22 #include "fs.h"
23 #include "accessors.h"
24 #include "file-item.h"
25 #include "scrub.h"
26 #include "raid-stripe-tree.h"
27
28 /*
29 * This is only the first step towards a full-features scrub. It reads all
30 * extent and super block and verifies the checksums. In case a bad checksum
31 * is found or the extent cannot be read, good data will be written back if
32 * any can be found.
33 *
34 * Future enhancements:
35 * - In case an unrepairable extent is encountered, track which files are
36 * affected and report them
37 * - track and record media errors, throw out bad devices
38 * - add a mode to also read unallocated space
39 */
40
41 struct scrub_ctx;
42
43 /*
44 * The following value only influences the performance.
45 *
46 * This determines how many stripes would be submitted in one go,
47 * which is 512KiB (BTRFS_STRIPE_LEN * SCRUB_STRIPES_PER_GROUP).
48 */
49 #define SCRUB_STRIPES_PER_GROUP 8
50
51 /*
52 * How many groups we have for each sctx.
53 *
54 * This would be 8M per device, the same value as the old scrub in-flight bios
55 * size limit.
56 */
57 #define SCRUB_GROUPS_PER_SCTX 16
58
59 #define SCRUB_TOTAL_STRIPES (SCRUB_GROUPS_PER_SCTX * SCRUB_STRIPES_PER_GROUP)
60
61 /*
62 * The following value times PAGE_SIZE needs to be large enough to match the
63 * largest node/leaf/sector size that shall be supported.
64 */
65 #define SCRUB_MAX_SECTORS_PER_BLOCK (BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
66
67 /* Represent one sector and its needed info to verify the content. */
68 struct scrub_sector_verification {
69 union {
70 /*
71 * Csum pointer for data csum verification. Should point to a
72 * sector csum inside scrub_stripe::csums.
73 *
74 * NULL if this data sector has no csum.
75 */
76 u8 *csum;
77
78 /*
79 * Extra info for metadata verification. All sectors inside a
80 * tree block share the same generation.
81 */
82 u64 generation;
83 };
84 };
85
86 enum scrub_stripe_flags {
87 /* Set when @mirror_num, @dev, @physical and @logical are set. */
88 SCRUB_STRIPE_FLAG_INITIALIZED,
89
90 /* Set when the read-repair is finished. */
91 SCRUB_STRIPE_FLAG_REPAIR_DONE,
92
93 /*
94 * Set for data stripes if it's triggered from P/Q stripe.
95 * During such scrub, we should not report errors in data stripes, nor
96 * update the accounting.
97 */
98 SCRUB_STRIPE_FLAG_NO_REPORT,
99 };
100
101 /*
102 * We have multiple bitmaps for one scrub_stripe.
103 * However each bitmap has at most (BTRFS_STRIPE_LEN / blocksize) bits,
104 * which is normally 16, and much smaller than BITS_PER_LONG (32 or 64).
105 *
106 * So to reduce memory usage for each scrub_stripe, we pack those bitmaps
107 * into a larger one.
108 *
109 * These enum records where the sub-bitmap are inside the larger one.
110 * Each subbitmap starts at scrub_bitmap_nr_##name * nr_sectors bit.
111 */
112 enum {
113 /* Which blocks are covered by extent items. */
114 scrub_bitmap_nr_has_extent = 0,
115
116 /* Which blocks are meteadata. */
117 scrub_bitmap_nr_is_metadata,
118
119 /*
120 * Which blocks have errors, including IO, csum, and metadata
121 * errors.
122 * This sub-bitmap is the OR results of the next few error related
123 * sub-bitmaps.
124 */
125 scrub_bitmap_nr_error,
126 scrub_bitmap_nr_io_error,
127 scrub_bitmap_nr_csum_error,
128 scrub_bitmap_nr_meta_error,
129 scrub_bitmap_nr_meta_gen_error,
130 scrub_bitmap_nr_last,
131 };
132
133 #define SCRUB_STRIPE_PAGES (BTRFS_STRIPE_LEN / PAGE_SIZE)
134
135 /*
136 * Represent one contiguous range with a length of BTRFS_STRIPE_LEN.
137 */
138 struct scrub_stripe {
139 struct scrub_ctx *sctx;
140 struct btrfs_block_group *bg;
141
142 struct page *pages[SCRUB_STRIPE_PAGES];
143 struct scrub_sector_verification *sectors;
144
145 struct btrfs_device *dev;
146 u64 logical;
147 u64 physical;
148
149 u16 mirror_num;
150
151 /* Should be BTRFS_STRIPE_LEN / sectorsize. */
152 u16 nr_sectors;
153
154 /*
155 * How many data/meta extents are in this stripe. Only for scrub status
156 * reporting purposes.
157 */
158 u16 nr_data_extents;
159 u16 nr_meta_extents;
160
161 atomic_t pending_io;
162 wait_queue_head_t io_wait;
163 wait_queue_head_t repair_wait;
164
165 /*
166 * Indicate the states of the stripe. Bits are defined in
167 * scrub_stripe_flags enum.
168 */
169 unsigned long state;
170
171 /* The large bitmap contains all the sub-bitmaps. */
172 unsigned long bitmaps[BITS_TO_LONGS(scrub_bitmap_nr_last *
173 (BTRFS_STRIPE_LEN / BTRFS_MIN_BLOCKSIZE))];
174
175 /*
176 * For writeback (repair or replace) error reporting.
177 * This one is protected by a spinlock, thus can not be packed into
178 * the larger bitmap.
179 */
180 unsigned long write_error_bitmap;
181
182 /* Writeback can be concurrent, thus we need to protect the bitmap. */
183 spinlock_t write_error_lock;
184
185 /*
186 * Checksum for the whole stripe if this stripe is inside a data block
187 * group.
188 */
189 u8 *csums;
190
191 struct work_struct work;
192 };
193
194 struct scrub_ctx {
195 struct scrub_stripe stripes[SCRUB_TOTAL_STRIPES];
196 struct scrub_stripe *raid56_data_stripes;
197 struct btrfs_fs_info *fs_info;
198 struct btrfs_path extent_path;
199 struct btrfs_path csum_path;
200 int first_free;
201 int cur_stripe;
202 atomic_t cancel_req;
203 int readonly;
204
205 /* State of IO submission throttling affecting the associated device */
206 ktime_t throttle_deadline;
207 u64 throttle_sent;
208
209 int is_dev_replace;
210 u64 write_pointer;
211
212 struct mutex wr_lock;
213 struct btrfs_device *wr_tgtdev;
214
215 /*
216 * statistics
217 */
218 struct btrfs_scrub_progress stat;
219 spinlock_t stat_lock;
220
221 /*
222 * Use a ref counter to avoid use-after-free issues. Scrub workers
223 * decrement bios_in_flight and workers_pending and then do a wakeup
224 * on the list_wait wait queue. We must ensure the main scrub task
225 * doesn't free the scrub context before or while the workers are
226 * doing the wakeup() call.
227 */
228 refcount_t refs;
229 };
230
231 #define scrub_calc_start_bit(stripe, name, block_nr) \
232 ({ \
233 unsigned int __start_bit; \
234 \
235 ASSERT(block_nr < stripe->nr_sectors, \
236 "nr_sectors=%u block_nr=%u", stripe->nr_sectors, block_nr); \
237 __start_bit = scrub_bitmap_nr_##name * stripe->nr_sectors + block_nr; \
238 __start_bit; \
239 })
240
241 #define IMPLEMENT_SCRUB_BITMAP_OPS(name) \
242 static inline void scrub_bitmap_set_##name(struct scrub_stripe *stripe, \
243 unsigned int block_nr, \
244 unsigned int nr_blocks) \
245 { \
246 const unsigned int start_bit = scrub_calc_start_bit(stripe, \
247 name, block_nr); \
248 \
249 bitmap_set(stripe->bitmaps, start_bit, nr_blocks); \
250 } \
251 static inline void scrub_bitmap_clear_##name(struct scrub_stripe *stripe, \
252 unsigned int block_nr, \
253 unsigned int nr_blocks) \
254 { \
255 const unsigned int start_bit = scrub_calc_start_bit(stripe, name, \
256 block_nr); \
257 \
258 bitmap_clear(stripe->bitmaps, start_bit, nr_blocks); \
259 } \
260 static inline bool scrub_bitmap_test_bit_##name(struct scrub_stripe *stripe, \
261 unsigned int block_nr) \
262 { \
263 const unsigned int start_bit = scrub_calc_start_bit(stripe, name, \
264 block_nr); \
265 \
266 return test_bit(start_bit, stripe->bitmaps); \
267 } \
268 static inline void scrub_bitmap_set_bit_##name(struct scrub_stripe *stripe, \
269 unsigned int block_nr) \
270 { \
271 const unsigned int start_bit = scrub_calc_start_bit(stripe, name, \
272 block_nr); \
273 \
274 set_bit(start_bit, stripe->bitmaps); \
275 } \
276 static inline void scrub_bitmap_clear_bit_##name(struct scrub_stripe *stripe, \
277 unsigned int block_nr) \
278 { \
279 const unsigned int start_bit = scrub_calc_start_bit(stripe, name, \
280 block_nr); \
281 \
282 clear_bit(start_bit, stripe->bitmaps); \
283 } \
284 static inline unsigned long scrub_bitmap_read_##name(struct scrub_stripe *stripe) \
285 { \
286 const unsigned int nr_blocks = stripe->nr_sectors; \
287 \
288 ASSERT(nr_blocks > 0 && nr_blocks <= BITS_PER_LONG, \
289 "nr_blocks=%u BITS_PER_LONG=%u", \
290 nr_blocks, BITS_PER_LONG); \
291 \
292 return bitmap_read(stripe->bitmaps, nr_blocks * scrub_bitmap_nr_##name, \
293 stripe->nr_sectors); \
294 } \
295 static inline bool scrub_bitmap_empty_##name(struct scrub_stripe *stripe) \
296 { \
297 unsigned long bitmap = scrub_bitmap_read_##name(stripe); \
298 \
299 return bitmap_empty(&bitmap, stripe->nr_sectors); \
300 } \
301 static inline unsigned int scrub_bitmap_weight_##name(struct scrub_stripe *stripe) \
302 { \
303 unsigned long bitmap = scrub_bitmap_read_##name(stripe); \
304 \
305 return bitmap_weight(&bitmap, stripe->nr_sectors); \
306 }
307 IMPLEMENT_SCRUB_BITMAP_OPS(has_extent);
308 IMPLEMENT_SCRUB_BITMAP_OPS(is_metadata);
309 IMPLEMENT_SCRUB_BITMAP_OPS(error);
310 IMPLEMENT_SCRUB_BITMAP_OPS(io_error);
311 IMPLEMENT_SCRUB_BITMAP_OPS(csum_error);
312 IMPLEMENT_SCRUB_BITMAP_OPS(meta_error);
313 IMPLEMENT_SCRUB_BITMAP_OPS(meta_gen_error);
314
315 struct scrub_warning {
316 struct btrfs_path *path;
317 u64 extent_item_size;
318 const char *errstr;
319 u64 physical;
320 u64 logical;
321 struct btrfs_device *dev;
322 };
323
324 struct scrub_error_records {
325 /*
326 * Bitmap recording which blocks hit errors (IO/csum/...) during the
327 * initial read.
328 */
329 unsigned long init_error_bitmap;
330
331 unsigned int nr_io_errors;
332 unsigned int nr_csum_errors;
333 unsigned int nr_meta_errors;
334 unsigned int nr_meta_gen_errors;
335 };
336
release_scrub_stripe(struct scrub_stripe * stripe)337 static void release_scrub_stripe(struct scrub_stripe *stripe)
338 {
339 if (!stripe)
340 return;
341
342 for (int i = 0; i < SCRUB_STRIPE_PAGES; i++) {
343 if (stripe->pages[i])
344 __free_page(stripe->pages[i]);
345 stripe->pages[i] = NULL;
346 }
347 kfree(stripe->sectors);
348 kfree(stripe->csums);
349 stripe->sectors = NULL;
350 stripe->csums = NULL;
351 stripe->sctx = NULL;
352 stripe->state = 0;
353 }
354
init_scrub_stripe(struct btrfs_fs_info * fs_info,struct scrub_stripe * stripe)355 static int init_scrub_stripe(struct btrfs_fs_info *fs_info,
356 struct scrub_stripe *stripe)
357 {
358 int ret;
359
360 memset(stripe, 0, sizeof(*stripe));
361
362 stripe->nr_sectors = BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
363 stripe->state = 0;
364
365 init_waitqueue_head(&stripe->io_wait);
366 init_waitqueue_head(&stripe->repair_wait);
367 atomic_set(&stripe->pending_io, 0);
368 spin_lock_init(&stripe->write_error_lock);
369
370 ret = btrfs_alloc_page_array(SCRUB_STRIPE_PAGES, stripe->pages, false);
371 if (ret < 0)
372 goto error;
373
374 stripe->sectors = kcalloc(stripe->nr_sectors,
375 sizeof(struct scrub_sector_verification),
376 GFP_KERNEL);
377 if (!stripe->sectors)
378 goto error;
379
380 stripe->csums = kcalloc(BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits,
381 fs_info->csum_size, GFP_KERNEL);
382 if (!stripe->csums)
383 goto error;
384 return 0;
385 error:
386 release_scrub_stripe(stripe);
387 return -ENOMEM;
388 }
389
wait_scrub_stripe_io(struct scrub_stripe * stripe)390 static void wait_scrub_stripe_io(struct scrub_stripe *stripe)
391 {
392 wait_event(stripe->io_wait, atomic_read(&stripe->pending_io) == 0);
393 }
394
395 static void scrub_put_ctx(struct scrub_ctx *sctx);
396
__scrub_blocked_if_needed(struct btrfs_fs_info * fs_info)397 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
398 {
399 while (atomic_read(&fs_info->scrub_pause_req)) {
400 mutex_unlock(&fs_info->scrub_lock);
401 wait_event(fs_info->scrub_pause_wait,
402 atomic_read(&fs_info->scrub_pause_req) == 0);
403 mutex_lock(&fs_info->scrub_lock);
404 }
405 }
406
scrub_pause_on(struct btrfs_fs_info * fs_info)407 static void scrub_pause_on(struct btrfs_fs_info *fs_info)
408 {
409 atomic_inc(&fs_info->scrubs_paused);
410 wake_up(&fs_info->scrub_pause_wait);
411 }
412
scrub_pause_off(struct btrfs_fs_info * fs_info)413 static void scrub_pause_off(struct btrfs_fs_info *fs_info)
414 {
415 mutex_lock(&fs_info->scrub_lock);
416 __scrub_blocked_if_needed(fs_info);
417 atomic_dec(&fs_info->scrubs_paused);
418 mutex_unlock(&fs_info->scrub_lock);
419
420 wake_up(&fs_info->scrub_pause_wait);
421 }
422
scrub_blocked_if_needed(struct btrfs_fs_info * fs_info)423 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
424 {
425 scrub_pause_on(fs_info);
426 scrub_pause_off(fs_info);
427 }
428
scrub_free_ctx(struct scrub_ctx * sctx)429 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
430 {
431 int i;
432
433 if (!sctx)
434 return;
435
436 for (i = 0; i < SCRUB_TOTAL_STRIPES; i++)
437 release_scrub_stripe(&sctx->stripes[i]);
438
439 kvfree(sctx);
440 }
441
scrub_put_ctx(struct scrub_ctx * sctx)442 static void scrub_put_ctx(struct scrub_ctx *sctx)
443 {
444 if (refcount_dec_and_test(&sctx->refs))
445 scrub_free_ctx(sctx);
446 }
447
scrub_setup_ctx(struct btrfs_fs_info * fs_info,int is_dev_replace)448 static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
449 struct btrfs_fs_info *fs_info, int is_dev_replace)
450 {
451 struct scrub_ctx *sctx;
452 int i;
453
454 /* Since sctx has inline 128 stripes, it can go beyond 64K easily. Use
455 * kvzalloc().
