xref: /linux/fs/btrfs/delayed-inode.c (revision f3827213abae9291b7525b05e6fd29b1f0536ce6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011 Fujitsu.  All rights reserved.
4  * Written by Miao Xie <miaox@cn.fujitsu.com>
5  */
6 
7 #include <linux/slab.h>
8 #include <linux/iversion.h>
9 #include "ctree.h"
10 #include "fs.h"
11 #include "messages.h"
12 #include "misc.h"
13 #include "delayed-inode.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "qgroup.h"
17 #include "locking.h"
18 #include "inode-item.h"
19 #include "space-info.h"
20 #include "accessors.h"
21 #include "file-item.h"
22 
23 #define BTRFS_DELAYED_WRITEBACK		512
24 #define BTRFS_DELAYED_BACKGROUND	128
25 #define BTRFS_DELAYED_BATCH		16
26 
27 static struct kmem_cache *delayed_node_cache;
28 
btrfs_delayed_inode_init(void)29 int __init btrfs_delayed_inode_init(void)
30 {
31 	delayed_node_cache = KMEM_CACHE(btrfs_delayed_node, 0);
32 	if (!delayed_node_cache)
33 		return -ENOMEM;
34 	return 0;
35 }
36 
btrfs_delayed_inode_exit(void)37 void __cold btrfs_delayed_inode_exit(void)
38 {
39 	kmem_cache_destroy(delayed_node_cache);
40 }
41 
btrfs_init_delayed_root(struct btrfs_delayed_root * delayed_root)42 void btrfs_init_delayed_root(struct btrfs_delayed_root *delayed_root)
43 {
44 	atomic_set(&delayed_root->items, 0);
45 	atomic_set(&delayed_root->items_seq, 0);
46 	delayed_root->nodes = 0;
47 	spin_lock_init(&delayed_root->lock);
48 	init_waitqueue_head(&delayed_root->wait);
49 	INIT_LIST_HEAD(&delayed_root->node_list);
50 	INIT_LIST_HEAD(&delayed_root->prepare_list);
51 }
52 
btrfs_init_delayed_node(struct btrfs_delayed_node * delayed_node,struct btrfs_root * root,u64 inode_id)53 static inline void btrfs_init_delayed_node(
54 				struct btrfs_delayed_node *delayed_node,
55 				struct btrfs_root *root, u64 inode_id)
56 {
57 	delayed_node->root = root;
58 	delayed_node->inode_id = inode_id;
59 	refcount_set(&delayed_node->refs, 0);
60 	btrfs_delayed_node_ref_tracker_dir_init(delayed_node);
61 	delayed_node->ins_root = RB_ROOT_CACHED;
62 	delayed_node->del_root = RB_ROOT_CACHED;
63 	mutex_init(&delayed_node->mutex);
64 	INIT_LIST_HEAD(&delayed_node->n_list);
65 	INIT_LIST_HEAD(&delayed_node->p_list);
66 }
67 
btrfs_get_delayed_node(struct btrfs_inode * btrfs_inode,struct btrfs_ref_tracker * tracker)68 static struct btrfs_delayed_node *btrfs_get_delayed_node(
69 		struct btrfs_inode *btrfs_inode,
70 		struct btrfs_ref_tracker *tracker)
71 {
72 	struct btrfs_root *root = btrfs_inode->root;
73 	u64 ino = btrfs_ino(btrfs_inode);
74 	struct btrfs_delayed_node *node;
75 
76 	node = READ_ONCE(btrfs_inode->delayed_node);
77 	if (node) {
78 		refcount_inc(&node->refs);
79 		btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_NOFS);
80 		return node;
81 	}
82 
83 	xa_lock(&root->delayed_nodes);
84 	node = xa_load(&root->delayed_nodes, ino);
85 
86 	if (node) {
87 		if (btrfs_inode->delayed_node) {
88 			refcount_inc(&node->refs);	/* can be accessed */
89 			btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC);
90 			BUG_ON(btrfs_inode->delayed_node != node);
91 			xa_unlock(&root->delayed_nodes);
92 			return node;
93 		}
94 
95 		/*
96 		 * It's possible that we're racing into the middle of removing
97 		 * this node from the xarray.  In this case, the refcount
98 		 * was zero and it should never go back to one.  Just return
99 		 * NULL like it was never in the xarray at all; our release
100 		 * function is in the process of removing it.
101 		 *
102 		 * Some implementations of refcount_inc refuse to bump the
103 		 * refcount once it has hit zero.  If we don't do this dance
104 		 * here, refcount_inc() may decide to just WARN_ONCE() instead
105 		 * of actually bumping the refcount.
106 		 *
107 		 * If this node is properly in the xarray, we want to bump the
108 		 * refcount twice, once for the inode and once for this get
109 		 * operation.
110 		 */
111 		if (refcount_inc_not_zero(&node->refs)) {
112 			refcount_inc(&node->refs);
113 			btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC);
114 			btrfs_delayed_node_ref_tracker_alloc(node, &node->inode_cache_tracker,
115 							     GFP_ATOMIC);
116 			btrfs_inode->delayed_node = node;
117 		} else {
118 			node = NULL;
119 		}
120 
121 		xa_unlock(&root->delayed_nodes);
122 		return node;
123 	}
124 	xa_unlock(&root->delayed_nodes);
125 
126 	return NULL;
127 }
128 
129 /*
130  * Look up an existing delayed node associated with @btrfs_inode or create a new
131  * one and insert it to the delayed nodes of the root.
132  *
133  * Return the delayed node, or error pointer on failure.
134  */
btrfs_get_or_create_delayed_node(struct btrfs_inode * btrfs_inode,struct btrfs_ref_tracker * tracker)135 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
136 		struct btrfs_inode *btrfs_inode,
137 		struct btrfs_ref_tracker *tracker)
138 {
139 	struct btrfs_delayed_node *node;
140 	struct btrfs_root *root = btrfs_inode->root;
141 	u64 ino = btrfs_ino(btrfs_inode);
142 	int ret;
143 	void *ptr;
144 
145 again:
146 	node = btrfs_get_delayed_node(btrfs_inode, tracker);
147 	if (node)
148 		return node;
149 
150 	node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
151 	if (!node)
152 		return ERR_PTR(-ENOMEM);
153 	btrfs_init_delayed_node(node, root, ino);
154 
155 	/* Allocate and reserve the slot, from now it can return a NULL from xa_load(). */
156 	ret = xa_reserve(&root->delayed_nodes, ino, GFP_NOFS);
157 	if (ret == -ENOMEM) {
158 		btrfs_delayed_node_ref_tracker_dir_exit(node);
159 		kmem_cache_free(delayed_node_cache, node);
160 		return ERR_PTR(-ENOMEM);
161 	}
162 	xa_lock(&root->delayed_nodes);
163 	ptr = xa_load(&root->delayed_nodes, ino);
164 	if (ptr) {
165 		/* Somebody inserted it, go back and read it. */
166 		xa_unlock(&root->delayed_nodes);
167 		btrfs_delayed_node_ref_tracker_dir_exit(node);
168 		kmem_cache_free(delayed_node_cache, node);
169 		node = NULL;
170 		goto again;
171 	}
172 	ptr = __xa_store(&root->delayed_nodes, ino, node, GFP_ATOMIC);
173 	ASSERT(xa_err(ptr) != -EINVAL);
174 	ASSERT(xa_err(ptr) != -ENOMEM);
175 	ASSERT(ptr == NULL);
176 
177 	/* Cached in the inode and can be accessed. */
178 	refcount_set(&node->refs, 2);
179 	btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC);
180 	btrfs_delayed_node_ref_tracker_alloc(node, &node->inode_cache_tracker, GFP_ATOMIC);
181 
182 	btrfs_inode->delayed_node = node;
183 	xa_unlock(&root->delayed_nodes);
184 
185 	return node;
186 }
187 
188 /*
189  * Call it when holding delayed_node->mutex
190  *
191  * If mod = 1, add this node into the prepared list.
192  */
btrfs_queue_delayed_node(struct btrfs_delayed_root * root,struct btrfs_delayed_node * node,int mod)193 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
194 				     struct btrfs_delayed_node *node,
195 				     int mod)
196 {
197 	spin_lock(&root->lock);
198 	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
199 		if (!list_empty(&node->p_list))
200 			list_move_tail(&node->p_list, &root->prepare_list);
201 		else if (mod)
202 			list_add_tail(&node->p_list, &root->prepare_list);
203 	} else {
204 		list_add_tail(&node->n_list, &root->node_list);
205 		list_add_tail(&node->p_list, &root->prepare_list);
206 		refcount_inc(&node->refs);	/* inserted into list */
207 		btrfs_delayed_node_ref_tracker_alloc(node, &node->node_list_tracker,
208 						     GFP_ATOMIC);
209 		root->nodes++;
210 		set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
211 	}
212 	spin_unlock(&root->lock);
213 }
214 
215 /* Call it when holding delayed_node->mutex */
btrfs_dequeue_delayed_node(struct btrfs_delayed_root * root,struct btrfs_delayed_node * node)216 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
217 				       struct btrfs_delayed_node *node)
218 {
219 	spin_lock(&root->lock);
220 	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
221 		root->nodes--;
222 		btrfs_delayed_node_ref_tracker_free(node, &node->node_list_tracker);
223 		refcount_dec(&node->refs);	/* not in the list */
224 		list_del_init(&node->n_list);
225 		if (!list_empty(&node->p_list))
226 			list_del_init(&node->p_list);
227 		clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
228 	}
229 	spin_unlock(&root->lock);
230 }
231 
btrfs_first_delayed_node(struct btrfs_delayed_root * delayed_root,struct btrfs_ref_tracker * tracker)232 static struct btrfs_delayed_node *btrfs_first_delayed_node(
233 			struct btrfs_delayed_root *delayed_root,
234 			struct btrfs_ref_tracker *tracker)
235 {
236 	struct btrfs_delayed_node *node;
237 
238 	spin_lock(&delayed_root->lock);
239 	node = list_first_entry_or_null(&delayed_root->node_list,
240 					struct btrfs_delayed_node, n_list);
241 	if (node) {
242 		refcount_inc(&node->refs);
243 		btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC);
244 	}
245 	spin_unlock(&delayed_root->lock);
246 
247 	return node;
248 }
249 
btrfs_next_delayed_node(struct btrfs_delayed_node * node,struct btrfs_ref_tracker * tracker)250 static struct btrfs_delayed_node *btrfs_next_delayed_node(
251 						struct btrfs_delayed_node *node,
252 						struct btrfs_ref_tracker *tracker)
253 {
254 	struct btrfs_delayed_root *delayed_root;
255 	struct list_head *p;
256 	struct btrfs_delayed_node *next = NULL;
257 
258 	delayed_root = node->root->fs_info->delayed_root;
259 	spin_lock(&delayed_root->lock);
260 	if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
261 		/* not in the list */
262 		if (list_empty(&delayed_root->node_list))
263 			goto out;
264 		p = delayed_root->node_list.next;
265 	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
266 		goto out;
267 	else
268 		p = node->n_list.next;
269 
270 	next = list_entry(p, struct btrfs_delayed_node, n_list);
271 	refcount_inc(&next->refs);
272 	btrfs_delayed_node_ref_tracker_alloc(next, tracker, GFP_ATOMIC);
273 out:
274 	spin_unlock(&delayed_root->lock);
275 
276 	return next;
277 }
278 
__btrfs_release_delayed_node(struct btrfs_delayed_node * delayed_node,int mod,struct btrfs_ref_tracker * tracker)279 static void __btrfs_release_delayed_node(
280 				struct btrfs_delayed_node *delayed_node,
281 				int mod, struct btrfs_ref_tracker *tracker)
282 {
283 	struct btrfs_delayed_root *delayed_root;
284 
285 	if (!delayed_node)
286 		return;
287 
288 	delayed_root = delayed_node->root->fs_info->delayed_root;
289 
290 	mutex_lock(&delayed_node->mutex);
291 	if (delayed_node->count)
292 		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
293 	else
294 		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
295 	mutex_unlock(&delayed_node->mutex);
296 
297 	btrfs_delayed_node_ref_tracker_free(delayed_node, tracker);
298 	if (refcount_dec_and_test(&delayed_node->refs)) {
299 		struct btrfs_root *root = delayed_node->root;
300 
301 		xa_erase(&root->delayed_nodes, delayed_node->inode_id);
302 		/*
303 		 * Once our refcount goes to zero, nobody is allowed to bump it
304 		 * back up.  We can delete it now.
