1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
8 #include <linux/bio.h>
9 #include <linux/blk-cgroup.h>
10 #include <linux/file.h>
11 #include <linux/fs.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/xattr.h>
21 #include <linux/posix_acl.h>
22 #include <linux/falloc.h>
23 #include <linux/slab.h>
24 #include <linux/ratelimit.h>
25 #include <linux/btrfs.h>
26 #include <linux/blkdev.h>
27 #include <linux/posix_acl_xattr.h>
28 #include <linux/uio.h>
29 #include <linux/magic.h>
30 #include <linux/iversion.h>
31 #include <linux/swap.h>
32 #include <linux/migrate.h>
33 #include <linux/sched/mm.h>
34 #include <linux/iomap.h>
35 #include <linux/unaligned.h>
36 #include <linux/fsverity.h>
37 #include "misc.h"
38 #include "ctree.h"
39 #include "disk-io.h"
40 #include "transaction.h"
41 #include "btrfs_inode.h"
42 #include "ordered-data.h"
43 #include "xattr.h"
44 #include "tree-log.h"
45 #include "bio.h"
46 #include "compression.h"
47 #include "locking.h"
48 #include "props.h"
49 #include "qgroup.h"
50 #include "delalloc-space.h"
51 #include "block-group.h"
52 #include "space-info.h"
53 #include "zoned.h"
54 #include "subpage.h"
55 #include "inode-item.h"
56 #include "fs.h"
57 #include "accessors.h"
58 #include "extent-tree.h"
59 #include "root-tree.h"
60 #include "defrag.h"
61 #include "dir-item.h"
62 #include "file-item.h"
63 #include "uuid-tree.h"
64 #include "ioctl.h"
65 #include "file.h"
66 #include "acl.h"
67 #include "relocation.h"
68 #include "verity.h"
69 #include "super.h"
70 #include "orphan.h"
71 #include "backref.h"
72 #include "raid-stripe-tree.h"
73 #include "fiemap.h"
74
75 struct btrfs_iget_args {
76 u64 ino;
77 struct btrfs_root *root;
78 };
79
80 struct btrfs_rename_ctx {
81 /* Output field. Stores the index number of the old directory entry. */
82 u64 index;
83 };
84
85 /*
86 * Used by data_reloc_print_warning_inode() to pass needed info for filename
87 * resolution and output of error message.
88 */
89 struct data_reloc_warn {
90 struct btrfs_path path;
91 struct btrfs_fs_info *fs_info;
92 u64 extent_item_size;
93 u64 logical;
94 int mirror_num;
95 };
96
97 /*
98 * For the file_extent_tree, we want to hold the inode lock when we lookup and
99 * update the disk_i_size, but lockdep will complain because our io_tree we hold
100 * the tree lock and get the inode lock when setting delalloc. These two things
101 * are unrelated, so make a class for the file_extent_tree so we don't get the
102 * two locking patterns mixed up.
103 */
104 static struct lock_class_key file_extent_tree_class;
105
106 static const struct inode_operations btrfs_dir_inode_operations;
107 static const struct inode_operations btrfs_symlink_inode_operations;
108 static const struct inode_operations btrfs_special_inode_operations;
109 static const struct inode_operations btrfs_file_inode_operations;
110 static const struct address_space_operations btrfs_aops;
111 static const struct file_operations btrfs_dir_file_operations;
112
113 static struct kmem_cache *btrfs_inode_cachep;
114
115 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
116 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback);
117
118 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
119 struct folio *locked_folio, u64 start,
120 u64 end, struct writeback_control *wbc,
121 bool pages_dirty);
122
data_reloc_print_warning_inode(u64 inum,u64 offset,u64 num_bytes,u64 root,void * warn_ctx)123 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
124 u64 root, void *warn_ctx)
125 {
126 struct data_reloc_warn *warn = warn_ctx;
127 struct btrfs_fs_info *fs_info = warn->fs_info;
128 struct extent_buffer *eb;
129 struct btrfs_inode_item *inode_item;
130 struct inode_fs_paths *ipath = NULL;
131 struct btrfs_root *local_root;
132 struct btrfs_key key;
133 unsigned int nofs_flag;
134 u32 nlink;
135 int ret;
136
137 local_root = btrfs_get_fs_root(fs_info, root, true);
138 if (IS_ERR(local_root)) {
139 ret = PTR_ERR(local_root);
140 goto err;
141 }
142
143 /* This makes the path point to (inum INODE_ITEM ioff). */
144 key.objectid = inum;
145 key.type = BTRFS_INODE_ITEM_KEY;
146 key.offset = 0;
147
148 ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0);
149 if (ret) {
150 btrfs_put_root(local_root);
151 btrfs_release_path(&warn->path);
152 goto err;
153 }
154
155 eb = warn->path.nodes[0];
156 inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item);
157 nlink = btrfs_inode_nlink(eb, inode_item);
158 btrfs_release_path(&warn->path);
159
160 nofs_flag = memalloc_nofs_save();
161 ipath = init_ipath(4096, local_root, &warn->path);
162 memalloc_nofs_restore(nofs_flag);
163 if (IS_ERR(ipath)) {
164 btrfs_put_root(local_root);
165 ret = PTR_ERR(ipath);
166 ipath = NULL;
167 /*
168 * -ENOMEM, not a critical error, just output an generic error
169 * without filename.
170 */
171 btrfs_warn(fs_info,
172 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu",
173 warn->logical, warn->mirror_num, root, inum, offset);
174 return ret;
175 }
176 ret = paths_from_inode(inum, ipath);
177 if (ret < 0)
178 goto err;
179
180 /*
181 * We deliberately ignore the bit ipath might have been too small to
182 * hold all of the paths here
183 */
184 for (int i = 0; i < ipath->fspath->elem_cnt; i++) {
185 btrfs_warn(fs_info,
186 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)",
187 warn->logical, warn->mirror_num, root, inum, offset,
188 fs_info->sectorsize, nlink,
189 (char *)(unsigned long)ipath->fspath->val[i]);
190 }
191
192 btrfs_put_root(local_root);
193 free_ipath(ipath);
194 return 0;
195
196 err:
197 btrfs_warn(fs_info,
198 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d",
199 warn->logical, warn->mirror_num, root, inum, offset, ret);
200
201 free_ipath(ipath);
202 return ret;
203 }
204
205 /*
206 * Do extra user-friendly error output (e.g. lookup all the affected files).
207 *
208 * Return true if we succeeded doing the backref lookup.
209 * Return false if such lookup failed, and has to fallback to the old error message.
210 */
print_data_reloc_error(const struct btrfs_inode * inode,u64 file_off,const u8 * csum,const u8 * csum_expected,int mirror_num)211 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off,
212 const u8 *csum, const u8 *csum_expected,
213 int mirror_num)
214 {
215 struct btrfs_fs_info *fs_info = inode->root->fs_info;
216 struct btrfs_path path = { 0 };
217 struct btrfs_key found_key = { 0 };
218 struct extent_buffer *eb;
219 struct btrfs_extent_item *ei;
220 const u32 csum_size = fs_info->csum_size;
221 u64 logical;
222 u64 flags;
223 u32 item_size;
224 int ret;
225
226 mutex_lock(&fs_info->reloc_mutex);
227 logical = btrfs_get_reloc_bg_bytenr(fs_info);
228 mutex_unlock(&fs_info->reloc_mutex);
229
230 if (logical == U64_MAX) {
231 btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation");
232 btrfs_warn_rl(fs_info,
233 "csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
234 btrfs_root_id(inode->root), btrfs_ino(inode), file_off,
235 CSUM_FMT_VALUE(csum_size, csum),
236 CSUM_FMT_VALUE(csum_size, csum_expected),
237 mirror_num);
238 return;
239 }
240
241 logical += file_off;
242 btrfs_warn_rl(fs_info,
243 "csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
244 btrfs_root_id(inode->root),
245 btrfs_ino(inode), file_off, logical,
246 CSUM_FMT_VALUE(csum_size, csum),
247 CSUM_FMT_VALUE(csum_size, csum_expected),
248 mirror_num);
249
250 ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags);
251 if (ret < 0) {
252 btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d",
253 logical, ret);
254 return;
255 }
256 eb = path.nodes[0];
257 ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item);
258 item_size = btrfs_item_size(eb, path.slots[0]);
259 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
260 unsigned long ptr = 0;
261 u64 ref_root;
262 u8 ref_level;
263
264 while (true) {
265 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
266 item_size, &ref_root,
267 &ref_level);
268 if (ret < 0) {
269 btrfs_warn_rl(fs_info,
270 "failed to resolve tree backref for logical %llu: %d",
271 logical, ret);
272 break;
273 }
274 if (ret > 0)
275 break;
276
277 btrfs_warn_rl(fs_info,
278 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu",
279 logical, mirror_num,
280 (ref_level ? "node" : "leaf"),
281 ref_level, ref_root);
282 }
283 btrfs_release_path(&path);
284 } else {
285 struct btrfs_backref_walk_ctx ctx = { 0 };
286 struct data_reloc_warn reloc_warn = { 0 };
287
288 btrfs_release_path(&path);
289
290 ctx.bytenr = found_key.objectid;
291 ctx.extent_item_pos = logical - found_key.objectid;
292 ctx.fs_info = fs_info;
293
294 reloc_warn.logical = logical;
295 reloc_warn.extent_item_size = found_key.offset;
296 reloc_warn.mirror_num = mirror_num;
297 reloc_warn.fs_info = fs_info;
298
299 iterate_extent_inodes(&ctx, true,
300 data_reloc_print_warning_inode, &reloc_warn);
301 }
302 }
303
btrfs_print_data_csum_error(struct btrfs_inode * inode,u64 logical_start,u8 * csum,u8 * csum_expected,int mirror_num)304 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode,
305 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
306 {
307 struct btrfs_root *root = inode->root;
308 const u32 csum_size = root->fs_info->csum_size;
309
310 /* For data reloc tree, it's better to do a backref lookup instead. */
311 if (btrfs_root_id(root) == BTRFS_DATA_RELOC_TREE_OBJECTID)
312 return print_data_reloc_error(inode, logical_start, csum,
313 csum_expected, mirror_num);
314
315 /* Output without objectid, which is more meaningful */
316 if (btrfs_root_id(root) >= BTRFS_LAST_FREE_OBJECTID) {
317 btrfs_warn_rl(root->fs_info,
318 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
319 btrfs_root_id(root), btrfs_ino(inode),
320 logical_start,
321 CSUM_FMT_VALUE(csum_size, csum),
322 CSUM_FMT_VALUE(csum_size, csum_expected),
323 mirror_num);
324 } else {
325 btrfs_warn_rl(root->fs_info,
326 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
327 btrfs_root_id(root), btrfs_ino(inode),
328 logical_start,
329 CSUM_FMT_VALUE(csum_size, csum),
330 CSUM_FMT_VALUE(csum_size, csum_expected),
331 mirror_num);
332 }
333 }
334
335 /*
336 * Lock inode i_rwsem based on arguments passed.
337 *
338 * ilock_flags can have the following bit set:
339 *
340 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
341 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
342 * return -EAGAIN
343 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
344 */
btrfs_inode_lock(struct btrfs_inode * inode,unsigned int ilock_flags)345 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags)
346 {
347 if (ilock_flags & BTRFS_ILOCK_SHARED) {
348 if (ilock_flags & BTRFS_ILOCK_TRY) {
349 if (!inode_trylock_shared(&inode->vfs_inode))
350 return -EAGAIN;
351 else
352 return 0;
353 }
354 inode_lock_shared(&inode->vfs_inode);
355 } else {
356 if (ilock_flags & BTRFS_ILOCK_TRY) {
357 if (!inode_trylock(&inode->vfs_inode))
358 return -EAGAIN;
359 else
360 return 0;
361 }
362 inode_lock(&inode->vfs_inode);
363 }
364 if (ilock_flags & BTRFS_ILOCK_MMAP)
365 down_write(&inode->i_mmap_lock);
366 return 0;
367 }
368
369 /*
370 * Unock inode i_rwsem.
371 *
372 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
373 * to decide whether the lock acquired is shared or exclusive.
374 */
btrfs_inode_unlock(struct btrfs_inode * inode,unsigned int ilock_flags)375 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags)
376 {
377 if (ilock_flags & BTRFS_ILOCK_MMAP)
378 up_write(&inode->i_mmap_lock);
379 if (ilock_flags & BTRFS_ILOCK_SHARED)
380 inode_unlock_shared(&inode->vfs_inode);
381 else
382 inode_unlock(&inode->vfs_inode);
383 }
384
385 /*
386 * Cleanup all submitted ordered extents in specified range to handle errors
387 * from the btrfs_run_delalloc_range() callback.
388 *
389 * NOTE: caller must ensure that when an error happens, it can not call
390 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
391 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
392 * to be released, which we want to happen only when finishing the ordered
393 * extent (btrfs_finish_ordered_io()).
394 */
btrfs_cleanup_ordered_extents(struct btrfs_inode * inode,u64 offset,u64 bytes)395 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
396 u64 offset, u64 bytes)
397 {
398 unsigned long index = offset >> PAGE_SHIFT;
399 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
400 struct folio *folio;
401
402 while (index <= end_index) {
403 folio = filemap_get_folio(inode->vfs_inode.i_mapping, index);
404 index++;
405 if (IS_ERR(folio))
406 continue;
407
408 /*
409 * Here we just clear all Ordered bits for every page in the
410 * range, then btrfs_mark_ordered_io_finished() will handle
411 * the ordered extent accounting for the range.
412 */
413 btrfs_folio_clamp_clear_ordered(inode->root->fs_info, folio,
414 offset, bytes);
415 folio_put(folio);
416 }
417
418 return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false);
419 }
420
421 static int btrfs_dirty_inode(struct btrfs_inode *inode);
422
btrfs_init_inode_security(struct btrfs_trans_handle * trans,struct btrfs_new_inode_args * args)423 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
424 struct btrfs_new_inode_args *args)
425 {
426 int err;
427
428 if (args->default_acl) {
429 err = __btrfs_set_acl(trans, args->inode, args->default_acl,
430 ACL_TYPE_DEFAULT);
431 if (err)
432 return err;
433 }
434 if (args->acl) {
435 err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS);
436 if (err)
437 return err;
438 }
439 if (!args->default_acl && !args->acl)
440 cache_no_acl(args->inode);
441 return btrfs_xattr_security_init(trans, args->inode, args->dir,
442 &args->dentry->d_name);
443 }
444
445 /*
446 * this does all the hard work for inserting an inline extent into
447 * the btree. The caller should have done a btrfs_drop_extents so that
448 * no overlapping inline items exist in the btree
449 */
insert_inline_extent(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_inode * inode,bool extent_inserted,size_t size,size_t compressed_size,int compress_type,struct folio * compressed_folio,bool update_i_size)450 static int insert_inline_extent(struct btrfs_trans_handle *trans,
451 struct btrfs_path *path,
452 struct btrfs_inode *inode, bool extent_inserted,
453 size_t size, size_t compressed_size,
454 int compress_type,
455 struct folio *compressed_folio,
456 bool update_i_size)
457 {
458 struct btrfs_root *root = inode->root;
459 struct extent_buffer *leaf;
460 const u32 sectorsize = trans->fs_info->sectorsize;
461 char *kaddr;
462 unsigned long ptr;
463 struct btrfs_file_extent_item *ei;
464 int ret;
465 size_t cur_size = size;
466 u64 i_size;
467
468 /*
469 * The decompressed size must still be no larger than a sector. Under
470 * heavy race, we can have size == 0 passed in, but that shouldn't be a
471 * big deal and we can continue the insertion.
472 */
473 ASSERT(size <= sectorsize);
474
475 /*
476 * The compressed size also needs to be no larger than a sector.
477 * That's also why we only need one page as the parameter.
478 */
479 if (compressed_folio)
480 ASSERT(compressed_size <= sectorsize);
481 else
482 ASSERT(compressed_size == 0);
483
484 if (compressed_size && compressed_folio)
485 cur_size = compressed_size;
486
487 if (!extent_inserted) {
488 struct btrfs_key key;
489 size_t datasize;
490
491 key.objectid = btrfs_ino(inode);
492 key.type = BTRFS_EXTENT_DATA_KEY;
493 key.offset = 0;
494
495 datasize = btrfs_file_extent_calc_inline_size(cur_size);
496 ret = btrfs_insert_empty_item(trans, root, path, &key,
497 datasize);
498 if (ret)
499 goto fail;
500 }
501 leaf = path->nodes[0];
502 ei = btrfs_item_ptr(leaf, path->slots[0],
503 struct btrfs_file_extent_item);
504 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
505 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
506 btrfs_set_file_extent_encryption(leaf, ei, 0);
507 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
508 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
509 ptr = btrfs_file_extent_inline_start(ei);
510
511 if (compress_type != BTRFS_COMPRESS_NONE) {
512 kaddr = kmap_local_folio(compressed_folio, 0);
513 write_extent_buffer(leaf, kaddr, ptr, compressed_size);
514 kunmap_local(kaddr);
515
516 btrfs_set_file_extent_compression(leaf, ei,
517 compress_type);
518 } else {
519 struct folio *folio;
520
521 folio = filemap_get_folio(inode->vfs_inode.i_mapping, 0);
522 ASSERT(!IS_ERR(folio));
523 btrfs_set_file_extent_compression(leaf, ei, 0);
524 kaddr = kmap_local_folio(folio, 0);
525 write_extent_buffer(leaf, kaddr, ptr, size);
526 kunmap_local(kaddr);
527 folio_put(folio);
528 }
529 btrfs_release_path(path);
530
531 /*
532 * We align size to sectorsize for inline extents just for simplicity
533 * sake.
534 */
535 ret = btrfs_inode_set_file_extent_range(inode, 0,
536 ALIGN(size, root->fs_info->sectorsize));
537 if (ret)
538 goto fail;
539
540 /*
541 * We're an inline extent, so nobody can extend the file past i_size
542 * without locking a page we already have locked.
543 *
544 * We must do any i_size and inode updates before we unlock the pages.
545 * Otherwise we could end up racing with unlink.
546 */
547 i_size = i_size_read(&inode->vfs_inode);
548 if (update_i_size && size > i_size) {
549 i_size_write(&inode->vfs_inode, size);
550 i_size = size;
551 }
552 inode->disk_i_size = i_size;
553
554 fail:
555 return ret;
556 }
557
can_cow_file_range_inline(struct btrfs_inode * inode,u64 offset,u64 size,size_t compressed_size)558 static bool can_cow_file_range_inline(struct btrfs_inode *inode,
559 u64 offset, u64 size,
560 size_t compressed_size)
561 {
562 struct btrfs_fs_info *fs_info = inode->root->fs_info;
563 u64 data_len = (compressed_size ?: size);
564
565 /* Inline extents must start at offset 0. */
566 if (offset != 0)
567 return false;
568
569 /* Inline extents are limited to sectorsize. */
570 if (size > fs_info->sectorsize)
571 return false;
572
573 /* We do not allow a non-compressed extent to be as large as block size. */
574 if (data_len >= fs_info->sectorsize)
575 return false;
576
577 /* We cannot exceed the maximum inline data size. */
578 if (data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
579 return false;
580
581 /* We cannot exceed the user specified max_inline size. */
582 if (data_len > fs_info->max_inline)
583 return false;
584
585 /* Inline extents must be the entirety of the file. */
586 if (size < i_size_read(&inode->vfs_inode))
587 return false;
588
589 return true;
590 }
591
592 /*
593 * conditionally insert an inline extent into the file. This
594 * does the checks required to make sure the data is small enough
595 * to fit as an inline extent.
596 *
597 * If being used directly, you must have already checked we're allowed to cow
598 * the range by getting true from can_cow_file_range_inline().
599 */
__cow_file_range_inline(struct btrfs_inode * inode,u64 size,size_t compressed_size,int compress_type,struct folio * compressed_folio,bool update_i_size)600 static noinline int __cow_file_range_inline(struct btrfs_inode *inode,
601 u64 size, size_t compressed_size,
602 int compress_type,
603 struct folio *compressed_folio,
604 bool update_i_size)
605 {
606 struct btrfs_drop_extents_args drop_args = { 0 };
607 struct btrfs_root *root = inode->root;
608 struct btrfs_fs_info *fs_info = root->fs_info;
609 struct btrfs_trans_handle *trans;
610 u64 data_len = (compressed_size ?: size);
611 int ret;
612 struct btrfs_path *path;
613
614 path = btrfs_alloc_path();
615 if (!path)
616 return -ENOMEM;
617
618 trans = btrfs_join_transaction(root);
619 if (IS_ERR(trans)) {
620 btrfs_free_path(path);
621 return PTR_ERR(trans);
622 }
623 trans->block_rsv = &inode->block_rsv;
624
625 drop_args.path = path;
626 drop_args.start = 0;
627 drop_args.end = fs_info->sectorsize;
628 drop_args.drop_cache = true;
629 drop_args.replace_extent = true;
630 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len);
631 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
632 if (ret) {
633 btrfs_abort_transaction(trans, ret);
634 goto out;
635 }
636
637 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted,
638 size, compressed_size, compress_type,
639 compressed_folio, update_i_size);
640 if (ret && ret != -ENOSPC) {
641 btrfs_abort_transaction(trans, ret);
642 goto out;
643 } else if (ret == -ENOSPC) {
644 ret = 1;
645 goto out;
646 }
647
648 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found);
649 ret = btrfs_update_inode(trans, inode);
650 if (ret && ret != -ENOSPC) {
651 btrfs_abort_transaction(trans, ret);
652 goto out;
653 } else if (ret == -ENOSPC) {
654 ret = 1;
655 goto out;
656 }
657
658 btrfs_set_inode_full_sync(inode);
659 out:
660 /*
661 * Don't forget to free the reserved space, as for inlined extent
662 * it won't count as data extent, free them directly here.
663 * And at reserve time, it's always aligned to page size, so
664 * just free one page here.
665 */
666 btrfs_qgroup_free_data(inode, NULL, 0, fs_info->sectorsize, NULL);
667 btrfs_free_path(path);
668 btrfs_end_transaction(trans);
669 return ret;
670 }
671
cow_file_range_inline(struct btrfs_inode * inode,struct folio * locked_folio,u64 offset,u64 end,size_t compressed_size,int compress_type,struct folio * compressed_folio,bool update_i_size)672 static noinline int cow_file_range_inline(struct btrfs_inode *inode,
673 struct folio *locked_folio,
674 u64 offset, u64 end,
675 size_t compressed_size,
676 int compress_type,
677 struct folio *compressed_folio,
678 bool update_i_size)
679 {
680 struct extent_state *cached = NULL;
681 unsigned long clear_flags = EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
682 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING | EXTENT_LOCKED;
683 u64 size = min_t(u64, i_size_read(&inode->vfs_inode), end + 1);
684 int ret;
685
686 if (!can_cow_file_range_inline(inode, offset, size, compressed_size))
687 return 1;
688
689 btrfs_lock_extent(&inode->io_tree, offset, end, &cached);
690 ret = __cow_file_range_inline(inode, size, compressed_size,
691 compress_type, compressed_folio,
692 update_i_size);
693 if (ret > 0) {
694 btrfs_unlock_extent(&inode->io_tree, offset, end, &cached);
695 return ret;
696 }
697
698 /*
699 * In the successful case (ret == 0 here), cow_file_range will return 1.
700 *
701 * Quite a bit further up the callstack in extent_writepage(), ret == 1
702 * is treated as a short circuited success and does not unlock the folio,
703 * so we must do it here.
704 *
705 * In the failure case, the locked_folio does get unlocked by
706 * btrfs_folio_end_all_writers, which asserts that it is still locked
707 * at that point, so we must *not* unlock it here.
708 *
709 * The other two callsites in compress_file_range do not have a
710 * locked_folio, so they are not relevant to this logic.
711 */
712 if (ret == 0)
713 locked_folio = NULL;
714
715 extent_clear_unlock_delalloc(inode, offset, end, locked_folio, &cached,
716 clear_flags, PAGE_UNLOCK |
717 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
718 return ret;
719 }
720
721 struct async_extent {
722 u64 start;
723 u64 ram_size;
724 u64 compressed_size;
725 struct folio **folios;
726 unsigned long nr_folios;
727 int compress_type;
728 struct list_head list;
729 };
730
731 struct async_chunk {
732 struct btrfs_inode *inode;
733 struct folio *locked_folio;
734 u64 start;
735 u64 end;
736 blk_opf_t write_flags;
737 struct list_head extents;
738 struct cgroup_subsys_state *blkcg_css;
739 struct btrfs_work work;
740 struct async_cow *async_cow;
741 };
742
743 struct async_cow {
744 atomic_t num_chunks;
745 struct async_chunk chunks[];
746 };
747
add_async_extent(struct async_chunk * cow,u64 start,u64 ram_size,u64 compressed_size,struct folio ** folios,unsigned long nr_folios,int compress_type)748 static noinline int add_async_extent(struct async_chunk *cow,
749 u64 start, u64 ram_size,
750 u64 compressed_size,
751 struct folio **folios,
752 unsigned long nr_folios,
753 int compress_type)
754 {
755 struct async_extent *async_extent;
756
757 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
758 if (!async_extent)
759 return -ENOMEM;
760 async_extent->start = start;
761 async_extent->ram_size = ram_size;
762 async_extent->compressed_size = compressed_size;
763 async_extent->folios = folios;
764 async_extent->nr_folios = nr_folios;
765 async_extent->compress_type = compress_type;
766 list_add_tail(&async_extent->list, &cow->extents);
767 return 0;
768 }
769
770 /*
771 * Check if the inode needs to be submitted to compression, based on mount
772 * options, defragmentation, properties or heuristics.
773 */
inode_need_compress(struct btrfs_inode * inode,u64 start,u64 end)774 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
775 u64 end)
776 {
777 struct btrfs_fs_info *fs_info = inode->root->fs_info;
778
779 if (!btrfs_inode_can_compress(inode)) {
780 DEBUG_WARN("BTRFS: unexpected compression for ino %llu", btrfs_ino(inode));
781 return 0;
782 }
783
784 /* force compress */
785 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
786 return 1;
787 /* defrag ioctl */
788 if (inode->defrag_compress)
789 return 1;
790 /* bad compression ratios */
791 if (inode->flags & BTRFS_INODE_NOCOMPRESS)
792 return 0;
793 if (btrfs_test_opt(fs_info, COMPRESS) ||
794 inode->flags & BTRFS_INODE_COMPRESS ||
795 inode->prop_compress)
796 return btrfs_compress_heuristic(inode, start, end);
797 return 0;
798 }
799
inode_should_defrag(struct btrfs_inode * inode,u64 start,u64 end,u64 num_bytes,u32 small_write)800 static inline void inode_should_defrag(struct btrfs_inode *inode,
801 u64 start, u64 end, u64 num_bytes, u32 small_write)
802 {
803 /* If this is a small write inside eof, kick off a defrag */
804 if (num_bytes < small_write &&
805 (start > 0 || end + 1 < inode->disk_i_size))
806 btrfs_add_inode_defrag(inode, small_write);
807 }
808
extent_range_clear_dirty_for_io(struct btrfs_inode * inode,u64 start,u64 end)809 static int extent_range_clear_dirty_for_io(struct btrfs_inode *inode, u64 start, u64 end)
810 {
811 unsigned long end_index = end >> PAGE_SHIFT;
812 struct folio *folio;
813 int ret = 0;
814
815 for (unsigned long index = start >> PAGE_SHIFT;
816 index <= end_index; index++) {
817 folio = filemap_get_folio(inode->vfs_inode.i_mapping, index);
818 if (IS_ERR(folio)) {
819 if (!ret)
820 ret = PTR_ERR(folio);
821 continue;
822 }
823 btrfs_folio_clamp_clear_dirty(inode->root->fs_info, folio, start,
824 end + 1 - start);
825 folio_put(folio);
826 }
827 return ret;
828 }
829
830 /*
831 * Work queue call back to started compression on a file and pages.
832 *
833 * This is done inside an ordered work queue, and the compression is spread
834 * across many cpus. The actual IO submission is step two, and the ordered work
835 * queue takes care of making sure that happens in the same order things were
836 * put onto the queue by writepages and friends.
837 *
838 * If this code finds it can't get good compression, it puts an entry onto the
839 * work queue to write the uncompressed bytes. This makes sure that both
840 * compressed inodes and uncompressed inodes are written in the same order that
841 * the flusher thread sent them down.