456 */
457 sctx = kvzalloc(sizeof(*sctx), GFP_KERNEL);
458 if (!sctx)
459 goto nomem;
460 refcount_set(&sctx->refs, 1);
461 sctx->is_dev_replace = is_dev_replace;
462 sctx->fs_info = fs_info;
463 sctx->extent_path.search_commit_root = 1;
464 sctx->extent_path.skip_locking = 1;
465 sctx->csum_path.search_commit_root = 1;
466 sctx->csum_path.skip_locking = 1;
467 for (i = 0; i < SCRUB_TOTAL_STRIPES; i++) {
468 int ret;
469
470 ret = init_scrub_stripe(fs_info, &sctx->stripes[i]);
471 if (ret < 0)
472 goto nomem;
473 sctx->stripes[i].sctx = sctx;
474 }
475 sctx->first_free = 0;
476 atomic_set(&sctx->cancel_req, 0);
477
478 spin_lock_init(&sctx->stat_lock);
479 sctx->throttle_deadline = 0;
480
481 mutex_init(&sctx->wr_lock);
482 if (is_dev_replace) {
483 WARN_ON(!fs_info->dev_replace.tgtdev);
484 sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
485 }
486
487 return sctx;
488
489 nomem:
490 scrub_free_ctx(sctx);
491 return ERR_PTR(-ENOMEM);
492 }
493
scrub_print_warning_inode(u64 inum,u64 offset,u64 num_bytes,u64 root,void * warn_ctx)494 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
495 u64 root, void *warn_ctx)
496 {
497 u32 nlink;
498 int ret;
499 int i;
500 unsigned nofs_flag;
501 struct extent_buffer *eb;
502 struct btrfs_inode_item *inode_item;
503 struct scrub_warning *swarn = warn_ctx;
504 struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
505 struct inode_fs_paths *ipath = NULL;
506 struct btrfs_root *local_root;
507 struct btrfs_key key;
508
509 local_root = btrfs_get_fs_root(fs_info, root, true);
510 if (IS_ERR(local_root)) {
511 ret = PTR_ERR(local_root);
512 goto err;
513 }
514
515 /*
516 * this makes the path point to (inum INODE_ITEM ioff)
517 */
518 key.objectid = inum;
519 key.type = BTRFS_INODE_ITEM_KEY;
520 key.offset = 0;
521
522 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
523 if (ret) {
524 btrfs_put_root(local_root);
525 btrfs_release_path(swarn->path);
526 goto err;
527 }
528
529 eb = swarn->path->nodes[0];
530 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
531 struct btrfs_inode_item);
532 nlink = btrfs_inode_nlink(eb, inode_item);
533 btrfs_release_path(swarn->path);
534
535 /*
536 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
537 * uses GFP_NOFS in this context, so we keep it consistent but it does
538 * not seem to be strictly necessary.
539 */
540 nofs_flag = memalloc_nofs_save();
541 ipath = init_ipath(4096, local_root, swarn->path);
542 memalloc_nofs_restore(nofs_flag);
543 if (IS_ERR(ipath)) {
544 btrfs_put_root(local_root);
545 ret = PTR_ERR(ipath);
546 ipath = NULL;
547 goto err;
548 }
549 ret = paths_from_inode(inum, ipath);
550
551 if (ret < 0)
552 goto err;
553
554 /*
555 * we deliberately ignore the bit ipath might have been too small to
556 * hold all of the paths here
557 */
558 for (i = 0; i < ipath->fspath->elem_cnt; ++i)
559 btrfs_warn_in_rcu(fs_info,
560 "scrub: %s at logical %llu on dev %s, physical %llu root %llu inode %llu offset %llu length %u links %u (path: %s)",
561 swarn->errstr, swarn->logical,
562 btrfs_dev_name(swarn->dev),
563 swarn->physical,
564 root, inum, offset,
565 fs_info->sectorsize, nlink,
566 (char *)(unsigned long)ipath->fspath->val[i]);
567
568 btrfs_put_root(local_root);
569 free_ipath(ipath);
570 return 0;
571
572 err:
573 btrfs_warn_in_rcu(fs_info,
574 "scrub: %s at logical %llu on dev %s, physical %llu root %llu inode %llu offset %llu: path resolving failed with ret=%d",
575 swarn->errstr, swarn->logical,
576 btrfs_dev_name(swarn->dev),
577 swarn->physical,
578 root, inum, offset, ret);
579
580 free_ipath(ipath);
581 return 0;
582 }
583
scrub_print_common_warning(const char * errstr,struct btrfs_device * dev,bool is_super,u64 logical,u64 physical)584 static void scrub_print_common_warning(const char *errstr, struct btrfs_device *dev,
585 bool is_super, u64 logical, u64 physical)
586 {
587 struct btrfs_fs_info *fs_info = dev->fs_info;
588 struct btrfs_path *path;
589 struct btrfs_key found_key;
590 struct extent_buffer *eb;
591 struct btrfs_extent_item *ei;
592 struct scrub_warning swarn;
593 u64 flags = 0;
594 u32 item_size;
595 int ret;
596
597 /* Super block error, no need to search extent tree. */
598 if (is_super) {
599 btrfs_warn_in_rcu(fs_info, "scrub: %s on device %s, physical %llu",
600 errstr, btrfs_dev_name(dev), physical);
601 return;
602 }
603 path = btrfs_alloc_path();
604 if (!path)
605 return;
606
607 swarn.physical = physical;
608 swarn.logical = logical;
609 swarn.errstr = errstr;
610 swarn.dev = NULL;
611
612 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
613 &flags);
614 if (ret < 0)
615 goto out;
616
617 swarn.extent_item_size = found_key.offset;
618
619 eb = path->nodes[0];
620 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
621 item_size = btrfs_item_size(eb, path->slots[0]);
622
623 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
624 unsigned long ptr = 0;
625 u8 ref_level;
626 u64 ref_root;
627
628 while (true) {
629 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
630 item_size, &ref_root,
631 &ref_level);
632 if (ret < 0) {
633 btrfs_warn(fs_info,
634 "scrub: failed to resolve tree backref for logical %llu: %d",
635 swarn.logical, ret);
636 break;
637 }
638 if (ret > 0)
639 break;
640 btrfs_warn_in_rcu(fs_info,
641 "scrub: %s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
642 errstr, swarn.logical, btrfs_dev_name(dev),
643 swarn.physical, (ref_level ? "node" : "leaf"),
644 ref_level, ref_root);
645 }
646 btrfs_release_path(path);
647 } else {
648 struct btrfs_backref_walk_ctx ctx = { 0 };
649
650 btrfs_release_path(path);
651
652 ctx.bytenr = found_key.objectid;
653 ctx.extent_item_pos = swarn.logical - found_key.objectid;
654 ctx.fs_info = fs_info;
655
656 swarn.path = path;
657 swarn.dev = dev;
658
659 iterate_extent_inodes(&ctx, true, scrub_print_warning_inode, &swarn);
660 }
661
662 out:
663 btrfs_free_path(path);
664 }
665
fill_writer_pointer_gap(struct scrub_ctx * sctx,u64 physical)666 static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
667 {
668 int ret = 0;
669 u64 length;
670
671 if (!btrfs_is_zoned(sctx->fs_info))
672 return 0;
673
674 if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
675 return 0;
676
677 if (sctx->write_pointer < physical) {
678 length = physical - sctx->write_pointer;
679
680 ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
681 sctx->write_pointer, length);
682 if (!ret)
683 sctx->write_pointer = physical;
684 }
685 return ret;
686 }
687
scrub_stripe_get_kaddr(struct scrub_stripe * stripe,int sector_nr)688 static void *scrub_stripe_get_kaddr(struct scrub_stripe *stripe, int sector_nr)
689 {
690 u32 offset = (sector_nr << stripe->bg->fs_info->sectorsize_bits);
691 const struct page *page = stripe->pages[offset >> PAGE_SHIFT];
692
693 /* stripe->pages[] is allocated by us and no highmem is allowed. */
694 ASSERT(page);
695 ASSERT(!PageHighMem(page));
696 return page_address(page) + offset_in_page(offset);
697 }
698
scrub_verify_one_metadata(struct scrub_stripe * stripe,int sector_nr)699 static void scrub_verify_one_metadata(struct scrub_stripe *stripe, int sector_nr)
700 {
701 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
702 const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
703 const u64 logical = stripe->logical + (sector_nr << fs_info->sectorsize_bits);
704 void *first_kaddr = scrub_stripe_get_kaddr(stripe, sector_nr);
705 struct btrfs_header *header = first_kaddr;
706 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
707 u8 on_disk_csum[BTRFS_CSUM_SIZE];
708 u8 calculated_csum[BTRFS_CSUM_SIZE];
709
710 /*
711 * Here we don't have a good way to attach the pages (and subpages)
712 * to a dummy extent buffer, thus we have to directly grab the members
713 * from pages.
714 */
715 memcpy(on_disk_csum, header->csum, fs_info->csum_size);
716
717 if (logical != btrfs_stack_header_bytenr(header)) {
718 scrub_bitmap_set_meta_error(stripe, sector_nr, sectors_per_tree);
719 scrub_bitmap_set_error(stripe, sector_nr, sectors_per_tree);
720 btrfs_warn_rl(fs_info,
721 "scrub: tree block %llu mirror %u has bad bytenr, has %llu want %llu",
722 logical, stripe->mirror_num,
723 btrfs_stack_header_bytenr(header), logical);
724 return;
725 }
726 if (memcmp(header->fsid, fs_info->fs_devices->metadata_uuid,
727 BTRFS_FSID_SIZE) != 0) {
728 scrub_bitmap_set_meta_error(stripe, sector_nr, sectors_per_tree);
729 scrub_bitmap_set_error(stripe, sector_nr, sectors_per_tree);
730 btrfs_warn_rl(fs_info,
731 "scrub: tree block %llu mirror %u has bad fsid, has %pU want %pU",
732 logical, stripe->mirror_num,
733 header->fsid, fs_info->fs_devices->fsid);
734 return;
735 }
736 if (memcmp(header->chunk_tree_uuid, fs_info->chunk_tree_uuid,
737 BTRFS_UUID_SIZE) != 0) {
738 scrub_bitmap_set_meta_error(stripe, sector_nr, sectors_per_tree);
739 scrub_bitmap_set_error(stripe, sector_nr, sectors_per_tree);
740 btrfs_warn_rl(fs_info,
741 "scrub: tree block %llu mirror %u has bad chunk tree uuid, has %pU want %pU",
742 logical, stripe->mirror_num,
743 header->chunk_tree_uuid, fs_info->chunk_tree_uuid);
744 return;
745 }
746
747 /* Now check tree block csum. */
748 shash->tfm = fs_info->csum_shash;
749 crypto_shash_init(shash);
750 crypto_shash_update(shash, first_kaddr + BTRFS_CSUM_SIZE,
751 fs_info->sectorsize - BTRFS_CSUM_SIZE);
752
753 for (int i = sector_nr + 1; i < sector_nr + sectors_per_tree; i++) {
754 crypto_shash_update(shash, scrub_stripe_get_kaddr(stripe, i),
755 fs_info->sectorsize);
756 }
757
758 crypto_shash_final(shash, calculated_csum);
759 if (memcmp(calculated_csum, on_disk_csum, fs_info->csum_size) != 0) {
760 scrub_bitmap_set_meta_error(stripe, sector_nr, sectors_per_tree);
761 scrub_bitmap_set_error(stripe, sector_nr, sectors_per_tree);
762 btrfs_warn_rl(fs_info,
763 "scrub: tree block %llu mirror %u has bad csum, has " CSUM_FMT " want " CSUM_FMT,
764 logical, stripe->mirror_num,
765 CSUM_FMT_VALUE(fs_info->csum_size, on_disk_csum),
766 CSUM_FMT_VALUE(fs_info->csum_size, calculated_csum));
767 return;
768 }
769 if (stripe->sectors[sector_nr].generation !=
770 btrfs_stack_header_generation(header)) {
771 scrub_bitmap_set_meta_gen_error(stripe, sector_nr, sectors_per_tree);
772 scrub_bitmap_set_error(stripe, sector_nr, sectors_per_tree);
773 btrfs_warn_rl(fs_info,
774 "scrub: tree block %llu mirror %u has bad generation, has %llu want %llu",
775 logical, stripe->mirror_num,
776 btrfs_stack_header_generation(header),
777 stripe->sectors[sector_nr].generation);
778 return;
779 }
780 scrub_bitmap_clear_error(stripe, sector_nr, sectors_per_tree);
781 scrub_bitmap_clear_csum_error(stripe, sector_nr, sectors_per_tree);
782 scrub_bitmap_clear_meta_error(stripe, sector_nr, sectors_per_tree);
783 scrub_bitmap_clear_meta_gen_error(stripe, sector_nr, sectors_per_tree);
784 }
785
scrub_verify_one_sector(struct scrub_stripe * stripe,int sector_nr)786 static void scrub_verify_one_sector(struct scrub_stripe *stripe, int sector_nr)
787 {
788 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
789 struct scrub_sector_verification *sector = &stripe->sectors[sector_nr];
790 const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
791 void *kaddr = scrub_stripe_get_kaddr(stripe, sector_nr);
792 u8 csum_buf[BTRFS_CSUM_SIZE];
793 int ret;
794
795 ASSERT(sector_nr >= 0 && sector_nr < stripe->nr_sectors);
796
797 /* Sector not utilized, skip it. */
798 if (!scrub_bitmap_test_bit_has_extent(stripe, sector_nr))
799 return;
800
801 /* IO error, no need to check. */
802 if (scrub_bitmap_test_bit_io_error(stripe, sector_nr))
803 return;
804
805 /* Metadata, verify the full tree block. */
806 if (scrub_bitmap_test_bit_is_metadata(stripe, sector_nr)) {
807 /*
808 * Check if the tree block crosses the stripe boundary. If
809 * crossed the boundary, we cannot verify it but only give a
810 * warning.
811 *
812 * This can only happen on a very old filesystem where chunks
813 * are not ensured to be stripe aligned.
814 */
815 if (unlikely(sector_nr + sectors_per_tree > stripe->nr_sectors)) {
816 btrfs_warn_rl(fs_info,
817 "scrub: tree block at %llu crosses stripe boundary %llu",
818 stripe->logical +
819 (sector_nr << fs_info->sectorsize_bits),
820 stripe->logical);
821 return;
822 }
823 scrub_verify_one_metadata(stripe, sector_nr);
824 return;
825 }
826
827 /*
828 * Data is easier, we just verify the data csum (if we have it). For
829 * cases without csum, we have no other choice but to trust it.