305 		 */
306 		ASSERT(refcount_read(&delayed_node->refs) == 0);
307 		btrfs_delayed_node_ref_tracker_dir_exit(delayed_node);
308 		kmem_cache_free(delayed_node_cache, delayed_node);
309 	}
310 }
311 
btrfs_release_delayed_node(struct btrfs_delayed_node * node,struct btrfs_ref_tracker * tracker)312 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node,
313 					      struct btrfs_ref_tracker *tracker)
314 {
315 	__btrfs_release_delayed_node(node, 0, tracker);
316 }
317 
btrfs_first_prepared_delayed_node(struct btrfs_delayed_root * delayed_root,struct btrfs_ref_tracker * tracker)318 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
319 					struct btrfs_delayed_root *delayed_root,
320 					struct btrfs_ref_tracker *tracker)
321 {
322 	struct btrfs_delayed_node *node;
323 
324 	spin_lock(&delayed_root->lock);
325 	node = list_first_entry_or_null(&delayed_root->prepare_list,
326 					struct btrfs_delayed_node, p_list);
327 	if (node) {
328 		list_del_init(&node->p_list);
329 		refcount_inc(&node->refs);
330 		btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC);
331 	}
332 	spin_unlock(&delayed_root->lock);
333 
334 	return node;
335 }
336 
btrfs_release_prepared_delayed_node(struct btrfs_delayed_node * node,struct btrfs_ref_tracker * tracker)337 static inline void btrfs_release_prepared_delayed_node(
338 					struct btrfs_delayed_node *node,
339 					struct btrfs_ref_tracker *tracker)
340 {
341 	__btrfs_release_delayed_node(node, 1, tracker);
342 }
343 
btrfs_alloc_delayed_item(u16 data_len,struct btrfs_delayed_node * node,enum btrfs_delayed_item_type type)344 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u16 data_len,
345 					   struct btrfs_delayed_node *node,
346 					   enum btrfs_delayed_item_type type)
347 {
348 	struct btrfs_delayed_item *item;
349 
350 	item = kmalloc(struct_size(item, data, data_len), GFP_NOFS);
351 	if (item) {
352 		item->data_len = data_len;
353 		item->type = type;
354 		item->bytes_reserved = 0;
355 		item->delayed_node = node;
356 		RB_CLEAR_NODE(&item->rb_node);
357 		INIT_LIST_HEAD(&item->log_list);
358 		item->logged = false;
359 		refcount_set(&item->refs, 1);
360 	}
361 	return item;
362 }
363 
delayed_item_index_cmp(const void * key,const struct rb_node * node)364 static int delayed_item_index_cmp(const void *key, const struct rb_node *node)
365 {
366 	const u64 *index = key;
367 	const struct btrfs_delayed_item *delayed_item = rb_entry(node,
368 						 struct btrfs_delayed_item, rb_node);
369 
370 	if (delayed_item->index < *index)
371 		return 1;
372 	else if (delayed_item->index > *index)
373 		return -1;
374 
375 	return 0;
376 }
377 
378 /*
379  * Look up the delayed item by key.
380  *
381  * @delayed_node: pointer to the delayed node
382  * @index:	  the dir index value to lookup (offset of a dir index key)
383  *
384  * Note: if we don't find the right item, we will return the prev item and
385  * the next item.
386  */
__btrfs_lookup_delayed_item(struct rb_root * root,u64 index)387 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
388 				struct rb_root *root,
389 				u64 index)
390 {
391 	struct rb_node *node;
392 
393 	node = rb_find(&index, root, delayed_item_index_cmp);
394 	return rb_entry_safe(node, struct btrfs_delayed_item, rb_node);
395 }
396 
btrfs_delayed_item_cmp(const struct rb_node * new,const struct rb_node * exist)397 static int btrfs_delayed_item_cmp(const struct rb_node *new,
398 				  const struct rb_node *exist)
399 {
400 	const struct btrfs_delayed_item *new_item =
401 		rb_entry(new, struct btrfs_delayed_item, rb_node);
402 
403 	return delayed_item_index_cmp(&new_item->index, exist);
404 }
405 
__btrfs_add_delayed_item(struct btrfs_delayed_node * delayed_node,struct btrfs_delayed_item * ins)406 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
407 				    struct btrfs_delayed_item *ins)
408 {
409 	struct rb_root_cached *root;
410 	struct rb_node *exist;
411 
412 	if (ins->type == BTRFS_DELAYED_INSERTION_ITEM)
413 		root = &delayed_node->ins_root;
414 	else
415 		root = &delayed_node->del_root;
416 
417 	exist = rb_find_add_cached(&ins->rb_node, root, btrfs_delayed_item_cmp);
418 	if (exist)
419 		return -EEXIST;
420 
421 	if (ins->type == BTRFS_DELAYED_INSERTION_ITEM &&
422 	    ins->index >= delayed_node->index_cnt)
423 		delayed_node->index_cnt = ins->index + 1;
424 
425 	delayed_node->count++;
426 	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
427 	return 0;
428 }
429 
finish_one_item(struct btrfs_delayed_root * delayed_root)430 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
431 {
432 	int seq = atomic_inc_return(&delayed_root->items_seq);
433 
434 	/* atomic_dec_return implies a barrier */
435 	if ((atomic_dec_return(&delayed_root->items) <
436 	    BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
437 		cond_wake_up_nomb(&delayed_root->wait);
438 }
439 
__btrfs_remove_delayed_item(struct btrfs_delayed_item * delayed_item)440 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
441 {
442 	struct btrfs_delayed_node *delayed_node = delayed_item->delayed_node;
443 	struct rb_root_cached *root;
444 	struct btrfs_delayed_root *delayed_root;
445 
446 	/* Not inserted, ignore it. */
447 	if (RB_EMPTY_NODE(&delayed_item->rb_node))
448 		return;
449 
450 	/* If it's in a rbtree, then we need to have delayed node locked. */
451 	lockdep_assert_held(&delayed_node->mutex);
452 
453 	delayed_root = delayed_node->root->fs_info->delayed_root;
454 
455 	if (delayed_item->type == BTRFS_DELAYED_INSERTION_ITEM)
456 		root = &delayed_node->ins_root;
457 	else
458 		root = &delayed_node->del_root;
459 
460 	rb_erase_cached(&delayed_item->rb_node, root);
461 	RB_CLEAR_NODE(&delayed_item->rb_node);
462 	delayed_node->count--;
463 
464 	finish_one_item(delayed_root);
465 }
466 
btrfs_release_delayed_item(struct btrfs_delayed_item * item)467 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
468 {
469 	if (item) {
470 		__btrfs_remove_delayed_item(item);
471 		if (refcount_dec_and_test(&item->refs))
472 			kfree(item);
473 	}
474 }
475 
__btrfs_first_delayed_insertion_item(struct btrfs_delayed_node * delayed_node)476 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
477 					struct btrfs_delayed_node *delayed_node)
478 {
479 	struct rb_node *p = rb_first_cached(&delayed_node->ins_root);
480 
481 	return rb_entry_safe(p, struct btrfs_delayed_item, rb_node);
482 }
483 
__btrfs_first_delayed_deletion_item(struct btrfs_delayed_node * delayed_node)484 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
485 					struct btrfs_delayed_node *delayed_node)
486 {
487 	struct rb_node *p = rb_first_cached(&delayed_node->del_root);
488 
489 	return rb_entry_safe(p, struct btrfs_delayed_item, rb_node);
490 }
491 
__btrfs_next_delayed_item(struct btrfs_delayed_item * item)492 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
493 						struct btrfs_delayed_item *item)
494 {
495 	struct rb_node *p = rb_next(&item->rb_node);
496 
497 	return rb_entry_safe(p, struct btrfs_delayed_item, rb_node);
498 }
499 
btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle * trans,struct btrfs_delayed_item * item)500 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
501 					       struct btrfs_delayed_item *item)
502 {
503 	struct btrfs_block_rsv *src_rsv;
504 	struct btrfs_block_rsv *dst_rsv;
505 	struct btrfs_fs_info *fs_info = trans->fs_info;
506 	u64 num_bytes;
507 	int ret;
508 
509 	if (!trans->bytes_reserved)
510 		return 0;
511 
512 	src_rsv = trans->block_rsv;
513 	dst_rsv = &fs_info->delayed_block_rsv;
514 
515 	num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
516 
517 	/*
518 	 * Here we migrate space rsv from transaction rsv, since have already
519 	 * reserved space when starting a transaction.  So no need to reserve
520 	 * qgroup space here.
521 	 */
522 	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
523 	if (!ret) {
524 		trace_btrfs_space_reservation(fs_info, "delayed_item",
525 					      item->delayed_node->inode_id,
526 					      num_bytes, 1);
527 		/*
528 		 * For insertions we track reserved metadata space by accounting
529 		 * for the number of leaves that will be used, based on the delayed
530 		 * node's curr_index_batch_size and index_item_leaves fields.
531 		 */
532 		if (item->type == BTRFS_DELAYED_DELETION_ITEM)
533 			item->bytes_reserved = num_bytes;
534 	}
535 
536 	return ret;
537 }
538 
btrfs_delayed_item_release_metadata(struct btrfs_root * root,struct btrfs_delayed_item * item)539 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
540 						struct btrfs_delayed_item *item)
541 {
542 	struct btrfs_block_rsv *rsv;
543 	struct btrfs_fs_info *fs_info = root->fs_info;
544 
545 	if (!item->bytes_reserved)
546 		return;
547 
548 	rsv = &fs_info->delayed_block_rsv;
549 	/*
550 	 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
551 	 * to release/reserve qgroup space.