842 */
compress_file_range(struct btrfs_work * work)843 static void compress_file_range(struct btrfs_work *work)
844 {
845 struct async_chunk *async_chunk =
846 container_of(work, struct async_chunk, work);
847 struct btrfs_inode *inode = async_chunk->inode;
848 struct btrfs_fs_info *fs_info = inode->root->fs_info;
849 struct address_space *mapping = inode->vfs_inode.i_mapping;
850 u64 blocksize = fs_info->sectorsize;
851 u64 start = async_chunk->start;
852 u64 end = async_chunk->end;
853 u64 actual_end;
854 u64 i_size;
855 int ret = 0;
856 struct folio **folios;
857 unsigned long nr_folios;
858 unsigned long total_compressed = 0;
859 unsigned long total_in = 0;
860 unsigned int poff;
861 int i;
862 int compress_type = fs_info->compress_type;
863 int compress_level = fs_info->compress_level;
864
865 inode_should_defrag(inode, start, end, end - start + 1, SZ_16K);
866
867 /*
868 * We need to call clear_page_dirty_for_io on each page in the range.
869 * Otherwise applications with the file mmap'd can wander in and change
870 * the page contents while we are compressing them.
871 */
872 ret = extent_range_clear_dirty_for_io(inode, start, end);
873
874 /*
875 * All the folios should have been locked thus no failure.
876 *
877 * And even if some folios are missing, btrfs_compress_folios()
878 * would handle them correctly, so here just do an ASSERT() check for
879 * early logic errors.
880 */
881 ASSERT(ret == 0);
882
883 /*
884 * We need to save i_size before now because it could change in between
885 * us evaluating the size and assigning it. This is because we lock and
886 * unlock the page in truncate and fallocate, and then modify the i_size
887 * later on.
888 *
889 * The barriers are to emulate READ_ONCE, remove that once i_size_read
890 * does that for us.
891 */
892 barrier();
893 i_size = i_size_read(&inode->vfs_inode);
894 barrier();
895 actual_end = min_t(u64, i_size, end + 1);
896 again:
897 folios = NULL;
898 nr_folios = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
899 nr_folios = min_t(unsigned long, nr_folios, BTRFS_MAX_COMPRESSED_PAGES);
900
901 /*
902 * we don't want to send crud past the end of i_size through
903 * compression, that's just a waste of CPU time. So, if the
904 * end of the file is before the start of our current
905 * requested range of bytes, we bail out to the uncompressed
906 * cleanup code that can deal with all of this.
907 *
908 * It isn't really the fastest way to fix things, but this is a
909 * very uncommon corner.
910 */
911 if (actual_end <= start)
912 goto cleanup_and_bail_uncompressed;
913
914 total_compressed = actual_end - start;
915
916 /*
917 * Skip compression for a small file range(<=blocksize) that
918 * isn't an inline extent, since it doesn't save disk space at all.
919 */
920 if (total_compressed <= blocksize &&
921 (start > 0 || end + 1 < inode->disk_i_size))
922 goto cleanup_and_bail_uncompressed;
923
924 total_compressed = min_t(unsigned long, total_compressed,
925 BTRFS_MAX_UNCOMPRESSED);
926 total_in = 0;
927 ret = 0;
928
929 /*
930 * We do compression for mount -o compress and when the inode has not
931 * been flagged as NOCOMPRESS. This flag can change at any time if we
932 * discover bad compression ratios.
933 */
934 if (!inode_need_compress(inode, start, end))
935 goto cleanup_and_bail_uncompressed;
936
937 folios = kcalloc(nr_folios, sizeof(struct folio *), GFP_NOFS);
938 if (!folios) {
939 /*
940 * Memory allocation failure is not a fatal error, we can fall
941 * back to uncompressed code.
942 */
943 goto cleanup_and_bail_uncompressed;
944 }
945
946 if (inode->defrag_compress) {
947 compress_type = inode->defrag_compress;
948 compress_level = inode->defrag_compress_level;
949 } else if (inode->prop_compress) {
950 compress_type = inode->prop_compress;
951 }
952
953 /* Compression level is applied here. */
954 ret = btrfs_compress_folios(compress_type, compress_level,
955 mapping, start, folios, &nr_folios, &total_in,
956 &total_compressed);
957 if (ret)
958 goto mark_incompressible;
959
960 /*
961 * Zero the tail end of the last page, as we might be sending it down
962 * to disk.
963 */
964 poff = offset_in_page(total_compressed);
965 if (poff)
966 folio_zero_range(folios[nr_folios - 1], poff, PAGE_SIZE - poff);
967
968 /*
969 * Try to create an inline extent.
970 *
971 * If we didn't compress the entire range, try to create an uncompressed
972 * inline extent, else a compressed one.
973 *
974 * Check cow_file_range() for why we don't even try to create inline
975 * extent for the subpage case.
976 */
977 if (total_in < actual_end)
978 ret = cow_file_range_inline(inode, NULL, start, end, 0,
979 BTRFS_COMPRESS_NONE, NULL, false);
980 else
981 ret = cow_file_range_inline(inode, NULL, start, end, total_compressed,
982 compress_type, folios[0], false);
983 if (ret <= 0) {
984 if (ret < 0)
985 mapping_set_error(mapping, -EIO);
986 goto free_pages;
987 }
988
989 /*
990 * We aren't doing an inline extent. Round the compressed size up to a
991 * block size boundary so the allocator does sane things.
992 */
993 total_compressed = ALIGN(total_compressed, blocksize);
994
995 /*
996 * One last check to make sure the compression is really a win, compare
997 * the page count read with the blocks on disk, compression must free at
998 * least one sector.
999 */
1000 total_in = round_up(total_in, fs_info->sectorsize);
1001 if (total_compressed + blocksize > total_in)
1002 goto mark_incompressible;
1003
1004 /*
1005 * The async work queues will take care of doing actual allocation on
1006 * disk for these compressed pages, and will submit the bios.
1007 */
1008 ret = add_async_extent(async_chunk, start, total_in, total_compressed, folios,
1009 nr_folios, compress_type);
1010 BUG_ON(ret);
1011 if (start + total_in < end) {
1012 start += total_in;
1013 cond_resched();
1014 goto again;
1015 }
1016 return;
1017
1018 mark_incompressible:
1019 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress)
1020 inode->flags |= BTRFS_INODE_NOCOMPRESS;
1021 cleanup_and_bail_uncompressed:
1022 ret = add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
1023 BTRFS_COMPRESS_NONE);
1024 BUG_ON(ret);
1025 free_pages:
1026 if (folios) {
1027 for (i = 0; i < nr_folios; i++) {
1028 WARN_ON(folios[i]->mapping);
1029 btrfs_free_compr_folio(folios[i]);
1030 }
1031 kfree(folios);
1032 }
1033 }
1034
free_async_extent_pages(struct async_extent * async_extent)1035 static void free_async_extent_pages(struct async_extent *async_extent)
1036 {
1037 int i;
1038
1039 if (!async_extent->folios)
1040 return;
1041
1042 for (i = 0; i < async_extent->nr_folios; i++) {
1043 WARN_ON(async_extent->folios[i]->mapping);
1044 btrfs_free_compr_folio(async_extent->folios[i]);
1045 }
1046 kfree(async_extent->folios);
1047 async_extent->nr_folios = 0;
1048 async_extent->folios = NULL;
1049 }
1050
submit_uncompressed_range(struct btrfs_inode * inode,struct async_extent * async_extent,struct folio * locked_folio)1051 static void submit_uncompressed_range(struct btrfs_inode *inode,
1052 struct async_extent *async_extent,
1053 struct folio *locked_folio)
1054 {
1055 u64 start = async_extent->start;
1056 u64 end = async_extent->start + async_extent->ram_size - 1;
1057 int ret;
1058 struct writeback_control wbc = {
1059 .sync_mode = WB_SYNC_ALL,
1060 .range_start = start,
1061 .range_end = end,
1062 .no_cgroup_owner = 1,
1063 };
1064
1065 wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode);
1066 ret = run_delalloc_cow(inode, locked_folio, start, end,
1067 &wbc, false);
1068 wbc_detach_inode(&wbc);
1069 if (ret < 0) {
1070 if (locked_folio)
1071 btrfs_folio_end_lock(inode->root->fs_info, locked_folio,
1072 start, async_extent->ram_size);
1073 btrfs_err_rl(inode->root->fs_info,
1074 "%s failed, root=%llu inode=%llu start=%llu len=%llu: %d",
1075 __func__, btrfs_root_id(inode->root),
1076 btrfs_ino(inode), start, async_extent->ram_size, ret);
1077 }
1078 }
1079
submit_one_async_extent(struct async_chunk * async_chunk,struct async_extent * async_extent,u64 * alloc_hint)1080 static void submit_one_async_extent(struct async_chunk *async_chunk,
1081 struct async_extent *async_extent,
1082 u64 *alloc_hint)
1083 {
1084 struct btrfs_inode *inode = async_chunk->inode;
1085 struct extent_io_tree *io_tree = &inode->io_tree;
1086 struct btrfs_root *root = inode->root;
1087 struct btrfs_fs_info *fs_info = root->fs_info;
1088 struct btrfs_ordered_extent *ordered;
1089 struct btrfs_file_extent file_extent;
1090 struct btrfs_key ins;
1091 struct folio *locked_folio = NULL;
1092 struct extent_state *cached = NULL;
1093 struct extent_map *em;
1094 int ret = 0;
1095 bool free_pages = false;
1096 u64 start = async_extent->start;
1097 u64 end = async_extent->start + async_extent->ram_size - 1;
1098
1099 if (async_chunk->blkcg_css)
1100 kthread_associate_blkcg(async_chunk->blkcg_css);
1101
1102 /*
1103 * If async_chunk->locked_folio is in the async_extent range, we need to
1104 * handle it.
1105 */
1106 if (async_chunk->locked_folio) {
1107 u64 locked_folio_start = folio_pos(async_chunk->locked_folio);
1108 u64 locked_folio_end = locked_folio_start +
1109 folio_size(async_chunk->locked_folio) - 1;
1110
1111 if (!(start >= locked_folio_end || end <= locked_folio_start))
1112 locked_folio = async_chunk->locked_folio;
1113 }
1114
1115 if (async_extent->compress_type == BTRFS_COMPRESS_NONE) {
1116 ASSERT(!async_extent->folios);
1117 ASSERT(async_extent->nr_folios == 0);
1118 submit_uncompressed_range(inode, async_extent, locked_folio);
1119 free_pages = true;
1120 goto done;
1121 }
1122
1123 ret = btrfs_reserve_extent(root, async_extent->ram_size,
1124 async_extent->compressed_size,
1125 async_extent->compressed_size,
1126 0, *alloc_hint, &ins, 1, 1);
1127 if (ret) {
1128 /*
1129 * We can't reserve contiguous space for the compressed size.
1130 * Unlikely, but it's possible that we could have enough
1131 * non-contiguous space for the uncompressed size instead. So
1132 * fall back to uncompressed.
1133 */
1134 submit_uncompressed_range(inode, async_extent, locked_folio);
1135 free_pages = true;
1136 goto done;
1137 }
1138
1139 btrfs_lock_extent(io_tree, start, end, &cached);
1140
1141 /* Here we're doing allocation and writeback of the compressed pages */
1142 file_extent.disk_bytenr = ins.objectid;
1143 file_extent.disk_num_bytes = ins.offset;
1144 file_extent.ram_bytes = async_extent->ram_size;
1145 file_extent.num_bytes = async_extent->ram_size;
1146 file_extent.offset = 0;
1147 file_extent.compression = async_extent->compress_type;
1148
1149 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED);
1150 if (IS_ERR(em)) {
1151 ret = PTR_ERR(em);
1152 goto out_free_reserve;
1153 }
1154 btrfs_free_extent_map(em);
1155
1156 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent,
1157 1U << BTRFS_ORDERED_COMPRESSED);
1158 if (IS_ERR(ordered)) {
1159 btrfs_drop_extent_map_range(inode, start, end, false);
1160 ret = PTR_ERR(ordered);
1161 goto out_free_reserve;
1162 }
1163 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1164
1165 /* Clear dirty, set writeback and unlock the pages. */
1166 extent_clear_unlock_delalloc(inode, start, end,
1167 NULL, &cached, EXTENT_LOCKED | EXTENT_DELALLOC,
1168 PAGE_UNLOCK | PAGE_START_WRITEBACK);
1169 btrfs_submit_compressed_write(ordered,
1170 async_extent->folios, /* compressed_folios */
1171 async_extent->nr_folios,
1172 async_chunk->write_flags, true);
1173 *alloc_hint = ins.objectid + ins.offset;
1174 done:
1175 if (async_chunk->blkcg_css)
1176 kthread_associate_blkcg(NULL);
1177 if (free_pages)
1178 free_async_extent_pages(async_extent);
1179 kfree(async_extent);
1180 return;
1181
1182 out_free_reserve:
1183 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1184 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, true);
1185 mapping_set_error(inode->vfs_inode.i_mapping, -EIO);
1186 extent_clear_unlock_delalloc(inode, start, end,
1187 NULL, &cached,
1188 EXTENT_LOCKED | EXTENT_DELALLOC |
1189 EXTENT_DELALLOC_NEW |
1190 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
1191 PAGE_UNLOCK | PAGE_START_WRITEBACK |
1192 PAGE_END_WRITEBACK);
1193 free_async_extent_pages(async_extent);
1194 if (async_chunk->blkcg_css)
1195 kthread_associate_blkcg(NULL);
1196 btrfs_debug(fs_info,
1197 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d",
1198 btrfs_root_id(root), btrfs_ino(inode), start,
1199 async_extent->ram_size, ret);
1200 kfree(async_extent);
1201 }
1202
btrfs_get_extent_allocation_hint(struct btrfs_inode * inode,u64 start,u64 num_bytes)1203 u64 btrfs_get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
1204 u64 num_bytes)
1205 {
1206 struct extent_map_tree *em_tree = &inode->extent_tree;
1207 struct extent_map *em;
1208 u64 alloc_hint = 0;
1209
1210 read_lock(&em_tree->lock);
1211 em = btrfs_search_extent_mapping(em_tree, start, num_bytes);
1212 if (em) {
1213 /*
1214 * if block start isn't an actual block number then find the
1215 * first block in this inode and use that as a hint. If that
1216 * block is also bogus then just don't worry about it.
1217 */
1218 if (em->disk_bytenr >= EXTENT_MAP_LAST_BYTE) {
1219 btrfs_free_extent_map(em);
1220 em = btrfs_search_extent_mapping(em_tree, 0, 0);
1221 if (em && em->disk_bytenr < EXTENT_MAP_LAST_BYTE)
1222 alloc_hint = btrfs_extent_map_block_start(em);
1223 if (em)
1224 btrfs_free_extent_map(em);
1225 } else {
1226 alloc_hint = btrfs_extent_map_block_start(em);
1227 btrfs_free_extent_map(em);
1228 }
1229 }
1230 read_unlock(&em_tree->lock);
1231
1232 return alloc_hint;
1233 }
1234
1235 /*
1236 * when extent_io.c finds a delayed allocation range in the file,
1237 * the call backs end up in this code. The basic idea is to
1238 * allocate extents on disk for the range, and create ordered data structs
1239 * in ram to track those extents.
1240 *
1241 * locked_folio is the folio that writepage had locked already. We use
1242 * it to make sure we don't do extra locks or unlocks.
1243 *
1244 * When this function fails, it unlocks all pages except @locked_folio.
1245 *
1246 * When this function successfully creates an inline extent, it returns 1 and
1247 * unlocks all pages including locked_folio and starts I/O on them.
1248 * (In reality inline extents are limited to a single page, so locked_folio is
1249 * the only page handled anyway).
1250 *
1251 * When this function succeed and creates a normal extent, the page locking
1252 * status depends on the passed in flags:
1253 *
1254 * - If @keep_locked is set, all pages are kept locked.
1255 * - Else all pages except for @locked_folio are unlocked.
1256 *
1257 * When a failure happens in the second or later iteration of the
1258 * while-loop, the ordered extents created in previous iterations are cleaned up.
1259 */
cow_file_range(struct btrfs_inode * inode,struct folio * locked_folio,u64 start,u64 end,u64 * done_offset,bool keep_locked,bool no_inline)1260 static noinline int cow_file_range(struct btrfs_inode *inode,
1261 struct folio *locked_folio, u64 start,
1262 u64 end, u64 *done_offset,
1263 bool keep_locked, bool no_inline)
1264 {
1265 struct btrfs_root *root = inode->root;
1266 struct btrfs_fs_info *fs_info = root->fs_info;
1267 struct extent_state *cached = NULL;
1268 u64 alloc_hint = 0;
1269 u64 orig_start = start;
1270 u64 num_bytes;
1271 u64 cur_alloc_size = 0;
1272 u64 min_alloc_size;
1273 u64 blocksize = fs_info->sectorsize;
1274 struct btrfs_key ins;
1275 struct extent_map *em;
1276 unsigned clear_bits;
1277 unsigned long page_ops;
1278 int ret = 0;
1279
1280 if (btrfs_is_free_space_inode(inode)) {
1281 ret = -EINVAL;
1282 goto out_unlock;
1283 }
1284
1285 num_bytes = ALIGN(end - start + 1, blocksize);
1286 num_bytes = max(blocksize, num_bytes);
1287 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1288
1289 inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1290
1291 if (!no_inline) {
1292 /* lets try to make an inline extent */
1293 ret = cow_file_range_inline(inode, locked_folio, start, end, 0,
1294 BTRFS_COMPRESS_NONE, NULL, false);
1295 if (ret <= 0) {
1296 /*
1297 * We succeeded, return 1 so the caller knows we're done
1298 * with this page and already handled the IO.
1299 *
1300 * If there was an error then cow_file_range_inline() has
1301 * already done the cleanup.
1302 */
1303 if (ret == 0)
1304 ret = 1;
1305 goto done;
1306 }
1307 }
1308
1309 alloc_hint = btrfs_get_extent_allocation_hint(inode, start, num_bytes);
1310
1311 /*
1312 * We're not doing compressed IO, don't unlock the first page (which
1313 * the caller expects to stay locked), don't clear any dirty bits and
1314 * don't set any writeback bits.
1315 *
1316 * Do set the Ordered (Private2) bit so we know this page was properly
1317 * setup for writepage.
1318 */
1319 page_ops = (keep_locked ? 0 : PAGE_UNLOCK);
1320 page_ops |= PAGE_SET_ORDERED;
1321
1322 /*
1323 * Relocation relies on the relocated extents to have exactly the same
1324 * size as the original extents. Normally writeback for relocation data
1325 * extents follows a NOCOW path because relocation preallocates the
1326 * extents. However, due to an operation such as scrub turning a block
1327 * group to RO mode, it may fallback to COW mode, so we must make sure
1328 * an extent allocated during COW has exactly the requested size and can
1329 * not be split into smaller extents, otherwise relocation breaks and
1330 * fails during the stage where it updates the bytenr of file extent
1331 * items.
1332 */
1333 if (btrfs_is_data_reloc_root(root))
1334 min_alloc_size = num_bytes;
1335 else
1336 min_alloc_size = fs_info->sectorsize;
1337
1338 while (num_bytes > 0) {
1339 struct btrfs_ordered_extent *ordered;
1340 struct btrfs_file_extent file_extent;
1341
1342 ret = btrfs_reserve_extent(root, num_bytes, num_bytes,
1343 min_alloc_size, 0, alloc_hint,
1344 &ins, 1, 1);
1345 if (ret == -EAGAIN) {
1346 /*
1347 * btrfs_reserve_extent only returns -EAGAIN for zoned
1348 * file systems, which is an indication that there are
1349 * no active zones to allocate from at the moment.
1350 *
1351 * If this is the first loop iteration, wait for at
1352 * least one zone to finish before retrying the
1353 * allocation. Otherwise ask the caller to write out
1354 * the already allocated blocks before coming back to
1355 * us, or return -ENOSPC if it can't handle retries.
1356 */
1357 ASSERT(btrfs_is_zoned(fs_info));
1358 if (start == orig_start) {
1359 wait_on_bit_io(&inode->root->fs_info->flags,
1360 BTRFS_FS_NEED_ZONE_FINISH,
1361 TASK_UNINTERRUPTIBLE);
1362 continue;
1363 }
1364 if (done_offset) {
1365 /*
1366 * Move @end to the end of the processed range,
1367 * and exit the loop to unlock the processed extents.
1368 */
1369 end = start - 1;
1370 ret = 0;
1371 break;
1372 }
1373 ret = -ENOSPC;
1374 }
1375 if (ret < 0)
1376 goto out_unlock;
1377 cur_alloc_size = ins.offset;
1378
1379 file_extent.disk_bytenr = ins.objectid;
1380 file_extent.disk_num_bytes = ins.offset;
1381 file_extent.num_bytes = ins.offset;
1382 file_extent.ram_bytes = ins.offset;
1383 file_extent.offset = 0;
1384 file_extent.compression = BTRFS_COMPRESS_NONE;
1385
1386 /*
1387 * Locked range will be released either during error clean up or
1388 * after the whole range is finished.
1389 */
1390 btrfs_lock_extent(&inode->io_tree, start, start + cur_alloc_size - 1,
1391 &cached);
1392
1393 em = btrfs_create_io_em(inode, start, &file_extent,
1394 BTRFS_ORDERED_REGULAR);
1395 if (IS_ERR(em)) {
1396 btrfs_unlock_extent(&inode->io_tree, start,
1397 start + cur_alloc_size - 1, &cached);
1398 ret = PTR_ERR(em);
1399 goto out_reserve;
1400 }
1401 btrfs_free_extent_map(em);
1402
1403 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent,
1404 1U << BTRFS_ORDERED_REGULAR);
1405 if (IS_ERR(ordered)) {
1406 btrfs_unlock_extent(&inode->io_tree, start,
1407 start + cur_alloc_size - 1, &cached);
1408 ret = PTR_ERR(ordered);
1409 goto out_drop_extent_cache;
1410 }
1411
1412 if (btrfs_is_data_reloc_root(root)) {
1413 ret = btrfs_reloc_clone_csums(ordered);
1414
1415 /*
1416 * Only drop cache here, and process as normal.
1417 *
1418 * We must not allow extent_clear_unlock_delalloc()
1419 * at out_unlock label to free meta of this ordered
1420 * extent, as its meta should be freed by
1421 * btrfs_finish_ordered_io().
1422 *
1423 * So we must continue until @start is increased to
1424 * skip current ordered extent.
1425 */
1426 if (ret)
1427 btrfs_drop_extent_map_range(inode, start,
1428 start + cur_alloc_size - 1,
1429 false);
1430 }
1431 btrfs_put_ordered_extent(ordered);
1432
1433 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1434
1435 if (num_bytes < cur_alloc_size)
1436 num_bytes = 0;
1437 else
1438 num_bytes -= cur_alloc_size;
1439 alloc_hint = ins.objectid + ins.offset;
1440 start += cur_alloc_size;
1441 cur_alloc_size = 0;
1442
1443 /*
1444 * btrfs_reloc_clone_csums() error, since start is increased
1445 * extent_clear_unlock_delalloc() at out_unlock label won't
1446 * free metadata of current ordered extent, we're OK to exit.
1447 */
1448 if (ret)
1449 goto out_unlock;
1450 }
1451 extent_clear_unlock_delalloc(inode, orig_start, end, locked_folio, &cached,
1452 EXTENT_LOCKED | EXTENT_DELALLOC, page_ops);
1453 done:
1454 if (done_offset)
1455 *done_offset = end;
1456 return ret;
1457
1458 out_drop_extent_cache:
1459 btrfs_drop_extent_map_range(inode, start, start + cur_alloc_size - 1, false);
1460 out_reserve:
1461 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1462 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, true);
1463 out_unlock:
1464 /*
1465 * Now, we have three regions to clean up:
1466 *
1467 * |-------(1)----|---(2)---|-------------(3)----------|
1468 * `- orig_start `- start `- start + cur_alloc_size `- end
1469 *
1470 * We process each region below.
1471 */
1472
1473 /*
1474 * For the range (1). We have already instantiated the ordered extents
1475 * for this region, thus we need to cleanup those ordered extents.
1476 * EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV
1477 * are also handled by the ordered extents cleanup.
1478 *
1479 * So here we only clear EXTENT_LOCKED and EXTENT_DELALLOC flag, and
1480 * finish the writeback of the involved folios, which will be never submitted.
1481 */
1482 if (orig_start < start) {
1483 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC;
1484 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1485
1486 if (!locked_folio)
1487 mapping_set_error(inode->vfs_inode.i_mapping, ret);
1488
1489 btrfs_cleanup_ordered_extents(inode, orig_start, start - orig_start);
1490 extent_clear_unlock_delalloc(inode, orig_start, start - 1,
1491 locked_folio, NULL, clear_bits, page_ops);
1492 }
1493
1494 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1495 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1496 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1497
1498 /*
1499 * For the range (2). If we reserved an extent for our delalloc range
1500 * (or a subrange) and failed to create the respective ordered extent,
1501 * then it means that when we reserved the extent we decremented the
1502 * extent's size from the data space_info's bytes_may_use counter and
1503 * incremented the space_info's bytes_reserved counter by the same
1504 * amount. We must make sure extent_clear_unlock_delalloc() does not try
1505 * to decrement again the data space_info's bytes_may_use counter,
1506 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV.
1507 */
1508 if (cur_alloc_size) {
1509 extent_clear_unlock_delalloc(inode, start,
1510 start + cur_alloc_size - 1,
1511 locked_folio, &cached, clear_bits,
1512 page_ops);
1513 btrfs_qgroup_free_data(inode, NULL, start, cur_alloc_size, NULL);
1514 }
1515
1516 /*
1517 * For the range (3). We never touched the region. In addition to the
1518 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data
1519 * space_info's bytes_may_use counter, reserved in
1520 * btrfs_check_data_free_space().
1521 */
1522 if (start + cur_alloc_size < end) {
1523 clear_bits |= EXTENT_CLEAR_DATA_RESV;
1524 extent_clear_unlock_delalloc(inode, start + cur_alloc_size,
1525 end, locked_folio,
1526 &cached, clear_bits, page_ops);
1527 btrfs_qgroup_free_data(inode, NULL, start + cur_alloc_size,
1528 end - start - cur_alloc_size + 1, NULL);
1529 }
1530 btrfs_err_rl(fs_info,
1531 "%s failed, root=%llu inode=%llu start=%llu len=%llu: %d",
1532 __func__, btrfs_root_id(inode->root),
1533 btrfs_ino(inode), orig_start, end + 1 - orig_start, ret);
1534 return ret;
1535 }
1536
1537 /*
1538 * Phase two of compressed writeback. This is the ordered portion of the code,
1539 * which only gets called in the order the work was queued. We walk all the
1540 * async extents created by compress_file_range and send them down to the disk.
1541 *
1542 * If called with @do_free == true then it'll try to finish the work and free
1543 * the work struct eventually.
1544 */
submit_compressed_extents(struct btrfs_work * work,bool do_free)1545 static noinline void submit_compressed_extents(struct btrfs_work *work, bool do_free)
1546 {
1547 struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1548 work);
1549 struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1550 struct async_extent *async_extent;
1551 unsigned long nr_pages;
1552 u64 alloc_hint = 0;
1553
1554 if (do_free) {
1555 struct async_cow *async_cow;
1556
1557 btrfs_add_delayed_iput(async_chunk->inode);
1558 if (async_chunk->blkcg_css)
1559 css_put(async_chunk->blkcg_css);
1560
1561 async_cow = async_chunk->async_cow;
1562 if (atomic_dec_and_test(&async_cow->num_chunks))
1563 kvfree(async_cow);
1564 return;
1565 }
1566
1567 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1568 PAGE_SHIFT;
1569
1570 while (!list_empty(&async_chunk->extents)) {
1571 async_extent = list_first_entry(&async_chunk->extents,
1572 struct async_extent, list);
1573 list_del(&async_extent->list);
1574 submit_one_async_extent(async_chunk, async_extent, &alloc_hint);
1575 }
1576
1577 /* atomic_sub_return implies a barrier */
1578 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1579 5 * SZ_1M)
1580 cond_wake_up_nomb(&fs_info->async_submit_wait);
1581 }
1582
run_delalloc_compressed(struct btrfs_inode * inode,struct folio * locked_folio,u64 start,u64 end,struct writeback_control * wbc)1583 static bool run_delalloc_compressed(struct btrfs_inode *inode,
1584 struct folio *locked_folio, u64 start,
1585 u64 end, struct writeback_control *wbc)
1586 {
1587 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1588 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1589 struct async_cow *ctx;
1590 struct async_chunk *async_chunk;
1591 unsigned long nr_pages;
1592 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1593 int i;
1594 unsigned nofs_flag;
1595 const blk_opf_t write_flags = wbc_to_write_flags(wbc);
1596
1597 nofs_flag = memalloc_nofs_save();
1598 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1599 memalloc_nofs_restore(nofs_flag);
1600 if (!ctx)
1601 return false;
1602
1603 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1604
1605 async_chunk = ctx->chunks;
1606 atomic_set(&ctx->num_chunks, num_chunks);
1607
1608 for (i = 0; i < num_chunks; i++) {
1609 u64 cur_end = min(end, start + SZ_512K - 1);
1610
1611 /*
1612 * igrab is called higher up in the call chain, take only the
1613 * lightweight reference for the callback lifetime
1614 */
1615 ihold(&inode->vfs_inode);
1616 async_chunk[i].async_cow = ctx;
1617 async_chunk[i].inode = inode;
1618 async_chunk[i].start = start;
1619 async_chunk[i].end = cur_end;
1620 async_chunk[i].write_flags = write_flags;
1621 INIT_LIST_HEAD(&async_chunk[i].extents);
1622
1623 /*
1624 * The locked_folio comes all the way from writepage and its
1625 * the original folio we were actually given. As we spread
1626 * this large delalloc region across multiple async_chunk
1627 * structs, only the first struct needs a pointer to
1628 * locked_folio.