830 */
831 if (!sector->csum) {
832 scrub_bitmap_clear_bit_error(stripe, sector_nr);
833 return;
834 }
835
836 ret = btrfs_check_sector_csum(fs_info, kaddr, csum_buf, sector->csum);
837 if (ret < 0) {
838 scrub_bitmap_set_bit_csum_error(stripe, sector_nr);
839 scrub_bitmap_set_bit_error(stripe, sector_nr);
840 } else {
841 scrub_bitmap_clear_bit_csum_error(stripe, sector_nr);
842 scrub_bitmap_clear_bit_error(stripe, sector_nr);
843 }
844 }
845
846 /* Verify specified sectors of a stripe. */
scrub_verify_one_stripe(struct scrub_stripe * stripe,unsigned long bitmap)847 static void scrub_verify_one_stripe(struct scrub_stripe *stripe, unsigned long bitmap)
848 {
849 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
850 const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
851 int sector_nr;
852
853 for_each_set_bit(sector_nr, &bitmap, stripe->nr_sectors) {
854 scrub_verify_one_sector(stripe, sector_nr);
855 if (scrub_bitmap_test_bit_is_metadata(stripe, sector_nr))
856 sector_nr += sectors_per_tree - 1;
857 }
858 }
859
calc_sector_number(struct scrub_stripe * stripe,struct bio_vec * first_bvec)860 static int calc_sector_number(struct scrub_stripe *stripe, struct bio_vec *first_bvec)
861 {
862 int i;
863
864 for (i = 0; i < stripe->nr_sectors; i++) {
865 if (scrub_stripe_get_kaddr(stripe, i) == bvec_virt(first_bvec))
866 break;
867 }
868 ASSERT(i < stripe->nr_sectors);
869 return i;
870 }
871
872 /*
873 * Repair read is different to the regular read:
874 *
875 * - Only reads the failed sectors
876 * - May have extra blocksize limits
877 */
scrub_repair_read_endio(struct btrfs_bio * bbio)878 static void scrub_repair_read_endio(struct btrfs_bio *bbio)
879 {
880 struct scrub_stripe *stripe = bbio->private;
881 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
882 struct bio_vec *bvec;
883 int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
884 u32 bio_size = 0;
885 int i;
886
887 ASSERT(sector_nr < stripe->nr_sectors);
888
889 bio_for_each_bvec_all(bvec, &bbio->bio, i)
890 bio_size += bvec->bv_len;
891
892 if (bbio->bio.bi_status) {
893 scrub_bitmap_set_io_error(stripe, sector_nr,
894 bio_size >> fs_info->sectorsize_bits);
895 scrub_bitmap_set_error(stripe, sector_nr,
896 bio_size >> fs_info->sectorsize_bits);
897 } else {
898 scrub_bitmap_clear_io_error(stripe, sector_nr,
899 bio_size >> fs_info->sectorsize_bits);
900 }
901 bio_put(&bbio->bio);
902 if (atomic_dec_and_test(&stripe->pending_io))
903 wake_up(&stripe->io_wait);
904 }
905
calc_next_mirror(int mirror,int num_copies)906 static int calc_next_mirror(int mirror, int num_copies)
907 {
908 ASSERT(mirror <= num_copies);
909 return (mirror + 1 > num_copies) ? 1 : mirror + 1;
910 }
911
scrub_bio_add_sector(struct btrfs_bio * bbio,struct scrub_stripe * stripe,int sector_nr)912 static void scrub_bio_add_sector(struct btrfs_bio *bbio, struct scrub_stripe *stripe,
913 int sector_nr)
914 {
915 void *kaddr = scrub_stripe_get_kaddr(stripe, sector_nr);
916 int ret;
917
918 ret = bio_add_page(&bbio->bio, virt_to_page(kaddr), bbio->fs_info->sectorsize,
919 offset_in_page(kaddr));
920 /*
921 * Caller should ensure the bbio has enough size.
922 * And we cannot use __bio_add_page(), which doesn't do any merge.
923 *
924 * Meanwhile for scrub_submit_initial_read() we fully rely on the merge
925 * to create the minimal amount of bio vectors, for fs block size < page
926 * size cases.
927 */
928 ASSERT(ret == bbio->fs_info->sectorsize);
929 }
930
scrub_stripe_submit_repair_read(struct scrub_stripe * stripe,int mirror,int blocksize,bool wait)931 static void scrub_stripe_submit_repair_read(struct scrub_stripe *stripe,
932 int mirror, int blocksize, bool wait)
933 {
934 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
935 struct btrfs_bio *bbio = NULL;
936 const unsigned long old_error_bitmap = scrub_bitmap_read_error(stripe);
937 int i;
938
939 ASSERT(stripe->mirror_num >= 1);
940 ASSERT(atomic_read(&stripe->pending_io) == 0);
941
942 for_each_set_bit(i, &old_error_bitmap, stripe->nr_sectors) {
943 /* The current sector cannot be merged, submit the bio. */
944 if (bbio && ((i > 0 && !test_bit(i - 1, &old_error_bitmap)) ||
945 bbio->bio.bi_iter.bi_size >= blocksize)) {
946 ASSERT(bbio->bio.bi_iter.bi_size);
947 atomic_inc(&stripe->pending_io);
948 btrfs_submit_bbio(bbio, mirror);
949 if (wait)
950 wait_scrub_stripe_io(stripe);
951 bbio = NULL;
952 }
953
954 if (!bbio) {
955 bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ,
956 fs_info, scrub_repair_read_endio, stripe);
957 bbio->bio.bi_iter.bi_sector = (stripe->logical +
958 (i << fs_info->sectorsize_bits)) >> SECTOR_SHIFT;
959 }
960
961 scrub_bio_add_sector(bbio, stripe, i);
962 }
963 if (bbio) {
964 ASSERT(bbio->bio.bi_iter.bi_size);
965 atomic_inc(&stripe->pending_io);
966 btrfs_submit_bbio(bbio, mirror);
967 if (wait)
968 wait_scrub_stripe_io(stripe);
969 }
970 }
971
scrub_stripe_report_errors(struct scrub_ctx * sctx,struct scrub_stripe * stripe,const struct scrub_error_records * errors)972 static void scrub_stripe_report_errors(struct scrub_ctx *sctx,
973 struct scrub_stripe *stripe,
974 const struct scrub_error_records *errors)
975 {
976 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
977 DEFAULT_RATELIMIT_BURST);
978 struct btrfs_fs_info *fs_info = sctx->fs_info;
979 struct btrfs_device *dev = NULL;
980 const unsigned long extent_bitmap = scrub_bitmap_read_has_extent(stripe);
981 const unsigned long error_bitmap = scrub_bitmap_read_error(stripe);
982 u64 physical = 0;
983 int nr_data_sectors = 0;
984 int nr_meta_sectors = 0;
985 int nr_nodatacsum_sectors = 0;
986 int nr_repaired_sectors = 0;
987 int sector_nr;
988
989 if (test_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state))
990 return;
991
992 /*
993 * Init needed infos for error reporting.
994 *
995 * Although our scrub_stripe infrastructure is mostly based on btrfs_submit_bio()
996 * thus no need for dev/physical, error reporting still needs dev and physical.
997 */
998 if (!bitmap_empty(&errors->init_error_bitmap, stripe->nr_sectors)) {
999 u64 mapped_len = fs_info->sectorsize;
1000 struct btrfs_io_context *bioc = NULL;
1001 int stripe_index = stripe->mirror_num - 1;
1002 int ret;
1003
1004 /* For scrub, our mirror_num should always start at 1. */
1005 ASSERT(stripe->mirror_num >= 1);
1006 ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1007 stripe->logical, &mapped_len, &bioc,
1008 NULL, NULL);
1009 /*
1010 * If we failed, dev will be NULL, and later detailed reports
1011 * will just be skipped.
1012 */
1013 if (ret < 0)
1014 goto skip;
1015 physical = bioc->stripes[stripe_index].physical;
1016 dev = bioc->stripes[stripe_index].dev;
1017 btrfs_put_bioc(bioc);
1018 }
1019
1020 skip:
1021 for_each_set_bit(sector_nr, &extent_bitmap, stripe->nr_sectors) {
1022 bool repaired = false;
1023
1024 if (scrub_bitmap_test_bit_is_metadata(stripe, sector_nr)) {
1025 nr_meta_sectors++;
1026 } else {
1027 nr_data_sectors++;
1028 if (!stripe->sectors[sector_nr].csum)
1029 nr_nodatacsum_sectors++;
1030 }
1031
1032 if (test_bit(sector_nr, &errors->init_error_bitmap) &&
1033 !test_bit(sector_nr, &error_bitmap)) {
1034 nr_repaired_sectors++;
1035 repaired = true;
1036 }
1037
1038 /* Good sector from the beginning, nothing need to be done. */
1039 if (!test_bit(sector_nr, &errors->init_error_bitmap))
1040 continue;
1041
1042 /*
1043 * Report error for the corrupted sectors. If repaired, just
1044 * output the message of repaired message.
1045 */
1046 if (repaired) {
1047 if (dev) {
1048 btrfs_err_rl_in_rcu(fs_info,
1049 "scrub: fixed up error at logical %llu on dev %s physical %llu",
1050 stripe->logical, btrfs_dev_name(dev),
1051 physical);
1052 } else {
1053 btrfs_err_rl_in_rcu(fs_info,
1054 "scrub: fixed up error at logical %llu on mirror %u",
1055 stripe->logical, stripe->mirror_num);
1056 }
1057 continue;
1058 }
1059
1060 /* The remaining are all for unrepaired. */
1061 if (dev) {
1062 btrfs_err_rl_in_rcu(fs_info,
1063 "scrub: unable to fixup (regular) error at logical %llu on dev %s physical %llu",
1064 stripe->logical, btrfs_dev_name(dev),
1065 physical);
1066 } else {
1067 btrfs_err_rl_in_rcu(fs_info,
1068 "scrub: unable to fixup (regular) error at logical %llu on mirror %u",
1069 stripe->logical, stripe->mirror_num);
1070 }
1071
1072 if (scrub_bitmap_test_bit_io_error(stripe, sector_nr))
1073 if (__ratelimit(&rs) && dev)
1074 scrub_print_common_warning("i/o error", dev, false,
1075 stripe->logical, physical);
1076 if (scrub_bitmap_test_bit_csum_error(stripe, sector_nr))
1077 if (__ratelimit(&rs) && dev)
1078 scrub_print_common_warning("checksum error", dev, false,
1079 stripe->logical, physical);
1080 if (scrub_bitmap_test_bit_meta_error(stripe, sector_nr))
1081 if (__ratelimit(&rs) && dev)
1082 scrub_print_common_warning("header error", dev, false,
1083 stripe->logical, physical);
1084 if (scrub_bitmap_test_bit_meta_gen_error(stripe, sector_nr))
1085 if (__ratelimit(&rs) && dev)
1086 scrub_print_common_warning("generation error", dev, false,
1087 stripe->logical, physical);
1088 }
1089
1090 /* Update the device stats. */
1091 for (int i = 0; i < errors->nr_io_errors; i++)
1092 btrfs_dev_stat_inc_and_print(stripe->dev, BTRFS_DEV_STAT_READ_ERRS);
1093 for (int i = 0; i < errors->nr_csum_errors; i++)
1094 btrfs_dev_stat_inc_and_print(stripe->dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
1095 /* Generation mismatch error is based on each metadata, not each block. */
1096 for (int i = 0; i < errors->nr_meta_gen_errors;
1097 i += (fs_info->nodesize >> fs_info->sectorsize_bits))
1098 btrfs_dev_stat_inc_and_print(stripe->dev, BTRFS_DEV_STAT_GENERATION_ERRS);
1099
1100 spin_lock(&sctx->stat_lock);
1101 sctx->stat.data_extents_scrubbed += stripe->nr_data_extents;
1102 sctx->stat.tree_extents_scrubbed += stripe->nr_meta_extents;
1103 sctx->stat.data_bytes_scrubbed += nr_data_sectors << fs_info->sectorsize_bits;
1104 sctx->stat.tree_bytes_scrubbed += nr_meta_sectors << fs_info->sectorsize_bits;
1105 sctx->stat.no_csum += nr_nodatacsum_sectors;
1106 sctx->stat.read_errors += errors->nr_io_errors;
1107 sctx->stat.csum_errors += errors->nr_csum_errors;
1108 sctx->stat.verify_errors += errors->nr_meta_errors +
1109 errors->nr_meta_gen_errors;
1110 sctx->stat.uncorrectable_errors +=
1111 bitmap_weight(&error_bitmap, stripe->nr_sectors);
1112 sctx->stat.corrected_errors += nr_repaired_sectors;
1113 spin_unlock(&sctx->stat_lock);
1114 }
1115
1116 static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
1117 unsigned long write_bitmap, bool dev_replace);
1118
1119 /*
1120 * The main entrance for all read related scrub work, including:
1121 *
1122 * - Wait for the initial read to finish
1123 * - Verify and locate any bad sectors
1124 * - Go through the remaining mirrors and try to read as large blocksize as
1125 * possible
1126 * - Go through all mirrors (including the failed mirror) sector-by-sector
1127 * - Submit writeback for repaired sectors
1128 *
1129 * Writeback for dev-replace does not happen here, it needs extra
1130 * synchronization for zoned devices.
1131 */
scrub_stripe_read_repair_worker(struct work_struct * work)1132 static void scrub_stripe_read_repair_worker(struct work_struct *work)
1133 {
1134 struct scrub_stripe *stripe = container_of(work, struct scrub_stripe, work);
1135 struct scrub_ctx *sctx = stripe->sctx;
1136 struct btrfs_fs_info *fs_info = sctx->fs_info;
1137 struct scrub_error_records errors = { 0 };
1138 int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
1139 stripe->bg->length);
1140 unsigned long repaired;
1141 unsigned long error;
1142 int mirror;
1143 int i;
1144
1145 ASSERT(stripe->mirror_num > 0);
1146
1147 wait_scrub_stripe_io(stripe);
1148 scrub_verify_one_stripe(stripe, scrub_bitmap_read_has_extent(stripe));
1149 /* Save the initial failed bitmap for later repair and report usage. */
1150 errors.init_error_bitmap = scrub_bitmap_read_error(stripe);
1151 errors.nr_io_errors = scrub_bitmap_weight_io_error(stripe);
1152 errors.nr_csum_errors = scrub_bitmap_weight_csum_error(stripe);
1153 errors.nr_meta_errors = scrub_bitmap_weight_meta_error(stripe);
1154 errors.nr_meta_gen_errors = scrub_bitmap_weight_meta_gen_error(stripe);
1155
1156 if (bitmap_empty(&errors.init_error_bitmap, stripe->nr_sectors))
1157 goto out;
1158
1159 /*
1160 * Try all remaining mirrors.
1161 *
1162 * Here we still try to read as large block as possible, as this is
1163 * faster and we have extra safety nets to rely on.
1164 */
1165 for (mirror = calc_next_mirror(stripe->mirror_num, num_copies);
1166 mirror != stripe->mirror_num;
1167 mirror = calc_next_mirror(mirror, num_copies)) {
1168 const unsigned long old_error_bitmap = scrub_bitmap_read_error(stripe);
1169
1170 scrub_stripe_submit_repair_read(stripe, mirror,
1171 BTRFS_STRIPE_LEN, false);
1172 wait_scrub_stripe_io(stripe);
1173 scrub_verify_one_stripe(stripe, old_error_bitmap);
1174 if (scrub_bitmap_empty_error(stripe))
1175 goto out;
1176 }
1177
1178 /*
1179 * Last safety net, try re-checking all mirrors, including the failed
1180 * one, sector-by-sector.
1181 *
1182 * As if one sector failed the drive's internal csum, the whole read
1183 * containing the offending sector would be marked as error.
1184 * Thus here we do sector-by-sector read.
1185 *
1186 * This can be slow, thus we only try it as the last resort.
1187 */
1188
1189 for (i = 0, mirror = stripe->mirror_num;
1190 i < num_copies;
1191 i++, mirror = calc_next_mirror(mirror, num_copies)) {
1192 const unsigned long old_error_bitmap = scrub_bitmap_read_error(stripe);
1193
1194 scrub_stripe_submit_repair_read(stripe, mirror,
1195 fs_info->sectorsize, true);
1196 wait_scrub_stripe_io(stripe);
1197 scrub_verify_one_stripe(stripe, old_error_bitmap);
1198 if (scrub_bitmap_empty_error(stripe))
1199 goto out;
1200 }
1201 out:
1202 error = scrub_bitmap_read_error(stripe);
1203 /*
1204 * Submit the repaired sectors. For zoned case, we cannot do repair
1205 * in-place, but queue the bg to be relocated.