552 	 */
553 	trace_btrfs_space_reservation(fs_info, "delayed_item",
554 				      item->delayed_node->inode_id,
555 				      item->bytes_reserved, 0);
556 	btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
557 }
558 
btrfs_delayed_item_release_leaves(struct btrfs_delayed_node * node,unsigned int num_leaves)559 static void btrfs_delayed_item_release_leaves(struct btrfs_delayed_node *node,
560 					      unsigned int num_leaves)
561 {
562 	struct btrfs_fs_info *fs_info = node->root->fs_info;
563 	const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, num_leaves);
564 
565 	/* There are no space reservations during log replay, bail out. */
566 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
567 		return;
568 
569 	trace_btrfs_space_reservation(fs_info, "delayed_item", node->inode_id,
570 				      bytes, 0);
571 	btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, bytes, NULL);
572 }
573 
btrfs_delayed_inode_reserve_metadata(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_delayed_node * node)574 static int btrfs_delayed_inode_reserve_metadata(
575 					struct btrfs_trans_handle *trans,
576 					struct btrfs_root *root,
577 					struct btrfs_delayed_node *node)
578 {
579 	struct btrfs_fs_info *fs_info = root->fs_info;
580 	struct btrfs_block_rsv *src_rsv;
581 	struct btrfs_block_rsv *dst_rsv;
582 	u64 num_bytes;
583 	int ret;
584 
585 	src_rsv = trans->block_rsv;
586 	dst_rsv = &fs_info->delayed_block_rsv;
587 
588 	num_bytes = btrfs_calc_metadata_size(fs_info, 1);
589 
590 	/*
591 	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
592 	 * which doesn't reserve space for speed.  This is a problem since we
593 	 * still need to reserve space for this update, so try to reserve the
594 	 * space.
595 	 *
596 	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
597 	 * we always reserve enough to update the inode item.
598 	 */
599 	if (!src_rsv || (!trans->bytes_reserved &&
600 			 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
601 		ret = btrfs_qgroup_reserve_meta(root, num_bytes,
602 					  BTRFS_QGROUP_RSV_META_PREALLOC, true);
603 		if (ret < 0)
604 			return ret;
605 		ret = btrfs_block_rsv_add(fs_info, dst_rsv, num_bytes,
606 					  BTRFS_RESERVE_NO_FLUSH);
607 		/* NO_FLUSH could only fail with -ENOSPC */
608 		ASSERT(ret == 0 || ret == -ENOSPC);
609 		if (ret)
610 			btrfs_qgroup_free_meta_prealloc(root, num_bytes);
611 	} else {
612 		ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
613 	}
614 
615 	if (!ret) {
616 		trace_btrfs_space_reservation(fs_info, "delayed_inode",
617 					      node->inode_id, num_bytes, 1);
618 		node->bytes_reserved = num_bytes;
619 	}
620 
621 	return ret;
622 }
623 
btrfs_delayed_inode_release_metadata(struct btrfs_fs_info * fs_info,struct btrfs_delayed_node * node,bool qgroup_free)624 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
625 						struct btrfs_delayed_node *node,
626 						bool qgroup_free)
627 {
628 	struct btrfs_block_rsv *rsv;
629 
630 	if (!node->bytes_reserved)
631 		return;
632 
633 	rsv = &fs_info->delayed_block_rsv;
634 	trace_btrfs_space_reservation(fs_info, "delayed_inode",
635 				      node->inode_id, node->bytes_reserved, 0);
636 	btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
637 	if (qgroup_free)
638 		btrfs_qgroup_free_meta_prealloc(node->root,
639 				node->bytes_reserved);
640 	else
641 		btrfs_qgroup_convert_reserved_meta(node->root,
642 				node->bytes_reserved);
643 	node->bytes_reserved = 0;
644 }
645 
646 /*
647  * Insert a single delayed item or a batch of delayed items, as many as possible
648  * that fit in a leaf. The delayed items (dir index keys) are sorted by their key
649  * in the rbtree, and if there's a gap between two consecutive dir index items,
650  * then it means at some point we had delayed dir indexes to add but they got
651  * removed (by btrfs_delete_delayed_dir_index()) before we attempted to flush them
652  * into the subvolume tree. Dir index keys also have their offsets coming from a
653  * monotonically increasing counter, so we can't get new keys with an offset that
654  * fits within a gap between delayed dir index items.
655  */
btrfs_insert_delayed_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_item * first_item)656 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
657 				     struct btrfs_root *root,
658 				     struct btrfs_path *path,
659 				     struct btrfs_delayed_item *first_item)
660 {
661 	struct btrfs_fs_info *fs_info = root->fs_info;
662 	struct btrfs_delayed_node *node = first_item->delayed_node;
663 	LIST_HEAD(item_list);
664 	struct btrfs_delayed_item *curr;
665 	struct btrfs_delayed_item *next;
666 	const int max_size = BTRFS_LEAF_DATA_SIZE(fs_info);
667 	struct btrfs_item_batch batch;
668 	struct btrfs_key first_key;
669 	const u32 first_data_size = first_item->data_len;
670 	int total_size;
671 	char *ins_data = NULL;
672 	int ret;
673 	bool continuous_keys_only = false;
674 
675 	lockdep_assert_held(&node->mutex);
676 
677 	/*
678 	 * During normal operation the delayed index offset is continuously
679 	 * increasing, so we can batch insert all items as there will not be any
680 	 * overlapping keys in the tree.
681 	 *
682 	 * The exception to this is log replay, where we may have interleaved
683 	 * offsets in the tree, so our batch needs to be continuous keys only in
684 	 * order to ensure we do not end up with out of order items in our leaf.
685 	 */
686 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
687 		continuous_keys_only = true;
688 
689 	/*
690 	 * For delayed items to insert, we track reserved metadata bytes based
691 	 * on the number of leaves that we will use.
692 	 * See btrfs_insert_delayed_dir_index() and
693 	 * btrfs_delayed_item_reserve_metadata()).
694 	 */
695 	ASSERT(first_item->bytes_reserved == 0);
696 
697 	list_add_tail(&first_item->tree_list, &item_list);
698 	batch.total_data_size = first_data_size;
699 	batch.nr = 1;
700 	total_size = first_data_size + sizeof(struct btrfs_item);
701 	curr = first_item;
702 
703 	while (true) {
704 		int next_size;
705 
706 		next = __btrfs_next_delayed_item(curr);
707 		if (!next)
708 			break;
709 
710 		/*
711 		 * We cannot allow gaps in the key space if we're doing log
712 		 * replay.
713 		 */
714 		if (continuous_keys_only && (next->index != curr->index + 1))
715 			break;
716 
717 		ASSERT(next->bytes_reserved == 0);
718 
719 		next_size = next->data_len + sizeof(struct btrfs_item);
720 		if (total_size + next_size > max_size)
721 			break;
722 
723 		list_add_tail(&next->tree_list, &item_list);
724 		batch.nr++;
725 		total_size += next_size;
726 		batch.total_data_size += next->data_len;
727 		curr = next;
728 	}
729 
730 	if (batch.nr == 1) {
731 		first_key.objectid = node->inode_id;
732 		first_key.type = BTRFS_DIR_INDEX_KEY;
733 		first_key.offset = first_item->index;
734 		batch.keys = &first_key;
735 		batch.data_sizes = &first_data_size;
736 	} else {
737 		struct btrfs_key *ins_keys;
738 		u32 *ins_sizes;
739 		int i = 0;
740 
741 		ins_data = kmalloc_array(batch.nr,
742 					 sizeof(u32) + sizeof(struct btrfs_key), GFP_NOFS);
743 		if (!ins_data) {
744 			ret = -ENOMEM;
745 			goto out;
746 		}
747 		ins_sizes = (u32 *)ins_data;
748 		ins_keys = (struct btrfs_key *)(ins_data + batch.nr * sizeof(u32));
749 		batch.keys = ins_keys;
750 		batch.data_sizes = ins_sizes;
751 		list_for_each_entry(curr, &item_list, tree_list) {
752 			ins_keys[i].objectid = node->inode_id;
753 			ins_keys[i].type = BTRFS_DIR_INDEX_KEY;
754 			ins_keys[i].offset = curr->index;
755 			ins_sizes[i] = curr->data_len;
756 			i++;
757 		}
758 	}
759 
760 	ret = btrfs_insert_empty_items(trans, root, path, &batch);
761 	if (ret)
762 		goto out;
763 
764 	list_for_each_entry(curr, &item_list, tree_list) {
765 		char *data_ptr;
766 
767 		data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
768 		write_extent_buffer(path->nodes[0], &curr->data,
769 				    (unsigned long)data_ptr, curr->data_len);
770 		path->slots[0]++;
771 	}
772 
773 	/*
774 	 * Now release our path before releasing the delayed items and their
775 	 * metadata reservations, so that we don't block other tasks for more
776 	 * time than needed.
777 	 */
778 	btrfs_release_path(path);
779 
780 	ASSERT(node->index_item_leaves > 0);
781 
782 	/*
783 	 * For normal operations we will batch an entire leaf's worth of delayed
784 	 * items, so if there are more items to process we can decrement
785 	 * index_item_leaves by 1 as we inserted 1 leaf's worth of items.
786 	 *
787 	 * However for log replay we may not have inserted an entire leaf's
788 	 * worth of items, we may have not had continuous items, so decrementing
789 	 * here would mess up the index_item_leaves accounting.  For this case
790 	 * only clean up the accounting when there are no items left.
791 	 */
792 	if (next && !continuous_keys_only) {
793 		/*
794 		 * We inserted one batch of items into a leaf a there are more
795 		 * items to flush in a future batch, now release one unit of
796 		 * metadata space from the delayed block reserve, corresponding
797 		 * the leaf we just flushed to.
798 		 */
799 		btrfs_delayed_item_release_leaves(node, 1);
800 		node->index_item_leaves--;
801 	} else if (!next) {
802 		/*
803 		 * There are no more items to insert. We can have a number of
804 		 * reserved leaves > 1 here - this happens when many dir index
805 		 * items are added and then removed before they are flushed (file
806 		 * names with a very short life, never span a transaction). So
807 		 * release all remaining leaves.