1629 *
1630 * This way we don't need racey decisions about who is supposed
1631 * to unlock it.
1632 */
1633 if (locked_folio) {
1634 /*
1635 * Depending on the compressibility, the pages might or
1636 * might not go through async. We want all of them to
1637 * be accounted against wbc once. Let's do it here
1638 * before the paths diverge. wbc accounting is used
1639 * only for foreign writeback detection and doesn't
1640 * need full accuracy. Just account the whole thing
1641 * against the first page.
1642 */
1643 wbc_account_cgroup_owner(wbc, locked_folio,
1644 cur_end - start);
1645 async_chunk[i].locked_folio = locked_folio;
1646 locked_folio = NULL;
1647 } else {
1648 async_chunk[i].locked_folio = NULL;
1649 }
1650
1651 if (blkcg_css != blkcg_root_css) {
1652 css_get(blkcg_css);
1653 async_chunk[i].blkcg_css = blkcg_css;
1654 async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT;
1655 } else {
1656 async_chunk[i].blkcg_css = NULL;
1657 }
1658
1659 btrfs_init_work(&async_chunk[i].work, compress_file_range,
1660 submit_compressed_extents);
1661
1662 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1663 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1664
1665 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1666
1667 start = cur_end + 1;
1668 }
1669 return true;
1670 }
1671
1672 /*
1673 * Run the delalloc range from start to end, and write back any dirty pages
1674 * covered by the range.
1675 */
run_delalloc_cow(struct btrfs_inode * inode,struct folio * locked_folio,u64 start,u64 end,struct writeback_control * wbc,bool pages_dirty)1676 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
1677 struct folio *locked_folio, u64 start,
1678 u64 end, struct writeback_control *wbc,
1679 bool pages_dirty)
1680 {
1681 u64 done_offset = end;
1682 int ret;
1683
1684 while (start <= end) {
1685 ret = cow_file_range(inode, locked_folio, start, end,
1686 &done_offset, true, false);
1687 if (ret)
1688 return ret;
1689 extent_write_locked_range(&inode->vfs_inode, locked_folio,
1690 start, done_offset, wbc, pages_dirty);
1691 start = done_offset + 1;
1692 }
1693
1694 return 1;
1695 }
1696
fallback_to_cow(struct btrfs_inode * inode,struct folio * locked_folio,const u64 start,const u64 end)1697 static int fallback_to_cow(struct btrfs_inode *inode,
1698 struct folio *locked_folio, const u64 start,
1699 const u64 end)
1700 {
1701 const bool is_space_ino = btrfs_is_free_space_inode(inode);
1702 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root);
1703 const u64 range_bytes = end + 1 - start;
1704 struct extent_io_tree *io_tree = &inode->io_tree;
1705 struct extent_state *cached_state = NULL;
1706 u64 range_start = start;
1707 u64 count;
1708 int ret;
1709
1710 /*
1711 * If EXTENT_NORESERVE is set it means that when the buffered write was
1712 * made we had not enough available data space and therefore we did not
1713 * reserve data space for it, since we though we could do NOCOW for the
1714 * respective file range (either there is prealloc extent or the inode
1715 * has the NOCOW bit set).
1716 *
1717 * However when we need to fallback to COW mode (because for example the
1718 * block group for the corresponding extent was turned to RO mode by a
1719 * scrub or relocation) we need to do the following:
1720 *
1721 * 1) We increment the bytes_may_use counter of the data space info.
1722 * If COW succeeds, it allocates a new data extent and after doing
1723 * that it decrements the space info's bytes_may_use counter and
1724 * increments its bytes_reserved counter by the same amount (we do
1725 * this at btrfs_add_reserved_bytes()). So we need to increment the
1726 * bytes_may_use counter to compensate (when space is reserved at
1727 * buffered write time, the bytes_may_use counter is incremented);
1728 *
1729 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1730 * that if the COW path fails for any reason, it decrements (through
1731 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1732 * data space info, which we incremented in the step above.
1733 *
1734 * If we need to fallback to cow and the inode corresponds to a free
1735 * space cache inode or an inode of the data relocation tree, we must
1736 * also increment bytes_may_use of the data space_info for the same
1737 * reason. Space caches and relocated data extents always get a prealloc
1738 * extent for them, however scrub or balance may have set the block
1739 * group that contains that extent to RO mode and therefore force COW
1740 * when starting writeback.
1741 */
1742 btrfs_lock_extent(io_tree, start, end, &cached_state);
1743 count = btrfs_count_range_bits(io_tree, &range_start, end, range_bytes,
1744 EXTENT_NORESERVE, 0, NULL);
1745 if (count > 0 || is_space_ino || is_reloc_ino) {
1746 u64 bytes = count;
1747 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1748 struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1749
1750 if (is_space_ino || is_reloc_ino)
1751 bytes = range_bytes;
1752
1753 spin_lock(&sinfo->lock);
1754 btrfs_space_info_update_bytes_may_use(sinfo, bytes);
1755 spin_unlock(&sinfo->lock);
1756
1757 if (count > 0)
1758 btrfs_clear_extent_bits(io_tree, start, end, EXTENT_NORESERVE);
1759 }
1760 btrfs_unlock_extent(io_tree, start, end, &cached_state);
1761
1762 /*
1763 * Don't try to create inline extents, as a mix of inline extent that
1764 * is written out and unlocked directly and a normal NOCOW extent
1765 * doesn't work.
1766 */
1767 ret = cow_file_range(inode, locked_folio, start, end, NULL, false,
1768 true);
1769 ASSERT(ret != 1);
1770 return ret;
1771 }
1772
1773 struct can_nocow_file_extent_args {
1774 /* Input fields. */
1775
1776 /* Start file offset of the range we want to NOCOW. */
1777 u64 start;
1778 /* End file offset (inclusive) of the range we want to NOCOW. */
1779 u64 end;
1780 bool writeback_path;
1781 /*
1782 * Free the path passed to can_nocow_file_extent() once it's not needed
1783 * anymore.
1784 */
1785 bool free_path;
1786
1787 /*
1788 * Output fields. Only set when can_nocow_file_extent() returns 1.
1789 * The expected file extent for the NOCOW write.
1790 */
1791 struct btrfs_file_extent file_extent;
1792 };
1793
1794 /*
1795 * Check if we can NOCOW the file extent that the path points to.
1796 * This function may return with the path released, so the caller should check
1797 * if path->nodes[0] is NULL or not if it needs to use the path afterwards.
1798 *
1799 * Returns: < 0 on error
1800 * 0 if we can not NOCOW
1801 * 1 if we can NOCOW
1802 */
can_nocow_file_extent(struct btrfs_path * path,struct btrfs_key * key,struct btrfs_inode * inode,struct can_nocow_file_extent_args * args)1803 static int can_nocow_file_extent(struct btrfs_path *path,
1804 struct btrfs_key *key,
1805 struct btrfs_inode *inode,
1806 struct can_nocow_file_extent_args *args)
1807 {
1808 const bool is_freespace_inode = btrfs_is_free_space_inode(inode);
1809 struct extent_buffer *leaf = path->nodes[0];
1810 struct btrfs_root *root = inode->root;
1811 struct btrfs_file_extent_item *fi;
1812 struct btrfs_root *csum_root;
1813 u64 io_start;
1814 u64 extent_end;
1815 u8 extent_type;
1816 int can_nocow = 0;
1817 int ret = 0;
1818 bool nowait = path->nowait;
1819
1820 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
1821 extent_type = btrfs_file_extent_type(leaf, fi);
1822
1823 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1824 goto out;
1825
1826 if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1827 extent_type == BTRFS_FILE_EXTENT_REG)
1828 goto out;
1829
1830 /*
1831 * If the extent was created before the generation where the last snapshot
1832 * for its subvolume was created, then this implies the extent is shared,
1833 * hence we must COW.
1834 */
1835 if (btrfs_file_extent_generation(leaf, fi) <=
1836 btrfs_root_last_snapshot(&root->root_item))
1837 goto out;
1838
1839 /* An explicit hole, must COW. */
1840 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0)
1841 goto out;
1842
1843 /* Compressed/encrypted/encoded extents must be COWed. */
1844 if (btrfs_file_extent_compression(leaf, fi) ||
1845 btrfs_file_extent_encryption(leaf, fi) ||
1846 btrfs_file_extent_other_encoding(leaf, fi))
1847 goto out;
1848
1849 extent_end = btrfs_file_extent_end(path);
1850
1851 args->file_extent.disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1852 args->file_extent.disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1853 args->file_extent.ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1854 args->file_extent.offset = btrfs_file_extent_offset(leaf, fi);
1855 args->file_extent.compression = btrfs_file_extent_compression(leaf, fi);
1856
1857 /*
1858 * The following checks can be expensive, as they need to take other
1859 * locks and do btree or rbtree searches, so release the path to avoid
1860 * blocking other tasks for too long.
1861 */
1862 btrfs_release_path(path);
1863
1864 ret = btrfs_cross_ref_exist(inode, key->offset - args->file_extent.offset,
1865 args->file_extent.disk_bytenr, path);
1866 WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1867 if (ret != 0)
1868 goto out;
1869
1870 if (args->free_path) {
1871 /*
1872 * We don't need the path anymore, plus through the
1873 * btrfs_lookup_csums_list() call below we will end up allocating
1874 * another path. So free the path to avoid unnecessary extra
1875 * memory usage.
1876 */
1877 btrfs_free_path(path);
1878 path = NULL;
1879 }
1880
1881 /* If there are pending snapshots for this root, we must COW. */
1882 if (args->writeback_path && !is_freespace_inode &&
1883 atomic_read(&root->snapshot_force_cow))
1884 goto out;
1885
1886 args->file_extent.num_bytes = min(args->end + 1, extent_end) - args->start;
1887 args->file_extent.offset += args->start - key->offset;
1888 io_start = args->file_extent.disk_bytenr + args->file_extent.offset;
1889
1890 /*
1891 * Force COW if csums exist in the range. This ensures that csums for a
1892 * given extent are either valid or do not exist.
1893 */
1894
1895 csum_root = btrfs_csum_root(root->fs_info, io_start);
1896 ret = btrfs_lookup_csums_list(csum_root, io_start,
1897 io_start + args->file_extent.num_bytes - 1,
1898 NULL, nowait);
1899 WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1900 if (ret != 0)
1901 goto out;
1902
1903 can_nocow = 1;
1904 out:
1905 if (args->free_path && path)
1906 btrfs_free_path(path);
1907
1908 return ret < 0 ? ret : can_nocow;
1909 }
1910
1911 /*
1912 * Cleanup the dirty folios which will never be submitted due to error.
1913 *
1914 * When running a delalloc range, we may need to split the ranges (due to
1915 * fragmentation or NOCOW). If we hit an error in the later part, we will error
1916 * out and previously successfully executed range will never be submitted, thus
1917 * we have to cleanup those folios by clearing their dirty flag, starting and
1918 * finishing the writeback.
1919 */
cleanup_dirty_folios(struct btrfs_inode * inode,struct folio * locked_folio,u64 start,u64 end,int error)1920 static void cleanup_dirty_folios(struct btrfs_inode *inode,
1921 struct folio *locked_folio,
1922 u64 start, u64 end, int error)
1923 {
1924 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1925 struct address_space *mapping = inode->vfs_inode.i_mapping;
1926 pgoff_t start_index = start >> PAGE_SHIFT;
1927 pgoff_t end_index = end >> PAGE_SHIFT;
1928 u32 len;
1929
1930 ASSERT(end + 1 - start < U32_MAX);
1931 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
1932 IS_ALIGNED(end + 1, fs_info->sectorsize));
1933 len = end + 1 - start;
1934
1935 /*
1936 * Handle the locked folio first.
1937 * The btrfs_folio_clamp_*() helpers can handle range out of the folio case.
1938 */
1939 btrfs_folio_clamp_finish_io(fs_info, locked_folio, start, len);
1940
1941 for (pgoff_t index = start_index; index <= end_index; index++) {
1942 struct folio *folio;
1943
1944 /* Already handled at the beginning. */
1945 if (index == locked_folio->index)
1946 continue;
1947 folio = __filemap_get_folio(mapping, index, FGP_LOCK, GFP_NOFS);
1948 /* Cache already dropped, no need to do any cleanup. */
1949 if (IS_ERR(folio))
1950 continue;
1951 btrfs_folio_clamp_finish_io(fs_info, locked_folio, start, len);
1952 folio_unlock(folio);
1953 folio_put(folio);
1954 }
1955 mapping_set_error(mapping, error);
1956 }
1957
nocow_one_range(struct btrfs_inode * inode,struct folio * locked_folio,struct extent_state ** cached,struct can_nocow_file_extent_args * nocow_args,u64 file_pos,bool is_prealloc)1958 static int nocow_one_range(struct btrfs_inode *inode, struct folio *locked_folio,
1959 struct extent_state **cached,
1960 struct can_nocow_file_extent_args *nocow_args,
1961 u64 file_pos, bool is_prealloc)
1962 {
1963 struct btrfs_ordered_extent *ordered;
1964 u64 len = nocow_args->file_extent.num_bytes;
1965 u64 end = file_pos + len - 1;
1966 int ret = 0;
1967
1968 btrfs_lock_extent(&inode->io_tree, file_pos, end, cached);
1969
1970 if (is_prealloc) {
1971 struct extent_map *em;
1972
1973 em = btrfs_create_io_em(inode, file_pos, &nocow_args->file_extent,
1974 BTRFS_ORDERED_PREALLOC);
1975 if (IS_ERR(em)) {
1976 btrfs_unlock_extent(&inode->io_tree, file_pos, end, cached);
1977 return PTR_ERR(em);
1978 }
1979 btrfs_free_extent_map(em);
1980 }
1981
1982 ordered = btrfs_alloc_ordered_extent(inode, file_pos, &nocow_args->file_extent,
1983 is_prealloc
1984 ? (1U << BTRFS_ORDERED_PREALLOC)
1985 : (1U << BTRFS_ORDERED_NOCOW));
1986 if (IS_ERR(ordered)) {
1987 if (is_prealloc)
1988 btrfs_drop_extent_map_range(inode, file_pos, end, false);
1989 btrfs_unlock_extent(&inode->io_tree, file_pos, end, cached);
1990 return PTR_ERR(ordered);
1991 }
1992
1993 if (btrfs_is_data_reloc_root(inode->root))
1994 /*
1995 * Errors are handled later, as we must prevent
1996 * extent_clear_unlock_delalloc() in error handler from freeing
1997 * metadata of the created ordered extent.
1998 */
1999 ret = btrfs_reloc_clone_csums(ordered);
2000 btrfs_put_ordered_extent(ordered);
2001
2002 extent_clear_unlock_delalloc(inode, file_pos, end, locked_folio, cached,
2003 EXTENT_LOCKED | EXTENT_DELALLOC |
2004 EXTENT_CLEAR_DATA_RESV,
2005 PAGE_UNLOCK | PAGE_SET_ORDERED);
2006 /*
2007 * On error, we need to cleanup the ordered extents we created.
2008 *
2009 * We do not clear the folio Dirty flags because they are set and
2010 * cleaered by the caller.
2011 */
2012 if (ret < 0)
2013 btrfs_cleanup_ordered_extents(inode, file_pos, end);
2014 return ret;
2015 }
2016
2017 /*
2018 * when nowcow writeback call back. This checks for snapshots or COW copies
2019 * of the extents that exist in the file, and COWs the file as required.
2020 *
2021 * If no cow copies or snapshots exist, we write directly to the existing
2022 * blocks on disk
2023 */
run_delalloc_nocow(struct btrfs_inode * inode,struct folio * locked_folio,const u64 start,const u64 end)2024 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
2025 struct folio *locked_folio,
2026 const u64 start, const u64 end)
2027 {
2028 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2029 struct btrfs_root *root = inode->root;
2030 struct btrfs_path *path;
2031 u64 cow_start = (u64)-1;
2032 /*
2033 * If not 0, represents the inclusive end of the last fallback_to_cow()
2034 * range. Only for error handling.
2035 */
2036 u64 cow_end = 0;
2037 u64 cur_offset = start;
2038 int ret;
2039 bool check_prev = true;
2040 u64 ino = btrfs_ino(inode);
2041 struct can_nocow_file_extent_args nocow_args = { 0 };
2042
2043 /*
2044 * Normally on a zoned device we're only doing COW writes, but in case
2045 * of relocation on a zoned filesystem serializes I/O so that we're only
2046 * writing sequentially and can end up here as well.
2047 */
2048 ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root));
2049
2050 path = btrfs_alloc_path();
2051 if (!path) {
2052 ret = -ENOMEM;
2053 goto error;
2054 }
2055
2056 nocow_args.end = end;
2057 nocow_args.writeback_path = true;
2058
2059 while (cur_offset <= end) {
2060 struct btrfs_block_group *nocow_bg = NULL;
2061 struct btrfs_key found_key;
2062 struct btrfs_file_extent_item *fi;
2063 struct extent_buffer *leaf;
2064 struct extent_state *cached_state = NULL;
2065 u64 extent_end;
2066 int extent_type;
2067
2068 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
2069 cur_offset, 0);
2070 if (ret < 0)
2071 goto error;
2072
2073 /*
2074 * If there is no extent for our range when doing the initial
2075 * search, then go back to the previous slot as it will be the
2076 * one containing the search offset
2077 */
2078 if (ret > 0 && path->slots[0] > 0 && check_prev) {
2079 leaf = path->nodes[0];
2080 btrfs_item_key_to_cpu(leaf, &found_key,
2081 path->slots[0] - 1);
2082 if (found_key.objectid == ino &&
2083 found_key.type == BTRFS_EXTENT_DATA_KEY)
2084 path->slots[0]--;
2085 }
2086 check_prev = false;
2087 next_slot:
2088 /* Go to next leaf if we have exhausted the current one */
2089 leaf = path->nodes[0];
2090 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2091 ret = btrfs_next_leaf(root, path);
2092 if (ret < 0)
2093 goto error;
2094 if (ret > 0)
2095 break;
2096 leaf = path->nodes[0];
2097 }
2098
2099 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2100
2101 /* Didn't find anything for our INO */
2102 if (found_key.objectid > ino)
2103 break;
2104 /*
2105 * Keep searching until we find an EXTENT_ITEM or there are no
2106 * more extents for this inode
2107 */
2108 if (WARN_ON_ONCE(found_key.objectid < ino) ||
2109 found_key.type < BTRFS_EXTENT_DATA_KEY) {
2110 path->slots[0]++;
2111 goto next_slot;
2112 }
2113
2114 /* Found key is not EXTENT_DATA_KEY or starts after req range */
2115 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
2116 found_key.offset > end)
2117 break;
2118
2119 /*
2120 * If the found extent starts after requested offset, then
2121 * adjust cur_offset to be right before this extent begins.
2122 */
2123 if (found_key.offset > cur_offset) {
2124 if (cow_start == (u64)-1)
2125 cow_start = cur_offset;
2126 cur_offset = found_key.offset;
2127 goto next_slot;
2128 }
2129
2130 /*
2131 * Found extent which begins before our range and potentially
2132 * intersect it
2133 */
2134 fi = btrfs_item_ptr(leaf, path->slots[0],
2135 struct btrfs_file_extent_item);
2136 extent_type = btrfs_file_extent_type(leaf, fi);
2137 /* If this is triggered then we have a memory corruption. */
2138 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES);
2139 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) {
2140 ret = -EUCLEAN;
2141 goto error;
2142 }
2143 extent_end = btrfs_file_extent_end(path);
2144
2145 /*
2146 * If the extent we got ends before our current offset, skip to
2147 * the next extent.
2148 */
2149 if (extent_end <= cur_offset) {
2150 path->slots[0]++;
2151 goto next_slot;
2152 }
2153
2154 nocow_args.start = cur_offset;
2155 ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args);
2156 if (ret < 0)
2157 goto error;
2158 if (ret == 0)
2159 goto must_cow;
2160
2161 ret = 0;
2162 nocow_bg = btrfs_inc_nocow_writers(fs_info,
2163 nocow_args.file_extent.disk_bytenr +
2164 nocow_args.file_extent.offset);
2165 if (!nocow_bg) {
2166 must_cow:
2167 /*
2168 * If we can't perform NOCOW writeback for the range,
2169 * then record the beginning of the range that needs to
2170 * be COWed. It will be written out before the next
2171 * NOCOW range if we find one, or when exiting this
2172 * loop.
2173 */
2174 if (cow_start == (u64)-1)
2175 cow_start = cur_offset;
2176 cur_offset = extent_end;
2177 if (cur_offset > end)
2178 break;
2179 if (!path->nodes[0])
2180 continue;
2181 path->slots[0]++;
2182 goto next_slot;
2183 }
2184
2185 /*
2186 * COW range from cow_start to found_key.offset - 1. As the key
2187 * will contain the beginning of the first extent that can be
2188 * NOCOW, following one which needs to be COW'ed
2189 */
2190 if (cow_start != (u64)-1) {
2191 ret = fallback_to_cow(inode, locked_folio, cow_start,
2192 found_key.offset - 1);
2193 if (ret) {
2194 cow_end = found_key.offset - 1;
2195 btrfs_dec_nocow_writers(nocow_bg);
2196 goto error;
2197 }
2198 cow_start = (u64)-1;
2199 }
2200
2201 ret = nocow_one_range(inode, locked_folio, &cached_state,
2202 &nocow_args, cur_offset,
2203 extent_type == BTRFS_FILE_EXTENT_PREALLOC);
2204 btrfs_dec_nocow_writers(nocow_bg);
2205 if (ret < 0)
2206 goto error;
2207 cur_offset = extent_end;
2208 }
2209 btrfs_release_path(path);
2210
2211 if (cur_offset <= end && cow_start == (u64)-1)
2212 cow_start = cur_offset;
2213
2214 if (cow_start != (u64)-1) {
2215 ret = fallback_to_cow(inode, locked_folio, cow_start, end);
2216 if (ret) {
2217 cow_end = end;
2218 goto error;
2219 }
2220 cow_start = (u64)-1;
2221 }
2222
2223 btrfs_free_path(path);
2224 return 0;
2225
2226 error:
2227 /*
2228 * There are several error cases:
2229 *
2230 * 1) Failed without falling back to COW
2231 * start cur_offset end
2232 * |/////////////| |
2233 *
2234 * In this case, cow_start should be (u64)-1.
2235 *
2236 * For range [start, cur_offset) the folios are already unlocked (except
2237 * @locked_folio), EXTENT_DELALLOC already removed.
2238 * Need to clear the dirty flags and finish the ordered extents.
2239 *
2240 * 2) Failed with error before calling fallback_to_cow()
2241 *
2242 * start cow_start end
2243 * |/////////////| |
2244 *
2245 * In this case, only @cow_start is set, @cur_offset is between
2246 * [cow_start, end)
2247 *
2248 * It's mostly the same as case 1), just replace @cur_offset with
2249 * @cow_start.
2250 *
2251 * 3) Failed with error from fallback_to_cow()
2252 *
2253 * start cow_start cow_end end
2254 * |/////////////|-----------| |
2255 *
2256 * In this case, both @cow_start and @cow_end is set.
2257 *
2258 * For range [start, cow_start) it's the same as case 1).
2259 * But for range [cow_start, cow_end), all the cleanup is handled by
2260 * cow_file_range(), we should not touch anything in that range.
2261 *
2262 * So for all above cases, if @cow_start is set, cleanup ordered extents
2263 * for range [start, @cow_start), other wise cleanup range [start, @cur_offset).
2264 */
2265 if (cow_start != (u64)-1)
2266 cur_offset = cow_start;
2267
2268 if (cur_offset > start) {
2269 btrfs_cleanup_ordered_extents(inode, start, cur_offset - start);
2270 cleanup_dirty_folios(inode, locked_folio, start, cur_offset - 1, ret);
2271 }
2272
2273 /*
2274 * If an error happened while a COW region is outstanding, cur_offset
2275 * needs to be reset to @cow_end + 1 to skip the COW range, as
2276 * cow_file_range() will do the proper cleanup at error.
2277 */
2278 if (cow_end)
2279 cur_offset = cow_end + 1;
2280
2281 /*
2282 * We need to lock the extent here because we're clearing DELALLOC and
2283 * we're not locked at this point.
2284 */
2285 if (cur_offset < end) {
2286 struct extent_state *cached = NULL;
2287
2288 btrfs_lock_extent(&inode->io_tree, cur_offset, end, &cached);
2289 extent_clear_unlock_delalloc(inode, cur_offset, end,
2290 locked_folio, &cached,
2291 EXTENT_LOCKED | EXTENT_DELALLOC |
2292 EXTENT_DEFRAG |
2293 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
2294 PAGE_START_WRITEBACK |
2295 PAGE_END_WRITEBACK);
2296 btrfs_qgroup_free_data(inode, NULL, cur_offset, end - cur_offset + 1, NULL);
2297 }
2298 btrfs_free_path(path);
2299 btrfs_err_rl(fs_info,
2300 "%s failed, root=%llu inode=%llu start=%llu len=%llu: %d",
2301 __func__, btrfs_root_id(inode->root),
2302 btrfs_ino(inode), start, end + 1 - start, ret);
2303 return ret;
2304 }
2305
should_nocow(struct btrfs_inode * inode,u64 start,u64 end)2306 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
2307 {
2308 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
2309 if (inode->defrag_bytes &&
2310 btrfs_test_range_bit_exists(&inode->io_tree, start, end, EXTENT_DEFRAG))
2311 return false;
2312 return true;
2313 }
2314 return false;
2315 }
2316
2317 /*
2318 * Function to process delayed allocation (create CoW) for ranges which are
2319 * being touched for the first time.
2320 */
btrfs_run_delalloc_range(struct btrfs_inode * inode,struct folio * locked_folio,u64 start,u64 end,struct writeback_control * wbc)2321 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct folio *locked_folio,
2322 u64 start, u64 end, struct writeback_control *wbc)
2323 {
2324 const bool zoned = btrfs_is_zoned(inode->root->fs_info);
2325 int ret;
2326
2327 /*
2328 * The range must cover part of the @locked_folio, or a return of 1
2329 * can confuse the caller.
2330 */
2331 ASSERT(!(end <= folio_pos(locked_folio) ||
2332 start >= folio_pos(locked_folio) + folio_size(locked_folio)));
2333
2334 if (should_nocow(inode, start, end)) {
2335 ret = run_delalloc_nocow(inode, locked_folio, start, end);
2336 return ret;
2337 }
2338
2339 if (btrfs_inode_can_compress(inode) &&
2340 inode_need_compress(inode, start, end) &&
2341 run_delalloc_compressed(inode, locked_folio, start, end, wbc))
2342 return 1;
2343
2344 if (zoned)
2345 ret = run_delalloc_cow(inode, locked_folio, start, end, wbc,
2346 true);
2347 else
2348 ret = cow_file_range(inode, locked_folio, start, end, NULL,
2349 false, false);
2350 return ret;
2351 }
2352
btrfs_split_delalloc_extent(struct btrfs_inode * inode,struct extent_state * orig,u64 split)2353 void btrfs_split_delalloc_extent(struct btrfs_inode *inode,
2354 struct extent_state *orig, u64 split)
2355 {
2356 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2357 u64 size;
2358
2359 lockdep_assert_held(&inode->io_tree.lock);
2360
2361 /* not delalloc, ignore it */
2362 if (!(orig->state & EXTENT_DELALLOC))
2363 return;
2364
2365 size = orig->end - orig->start + 1;
2366 if (size > fs_info->max_extent_size) {
2367 u32 num_extents;
2368 u64 new_size;
2369
2370 /*
2371 * See the explanation in btrfs_merge_delalloc_extent, the same
2372 * applies here, just in reverse.