1206 */
1207 bitmap_andnot(&repaired, &errors.init_error_bitmap, &error,
1208 stripe->nr_sectors);
1209 if (!sctx->readonly && !bitmap_empty(&repaired, stripe->nr_sectors)) {
1210 if (btrfs_is_zoned(fs_info)) {
1211 btrfs_repair_one_zone(fs_info, sctx->stripes[0].bg->start);
1212 } else {
1213 scrub_write_sectors(sctx, stripe, repaired, false);
1214 wait_scrub_stripe_io(stripe);
1215 }
1216 }
1217
1218 scrub_stripe_report_errors(sctx, stripe, &errors);
1219 set_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state);
1220 wake_up(&stripe->repair_wait);
1221 }
1222
scrub_read_endio(struct btrfs_bio * bbio)1223 static void scrub_read_endio(struct btrfs_bio *bbio)
1224 {
1225 struct scrub_stripe *stripe = bbio->private;
1226 struct bio_vec *bvec;
1227 int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
1228 int num_sectors;
1229 u32 bio_size = 0;
1230 int i;
1231
1232 ASSERT(sector_nr < stripe->nr_sectors);
1233 bio_for_each_bvec_all(bvec, &bbio->bio, i)
1234 bio_size += bvec->bv_len;
1235 num_sectors = bio_size >> stripe->bg->fs_info->sectorsize_bits;
1236
1237 if (bbio->bio.bi_status) {
1238 scrub_bitmap_set_io_error(stripe, sector_nr, num_sectors);
1239 scrub_bitmap_set_error(stripe, sector_nr, num_sectors);
1240 } else {
1241 scrub_bitmap_clear_io_error(stripe, sector_nr, num_sectors);
1242 }
1243 bio_put(&bbio->bio);
1244 if (atomic_dec_and_test(&stripe->pending_io)) {
1245 wake_up(&stripe->io_wait);
1246 INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
1247 queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
1248 }
1249 }
1250
scrub_write_endio(struct btrfs_bio * bbio)1251 static void scrub_write_endio(struct btrfs_bio *bbio)
1252 {
1253 struct scrub_stripe *stripe = bbio->private;
1254 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1255 struct bio_vec *bvec;
1256 int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
1257 u32 bio_size = 0;
1258 int i;
1259
1260 bio_for_each_bvec_all(bvec, &bbio->bio, i)
1261 bio_size += bvec->bv_len;
1262
1263 if (bbio->bio.bi_status) {
1264 unsigned long flags;
1265
1266 spin_lock_irqsave(&stripe->write_error_lock, flags);
1267 bitmap_set(&stripe->write_error_bitmap, sector_nr,
1268 bio_size >> fs_info->sectorsize_bits);
1269 spin_unlock_irqrestore(&stripe->write_error_lock, flags);
1270 for (int i = 0; i < (bio_size >> fs_info->sectorsize_bits); i++)
1271 btrfs_dev_stat_inc_and_print(stripe->dev,
1272 BTRFS_DEV_STAT_WRITE_ERRS);
1273 }
1274 bio_put(&bbio->bio);
1275
1276 if (atomic_dec_and_test(&stripe->pending_io))
1277 wake_up(&stripe->io_wait);
1278 }
1279
scrub_submit_write_bio(struct scrub_ctx * sctx,struct scrub_stripe * stripe,struct btrfs_bio * bbio,bool dev_replace)1280 static void scrub_submit_write_bio(struct scrub_ctx *sctx,
1281 struct scrub_stripe *stripe,
1282 struct btrfs_bio *bbio, bool dev_replace)
1283 {
1284 struct btrfs_fs_info *fs_info = sctx->fs_info;
1285 u32 bio_len = bbio->bio.bi_iter.bi_size;
1286 u32 bio_off = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT) -
1287 stripe->logical;
1288
1289 fill_writer_pointer_gap(sctx, stripe->physical + bio_off);
1290 atomic_inc(&stripe->pending_io);
1291 btrfs_submit_repair_write(bbio, stripe->mirror_num, dev_replace);
1292 if (!btrfs_is_zoned(fs_info))
1293 return;
1294 /*
1295 * For zoned writeback, queue depth must be 1, thus we must wait for
1296 * the write to finish before the next write.
1297 */
1298 wait_scrub_stripe_io(stripe);
1299
1300 /*
1301 * And also need to update the write pointer if write finished
1302 * successfully.
1303 */
1304 if (!test_bit(bio_off >> fs_info->sectorsize_bits,
1305 &stripe->write_error_bitmap))
1306 sctx->write_pointer += bio_len;
1307 }
1308
1309 /*
1310 * Submit the write bio(s) for the sectors specified by @write_bitmap.
1311 *
1312 * Here we utilize btrfs_submit_repair_write(), which has some extra benefits:
1313 *
1314 * - Only needs logical bytenr and mirror_num
1315 * Just like the scrub read path
1316 *
1317 * - Would only result in writes to the specified mirror
1318 * Unlike the regular writeback path, which would write back to all stripes
1319 *
1320 * - Handle dev-replace and read-repair writeback differently
1321 */
scrub_write_sectors(struct scrub_ctx * sctx,struct scrub_stripe * stripe,unsigned long write_bitmap,bool dev_replace)1322 static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
1323 unsigned long write_bitmap, bool dev_replace)
1324 {
1325 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1326 struct btrfs_bio *bbio = NULL;
1327 int sector_nr;
1328
1329 for_each_set_bit(sector_nr, &write_bitmap, stripe->nr_sectors) {
1330 /* We should only writeback sectors covered by an extent. */
1331 ASSERT(scrub_bitmap_test_bit_has_extent(stripe, sector_nr));
1332
1333 /* Cannot merge with previous sector, submit the current one. */
1334 if (bbio && sector_nr && !test_bit(sector_nr - 1, &write_bitmap)) {
1335 scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
1336 bbio = NULL;
1337 }
1338 if (!bbio) {
1339 bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_WRITE,
1340 fs_info, scrub_write_endio, stripe);
1341 bbio->bio.bi_iter.bi_sector = (stripe->logical +
1342 (sector_nr << fs_info->sectorsize_bits)) >>
1343 SECTOR_SHIFT;
1344 }
1345 scrub_bio_add_sector(bbio, stripe, sector_nr);
1346 }
1347 if (bbio)
1348 scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
1349 }
1350
1351 /*
1352 * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
1353 * second. Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
1354 */
scrub_throttle_dev_io(struct scrub_ctx * sctx,struct btrfs_device * device,unsigned int bio_size)1355 static void scrub_throttle_dev_io(struct scrub_ctx *sctx, struct btrfs_device *device,
1356 unsigned int bio_size)
1357 {
1358 const int time_slice = 1000;
1359 s64 delta;
1360 ktime_t now;
1361 u32 div;
1362 u64 bwlimit;
1363
1364 bwlimit = READ_ONCE(device->scrub_speed_max);
1365 if (bwlimit == 0)
1366 return;
1367
1368 /*
1369 * Slice is divided into intervals when the IO is submitted, adjust by
1370 * bwlimit and maximum of 64 intervals.
1371 */
1372 div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
1373 div = min_t(u32, 64, div);
1374
1375 /* Start new epoch, set deadline */
1376 now = ktime_get();
1377 if (sctx->throttle_deadline == 0) {
1378 sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
1379 sctx->throttle_sent = 0;
1380 }
1381
1382 /* Still in the time to send? */
1383 if (ktime_before(now, sctx->throttle_deadline)) {
1384 /* If current bio is within the limit, send it */
1385 sctx->throttle_sent += bio_size;
1386 if (sctx->throttle_sent <= div_u64(bwlimit, div))
1387 return;
1388
1389 /* We're over the limit, sleep until the rest of the slice */
1390 delta = ktime_ms_delta(sctx->throttle_deadline, now);
1391 } else {
1392 /* New request after deadline, start new epoch */
1393 delta = 0;
1394 }
1395
1396 if (delta) {
1397 long timeout;
1398
1399 timeout = div_u64(delta * HZ, 1000);
1400 schedule_timeout_interruptible(timeout);
1401 }
1402
1403 /* Next call will start the deadline period */
1404 sctx->throttle_deadline = 0;
1405 }
1406
1407 /*
1408 * Given a physical address, this will calculate it's
1409 * logical offset. if this is a parity stripe, it will return
1410 * the most left data stripe's logical offset.
1411 *
1412 * return 0 if it is a data stripe, 1 means parity stripe.
1413 */
get_raid56_logic_offset(u64 physical,int num,struct btrfs_chunk_map * map,u64 * offset,u64 * stripe_start)1414 static int get_raid56_logic_offset(u64 physical, int num,
1415 struct btrfs_chunk_map *map, u64 *offset,
1416 u64 *stripe_start)
1417 {
1418 int i;
1419 int j = 0;
1420 u64 last_offset;
1421 const int data_stripes = nr_data_stripes(map);
1422
1423 last_offset = (physical - map->stripes[num].physical) * data_stripes;
1424 if (stripe_start)
1425 *stripe_start = last_offset;
1426
1427 *offset = last_offset;
1428 for (i = 0; i < data_stripes; i++) {
1429 u32 stripe_nr;
1430 u32 stripe_index;
1431 u32 rot;
1432
1433 *offset = last_offset + btrfs_stripe_nr_to_offset(i);
1434
1435 stripe_nr = (u32)(*offset >> BTRFS_STRIPE_LEN_SHIFT) / data_stripes;
1436
1437 /* Work out the disk rotation on this stripe-set */
1438 rot = stripe_nr % map->num_stripes;
1439 /* calculate which stripe this data locates */
1440 rot += i;
1441 stripe_index = rot % map->num_stripes;
1442 if (stripe_index == num)
1443 return 0;
1444 if (stripe_index < num)
1445 j++;
1446 }
1447 *offset = last_offset + btrfs_stripe_nr_to_offset(j);
1448 return 1;
1449 }
1450
1451 /*
1452 * Return 0 if the extent item range covers any byte of the range.
1453 * Return <0 if the extent item is before @search_start.
1454 * Return >0 if the extent item is after @start_start + @search_len.
1455 */
compare_extent_item_range(struct btrfs_path * path,u64 search_start,u64 search_len)1456 static int compare_extent_item_range(struct btrfs_path *path,
1457 u64 search_start, u64 search_len)
1458 {
1459 struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info;
1460 u64 len;
1461 struct btrfs_key key;
1462
1463 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1464 ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY ||
1465 key.type == BTRFS_METADATA_ITEM_KEY);
1466 if (key.type == BTRFS_METADATA_ITEM_KEY)
1467 len = fs_info->nodesize;
1468 else
1469 len = key.offset;
1470
1471 if (key.objectid + len <= search_start)
1472 return -1;
1473 if (key.objectid >= search_start + search_len)
1474 return 1;
1475 return 0;
1476 }
1477
1478 /*
1479 * Locate one extent item which covers any byte in range
1480 * [@search_start, @search_start + @search_length)
1481 *
1482 * If the path is not initialized, we will initialize the search by doing
1483 * a btrfs_search_slot().
1484 * If the path is already initialized, we will use the path as the initial
1485 * slot, to avoid duplicated btrfs_search_slot() calls.
1486 *
1487 * NOTE: If an extent item starts before @search_start, we will still
1488 * return the extent item. This is for data extent crossing stripe boundary.
1489 *
1490 * Return 0 if we found such extent item, and @path will point to the extent item.
1491 * Return >0 if no such extent item can be found, and @path will be released.
1492 * Return <0 if hit fatal error, and @path will be released.
1493 */
find_first_extent_item(struct btrfs_root * extent_root,struct btrfs_path * path,u64 search_start,u64 search_len)1494 static int find_first_extent_item(struct btrfs_root *extent_root,
1495 struct btrfs_path *path,
1496 u64 search_start, u64 search_len)
1497 {
1498 struct btrfs_fs_info *fs_info = extent_root->fs_info;
1499 struct btrfs_key key;
1500 int ret;
1501
1502 /* Continue using the existing path */
1503 if (path->nodes[0])
1504 goto search_forward;
1505
1506 key.objectid = search_start;
1507 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1508 key.type = BTRFS_METADATA_ITEM_KEY;
1509 else
1510 key.type = BTRFS_EXTENT_ITEM_KEY;
1511 key.offset = (u64)-1;
1512
1513 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
1514 if (ret < 0)
1515 return ret;
1516 if (ret == 0) {
1517 /*
1518 * Key with offset -1 found, there would have to exist an extent
1519 * item with such offset, but this is out of the valid range.
1520 */
1521 btrfs_release_path(path);
1522 return -EUCLEAN;
1523 }
1524
1525 /*
1526 * Here we intentionally pass 0 as @min_objectid, as there could be
1527 * an extent item starting before @search_start.
1528 */
1529 ret = btrfs_previous_extent_item(extent_root, path, 0);
1530 if (ret < 0)
1531 return ret;
1532 /*
1533 * No matter whether we have found an extent item, the next loop will
1534 * properly do every check on the key.
1535 */
1536 search_forward:
1537 while (true) {
1538 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1539 if (key.objectid >= search_start + search_len)
1540 break;
1541 if (key.type != BTRFS_METADATA_ITEM_KEY &&
1542 key.type != BTRFS_EXTENT_ITEM_KEY)
1543 goto next;
1544
1545 ret = compare_extent_item_range(path, search_start, search_len);
1546 if (ret == 0)
1547 return ret;
1548 if (ret > 0)
1549 break;
1550 next:
1551 ret = btrfs_next_item(extent_root, path);
1552 if (ret) {
1553 /* Either no more items or a fatal error. */
1554 btrfs_release_path(path);
1555 return ret;
1556 }
1557 }
1558 btrfs_release_path(path);
1559 return 1;
1560 }
1561
get_extent_info(struct btrfs_path * path,u64 * extent_start_ret,u64 * size_ret,u64 * flags_ret,u64 * generation_ret)1562 static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret,
1563 u64 *size_ret, u64 *flags_ret, u64 *generation_ret)
1564 {
1565 struct btrfs_key key;
1566 struct btrfs_extent_item *ei;
1567
1568 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1569 ASSERT(key.type == BTRFS_METADATA_ITEM_KEY ||
1570 key.type == BTRFS_EXTENT_ITEM_KEY);
1571 *extent_start_ret = key.objectid;
1572 if (key.type == BTRFS_METADATA_ITEM_KEY)
1573 *size_ret = path->nodes[0]->fs_info->nodesize;
1574 else
1575 *size_ret = key.offset;
1576 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item);
1577 *flags_ret = btrfs_extent_flags(path->nodes[0], ei);
1578 *generation_ret = btrfs_extent_generation(path->nodes[0], ei);
1579 }
1580
sync_write_pointer_for_zoned(struct scrub_ctx * sctx,u64 logical,u64 physical,u64 physical_end)1581 static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
1582 u64 physical, u64 physical_end)
1583 {
1584 struct btrfs_fs_info *fs_info = sctx->fs_info;
1585 int ret = 0;
1586
1587 if (!btrfs_is_zoned(fs_info))
1588 return 0;
1589
1590 mutex_lock(&sctx->wr_lock);
1591 if (sctx->write_pointer < physical_end) {
1592 ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
1593 physical,
1594 sctx->write_pointer);
1595 if (ret)
1596 btrfs_err(fs_info, "scrub: zoned: failed to recover write pointer");
1597 }
1598 mutex_unlock(&sctx->wr_lock);
1599 btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);
1600
1601 return ret;
1602 }
1603
fill_one_extent_info(struct btrfs_fs_info * fs_info,struct scrub_stripe * stripe,u64 extent_start,u64 extent_len,u64 extent_flags,u64 extent_gen)1604 static void fill_one_extent_info(struct btrfs_fs_info *fs_info,
1605 struct scrub_stripe *stripe,
1606 u64 extent_start, u64 extent_len,
1607 u64 extent_flags, u64 extent_gen)
1608 {
1609 for (u64 cur_logical = max(stripe->logical, extent_start);
1610 cur_logical < min(stripe->logical + BTRFS_STRIPE_LEN,
1611 extent_start + extent_len);
1612 cur_logical += fs_info->sectorsize) {
1613 const int nr_sector = (cur_logical - stripe->logical) >>
1614 fs_info->sectorsize_bits;
1615 struct scrub_sector_verification *sector =
1616 &stripe->sectors[nr_sector];
1617
1618 scrub_bitmap_set_bit_has_extent(stripe, nr_sector);
1619 if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1620 scrub_bitmap_set_bit_is_metadata(stripe, nr_sector);
1621 sector->generation = extent_gen;
1622 }
1623 }
1624 }
1625
scrub_stripe_reset_bitmaps(struct scrub_stripe * stripe)1626 static void scrub_stripe_reset_bitmaps(struct scrub_stripe *stripe)
1627 {
1628 ASSERT(stripe->nr_sectors);
1629 bitmap_zero(stripe->bitmaps, scrub_bitmap_nr_last * stripe->nr_sectors);
1630 }
1631
1632 /*
1633 * Locate one stripe which has at least one extent in its range.