808 		 */
809 		btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
810 		node->index_item_leaves = 0;
811 	}
812 
813 	list_for_each_entry_safe(curr, next, &item_list, tree_list) {
814 		list_del(&curr->tree_list);
815 		btrfs_release_delayed_item(curr);
816 	}
817 out:
818 	kfree(ins_data);
819 	return ret;
820 }
821 
btrfs_insert_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_root * root,struct btrfs_delayed_node * node)822 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
823 				      struct btrfs_path *path,
824 				      struct btrfs_root *root,
825 				      struct btrfs_delayed_node *node)
826 {
827 	int ret = 0;
828 
829 	while (ret == 0) {
830 		struct btrfs_delayed_item *curr;
831 
832 		mutex_lock(&node->mutex);
833 		curr = __btrfs_first_delayed_insertion_item(node);
834 		if (!curr) {
835 			mutex_unlock(&node->mutex);
836 			break;
837 		}
838 		ret = btrfs_insert_delayed_item(trans, root, path, curr);
839 		mutex_unlock(&node->mutex);
840 	}
841 
842 	return ret;
843 }
844 
btrfs_batch_delete_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_item * item)845 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
846 				    struct btrfs_root *root,
847 				    struct btrfs_path *path,
848 				    struct btrfs_delayed_item *item)
849 {
850 	const u64 ino = item->delayed_node->inode_id;
851 	struct btrfs_fs_info *fs_info = root->fs_info;
852 	struct btrfs_delayed_item *curr, *next;
853 	struct extent_buffer *leaf = path->nodes[0];
854 	LIST_HEAD(batch_list);
855 	int nitems, slot, last_slot;
856 	int ret;
857 	u64 total_reserved_size = item->bytes_reserved;
858 
859 	ASSERT(leaf != NULL);
860 
861 	slot = path->slots[0];
862 	last_slot = btrfs_header_nritems(leaf) - 1;
863 	/*
864 	 * Our caller always gives us a path pointing to an existing item, so
865 	 * this can not happen.
866 	 */
867 	ASSERT(slot <= last_slot);
868 	if (WARN_ON(slot > last_slot))
869 		return -ENOENT;
870 
871 	nitems = 1;
872 	curr = item;
873 	list_add_tail(&curr->tree_list, &batch_list);
874 
875 	/*
876 	 * Keep checking if the next delayed item matches the next item in the
877 	 * leaf - if so, we can add it to the batch of items to delete from the
878 	 * leaf.
879 	 */
880 	while (slot < last_slot) {
881 		struct btrfs_key key;
882 
883 		next = __btrfs_next_delayed_item(curr);
884 		if (!next)
885 			break;
886 
887 		slot++;
888 		btrfs_item_key_to_cpu(leaf, &key, slot);
889 		if (key.objectid != ino ||
890 		    key.type != BTRFS_DIR_INDEX_KEY ||
891 		    key.offset != next->index)
892 			break;
893 		nitems++;
894 		curr = next;
895 		list_add_tail(&curr->tree_list, &batch_list);
896 		total_reserved_size += curr->bytes_reserved;
897 	}
898 
899 	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
900 	if (ret)
901 		return ret;
902 
903 	/* In case of BTRFS_FS_LOG_RECOVERING items won't have reserved space */
904 	if (total_reserved_size > 0) {
905 		/*
906 		 * Check btrfs_delayed_item_reserve_metadata() to see why we
907 		 * don't need to release/reserve qgroup space.
908 		 */
909 		trace_btrfs_space_reservation(fs_info, "delayed_item", ino,
910 					      total_reserved_size, 0);
911 		btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv,
912 					total_reserved_size, NULL);
913 	}
914 
915 	list_for_each_entry_safe(curr, next, &batch_list, tree_list) {
916 		list_del(&curr->tree_list);
917 		btrfs_release_delayed_item(curr);
918 	}
919 
920 	return 0;
921 }
922 
btrfs_delete_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_root * root,struct btrfs_delayed_node * node)923 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
924 				      struct btrfs_path *path,
925 				      struct btrfs_root *root,
926 				      struct btrfs_delayed_node *node)
927 {
928 	struct btrfs_key key;
929 	int ret = 0;
930 
931 	key.objectid = node->inode_id;
932 	key.type = BTRFS_DIR_INDEX_KEY;
933 
934 	while (ret == 0) {
935 		struct btrfs_delayed_item *item;
936 
937 		mutex_lock(&node->mutex);
938 		item = __btrfs_first_delayed_deletion_item(node);
939 		if (!item) {
940 			mutex_unlock(&node->mutex);
941 			break;
942 		}
943 
944 		key.offset = item->index;
945 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
946 		if (ret > 0) {
947 			/*
948 			 * There's no matching item in the leaf. This means we
949 			 * have already deleted this item in a past run of the
950 			 * delayed items. We ignore errors when running delayed
951 			 * items from an async context, through a work queue job
952 			 * running btrfs_async_run_delayed_root(), and don't
953 			 * release delayed items that failed to complete. This
954 			 * is because we will retry later, and at transaction
955 			 * commit time we always run delayed items and will
956 			 * then deal with errors if they fail to run again.
957 			 *
958 			 * So just release delayed items for which we can't find
959 			 * an item in the tree, and move to the next item.
960 			 */
961 			btrfs_release_path(path);
962 			btrfs_release_delayed_item(item);
963 			ret = 0;
964 		} else if (ret == 0) {
965 			ret = btrfs_batch_delete_items(trans, root, path, item);
966 			btrfs_release_path(path);
967 		}
968 
969 		/*
970 		 * We unlock and relock on each iteration, this is to prevent
971 		 * blocking other tasks for too long while we are being run from
972 		 * the async context (work queue job). Those tasks are typically
973 		 * running system calls like creat/mkdir/rename/unlink/etc which
974 		 * need to add delayed items to this delayed node.
975 		 */
976 		mutex_unlock(&node->mutex);
977 	}
978 
979 	return ret;
980 }
981 
btrfs_release_delayed_inode(struct btrfs_delayed_node * delayed_node)982 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
983 {
984 	struct btrfs_delayed_root *delayed_root;
985 
986 	if (delayed_node &&
987 	    test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
988 		ASSERT(delayed_node->root);
989 		clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
990 		delayed_node->count--;
991 
992 		delayed_root = delayed_node->root->fs_info->delayed_root;
993 		finish_one_item(delayed_root);
994 	}
995 }
996 
btrfs_release_delayed_iref(struct btrfs_delayed_node * delayed_node)997 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
998 {
999 
1000 	if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) {
1001 		struct btrfs_delayed_root *delayed_root;
1002 
1003 		ASSERT(delayed_node->root);
1004 		delayed_node->count--;
1005 
1006 		delayed_root = delayed_node->root->fs_info->delayed_root;
1007 		finish_one_item(delayed_root);
1008 	}
1009 }
1010 
__btrfs_update_delayed_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_node * node)1011 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1012 					struct btrfs_root *root,
1013 					struct btrfs_path *path,
1014 					struct btrfs_delayed_node *node)
1015 {
1016 	struct btrfs_fs_info *fs_info = root->fs_info;
1017 	struct btrfs_key key;
1018 	struct btrfs_inode_item *inode_item;
1019 	struct extent_buffer *leaf;
1020 	int mod;
1021 	int ret;
1022 
1023 	key.objectid = node->inode_id;
1024 	key.type = BTRFS_INODE_ITEM_KEY;
1025 	key.offset = 0;
1026 
1027 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1028 		mod = -1;
1029 	else
1030 		mod = 1;
1031 
1032 	ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1033 	if (ret > 0)
1034 		ret = -ENOENT;
1035 	if (ret < 0) {
1036 		/*
1037 		 * If we fail to update the delayed inode we need to abort the
1038 		 * transaction, because we could leave the inode with the
1039 		 * improper counts behind.
1040 		 */
1041 		if (unlikely(ret != -ENOENT))
1042 			btrfs_abort_transaction(trans, ret);
1043 		goto out;
1044 	}
1045 
1046 	leaf = path->nodes[0];
1047 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
1048 				    struct btrfs_inode_item);
1049 	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1050 			    sizeof(struct btrfs_inode_item));
1051 
1052 	if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1053 		goto out;
1054 
1055 	/*
1056 	 * Now we're going to delete the INODE_REF/EXTREF, which should be the
1057 	 * only one ref left.  Check if the next item is an INODE_REF/EXTREF.
1058 	 *
1059 	 * But if we're the last item already, release and search for the last
1060 	 * INODE_REF/EXTREF.
1061 	 */
1062 	if (path->slots[0] + 1 >= btrfs_header_nritems(leaf)) {
1063 		key.objectid = node->inode_id;
1064 		key.type = BTRFS_INODE_EXTREF_KEY;
1065 		key.offset = (u64)-1;
1066 
1067 		btrfs_release_path(path);
1068 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1069 		if (unlikely(ret < 0)) {
1070 			btrfs_abort_transaction(trans, ret);
1071 			goto err_out;
1072 		}
1073 		ASSERT(ret > 0);
1074 		ASSERT(path->slots[0] > 0);
1075 		ret = 0;
1076 		path->slots[0]--;
1077 		leaf = path->nodes[0];
1078 	} else {
1079 		path->slots[0]++;
1080 	}
1081 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1082 	if (key.objectid != node->inode_id)
1083 		goto out;
1084 	if (key.type != BTRFS_INODE_REF_KEY &&
1085 	    key.type != BTRFS_INODE_EXTREF_KEY)
1086 		goto out;
1087 
1088 	/*
1089 	 * Delayed iref deletion is for the inode who has only one link,
1090 	 * so there is only one iref. The case that several irefs are
1091 	 * in the same item doesn't exist.
1092 	 */
1093 	ret = btrfs_del_item(trans, root, path);
1094 	if (ret < 0)
1095 		btrfs_abort_transaction(trans, ret);
1096 out:
1097 	btrfs_release_delayed_iref(node);
1098 	btrfs_release_path(path);
1099 err_out:
1100 	btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1101 	btrfs_release_delayed_inode(node);
1102 	return ret;
1103 }
1104 
btrfs_update_delayed_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_node * node)1105 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1106 					     struct btrfs_root *root,
1107 					     struct btrfs_path *path,
1108 					     struct btrfs_delayed_node *node)
1109 {
1110 	int ret;
1111 
1112 	mutex_lock(&node->mutex);
1113 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1114 		mutex_unlock(&node->mutex);
1115 		return 0;
1116 	}
1117 
1118 	ret = __btrfs_update_delayed_inode(trans, root, path, node);
1119 	mutex_unlock(&node->mutex);
1120 	return ret;
1121 }
1122 
1123 static inline int
__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_delayed_node * node)1124 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1125 				   struct btrfs_path *path,
1126 				   struct btrfs_delayed_node *node)
1127 {
1128 	int ret;
1129 
1130 	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1131 	if (ret)
1132 		return ret;
1133 
1134 	ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1135 	if (ret)
1136 		return ret;
1137 
1138 	ret = btrfs_record_root_in_trans(trans, node->root);
1139 	if (ret)
1140 		return ret;
1141 	ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1142 	return ret;
1143 }
1144 
1145 /*
1146  * Called when committing the transaction.
1147  * Returns 0 on success.
1148  * Returns < 0 on error and returns with an aborted transaction with any
1149  * outstanding delayed items cleaned up.