2373 */
2374 new_size = orig->end - split + 1;
2375 num_extents = count_max_extents(fs_info, new_size);
2376 new_size = split - orig->start;
2377 num_extents += count_max_extents(fs_info, new_size);
2378 if (count_max_extents(fs_info, size) >= num_extents)
2379 return;
2380 }
2381
2382 spin_lock(&inode->lock);
2383 btrfs_mod_outstanding_extents(inode, 1);
2384 spin_unlock(&inode->lock);
2385 }
2386
2387 /*
2388 * Handle merged delayed allocation extents so we can keep track of new extents
2389 * that are just merged onto old extents, such as when we are doing sequential
2390 * writes, so we can properly account for the metadata space we'll need.
2391 */
btrfs_merge_delalloc_extent(struct btrfs_inode * inode,struct extent_state * new,struct extent_state * other)2392 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new,
2393 struct extent_state *other)
2394 {
2395 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2396 u64 new_size, old_size;
2397 u32 num_extents;
2398
2399 lockdep_assert_held(&inode->io_tree.lock);
2400
2401 /* not delalloc, ignore it */
2402 if (!(other->state & EXTENT_DELALLOC))
2403 return;
2404
2405 if (new->start > other->start)
2406 new_size = new->end - other->start + 1;
2407 else
2408 new_size = other->end - new->start + 1;
2409
2410 /* we're not bigger than the max, unreserve the space and go */
2411 if (new_size <= fs_info->max_extent_size) {
2412 spin_lock(&inode->lock);
2413 btrfs_mod_outstanding_extents(inode, -1);
2414 spin_unlock(&inode->lock);
2415 return;
2416 }
2417
2418 /*
2419 * We have to add up either side to figure out how many extents were
2420 * accounted for before we merged into one big extent. If the number of
2421 * extents we accounted for is <= the amount we need for the new range
2422 * then we can return, otherwise drop. Think of it like this
2423 *
2424 * [ 4k][MAX_SIZE]
2425 *
2426 * So we've grown the extent by a MAX_SIZE extent, this would mean we
2427 * need 2 outstanding extents, on one side we have 1 and the other side
2428 * we have 1 so they are == and we can return. But in this case
2429 *
2430 * [MAX_SIZE+4k][MAX_SIZE+4k]
2431 *
2432 * Each range on their own accounts for 2 extents, but merged together
2433 * they are only 3 extents worth of accounting, so we need to drop in
2434 * this case.
2435 */
2436 old_size = other->end - other->start + 1;
2437 num_extents = count_max_extents(fs_info, old_size);
2438 old_size = new->end - new->start + 1;
2439 num_extents += count_max_extents(fs_info, old_size);
2440 if (count_max_extents(fs_info, new_size) >= num_extents)
2441 return;
2442
2443 spin_lock(&inode->lock);
2444 btrfs_mod_outstanding_extents(inode, -1);
2445 spin_unlock(&inode->lock);
2446 }
2447
btrfs_add_delalloc_inode(struct btrfs_inode * inode)2448 static void btrfs_add_delalloc_inode(struct btrfs_inode *inode)
2449 {
2450 struct btrfs_root *root = inode->root;
2451 struct btrfs_fs_info *fs_info = root->fs_info;
2452
2453 spin_lock(&root->delalloc_lock);
2454 ASSERT(list_empty(&inode->delalloc_inodes));
2455 list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes);
2456 root->nr_delalloc_inodes++;
2457 if (root->nr_delalloc_inodes == 1) {
2458 spin_lock(&fs_info->delalloc_root_lock);
2459 ASSERT(list_empty(&root->delalloc_root));
2460 list_add_tail(&root->delalloc_root, &fs_info->delalloc_roots);
2461 spin_unlock(&fs_info->delalloc_root_lock);
2462 }
2463 spin_unlock(&root->delalloc_lock);
2464 }
2465
btrfs_del_delalloc_inode(struct btrfs_inode * inode)2466 void btrfs_del_delalloc_inode(struct btrfs_inode *inode)
2467 {
2468 struct btrfs_root *root = inode->root;
2469 struct btrfs_fs_info *fs_info = root->fs_info;
2470
2471 lockdep_assert_held(&root->delalloc_lock);
2472
2473 /*
2474 * We may be called after the inode was already deleted from the list,
2475 * namely in the transaction abort path btrfs_destroy_delalloc_inodes(),
2476 * and then later through btrfs_clear_delalloc_extent() while the inode
2477 * still has ->delalloc_bytes > 0.
2478 */
2479 if (!list_empty(&inode->delalloc_inodes)) {
2480 list_del_init(&inode->delalloc_inodes);
2481 root->nr_delalloc_inodes--;
2482 if (!root->nr_delalloc_inodes) {
2483 ASSERT(list_empty(&root->delalloc_inodes));
2484 spin_lock(&fs_info->delalloc_root_lock);
2485 ASSERT(!list_empty(&root->delalloc_root));
2486 list_del_init(&root->delalloc_root);
2487 spin_unlock(&fs_info->delalloc_root_lock);
2488 }
2489 }
2490 }
2491
2492 /*
2493 * Properly track delayed allocation bytes in the inode and to maintain the
2494 * list of inodes that have pending delalloc work to be done.
2495 */
btrfs_set_delalloc_extent(struct btrfs_inode * inode,struct extent_state * state,u32 bits)2496 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state,
2497 u32 bits)
2498 {
2499 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2500
2501 lockdep_assert_held(&inode->io_tree.lock);
2502
2503 if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC))
2504 WARN_ON(1);
2505 /*
2506 * set_bit and clear bit hooks normally require _irqsave/restore
2507 * but in this case, we are only testing for the DELALLOC
2508 * bit, which is only set or cleared with irqs on
2509 */
2510 if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2511 u64 len = state->end + 1 - state->start;
2512 u64 prev_delalloc_bytes;
2513 u32 num_extents = count_max_extents(fs_info, len);
2514
2515 spin_lock(&inode->lock);
2516 btrfs_mod_outstanding_extents(inode, num_extents);
2517 spin_unlock(&inode->lock);
2518
2519 /* For sanity tests */
2520 if (btrfs_is_testing(fs_info))
2521 return;
2522
2523 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2524 fs_info->delalloc_batch);
2525 spin_lock(&inode->lock);
2526 prev_delalloc_bytes = inode->delalloc_bytes;
2527 inode->delalloc_bytes += len;
2528 if (bits & EXTENT_DEFRAG)
2529 inode->defrag_bytes += len;
2530 spin_unlock(&inode->lock);
2531
2532 /*
2533 * We don't need to be under the protection of the inode's lock,
2534 * because we are called while holding the inode's io_tree lock
2535 * and are therefore protected against concurrent calls of this
2536 * function and btrfs_clear_delalloc_extent().
2537 */
2538 if (!btrfs_is_free_space_inode(inode) && prev_delalloc_bytes == 0)
2539 btrfs_add_delalloc_inode(inode);
2540 }
2541
2542 if (!(state->state & EXTENT_DELALLOC_NEW) &&
2543 (bits & EXTENT_DELALLOC_NEW)) {
2544 spin_lock(&inode->lock);
2545 inode->new_delalloc_bytes += state->end + 1 - state->start;
2546 spin_unlock(&inode->lock);
2547 }
2548 }
2549
2550 /*
2551 * Once a range is no longer delalloc this function ensures that proper
2552 * accounting happens.
2553 */
btrfs_clear_delalloc_extent(struct btrfs_inode * inode,struct extent_state * state,u32 bits)2554 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode,
2555 struct extent_state *state, u32 bits)
2556 {
2557 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2558 u64 len = state->end + 1 - state->start;
2559 u32 num_extents = count_max_extents(fs_info, len);
2560
2561 lockdep_assert_held(&inode->io_tree.lock);
2562
2563 if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) {
2564 spin_lock(&inode->lock);
2565 inode->defrag_bytes -= len;
2566 spin_unlock(&inode->lock);
2567 }
2568
2569 /*
2570 * set_bit and clear bit hooks normally require _irqsave/restore
2571 * but in this case, we are only testing for the DELALLOC
2572 * bit, which is only set or cleared with irqs on
2573 */
2574 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2575 struct btrfs_root *root = inode->root;
2576 u64 new_delalloc_bytes;
2577
2578 spin_lock(&inode->lock);
2579 btrfs_mod_outstanding_extents(inode, -num_extents);
2580 spin_unlock(&inode->lock);
2581
2582 /*
2583 * We don't reserve metadata space for space cache inodes so we
2584 * don't need to call delalloc_release_metadata if there is an
2585 * error.
2586 */
2587 if (bits & EXTENT_CLEAR_META_RESV &&
2588 root != fs_info->tree_root)
2589 btrfs_delalloc_release_metadata(inode, len, true);
2590
2591 /* For sanity tests. */
2592 if (btrfs_is_testing(fs_info))
2593 return;
2594
2595 if (!btrfs_is_data_reloc_root(root) &&
2596 !btrfs_is_free_space_inode(inode) &&
2597 !(state->state & EXTENT_NORESERVE) &&
2598 (bits & EXTENT_CLEAR_DATA_RESV))
2599 btrfs_free_reserved_data_space_noquota(inode, len);
2600
2601 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2602 fs_info->delalloc_batch);
2603 spin_lock(&inode->lock);
2604 inode->delalloc_bytes -= len;
2605 new_delalloc_bytes = inode->delalloc_bytes;
2606 spin_unlock(&inode->lock);
2607
2608 /*
2609 * We don't need to be under the protection of the inode's lock,
2610 * because we are called while holding the inode's io_tree lock
2611 * and are therefore protected against concurrent calls of this
2612 * function and btrfs_set_delalloc_extent().
2613 */
2614 if (!btrfs_is_free_space_inode(inode) && new_delalloc_bytes == 0) {
2615 spin_lock(&root->delalloc_lock);
2616 btrfs_del_delalloc_inode(inode);
2617 spin_unlock(&root->delalloc_lock);
2618 }
2619 }
2620
2621 if ((state->state & EXTENT_DELALLOC_NEW) &&
2622 (bits & EXTENT_DELALLOC_NEW)) {
2623 spin_lock(&inode->lock);
2624 ASSERT(inode->new_delalloc_bytes >= len);
2625 inode->new_delalloc_bytes -= len;
2626 if (bits & EXTENT_ADD_INODE_BYTES)
2627 inode_add_bytes(&inode->vfs_inode, len);
2628 spin_unlock(&inode->lock);
2629 }
2630 }
2631
2632 /*
2633 * given a list of ordered sums record them in the inode. This happens
2634 * at IO completion time based on sums calculated at bio submission time.
2635 */
add_pending_csums(struct btrfs_trans_handle * trans,struct list_head * list)2636 static int add_pending_csums(struct btrfs_trans_handle *trans,
2637 struct list_head *list)
2638 {
2639 struct btrfs_ordered_sum *sum;
2640 struct btrfs_root *csum_root = NULL;
2641 int ret;
2642
2643 list_for_each_entry(sum, list, list) {
2644 trans->adding_csums = true;
2645 if (!csum_root)
2646 csum_root = btrfs_csum_root(trans->fs_info,
2647 sum->logical);
2648 ret = btrfs_csum_file_blocks(trans, csum_root, sum);
2649 trans->adding_csums = false;
2650 if (ret)
2651 return ret;
2652 }
2653 return 0;
2654 }
2655
btrfs_find_new_delalloc_bytes(struct btrfs_inode * inode,const u64 start,const u64 len,struct extent_state ** cached_state)2656 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2657 const u64 start,
2658 const u64 len,
2659 struct extent_state **cached_state)
2660 {
2661 u64 search_start = start;
2662 const u64 end = start + len - 1;
2663
2664 while (search_start < end) {
2665 const u64 search_len = end - search_start + 1;
2666 struct extent_map *em;
2667 u64 em_len;
2668 int ret = 0;
2669
2670 em = btrfs_get_extent(inode, NULL, search_start, search_len);
2671 if (IS_ERR(em))
2672 return PTR_ERR(em);
2673
2674 if (em->disk_bytenr != EXTENT_MAP_HOLE)
2675 goto next;
2676
2677 em_len = em->len;
2678 if (em->start < search_start)
2679 em_len -= search_start - em->start;
2680 if (em_len > search_len)
2681 em_len = search_len;
2682
2683 ret = btrfs_set_extent_bit(&inode->io_tree, search_start,
2684 search_start + em_len - 1,
2685 EXTENT_DELALLOC_NEW, cached_state);
2686 next:
2687 search_start = btrfs_extent_map_end(em);
2688 btrfs_free_extent_map(em);
2689 if (ret)
2690 return ret;
2691 }
2692 return 0;
2693 }
2694
btrfs_set_extent_delalloc(struct btrfs_inode * inode,u64 start,u64 end,unsigned int extra_bits,struct extent_state ** cached_state)2695 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2696 unsigned int extra_bits,
2697 struct extent_state **cached_state)
2698 {
2699 WARN_ON(PAGE_ALIGNED(end));
2700
2701 if (start >= i_size_read(&inode->vfs_inode) &&
2702 !(inode->flags & BTRFS_INODE_PREALLOC)) {
2703 /*
2704 * There can't be any extents following eof in this case so just
2705 * set the delalloc new bit for the range directly.
2706 */
2707 extra_bits |= EXTENT_DELALLOC_NEW;
2708 } else {
2709 int ret;
2710
2711 ret = btrfs_find_new_delalloc_bytes(inode, start,
2712 end + 1 - start,
2713 cached_state);
2714 if (ret)
2715 return ret;
2716 }
2717
2718 return btrfs_set_extent_bit(&inode->io_tree, start, end,
2719 EXTENT_DELALLOC | extra_bits, cached_state);
2720 }
2721
2722 /* see btrfs_writepage_start_hook for details on why this is required */
2723 struct btrfs_writepage_fixup {
2724 struct folio *folio;
2725 struct btrfs_inode *inode;
2726 struct btrfs_work work;
2727 };
2728
btrfs_writepage_fixup_worker(struct btrfs_work * work)2729 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2730 {
2731 struct btrfs_writepage_fixup *fixup =
2732 container_of(work, struct btrfs_writepage_fixup, work);
2733 struct btrfs_ordered_extent *ordered;
2734 struct extent_state *cached_state = NULL;
2735 struct extent_changeset *data_reserved = NULL;
2736 struct folio *folio = fixup->folio;
2737 struct btrfs_inode *inode = fixup->inode;
2738 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2739 u64 page_start = folio_pos(folio);
2740 u64 page_end = folio_pos(folio) + folio_size(folio) - 1;
2741 int ret = 0;
2742 bool free_delalloc_space = true;
2743
2744 /*
2745 * This is similar to page_mkwrite, we need to reserve the space before
2746 * we take the folio lock.
2747 */
2748 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2749 folio_size(folio));
2750 again:
2751 folio_lock(folio);
2752
2753 /*
2754 * Before we queued this fixup, we took a reference on the folio.
2755 * folio->mapping may go NULL, but it shouldn't be moved to a different
2756 * address space.
2757 */
2758 if (!folio->mapping || !folio_test_dirty(folio) ||
2759 !folio_test_checked(folio)) {
2760 /*
2761 * Unfortunately this is a little tricky, either
2762 *
2763 * 1) We got here and our folio had already been dealt with and
2764 * we reserved our space, thus ret == 0, so we need to just
2765 * drop our space reservation and bail. This can happen the
2766 * first time we come into the fixup worker, or could happen
2767 * while waiting for the ordered extent.
2768 * 2) Our folio was already dealt with, but we happened to get an
2769 * ENOSPC above from the btrfs_delalloc_reserve_space. In
2770 * this case we obviously don't have anything to release, but
2771 * because the folio was already dealt with we don't want to
2772 * mark the folio with an error, so make sure we're resetting
2773 * ret to 0. This is why we have this check _before_ the ret
2774 * check, because we do not want to have a surprise ENOSPC
2775 * when the folio was already properly dealt with.
2776 */
2777 if (!ret) {
2778 btrfs_delalloc_release_extents(inode, folio_size(folio));
2779 btrfs_delalloc_release_space(inode, data_reserved,
2780 page_start, folio_size(folio),
2781 true);
2782 }
2783 ret = 0;
2784 goto out_page;
2785 }
2786
2787 /*
2788 * We can't mess with the folio state unless it is locked, so now that
2789 * it is locked bail if we failed to make our space reservation.
2790 */
2791 if (ret)
2792 goto out_page;
2793
2794 btrfs_lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2795
2796 /* already ordered? We're done */
2797 if (folio_test_ordered(folio))
2798 goto out_reserved;
2799
2800 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2801 if (ordered) {
2802 btrfs_unlock_extent(&inode->io_tree, page_start, page_end,
2803 &cached_state);
2804 folio_unlock(folio);
2805 btrfs_start_ordered_extent(ordered);
2806 btrfs_put_ordered_extent(ordered);
2807 goto again;
2808 }
2809
2810 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2811 &cached_state);
2812 if (ret)
2813 goto out_reserved;
2814
2815 /*
2816 * Everything went as planned, we're now the owner of a dirty page with
2817 * delayed allocation bits set and space reserved for our COW
2818 * destination.
2819 *
2820 * The page was dirty when we started, nothing should have cleaned it.
2821 */
2822 BUG_ON(!folio_test_dirty(folio));
2823 free_delalloc_space = false;
2824 out_reserved:
2825 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2826 if (free_delalloc_space)
2827 btrfs_delalloc_release_space(inode, data_reserved, page_start,
2828 PAGE_SIZE, true);
2829 btrfs_unlock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2830 out_page:
2831 if (ret) {
2832 /*
2833 * We hit ENOSPC or other errors. Update the mapping and page
2834 * to reflect the errors and clean the page.
2835 */
2836 mapping_set_error(folio->mapping, ret);
2837 btrfs_mark_ordered_io_finished(inode, folio, page_start,
2838 folio_size(folio), !ret);
2839 folio_clear_dirty_for_io(folio);
2840 }
2841 btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE);
2842 folio_unlock(folio);
2843 folio_put(folio);
2844 kfree(fixup);
2845 extent_changeset_free(data_reserved);
2846 /*
2847 * As a precaution, do a delayed iput in case it would be the last iput
2848 * that could need flushing space. Recursing back to fixup worker would
2849 * deadlock.
2850 */
2851 btrfs_add_delayed_iput(inode);
2852 }
2853
2854 /*
2855 * There are a few paths in the higher layers of the kernel that directly
2856 * set the folio dirty bit without asking the filesystem if it is a
2857 * good idea. This causes problems because we want to make sure COW
2858 * properly happens and the data=ordered rules are followed.
2859 *
2860 * In our case any range that doesn't have the ORDERED bit set
2861 * hasn't been properly setup for IO. We kick off an async process
2862 * to fix it up. The async helper will wait for ordered extents, set
2863 * the delalloc bit and make it safe to write the folio.
2864 */
btrfs_writepage_cow_fixup(struct folio * folio)2865 int btrfs_writepage_cow_fixup(struct folio *folio)
2866 {
2867 struct inode *inode = folio->mapping->host;
2868 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2869 struct btrfs_writepage_fixup *fixup;
2870
2871 /* This folio has ordered extent covering it already */
2872 if (folio_test_ordered(folio))
2873 return 0;
2874
2875 /*
2876 * For experimental build, we error out instead of EAGAIN.
2877 *
2878 * We should not hit such out-of-band dirty folios anymore.
2879 */
2880 if (IS_ENABLED(CONFIG_BTRFS_EXPERIMENTAL)) {
2881 DEBUG_WARN();
2882 btrfs_err_rl(fs_info,
2883 "root %lld ino %llu folio %llu is marked dirty without notifying the fs",
2884 BTRFS_I(inode)->root->root_key.objectid,
2885 btrfs_ino(BTRFS_I(inode)),
2886 folio_pos(folio));
2887 return -EUCLEAN;
2888 }
2889
2890 /*
2891 * folio_checked is set below when we create a fixup worker for this
2892 * folio, don't try to create another one if we're already
2893 * folio_test_checked.
2894 *
2895 * The extent_io writepage code will redirty the foio if we send back
2896 * EAGAIN.
2897 */
2898 if (folio_test_checked(folio))
2899 return -EAGAIN;
2900
2901 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2902 if (!fixup)
2903 return -EAGAIN;
2904
2905 /*
2906 * We are already holding a reference to this inode from
2907 * write_cache_pages. We need to hold it because the space reservation
2908 * takes place outside of the folio lock, and we can't trust
2909 * folio->mapping outside of the folio lock.
2910 */
2911 ihold(inode);
2912 btrfs_folio_set_checked(fs_info, folio, folio_pos(folio), folio_size(folio));
2913 folio_get(folio);
2914 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL);
2915 fixup->folio = folio;
2916 fixup->inode = BTRFS_I(inode);
2917 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2918
2919 return -EAGAIN;
2920 }
2921
insert_reserved_file_extent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,u64 file_pos,struct btrfs_file_extent_item * stack_fi,const bool update_inode_bytes,u64 qgroup_reserved)2922 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2923 struct btrfs_inode *inode, u64 file_pos,
2924 struct btrfs_file_extent_item *stack_fi,
2925 const bool update_inode_bytes,
2926 u64 qgroup_reserved)
2927 {
2928 struct btrfs_root *root = inode->root;
2929 const u64 sectorsize = root->fs_info->sectorsize;
2930 BTRFS_PATH_AUTO_FREE(path);
2931 struct extent_buffer *leaf;
2932 struct btrfs_key ins;
2933 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2934 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2935 u64 offset = btrfs_stack_file_extent_offset(stack_fi);
2936 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2937 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
2938 struct btrfs_drop_extents_args drop_args = { 0 };
2939 int ret;
2940
2941 path = btrfs_alloc_path();
2942 if (!path)
2943 return -ENOMEM;
2944
2945 /*
2946 * we may be replacing one extent in the tree with another.
2947 * The new extent is pinned in the extent map, and we don't want
2948 * to drop it from the cache until it is completely in the btree.
2949 *
2950 * So, tell btrfs_drop_extents to leave this extent in the cache.
2951 * the caller is expected to unpin it and allow it to be merged
2952 * with the others.
2953 */
2954 drop_args.path = path;
2955 drop_args.start = file_pos;
2956 drop_args.end = file_pos + num_bytes;
2957 drop_args.replace_extent = true;
2958 drop_args.extent_item_size = sizeof(*stack_fi);
2959 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2960 if (ret)
2961 goto out;
2962
2963 if (!drop_args.extent_inserted) {
2964 ins.objectid = btrfs_ino(inode);
2965 ins.type = BTRFS_EXTENT_DATA_KEY;
2966 ins.offset = file_pos;
2967
2968 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2969 sizeof(*stack_fi));
2970 if (ret)
2971 goto out;
2972 }
2973 leaf = path->nodes[0];
2974 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2975 write_extent_buffer(leaf, stack_fi,
2976 btrfs_item_ptr_offset(leaf, path->slots[0]),
2977 sizeof(struct btrfs_file_extent_item));
2978
2979 btrfs_release_path(path);
2980
2981 /*
2982 * If we dropped an inline extent here, we know the range where it is
2983 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
2984 * number of bytes only for that range containing the inline extent.
2985 * The remaining of the range will be processed when clearning the
2986 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
2987 */
2988 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
2989 u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
2990
2991 inline_size = drop_args.bytes_found - inline_size;
2992 btrfs_update_inode_bytes(inode, sectorsize, inline_size);
2993 drop_args.bytes_found -= inline_size;
2994 num_bytes -= sectorsize;
2995 }
2996
2997 if (update_inode_bytes)
2998 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
2999
3000 ins.objectid = disk_bytenr;
3001 ins.type = BTRFS_EXTENT_ITEM_KEY;
3002 ins.offset = disk_num_bytes;
3003
3004 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
3005 if (ret)
3006 goto out;
3007
3008 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
3009 file_pos - offset,
3010 qgroup_reserved, &ins);
3011 out:
3012 return ret;
3013 }
3014
btrfs_release_delalloc_bytes(struct btrfs_fs_info * fs_info,u64 start,u64 len)3015 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
3016 u64 start, u64 len)
3017 {
3018 struct btrfs_block_group *cache;
3019
3020 cache = btrfs_lookup_block_group(fs_info, start);
3021 ASSERT(cache);
3022
3023 spin_lock(&cache->lock);
3024 cache->delalloc_bytes -= len;
3025 spin_unlock(&cache->lock);
3026
3027 btrfs_put_block_group(cache);
3028 }
3029
insert_ordered_extent_file_extent(struct btrfs_trans_handle * trans,struct btrfs_ordered_extent * oe)3030 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
3031 struct btrfs_ordered_extent *oe)
3032 {
3033 struct btrfs_file_extent_item stack_fi;
3034 bool update_inode_bytes;
3035 u64 num_bytes = oe->num_bytes;
3036 u64 ram_bytes = oe->ram_bytes;
3037
3038 memset(&stack_fi, 0, sizeof(stack_fi));
3039 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
3040 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
3041 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
3042 oe->disk_num_bytes);
3043 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset);
3044 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags))
3045 num_bytes = oe->truncated_len;
3046 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes);
3047 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes);
3048 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
3049 /* Encryption and other encoding is reserved and all 0 */
3050
3051 /*
3052 * For delalloc, when completing an ordered extent we update the inode's
3053 * bytes when clearing the range in the inode's io tree, so pass false
3054 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
3055 * except if the ordered extent was truncated.
3056 */
3057 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
3058 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) ||
3059 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
3060
3061 return insert_reserved_file_extent(trans, oe->inode,
3062 oe->file_offset, &stack_fi,
3063 update_inode_bytes, oe->qgroup_rsv);
3064 }
3065
3066 /*
3067 * As ordered data IO finishes, this gets called so we can finish
3068 * an ordered extent if the range of bytes in the file it covers are
3069 * fully written.
3070 */
btrfs_finish_one_ordered(struct btrfs_ordered_extent * ordered_extent)3071 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent)
3072 {
3073 struct btrfs_inode *inode = ordered_extent->inode;
3074 struct btrfs_root *root = inode->root;
3075 struct btrfs_fs_info *fs_info = root->fs_info;
3076 struct btrfs_trans_handle *trans = NULL;
3077 struct extent_io_tree *io_tree = &inode->io_tree;
3078 struct extent_state *cached_state = NULL;
3079 u64 start, end;
3080 int compress_type = 0;
3081 int ret = 0;
3082 u64 logical_len = ordered_extent->num_bytes;
3083 bool freespace_inode;
3084 bool truncated = false;
3085 bool clear_reserved_extent = true;
3086 unsigned int clear_bits = EXTENT_DEFRAG;
3087
3088 start = ordered_extent->file_offset;
3089 end = start + ordered_extent->num_bytes - 1;
3090
3091 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3092 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3093 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) &&
3094 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags))
3095 clear_bits |= EXTENT_DELALLOC_NEW;
3096
3097 freespace_inode = btrfs_is_free_space_inode(inode);
3098 if (!freespace_inode)
3099 btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent);
3100
3101 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3102 ret = -EIO;
3103 goto out;
3104 }
3105
3106 if (btrfs_is_zoned(fs_info))
3107 btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr,
3108 ordered_extent->disk_num_bytes);
3109
3110 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3111 truncated = true;
3112 logical_len = ordered_extent->truncated_len;
3113 /* Truncated the entire extent, don't bother adding */
3114 if (!logical_len)
3115 goto out;
3116 }
3117
3118 /*
3119 * If it's a COW write we need to lock the extent range as we will be
3120 * inserting/replacing file extent items and unpinning an extent map.
3121 * This must be taken before joining a transaction, as it's a higher
3122 * level lock (like the inode's VFS lock), otherwise we can run into an
3123 * ABBA deadlock with other tasks (transactions work like a lock,
3124 * depending on their current state).