1634 *
1635 * Return 0 if found such stripe, and store its info into @stripe.
1636 * Return >0 if there is no such stripe in the specified range.
1637 * Return <0 for error.
1638 */
scrub_find_fill_first_stripe(struct btrfs_block_group * bg,struct btrfs_path * extent_path,struct btrfs_path * csum_path,struct btrfs_device * dev,u64 physical,int mirror_num,u64 logical_start,u32 logical_len,struct scrub_stripe * stripe)1639 static int scrub_find_fill_first_stripe(struct btrfs_block_group *bg,
1640 struct btrfs_path *extent_path,
1641 struct btrfs_path *csum_path,
1642 struct btrfs_device *dev, u64 physical,
1643 int mirror_num, u64 logical_start,
1644 u32 logical_len,
1645 struct scrub_stripe *stripe)
1646 {
1647 struct btrfs_fs_info *fs_info = bg->fs_info;
1648 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bg->start);
1649 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bg->start);
1650 const u64 logical_end = logical_start + logical_len;
1651 u64 cur_logical = logical_start;
1652 u64 stripe_end;
1653 u64 extent_start;
1654 u64 extent_len;
1655 u64 extent_flags;
1656 u64 extent_gen;
1657 int ret;
1658
1659 if (unlikely(!extent_root || !csum_root)) {
1660 btrfs_err(fs_info, "scrub: no valid extent or csum root found");
1661 return -EUCLEAN;
1662 }
1663 memset(stripe->sectors, 0, sizeof(struct scrub_sector_verification) *
1664 stripe->nr_sectors);
1665 scrub_stripe_reset_bitmaps(stripe);
1666
1667 /* The range must be inside the bg. */
1668 ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
1669
1670 ret = find_first_extent_item(extent_root, extent_path, logical_start,
1671 logical_len);
1672 /* Either error or not found. */
1673 if (ret)
1674 goto out;
1675 get_extent_info(extent_path, &extent_start, &extent_len, &extent_flags,
1676 &extent_gen);
1677 if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1678 stripe->nr_meta_extents++;
1679 if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1680 stripe->nr_data_extents++;
1681 cur_logical = max(extent_start, cur_logical);
1682
1683 /*
1684 * Round down to stripe boundary.
1685 *
1686 * The extra calculation against bg->start is to handle block groups
1687 * whose logical bytenr is not BTRFS_STRIPE_LEN aligned.
1688 */
1689 stripe->logical = round_down(cur_logical - bg->start, BTRFS_STRIPE_LEN) +
1690 bg->start;
1691 stripe->physical = physical + stripe->logical - logical_start;
1692 stripe->dev = dev;
1693 stripe->bg = bg;
1694 stripe->mirror_num = mirror_num;
1695 stripe_end = stripe->logical + BTRFS_STRIPE_LEN - 1;
1696
1697 /* Fill the first extent info into stripe->sectors[] array. */
1698 fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1699 extent_flags, extent_gen);
1700 cur_logical = extent_start + extent_len;
1701
1702 /* Fill the extent info for the remaining sectors. */
1703 while (cur_logical <= stripe_end) {
1704 ret = find_first_extent_item(extent_root, extent_path, cur_logical,
1705 stripe_end - cur_logical + 1);
1706 if (ret < 0)
1707 goto out;
1708 if (ret > 0) {
1709 ret = 0;
1710 break;
1711 }
1712 get_extent_info(extent_path, &extent_start, &extent_len,
1713 &extent_flags, &extent_gen);
1714 if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1715 stripe->nr_meta_extents++;
1716 if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1717 stripe->nr_data_extents++;
1718 fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1719 extent_flags, extent_gen);
1720 cur_logical = extent_start + extent_len;
1721 }
1722
1723 /* Now fill the data csum. */
1724 if (bg->flags & BTRFS_BLOCK_GROUP_DATA) {
1725 int sector_nr;
1726 unsigned long csum_bitmap = 0;
1727
1728 /* Csum space should have already been allocated. */
1729 ASSERT(stripe->csums);
1730
1731 /*
1732 * Our csum bitmap should be large enough, as BTRFS_STRIPE_LEN
1733 * should contain at most 16 sectors.
1734 */
1735 ASSERT(BITS_PER_LONG >= BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
1736
1737 ret = btrfs_lookup_csums_bitmap(csum_root, csum_path,
1738 stripe->logical, stripe_end,
1739 stripe->csums, &csum_bitmap);
1740 if (ret < 0)
1741 goto out;
1742 if (ret > 0)
1743 ret = 0;
1744
1745 for_each_set_bit(sector_nr, &csum_bitmap, stripe->nr_sectors) {
1746 stripe->sectors[sector_nr].csum = stripe->csums +
1747 sector_nr * fs_info->csum_size;
1748 }
1749 }
1750 set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
1751 out:
1752 return ret;
1753 }
1754
scrub_reset_stripe(struct scrub_stripe * stripe)1755 static void scrub_reset_stripe(struct scrub_stripe *stripe)
1756 {
1757 scrub_stripe_reset_bitmaps(stripe);
1758
1759 stripe->nr_meta_extents = 0;
1760 stripe->nr_data_extents = 0;
1761 stripe->state = 0;
1762
1763 for (int i = 0; i < stripe->nr_sectors; i++) {
1764 stripe->sectors[i].csum = NULL;
1765 stripe->sectors[i].generation = 0;
1766 }
1767 }
1768
stripe_length(const struct scrub_stripe * stripe)1769 static u32 stripe_length(const struct scrub_stripe *stripe)
1770 {
1771 ASSERT(stripe->bg);
1772
1773 return min(BTRFS_STRIPE_LEN,
1774 stripe->bg->start + stripe->bg->length - stripe->logical);
1775 }
1776
scrub_submit_extent_sector_read(struct scrub_stripe * stripe)1777 static void scrub_submit_extent_sector_read(struct scrub_stripe *stripe)
1778 {
1779 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1780 struct btrfs_bio *bbio = NULL;
1781 unsigned int nr_sectors = stripe_length(stripe) >> fs_info->sectorsize_bits;
1782 const unsigned long has_extent = scrub_bitmap_read_has_extent(stripe);
1783 u64 stripe_len = BTRFS_STRIPE_LEN;
1784 int mirror = stripe->mirror_num;
1785 int i;
1786
1787 atomic_inc(&stripe->pending_io);
1788
1789 for_each_set_bit(i, &has_extent, stripe->nr_sectors) {
1790 /* We're beyond the chunk boundary, no need to read anymore. */
1791 if (i >= nr_sectors)
1792 break;
1793
1794 /* The current sector cannot be merged, submit the bio. */
1795 if (bbio &&
1796 ((i > 0 && !test_bit(i - 1, &has_extent)) ||
1797 bbio->bio.bi_iter.bi_size >= stripe_len)) {
1798 ASSERT(bbio->bio.bi_iter.bi_size);
1799 atomic_inc(&stripe->pending_io);
1800 btrfs_submit_bbio(bbio, mirror);
1801 bbio = NULL;
1802 }
1803
1804 if (!bbio) {
1805 struct btrfs_io_stripe io_stripe = {};
1806 struct btrfs_io_context *bioc = NULL;
1807 const u64 logical = stripe->logical +
1808 (i << fs_info->sectorsize_bits);
1809 int err;
1810
1811 io_stripe.rst_search_commit_root = true;
1812 stripe_len = (nr_sectors - i) << fs_info->sectorsize_bits;
1813 /*
1814 * For RST cases, we need to manually split the bbio to
1815 * follow the RST boundary.
1816 */
1817 err = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
1818 &stripe_len, &bioc, &io_stripe, &mirror);
1819 btrfs_put_bioc(bioc);
1820 if (err < 0) {
1821 if (err != -ENODATA) {
1822 /*
1823 * Earlier btrfs_get_raid_extent_offset()
1824 * returned -ENODATA, which means there's
1825 * no entry for the corresponding range
1826 * in the stripe tree. But if it's in
1827 * the extent tree, then it's a preallocated
1828 * extent and not an error.
1829 */
1830 scrub_bitmap_set_bit_io_error(stripe, i);
1831 scrub_bitmap_set_bit_error(stripe, i);
1832 }
1833 continue;
1834 }
1835
1836 bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ,
1837 fs_info, scrub_read_endio, stripe);
1838 bbio->bio.bi_iter.bi_sector = logical >> SECTOR_SHIFT;
1839 }
1840
1841 scrub_bio_add_sector(bbio, stripe, i);
1842 }
1843
1844 if (bbio) {
1845 ASSERT(bbio->bio.bi_iter.bi_size);
1846 atomic_inc(&stripe->pending_io);
1847 btrfs_submit_bbio(bbio, mirror);
1848 }
1849
1850 if (atomic_dec_and_test(&stripe->pending_io)) {
1851 wake_up(&stripe->io_wait);
1852 INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
1853 queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
1854 }
1855 }
1856
scrub_submit_initial_read(struct scrub_ctx * sctx,struct scrub_stripe * stripe)1857 static void scrub_submit_initial_read(struct scrub_ctx *sctx,
1858 struct scrub_stripe *stripe)
1859 {
1860 struct btrfs_fs_info *fs_info = sctx->fs_info;
1861 struct btrfs_bio *bbio;
1862 unsigned int nr_sectors = stripe_length(stripe) >> fs_info->sectorsize_bits;
1863 int mirror = stripe->mirror_num;
1864
1865 ASSERT(stripe->bg);
1866 ASSERT(stripe->mirror_num > 0);
1867 ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
1868
1869 if (btrfs_need_stripe_tree_update(fs_info, stripe->bg->flags)) {
1870 scrub_submit_extent_sector_read(stripe);
1871 return;
1872 }
1873
1874 bbio = btrfs_bio_alloc(SCRUB_STRIPE_PAGES, REQ_OP_READ, fs_info,
1875 scrub_read_endio, stripe);
1876
1877 bbio->bio.bi_iter.bi_sector = stripe->logical >> SECTOR_SHIFT;
1878 /* Read the whole range inside the chunk boundary. */
1879 for (unsigned int cur = 0; cur < nr_sectors; cur++)
1880 scrub_bio_add_sector(bbio, stripe, cur);
1881 atomic_inc(&stripe->pending_io);
1882
1883 /*
1884 * For dev-replace, either user asks to avoid the source dev, or
1885 * the device is missing, we try the next mirror instead.
1886 */
1887 if (sctx->is_dev_replace &&
1888 (fs_info->dev_replace.cont_reading_from_srcdev_mode ==
1889 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID ||
1890 !stripe->dev->bdev)) {
1891 int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
1892 stripe->bg->length);
1893
1894 mirror = calc_next_mirror(mirror, num_copies);
1895 }
1896 btrfs_submit_bbio(bbio, mirror);
1897 }
1898
stripe_has_metadata_error(struct scrub_stripe * stripe)1899 static bool stripe_has_metadata_error(struct scrub_stripe *stripe)
1900 {
1901 const unsigned long error = scrub_bitmap_read_error(stripe);
1902 int i;
1903
1904 for_each_set_bit(i, &error, stripe->nr_sectors) {
1905 if (scrub_bitmap_test_bit_is_metadata(stripe, i)) {
1906 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1907
1908 btrfs_err(fs_info,
1909 "scrub: stripe %llu has unrepaired metadata sector at logical %llu",
1910 stripe->logical,
1911 stripe->logical + (i << fs_info->sectorsize_bits));
1912 return true;
1913 }
1914 }
1915 return false;
1916 }
1917
submit_initial_group_read(struct scrub_ctx * sctx,unsigned int first_slot,unsigned int nr_stripes)1918 static void submit_initial_group_read(struct scrub_ctx *sctx,
1919 unsigned int first_slot,
1920 unsigned int nr_stripes)
1921 {
1922 struct blk_plug plug;
1923
1924 ASSERT(first_slot < SCRUB_TOTAL_STRIPES);
1925 ASSERT(first_slot + nr_stripes <= SCRUB_TOTAL_STRIPES);
1926
1927 scrub_throttle_dev_io(sctx, sctx->stripes[0].dev,
1928 btrfs_stripe_nr_to_offset(nr_stripes));
1929 blk_start_plug(&plug);
1930 for (int i = 0; i < nr_stripes; i++) {
1931 struct scrub_stripe *stripe = &sctx->stripes[first_slot + i];
1932
1933 /* Those stripes should be initialized. */
1934 ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
1935 scrub_submit_initial_read(sctx, stripe);
1936 }
1937 blk_finish_plug(&plug);
1938 }
1939
flush_scrub_stripes(struct scrub_ctx * sctx)1940 static int flush_scrub_stripes(struct scrub_ctx *sctx)
1941 {
1942 struct btrfs_fs_info *fs_info = sctx->fs_info;
1943 struct scrub_stripe *stripe;
1944 const int nr_stripes = sctx->cur_stripe;
1945 int ret = 0;
1946
1947 if (!nr_stripes)
1948 return 0;
1949
1950 ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &sctx->stripes[0].state));
1951
1952 /* Submit the stripes which are populated but not submitted. */
1953 if (nr_stripes % SCRUB_STRIPES_PER_GROUP) {
1954 const int first_slot = round_down(nr_stripes, SCRUB_STRIPES_PER_GROUP);
1955
1956 submit_initial_group_read(sctx, first_slot, nr_stripes - first_slot);
1957 }
1958
1959 for (int i = 0; i < nr_stripes; i++) {
1960 stripe = &sctx->stripes[i];
1961
1962 wait_event(stripe->repair_wait,
1963 test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
1964 }
1965
1966 /* Submit for dev-replace. */
1967 if (sctx->is_dev_replace) {
1968 /*
1969 * For dev-replace, if we know there is something wrong with
1970 * metadata, we should immediately abort.
1971 */
1972 for (int i = 0; i < nr_stripes; i++) {
1973 if (stripe_has_metadata_error(&sctx->stripes[i])) {
1974 ret = -EIO;
1975 goto out;
1976 }
1977 }
1978 for (int i = 0; i < nr_stripes; i++) {
1979 unsigned long good;
1980 unsigned long has_extent;
1981 unsigned long error;
1982
1983 stripe = &sctx->stripes[i];
1984
1985 ASSERT(stripe->dev == fs_info->dev_replace.srcdev);
1986
1987 has_extent = scrub_bitmap_read_has_extent(stripe);
1988 error = scrub_bitmap_read_error(stripe);
1989 bitmap_andnot(&good, &has_extent, &error, stripe->nr_sectors);
1990 scrub_write_sectors(sctx, stripe, good, true);
1991 }
1992 }
1993
1994 /* Wait for the above writebacks to finish. */
1995 for (int i = 0; i < nr_stripes; i++) {
1996 stripe = &sctx->stripes[i];
1997
1998 wait_scrub_stripe_io(stripe);
1999 spin_lock(&sctx->stat_lock);
2000 sctx->stat.last_physical = stripe->physical + stripe_length(stripe);
2001 spin_unlock(&sctx->stat_lock);
2002 scrub_reset_stripe(stripe);
2003 }
2004 out:
2005 sctx->cur_stripe = 0;
2006 return ret;
2007 }
2008
raid56_scrub_wait_endio(struct bio * bio)2009 static void raid56_scrub_wait_endio(struct bio *bio)
2010 {
2011 complete(bio->bi_private);
2012 }
2013
queue_scrub_stripe(struct scrub_ctx * sctx,struct btrfs_block_group * bg,struct btrfs_device * dev,int mirror_num,u64 logical,u32 length,u64 physical,u64 * found_logical_ret)2014 static int queue_scrub_stripe(struct scrub_ctx *sctx, struct btrfs_block_group *bg,
2015 struct btrfs_device *dev, int mirror_num,
2016 u64 logical, u32 length, u64 physical,
2017 u64 *found_logical_ret)
2018 {
2019 struct scrub_stripe *stripe;
2020 int ret;
2021
2022 /*
2023 * There should always be one slot left, as caller filling the last
2024 * slot should flush them all.