1150  */
__btrfs_run_delayed_items(struct btrfs_trans_handle * trans,int nr)1151 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1152 {
1153 	struct btrfs_fs_info *fs_info = trans->fs_info;
1154 	struct btrfs_delayed_root *delayed_root;
1155 	struct btrfs_delayed_node *curr_node, *prev_node;
1156 	struct btrfs_ref_tracker curr_delayed_node_tracker, prev_delayed_node_tracker;
1157 	struct btrfs_path *path;
1158 	struct btrfs_block_rsv *block_rsv;
1159 	int ret = 0;
1160 	bool count = (nr > 0);
1161 
1162 	if (TRANS_ABORTED(trans))
1163 		return -EIO;
1164 
1165 	path = btrfs_alloc_path();
1166 	if (!path)
1167 		return -ENOMEM;
1168 
1169 	block_rsv = trans->block_rsv;
1170 	trans->block_rsv = &fs_info->delayed_block_rsv;
1171 
1172 	delayed_root = fs_info->delayed_root;
1173 
1174 	curr_node = btrfs_first_delayed_node(delayed_root, &curr_delayed_node_tracker);
1175 	while (curr_node && (!count || nr--)) {
1176 		ret = __btrfs_commit_inode_delayed_items(trans, path,
1177 							 curr_node);
1178 		if (unlikely(ret)) {
1179 			btrfs_abort_transaction(trans, ret);
1180 			break;
1181 		}
1182 
1183 		prev_node = curr_node;
1184 		prev_delayed_node_tracker = curr_delayed_node_tracker;
1185 		curr_node = btrfs_next_delayed_node(curr_node, &curr_delayed_node_tracker);
1186 		/*
1187 		 * See the comment below about releasing path before releasing
1188 		 * node. If the commit of delayed items was successful the path
1189 		 * should always be released, but in case of an error, it may
1190 		 * point to locked extent buffers (a leaf at the very least).
1191 		 */
1192 		ASSERT(path->nodes[0] == NULL);
1193 		btrfs_release_delayed_node(prev_node, &prev_delayed_node_tracker);
1194 	}
1195 
1196 	/*
1197 	 * Release the path to avoid a potential deadlock and lockdep splat when
1198 	 * releasing the delayed node, as that requires taking the delayed node's
1199 	 * mutex. If another task starts running delayed items before we take
1200 	 * the mutex, it will first lock the mutex and then it may try to lock
1201 	 * the same btree path (leaf).
1202 	 */
1203 	btrfs_free_path(path);
1204 
1205 	if (curr_node)
1206 		btrfs_release_delayed_node(curr_node, &curr_delayed_node_tracker);
1207 	trans->block_rsv = block_rsv;
1208 
1209 	return ret;
1210 }
1211 
btrfs_run_delayed_items(struct btrfs_trans_handle * trans)1212 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1213 {
1214 	return __btrfs_run_delayed_items(trans, -1);
1215 }
1216 
btrfs_run_delayed_items_nr(struct btrfs_trans_handle * trans,int nr)1217 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1218 {
1219 	return __btrfs_run_delayed_items(trans, nr);
1220 }
1221 
btrfs_commit_inode_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)1222 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1223 				     struct btrfs_inode *inode)
1224 {
1225 	struct btrfs_ref_tracker delayed_node_tracker;
1226 	struct btrfs_delayed_node *delayed_node =
1227 		btrfs_get_delayed_node(inode, &delayed_node_tracker);
1228 	BTRFS_PATH_AUTO_FREE(path);
1229 	struct btrfs_block_rsv *block_rsv;
1230 	int ret;
1231 
1232 	if (!delayed_node)
1233 		return 0;
1234 
1235 	mutex_lock(&delayed_node->mutex);
1236 	if (!delayed_node->count) {
1237 		mutex_unlock(&delayed_node->mutex);
1238 		btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1239 		return 0;
1240 	}
1241 	mutex_unlock(&delayed_node->mutex);
1242 
1243 	path = btrfs_alloc_path();
1244 	if (!path) {
1245 		btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1246 		return -ENOMEM;
1247 	}
1248 
1249 	block_rsv = trans->block_rsv;
1250 	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1251 
1252 	ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1253 
1254 	btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1255 	trans->block_rsv = block_rsv;
1256 
1257 	return ret;
1258 }
1259 
btrfs_commit_inode_delayed_inode(struct btrfs_inode * inode)1260 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1261 {
1262 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1263 	struct btrfs_trans_handle *trans;
1264 	struct btrfs_ref_tracker delayed_node_tracker;
1265 	struct btrfs_delayed_node *delayed_node;
1266 	struct btrfs_path *path;
1267 	struct btrfs_block_rsv *block_rsv;
1268 	int ret;
1269 
1270 	delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
1271 	if (!delayed_node)
1272 		return 0;
1273 
1274 	mutex_lock(&delayed_node->mutex);
1275 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1276 		mutex_unlock(&delayed_node->mutex);
1277 		btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1278 		return 0;
1279 	}
1280 	mutex_unlock(&delayed_node->mutex);
1281 
1282 	trans = btrfs_join_transaction(delayed_node->root);
1283 	if (IS_ERR(trans)) {
1284 		ret = PTR_ERR(trans);
1285 		goto out;
1286 	}
1287 
1288 	path = btrfs_alloc_path();
1289 	if (!path) {
1290 		ret = -ENOMEM;
1291 		goto trans_out;
1292 	}
1293 
1294 	block_rsv = trans->block_rsv;
1295 	trans->block_rsv = &fs_info->delayed_block_rsv;
1296 
1297 	mutex_lock(&delayed_node->mutex);
1298 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1299 		ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1300 						   path, delayed_node);
1301 	else
1302 		ret = 0;
1303 	mutex_unlock(&delayed_node->mutex);
1304 
1305 	btrfs_free_path(path);
1306 	trans->block_rsv = block_rsv;
1307 trans_out:
1308 	btrfs_end_transaction(trans);
1309 	btrfs_btree_balance_dirty(fs_info);
1310 out:
1311 	btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1312 
1313 	return ret;
1314 }
1315 
btrfs_remove_delayed_node(struct btrfs_inode * inode)1316 void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1317 {
1318 	struct btrfs_delayed_node *delayed_node;
1319 
1320 	delayed_node = READ_ONCE(inode->delayed_node);
1321 	if (!delayed_node)
1322 		return;
1323 
1324 	inode->delayed_node = NULL;
1325 
1326 	btrfs_release_delayed_node(delayed_node, &delayed_node->inode_cache_tracker);
1327 }
1328 
1329 struct btrfs_async_delayed_work {
1330 	struct btrfs_delayed_root *delayed_root;
1331 	int nr;
1332 	struct btrfs_work work;
1333 };
1334 
btrfs_async_run_delayed_root(struct btrfs_work * work)1335 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1336 {
1337 	struct btrfs_async_delayed_work *async_work;
1338 	struct btrfs_delayed_root *delayed_root;
1339 	struct btrfs_trans_handle *trans;
1340 	struct btrfs_path *path;
1341 	struct btrfs_delayed_node *delayed_node = NULL;
1342 	struct btrfs_ref_tracker delayed_node_tracker;
1343 	struct btrfs_root *root;
1344 	struct btrfs_block_rsv *block_rsv;
1345 	int total_done = 0;
1346 
1347 	async_work = container_of(work, struct btrfs_async_delayed_work, work);
1348 	delayed_root = async_work->delayed_root;
1349 
1350 	path = btrfs_alloc_path();
1351 	if (!path)
1352 		goto out;
1353 
1354 	do {
1355 		if (atomic_read(&delayed_root->items) <
1356 		    BTRFS_DELAYED_BACKGROUND / 2)
1357 			break;
1358 
1359 		delayed_node = btrfs_first_prepared_delayed_node(delayed_root,
1360 								 &delayed_node_tracker);
1361 		if (!delayed_node)
1362 			break;
1363 
1364 		root = delayed_node->root;
1365 
1366 		trans = btrfs_join_transaction(root);
1367 		if (IS_ERR(trans)) {
1368 			btrfs_release_path(path);
1369 			btrfs_release_prepared_delayed_node(delayed_node,
1370 							    &delayed_node_tracker);
1371 			total_done++;
1372 			continue;
1373 		}
1374 
1375 		block_rsv = trans->block_rsv;
1376 		trans->block_rsv = &root->fs_info->delayed_block_rsv;
1377 
1378 		__btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1379 
1380 		trans->block_rsv = block_rsv;
1381 		btrfs_end_transaction(trans);
1382 		btrfs_btree_balance_dirty_nodelay(root->fs_info);
1383 
1384 		btrfs_release_path(path);
1385 		btrfs_release_prepared_delayed_node(delayed_node,
1386 						    &delayed_node_tracker);
1387 		total_done++;
1388 
1389 	} while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1390 		 || total_done < async_work->nr);
1391 
1392 	btrfs_free_path(path);
1393 out:
1394 	wake_up(&delayed_root->wait);
1395 	kfree(async_work);
1396 }
1397 
1398 
btrfs_wq_run_delayed_node(struct btrfs_delayed_root * delayed_root,struct btrfs_fs_info * fs_info,int nr)1399 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1400 				     struct btrfs_fs_info *fs_info, int nr)
1401 {
1402 	struct btrfs_async_delayed_work *async_work;
1403 
1404 	async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1405 	if (!async_work)
1406 		return -ENOMEM;
1407 
1408 	async_work->delayed_root = delayed_root;
1409 	btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL);
1410 	async_work->nr = nr;
1411 
1412 	btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1413 	return 0;
1414 }
1415 
btrfs_assert_delayed_root_empty(struct btrfs_fs_info * fs_info)1416 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1417 {
1418 	struct btrfs_ref_tracker delayed_node_tracker;
1419 	struct btrfs_delayed_node *node;
1420 
1421 	node = btrfs_first_delayed_node( fs_info->delayed_root, &delayed_node_tracker);
1422 	if (WARN_ON(node)) {
1423 		btrfs_delayed_node_ref_tracker_free(node,
1424 						    &delayed_node_tracker);
1425 		refcount_dec(&node->refs);
1426 	}
1427 }
1428 
could_end_wait(struct btrfs_delayed_root * delayed_root,int seq)1429 static bool could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1430 {
1431 	int val = atomic_read(&delayed_root->items_seq);
1432 
1433 	if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1434 		return true;
1435 
1436 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1437 		return true;
1438 
1439 	return false;
1440 }
1441 
btrfs_balance_delayed_items(struct btrfs_fs_info * fs_info)1442 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1443 {
1444 	struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1445 
1446 	if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1447 		btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1448 		return;
1449 
1450 	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1451 		int seq;
1452 		int ret;
1453 
1454 		seq = atomic_read(&delayed_root->items_seq);
1455 
1456 		ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1457 		if (ret)
1458 			return;
1459 
1460 		wait_event_interruptible(delayed_root->wait,
1461 					 could_end_wait(delayed_root, seq));
1462 		return;
1463 	}
1464 
1465 	btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1466 }
1467 
btrfs_release_dir_index_item_space(struct btrfs_trans_handle * trans)1468 static void btrfs_release_dir_index_item_space(struct btrfs_trans_handle *trans)
1469 {
1470 	struct btrfs_fs_info *fs_info = trans->fs_info;
1471 	const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
1472 
1473 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1474 		return;
1475 
1476 	/*
1477 	 * Adding the new dir index item does not require touching another
1478 	 * leaf, so we can release 1 unit of metadata that was previously
1479 	 * reserved when starting the transaction. This applies only to
1480 	 * the case where we had a transaction start and excludes the
1481 	 * transaction join case (when replaying log trees).