3125 */
3126 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3127 clear_bits |= EXTENT_LOCKED | EXTENT_FINISHING_ORDERED;
3128 btrfs_lock_extent_bits(io_tree, start, end,
3129 EXTENT_LOCKED | EXTENT_FINISHING_ORDERED,
3130 &cached_state);
3131 }
3132
3133 if (freespace_inode)
3134 trans = btrfs_join_transaction_spacecache(root);
3135 else
3136 trans = btrfs_join_transaction(root);
3137 if (IS_ERR(trans)) {
3138 ret = PTR_ERR(trans);
3139 trans = NULL;
3140 goto out;
3141 }
3142
3143 trans->block_rsv = &inode->block_rsv;
3144
3145 ret = btrfs_insert_raid_extent(trans, ordered_extent);
3146 if (ret) {
3147 btrfs_abort_transaction(trans, ret);
3148 goto out;
3149 }
3150
3151 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3152 /* Logic error */
3153 ASSERT(list_empty(&ordered_extent->list));
3154 if (!list_empty(&ordered_extent->list)) {
3155 ret = -EINVAL;
3156 btrfs_abort_transaction(trans, ret);
3157 goto out;
3158 }
3159
3160 btrfs_inode_safe_disk_i_size_write(inode, 0);
3161 ret = btrfs_update_inode_fallback(trans, inode);
3162 if (ret) {
3163 /* -ENOMEM or corruption */
3164 btrfs_abort_transaction(trans, ret);
3165 }
3166 goto out;
3167 }
3168
3169 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3170 compress_type = ordered_extent->compress_type;
3171 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3172 BUG_ON(compress_type);
3173 ret = btrfs_mark_extent_written(trans, inode,
3174 ordered_extent->file_offset,
3175 ordered_extent->file_offset +
3176 logical_len);
3177 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr,
3178 ordered_extent->disk_num_bytes);
3179 } else {
3180 BUG_ON(root == fs_info->tree_root);
3181 ret = insert_ordered_extent_file_extent(trans, ordered_extent);
3182 if (!ret) {
3183 clear_reserved_extent = false;
3184 btrfs_release_delalloc_bytes(fs_info,
3185 ordered_extent->disk_bytenr,
3186 ordered_extent->disk_num_bytes);
3187 }
3188 }
3189 if (ret < 0) {
3190 btrfs_abort_transaction(trans, ret);
3191 goto out;
3192 }
3193
3194 ret = btrfs_unpin_extent_cache(inode, ordered_extent->file_offset,
3195 ordered_extent->num_bytes, trans->transid);
3196 if (ret < 0) {
3197 btrfs_abort_transaction(trans, ret);
3198 goto out;
3199 }
3200
3201 ret = add_pending_csums(trans, &ordered_extent->list);
3202 if (ret) {
3203 btrfs_abort_transaction(trans, ret);
3204 goto out;
3205 }
3206
3207 /*
3208 * If this is a new delalloc range, clear its new delalloc flag to
3209 * update the inode's number of bytes. This needs to be done first
3210 * before updating the inode item.
3211 */
3212 if ((clear_bits & EXTENT_DELALLOC_NEW) &&
3213 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
3214 btrfs_clear_extent_bit(&inode->io_tree, start, end,
3215 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
3216 &cached_state);
3217
3218 btrfs_inode_safe_disk_i_size_write(inode, 0);
3219 ret = btrfs_update_inode_fallback(trans, inode);
3220 if (ret) { /* -ENOMEM or corruption */
3221 btrfs_abort_transaction(trans, ret);
3222 goto out;
3223 }
3224 out:
3225 btrfs_clear_extent_bit(&inode->io_tree, start, end, clear_bits,
3226 &cached_state);
3227
3228 if (trans)
3229 btrfs_end_transaction(trans);
3230
3231 if (ret || truncated) {
3232 /*
3233 * If we failed to finish this ordered extent for any reason we
3234 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3235 * extent, and mark the inode with the error if it wasn't
3236 * already set. Any error during writeback would have already
3237 * set the mapping error, so we need to set it if we're the ones
3238 * marking this ordered extent as failed.
3239 */
3240 if (ret)
3241 btrfs_mark_ordered_extent_error(ordered_extent);
3242
3243 /*
3244 * Drop extent maps for the part of the extent we didn't write.
3245 *
3246 * We have an exception here for the free_space_inode, this is
3247 * because when we do btrfs_get_extent() on the free space inode
3248 * we will search the commit root. If this is a new block group
3249 * we won't find anything, and we will trip over the assert in
3250 * writepage where we do ASSERT(em->block_start !=
3251 * EXTENT_MAP_HOLE).
3252 *
3253 * Theoretically we could also skip this for any NOCOW extent as
3254 * we don't mess with the extent map tree in the NOCOW case, but
3255 * for now simply skip this if we are the free space inode.
3256 */
3257 if (!btrfs_is_free_space_inode(inode)) {
3258 u64 unwritten_start = start;
3259
3260 if (truncated)
3261 unwritten_start += logical_len;
3262
3263 btrfs_drop_extent_map_range(inode, unwritten_start,
3264 end, false);
3265 }
3266
3267 /*
3268 * If the ordered extent had an IOERR or something else went
3269 * wrong we need to return the space for this ordered extent
3270 * back to the allocator. We only free the extent in the
3271 * truncated case if we didn't write out the extent at all.
3272 *
3273 * If we made it past insert_reserved_file_extent before we
3274 * errored out then we don't need to do this as the accounting
3275 * has already been done.
3276 */
3277 if ((ret || !logical_len) &&
3278 clear_reserved_extent &&
3279 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3280 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3281 /*
3282 * Discard the range before returning it back to the
3283 * free space pool
3284 */
3285 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3286 btrfs_discard_extent(fs_info,
3287 ordered_extent->disk_bytenr,
3288 ordered_extent->disk_num_bytes,
3289 NULL);
3290 btrfs_free_reserved_extent(fs_info,
3291 ordered_extent->disk_bytenr,
3292 ordered_extent->disk_num_bytes, true);
3293 /*
3294 * Actually free the qgroup rsv which was released when
3295 * the ordered extent was created.
3296 */
3297 btrfs_qgroup_free_refroot(fs_info, btrfs_root_id(inode->root),
3298 ordered_extent->qgroup_rsv,
3299 BTRFS_QGROUP_RSV_DATA);
3300 }
3301 }
3302
3303 /*
3304 * This needs to be done to make sure anybody waiting knows we are done
3305 * updating everything for this ordered extent.
3306 */
3307 btrfs_remove_ordered_extent(inode, ordered_extent);
3308
3309 /* once for us */
3310 btrfs_put_ordered_extent(ordered_extent);
3311 /* once for the tree */
3312 btrfs_put_ordered_extent(ordered_extent);
3313
3314 return ret;
3315 }
3316
btrfs_finish_ordered_io(struct btrfs_ordered_extent * ordered)3317 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered)
3318 {
3319 if (btrfs_is_zoned(ordered->inode->root->fs_info) &&
3320 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3321 list_empty(&ordered->bioc_list))
3322 btrfs_finish_ordered_zoned(ordered);
3323 return btrfs_finish_one_ordered(ordered);
3324 }
3325
3326 /*
3327 * Verify the checksum for a single sector without any extra action that depend
3328 * on the type of I/O.
3329 *
3330 * @kaddr must be a properly kmapped address.
3331 */
btrfs_check_sector_csum(struct btrfs_fs_info * fs_info,void * kaddr,u8 * csum,const u8 * const csum_expected)3332 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, void *kaddr, u8 *csum,
3333 const u8 * const csum_expected)
3334 {
3335 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3336
3337 shash->tfm = fs_info->csum_shash;
3338 crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
3339
3340 if (memcmp(csum, csum_expected, fs_info->csum_size))
3341 return -EIO;
3342 return 0;
3343 }
3344
3345 /*
3346 * Verify the checksum of a single data sector.
3347 *
3348 * @bbio: btrfs_io_bio which contains the csum
3349 * @dev: device the sector is on
3350 * @bio_offset: offset to the beginning of the bio (in bytes)
3351 * @bv: bio_vec to check
3352 *
3353 * Check if the checksum on a data block is valid. When a checksum mismatch is
3354 * detected, report the error and fill the corrupted range with zero.
3355 *
3356 * Return %true if the sector is ok or had no checksum to start with, else %false.
3357 */
btrfs_data_csum_ok(struct btrfs_bio * bbio,struct btrfs_device * dev,u32 bio_offset,struct bio_vec * bv)3358 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev,
3359 u32 bio_offset, struct bio_vec *bv)
3360 {
3361 struct btrfs_inode *inode = bbio->inode;
3362 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3363 u64 file_offset = bbio->file_offset + bio_offset;
3364 u64 end = file_offset + bv->bv_len - 1;
3365 u8 *csum_expected;
3366 u8 csum[BTRFS_CSUM_SIZE];
3367 void *kaddr;
3368
3369 ASSERT(bv->bv_len == fs_info->sectorsize);
3370
3371 if (!bbio->csum)
3372 return true;
3373
3374 if (btrfs_is_data_reloc_root(inode->root) &&
3375 btrfs_test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM,
3376 NULL)) {
3377 /* Skip the range without csum for data reloc inode */
3378 btrfs_clear_extent_bits(&inode->io_tree, file_offset, end,
3379 EXTENT_NODATASUM);
3380 return true;
3381 }
3382
3383 csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) *
3384 fs_info->csum_size;
3385 kaddr = bvec_kmap_local(bv);
3386 if (btrfs_check_sector_csum(fs_info, kaddr, csum, csum_expected)) {
3387 kunmap_local(kaddr);
3388 goto zeroit;
3389 }
3390 kunmap_local(kaddr);
3391 return true;
3392
3393 zeroit:
3394 btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected,
3395 bbio->mirror_num);
3396 if (dev)
3397 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
3398 memzero_bvec(bv);
3399 return false;
3400 }
3401
3402 /*
3403 * Perform a delayed iput on @inode.
3404 *
3405 * @inode: The inode we want to perform iput on
3406 *
3407 * This function uses the generic vfs_inode::i_count to track whether we should
3408 * just decrement it (in case it's > 1) or if this is the last iput then link
3409 * the inode to the delayed iput machinery. Delayed iputs are processed at
3410 * transaction commit time/superblock commit/cleaner kthread.
3411 */
btrfs_add_delayed_iput(struct btrfs_inode * inode)3412 void btrfs_add_delayed_iput(struct btrfs_inode *inode)
3413 {
3414 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3415 unsigned long flags;
3416
3417 if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1))
3418 return;
3419
3420 WARN_ON_ONCE(test_bit(BTRFS_FS_STATE_NO_DELAYED_IPUT, &fs_info->fs_state));
3421 atomic_inc(&fs_info->nr_delayed_iputs);
3422 /*
3423 * Need to be irq safe here because we can be called from either an irq
3424 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq
3425 * context.
3426 */
3427 spin_lock_irqsave(&fs_info->delayed_iput_lock, flags);
3428 ASSERT(list_empty(&inode->delayed_iput));
3429 list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs);
3430 spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags);
3431 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3432 wake_up_process(fs_info->cleaner_kthread);
3433 }
3434
run_delayed_iput_locked(struct btrfs_fs_info * fs_info,struct btrfs_inode * inode)3435 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3436 struct btrfs_inode *inode)
3437 {
3438 list_del_init(&inode->delayed_iput);
3439 spin_unlock_irq(&fs_info->delayed_iput_lock);
3440 iput(&inode->vfs_inode);
3441 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3442 wake_up(&fs_info->delayed_iputs_wait);
3443 spin_lock_irq(&fs_info->delayed_iput_lock);
3444 }
3445
btrfs_run_delayed_iput(struct btrfs_fs_info * fs_info,struct btrfs_inode * inode)3446 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3447 struct btrfs_inode *inode)
3448 {
3449 if (!list_empty(&inode->delayed_iput)) {
3450 spin_lock_irq(&fs_info->delayed_iput_lock);
3451 if (!list_empty(&inode->delayed_iput))
3452 run_delayed_iput_locked(fs_info, inode);
3453 spin_unlock_irq(&fs_info->delayed_iput_lock);
3454 }
3455 }
3456
btrfs_run_delayed_iputs(struct btrfs_fs_info * fs_info)3457 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3458 {
3459 /*
3460 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which
3461 * calls btrfs_add_delayed_iput() and that needs to lock
3462 * fs_info->delayed_iput_lock. So we need to disable irqs here to
3463 * prevent a deadlock.
3464 */
3465 spin_lock_irq(&fs_info->delayed_iput_lock);
3466 while (!list_empty(&fs_info->delayed_iputs)) {
3467 struct btrfs_inode *inode;
3468
3469 inode = list_first_entry(&fs_info->delayed_iputs,
3470 struct btrfs_inode, delayed_iput);
3471 run_delayed_iput_locked(fs_info, inode);
3472 if (need_resched()) {
3473 spin_unlock_irq(&fs_info->delayed_iput_lock);
3474 cond_resched();
3475 spin_lock_irq(&fs_info->delayed_iput_lock);
3476 }
3477 }
3478 spin_unlock_irq(&fs_info->delayed_iput_lock);
3479 }
3480
3481 /*
3482 * Wait for flushing all delayed iputs
3483 *
3484 * @fs_info: the filesystem
3485 *
3486 * This will wait on any delayed iputs that are currently running with KILLABLE
3487 * set. Once they are all done running we will return, unless we are killed in
3488 * which case we return EINTR. This helps in user operations like fallocate etc
3489 * that might get blocked on the iputs.
3490 *
3491 * Return EINTR if we were killed, 0 if nothing's pending
3492 */
btrfs_wait_on_delayed_iputs(struct btrfs_fs_info * fs_info)3493 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3494 {
3495 int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3496 atomic_read(&fs_info->nr_delayed_iputs) == 0);
3497 if (ret)
3498 return -EINTR;
3499 return 0;
3500 }
3501
3502 /*
3503 * This creates an orphan entry for the given inode in case something goes wrong
3504 * in the middle of an unlink.
3505 */
btrfs_orphan_add(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3506 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3507 struct btrfs_inode *inode)
3508 {
3509 int ret;
3510
3511 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3512 if (ret && ret != -EEXIST) {
3513 btrfs_abort_transaction(trans, ret);
3514 return ret;
3515 }
3516
3517 return 0;
3518 }
3519
3520 /*
3521 * We have done the delete so we can go ahead and remove the orphan item for
3522 * this particular inode.
3523 */
btrfs_orphan_del(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3524 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3525 struct btrfs_inode *inode)
3526 {
3527 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3528 }
3529
3530 /*
3531 * this cleans up any orphans that may be left on the list from the last use
3532 * of this root.
3533 */
btrfs_orphan_cleanup(struct btrfs_root * root)3534 int btrfs_orphan_cleanup(struct btrfs_root *root)
3535 {
3536 struct btrfs_fs_info *fs_info = root->fs_info;
3537 BTRFS_PATH_AUTO_FREE(path);
3538 struct extent_buffer *leaf;
3539 struct btrfs_key key, found_key;
3540 struct btrfs_trans_handle *trans;
3541 u64 last_objectid = 0;
3542 int ret = 0, nr_unlink = 0;
3543
3544 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state))
3545 return 0;
3546
3547 path = btrfs_alloc_path();
3548 if (!path) {
3549 ret = -ENOMEM;
3550 goto out;
3551 }
3552 path->reada = READA_BACK;
3553
3554 key.objectid = BTRFS_ORPHAN_OBJECTID;
3555 key.type = BTRFS_ORPHAN_ITEM_KEY;
3556 key.offset = (u64)-1;
3557
3558 while (1) {
3559 struct btrfs_inode *inode;
3560
3561 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3562 if (ret < 0)
3563 goto out;
3564
3565 /*
3566 * if ret == 0 means we found what we were searching for, which
3567 * is weird, but possible, so only screw with path if we didn't
3568 * find the key and see if we have stuff that matches
3569 */
3570 if (ret > 0) {
3571 ret = 0;
3572 if (path->slots[0] == 0)
3573 break;
3574 path->slots[0]--;
3575 }
3576
3577 /* pull out the item */
3578 leaf = path->nodes[0];
3579 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3580
3581 /* make sure the item matches what we want */
3582 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3583 break;
3584 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3585 break;
3586
3587 /* release the path since we're done with it */
3588 btrfs_release_path(path);
3589
3590 /*
3591 * this is where we are basically btrfs_lookup, without the
3592 * crossing root thing. we store the inode number in the
3593 * offset of the orphan item.
3594 */
3595
3596 if (found_key.offset == last_objectid) {
3597 /*
3598 * We found the same inode as before. This means we were
3599 * not able to remove its items via eviction triggered
3600 * by an iput(). A transaction abort may have happened,
3601 * due to -ENOSPC for example, so try to grab the error
3602 * that lead to a transaction abort, if any.
3603 */
3604 btrfs_err(fs_info,
3605 "Error removing orphan entry, stopping orphan cleanup");
3606 ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL;
3607 goto out;
3608 }
3609
3610 last_objectid = found_key.offset;
3611
3612 found_key.objectid = found_key.offset;
3613 found_key.type = BTRFS_INODE_ITEM_KEY;
3614 found_key.offset = 0;
3615 inode = btrfs_iget(last_objectid, root);
3616 if (IS_ERR(inode)) {
3617 ret = PTR_ERR(inode);
3618 inode = NULL;
3619 if (ret != -ENOENT)
3620 goto out;
3621 }
3622
3623 if (!inode && root == fs_info->tree_root) {
3624 struct btrfs_root *dead_root;
3625 int is_dead_root = 0;
3626
3627 /*
3628 * This is an orphan in the tree root. Currently these
3629 * could come from 2 sources:
3630 * a) a root (snapshot/subvolume) deletion in progress
3631 * b) a free space cache inode
3632 * We need to distinguish those two, as the orphan item
3633 * for a root must not get deleted before the deletion
3634 * of the snapshot/subvolume's tree completes.
3635 *
3636 * btrfs_find_orphan_roots() ran before us, which has
3637 * found all deleted roots and loaded them into
3638 * fs_info->fs_roots_radix. So here we can find if an
3639 * orphan item corresponds to a deleted root by looking
3640 * up the root from that radix tree.
3641 */
3642
3643 spin_lock(&fs_info->fs_roots_radix_lock);
3644 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3645 (unsigned long)found_key.objectid);
3646 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3647 is_dead_root = 1;
3648 spin_unlock(&fs_info->fs_roots_radix_lock);
3649
3650 if (is_dead_root) {
3651 /* prevent this orphan from being found again */
3652 key.offset = found_key.objectid - 1;
3653 continue;
3654 }
3655
3656 }
3657
3658 /*
3659 * If we have an inode with links, there are a couple of
3660 * possibilities:
3661 *
3662 * 1. We were halfway through creating fsverity metadata for the
3663 * file. In that case, the orphan item represents incomplete
3664 * fsverity metadata which must be cleaned up with
3665 * btrfs_drop_verity_items and deleting the orphan item.
3666
3667 * 2. Old kernels (before v3.12) used to create an
3668 * orphan item for truncate indicating that there were possibly
3669 * extent items past i_size that needed to be deleted. In v3.12,
3670 * truncate was changed to update i_size in sync with the extent
3671 * items, but the (useless) orphan item was still created. Since
3672 * v4.18, we don't create the orphan item for truncate at all.
3673 *
3674 * So, this item could mean that we need to do a truncate, but
3675 * only if this filesystem was last used on a pre-v3.12 kernel
3676 * and was not cleanly unmounted. The odds of that are quite
3677 * slim, and it's a pain to do the truncate now, so just delete
3678 * the orphan item.
3679 *
3680 * It's also possible that this orphan item was supposed to be
3681 * deleted but wasn't. The inode number may have been reused,
3682 * but either way, we can delete the orphan item.
3683 */
3684 if (!inode || inode->vfs_inode.i_nlink) {
3685 if (inode) {
3686 ret = btrfs_drop_verity_items(inode);
3687 iput(&inode->vfs_inode);
3688 inode = NULL;
3689 if (ret)
3690 goto out;
3691 }
3692 trans = btrfs_start_transaction(root, 1);
3693 if (IS_ERR(trans)) {
3694 ret = PTR_ERR(trans);
3695 goto out;
3696 }
3697 btrfs_debug(fs_info, "auto deleting %Lu",
3698 found_key.objectid);
3699 ret = btrfs_del_orphan_item(trans, root,
3700 found_key.objectid);
3701 btrfs_end_transaction(trans);
3702 if (ret)
3703 goto out;
3704 continue;
3705 }
3706
3707 nr_unlink++;
3708
3709 /* this will do delete_inode and everything for us */
3710 iput(&inode->vfs_inode);
3711 }
3712 /* release the path since we're done with it */
3713 btrfs_release_path(path);
3714
3715 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3716 trans = btrfs_join_transaction(root);
3717 if (!IS_ERR(trans))
3718 btrfs_end_transaction(trans);
3719 }
3720
3721 if (nr_unlink)
3722 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3723
3724 out:
3725 if (ret)
3726 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3727 return ret;
3728 }
3729
3730 /*
3731 * Look ahead in the leaf for xattrs. If we don't find any then we know there
3732 * can't be any ACLs.
3733 *
3734 * @leaf: the eb leaf where to search
3735 * @slot: the slot the inode is in
3736 * @objectid: the objectid of the inode
3737 *
3738 * Return true if there is xattr/ACL, false otherwise.
3739 */
acls_after_inode_item(struct extent_buffer * leaf,int slot,u64 objectid,int * first_xattr_slot)3740 static noinline bool acls_after_inode_item(struct extent_buffer *leaf,
3741 int slot, u64 objectid,
3742 int *first_xattr_slot)
3743 {
3744 u32 nritems = btrfs_header_nritems(leaf);
3745 struct btrfs_key found_key;
3746 static u64 xattr_access = 0;
3747 static u64 xattr_default = 0;
3748 int scanned = 0;
3749
3750 if (!xattr_access) {
3751 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3752 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3753 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3754 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3755 }
3756
3757 slot++;
3758 *first_xattr_slot = -1;
3759 while (slot < nritems) {
3760 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3761
3762 /* We found a different objectid, there must be no ACLs. */
3763 if (found_key.objectid != objectid)
3764 return false;
3765
3766 /* We found an xattr, assume we've got an ACL. */
3767 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3768 if (*first_xattr_slot == -1)
3769 *first_xattr_slot = slot;
3770 if (found_key.offset == xattr_access ||
3771 found_key.offset == xattr_default)
3772 return true;
3773 }
3774
3775 /*
3776 * We found a key greater than an xattr key, there can't be any
3777 * ACLs later on.
3778 */
3779 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3780 return false;
3781
3782 slot++;
3783 scanned++;
3784
3785 /*
3786 * The item order goes like:
3787 * - inode
3788 * - inode backrefs
3789 * - xattrs
3790 * - extents,
3791 *
3792 * so if there are lots of hard links to an inode there can be
3793 * a lot of backrefs. Don't waste time searching too hard,
3794 * this is just an optimization.
3795 */
3796 if (scanned >= 8)
3797 break;
3798 }
3799 /*
3800 * We hit the end of the leaf before we found an xattr or something
3801 * larger than an xattr. We have to assume the inode has ACLs.
3802 */
3803 if (*first_xattr_slot == -1)
3804 *first_xattr_slot = slot;
3805 return true;
3806 }
3807
btrfs_init_file_extent_tree(struct btrfs_inode * inode)3808 static int btrfs_init_file_extent_tree(struct btrfs_inode *inode)
3809 {
3810 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3811
3812 if (WARN_ON_ONCE(inode->file_extent_tree))
3813 return 0;
3814 if (btrfs_fs_incompat(fs_info, NO_HOLES))
3815 return 0;
3816 if (!S_ISREG(inode->vfs_inode.i_mode))
3817 return 0;
3818 if (btrfs_is_free_space_inode(inode))
3819 return 0;
3820
3821 inode->file_extent_tree = kmalloc(sizeof(struct extent_io_tree), GFP_KERNEL);
3822 if (!inode->file_extent_tree)
3823 return -ENOMEM;
3824
3825 btrfs_extent_io_tree_init(fs_info, inode->file_extent_tree,
3826 IO_TREE_INODE_FILE_EXTENT);
3827 /* Lockdep class is set only for the file extent tree. */
3828 lockdep_set_class(&inode->file_extent_tree->lock, &file_extent_tree_class);
3829
3830 return 0;
3831 }
3832
btrfs_add_inode_to_root(struct btrfs_inode * inode,bool prealloc)3833 static int btrfs_add_inode_to_root(struct btrfs_inode *inode, bool prealloc)
3834 {
3835 struct btrfs_root *root = inode->root;
3836 struct btrfs_inode *existing;
3837 const u64 ino = btrfs_ino(inode);
3838 int ret;
3839
3840 if (inode_unhashed(&inode->vfs_inode))
3841 return 0;
3842
3843 if (prealloc) {
3844 ret = xa_reserve(&root->inodes, ino, GFP_NOFS);
3845 if (ret)
3846 return ret;
3847 }
3848
3849 existing = xa_store(&root->inodes, ino, inode, GFP_ATOMIC);
3850
3851 if (xa_is_err(existing)) {
3852 ret = xa_err(existing);
3853 ASSERT(ret != -EINVAL);
3854 ASSERT(ret != -ENOMEM);
3855 return ret;
3856 } else if (existing) {
3857 WARN_ON(!(existing->vfs_inode.i_state & (I_WILL_FREE | I_FREEING)));
3858 }
3859
3860 return 0;
3861 }
3862
3863 /*
3864 * Read a locked inode from the btree into the in-memory inode and add it to
3865 * its root list/tree.
3866 *
3867 * On failure clean up the inode.
3868 */
btrfs_read_locked_inode(struct btrfs_inode * inode,struct btrfs_path * path)3869 static int btrfs_read_locked_inode(struct btrfs_inode *inode, struct btrfs_path *path)
3870 {
3871 struct btrfs_root *root = inode->root;
3872 struct btrfs_fs_info *fs_info = root->fs_info;
3873 struct extent_buffer *leaf;
3874 struct btrfs_inode_item *inode_item;
3875 struct inode *vfs_inode = &inode->vfs_inode;
3876 struct btrfs_key location;
3877 unsigned long ptr;
3878 int maybe_acls;
3879 u32 rdev;
3880 int ret;
3881 bool filled = false;
3882 int first_xattr_slot;
3883
3884 ret = btrfs_init_file_extent_tree(inode);
3885 if (ret)
3886 goto out;
3887
3888 ret = btrfs_fill_inode(inode, &rdev);
3889 if (!ret)
3890 filled = true;
3891
3892 ASSERT(path);
3893
3894 btrfs_get_inode_key(inode, &location);
3895
3896 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3897 if (ret) {
3898 /*
3899 * ret > 0 can come from btrfs_search_slot called by
3900 * btrfs_lookup_inode(), this means the inode was not found.
3901 */
3902 if (ret > 0)
3903 ret = -ENOENT;
3904 goto out;
3905 }
3906
3907 leaf = path->nodes[0];
3908
3909 if (filled)
3910 goto cache_index;
3911
3912 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3913 struct btrfs_inode_item);
3914 vfs_inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3915 set_nlink(vfs_inode, btrfs_inode_nlink(leaf, inode_item));
3916 i_uid_write(vfs_inode, btrfs_inode_uid(leaf, inode_item));
3917 i_gid_write(vfs_inode, btrfs_inode_gid(leaf, inode_item));
3918 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3919 btrfs_inode_set_file_extent_range(inode, 0,
3920 round_up(i_size_read(vfs_inode), fs_info->sectorsize));
3921
3922 inode_set_atime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->atime),
3923 btrfs_timespec_nsec(leaf, &inode_item->atime));
3924
3925 inode_set_mtime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->mtime),
3926 btrfs_timespec_nsec(leaf, &inode_item->mtime));
3927
3928 inode_set_ctime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->ctime),
3929 btrfs_timespec_nsec(leaf, &inode_item->ctime));
3930
3931 inode->i_otime_sec = btrfs_timespec_sec(leaf, &inode_item->otime);
3932 inode->i_otime_nsec = btrfs_timespec_nsec(leaf, &inode_item->otime);
3933
3934 inode_set_bytes(vfs_inode, btrfs_inode_nbytes(leaf, inode_item));
3935 inode->generation = btrfs_inode_generation(leaf, inode_item);
3936 inode->last_trans = btrfs_inode_transid(leaf, inode_item);
3937
3938 inode_set_iversion_queried(vfs_inode, btrfs_inode_sequence(leaf, inode_item));
3939 vfs_inode->i_generation = inode->generation;
3940 vfs_inode->i_rdev = 0;
3941 rdev = btrfs_inode_rdev(leaf, inode_item);
3942
3943 if (S_ISDIR(vfs_inode->i_mode))
3944 inode->index_cnt = (u64)-1;
3945
3946 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item),
3947 &inode->flags, &inode->ro_flags);
3948 btrfs_update_inode_mapping_flags(inode);
3949
3950 cache_index:
3951 /*
3952 * If we were modified in the current generation and evicted from memory
3953 * and then re-read we need to do a full sync since we don't have any
3954 * idea about which extents were modified before we were evicted from
3955 * cache.