2025 */
2026 ASSERT(sctx->cur_stripe < SCRUB_TOTAL_STRIPES);
2027
2028 /* @found_logical_ret must be specified. */
2029 ASSERT(found_logical_ret);
2030
2031 stripe = &sctx->stripes[sctx->cur_stripe];
2032 scrub_reset_stripe(stripe);
2033 ret = scrub_find_fill_first_stripe(bg, &sctx->extent_path,
2034 &sctx->csum_path, dev, physical,
2035 mirror_num, logical, length, stripe);
2036 /* Either >0 as no more extents or <0 for error. */
2037 if (ret)
2038 return ret;
2039 *found_logical_ret = stripe->logical;
2040 sctx->cur_stripe++;
2041
2042 /* We filled one group, submit it. */
2043 if (sctx->cur_stripe % SCRUB_STRIPES_PER_GROUP == 0) {
2044 const int first_slot = sctx->cur_stripe - SCRUB_STRIPES_PER_GROUP;
2045
2046 submit_initial_group_read(sctx, first_slot, SCRUB_STRIPES_PER_GROUP);
2047 }
2048
2049 /* Last slot used, flush them all. */
2050 if (sctx->cur_stripe == SCRUB_TOTAL_STRIPES)
2051 return flush_scrub_stripes(sctx);
2052 return 0;
2053 }
2054
scrub_raid56_parity_stripe(struct scrub_ctx * sctx,struct btrfs_device * scrub_dev,struct btrfs_block_group * bg,struct btrfs_chunk_map * map,u64 full_stripe_start)2055 static int scrub_raid56_parity_stripe(struct scrub_ctx *sctx,
2056 struct btrfs_device *scrub_dev,
2057 struct btrfs_block_group *bg,
2058 struct btrfs_chunk_map *map,
2059 u64 full_stripe_start)
2060 {
2061 DECLARE_COMPLETION_ONSTACK(io_done);
2062 struct btrfs_fs_info *fs_info = sctx->fs_info;
2063 struct btrfs_raid_bio *rbio;
2064 struct btrfs_io_context *bioc = NULL;
2065 struct btrfs_path extent_path = { 0 };
2066 struct btrfs_path csum_path = { 0 };
2067 struct bio *bio;
2068 struct scrub_stripe *stripe;
2069 bool all_empty = true;
2070 const int data_stripes = nr_data_stripes(map);
2071 unsigned long extent_bitmap = 0;
2072 u64 length = btrfs_stripe_nr_to_offset(data_stripes);
2073 int ret;
2074
2075 ASSERT(sctx->raid56_data_stripes);
2076
2077 /*
2078 * For data stripe search, we cannot reuse the same extent/csum paths,
2079 * as the data stripe bytenr may be smaller than previous extent. Thus
2080 * we have to use our own extent/csum paths.
2081 */
2082 extent_path.search_commit_root = 1;
2083 extent_path.skip_locking = 1;
2084 csum_path.search_commit_root = 1;
2085 csum_path.skip_locking = 1;
2086
2087 for (int i = 0; i < data_stripes; i++) {
2088 int stripe_index;
2089 int rot;
2090 u64 physical;
2091
2092 stripe = &sctx->raid56_data_stripes[i];
2093 rot = div_u64(full_stripe_start - bg->start,
2094 data_stripes) >> BTRFS_STRIPE_LEN_SHIFT;
2095 stripe_index = (i + rot) % map->num_stripes;
2096 physical = map->stripes[stripe_index].physical +
2097 btrfs_stripe_nr_to_offset(rot);
2098
2099 scrub_reset_stripe(stripe);
2100 set_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state);
2101 ret = scrub_find_fill_first_stripe(bg, &extent_path, &csum_path,
2102 map->stripes[stripe_index].dev, physical, 1,
2103 full_stripe_start + btrfs_stripe_nr_to_offset(i),
2104 BTRFS_STRIPE_LEN, stripe);
2105 if (ret < 0)
2106 goto out;
2107 /*
2108 * No extent in this data stripe, need to manually mark them
2109 * initialized to make later read submission happy.
2110 */
2111 if (ret > 0) {
2112 stripe->logical = full_stripe_start +
2113 btrfs_stripe_nr_to_offset(i);
2114 stripe->dev = map->stripes[stripe_index].dev;
2115 stripe->mirror_num = 1;
2116 set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
2117 }
2118 }
2119
2120 /* Check if all data stripes are empty. */
2121 for (int i = 0; i < data_stripes; i++) {
2122 stripe = &sctx->raid56_data_stripes[i];
2123 if (!scrub_bitmap_empty_has_extent(stripe)) {
2124 all_empty = false;
2125 break;
2126 }
2127 }
2128 if (all_empty) {
2129 ret = 0;
2130 goto out;
2131 }
2132
2133 for (int i = 0; i < data_stripes; i++) {
2134 stripe = &sctx->raid56_data_stripes[i];
2135 scrub_submit_initial_read(sctx, stripe);
2136 }
2137 for (int i = 0; i < data_stripes; i++) {
2138 stripe = &sctx->raid56_data_stripes[i];
2139
2140 wait_event(stripe->repair_wait,
2141 test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
2142 }
2143 /* For now, no zoned support for RAID56. */
2144 ASSERT(!btrfs_is_zoned(sctx->fs_info));
2145
2146 /*
2147 * Now all data stripes are properly verified. Check if we have any
2148 * unrepaired, if so abort immediately or we could further corrupt the
2149 * P/Q stripes.
2150 *
2151 * During the loop, also populate extent_bitmap.
2152 */
2153 for (int i = 0; i < data_stripes; i++) {
2154 unsigned long error;
2155 unsigned long has_extent;
2156
2157 stripe = &sctx->raid56_data_stripes[i];
2158
2159 error = scrub_bitmap_read_error(stripe);
2160 has_extent = scrub_bitmap_read_has_extent(stripe);
2161
2162 /*
2163 * We should only check the errors where there is an extent.
2164 * As we may hit an empty data stripe while it's missing.
2165 */
2166 bitmap_and(&error, &error, &has_extent, stripe->nr_sectors);
2167 if (!bitmap_empty(&error, stripe->nr_sectors)) {
2168 btrfs_err(fs_info,
2169 "scrub: unrepaired sectors detected, full stripe %llu data stripe %u errors %*pbl",
2170 full_stripe_start, i, stripe->nr_sectors,
2171 &error);
2172 ret = -EIO;
2173 goto out;
2174 }
2175 bitmap_or(&extent_bitmap, &extent_bitmap, &has_extent,
2176 stripe->nr_sectors);
2177 }
2178
2179 /* Now we can check and regenerate the P/Q stripe. */
2180 bio = bio_alloc(NULL, 1, REQ_OP_READ, GFP_NOFS);
2181 bio->bi_iter.bi_sector = full_stripe_start >> SECTOR_SHIFT;
2182 bio->bi_private = &io_done;
2183 bio->bi_end_io = raid56_scrub_wait_endio;
2184
2185 btrfs_bio_counter_inc_blocked(fs_info);
2186 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, full_stripe_start,
2187 &length, &bioc, NULL, NULL);
2188 if (ret < 0) {
2189 btrfs_put_bioc(bioc);
2190 btrfs_bio_counter_dec(fs_info);
2191 goto out;
2192 }
2193 rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, scrub_dev, &extent_bitmap,
2194 BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
2195 btrfs_put_bioc(bioc);
2196 if (!rbio) {
2197 ret = -ENOMEM;
2198 btrfs_bio_counter_dec(fs_info);
2199 goto out;
2200 }
2201 /* Use the recovered stripes as cache to avoid read them from disk again. */
2202 for (int i = 0; i < data_stripes; i++) {
2203 stripe = &sctx->raid56_data_stripes[i];
2204
2205 raid56_parity_cache_data_pages(rbio, stripe->pages,
2206 full_stripe_start + (i << BTRFS_STRIPE_LEN_SHIFT));
2207 }
2208 raid56_parity_submit_scrub_rbio(rbio);
2209 wait_for_completion_io(&io_done);
2210 ret = blk_status_to_errno(bio->bi_status);
2211 bio_put(bio);
2212 btrfs_bio_counter_dec(fs_info);
2213
2214 btrfs_release_path(&extent_path);
2215 btrfs_release_path(&csum_path);
2216 out:
2217 return ret;
2218 }
2219
2220 /*
2221 * Scrub one range which can only has simple mirror based profile.
2222 * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in
2223 * RAID0/RAID10).
2224 *
2225 * Since we may need to handle a subset of block group, we need @logical_start
2226 * and @logical_length parameter.
2227 */
scrub_simple_mirror(struct scrub_ctx * sctx,struct btrfs_block_group * bg,u64 logical_start,u64 logical_length,struct btrfs_device * device,u64 physical,int mirror_num)2228 static int scrub_simple_mirror(struct scrub_ctx *sctx,
2229 struct btrfs_block_group *bg,
2230 u64 logical_start, u64 logical_length,
2231 struct btrfs_device *device,
2232 u64 physical, int mirror_num)
2233 {
2234 struct btrfs_fs_info *fs_info = sctx->fs_info;
2235 const u64 logical_end = logical_start + logical_length;
2236 u64 cur_logical = logical_start;
2237 int ret = 0;
2238
2239 /* The range must be inside the bg */
2240 ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
2241
2242 /* Go through each extent items inside the logical range */
2243 while (cur_logical < logical_end) {
2244 u64 found_logical = U64_MAX;
2245 u64 cur_physical = physical + cur_logical - logical_start;
2246
2247 /* Canceled? */
2248 if (atomic_read(&fs_info->scrub_cancel_req) ||
2249 atomic_read(&sctx->cancel_req)) {
2250 ret = -ECANCELED;
2251 break;
2252 }
2253 /* Paused? */
2254 if (atomic_read(&fs_info->scrub_pause_req)) {
2255 /* Push queued extents */
2256 scrub_blocked_if_needed(fs_info);
2257 }
2258 /* Block group removed? */
2259 spin_lock(&bg->lock);
2260 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) {
2261 spin_unlock(&bg->lock);
2262 ret = 0;
2263 break;
2264 }
2265 spin_unlock(&bg->lock);
2266
2267 ret = queue_scrub_stripe(sctx, bg, device, mirror_num,
2268 cur_logical, logical_end - cur_logical,
2269 cur_physical, &found_logical);
2270 if (ret > 0) {
2271 /* No more extent, just update the accounting */
2272 spin_lock(&sctx->stat_lock);
2273 sctx->stat.last_physical = physical + logical_length;
2274 spin_unlock(&sctx->stat_lock);
2275 ret = 0;
2276 break;
2277 }
2278 if (ret < 0)
2279 break;
2280
2281 /* queue_scrub_stripe() returned 0, @found_logical must be updated. */
2282 ASSERT(found_logical != U64_MAX);
2283 cur_logical = found_logical + BTRFS_STRIPE_LEN;
2284
2285 /* Don't hold CPU for too long time */
2286 cond_resched();
2287 }
2288 return ret;
2289 }
2290
2291 /* Calculate the full stripe length for simple stripe based profiles */
simple_stripe_full_stripe_len(const struct btrfs_chunk_map * map)2292 static u64 simple_stripe_full_stripe_len(const struct btrfs_chunk_map *map)
2293 {
2294 ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2295 BTRFS_BLOCK_GROUP_RAID10));
2296
2297 return btrfs_stripe_nr_to_offset(map->num_stripes / map->sub_stripes);
2298 }
2299
2300 /* Get the logical bytenr for the stripe */
simple_stripe_get_logical(struct btrfs_chunk_map * map,struct btrfs_block_group * bg,int stripe_index)2301 static u64 simple_stripe_get_logical(struct btrfs_chunk_map *map,
2302 struct btrfs_block_group *bg,
2303 int stripe_index)
2304 {
2305 ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2306 BTRFS_BLOCK_GROUP_RAID10));
2307 ASSERT(stripe_index < map->num_stripes);
2308
2309 /*
2310 * (stripe_index / sub_stripes) gives how many data stripes we need to
2311 * skip.
2312 */
2313 return btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes) +
2314 bg->start;
2315 }
2316
2317 /* Get the mirror number for the stripe */
simple_stripe_mirror_num(struct btrfs_chunk_map * map,int stripe_index)2318 static int simple_stripe_mirror_num(struct btrfs_chunk_map *map, int stripe_index)
2319 {
2320 ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2321 BTRFS_BLOCK_GROUP_RAID10));
2322 ASSERT(stripe_index < map->num_stripes);
2323
2324 /* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */
2325 return stripe_index % map->sub_stripes + 1;
2326 }
2327
scrub_simple_stripe(struct scrub_ctx * sctx,struct btrfs_block_group * bg,struct btrfs_chunk_map * map,struct btrfs_device * device,int stripe_index)2328 static int scrub_simple_stripe(struct scrub_ctx *sctx,
2329 struct btrfs_block_group *bg,
2330 struct btrfs_chunk_map *map,
2331 struct btrfs_device *device,
2332 int stripe_index)
2333 {
2334 const u64 logical_increment = simple_stripe_full_stripe_len(map);
2335 const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index);
2336 const u64 orig_physical = map->stripes[stripe_index].physical;
2337 const int mirror_num = simple_stripe_mirror_num(map, stripe_index);
2338 u64 cur_logical = orig_logical;
2339 u64 cur_physical = orig_physical;
2340 int ret = 0;
2341
2342 while (cur_logical < bg->start + bg->length) {
2343 /*
2344 * Inside each stripe, RAID0 is just SINGLE, and RAID10 is
2345 * just RAID1, so we can reuse scrub_simple_mirror() to scrub
2346 * this stripe.
2347 */
2348 ret = scrub_simple_mirror(sctx, bg, cur_logical,
2349 BTRFS_STRIPE_LEN, device, cur_physical,
2350 mirror_num);
2351 if (ret)
2352 return ret;
2353 /* Skip to next stripe which belongs to the target device */
2354 cur_logical += logical_increment;
2355 /* For physical offset, we just go to next stripe */
2356 cur_physical += BTRFS_STRIPE_LEN;
2357 }
2358 return ret;
2359 }
2360
scrub_stripe(struct scrub_ctx * sctx,struct btrfs_block_group * bg,struct btrfs_chunk_map * map,struct btrfs_device * scrub_dev,int stripe_index)2361 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2362 struct btrfs_block_group *bg,
2363 struct btrfs_chunk_map *map,
2364 struct btrfs_device *scrub_dev,
2365 int stripe_index)
2366 {
2367 struct btrfs_fs_info *fs_info = sctx->fs_info;
2368 const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
2369 const u64 chunk_logical = bg->start;
2370 int ret;
2371 int ret2;
2372 u64 physical = map->stripes[stripe_index].physical;
2373 const u64 dev_stripe_len = btrfs_calc_stripe_length(map);
2374 const u64 physical_end = physical + dev_stripe_len;
2375 u64 logical;
2376 u64 logic_end;
2377 /* The logical increment after finishing one stripe */
2378 u64 increment;
2379 /* Offset inside the chunk */
2380 u64 offset;
2381 u64 stripe_logical;
2382
2383 /* Extent_path should be released by now. */
2384 ASSERT(sctx->extent_path.nodes[0] == NULL);
2385
2386 scrub_blocked_if_needed(fs_info);
2387
2388 if (sctx->is_dev_replace &&
2389 btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
2390 mutex_lock(&sctx->wr_lock);
2391 sctx->write_pointer = physical;
2392 mutex_unlock(&sctx->wr_lock);
2393 }
2394
2395 /* Prepare the extra data stripes used by RAID56. */
2396 if (profile & BTRFS_BLOCK_GROUP_RAID56_MASK) {
2397 ASSERT(sctx->raid56_data_stripes == NULL);
2398
2399 sctx->raid56_data_stripes = kcalloc(nr_data_stripes(map),
2400 sizeof(struct scrub_stripe),
2401 GFP_KERNEL);
2402 if (!sctx->raid56_data_stripes) {
2403 ret = -ENOMEM;
2404 goto out;
2405 }
2406 for (int i = 0; i < nr_data_stripes(map); i++) {
2407 ret = init_scrub_stripe(fs_info,
2408 &sctx->raid56_data_stripes[i]);
2409 if (ret < 0)
2410 goto out;
2411 sctx->raid56_data_stripes[i].bg = bg;
2412 sctx->raid56_data_stripes[i].sctx = sctx;
2413 }
2414 }
2415 /*
2416 * There used to be a big double loop to handle all profiles using the
2417 * same routine, which grows larger and more gross over time.