1482 	 */
1483 	trace_btrfs_space_reservation(fs_info, "transaction",
1484 				      trans->transid, bytes, 0);
1485 	btrfs_block_rsv_release(fs_info, trans->block_rsv, bytes, NULL);
1486 	ASSERT(trans->bytes_reserved >= bytes);
1487 	trans->bytes_reserved -= bytes;
1488 }
1489 
1490 /* Will return 0, -ENOMEM or -EEXIST (index number collision, unexpected). */
btrfs_insert_delayed_dir_index(struct btrfs_trans_handle * trans,const char * name,int name_len,struct btrfs_inode * dir,const struct btrfs_disk_key * disk_key,u8 flags,u64 index)1491 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1492 				   const char *name, int name_len,
1493 				   struct btrfs_inode *dir,
1494 				   const struct btrfs_disk_key *disk_key, u8 flags,
1495 				   u64 index)
1496 {
1497 	struct btrfs_fs_info *fs_info = trans->fs_info;
1498 	const unsigned int leaf_data_size = BTRFS_LEAF_DATA_SIZE(fs_info);
1499 	struct btrfs_delayed_node *delayed_node;
1500 	struct btrfs_ref_tracker delayed_node_tracker;
1501 	struct btrfs_delayed_item *delayed_item;
1502 	struct btrfs_dir_item *dir_item;
1503 	bool reserve_leaf_space;
1504 	u32 data_len;
1505 	int ret;
1506 
1507 	delayed_node = btrfs_get_or_create_delayed_node(dir, &delayed_node_tracker);
1508 	if (IS_ERR(delayed_node))
1509 		return PTR_ERR(delayed_node);
1510 
1511 	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len,
1512 						delayed_node,
1513 						BTRFS_DELAYED_INSERTION_ITEM);
1514 	if (!delayed_item) {
1515 		ret = -ENOMEM;
1516 		goto release_node;
1517 	}
1518 
1519 	delayed_item->index = index;
1520 
1521 	dir_item = (struct btrfs_dir_item *)delayed_item->data;
1522 	dir_item->location = *disk_key;
1523 	btrfs_set_stack_dir_transid(dir_item, trans->transid);
1524 	btrfs_set_stack_dir_data_len(dir_item, 0);
1525 	btrfs_set_stack_dir_name_len(dir_item, name_len);
1526 	btrfs_set_stack_dir_flags(dir_item, flags);
1527 	memcpy((char *)(dir_item + 1), name, name_len);
1528 
1529 	data_len = delayed_item->data_len + sizeof(struct btrfs_item);
1530 
1531 	mutex_lock(&delayed_node->mutex);
1532 
1533 	/*
1534 	 * First attempt to insert the delayed item. This is to make the error
1535 	 * handling path simpler in case we fail (-EEXIST). There's no risk of
1536 	 * any other task coming in and running the delayed item before we do
1537 	 * the metadata space reservation below, because we are holding the
1538 	 * delayed node's mutex and that mutex must also be locked before the
1539 	 * node's delayed items can be run.
1540 	 */
1541 	ret = __btrfs_add_delayed_item(delayed_node, delayed_item);
1542 	if (unlikely(ret)) {
1543 		btrfs_err(trans->fs_info,
1544 "error adding delayed dir index item, name: %.*s, index: %llu, root: %llu, dir: %llu, dir->index_cnt: %llu, delayed_node->index_cnt: %llu, error: %d",
1545 			  name_len, name, index, btrfs_root_id(delayed_node->root),
1546 			  delayed_node->inode_id, dir->index_cnt,
1547 			  delayed_node->index_cnt, ret);
1548 		btrfs_release_delayed_item(delayed_item);
1549 		btrfs_release_dir_index_item_space(trans);
1550 		mutex_unlock(&delayed_node->mutex);
1551 		goto release_node;
1552 	}
1553 
1554 	if (delayed_node->index_item_leaves == 0 ||
1555 	    delayed_node->curr_index_batch_size + data_len > leaf_data_size) {
1556 		delayed_node->curr_index_batch_size = data_len;
1557 		reserve_leaf_space = true;
1558 	} else {
1559 		delayed_node->curr_index_batch_size += data_len;
1560 		reserve_leaf_space = false;
1561 	}
1562 
1563 	if (reserve_leaf_space) {
1564 		ret = btrfs_delayed_item_reserve_metadata(trans, delayed_item);
1565 		/*
1566 		 * Space was reserved for a dir index item insertion when we
1567 		 * started the transaction, so getting a failure here should be
1568 		 * impossible.
1569 		 */
1570 		if (WARN_ON(ret)) {
1571 			btrfs_release_delayed_item(delayed_item);
1572 			mutex_unlock(&delayed_node->mutex);
1573 			goto release_node;
1574 		}
1575 
1576 		delayed_node->index_item_leaves++;
1577 	} else {
1578 		btrfs_release_dir_index_item_space(trans);
1579 	}
1580 	mutex_unlock(&delayed_node->mutex);
1581 
1582 release_node:
1583 	btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1584 	return ret;
1585 }
1586 
btrfs_delete_delayed_insertion_item(struct btrfs_delayed_node * node,u64 index)1587 static bool btrfs_delete_delayed_insertion_item(struct btrfs_delayed_node *node,
1588 						u64 index)
1589 {
1590 	struct btrfs_delayed_item *item;
1591 
1592 	mutex_lock(&node->mutex);
1593 	item = __btrfs_lookup_delayed_item(&node->ins_root.rb_root, index);
1594 	if (!item) {
1595 		mutex_unlock(&node->mutex);
1596 		return false;
1597 	}
1598 
1599 	/*
1600 	 * For delayed items to insert, we track reserved metadata bytes based
1601 	 * on the number of leaves that we will use.
1602 	 * See btrfs_insert_delayed_dir_index() and
1603 	 * btrfs_delayed_item_reserve_metadata()).
1604 	 */
1605 	ASSERT(item->bytes_reserved == 0);
1606 	ASSERT(node->index_item_leaves > 0);
1607 
1608 	/*
1609 	 * If there's only one leaf reserved, we can decrement this item from the
1610 	 * current batch, otherwise we can not because we don't know which leaf
1611 	 * it belongs to. With the current limit on delayed items, we rarely
1612 	 * accumulate enough dir index items to fill more than one leaf (even
1613 	 * when using a leaf size of 4K).
1614 	 */
1615 	if (node->index_item_leaves == 1) {
1616 		const u32 data_len = item->data_len + sizeof(struct btrfs_item);
1617 
1618 		ASSERT(node->curr_index_batch_size >= data_len);
1619 		node->curr_index_batch_size -= data_len;
1620 	}
1621 
1622 	btrfs_release_delayed_item(item);
1623 
1624 	/* If we now have no more dir index items, we can release all leaves. */
1625 	if (RB_EMPTY_ROOT(&node->ins_root.rb_root)) {
1626 		btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
1627 		node->index_item_leaves = 0;
1628 	}
1629 
1630 	mutex_unlock(&node->mutex);
1631 	return true;
1632 }
1633 
btrfs_delete_delayed_dir_index(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,u64 index)1634 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1635 				   struct btrfs_inode *dir, u64 index)
1636 {
1637 	struct btrfs_delayed_node *node;
1638 	struct btrfs_ref_tracker delayed_node_tracker;
1639 	struct btrfs_delayed_item *item;
1640 	int ret;
1641 
1642 	node = btrfs_get_or_create_delayed_node(dir, &delayed_node_tracker);
1643 	if (IS_ERR(node))
1644 		return PTR_ERR(node);
1645 
1646 	if (btrfs_delete_delayed_insertion_item(node, index)) {
1647 		ret = 0;
1648 		goto end;
1649 	}
1650 
1651 	item = btrfs_alloc_delayed_item(0, node, BTRFS_DELAYED_DELETION_ITEM);
1652 	if (!item) {
1653 		ret = -ENOMEM;
1654 		goto end;
1655 	}
1656 
1657 	item->index = index;
1658 
1659 	ret = btrfs_delayed_item_reserve_metadata(trans, item);
1660 	/*
1661 	 * we have reserved enough space when we start a new transaction,
1662 	 * so reserving metadata failure is impossible.
1663 	 */
1664 	if (ret < 0) {
1665 		btrfs_err(trans->fs_info,
1666 "metadata reservation failed for delayed dir item deletion, index: %llu, root: %llu, inode: %llu, error: %d",
1667 			  index, btrfs_root_id(node->root), node->inode_id, ret);
1668 		btrfs_release_delayed_item(item);
1669 		goto end;
1670 	}
1671 
1672 	mutex_lock(&node->mutex);
1673 	ret = __btrfs_add_delayed_item(node, item);
1674 	if (unlikely(ret)) {
1675 		btrfs_err(trans->fs_info,
1676 "failed to add delayed dir index item, root: %llu, inode: %llu, index: %llu, error: %d",
1677 			  index, btrfs_root_id(node->root), node->inode_id, ret);
1678 		btrfs_delayed_item_release_metadata(dir->root, item);
1679 		btrfs_release_delayed_item(item);
1680 	}
1681 	mutex_unlock(&node->mutex);
1682 end:
1683 	btrfs_release_delayed_node(node, &delayed_node_tracker);
1684 	return ret;
1685 }
1686 
btrfs_inode_delayed_dir_index_count(struct btrfs_inode * inode)1687 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1688 {
1689 	struct btrfs_ref_tracker delayed_node_tracker;
1690 	struct btrfs_delayed_node *delayed_node;
1691 
1692 	delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
1693 	if (!delayed_node)
1694 		return -ENOENT;
1695 
1696 	/*
1697 	 * Since we have held i_mutex of this directory, it is impossible that
1698 	 * a new directory index is added into the delayed node and index_cnt
1699 	 * is updated now. So we needn't lock the delayed node.
1700 	 */
1701 	if (!delayed_node->index_cnt) {
1702 		btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1703 		return -EINVAL;
1704 	}
1705 
1706 	inode->index_cnt = delayed_node->index_cnt;
1707 	btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1708 	return 0;
1709 }
1710 
btrfs_readdir_get_delayed_items(struct btrfs_inode * inode,u64 last_index,struct list_head * ins_list,struct list_head * del_list)1711 bool btrfs_readdir_get_delayed_items(struct btrfs_inode *inode,
1712 				     u64 last_index,
1713 				     struct list_head *ins_list,
1714 				     struct list_head *del_list)
1715 {
1716 	struct btrfs_delayed_node *delayed_node;
1717 	struct btrfs_delayed_item *item;
1718 	struct btrfs_ref_tracker delayed_node_tracker;
1719 
1720 	delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
1721 	if (!delayed_node)
1722 		return false;
1723 
1724 	/*
1725 	 * We can only do one readdir with delayed items at a time because of
1726 	 * item->readdir_list.