3956 *
3957 * This is required for both inode re-read from disk and delayed inode
3958 * in the delayed_nodes xarray.
3959 */
3960 if (inode->last_trans == btrfs_get_fs_generation(fs_info))
3961 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
3962
3963 /*
3964 * We don't persist the id of the transaction where an unlink operation
3965 * against the inode was last made. So here we assume the inode might
3966 * have been evicted, and therefore the exact value of last_unlink_trans
3967 * lost, and set it to last_trans to avoid metadata inconsistencies
3968 * between the inode and its parent if the inode is fsync'ed and the log
3969 * replayed. For example, in the scenario:
3970 *
3971 * touch mydir/foo
3972 * ln mydir/foo mydir/bar
3973 * sync
3974 * unlink mydir/bar
3975 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3976 * xfs_io -c fsync mydir/foo
3977 * <power failure>
3978 * mount fs, triggers fsync log replay
3979 *
3980 * We must make sure that when we fsync our inode foo we also log its
3981 * parent inode, otherwise after log replay the parent still has the
3982 * dentry with the "bar" name but our inode foo has a link count of 1
3983 * and doesn't have an inode ref with the name "bar" anymore.
3984 *
3985 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3986 * but it guarantees correctness at the expense of occasional full
3987 * transaction commits on fsync if our inode is a directory, or if our
3988 * inode is not a directory, logging its parent unnecessarily.
3989 */
3990 inode->last_unlink_trans = inode->last_trans;
3991
3992 /*
3993 * Same logic as for last_unlink_trans. We don't persist the generation
3994 * of the last transaction where this inode was used for a reflink
3995 * operation, so after eviction and reloading the inode we must be
3996 * pessimistic and assume the last transaction that modified the inode.
3997 */
3998 inode->last_reflink_trans = inode->last_trans;
3999
4000 path->slots[0]++;
4001 if (vfs_inode->i_nlink != 1 ||
4002 path->slots[0] >= btrfs_header_nritems(leaf))
4003 goto cache_acl;
4004
4005 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
4006 if (location.objectid != btrfs_ino(inode))
4007 goto cache_acl;
4008
4009 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4010 if (location.type == BTRFS_INODE_REF_KEY) {
4011 struct btrfs_inode_ref *ref;
4012
4013 ref = (struct btrfs_inode_ref *)ptr;
4014 inode->dir_index = btrfs_inode_ref_index(leaf, ref);
4015 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
4016 struct btrfs_inode_extref *extref;
4017
4018 extref = (struct btrfs_inode_extref *)ptr;
4019 inode->dir_index = btrfs_inode_extref_index(leaf, extref);
4020 }
4021 cache_acl:
4022 /*
4023 * try to precache a NULL acl entry for files that don't have
4024 * any xattrs or acls
4025 */
4026 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
4027 btrfs_ino(inode), &first_xattr_slot);
4028 if (first_xattr_slot != -1) {
4029 path->slots[0] = first_xattr_slot;
4030 ret = btrfs_load_inode_props(inode, path);
4031 if (ret)
4032 btrfs_err(fs_info,
4033 "error loading props for ino %llu (root %llu): %d",
4034 btrfs_ino(inode), btrfs_root_id(root), ret);
4035 }
4036
4037 if (!maybe_acls)
4038 cache_no_acl(vfs_inode);
4039
4040 switch (vfs_inode->i_mode & S_IFMT) {
4041 case S_IFREG:
4042 vfs_inode->i_mapping->a_ops = &btrfs_aops;
4043 vfs_inode->i_fop = &btrfs_file_operations;
4044 vfs_inode->i_op = &btrfs_file_inode_operations;
4045 break;
4046 case S_IFDIR:
4047 vfs_inode->i_fop = &btrfs_dir_file_operations;
4048 vfs_inode->i_op = &btrfs_dir_inode_operations;
4049 break;
4050 case S_IFLNK:
4051 vfs_inode->i_op = &btrfs_symlink_inode_operations;
4052 inode_nohighmem(vfs_inode);
4053 vfs_inode->i_mapping->a_ops = &btrfs_aops;
4054 break;
4055 default:
4056 vfs_inode->i_op = &btrfs_special_inode_operations;
4057 init_special_inode(vfs_inode, vfs_inode->i_mode, rdev);
4058 break;
4059 }
4060
4061 btrfs_sync_inode_flags_to_i_flags(inode);
4062
4063 ret = btrfs_add_inode_to_root(inode, true);
4064 if (ret)
4065 goto out;
4066
4067 return 0;
4068 out:
4069 iget_failed(vfs_inode);
4070 return ret;
4071 }
4072
4073 /*
4074 * given a leaf and an inode, copy the inode fields into the leaf
4075 */
fill_inode_item(struct btrfs_trans_handle * trans,struct extent_buffer * leaf,struct btrfs_inode_item * item,struct inode * inode)4076 static void fill_inode_item(struct btrfs_trans_handle *trans,
4077 struct extent_buffer *leaf,
4078 struct btrfs_inode_item *item,
4079 struct inode *inode)
4080 {
4081 struct btrfs_map_token token;
4082 u64 flags;
4083
4084 btrfs_init_map_token(&token, leaf);
4085
4086 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4087 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4088 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
4089 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4090 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4091
4092 btrfs_set_token_timespec_sec(&token, &item->atime,
4093 inode_get_atime_sec(inode));
4094 btrfs_set_token_timespec_nsec(&token, &item->atime,
4095 inode_get_atime_nsec(inode));
4096
4097 btrfs_set_token_timespec_sec(&token, &item->mtime,
4098 inode_get_mtime_sec(inode));
4099 btrfs_set_token_timespec_nsec(&token, &item->mtime,
4100 inode_get_mtime_nsec(inode));
4101
4102 btrfs_set_token_timespec_sec(&token, &item->ctime,
4103 inode_get_ctime_sec(inode));
4104 btrfs_set_token_timespec_nsec(&token, &item->ctime,
4105 inode_get_ctime_nsec(inode));
4106
4107 btrfs_set_token_timespec_sec(&token, &item->otime, BTRFS_I(inode)->i_otime_sec);
4108 btrfs_set_token_timespec_nsec(&token, &item->otime, BTRFS_I(inode)->i_otime_nsec);
4109
4110 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
4111 btrfs_set_token_inode_generation(&token, item,
4112 BTRFS_I(inode)->generation);
4113 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4114 btrfs_set_token_inode_transid(&token, item, trans->transid);
4115 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4116 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4117 BTRFS_I(inode)->ro_flags);
4118 btrfs_set_token_inode_flags(&token, item, flags);
4119 btrfs_set_token_inode_block_group(&token, item, 0);
4120 }
4121
4122 /*
4123 * copy everything in the in-memory inode into the btree.
4124 */
btrfs_update_inode_item(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)4125 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
4126 struct btrfs_inode *inode)
4127 {
4128 struct btrfs_inode_item *inode_item;
4129 BTRFS_PATH_AUTO_FREE(path);
4130 struct extent_buffer *leaf;
4131 struct btrfs_key key;
4132 int ret;
4133
4134 path = btrfs_alloc_path();
4135 if (!path)
4136 return -ENOMEM;
4137
4138 btrfs_get_inode_key(inode, &key);
4139 ret = btrfs_lookup_inode(trans, inode->root, path, &key, 1);
4140 if (ret) {
4141 if (ret > 0)
4142 ret = -ENOENT;
4143 return ret;
4144 }
4145
4146 leaf = path->nodes[0];
4147 inode_item = btrfs_item_ptr(leaf, path->slots[0],
4148 struct btrfs_inode_item);
4149
4150 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
4151 btrfs_set_inode_last_trans(trans, inode);
4152 return 0;
4153 }
4154
4155 /*
4156 * copy everything in the in-memory inode into the btree.
4157 */
btrfs_update_inode(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)4158 int btrfs_update_inode(struct btrfs_trans_handle *trans,
4159 struct btrfs_inode *inode)
4160 {
4161 struct btrfs_root *root = inode->root;
4162 struct btrfs_fs_info *fs_info = root->fs_info;
4163 int ret;
4164
4165 /*
4166 * If the inode is a free space inode, we can deadlock during commit
4167 * if we put it into the delayed code.
4168 *
4169 * The data relocation inode should also be directly updated
4170 * without delay
4171 */
4172 if (!btrfs_is_free_space_inode(inode)
4173 && !btrfs_is_data_reloc_root(root)
4174 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4175 btrfs_update_root_times(trans, root);
4176
4177 ret = btrfs_delayed_update_inode(trans, inode);
4178 if (!ret)
4179 btrfs_set_inode_last_trans(trans, inode);
4180 return ret;
4181 }
4182
4183 return btrfs_update_inode_item(trans, inode);
4184 }
4185
btrfs_update_inode_fallback(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)4186 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4187 struct btrfs_inode *inode)
4188 {
4189 int ret;
4190
4191 ret = btrfs_update_inode(trans, inode);
4192 if (ret == -ENOSPC)
4193 return btrfs_update_inode_item(trans, inode);
4194 return ret;
4195 }
4196
4197 /*
4198 * unlink helper that gets used here in inode.c and in the tree logging
4199 * recovery code. It remove a link in a directory with a given name, and
4200 * also drops the back refs in the inode to the directory
4201 */
__btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_inode * inode,const struct fscrypt_str * name,struct btrfs_rename_ctx * rename_ctx)4202 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4203 struct btrfs_inode *dir,
4204 struct btrfs_inode *inode,
4205 const struct fscrypt_str *name,
4206 struct btrfs_rename_ctx *rename_ctx)
4207 {
4208 struct btrfs_root *root = dir->root;
4209 struct btrfs_fs_info *fs_info = root->fs_info;
4210 struct btrfs_path *path;
4211 int ret = 0;
4212 struct btrfs_dir_item *di;
4213 u64 index;
4214 u64 ino = btrfs_ino(inode);
4215 u64 dir_ino = btrfs_ino(dir);
4216
4217 path = btrfs_alloc_path();
4218 if (!path) {
4219 ret = -ENOMEM;
4220 goto out;
4221 }
4222
4223 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1);
4224 if (IS_ERR_OR_NULL(di)) {
4225 ret = di ? PTR_ERR(di) : -ENOENT;
4226 goto err;
4227 }
4228 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4229 if (ret)
4230 goto err;
4231 btrfs_release_path(path);
4232
4233 /*
4234 * If we don't have dir index, we have to get it by looking up
4235 * the inode ref, since we get the inode ref, remove it directly,
4236 * it is unnecessary to do delayed deletion.
4237 *
4238 * But if we have dir index, needn't search inode ref to get it.
4239 * Since the inode ref is close to the inode item, it is better
4240 * that we delay to delete it, and just do this deletion when
4241 * we update the inode item.
4242 */
4243 if (inode->dir_index) {
4244 ret = btrfs_delayed_delete_inode_ref(inode);
4245 if (!ret) {
4246 index = inode->dir_index;
4247 goto skip_backref;
4248 }
4249 }
4250
4251 ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index);
4252 if (ret) {
4253 btrfs_crit(fs_info,
4254 "failed to delete reference to %.*s, root %llu inode %llu parent %llu",
4255 name->len, name->name, btrfs_root_id(root), ino, dir_ino);
4256 btrfs_abort_transaction(trans, ret);
4257 goto err;
4258 }
4259 skip_backref:
4260 if (rename_ctx)
4261 rename_ctx->index = index;
4262
4263 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4264 if (ret) {
4265 btrfs_abort_transaction(trans, ret);
4266 goto err;
4267 }
4268
4269 /*
4270 * If we are in a rename context, we don't need to update anything in the
4271 * log. That will be done later during the rename by btrfs_log_new_name().
4272 * Besides that, doing it here would only cause extra unnecessary btree
4273 * operations on the log tree, increasing latency for applications.
4274 */
4275 if (!rename_ctx) {
4276 btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino);
4277 btrfs_del_dir_entries_in_log(trans, root, name, dir, index);
4278 }
4279
4280 /*
4281 * If we have a pending delayed iput we could end up with the final iput
4282 * being run in btrfs-cleaner context. If we have enough of these built
4283 * up we can end up burning a lot of time in btrfs-cleaner without any
4284 * way to throttle the unlinks. Since we're currently holding a ref on
4285 * the inode we can run the delayed iput here without any issues as the
4286 * final iput won't be done until after we drop the ref we're currently
4287 * holding.
4288 */
4289 btrfs_run_delayed_iput(fs_info, inode);
4290 err:
4291 btrfs_free_path(path);
4292 if (ret)
4293 goto out;
4294
4295 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2);
4296 inode_inc_iversion(&inode->vfs_inode);
4297 inode_set_ctime_current(&inode->vfs_inode);
4298 inode_inc_iversion(&dir->vfs_inode);
4299 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode));
4300 ret = btrfs_update_inode(trans, dir);
4301 out:
4302 return ret;
4303 }
4304
btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_inode * inode,const struct fscrypt_str * name)4305 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4306 struct btrfs_inode *dir, struct btrfs_inode *inode,
4307 const struct fscrypt_str *name)
4308 {
4309 int ret;
4310
4311 ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL);
4312 if (!ret) {
4313 drop_nlink(&inode->vfs_inode);
4314 ret = btrfs_update_inode(trans, inode);
4315 }
4316 return ret;
4317 }
4318
4319 /*
4320 * helper to start transaction for unlink and rmdir.
4321 *
4322 * unlink and rmdir are special in btrfs, they do not always free space, so
4323 * if we cannot make our reservations the normal way try and see if there is
4324 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4325 * allow the unlink to occur.
4326 */
__unlink_start_trans(struct btrfs_inode * dir)4327 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir)
4328 {
4329 struct btrfs_root *root = dir->root;
4330
4331 return btrfs_start_transaction_fallback_global_rsv(root,
4332 BTRFS_UNLINK_METADATA_UNITS);
4333 }
4334
btrfs_unlink(struct inode * dir,struct dentry * dentry)4335 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4336 {
4337 struct btrfs_trans_handle *trans;
4338 struct inode *inode = d_inode(dentry);
4339 int ret;
4340 struct fscrypt_name fname;
4341
4342 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4343 if (ret)
4344 return ret;
4345
4346 /* This needs to handle no-key deletions later on */
4347
4348 trans = __unlink_start_trans(BTRFS_I(dir));
4349 if (IS_ERR(trans)) {
4350 ret = PTR_ERR(trans);
4351 goto fscrypt_free;
4352 }
4353
4354 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4355 false);
4356
4357 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4358 &fname.disk_name);
4359 if (ret)
4360 goto end_trans;
4361
4362 if (inode->i_nlink == 0) {
4363 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4364 if (ret)
4365 goto end_trans;
4366 }
4367
4368 end_trans:
4369 btrfs_end_transaction(trans);
4370 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
4371 fscrypt_free:
4372 fscrypt_free_filename(&fname);
4373 return ret;
4374 }
4375
btrfs_unlink_subvol(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct dentry * dentry)4376 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4377 struct btrfs_inode *dir, struct dentry *dentry)
4378 {
4379 struct btrfs_root *root = dir->root;
4380 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4381 struct btrfs_path *path;
4382 struct extent_buffer *leaf;
4383 struct btrfs_dir_item *di;
4384 struct btrfs_key key;
4385 u64 index;
4386 int ret;
4387 u64 objectid;
4388 u64 dir_ino = btrfs_ino(dir);
4389 struct fscrypt_name fname;
4390
4391 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
4392 if (ret)
4393 return ret;
4394
4395 /* This needs to handle no-key deletions later on */
4396
4397 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4398 objectid = btrfs_root_id(inode->root);
4399 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4400 objectid = inode->ref_root_id;
4401 } else {
4402 WARN_ON(1);
4403 fscrypt_free_filename(&fname);
4404 return -EINVAL;
4405 }
4406
4407 path = btrfs_alloc_path();
4408 if (!path) {
4409 ret = -ENOMEM;
4410 goto out;
4411 }
4412
4413 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4414 &fname.disk_name, -1);
4415 if (IS_ERR_OR_NULL(di)) {
4416 ret = di ? PTR_ERR(di) : -ENOENT;
4417 goto out;
4418 }
4419
4420 leaf = path->nodes[0];
4421 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4422 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4423 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4424 if (ret) {
4425 btrfs_abort_transaction(trans, ret);
4426 goto out;
4427 }
4428 btrfs_release_path(path);
4429
4430 /*
4431 * This is a placeholder inode for a subvolume we didn't have a
4432 * reference to at the time of the snapshot creation. In the meantime
4433 * we could have renamed the real subvol link into our snapshot, so
4434 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
4435 * Instead simply lookup the dir_index_item for this entry so we can
4436 * remove it. Otherwise we know we have a ref to the root and we can
4437 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4438 */
4439 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4440 di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name);
4441 if (IS_ERR(di)) {
4442 ret = PTR_ERR(di);
4443 btrfs_abort_transaction(trans, ret);
4444 goto out;
4445 }
4446
4447 leaf = path->nodes[0];
4448 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4449 index = key.offset;
4450 btrfs_release_path(path);
4451 } else {
4452 ret = btrfs_del_root_ref(trans, objectid,
4453 btrfs_root_id(root), dir_ino,
4454 &index, &fname.disk_name);
4455 if (ret) {
4456 btrfs_abort_transaction(trans, ret);
4457 goto out;
4458 }
4459 }
4460
4461 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4462 if (ret) {
4463 btrfs_abort_transaction(trans, ret);
4464 goto out;
4465 }
4466
4467 btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2);
4468 inode_inc_iversion(&dir->vfs_inode);
4469 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode));
4470 ret = btrfs_update_inode_fallback(trans, dir);
4471 if (ret)
4472 btrfs_abort_transaction(trans, ret);
4473 out:
4474 btrfs_free_path(path);
4475 fscrypt_free_filename(&fname);
4476 return ret;
4477 }
4478
4479 /*
4480 * Helper to check if the subvolume references other subvolumes or if it's
4481 * default.
4482 */
may_destroy_subvol(struct btrfs_root * root)4483 static noinline int may_destroy_subvol(struct btrfs_root *root)
4484 {
4485 struct btrfs_fs_info *fs_info = root->fs_info;
4486 BTRFS_PATH_AUTO_FREE(path);
4487 struct btrfs_dir_item *di;
4488 struct btrfs_key key;
4489 struct fscrypt_str name = FSTR_INIT("default", 7);
4490 u64 dir_id;
4491 int ret;
4492
4493 path = btrfs_alloc_path();
4494 if (!path)
4495 return -ENOMEM;
4496
4497 /* Make sure this root isn't set as the default subvol */
4498 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4499 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4500 dir_id, &name, 0);
4501 if (di && !IS_ERR(di)) {
4502 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4503 if (key.objectid == btrfs_root_id(root)) {
4504 ret = -EPERM;
4505 btrfs_err(fs_info,
4506 "deleting default subvolume %llu is not allowed",
4507 key.objectid);
4508 return ret;
4509 }
4510 btrfs_release_path(path);
4511 }
4512
4513 key.objectid = btrfs_root_id(root);
4514 key.type = BTRFS_ROOT_REF_KEY;
4515 key.offset = (u64)-1;
4516
4517 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4518 if (ret < 0)
4519 return ret;
4520 if (ret == 0) {
4521 /*
4522 * Key with offset -1 found, there would have to exist a root
4523 * with such id, but this is out of valid range.
4524 */
4525 return -EUCLEAN;
4526 }
4527
4528 ret = 0;
4529 if (path->slots[0] > 0) {
4530 path->slots[0]--;
4531 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4532 if (key.objectid == btrfs_root_id(root) && key.type == BTRFS_ROOT_REF_KEY)
4533 ret = -ENOTEMPTY;
4534 }
4535
4536 return ret;
4537 }
4538
4539 /* Delete all dentries for inodes belonging to the root */
btrfs_prune_dentries(struct btrfs_root * root)4540 static void btrfs_prune_dentries(struct btrfs_root *root)
4541 {
4542 struct btrfs_fs_info *fs_info = root->fs_info;
4543 struct btrfs_inode *inode;
4544 u64 min_ino = 0;
4545
4546 if (!BTRFS_FS_ERROR(fs_info))
4547 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4548
4549 inode = btrfs_find_first_inode(root, min_ino);
4550 while (inode) {
4551 if (atomic_read(&inode->vfs_inode.i_count) > 1)
4552 d_prune_aliases(&inode->vfs_inode);
4553
4554 min_ino = btrfs_ino(inode) + 1;
4555 /*
4556 * btrfs_drop_inode() will have it removed from the inode
4557 * cache when its usage count hits zero.
4558 */
4559 iput(&inode->vfs_inode);
4560 cond_resched();
4561 inode = btrfs_find_first_inode(root, min_ino);
4562 }
4563 }
4564
btrfs_delete_subvolume(struct btrfs_inode * dir,struct dentry * dentry)4565 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry)
4566 {
4567 struct btrfs_root *root = dir->root;
4568 struct btrfs_fs_info *fs_info = root->fs_info;
4569 struct inode *inode = d_inode(dentry);
4570 struct btrfs_root *dest = BTRFS_I(inode)->root;
4571 struct btrfs_trans_handle *trans;
4572 struct btrfs_block_rsv block_rsv;
4573 u64 root_flags;
4574 u64 qgroup_reserved = 0;
4575 int ret;
4576
4577 down_write(&fs_info->subvol_sem);
4578
4579 /*
4580 * Don't allow to delete a subvolume with send in progress. This is
4581 * inside the inode lock so the error handling that has to drop the bit
4582 * again is not run concurrently.
4583 */
4584 spin_lock(&dest->root_item_lock);
4585 if (dest->send_in_progress) {
4586 spin_unlock(&dest->root_item_lock);
4587 btrfs_warn(fs_info,
4588 "attempt to delete subvolume %llu during send",
4589 btrfs_root_id(dest));
4590 ret = -EPERM;
4591 goto out_up_write;
4592 }
4593 if (atomic_read(&dest->nr_swapfiles)) {
4594 spin_unlock(&dest->root_item_lock);
4595 btrfs_warn(fs_info,
4596 "attempt to delete subvolume %llu with active swapfile",
4597 btrfs_root_id(root));
4598 ret = -EPERM;
4599 goto out_up_write;
4600 }
4601 root_flags = btrfs_root_flags(&dest->root_item);
4602 btrfs_set_root_flags(&dest->root_item,
4603 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4604 spin_unlock(&dest->root_item_lock);
4605
4606 ret = may_destroy_subvol(dest);
4607 if (ret)
4608 goto out_undead;
4609
4610 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4611 /*
4612 * One for dir inode,
4613 * two for dir entries,
4614 * two for root ref/backref.
4615 */
4616 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4617 if (ret)
4618 goto out_undead;
4619 qgroup_reserved = block_rsv.qgroup_rsv_reserved;
4620
4621 trans = btrfs_start_transaction(root, 0);
4622 if (IS_ERR(trans)) {
4623 ret = PTR_ERR(trans);
4624 goto out_release;
4625 }
4626 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
4627 qgroup_reserved = 0;
4628 trans->block_rsv = &block_rsv;
4629 trans->bytes_reserved = block_rsv.size;
4630
4631 btrfs_record_snapshot_destroy(trans, dir);
4632
4633 ret = btrfs_unlink_subvol(trans, dir, dentry);
4634 if (ret) {
4635 btrfs_abort_transaction(trans, ret);
4636 goto out_end_trans;
4637 }
4638
4639 ret = btrfs_record_root_in_trans(trans, dest);
4640 if (ret) {
4641 btrfs_abort_transaction(trans, ret);
4642 goto out_end_trans;
4643 }
4644
4645 memset(&dest->root_item.drop_progress, 0,
4646 sizeof(dest->root_item.drop_progress));
4647 btrfs_set_root_drop_level(&dest->root_item, 0);
4648 btrfs_set_root_refs(&dest->root_item, 0);
4649
4650 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4651 ret = btrfs_insert_orphan_item(trans,
4652 fs_info->tree_root,
4653 btrfs_root_id(dest));
4654 if (ret) {
4655 btrfs_abort_transaction(trans, ret);
4656 goto out_end_trans;
4657 }
4658 }
4659
4660 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4661 BTRFS_UUID_KEY_SUBVOL, btrfs_root_id(dest));
4662 if (ret && ret != -ENOENT) {
4663 btrfs_abort_transaction(trans, ret);
4664 goto out_end_trans;
4665 }
4666 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4667 ret = btrfs_uuid_tree_remove(trans,
4668 dest->root_item.received_uuid,
4669 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4670 btrfs_root_id(dest));
4671 if (ret && ret != -ENOENT) {
4672 btrfs_abort_transaction(trans, ret);
4673 goto out_end_trans;
4674 }
4675 }
4676
4677 free_anon_bdev(dest->anon_dev);
4678 dest->anon_dev = 0;
4679 out_end_trans:
4680 trans->block_rsv = NULL;
4681 trans->bytes_reserved = 0;
4682 ret = btrfs_end_transaction(trans);
4683 inode->i_flags |= S_DEAD;
4684 out_release:
4685 btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL);
4686 if (qgroup_reserved)
4687 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
4688 out_undead:
4689 if (ret) {
4690 spin_lock(&dest->root_item_lock);
4691 root_flags = btrfs_root_flags(&dest->root_item);
4692 btrfs_set_root_flags(&dest->root_item,
4693 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4694 spin_unlock(&dest->root_item_lock);
4695 }
4696 out_up_write:
4697 up_write(&fs_info->subvol_sem);
4698 if (!ret) {
4699 d_invalidate(dentry);
4700 btrfs_prune_dentries(dest);
4701 ASSERT(dest->send_in_progress == 0);
4702 }
4703
4704 return ret;
4705 }
4706
btrfs_rmdir(struct inode * dir,struct dentry * dentry)4707 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4708 {
4709 struct inode *inode = d_inode(dentry);
4710 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4711 int ret = 0;
4712 struct btrfs_trans_handle *trans;
4713 u64 last_unlink_trans;
4714 struct fscrypt_name fname;
4715
4716 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4717 return -ENOTEMPTY;
4718 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) {
4719 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) {
4720 btrfs_err(fs_info,
4721 "extent tree v2 doesn't support snapshot deletion yet");
4722 return -EOPNOTSUPP;
4723 }
4724 return btrfs_delete_subvolume(BTRFS_I(dir), dentry);
4725 }
4726
4727 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4728 if (ret)
4729 return ret;
4730
4731 /* This needs to handle no-key deletions later on */
4732
4733 trans = __unlink_start_trans(BTRFS_I(dir));
4734 if (IS_ERR(trans)) {
4735 ret = PTR_ERR(trans);
4736 goto out_notrans;
4737 }
4738
4739 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4740 ret = btrfs_unlink_subvol(trans, BTRFS_I(dir), dentry);
4741 goto out;
4742 }
4743
4744 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4745 if (ret)
4746 goto out;
4747
4748 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4749
4750 /* now the directory is empty */
4751 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4752 &fname.disk_name);
4753 if (!ret) {
4754 btrfs_i_size_write(BTRFS_I(inode), 0);
4755 /*
4756 * Propagate the last_unlink_trans value of the deleted dir to
4757 * its parent directory. This is to prevent an unrecoverable
4758 * log tree in the case we do something like this:
4759 * 1) create dir foo
4760 * 2) create snapshot under dir foo
4761 * 3) delete the snapshot
4762 * 4) rmdir foo
4763 * 5) mkdir foo
4764 * 6) fsync foo or some file inside foo
4765 */
4766 if (last_unlink_trans >= trans->transid)
4767 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4768 }
4769 out:
4770 btrfs_end_transaction(trans);
4771 out_notrans:
4772 btrfs_btree_balance_dirty(fs_info);
4773 fscrypt_free_filename(&fname);
4774
4775 return ret;
4776 }
4777
is_inside_block(u64 bytenr,u64 blockstart,u32 blocksize)4778 static bool is_inside_block(u64 bytenr, u64 blockstart, u32 blocksize)
4779 {
4780 ASSERT(IS_ALIGNED(blockstart, blocksize), "blockstart=%llu blocksize=%u",
4781 blockstart, blocksize);
4782
4783 if (blockstart <= bytenr && bytenr <= blockstart + blocksize - 1)
4784 return true;
4785 return false;
4786 }
4787
truncate_block_zero_beyond_eof(struct btrfs_inode * inode,u64 start)4788 static int truncate_block_zero_beyond_eof(struct btrfs_inode *inode, u64 start)
4789 {
4790 const pgoff_t index = (start >> PAGE_SHIFT);
4791 struct address_space *mapping = inode->vfs_inode.i_mapping;
4792 struct folio *folio;
4793 u64 zero_start;
4794 u64 zero_end;
4795 int ret = 0;
4796
4797 again:
4798 folio = filemap_lock_folio(mapping, index);
4799 /* No folio present. */
4800 if (IS_ERR(folio))
4801 return 0;
4802
4803 if (!folio_test_uptodate(folio)) {
4804 ret = btrfs_read_folio(NULL, folio);
4805 folio_lock(folio);
4806 if (folio->mapping != mapping) {
4807 folio_unlock(folio);
4808 folio_put(folio);
4809 goto again;
4810 }
4811 if (!folio_test_uptodate(folio)) {
4812 ret = -EIO;
4813 goto out_unlock;
4814 }
4815 }
4816 folio_wait_writeback(folio);
4817
4818 /*
4819 * We do not need to lock extents nor wait for OE, as it's already
4820 * beyond EOF.