2418 *
2419 * So here we handle each profile differently, so simpler profiles
2420 * have simpler scrubbing function.
2421 */
2422 if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 |
2423 BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2424 /*
2425 * Above check rules out all complex profile, the remaining
2426 * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple
2427 * mirrored duplication without stripe.
2428 *
2429 * Only @physical and @mirror_num needs to calculated using
2430 * @stripe_index.
2431 */
2432 ret = scrub_simple_mirror(sctx, bg, bg->start, bg->length,
2433 scrub_dev, map->stripes[stripe_index].physical,
2434 stripe_index + 1);
2435 offset = 0;
2436 goto out;
2437 }
2438 if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
2439 ret = scrub_simple_stripe(sctx, bg, map, scrub_dev, stripe_index);
2440 offset = btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes);
2441 goto out;
2442 }
2443
2444 /* Only RAID56 goes through the old code */
2445 ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
2446 ret = 0;
2447
2448 /* Calculate the logical end of the stripe */
2449 get_raid56_logic_offset(physical_end, stripe_index,
2450 map, &logic_end, NULL);
2451 logic_end += chunk_logical;
2452
2453 /* Initialize @offset in case we need to go to out: label */
2454 get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL);
2455 increment = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
2456
2457 /*
2458 * Due to the rotation, for RAID56 it's better to iterate each stripe
2459 * using their physical offset.
2460 */
2461 while (physical < physical_end) {
2462 ret = get_raid56_logic_offset(physical, stripe_index, map,
2463 &logical, &stripe_logical);
2464 logical += chunk_logical;
2465 if (ret) {
2466 /* it is parity strip */
2467 stripe_logical += chunk_logical;
2468 ret = scrub_raid56_parity_stripe(sctx, scrub_dev, bg,
2469 map, stripe_logical);
2470 spin_lock(&sctx->stat_lock);
2471 sctx->stat.last_physical = min(physical + BTRFS_STRIPE_LEN,
2472 physical_end);
2473 spin_unlock(&sctx->stat_lock);
2474 if (ret)
2475 goto out;
2476 goto next;
2477 }
2478
2479 /*
2480 * Now we're at a data stripe, scrub each extents in the range.
2481 *
2482 * At this stage, if we ignore the repair part, inside each data
2483 * stripe it is no different than SINGLE profile.
2484 * We can reuse scrub_simple_mirror() here, as the repair part
2485 * is still based on @mirror_num.
2486 */
2487 ret = scrub_simple_mirror(sctx, bg, logical, BTRFS_STRIPE_LEN,
2488 scrub_dev, physical, 1);
2489 if (ret < 0)
2490 goto out;
2491 next:
2492 logical += increment;
2493 physical += BTRFS_STRIPE_LEN;
2494 spin_lock(&sctx->stat_lock);
2495 sctx->stat.last_physical = physical;
2496 spin_unlock(&sctx->stat_lock);
2497 }
2498 out:
2499 ret2 = flush_scrub_stripes(sctx);
2500 if (!ret)
2501 ret = ret2;
2502 btrfs_release_path(&sctx->extent_path);
2503 btrfs_release_path(&sctx->csum_path);
2504
2505 if (sctx->raid56_data_stripes) {
2506 for (int i = 0; i < nr_data_stripes(map); i++)
2507 release_scrub_stripe(&sctx->raid56_data_stripes[i]);
2508 kfree(sctx->raid56_data_stripes);
2509 sctx->raid56_data_stripes = NULL;
2510 }
2511
2512 if (sctx->is_dev_replace && ret >= 0) {
2513 int ret2;
2514
2515 ret2 = sync_write_pointer_for_zoned(sctx,
2516 chunk_logical + offset,
2517 map->stripes[stripe_index].physical,
2518 physical_end);
2519 if (ret2)
2520 ret = ret2;
2521 }
2522
2523 return ret < 0 ? ret : 0;
2524 }
2525
scrub_chunk(struct scrub_ctx * sctx,struct btrfs_block_group * bg,struct btrfs_device * scrub_dev,u64 dev_offset,u64 dev_extent_len)2526 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2527 struct btrfs_block_group *bg,
2528 struct btrfs_device *scrub_dev,
2529 u64 dev_offset,
2530 u64 dev_extent_len)
2531 {
2532 struct btrfs_fs_info *fs_info = sctx->fs_info;
2533 struct btrfs_chunk_map *map;
2534 int i;
2535 int ret = 0;
2536
2537 map = btrfs_find_chunk_map(fs_info, bg->start, bg->length);
2538 if (!map) {
2539 /*
2540 * Might have been an unused block group deleted by the cleaner
2541 * kthread or relocation.
2542 */
2543 spin_lock(&bg->lock);
2544 if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags))
2545 ret = -EINVAL;
2546 spin_unlock(&bg->lock);
2547
2548 return ret;
2549 }
2550 if (map->start != bg->start)
2551 goto out;
2552 if (map->chunk_len < dev_extent_len)
2553 goto out;
2554
2555 for (i = 0; i < map->num_stripes; ++i) {
2556 if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2557 map->stripes[i].physical == dev_offset) {
2558 ret = scrub_stripe(sctx, bg, map, scrub_dev, i);
2559 if (ret)
2560 goto out;
2561 }
2562 }
2563 out:
2564 btrfs_free_chunk_map(map);
2565
2566 return ret;
2567 }
2568
finish_extent_writes_for_zoned(struct btrfs_root * root,struct btrfs_block_group * cache)2569 static int finish_extent_writes_for_zoned(struct btrfs_root *root,
2570 struct btrfs_block_group *cache)
2571 {
2572 struct btrfs_fs_info *fs_info = cache->fs_info;
2573
2574 if (!btrfs_is_zoned(fs_info))
2575 return 0;
2576
2577 btrfs_wait_block_group_reservations(cache);
2578 btrfs_wait_nocow_writers(cache);
2579 btrfs_wait_ordered_roots(fs_info, U64_MAX, cache);
2580
2581 return btrfs_commit_current_transaction(root);
2582 }
2583
2584 static noinline_for_stack
scrub_enumerate_chunks(struct scrub_ctx * sctx,struct btrfs_device * scrub_dev,u64 start,u64 end)2585 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2586 struct btrfs_device *scrub_dev, u64 start, u64 end)
2587 {
2588 struct btrfs_dev_extent *dev_extent = NULL;
2589 struct btrfs_path *path;
2590 struct btrfs_fs_info *fs_info = sctx->fs_info;
2591 struct btrfs_root *root = fs_info->dev_root;
2592 u64 chunk_offset;
2593 int ret = 0;
2594 int ro_set;
2595 int slot;
2596 struct extent_buffer *l;
2597 struct btrfs_key key;
2598 struct btrfs_key found_key;
2599 struct btrfs_block_group *cache;
2600 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2601
2602 path = btrfs_alloc_path();
2603 if (!path)
2604 return -ENOMEM;
2605
2606 path->reada = READA_FORWARD;
2607 path->search_commit_root = 1;
2608 path->skip_locking = 1;
2609
2610 key.objectid = scrub_dev->devid;
2611 key.type = BTRFS_DEV_EXTENT_KEY;
2612 key.offset = 0ull;
2613
2614 while (1) {
2615 u64 dev_extent_len;
2616
2617 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2618 if (ret < 0)
2619 break;
2620 if (ret > 0) {
2621 if (path->slots[0] >=
2622 btrfs_header_nritems(path->nodes[0])) {
2623 ret = btrfs_next_leaf(root, path);
2624 if (ret < 0)
2625 break;
2626 if (ret > 0) {
2627 ret = 0;
2628 break;
2629 }
2630 } else {
2631 ret = 0;
2632 }
2633 }
2634
2635 l = path->nodes[0];
2636 slot = path->slots[0];
2637
2638 btrfs_item_key_to_cpu(l, &found_key, slot);
2639
2640 if (found_key.objectid != scrub_dev->devid)
2641 break;
2642
2643 if (found_key.type != BTRFS_DEV_EXTENT_KEY)
2644 break;
2645
2646 if (found_key.offset >= end)
2647 break;
2648
2649 if (found_key.offset < key.offset)
2650 break;
2651
2652 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2653 dev_extent_len = btrfs_dev_extent_length(l, dev_extent);
2654
2655 if (found_key.offset + dev_extent_len <= start)
2656 goto skip;
2657
2658 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2659
2660 /*
2661 * get a reference on the corresponding block group to prevent
2662 * the chunk from going away while we scrub it
2663 */
2664 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2665
2666 /* some chunks are removed but not committed to disk yet,
2667 * continue scrubbing */
2668 if (!cache)
2669 goto skip;
2670
2671 ASSERT(cache->start <= chunk_offset);
2672 /*
2673 * We are using the commit root to search for device extents, so
2674 * that means we could have found a device extent item from a
2675 * block group that was deleted in the current transaction. The
2676 * logical start offset of the deleted block group, stored at
2677 * @chunk_offset, might be part of the logical address range of
2678 * a new block group (which uses different physical extents).
2679 * In this case btrfs_lookup_block_group() has returned the new
2680 * block group, and its start address is less than @chunk_offset.
2681 *
2682 * We skip such new block groups, because it's pointless to
2683 * process them, as we won't find their extents because we search
2684 * for them using the commit root of the extent tree. For a device
2685 * replace it's also fine to skip it, we won't miss copying them
2686 * to the target device because we have the write duplication
2687 * setup through the regular write path (by btrfs_map_block()),
2688 * and we have committed a transaction when we started the device
2689 * replace, right after setting up the device replace state.
2690 */
2691 if (cache->start < chunk_offset) {
2692 btrfs_put_block_group(cache);
2693 goto skip;
2694 }
2695
2696 if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
2697 if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) {
2698 btrfs_put_block_group(cache);
2699 goto skip;
2700 }
2701 }
2702
2703 /*
2704 * Make sure that while we are scrubbing the corresponding block
2705 * group doesn't get its logical address and its device extents
2706 * reused for another block group, which can possibly be of a
2707 * different type and different profile. We do this to prevent
2708 * false error detections and crashes due to bogus attempts to
2709 * repair extents.
2710 */
2711 spin_lock(&cache->lock);
2712 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) {
2713 spin_unlock(&cache->lock);
2714 btrfs_put_block_group(cache);
2715 goto skip;
2716 }
2717 btrfs_freeze_block_group(cache);
2718 spin_unlock(&cache->lock);
2719
2720 /*
2721 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
2722 * to avoid deadlock caused by:
2723 * btrfs_inc_block_group_ro()
2724 * -> btrfs_wait_for_commit()
2725 * -> btrfs_commit_transaction()
2726 * -> btrfs_scrub_pause()
2727 */
2728 scrub_pause_on(fs_info);
2729
2730 /*
2731 * Don't do chunk preallocation for scrub.
2732 *
2733 * This is especially important for SYSTEM bgs, or we can hit
2734 * -EFBIG from btrfs_finish_chunk_alloc() like:
2735 * 1. The only SYSTEM bg is marked RO.
2736 * Since SYSTEM bg is small, that's pretty common.
2737 * 2. New SYSTEM bg will be allocated
2738 * Due to regular version will allocate new chunk.
2739 * 3. New SYSTEM bg is empty and will get cleaned up
2740 * Before cleanup really happens, it's marked RO again.
2741 * 4. Empty SYSTEM bg get scrubbed
2742 * We go back to 2.
2743 *
2744 * This can easily boost the amount of SYSTEM chunks if cleaner
2745 * thread can't be triggered fast enough, and use up all space
2746 * of btrfs_super_block::sys_chunk_array
2747 *
2748 * While for dev replace, we need to try our best to mark block
2749 * group RO, to prevent race between:
2750 * - Write duplication
2751 * Contains latest data
2752 * - Scrub copy
2753 * Contains data from commit tree
2754 *
2755 * If target block group is not marked RO, nocow writes can
2756 * be overwritten by scrub copy, causing data corruption.
2757 * So for dev-replace, it's not allowed to continue if a block
2758 * group is not RO.
2759 */
2760 ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
2761 if (!ret && sctx->is_dev_replace) {
2762 ret = finish_extent_writes_for_zoned(root, cache);
2763 if (ret) {
2764 btrfs_dec_block_group_ro(cache);
2765 scrub_pause_off(fs_info);
2766 btrfs_put_block_group(cache);
2767 break;
2768 }
2769 }
2770
2771 if (ret == 0) {
2772 ro_set = 1;
2773 } else if (ret == -ENOSPC && !sctx->is_dev_replace &&
2774 !(cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) {
2775 /*
2776 * btrfs_inc_block_group_ro return -ENOSPC when it
2777 * failed in creating new chunk for metadata.
2778 * It is not a problem for scrub, because
2779 * metadata are always cowed, and our scrub paused
2780 * commit_transactions.
2781 *
2782 * For RAID56 chunks, we have to mark them read-only
2783 * for scrub, as later we would use our own cache
2784 * out of RAID56 realm.
2785 * Thus we want the RAID56 bg to be marked RO to
2786 * prevent RMW from screwing up out cache.
2787 */
2788 ro_set = 0;
2789 } else if (ret == -ETXTBSY) {
2790 btrfs_warn(fs_info,
2791 "scrub: skipping scrub of block group %llu due to active swapfile",
2792 cache->start);
2793 scrub_pause_off(fs_info);
2794 ret = 0;
2795 goto skip_unfreeze;
2796 } else {
2797 btrfs_warn(fs_info, "scrub: failed setting block group ro: %d",
2798 ret);
2799 btrfs_unfreeze_block_group(cache);
2800 btrfs_put_block_group(cache);
2801 scrub_pause_off(fs_info);
2802 break;
2803 }
2804
2805 /*
2806 * Now the target block is marked RO, wait for nocow writes to
2807 * finish before dev-replace.
2808 * COW is fine, as COW never overwrites extents in commit tree.
2809 */
2810 if (sctx->is_dev_replace) {
2811 btrfs_wait_nocow_writers(cache);
2812 btrfs_wait_ordered_roots(fs_info, U64_MAX, cache);
2813 }
2814
2815 scrub_pause_off(fs_info);
2816 down_write(&dev_replace->rwsem);
2817 dev_replace->cursor_right = found_key.offset + dev_extent_len;
2818 dev_replace->cursor_left = found_key.offset;
2819 dev_replace->item_needs_writeback = 1;
2820 up_write(&dev_replace->rwsem);
2821
2822 ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset,
2823 dev_extent_len);
2824 if (sctx->is_dev_replace &&
2825 !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
2826 cache, found_key.offset))
2827 ro_set = 0;
2828
2829 down_write(&dev_replace->rwsem);
2830 dev_replace->cursor_left = dev_replace->cursor_right;
2831 dev_replace->item_needs_writeback = 1;
2832 up_write(&dev_replace->rwsem);
2833
2834 if (ro_set)
2835 btrfs_dec_block_group_ro(cache);
2836
2837 /*
2838 * We might have prevented the cleaner kthread from deleting
2839 * this block group if it was already unused because we raced
2840 * and set it to RO mode first. So add it back to the unused
2841 * list, otherwise it might not ever be deleted unless a manual
2842 * balance is triggered or it becomes used and unused again.