1727 	 */
1728 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
1729 	btrfs_inode_lock(inode, 0);
1730 
1731 	mutex_lock(&delayed_node->mutex);
1732 	item = __btrfs_first_delayed_insertion_item(delayed_node);
1733 	while (item && item->index <= last_index) {
1734 		refcount_inc(&item->refs);
1735 		list_add_tail(&item->readdir_list, ins_list);
1736 		item = __btrfs_next_delayed_item(item);
1737 	}
1738 
1739 	item = __btrfs_first_delayed_deletion_item(delayed_node);
1740 	while (item && item->index <= last_index) {
1741 		refcount_inc(&item->refs);
1742 		list_add_tail(&item->readdir_list, del_list);
1743 		item = __btrfs_next_delayed_item(item);
1744 	}
1745 	mutex_unlock(&delayed_node->mutex);
1746 	/*
1747 	 * This delayed node is still cached in the btrfs inode, so refs
1748 	 * must be > 1 now, and we needn't check it is going to be freed
1749 	 * or not.
1750 	 *
1751 	 * Besides that, this function is used to read dir, we do not
1752 	 * insert/delete delayed items in this period. So we also needn't
1753 	 * requeue or dequeue this delayed node.
1754 	 */
1755 	btrfs_delayed_node_ref_tracker_free(delayed_node, &delayed_node_tracker);
1756 	refcount_dec(&delayed_node->refs);
1757 
1758 	return true;
1759 }
1760 
btrfs_readdir_put_delayed_items(struct btrfs_inode * inode,struct list_head * ins_list,struct list_head * del_list)1761 void btrfs_readdir_put_delayed_items(struct btrfs_inode *inode,
1762 				     struct list_head *ins_list,
1763 				     struct list_head *del_list)
1764 {
1765 	struct btrfs_delayed_item *curr, *next;
1766 
1767 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1768 		list_del(&curr->readdir_list);
1769 		if (refcount_dec_and_test(&curr->refs))
1770 			kfree(curr);
1771 	}
1772 
1773 	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1774 		list_del(&curr->readdir_list);
1775 		if (refcount_dec_and_test(&curr->refs))
1776 			kfree(curr);
1777 	}
1778 
1779 	/*
1780 	 * The VFS is going to do up_read(), so we need to downgrade back to a
1781 	 * read lock.
1782 	 */
1783 	downgrade_write(&inode->vfs_inode.i_rwsem);
1784 }
1785 
btrfs_should_delete_dir_index(const struct list_head * del_list,u64 index)1786 bool btrfs_should_delete_dir_index(const struct list_head *del_list, u64 index)
1787 {
1788 	struct btrfs_delayed_item *curr;
1789 	bool ret = false;
1790 
1791 	list_for_each_entry(curr, del_list, readdir_list) {
1792 		if (curr->index > index)
1793 			break;
1794 		if (curr->index == index) {
1795 			ret = true;
1796 			break;
1797 		}
1798 	}
1799 	return ret;
1800 }
1801 
1802 /*
1803  * Read dir info stored in the delayed tree.
1804  */
btrfs_readdir_delayed_dir_index(struct dir_context * ctx,const struct list_head * ins_list)1805 bool btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1806 				     const struct list_head *ins_list)
1807 {
1808 	struct btrfs_dir_item *di;
1809 	struct btrfs_delayed_item *curr, *next;
1810 	struct btrfs_key location;
1811 	char *name;
1812 	int name_len;
1813 	unsigned char d_type;
1814 
1815 	/*
1816 	 * Changing the data of the delayed item is impossible. So
1817 	 * we needn't lock them. And we have held i_mutex of the
1818 	 * directory, nobody can delete any directory indexes now.
1819 	 */
1820 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1821 		bool over;
1822 
1823 		list_del(&curr->readdir_list);
1824 
1825 		if (curr->index < ctx->pos) {
1826 			if (refcount_dec_and_test(&curr->refs))
1827 				kfree(curr);
1828 			continue;
1829 		}
1830 
1831 		ctx->pos = curr->index;
1832 
1833 		di = (struct btrfs_dir_item *)curr->data;
1834 		name = (char *)(di + 1);
1835 		name_len = btrfs_stack_dir_name_len(di);
1836 
1837 		d_type = fs_ftype_to_dtype(btrfs_dir_flags_to_ftype(di->type));
1838 		btrfs_disk_key_to_cpu(&location, &di->location);
1839 
1840 		over = !dir_emit(ctx, name, name_len, location.objectid, d_type);
1841 
1842 		if (refcount_dec_and_test(&curr->refs))
1843 			kfree(curr);
1844 
1845 		if (over)
1846 			return true;
1847 		ctx->pos++;
1848 	}
1849 	return false;
1850 }
1851 
fill_stack_inode_item(struct btrfs_trans_handle * trans,struct btrfs_inode_item * inode_item,struct btrfs_inode * inode)1852 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1853 				  struct btrfs_inode_item *inode_item,
1854 				  struct btrfs_inode *inode)
1855 {
1856 	struct inode *vfs_inode = &inode->vfs_inode;
1857 	u64 flags;
1858 
1859 	btrfs_set_stack_inode_uid(inode_item, i_uid_read(vfs_inode));
1860 	btrfs_set_stack_inode_gid(inode_item, i_gid_read(vfs_inode));
1861 	btrfs_set_stack_inode_size(inode_item, inode->disk_i_size);
1862 	btrfs_set_stack_inode_mode(inode_item, vfs_inode->i_mode);
1863 	btrfs_set_stack_inode_nlink(inode_item, vfs_inode->i_nlink);
1864 	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(vfs_inode));
1865 	btrfs_set_stack_inode_generation(inode_item, inode->generation);
1866 	btrfs_set_stack_inode_sequence(inode_item,
1867 				       inode_peek_iversion(vfs_inode));
1868 	btrfs_set_stack_inode_transid(inode_item, trans->transid);
1869 	btrfs_set_stack_inode_rdev(inode_item, vfs_inode->i_rdev);
1870 	flags = btrfs_inode_combine_flags(inode->flags, inode->ro_flags);
1871 	btrfs_set_stack_inode_flags(inode_item, flags);
1872 	btrfs_set_stack_inode_block_group(inode_item, 0);
1873 
1874 	btrfs_set_stack_timespec_sec(&inode_item->atime,
1875 				     inode_get_atime_sec(vfs_inode));
1876 	btrfs_set_stack_timespec_nsec(&inode_item->atime,
1877 				      inode_get_atime_nsec(vfs_inode));
1878 
1879 	btrfs_set_stack_timespec_sec(&inode_item->mtime,
1880 				     inode_get_mtime_sec(vfs_inode));
1881 	btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1882 				      inode_get_mtime_nsec(vfs_inode));
1883 
1884 	btrfs_set_stack_timespec_sec(&inode_item->ctime,
1885 				     inode_get_ctime_sec(vfs_inode));
1886 	btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1887 				      inode_get_ctime_nsec(vfs_inode));
1888 
1889 	btrfs_set_stack_timespec_sec(&inode_item->otime, inode->i_otime_sec);
1890 	btrfs_set_stack_timespec_nsec(&inode_item->otime, inode->i_otime_nsec);
1891 }
1892 
btrfs_fill_inode(struct btrfs_inode * inode,u32 * rdev)1893 int btrfs_fill_inode(struct btrfs_inode *inode, u32 *rdev)
1894 {
1895 	struct btrfs_delayed_node *delayed_node;
1896 	struct btrfs_ref_tracker delayed_node_tracker;
1897 	struct btrfs_inode_item *inode_item;
1898 	struct inode *vfs_inode = &inode->vfs_inode;
1899 
1900 	delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
1901 	if (!delayed_node)
1902 		return -ENOENT;
1903 
1904 	mutex_lock(&delayed_node->mutex);
1905 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1906 		mutex_unlock(&delayed_node->mutex);
1907 		btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1908 		return -ENOENT;
1909 	}
1910 
1911 	inode_item = &delayed_node->inode_item;
1912 
1913 	i_uid_write(vfs_inode, btrfs_stack_inode_uid(inode_item));
1914 	i_gid_write(vfs_inode, btrfs_stack_inode_gid(inode_item));
1915 	btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
1916 	vfs_inode->i_mode = btrfs_stack_inode_mode(inode_item);
1917 	set_nlink(vfs_inode, btrfs_stack_inode_nlink(inode_item));
1918 	inode_set_bytes(vfs_inode, btrfs_stack_inode_nbytes(inode_item));
1919 	inode->generation = btrfs_stack_inode_generation(inode_item);
1920 	inode->last_trans = btrfs_stack_inode_transid(inode_item);
1921 
1922 	inode_set_iversion_queried(vfs_inode, btrfs_stack_inode_sequence(inode_item));
1923 	vfs_inode->i_rdev = 0;
1924 	*rdev = btrfs_stack_inode_rdev(inode_item);
1925 	btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item),
1926 				&inode->flags, &inode->ro_flags);
1927 
1928 	inode_set_atime(vfs_inode, btrfs_stack_timespec_sec(&inode_item->atime),
1929 			btrfs_stack_timespec_nsec(&inode_item->atime));
1930 
1931 	inode_set_mtime(vfs_inode, btrfs_stack_timespec_sec(&inode_item->mtime),
1932 			btrfs_stack_timespec_nsec(&inode_item->mtime));
1933 
1934 	inode_set_ctime(vfs_inode, btrfs_stack_timespec_sec(&inode_item->ctime),
1935 			btrfs_stack_timespec_nsec(&inode_item->ctime));
1936 
1937 	inode->i_otime_sec = btrfs_stack_timespec_sec(&inode_item->otime);
1938 	inode->i_otime_nsec = btrfs_stack_timespec_nsec(&inode_item->otime);
1939 
1940 	vfs_inode->i_generation = inode->generation;
1941 	if (S_ISDIR(vfs_inode->i_mode))
1942 		inode->index_cnt = (u64)-1;
1943 
1944 	mutex_unlock(&delayed_node->mutex);
1945 	btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1946 	return 0;
1947 }
1948 
btrfs_delayed_update_inode(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)1949 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1950 			       struct btrfs_inode *inode)
1951 {
1952 	struct btrfs_root *root = inode->root;
1953 	struct btrfs_delayed_node *delayed_node;
1954 	struct btrfs_ref_tracker delayed_node_tracker;
1955 	int ret = 0;
1956 
1957 	delayed_node = btrfs_get_or_create_delayed_node(inode, &delayed_node_tracker);
1958 	if (IS_ERR(delayed_node))
1959 		return PTR_ERR(delayed_node);
1960 
1961 	mutex_lock(&delayed_node->mutex);
1962 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1963 		fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1964 		goto release_node;
1965 	}
1966 
1967 	ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
1968 	if (ret)
1969 		goto release_node;
1970 
1971 	fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1972 	set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1973 	delayed_node->count++;
1974 	atomic_inc(&root->fs_info->delayed_root->items);
1975 release_node:
1976 	mutex_unlock(&delayed_node->mutex);
1977 	btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1978 	return ret;
1979 }
1980 
btrfs_delayed_delete_inode_ref(struct btrfs_inode * inode)1981 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1982 {
1983 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1984 	struct btrfs_delayed_node *delayed_node;
1985 	struct btrfs_ref_tracker delayed_node_tracker;
1986 
1987 	/*
1988 	 * we don't do delayed inode updates during log recovery because it
1989 	 * leads to enospc problems.  This means we also can't do
1990 	 * delayed inode refs
1991 	 */
1992 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1993 		return -EAGAIN;
1994 
1995 	delayed_node = btrfs_get_or_create_delayed_node(inode, &delayed_node_tracker);
1996 	if (IS_ERR(delayed_node))
1997 		return PTR_ERR(delayed_node);
1998 
1999 	/*
2000 	 * We don't reserve space for inode ref deletion is because:
2001 	 * - We ONLY do async inode ref deletion for the inode who has only
2002 	 *   one link(i_nlink == 1), it means there is only one inode ref.