4821 */
4822
4823 zero_start = max_t(u64, folio_pos(folio), start);
4824 zero_end = folio_pos(folio) + folio_size(folio) - 1;
4825 folio_zero_range(folio, zero_start - folio_pos(folio),
4826 zero_end - zero_start + 1);
4827
4828 out_unlock:
4829 folio_unlock(folio);
4830 folio_put(folio);
4831 return ret;
4832 }
4833
4834 /*
4835 * Handle the truncation of a fs block.
4836 *
4837 * @inode - inode that we're zeroing
4838 * @offset - the file offset of the block to truncate
4839 * The value must be inside [@start, @end], and the function will do
4840 * extra checks if the block that covers @offset needs to be zeroed.
4841 * @start - the start file offset of the range we want to zero
4842 * @end - the end (inclusive) file offset of the range we want to zero.
4843 *
4844 * If the range is not block aligned, read out the folio that covers @offset,
4845 * and if needed zero blocks that are inside the folio and covered by [@start, @end).
4846 * If @start or @end + 1 lands inside a block, that block will be marked dirty
4847 * for writeback.
4848 *
4849 * This is utilized by hole punch, zero range, file expansion.
4850 */
btrfs_truncate_block(struct btrfs_inode * inode,u64 offset,u64 start,u64 end)4851 int btrfs_truncate_block(struct btrfs_inode *inode, u64 offset, u64 start, u64 end)
4852 {
4853 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4854 struct address_space *mapping = inode->vfs_inode.i_mapping;
4855 struct extent_io_tree *io_tree = &inode->io_tree;
4856 struct btrfs_ordered_extent *ordered;
4857 struct extent_state *cached_state = NULL;
4858 struct extent_changeset *data_reserved = NULL;
4859 bool only_release_metadata = false;
4860 u32 blocksize = fs_info->sectorsize;
4861 pgoff_t index = (offset >> PAGE_SHIFT);
4862 struct folio *folio;
4863 gfp_t mask = btrfs_alloc_write_mask(mapping);
4864 size_t write_bytes = blocksize;
4865 int ret = 0;
4866 const bool in_head_block = is_inside_block(offset, round_down(start, blocksize),
4867 blocksize);
4868 const bool in_tail_block = is_inside_block(offset, round_down(end, blocksize),
4869 blocksize);
4870 bool need_truncate_head = false;
4871 bool need_truncate_tail = false;
4872 u64 zero_start;
4873 u64 zero_end;
4874 u64 block_start;
4875 u64 block_end;
4876
4877 /* @offset should be inside the range. */
4878 ASSERT(start <= offset && offset <= end, "offset=%llu start=%llu end=%llu",
4879 offset, start, end);
4880
4881 /* The range is aligned at both ends. */
4882 if (IS_ALIGNED(start, blocksize) && IS_ALIGNED(end + 1, blocksize)) {
4883 /*
4884 * For block size < page size case, we may have polluted blocks
4885 * beyond EOF. So we also need to zero them out.
4886 */
4887 if (end == (u64)-1 && blocksize < PAGE_SIZE)
4888 ret = truncate_block_zero_beyond_eof(inode, start);
4889 goto out;
4890 }
4891
4892 /*
4893 * @offset may not be inside the head nor tail block. In that case we
4894 * don't need to do anything.
4895 */
4896 if (!in_head_block && !in_tail_block)
4897 goto out;
4898
4899 /*
4900 * Skip the truncatioin if the range in the target block is already aligned.
4901 * The seemingly complex check will also handle the same block case.
4902 */
4903 if (in_head_block && !IS_ALIGNED(start, blocksize))
4904 need_truncate_head = true;
4905 if (in_tail_block && !IS_ALIGNED(end + 1, blocksize))
4906 need_truncate_tail = true;
4907 if (!need_truncate_head && !need_truncate_tail)
4908 goto out;
4909
4910 block_start = round_down(offset, blocksize);
4911 block_end = block_start + blocksize - 1;
4912
4913 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
4914 blocksize, false);
4915 if (ret < 0) {
4916 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) {
4917 /* For nocow case, no need to reserve data space */
4918 only_release_metadata = true;
4919 } else {
4920 goto out;
4921 }
4922 }
4923 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false);
4924 if (ret < 0) {
4925 if (!only_release_metadata)
4926 btrfs_free_reserved_data_space(inode, data_reserved,
4927 block_start, blocksize);
4928 goto out;
4929 }
4930 again:
4931 folio = __filemap_get_folio(mapping, index,
4932 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mask);
4933 if (IS_ERR(folio)) {
4934 if (only_release_metadata)
4935 btrfs_delalloc_release_metadata(inode, blocksize, true);
4936 else
4937 btrfs_delalloc_release_space(inode, data_reserved,
4938 block_start, blocksize, true);
4939 btrfs_delalloc_release_extents(inode, blocksize);
4940 ret = PTR_ERR(folio);
4941 goto out;
4942 }
4943
4944 if (!folio_test_uptodate(folio)) {
4945 ret = btrfs_read_folio(NULL, folio);
4946 folio_lock(folio);
4947 if (folio->mapping != mapping) {
4948 folio_unlock(folio);
4949 folio_put(folio);
4950 goto again;
4951 }
4952 if (!folio_test_uptodate(folio)) {
4953 ret = -EIO;
4954 goto out_unlock;
4955 }
4956 }
4957
4958 /*
4959 * We unlock the page after the io is completed and then re-lock it
4960 * above. release_folio() could have come in between that and cleared
4961 * folio private, but left the page in the mapping. Set the page mapped
4962 * here to make sure it's properly set for the subpage stuff.
4963 */
4964 ret = set_folio_extent_mapped(folio);
4965 if (ret < 0)
4966 goto out_unlock;
4967
4968 folio_wait_writeback(folio);
4969
4970 btrfs_lock_extent(io_tree, block_start, block_end, &cached_state);
4971
4972 ordered = btrfs_lookup_ordered_extent(inode, block_start);
4973 if (ordered) {
4974 btrfs_unlock_extent(io_tree, block_start, block_end, &cached_state);
4975 folio_unlock(folio);
4976 folio_put(folio);
4977 btrfs_start_ordered_extent(ordered);
4978 btrfs_put_ordered_extent(ordered);
4979 goto again;
4980 }
4981
4982 btrfs_clear_extent_bit(&inode->io_tree, block_start, block_end,
4983 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4984 &cached_state);
4985
4986 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4987 &cached_state);
4988 if (ret) {
4989 btrfs_unlock_extent(io_tree, block_start, block_end, &cached_state);
4990 goto out_unlock;
4991 }
4992
4993 if (end == (u64)-1) {
4994 /*
4995 * We're truncating beyond EOF, the remaining blocks normally are
4996 * already holes thus no need to zero again, but it's possible for
4997 * fs block size < page size cases to have memory mapped writes
4998 * to pollute ranges beyond EOF.
4999 *
5000 * In that case although such polluted blocks beyond EOF will
5001 * not reach disk, it still affects our page caches.
5002 */
5003 zero_start = max_t(u64, folio_pos(folio), start);
5004 zero_end = min_t(u64, folio_pos(folio) + folio_size(folio) - 1,
5005 end);
5006 } else {
5007 zero_start = max_t(u64, block_start, start);
5008 zero_end = min_t(u64, block_end, end);
5009 }
5010 folio_zero_range(folio, zero_start - folio_pos(folio),
5011 zero_end - zero_start + 1);
5012
5013 btrfs_folio_clear_checked(fs_info, folio, block_start,
5014 block_end + 1 - block_start);
5015 btrfs_folio_set_dirty(fs_info, folio, block_start,
5016 block_end + 1 - block_start);
5017 btrfs_unlock_extent(io_tree, block_start, block_end, &cached_state);
5018
5019 if (only_release_metadata)
5020 btrfs_set_extent_bit(&inode->io_tree, block_start, block_end,
5021 EXTENT_NORESERVE, NULL);
5022
5023 out_unlock:
5024 if (ret) {
5025 if (only_release_metadata)
5026 btrfs_delalloc_release_metadata(inode, blocksize, true);
5027 else
5028 btrfs_delalloc_release_space(inode, data_reserved,
5029 block_start, blocksize, true);
5030 }
5031 btrfs_delalloc_release_extents(inode, blocksize);
5032 folio_unlock(folio);
5033 folio_put(folio);
5034 out:
5035 if (only_release_metadata)
5036 btrfs_check_nocow_unlock(inode);
5037 extent_changeset_free(data_reserved);
5038 return ret;
5039 }
5040
maybe_insert_hole(struct btrfs_inode * inode,u64 offset,u64 len)5041 static int maybe_insert_hole(struct btrfs_inode *inode, u64 offset, u64 len)
5042 {
5043 struct btrfs_root *root = inode->root;
5044 struct btrfs_fs_info *fs_info = root->fs_info;
5045 struct btrfs_trans_handle *trans;
5046 struct btrfs_drop_extents_args drop_args = { 0 };
5047 int ret;
5048
5049 /*
5050 * If NO_HOLES is enabled, we don't need to do anything.
5051 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
5052 * or btrfs_update_inode() will be called, which guarantee that the next
5053 * fsync will know this inode was changed and needs to be logged.
5054 */
5055 if (btrfs_fs_incompat(fs_info, NO_HOLES))
5056 return 0;
5057
5058 /*
5059 * 1 - for the one we're dropping
5060 * 1 - for the one we're adding
5061 * 1 - for updating the inode.
5062 */
5063 trans = btrfs_start_transaction(root, 3);
5064 if (IS_ERR(trans))
5065 return PTR_ERR(trans);
5066
5067 drop_args.start = offset;
5068 drop_args.end = offset + len;
5069 drop_args.drop_cache = true;
5070
5071 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
5072 if (ret) {
5073 btrfs_abort_transaction(trans, ret);
5074 btrfs_end_transaction(trans);
5075 return ret;
5076 }
5077
5078 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len);
5079 if (ret) {
5080 btrfs_abort_transaction(trans, ret);
5081 } else {
5082 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
5083 btrfs_update_inode(trans, inode);
5084 }
5085 btrfs_end_transaction(trans);
5086 return ret;
5087 }
5088
5089 /*
5090 * This function puts in dummy file extents for the area we're creating a hole
5091 * for. So if we are truncating this file to a larger size we need to insert
5092 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
5093 * the range between oldsize and size
5094 */
btrfs_cont_expand(struct btrfs_inode * inode,loff_t oldsize,loff_t size)5095 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
5096 {
5097 struct btrfs_root *root = inode->root;
5098 struct btrfs_fs_info *fs_info = root->fs_info;
5099 struct extent_io_tree *io_tree = &inode->io_tree;
5100 struct extent_map *em = NULL;
5101 struct extent_state *cached_state = NULL;
5102 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
5103 u64 block_end = ALIGN(size, fs_info->sectorsize);
5104 u64 last_byte;
5105 u64 cur_offset;
5106 u64 hole_size;
5107 int ret = 0;
5108
5109 /*
5110 * If our size started in the middle of a block we need to zero out the
5111 * rest of the block before we expand the i_size, otherwise we could
5112 * expose stale data.
5113 */
5114 ret = btrfs_truncate_block(inode, oldsize, oldsize, -1);
5115 if (ret)
5116 return ret;
5117
5118 if (size <= hole_start)
5119 return 0;
5120
5121 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
5122 &cached_state);
5123 cur_offset = hole_start;
5124 while (1) {
5125 em = btrfs_get_extent(inode, NULL, cur_offset, block_end - cur_offset);
5126 if (IS_ERR(em)) {
5127 ret = PTR_ERR(em);
5128 em = NULL;
5129 break;
5130 }
5131 last_byte = min(btrfs_extent_map_end(em), block_end);
5132 last_byte = ALIGN(last_byte, fs_info->sectorsize);
5133 hole_size = last_byte - cur_offset;
5134
5135 if (!(em->flags & EXTENT_FLAG_PREALLOC)) {
5136 struct extent_map *hole_em;
5137
5138 ret = maybe_insert_hole(inode, cur_offset, hole_size);
5139 if (ret)
5140 break;
5141
5142 ret = btrfs_inode_set_file_extent_range(inode,
5143 cur_offset, hole_size);
5144 if (ret)
5145 break;
5146
5147 hole_em = btrfs_alloc_extent_map();
5148 if (!hole_em) {
5149 btrfs_drop_extent_map_range(inode, cur_offset,
5150 cur_offset + hole_size - 1,
5151 false);
5152 btrfs_set_inode_full_sync(inode);
5153 goto next;
5154 }
5155 hole_em->start = cur_offset;
5156 hole_em->len = hole_size;
5157
5158 hole_em->disk_bytenr = EXTENT_MAP_HOLE;
5159 hole_em->disk_num_bytes = 0;
5160 hole_em->ram_bytes = hole_size;
5161 hole_em->generation = btrfs_get_fs_generation(fs_info);
5162
5163 ret = btrfs_replace_extent_map_range(inode, hole_em, true);
5164 btrfs_free_extent_map(hole_em);
5165 } else {
5166 ret = btrfs_inode_set_file_extent_range(inode,
5167 cur_offset, hole_size);
5168 if (ret)
5169 break;
5170 }
5171 next:
5172 btrfs_free_extent_map(em);
5173 em = NULL;
5174 cur_offset = last_byte;
5175 if (cur_offset >= block_end)
5176 break;
5177 }
5178 btrfs_free_extent_map(em);
5179 btrfs_unlock_extent(io_tree, hole_start, block_end - 1, &cached_state);
5180 return ret;
5181 }
5182
btrfs_setsize(struct inode * inode,struct iattr * attr)5183 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5184 {
5185 struct btrfs_root *root = BTRFS_I(inode)->root;
5186 struct btrfs_trans_handle *trans;
5187 loff_t oldsize = i_size_read(inode);
5188 loff_t newsize = attr->ia_size;
5189 int mask = attr->ia_valid;
5190 int ret;
5191
5192 /*
5193 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5194 * special case where we need to update the times despite not having
5195 * these flags set. For all other operations the VFS set these flags
5196 * explicitly if it wants a timestamp update.
5197 */
5198 if (newsize != oldsize) {
5199 inode_inc_iversion(inode);
5200 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) {
5201 inode_set_mtime_to_ts(inode,
5202 inode_set_ctime_current(inode));
5203 }
5204 }
5205
5206 if (newsize > oldsize) {
5207 /*
5208 * Don't do an expanding truncate while snapshotting is ongoing.
5209 * This is to ensure the snapshot captures a fully consistent
5210 * state of this file - if the snapshot captures this expanding
5211 * truncation, it must capture all writes that happened before
5212 * this truncation.
5213 */
5214 btrfs_drew_write_lock(&root->snapshot_lock);
5215 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
5216 if (ret) {
5217 btrfs_drew_write_unlock(&root->snapshot_lock);
5218 return ret;
5219 }
5220
5221 trans = btrfs_start_transaction(root, 1);
5222 if (IS_ERR(trans)) {
5223 btrfs_drew_write_unlock(&root->snapshot_lock);
5224 return PTR_ERR(trans);
5225 }
5226
5227 i_size_write(inode, newsize);
5228 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
5229 pagecache_isize_extended(inode, oldsize, newsize);
5230 ret = btrfs_update_inode(trans, BTRFS_I(inode));
5231 btrfs_drew_write_unlock(&root->snapshot_lock);
5232 btrfs_end_transaction(trans);
5233 } else {
5234 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
5235
5236 if (btrfs_is_zoned(fs_info)) {
5237 ret = btrfs_wait_ordered_range(BTRFS_I(inode),
5238 ALIGN(newsize, fs_info->sectorsize),
5239 (u64)-1);
5240 if (ret)
5241 return ret;
5242 }
5243
5244 /*
5245 * We're truncating a file that used to have good data down to
5246 * zero. Make sure any new writes to the file get on disk
5247 * on close.
5248 */
5249 if (newsize == 0)
5250 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
5251 &BTRFS_I(inode)->runtime_flags);
5252
5253 truncate_setsize(inode, newsize);
5254
5255 inode_dio_wait(inode);
5256
5257 ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize);
5258 if (ret && inode->i_nlink) {
5259 int err;
5260
5261 /*
5262 * Truncate failed, so fix up the in-memory size. We
5263 * adjusted disk_i_size down as we removed extents, so
5264 * wait for disk_i_size to be stable and then update the
5265 * in-memory size to match.
5266 */
5267 err = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1);
5268 if (err)
5269 return err;
5270 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5271 }
5272 }
5273
5274 return ret;
5275 }
5276
btrfs_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)5277 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5278 struct iattr *attr)
5279 {
5280 struct inode *inode = d_inode(dentry);
5281 struct btrfs_root *root = BTRFS_I(inode)->root;
5282 int err;
5283
5284 if (btrfs_root_readonly(root))
5285 return -EROFS;
5286
5287 err = setattr_prepare(idmap, dentry, attr);
5288 if (err)
5289 return err;
5290
5291 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5292 err = btrfs_setsize(inode, attr);
5293 if (err)
5294 return err;
5295 }
5296
5297 if (attr->ia_valid) {
5298 setattr_copy(idmap, inode, attr);
5299 inode_inc_iversion(inode);
5300 err = btrfs_dirty_inode(BTRFS_I(inode));
5301
5302 if (!err && attr->ia_valid & ATTR_MODE)
5303 err = posix_acl_chmod(idmap, dentry, inode->i_mode);
5304 }
5305
5306 return err;
5307 }
5308
5309 /*
5310 * While truncating the inode pages during eviction, we get the VFS
5311 * calling btrfs_invalidate_folio() against each folio of the inode. This
5312 * is slow because the calls to btrfs_invalidate_folio() result in a
5313 * huge amount of calls to lock_extent() and clear_extent_bit(),
5314 * which keep merging and splitting extent_state structures over and over,
5315 * wasting lots of time.
5316 *
5317 * Therefore if the inode is being evicted, let btrfs_invalidate_folio()
5318 * skip all those expensive operations on a per folio basis and do only
5319 * the ordered io finishing, while we release here the extent_map and
5320 * extent_state structures, without the excessive merging and splitting.
5321 */
evict_inode_truncate_pages(struct inode * inode)5322 static void evict_inode_truncate_pages(struct inode *inode)
5323 {
5324 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5325 struct rb_node *node;
5326
5327 ASSERT(inode->i_state & I_FREEING);
5328 truncate_inode_pages_final(&inode->i_data);
5329
5330 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
5331
5332 /*
5333 * Keep looping until we have no more ranges in the io tree.
5334 * We can have ongoing bios started by readahead that have
5335 * their endio callback (extent_io.c:end_bio_extent_readpage)
5336 * still in progress (unlocked the pages in the bio but did not yet
5337 * unlocked the ranges in the io tree). Therefore this means some
5338 * ranges can still be locked and eviction started because before
5339 * submitting those bios, which are executed by a separate task (work
5340 * queue kthread), inode references (inode->i_count) were not taken
5341 * (which would be dropped in the end io callback of each bio).
5342 * Therefore here we effectively end up waiting for those bios and
5343 * anyone else holding locked ranges without having bumped the inode's
5344 * reference count - if we don't do it, when they access the inode's
5345 * io_tree to unlock a range it may be too late, leading to an
5346 * use-after-free issue.
5347 */
5348 spin_lock(&io_tree->lock);
5349 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5350 struct extent_state *state;
5351 struct extent_state *cached_state = NULL;
5352 u64 start;
5353 u64 end;
5354 unsigned state_flags;
5355
5356 node = rb_first(&io_tree->state);
5357 state = rb_entry(node, struct extent_state, rb_node);
5358 start = state->start;
5359 end = state->end;
5360 state_flags = state->state;
5361 spin_unlock(&io_tree->lock);
5362
5363 btrfs_lock_extent(io_tree, start, end, &cached_state);
5364
5365 /*
5366 * If still has DELALLOC flag, the extent didn't reach disk,
5367 * and its reserved space won't be freed by delayed_ref.
5368 * So we need to free its reserved space here.
5369 * (Refer to comment in btrfs_invalidate_folio, case 2)
5370 *
5371 * Note, end is the bytenr of last byte, so we need + 1 here.
5372 */
5373 if (state_flags & EXTENT_DELALLOC)
5374 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5375 end - start + 1, NULL);
5376
5377 btrfs_clear_extent_bit(io_tree, start, end,
5378 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING,
5379 &cached_state);
5380
5381 cond_resched();
5382 spin_lock(&io_tree->lock);
5383 }
5384 spin_unlock(&io_tree->lock);
5385 }
5386
evict_refill_and_join(struct btrfs_root * root,struct btrfs_block_rsv * rsv)5387 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5388 struct btrfs_block_rsv *rsv)
5389 {
5390 struct btrfs_fs_info *fs_info = root->fs_info;
5391 struct btrfs_trans_handle *trans;
5392 u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1);
5393 int ret;
5394
5395 /*
5396 * Eviction should be taking place at some place safe because of our
5397 * delayed iputs. However the normal flushing code will run delayed
5398 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5399 *
5400 * We reserve the delayed_refs_extra here again because we can't use
5401 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5402 * above. We reserve our extra bit here because we generate a ton of
5403 * delayed refs activity by truncating.
5404 *
5405 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can,
5406 * if we fail to make this reservation we can re-try without the
5407 * delayed_refs_extra so we can make some forward progress.
5408 */
5409 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra,
5410 BTRFS_RESERVE_FLUSH_EVICT);
5411 if (ret) {
5412 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size,
5413 BTRFS_RESERVE_FLUSH_EVICT);
5414 if (ret) {
5415 btrfs_warn(fs_info,
5416 "could not allocate space for delete; will truncate on mount");
5417 return ERR_PTR(-ENOSPC);
5418 }
5419 delayed_refs_extra = 0;
5420 }
5421
5422 trans = btrfs_join_transaction(root);
5423 if (IS_ERR(trans))
5424 return trans;
5425
5426 if (delayed_refs_extra) {
5427 trans->block_rsv = &fs_info->trans_block_rsv;
5428 trans->bytes_reserved = delayed_refs_extra;
5429 btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5430 delayed_refs_extra, true);
5431 }
5432 return trans;
5433 }
5434
btrfs_evict_inode(struct inode * inode)5435 void btrfs_evict_inode(struct inode *inode)
5436 {
5437 struct btrfs_fs_info *fs_info;
5438 struct btrfs_trans_handle *trans;
5439 struct btrfs_root *root = BTRFS_I(inode)->root;
5440 struct btrfs_block_rsv *rsv = NULL;
5441 int ret;
5442
5443 trace_btrfs_inode_evict(inode);
5444
5445 if (!root) {
5446 fsverity_cleanup_inode(inode);
5447 clear_inode(inode);
5448 return;
5449 }
5450
5451 fs_info = inode_to_fs_info(inode);
5452 evict_inode_truncate_pages(inode);
5453
5454 if (inode->i_nlink &&
5455 ((btrfs_root_refs(&root->root_item) != 0 &&
5456 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID) ||
5457 btrfs_is_free_space_inode(BTRFS_I(inode))))
5458 goto out;
5459
5460 if (is_bad_inode(inode))
5461 goto out;
5462
5463 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5464 goto out;
5465
5466 if (inode->i_nlink > 0) {
5467 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5468 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID);
5469 goto out;
5470 }
5471
5472 /*
5473 * This makes sure the inode item in tree is uptodate and the space for
5474 * the inode update is released.
5475 */
5476 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5477 if (ret)
5478 goto out;
5479
5480 /*
5481 * This drops any pending insert or delete operations we have for this
5482 * inode. We could have a delayed dir index deletion queued up, but
5483 * we're removing the inode completely so that'll be taken care of in
5484 * the truncate.
5485 */
5486 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
5487
5488 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5489 if (!rsv)
5490 goto out;
5491 rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5492 rsv->failfast = true;
5493
5494 btrfs_i_size_write(BTRFS_I(inode), 0);
5495
5496 while (1) {
5497 struct btrfs_truncate_control control = {
5498 .inode = BTRFS_I(inode),
5499 .ino = btrfs_ino(BTRFS_I(inode)),
5500 .new_size = 0,
5501 .min_type = 0,
5502 };
5503
5504 trans = evict_refill_and_join(root, rsv);
5505 if (IS_ERR(trans))
5506 goto out;
5507
5508 trans->block_rsv = rsv;
5509
5510 ret = btrfs_truncate_inode_items(trans, root, &control);
5511 trans->block_rsv = &fs_info->trans_block_rsv;
5512 btrfs_end_transaction(trans);
5513 /*
5514 * We have not added new delayed items for our inode after we
5515 * have flushed its delayed items, so no need to throttle on
5516 * delayed items. However we have modified extent buffers.
5517 */
5518 btrfs_btree_balance_dirty_nodelay(fs_info);
5519 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5520 goto out;
5521 else if (!ret)
5522 break;
5523 }
5524
5525 /*
5526 * Errors here aren't a big deal, it just means we leave orphan items in
5527 * the tree. They will be cleaned up on the next mount. If the inode
5528 * number gets reused, cleanup deletes the orphan item without doing
5529 * anything, and unlink reuses the existing orphan item.
5530 *
5531 * If it turns out that we are dropping too many of these, we might want
5532 * to add a mechanism for retrying these after a commit.
5533 */
5534 trans = evict_refill_and_join(root, rsv);
5535 if (!IS_ERR(trans)) {
5536 trans->block_rsv = rsv;
5537 btrfs_orphan_del(trans, BTRFS_I(inode));
5538 trans->block_rsv = &fs_info->trans_block_rsv;
5539 btrfs_end_transaction(trans);
5540 }
5541
5542 out:
5543 btrfs_free_block_rsv(fs_info, rsv);
5544 /*
5545 * If we didn't successfully delete, the orphan item will still be in
5546 * the tree and we'll retry on the next mount. Again, we might also want
5547 * to retry these periodically in the future.
5548 */
5549 btrfs_remove_delayed_node(BTRFS_I(inode));
5550 fsverity_cleanup_inode(inode);
5551 clear_inode(inode);
5552 }
5553
5554 /*
5555 * Return the key found in the dir entry in the location pointer, fill @type
5556 * with BTRFS_FT_*, and return 0.
5557 *
5558 * If no dir entries were found, returns -ENOENT.
5559 * If found a corrupted location in dir entry, returns -EUCLEAN.
5560 */
btrfs_inode_by_name(struct btrfs_inode * dir,struct dentry * dentry,struct btrfs_key * location,u8 * type)5561 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry,
5562 struct btrfs_key *location, u8 *type)
5563 {
5564 struct btrfs_dir_item *di;
5565 BTRFS_PATH_AUTO_FREE(path);
5566 struct btrfs_root *root = dir->root;
5567 int ret = 0;
5568 struct fscrypt_name fname;
5569
5570 path = btrfs_alloc_path();
5571 if (!path)
5572 return -ENOMEM;
5573
5574 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
5575 if (ret < 0)
5576 return ret;
5577 /*
5578 * fscrypt_setup_filename() should never return a positive value, but
5579 * gcc on sparc/parisc thinks it can, so assert that doesn't happen.
5580 */
5581 ASSERT(ret == 0);
5582
5583 /* This needs to handle no-key deletions later on */
5584
5585 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir),
5586 &fname.disk_name, 0);
5587 if (IS_ERR_OR_NULL(di)) {
5588 ret = di ? PTR_ERR(di) : -ENOENT;
5589 goto out;
5590 }
5591
5592 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5593 if (location->type != BTRFS_INODE_ITEM_KEY &&
5594 location->type != BTRFS_ROOT_ITEM_KEY) {
5595 ret = -EUCLEAN;
5596 btrfs_warn(root->fs_info,
5597 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5598 __func__, fname.disk_name.name, btrfs_ino(dir),
5599 location->objectid, location->type, location->offset);
5600 }
5601 if (!ret)
5602 *type = btrfs_dir_ftype(path->nodes[0], di);
5603 out:
5604 fscrypt_free_filename(&fname);
5605 return ret;
5606 }
5607
5608 /*
5609 * when we hit a tree root in a directory, the btrfs part of the inode
5610 * needs to be changed to reflect the root directory of the tree root. This
5611 * is kind of like crossing a mount point.