2843 */
2844 spin_lock(&cache->lock);
2845 if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) &&
2846 !cache->ro && cache->reserved == 0 && cache->used == 0) {
2847 spin_unlock(&cache->lock);
2848 if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
2849 btrfs_discard_queue_work(&fs_info->discard_ctl,
2850 cache);
2851 else
2852 btrfs_mark_bg_unused(cache);
2853 } else {
2854 spin_unlock(&cache->lock);
2855 }
2856 skip_unfreeze:
2857 btrfs_unfreeze_block_group(cache);
2858 btrfs_put_block_group(cache);
2859 if (ret)
2860 break;
2861 if (sctx->is_dev_replace &&
2862 atomic64_read(&dev_replace->num_write_errors) > 0) {
2863 ret = -EIO;
2864 break;
2865 }
2866 if (sctx->stat.malloc_errors > 0) {
2867 ret = -ENOMEM;
2868 break;
2869 }
2870 skip:
2871 key.offset = found_key.offset + dev_extent_len;
2872 btrfs_release_path(path);
2873 }
2874
2875 btrfs_free_path(path);
2876
2877 return ret;
2878 }
2879
scrub_one_super(struct scrub_ctx * sctx,struct btrfs_device * dev,struct page * page,u64 physical,u64 generation)2880 static int scrub_one_super(struct scrub_ctx *sctx, struct btrfs_device *dev,
2881 struct page *page, u64 physical, u64 generation)
2882 {
2883 struct btrfs_fs_info *fs_info = sctx->fs_info;
2884 struct btrfs_super_block *sb = page_address(page);
2885 int ret;
2886
2887 ret = bdev_rw_virt(dev->bdev, physical >> SECTOR_SHIFT, sb,
2888 BTRFS_SUPER_INFO_SIZE, REQ_OP_READ);
2889 if (ret < 0)
2890 return ret;
2891 ret = btrfs_check_super_csum(fs_info, sb);
2892 if (ret != 0) {
2893 btrfs_err_rl(fs_info,
2894 "scrub: super block at physical %llu devid %llu has bad csum",
2895 physical, dev->devid);
2896 return -EIO;
2897 }
2898 if (btrfs_super_generation(sb) != generation) {
2899 btrfs_err_rl(fs_info,
2900 "scrub: super block at physical %llu devid %llu has bad generation %llu expect %llu",
2901 physical, dev->devid,
2902 btrfs_super_generation(sb), generation);
2903 return -EUCLEAN;
2904 }
2905
2906 return btrfs_validate_super(fs_info, sb, -1);
2907 }
2908
scrub_supers(struct scrub_ctx * sctx,struct btrfs_device * scrub_dev)2909 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2910 struct btrfs_device *scrub_dev)
2911 {
2912 int i;
2913 u64 bytenr;
2914 u64 gen;
2915 int ret = 0;
2916 struct page *page;
2917 struct btrfs_fs_info *fs_info = sctx->fs_info;
2918
2919 if (BTRFS_FS_ERROR(fs_info))
2920 return -EROFS;
2921
2922 page = alloc_page(GFP_KERNEL);
2923 if (!page) {
2924 spin_lock(&sctx->stat_lock);
2925 sctx->stat.malloc_errors++;
2926 spin_unlock(&sctx->stat_lock);
2927 return -ENOMEM;
2928 }
2929
2930 /* Seed devices of a new filesystem has their own generation. */
2931 if (scrub_dev->fs_devices != fs_info->fs_devices)
2932 gen = scrub_dev->generation;
2933 else
2934 gen = btrfs_get_last_trans_committed(fs_info);
2935
2936 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2937 ret = btrfs_sb_log_location(scrub_dev, i, 0, &bytenr);
2938 if (ret == -ENOENT)
2939 break;
2940
2941 if (ret) {
2942 spin_lock(&sctx->stat_lock);
2943 sctx->stat.super_errors++;
2944 spin_unlock(&sctx->stat_lock);
2945 continue;
2946 }
2947
2948 if (bytenr + BTRFS_SUPER_INFO_SIZE >
2949 scrub_dev->commit_total_bytes)
2950 break;
2951 if (!btrfs_check_super_location(scrub_dev, bytenr))
2952 continue;
2953
2954 ret = scrub_one_super(sctx, scrub_dev, page, bytenr, gen);
2955 if (ret) {
2956 spin_lock(&sctx->stat_lock);
2957 sctx->stat.super_errors++;
2958 spin_unlock(&sctx->stat_lock);
2959 }
2960 }
2961 __free_page(page);
2962 return 0;
2963 }
2964
scrub_workers_put(struct btrfs_fs_info * fs_info)2965 static void scrub_workers_put(struct btrfs_fs_info *fs_info)
2966 {
2967 if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
2968 &fs_info->scrub_lock)) {
2969 struct workqueue_struct *scrub_workers = fs_info->scrub_workers;
2970
2971 fs_info->scrub_workers = NULL;
2972 mutex_unlock(&fs_info->scrub_lock);
2973
2974 if (scrub_workers)
2975 destroy_workqueue(scrub_workers);
2976 }
2977 }
2978
2979 /*
2980 * get a reference count on fs_info->scrub_workers. start worker if necessary
2981 */
scrub_workers_get(struct btrfs_fs_info * fs_info)2982 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info)
2983 {
2984 struct workqueue_struct *scrub_workers = NULL;
2985 unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
2986 int max_active = fs_info->thread_pool_size;
2987 int ret = -ENOMEM;
2988
2989 if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
2990 return 0;
2991
2992 scrub_workers = alloc_workqueue("btrfs-scrub", flags, max_active);
2993 if (!scrub_workers)
2994 return -ENOMEM;
2995
2996 mutex_lock(&fs_info->scrub_lock);
2997 if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
2998 ASSERT(fs_info->scrub_workers == NULL);
2999 fs_info->scrub_workers = scrub_workers;
3000 refcount_set(&fs_info->scrub_workers_refcnt, 1);
3001 mutex_unlock(&fs_info->scrub_lock);
3002 return 0;
3003 }
3004 /* Other thread raced in and created the workers for us */
3005 refcount_inc(&fs_info->scrub_workers_refcnt);
3006 mutex_unlock(&fs_info->scrub_lock);
3007
3008 ret = 0;
3009
3010 destroy_workqueue(scrub_workers);
3011 return ret;
3012 }
3013
btrfs_scrub_dev(struct btrfs_fs_info * fs_info,u64 devid,u64 start,u64 end,struct btrfs_scrub_progress * progress,int readonly,int is_dev_replace)3014 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3015 u64 end, struct btrfs_scrub_progress *progress,
3016 int readonly, int is_dev_replace)
3017 {
3018 struct btrfs_dev_lookup_args args = { .devid = devid };
3019 struct scrub_ctx *sctx;
3020 int ret;
3021 struct btrfs_device *dev;
3022 unsigned int nofs_flag;
3023 bool need_commit = false;
3024
3025 if (btrfs_fs_closing(fs_info))
3026 return -EAGAIN;
3027
3028 /* At mount time we have ensured nodesize is in the range of [4K, 64K]. */
3029 ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN);
3030
3031 /*
3032 * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible
3033 * value (max nodesize / min sectorsize), thus nodesize should always
3034 * be fine.
3035 */
3036 ASSERT(fs_info->nodesize <=
3037 SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits);
3038
3039 /* Allocate outside of device_list_mutex */
3040 sctx = scrub_setup_ctx(fs_info, is_dev_replace);
3041 if (IS_ERR(sctx))
3042 return PTR_ERR(sctx);
3043
3044 ret = scrub_workers_get(fs_info);
3045 if (ret)
3046 goto out_free_ctx;
3047
3048 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3049 dev = btrfs_find_device(fs_info->fs_devices, &args);
3050 if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
3051 !is_dev_replace)) {
3052 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3053 ret = -ENODEV;
3054 goto out;
3055 }
3056
3057 if (!is_dev_replace && !readonly &&
3058 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
3059 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3060 btrfs_err_in_rcu(fs_info,
3061 "scrub: devid %llu: filesystem on %s is not writable",
3062 devid, btrfs_dev_name(dev));
3063 ret = -EROFS;
3064 goto out;
3065 }
3066
3067 mutex_lock(&fs_info->scrub_lock);
3068 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3069 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
3070 mutex_unlock(&fs_info->scrub_lock);
3071 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3072 ret = -EIO;
3073 goto out;
3074 }
3075
3076 down_read(&fs_info->dev_replace.rwsem);
3077 if (dev->scrub_ctx ||
3078 (!is_dev_replace &&
3079 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
3080 up_read(&fs_info->dev_replace.rwsem);
3081 mutex_unlock(&fs_info->scrub_lock);
3082 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3083 ret = -EINPROGRESS;
3084 goto out;
3085 }
3086 up_read(&fs_info->dev_replace.rwsem);
3087
3088 sctx->readonly = readonly;
3089 dev->scrub_ctx = sctx;
3090 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3091
3092 /*
3093 * checking @scrub_pause_req here, we can avoid
3094 * race between committing transaction and scrubbing.
3095 */
3096 __scrub_blocked_if_needed(fs_info);
3097 atomic_inc(&fs_info->scrubs_running);
3098 mutex_unlock(&fs_info->scrub_lock);
3099
3100 /*
3101 * In order to avoid deadlock with reclaim when there is a transaction
3102 * trying to pause scrub, make sure we use GFP_NOFS for all the
3103 * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity()
3104 * invoked by our callees. The pausing request is done when the
3105 * transaction commit starts, and it blocks the transaction until scrub
3106 * is paused (done at specific points at scrub_stripe() or right above
3107 * before incrementing fs_info->scrubs_running).
3108 */
3109 nofs_flag = memalloc_nofs_save();
3110 if (!is_dev_replace) {
3111 u64 old_super_errors;
3112
3113 spin_lock(&sctx->stat_lock);
3114 old_super_errors = sctx->stat.super_errors;
3115 spin_unlock(&sctx->stat_lock);
3116
3117 btrfs_info(fs_info, "scrub: started on devid %llu", devid);
3118 /*
3119 * by holding device list mutex, we can
3120 * kick off writing super in log tree sync.
3121 */
3122 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3123 ret = scrub_supers(sctx, dev);
3124 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3125
3126 spin_lock(&sctx->stat_lock);
3127 /*
3128 * Super block errors found, but we can not commit transaction
3129 * at current context, since btrfs_commit_transaction() needs
3130 * to pause the current running scrub (hold by ourselves).
3131 */
3132 if (sctx->stat.super_errors > old_super_errors && !sctx->readonly)
3133 need_commit = true;
3134 spin_unlock(&sctx->stat_lock);
3135 }
3136
3137 if (!ret)
3138 ret = scrub_enumerate_chunks(sctx, dev, start, end);
3139 memalloc_nofs_restore(nofs_flag);
3140
3141 atomic_dec(&fs_info->scrubs_running);
3142 wake_up(&fs_info->scrub_pause_wait);
3143
3144 if (progress)
3145 memcpy(progress, &sctx->stat, sizeof(*progress));
3146
3147 if (!is_dev_replace)
3148 btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
3149 ret ? "not finished" : "finished", devid, ret);
3150
3151 mutex_lock(&fs_info->scrub_lock);
3152 dev->scrub_ctx = NULL;
3153 mutex_unlock(&fs_info->scrub_lock);
3154
3155 scrub_workers_put(fs_info);
3156 scrub_put_ctx(sctx);
3157
3158 /*
3159 * We found some super block errors before, now try to force a
3160 * transaction commit, as scrub has finished.
3161 */
3162 if (need_commit) {
3163 struct btrfs_trans_handle *trans;
3164
3165 trans = btrfs_start_transaction(fs_info->tree_root, 0);
3166 if (IS_ERR(trans)) {
3167 ret = PTR_ERR(trans);
3168 btrfs_err(fs_info,
3169 "scrub: failed to start transaction to fix super block errors: %d", ret);
3170 return ret;
3171 }
3172 ret = btrfs_commit_transaction(trans);
3173 if (ret < 0)
3174 btrfs_err(fs_info,
3175 "scrub: failed to commit transaction to fix super block errors: %d", ret);
3176 }
3177 return ret;
3178 out:
3179 scrub_workers_put(fs_info);
3180 out_free_ctx:
3181 scrub_free_ctx(sctx);
3182
3183 return ret;
3184 }
3185
btrfs_scrub_pause(struct btrfs_fs_info * fs_info)3186 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
3187 {
3188 mutex_lock(&fs_info->scrub_lock);
3189 atomic_inc(&fs_info->scrub_pause_req);
3190 while (atomic_read(&fs_info->scrubs_paused) !=
3191 atomic_read(&fs_info->scrubs_running)) {
3192 mutex_unlock(&fs_info->scrub_lock);
3193 wait_event(fs_info->scrub_pause_wait,
3194 atomic_read(&fs_info->scrubs_paused) ==
3195 atomic_read(&fs_info->scrubs_running));
3196 mutex_lock(&fs_info->scrub_lock);
3197 }
3198 mutex_unlock(&fs_info->scrub_lock);
3199 }
3200
btrfs_scrub_continue(struct btrfs_fs_info * fs_info)3201 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
3202 {
3203 atomic_dec(&fs_info->scrub_pause_req);
3204 wake_up(&fs_info->scrub_pause_wait);
3205 }
3206
btrfs_scrub_cancel(struct btrfs_fs_info * fs_info)3207 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3208 {
3209 mutex_lock(&fs_info->scrub_lock);
3210 if (!atomic_read(&fs_info->scrubs_running)) {
3211 mutex_unlock(&fs_info->scrub_lock);
3212 return -ENOTCONN;
3213 }
3214
3215 atomic_inc(&fs_info->scrub_cancel_req);
3216 while (atomic_read(&fs_info->scrubs_running)) {
3217 mutex_unlock(&fs_info->scrub_lock);
3218 wait_event(fs_info->scrub_pause_wait,
3219 atomic_read(&fs_info->scrubs_running) == 0);
3220 mutex_lock(&fs_info->scrub_lock);
3221 }
3222 atomic_dec(&fs_info->scrub_cancel_req);
3223 mutex_unlock(&fs_info->scrub_lock);
3224
3225 return 0;
3226 }
3227
btrfs_scrub_cancel_dev(struct btrfs_device * dev)3228 int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
3229 {
3230 struct btrfs_fs_info *fs_info = dev->fs_info;
3231 struct scrub_ctx *sctx;
3232
3233 mutex_lock(&fs_info->scrub_lock);
3234 sctx = dev->scrub_ctx;
3235 if (!sctx) {
3236 mutex_unlock(&fs_info->scrub_lock);
3237 return -ENOTCONN;
3238 }
3239 atomic_inc(&sctx->cancel_req);
3240 while (dev->scrub_ctx) {
3241 mutex_unlock(&fs_info->scrub_lock);
3242 wait_event(fs_info->scrub_pause_wait,
3243 dev->scrub_ctx == NULL);
3244 mutex_lock(&fs_info->scrub_lock);
3245 }
3246 mutex_unlock(&fs_info->scrub_lock);
3247
3248 return 0;
3249 }
3250
btrfs_scrub_progress(struct btrfs_fs_info * fs_info,u64 devid,struct btrfs_scrub_progress * progress)3251 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
3252 struct btrfs_scrub_progress *progress)
3253 {
3254 struct btrfs_dev_lookup_args args = { .devid = devid };
3255 struct btrfs_device *dev;
3256 struct scrub_ctx *sctx = NULL;
3257
3258 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3259 dev = btrfs_find_device(fs_info->fs_devices, &args);
3260 if (dev)
3261 sctx = dev->scrub_ctx;
3262 if (sctx)
3263 memcpy(progress, &sctx->stat, sizeof(*progress));
3264 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3265
3266 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
3267 }
3268