2003 	 *   And in most case, the inode ref and the inode item are in the
2004 	 *   same leaf, and we will deal with them at the same time.
2005 	 *   Since we are sure we will reserve the space for the inode item,
2006 	 *   it is unnecessary to reserve space for inode ref deletion.
2007 	 * - If the inode ref and the inode item are not in the same leaf,
2008 	 *   We also needn't worry about enospc problem, because we reserve
2009 	 *   much more space for the inode update than it needs.
2010 	 * - At the worst, we can steal some space from the global reservation.
2011 	 *   It is very rare.
2012 	 */
2013 	mutex_lock(&delayed_node->mutex);
2014 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
2015 		goto release_node;
2016 
2017 	set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
2018 	delayed_node->count++;
2019 	atomic_inc(&fs_info->delayed_root->items);
2020 release_node:
2021 	mutex_unlock(&delayed_node->mutex);
2022 	btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
2023 	return 0;
2024 }
2025 
__btrfs_kill_delayed_node(struct btrfs_delayed_node * delayed_node)2026 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
2027 {
2028 	struct btrfs_root *root = delayed_node->root;
2029 	struct btrfs_fs_info *fs_info = root->fs_info;
2030 	struct btrfs_delayed_item *curr_item, *prev_item;
2031 
2032 	mutex_lock(&delayed_node->mutex);
2033 	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
2034 	while (curr_item) {
2035 		prev_item = curr_item;
2036 		curr_item = __btrfs_next_delayed_item(prev_item);
2037 		btrfs_release_delayed_item(prev_item);
2038 	}
2039 
2040 	if (delayed_node->index_item_leaves > 0) {
2041 		btrfs_delayed_item_release_leaves(delayed_node,
2042 					  delayed_node->index_item_leaves);
2043 		delayed_node->index_item_leaves = 0;
2044 	}
2045 
2046 	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
2047 	while (curr_item) {
2048 		btrfs_delayed_item_release_metadata(root, curr_item);
2049 		prev_item = curr_item;
2050 		curr_item = __btrfs_next_delayed_item(prev_item);
2051 		btrfs_release_delayed_item(prev_item);
2052 	}
2053 
2054 	btrfs_release_delayed_iref(delayed_node);
2055 
2056 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
2057 		btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
2058 		btrfs_release_delayed_inode(delayed_node);
2059 	}
2060 	mutex_unlock(&delayed_node->mutex);
2061 }
2062 
btrfs_kill_delayed_inode_items(struct btrfs_inode * inode)2063 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
2064 {
2065 	struct btrfs_delayed_node *delayed_node;
2066 	struct btrfs_ref_tracker delayed_node_tracker;
2067 
2068 	delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
2069 	if (!delayed_node)
2070 		return;
2071 
2072 	__btrfs_kill_delayed_node(delayed_node);
2073 	btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
2074 }
2075 
btrfs_kill_all_delayed_nodes(struct btrfs_root * root)2076 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
2077 {
2078 	unsigned long index = 0;
2079 	struct btrfs_delayed_node *delayed_nodes[8];
2080 	struct btrfs_ref_tracker delayed_node_trackers[8];
2081 
2082 	while (1) {
2083 		struct btrfs_delayed_node *node;
2084 		int count;
2085 
2086 		xa_lock(&root->delayed_nodes);
2087 		if (xa_empty(&root->delayed_nodes)) {
2088 			xa_unlock(&root->delayed_nodes);
2089 			return;
2090 		}
2091 
2092 		count = 0;
2093 		xa_for_each_start(&root->delayed_nodes, index, node, index) {
2094 			/*
2095 			 * Don't increase refs in case the node is dead and
2096 			 * about to be removed from the tree in the loop below
2097 			 */
2098 			if (refcount_inc_not_zero(&node->refs)) {
2099 				btrfs_delayed_node_ref_tracker_alloc(node,
2100 						     &delayed_node_trackers[count],
2101 						     GFP_ATOMIC);
2102 				delayed_nodes[count] = node;
2103 				count++;
2104 			}
2105 			if (count >= ARRAY_SIZE(delayed_nodes))
2106 				break;
2107 		}
2108 		xa_unlock(&root->delayed_nodes);
2109 		index++;
2110 
2111 		for (int i = 0; i < count; i++) {
2112 			__btrfs_kill_delayed_node(delayed_nodes[i]);
2113 			btrfs_release_delayed_node(delayed_nodes[i],
2114 						   &delayed_node_trackers[i]);
2115 			btrfs_delayed_node_ref_tracker_dir_print(delayed_nodes[i]);
2116 		}
2117 	}
2118 }
2119 
btrfs_destroy_delayed_inodes(struct btrfs_fs_info * fs_info)2120 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
2121 {
2122 	struct btrfs_delayed_node *curr_node, *prev_node;
2123 	struct btrfs_ref_tracker curr_delayed_node_tracker, prev_delayed_node_tracker;
2124 
2125 	curr_node = btrfs_first_delayed_node(fs_info->delayed_root,
2126 					     &curr_delayed_node_tracker);
2127 	while (curr_node) {
2128 		__btrfs_kill_delayed_node(curr_node);
2129 
2130 		prev_node = curr_node;
2131 		prev_delayed_node_tracker = curr_delayed_node_tracker;
2132 		curr_node = btrfs_next_delayed_node(curr_node, &curr_delayed_node_tracker);
2133 		btrfs_release_delayed_node(prev_node, &prev_delayed_node_tracker);
2134 	}
2135 }
2136 
btrfs_log_get_delayed_items(struct btrfs_inode * inode,struct list_head * ins_list,struct list_head * del_list)2137 void btrfs_log_get_delayed_items(struct btrfs_inode *inode,
2138 				 struct list_head *ins_list,
2139 				 struct list_head *del_list)
2140 {
2141 	struct btrfs_delayed_node *node;
2142 	struct btrfs_delayed_item *item;
2143 	struct btrfs_ref_tracker delayed_node_tracker;
2144 
2145 	node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
2146 	if (!node)
2147 		return;
2148 
2149 	mutex_lock(&node->mutex);
2150 	item = __btrfs_first_delayed_insertion_item(node);
2151 	while (item) {
2152 		/*
2153 		 * It's possible that the item is already in a log list. This
2154 		 * can happen in case two tasks are trying to log the same
2155 		 * directory. For example if we have tasks A and task B:
2156 		 *
2157 		 * Task A collected the delayed items into a log list while
2158 		 * under the inode's log_mutex (at btrfs_log_inode()), but it
2159 		 * only releases the items after logging the inodes they point
2160 		 * to (if they are new inodes), which happens after unlocking
2161 		 * the log mutex;
2162 		 *
2163 		 * Task B enters btrfs_log_inode() and acquires the log_mutex
2164 		 * of the same directory inode, before task B releases the
2165 		 * delayed items. This can happen for example when logging some
2166 		 * inode we need to trigger logging of its parent directory, so
2167 		 * logging two files that have the same parent directory can
2168 		 * lead to this.
2169 		 *
2170 		 * If this happens, just ignore delayed items already in a log
2171 		 * list. All the tasks logging the directory are under a log
2172 		 * transaction and whichever finishes first can not sync the log
2173 		 * before the other completes and leaves the log transaction.
2174 		 */
2175 		if (!item->logged && list_empty(&item->log_list)) {
2176 			refcount_inc(&item->refs);
2177 			list_add_tail(&item->log_list, ins_list);
2178 		}
2179 		item = __btrfs_next_delayed_item(item);
2180 	}
2181 
2182 	item = __btrfs_first_delayed_deletion_item(node);
2183 	while (item) {
2184 		/* It may be non-empty, for the same reason mentioned above. */
2185 		if (!item->logged && list_empty(&item->log_list)) {
2186 			refcount_inc(&item->refs);
2187 			list_add_tail(&item->log_list, del_list);
2188 		}
2189 		item = __btrfs_next_delayed_item(item);
2190 	}
2191 	mutex_unlock(&node->mutex);
2192 
2193 	/*
2194 	 * We are called during inode logging, which means the inode is in use
2195 	 * and can not be evicted before we finish logging the inode. So we never
2196 	 * have the last reference on the delayed inode.
2197 	 * Also, we don't use btrfs_release_delayed_node() because that would
2198 	 * requeue the delayed inode (change its order in the list of prepared
2199 	 * nodes) and we don't want to do such change because we don't create or
2200 	 * delete delayed items.
2201 	 */
2202 	ASSERT(refcount_read(&node->refs) > 1);
2203 	btrfs_delayed_node_ref_tracker_free(node, &delayed_node_tracker);
2204 	refcount_dec(&node->refs);
2205 }
2206 
btrfs_log_put_delayed_items(struct btrfs_inode * inode,struct list_head * ins_list,struct list_head * del_list)2207 void btrfs_log_put_delayed_items(struct btrfs_inode *inode,
2208 				 struct list_head *ins_list,
2209 				 struct list_head *del_list)
2210 {
2211 	struct btrfs_delayed_node *node;
2212 	struct btrfs_delayed_item *item;
2213 	struct btrfs_delayed_item *next;
2214 	struct btrfs_ref_tracker delayed_node_tracker;
2215 
2216 	node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
2217 	if (!node)
2218 		return;
2219 
2220 	mutex_lock(&node->mutex);
2221 
2222 	list_for_each_entry_safe(item, next, ins_list, log_list) {
2223 		item->logged = true;
2224 		list_del_init(&item->log_list);
2225 		if (refcount_dec_and_test(&item->refs))
2226 			kfree(item);
2227 	}
2228 
2229 	list_for_each_entry_safe(item, next, del_list, log_list) {
2230 		item->logged = true;
2231 		list_del_init(&item->log_list);
2232 		if (refcount_dec_and_test(&item->refs))
2233 			kfree(item);
2234 	}
2235 
2236 	mutex_unlock(&node->mutex);
2237 
2238 	/*
2239 	 * We are called during inode logging, which means the inode is in use
2240 	 * and can not be evicted before we finish logging the inode. So we never
2241 	 * have the last reference on the delayed inode.
2242 	 * Also, we don't use btrfs_release_delayed_node() because that would
2243 	 * requeue the delayed inode (change its order in the list of prepared
2244 	 * nodes) and we don't want to do such change because we don't create or
2245 	 * delete delayed items.
2246 	 */
2247 	ASSERT(refcount_read(&node->refs) > 1);
2248 	btrfs_delayed_node_ref_tracker_free(node, &delayed_node_tracker);
2249 	refcount_dec(&node->refs);
2250 }
2251