5612 */
fixup_tree_root_location(struct btrfs_fs_info * fs_info,struct btrfs_inode * dir,struct dentry * dentry,struct btrfs_key * location,struct btrfs_root ** sub_root)5613 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5614 struct btrfs_inode *dir,
5615 struct dentry *dentry,
5616 struct btrfs_key *location,
5617 struct btrfs_root **sub_root)
5618 {
5619 BTRFS_PATH_AUTO_FREE(path);
5620 struct btrfs_root *new_root;
5621 struct btrfs_root_ref *ref;
5622 struct extent_buffer *leaf;
5623 struct btrfs_key key;
5624 int ret;
5625 int err = 0;
5626 struct fscrypt_name fname;
5627
5628 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname);
5629 if (ret)
5630 return ret;
5631
5632 path = btrfs_alloc_path();
5633 if (!path) {
5634 err = -ENOMEM;
5635 goto out;
5636 }
5637
5638 err = -ENOENT;
5639 key.objectid = btrfs_root_id(dir->root);
5640 key.type = BTRFS_ROOT_REF_KEY;
5641 key.offset = location->objectid;
5642
5643 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5644 if (ret) {
5645 if (ret < 0)
5646 err = ret;
5647 goto out;
5648 }
5649
5650 leaf = path->nodes[0];
5651 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5652 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5653 btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len)
5654 goto out;
5655
5656 ret = memcmp_extent_buffer(leaf, fname.disk_name.name,
5657 (unsigned long)(ref + 1), fname.disk_name.len);
5658 if (ret)
5659 goto out;
5660
5661 btrfs_release_path(path);
5662
5663 new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5664 if (IS_ERR(new_root)) {
5665 err = PTR_ERR(new_root);
5666 goto out;
5667 }
5668
5669 *sub_root = new_root;
5670 location->objectid = btrfs_root_dirid(&new_root->root_item);
5671 location->type = BTRFS_INODE_ITEM_KEY;
5672 location->offset = 0;
5673 err = 0;
5674 out:
5675 fscrypt_free_filename(&fname);
5676 return err;
5677 }
5678
5679
5680
btrfs_del_inode_from_root(struct btrfs_inode * inode)5681 static void btrfs_del_inode_from_root(struct btrfs_inode *inode)
5682 {
5683 struct btrfs_root *root = inode->root;
5684 struct btrfs_inode *entry;
5685 bool empty = false;
5686
5687 xa_lock(&root->inodes);
5688 entry = __xa_erase(&root->inodes, btrfs_ino(inode));
5689 if (entry == inode)
5690 empty = xa_empty(&root->inodes);
5691 xa_unlock(&root->inodes);
5692
5693 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5694 xa_lock(&root->inodes);
5695 empty = xa_empty(&root->inodes);
5696 xa_unlock(&root->inodes);
5697 if (empty)
5698 btrfs_add_dead_root(root);
5699 }
5700 }
5701
5702
btrfs_init_locked_inode(struct inode * inode,void * p)5703 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5704 {
5705 struct btrfs_iget_args *args = p;
5706
5707 btrfs_set_inode_number(BTRFS_I(inode), args->ino);
5708 BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5709
5710 if (args->root && args->root == args->root->fs_info->tree_root &&
5711 args->ino != BTRFS_BTREE_INODE_OBJECTID)
5712 set_bit(BTRFS_INODE_FREE_SPACE_INODE,
5713 &BTRFS_I(inode)->runtime_flags);
5714 return 0;
5715 }
5716
btrfs_find_actor(struct inode * inode,void * opaque)5717 static int btrfs_find_actor(struct inode *inode, void *opaque)
5718 {
5719 struct btrfs_iget_args *args = opaque;
5720
5721 return args->ino == btrfs_ino(BTRFS_I(inode)) &&
5722 args->root == BTRFS_I(inode)->root;
5723 }
5724
btrfs_iget_locked(u64 ino,struct btrfs_root * root)5725 static struct btrfs_inode *btrfs_iget_locked(u64 ino, struct btrfs_root *root)
5726 {
5727 struct inode *inode;
5728 struct btrfs_iget_args args;
5729 unsigned long hashval = btrfs_inode_hash(ino, root);
5730
5731 args.ino = ino;
5732 args.root = root;
5733
5734 inode = iget5_locked_rcu(root->fs_info->sb, hashval, btrfs_find_actor,
5735 btrfs_init_locked_inode,
5736 (void *)&args);
5737 if (!inode)
5738 return NULL;
5739 return BTRFS_I(inode);
5740 }
5741
5742 /*
5743 * Get an inode object given its inode number and corresponding root. Path is
5744 * preallocated to prevent recursing back to iget through allocator.
5745 */
btrfs_iget_path(u64 ino,struct btrfs_root * root,struct btrfs_path * path)5746 struct btrfs_inode *btrfs_iget_path(u64 ino, struct btrfs_root *root,
5747 struct btrfs_path *path)
5748 {
5749 struct btrfs_inode *inode;
5750 int ret;
5751
5752 inode = btrfs_iget_locked(ino, root);
5753 if (!inode)
5754 return ERR_PTR(-ENOMEM);
5755
5756 if (!(inode->vfs_inode.i_state & I_NEW))
5757 return inode;
5758
5759 ret = btrfs_read_locked_inode(inode, path);
5760 if (ret)
5761 return ERR_PTR(ret);
5762
5763 unlock_new_inode(&inode->vfs_inode);
5764 return inode;
5765 }
5766
5767 /*
5768 * Get an inode object given its inode number and corresponding root.
5769 */
btrfs_iget(u64 ino,struct btrfs_root * root)5770 struct btrfs_inode *btrfs_iget(u64 ino, struct btrfs_root *root)
5771 {
5772 struct btrfs_inode *inode;
5773 struct btrfs_path *path;
5774 int ret;
5775
5776 inode = btrfs_iget_locked(ino, root);
5777 if (!inode)
5778 return ERR_PTR(-ENOMEM);
5779
5780 if (!(inode->vfs_inode.i_state & I_NEW))
5781 return inode;
5782
5783 path = btrfs_alloc_path();
5784 if (!path) {
5785 iget_failed(&inode->vfs_inode);
5786 return ERR_PTR(-ENOMEM);
5787 }
5788
5789 ret = btrfs_read_locked_inode(inode, path);
5790 btrfs_free_path(path);
5791 if (ret)
5792 return ERR_PTR(ret);
5793
5794 unlock_new_inode(&inode->vfs_inode);
5795 return inode;
5796 }
5797
new_simple_dir(struct inode * dir,struct btrfs_key * key,struct btrfs_root * root)5798 static struct btrfs_inode *new_simple_dir(struct inode *dir,
5799 struct btrfs_key *key,
5800 struct btrfs_root *root)
5801 {
5802 struct timespec64 ts;
5803 struct inode *vfs_inode;
5804 struct btrfs_inode *inode;
5805
5806 vfs_inode = new_inode(dir->i_sb);
5807 if (!vfs_inode)
5808 return ERR_PTR(-ENOMEM);
5809
5810 inode = BTRFS_I(vfs_inode);
5811 inode->root = btrfs_grab_root(root);
5812 inode->ref_root_id = key->objectid;
5813 set_bit(BTRFS_INODE_ROOT_STUB, &inode->runtime_flags);
5814 set_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags);
5815
5816 btrfs_set_inode_number(inode, BTRFS_EMPTY_SUBVOL_DIR_OBJECTID);
5817 /*
5818 * We only need lookup, the rest is read-only and there's no inode
5819 * associated with the dentry
5820 */
5821 vfs_inode->i_op = &simple_dir_inode_operations;
5822 vfs_inode->i_opflags &= ~IOP_XATTR;
5823 vfs_inode->i_fop = &simple_dir_operations;
5824 vfs_inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5825
5826 ts = inode_set_ctime_current(vfs_inode);
5827 inode_set_mtime_to_ts(vfs_inode, ts);
5828 inode_set_atime_to_ts(vfs_inode, inode_get_atime(dir));
5829 inode->i_otime_sec = ts.tv_sec;
5830 inode->i_otime_nsec = ts.tv_nsec;
5831
5832 vfs_inode->i_uid = dir->i_uid;
5833 vfs_inode->i_gid = dir->i_gid;
5834
5835 return inode;
5836 }
5837
5838 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN);
5839 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE);
5840 static_assert(BTRFS_FT_DIR == FT_DIR);
5841 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV);
5842 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV);
5843 static_assert(BTRFS_FT_FIFO == FT_FIFO);
5844 static_assert(BTRFS_FT_SOCK == FT_SOCK);
5845 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK);
5846
btrfs_inode_type(const struct btrfs_inode * inode)5847 static inline u8 btrfs_inode_type(const struct btrfs_inode *inode)
5848 {
5849 return fs_umode_to_ftype(inode->vfs_inode.i_mode);
5850 }
5851
btrfs_lookup_dentry(struct inode * dir,struct dentry * dentry)5852 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5853 {
5854 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
5855 struct btrfs_inode *inode;
5856 struct btrfs_root *root = BTRFS_I(dir)->root;
5857 struct btrfs_root *sub_root = root;
5858 struct btrfs_key location = { 0 };
5859 u8 di_type = 0;
5860 int ret = 0;
5861
5862 if (dentry->d_name.len > BTRFS_NAME_LEN)
5863 return ERR_PTR(-ENAMETOOLONG);
5864
5865 ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type);
5866 if (ret < 0)
5867 return ERR_PTR(ret);
5868
5869 if (location.type == BTRFS_INODE_ITEM_KEY) {
5870 inode = btrfs_iget(location.objectid, root);
5871 if (IS_ERR(inode))
5872 return ERR_CAST(inode);
5873
5874 /* Do extra check against inode mode with di_type */
5875 if (btrfs_inode_type(inode) != di_type) {
5876 btrfs_crit(fs_info,
5877 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5878 inode->vfs_inode.i_mode, btrfs_inode_type(inode),
5879 di_type);
5880 iput(&inode->vfs_inode);
5881 return ERR_PTR(-EUCLEAN);
5882 }
5883 return &inode->vfs_inode;
5884 }
5885
5886 ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry,
5887 &location, &sub_root);
5888 if (ret < 0) {
5889 if (ret != -ENOENT)
5890 inode = ERR_PTR(ret);
5891 else
5892 inode = new_simple_dir(dir, &location, root);
5893 } else {
5894 inode = btrfs_iget(location.objectid, sub_root);
5895 btrfs_put_root(sub_root);
5896
5897 if (IS_ERR(inode))
5898 return ERR_CAST(inode);
5899
5900 down_read(&fs_info->cleanup_work_sem);
5901 if (!sb_rdonly(inode->vfs_inode.i_sb))
5902 ret = btrfs_orphan_cleanup(sub_root);
5903 up_read(&fs_info->cleanup_work_sem);
5904 if (ret) {
5905 iput(&inode->vfs_inode);
5906 inode = ERR_PTR(ret);
5907 }
5908 }
5909
5910 if (IS_ERR(inode))
5911 return ERR_CAST(inode);
5912
5913 return &inode->vfs_inode;
5914 }
5915
btrfs_dentry_delete(const struct dentry * dentry)5916 static int btrfs_dentry_delete(const struct dentry *dentry)
5917 {
5918 struct btrfs_root *root;
5919 struct inode *inode = d_inode(dentry);
5920
5921 if (!inode && !IS_ROOT(dentry))
5922 inode = d_inode(dentry->d_parent);
5923
5924 if (inode) {
5925 root = BTRFS_I(inode)->root;
5926 if (btrfs_root_refs(&root->root_item) == 0)
5927 return 1;
5928
5929 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5930 return 1;
5931 }
5932 return 0;
5933 }
5934
btrfs_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)5935 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5936 unsigned int flags)
5937 {
5938 struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5939
5940 if (inode == ERR_PTR(-ENOENT))
5941 inode = NULL;
5942 return d_splice_alias(inode, dentry);
5943 }
5944
5945 /*
5946 * Find the highest existing sequence number in a directory and then set the
5947 * in-memory index_cnt variable to the first free sequence number.
5948 */
btrfs_set_inode_index_count(struct btrfs_inode * inode)5949 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
5950 {
5951 struct btrfs_root *root = inode->root;
5952 struct btrfs_key key, found_key;
5953 BTRFS_PATH_AUTO_FREE(path);
5954 struct extent_buffer *leaf;
5955 int ret;
5956
5957 key.objectid = btrfs_ino(inode);
5958 key.type = BTRFS_DIR_INDEX_KEY;
5959 key.offset = (u64)-1;
5960
5961 path = btrfs_alloc_path();
5962 if (!path)
5963 return -ENOMEM;
5964
5965 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5966 if (ret < 0)
5967 return ret;
5968 /* FIXME: we should be able to handle this */
5969 if (ret == 0)
5970 return ret;
5971
5972 if (path->slots[0] == 0) {
5973 inode->index_cnt = BTRFS_DIR_START_INDEX;
5974 return 0;
5975 }
5976
5977 path->slots[0]--;
5978
5979 leaf = path->nodes[0];
5980 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5981
5982 if (found_key.objectid != btrfs_ino(inode) ||
5983 found_key.type != BTRFS_DIR_INDEX_KEY) {
5984 inode->index_cnt = BTRFS_DIR_START_INDEX;
5985 return 0;
5986 }
5987
5988 inode->index_cnt = found_key.offset + 1;
5989
5990 return 0;
5991 }
5992
btrfs_get_dir_last_index(struct btrfs_inode * dir,u64 * index)5993 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index)
5994 {
5995 int ret = 0;
5996
5997 btrfs_inode_lock(dir, 0);
5998 if (dir->index_cnt == (u64)-1) {
5999 ret = btrfs_inode_delayed_dir_index_count(dir);
6000 if (ret) {
6001 ret = btrfs_set_inode_index_count(dir);
6002 if (ret)
6003 goto out;
6004 }
6005 }
6006
6007 /* index_cnt is the index number of next new entry, so decrement it. */
6008 *index = dir->index_cnt - 1;
6009 out:
6010 btrfs_inode_unlock(dir, 0);
6011
6012 return ret;
6013 }
6014
6015 /*
6016 * All this infrastructure exists because dir_emit can fault, and we are holding
6017 * the tree lock when doing readdir. For now just allocate a buffer and copy
6018 * our information into that, and then dir_emit from the buffer. This is
6019 * similar to what NFS does, only we don't keep the buffer around in pagecache
6020 * because I'm afraid I'll mess that up. Long term we need to make filldir do
6021 * copy_to_user_inatomic so we don't have to worry about page faulting under the
6022 * tree lock.
6023 */
btrfs_opendir(struct inode * inode,struct file * file)6024 static int btrfs_opendir(struct inode *inode, struct file *file)
6025 {
6026 struct btrfs_file_private *private;
6027 u64 last_index;
6028 int ret;
6029
6030 ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index);
6031 if (ret)
6032 return ret;
6033
6034 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
6035 if (!private)
6036 return -ENOMEM;
6037 private->last_index = last_index;
6038 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
6039 if (!private->filldir_buf) {
6040 kfree(private);
6041 return -ENOMEM;
6042 }
6043 file->private_data = private;
6044 return 0;
6045 }
6046
btrfs_dir_llseek(struct file * file,loff_t offset,int whence)6047 static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence)
6048 {
6049 struct btrfs_file_private *private = file->private_data;
6050 int ret;
6051
6052 ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)),
6053 &private->last_index);
6054 if (ret)
6055 return ret;
6056
6057 return generic_file_llseek(file, offset, whence);
6058 }
6059
6060 struct dir_entry {
6061 u64 ino;
6062 u64 offset;
6063 unsigned type;
6064 int name_len;
6065 };
6066
btrfs_filldir(void * addr,int entries,struct dir_context * ctx)6067 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
6068 {
6069 while (entries--) {
6070 struct dir_entry *entry = addr;
6071 char *name = (char *)(entry + 1);
6072
6073 ctx->pos = get_unaligned(&entry->offset);
6074 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
6075 get_unaligned(&entry->ino),
6076 get_unaligned(&entry->type)))
6077 return 1;
6078 addr += sizeof(struct dir_entry) +
6079 get_unaligned(&entry->name_len);
6080 ctx->pos++;
6081 }
6082 return 0;
6083 }
6084
btrfs_real_readdir(struct file * file,struct dir_context * ctx)6085 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
6086 {
6087 struct inode *inode = file_inode(file);
6088 struct btrfs_root *root = BTRFS_I(inode)->root;
6089 struct btrfs_file_private *private = file->private_data;
6090 struct btrfs_dir_item *di;
6091 struct btrfs_key key;
6092 struct btrfs_key found_key;
6093 BTRFS_PATH_AUTO_FREE(path);
6094 void *addr;
6095 LIST_HEAD(ins_list);
6096 LIST_HEAD(del_list);
6097 int ret;
6098 char *name_ptr;
6099 int name_len;
6100 int entries = 0;
6101 int total_len = 0;
6102 bool put = false;
6103 struct btrfs_key location;
6104
6105 if (!dir_emit_dots(file, ctx))
6106 return 0;
6107
6108 path = btrfs_alloc_path();
6109 if (!path)
6110 return -ENOMEM;
6111
6112 addr = private->filldir_buf;
6113 path->reada = READA_FORWARD;
6114
6115 put = btrfs_readdir_get_delayed_items(BTRFS_I(inode), private->last_index,
6116 &ins_list, &del_list);
6117
6118 again:
6119 key.type = BTRFS_DIR_INDEX_KEY;
6120 key.offset = ctx->pos;
6121 key.objectid = btrfs_ino(BTRFS_I(inode));
6122
6123 btrfs_for_each_slot(root, &key, &found_key, path, ret) {
6124 struct dir_entry *entry;
6125 struct extent_buffer *leaf = path->nodes[0];
6126 u8 ftype;
6127
6128 if (found_key.objectid != key.objectid)
6129 break;
6130 if (found_key.type != BTRFS_DIR_INDEX_KEY)
6131 break;
6132 if (found_key.offset < ctx->pos)
6133 continue;
6134 if (found_key.offset > private->last_index)
6135 break;
6136 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
6137 continue;
6138 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
6139 name_len = btrfs_dir_name_len(leaf, di);
6140 if ((total_len + sizeof(struct dir_entry) + name_len) >=
6141 PAGE_SIZE) {
6142 btrfs_release_path(path);
6143 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6144 if (ret)
6145 goto nopos;
6146 addr = private->filldir_buf;
6147 entries = 0;
6148 total_len = 0;
6149 goto again;
6150 }
6151
6152 ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di));
6153 entry = addr;
6154 name_ptr = (char *)(entry + 1);
6155 read_extent_buffer(leaf, name_ptr,
6156 (unsigned long)(di + 1), name_len);
6157 put_unaligned(name_len, &entry->name_len);
6158 put_unaligned(fs_ftype_to_dtype(ftype), &entry->type);
6159 btrfs_dir_item_key_to_cpu(leaf, di, &location);
6160 put_unaligned(location.objectid, &entry->ino);
6161 put_unaligned(found_key.offset, &entry->offset);
6162 entries++;
6163 addr += sizeof(struct dir_entry) + name_len;
6164 total_len += sizeof(struct dir_entry) + name_len;
6165 }
6166 /* Catch error encountered during iteration */
6167 if (ret < 0)
6168 goto err;
6169
6170 btrfs_release_path(path);
6171
6172 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6173 if (ret)
6174 goto nopos;
6175
6176 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
6177 if (ret)
6178 goto nopos;
6179
6180 /*
6181 * Stop new entries from being returned after we return the last
6182 * entry.
6183 *
6184 * New directory entries are assigned a strictly increasing
6185 * offset. This means that new entries created during readdir
6186 * are *guaranteed* to be seen in the future by that readdir.
6187 * This has broken buggy programs which operate on names as
6188 * they're returned by readdir. Until we reuse freed offsets
6189 * we have this hack to stop new entries from being returned
6190 * under the assumption that they'll never reach this huge
6191 * offset.
6192 *
6193 * This is being careful not to overflow 32bit loff_t unless the
6194 * last entry requires it because doing so has broken 32bit apps
6195 * in the past.
6196 */
6197 if (ctx->pos >= INT_MAX)
6198 ctx->pos = LLONG_MAX;
6199 else
6200 ctx->pos = INT_MAX;
6201 nopos:
6202 ret = 0;
6203 err:
6204 if (put)
6205 btrfs_readdir_put_delayed_items(BTRFS_I(inode), &ins_list, &del_list);
6206 return ret;
6207 }
6208
6209 /*
6210 * This is somewhat expensive, updating the tree every time the
6211 * inode changes. But, it is most likely to find the inode in cache.
6212 * FIXME, needs more benchmarking...there are no reasons other than performance
6213 * to keep or drop this code.
6214 */
btrfs_dirty_inode(struct btrfs_inode * inode)6215 static int btrfs_dirty_inode(struct btrfs_inode *inode)
6216 {
6217 struct btrfs_root *root = inode->root;
6218 struct btrfs_fs_info *fs_info = root->fs_info;
6219 struct btrfs_trans_handle *trans;
6220 int ret;
6221
6222 if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags))
6223 return 0;
6224
6225 trans = btrfs_join_transaction(root);
6226 if (IS_ERR(trans))
6227 return PTR_ERR(trans);
6228
6229 ret = btrfs_update_inode(trans, inode);
6230 if (ret == -ENOSPC || ret == -EDQUOT) {
6231 /* whoops, lets try again with the full transaction */
6232 btrfs_end_transaction(trans);
6233 trans = btrfs_start_transaction(root, 1);
6234 if (IS_ERR(trans))
6235 return PTR_ERR(trans);
6236
6237 ret = btrfs_update_inode(trans, inode);
6238 }
6239 btrfs_end_transaction(trans);
6240 if (inode->delayed_node)
6241 btrfs_balance_delayed_items(fs_info);
6242
6243 return ret;
6244 }
6245
6246 /*
6247 * This is a copy of file_update_time. We need this so we can return error on
6248 * ENOSPC for updating the inode in the case of file write and mmap writes.
6249 */
btrfs_update_time(struct inode * inode,int flags)6250 static int btrfs_update_time(struct inode *inode, int flags)
6251 {
6252 struct btrfs_root *root = BTRFS_I(inode)->root;
6253 bool dirty;
6254
6255 if (btrfs_root_readonly(root))
6256 return -EROFS;
6257
6258 dirty = inode_update_timestamps(inode, flags);
6259 return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0;
6260 }
6261
6262 /*
6263 * helper to find a free sequence number in a given directory. This current
6264 * code is very simple, later versions will do smarter things in the btree
6265 */
btrfs_set_inode_index(struct btrfs_inode * dir,u64 * index)6266 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6267 {
6268 int ret = 0;
6269
6270 if (dir->index_cnt == (u64)-1) {
6271 ret = btrfs_inode_delayed_dir_index_count(dir);
6272 if (ret) {
6273 ret = btrfs_set_inode_index_count(dir);
6274 if (ret)
6275 return ret;
6276 }
6277 }
6278
6279 *index = dir->index_cnt;
6280 dir->index_cnt++;
6281
6282 return ret;
6283 }
6284
btrfs_insert_inode_locked(struct inode * inode)6285 static int btrfs_insert_inode_locked(struct inode *inode)
6286 {
6287 struct btrfs_iget_args args;
6288
6289 args.ino = btrfs_ino(BTRFS_I(inode));
6290 args.root = BTRFS_I(inode)->root;
6291
6292 return insert_inode_locked4(inode,
6293 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6294 btrfs_find_actor, &args);
6295 }
6296
btrfs_new_inode_prepare(struct btrfs_new_inode_args * args,unsigned int * trans_num_items)6297 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
6298 unsigned int *trans_num_items)
6299 {
6300 struct inode *dir = args->dir;
6301 struct inode *inode = args->inode;
6302 int ret;
6303
6304 if (!args->orphan) {
6305 ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0,
6306 &args->fname);
6307 if (ret)
6308 return ret;
6309 }
6310
6311 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl);
6312 if (ret) {
6313 fscrypt_free_filename(&args->fname);
6314 return ret;
6315 }
6316
6317 /* 1 to add inode item */
6318 *trans_num_items = 1;
6319 /* 1 to add compression property */
6320 if (BTRFS_I(dir)->prop_compress)
6321 (*trans_num_items)++;
6322 /* 1 to add default ACL xattr */
6323 if (args->default_acl)
6324 (*trans_num_items)++;
6325 /* 1 to add access ACL xattr */
6326 if (args->acl)
6327 (*trans_num_items)++;
6328 #ifdef CONFIG_SECURITY
6329 /* 1 to add LSM xattr */
6330 if (dir->i_security)
6331 (*trans_num_items)++;
6332 #endif
6333 if (args->orphan) {
6334 /* 1 to add orphan item */
6335 (*trans_num_items)++;
6336 } else {
6337 /*
6338 * 1 to add dir item
6339 * 1 to add dir index
6340 * 1 to update parent inode item
6341 *
6342 * No need for 1 unit for the inode ref item because it is
6343 * inserted in a batch together with the inode item at
6344 * btrfs_create_new_inode().
6345 */
6346 *trans_num_items += 3;
6347 }
6348 return 0;
6349 }
6350
btrfs_new_inode_args_destroy(struct btrfs_new_inode_args * args)6351 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args)
6352 {
6353 posix_acl_release(args->acl);
6354 posix_acl_release(args->default_acl);
6355 fscrypt_free_filename(&args->fname);
6356 }
6357
6358 /*
6359 * Inherit flags from the parent inode.
6360 *
6361 * Currently only the compression flags and the cow flags are inherited.
6362 */
btrfs_inherit_iflags(struct btrfs_inode * inode,struct btrfs_inode * dir)6363 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir)
6364 {
6365 unsigned int flags;
6366
6367 flags = dir->flags;
6368
6369 if (flags & BTRFS_INODE_NOCOMPRESS) {
6370 inode->flags &= ~BTRFS_INODE_COMPRESS;
6371 inode->flags |= BTRFS_INODE_NOCOMPRESS;
6372 } else if (flags & BTRFS_INODE_COMPRESS) {
6373 inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
6374 inode->flags |= BTRFS_INODE_COMPRESS;
6375 }
6376
6377 if (flags & BTRFS_INODE_NODATACOW) {
6378 inode->flags |= BTRFS_INODE_NODATACOW;
6379 if (S_ISREG(inode->vfs_inode.i_mode))
6380 inode->flags |= BTRFS_INODE_NODATASUM;
6381 }
6382
6383 btrfs_sync_inode_flags_to_i_flags(inode);
6384 }
6385
btrfs_create_new_inode(struct btrfs_trans_handle * trans,struct btrfs_new_inode_args * args)6386 int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
6387 struct btrfs_new_inode_args *args)
6388 {
6389 struct timespec64 ts;
6390 struct inode *dir = args->dir;
6391 struct inode *inode = args->inode;
6392 const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name;
6393 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
6394 struct btrfs_root *root;
6395 struct btrfs_inode_item *inode_item;
6396 struct btrfs_path *path;
6397 u64 objectid;
6398 struct btrfs_inode_ref *ref;
6399 struct btrfs_key key[2];
6400 u32 sizes[2];
6401 struct btrfs_item_batch batch;
6402 unsigned long ptr;
6403 int ret;
6404 bool xa_reserved = false;
6405
6406 path = btrfs_alloc_path();
6407 if (!path)
6408 return -ENOMEM;
6409
6410 if (!args->subvol)
6411 BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root);
6412 root = BTRFS_I(inode)->root;
6413
6414 ret = btrfs_init_file_extent_tree(BTRFS_I(inode));
6415 if (ret)
6416 goto out;
6417
6418 ret = btrfs_get_free_objectid(root, &objectid);
6419 if (ret)
6420 goto out;
6421 btrfs_set_inode_number(BTRFS_I(inode), objectid);
6422
6423 ret = xa_reserve(&root->inodes, objectid, GFP_NOFS);
6424 if (ret)
6425 goto out;
6426 xa_reserved = true;
6427
6428 if (args->orphan) {
6429 /*
6430 * O_TMPFILE, set link count to 0, so that after this point, we
6431 * fill in an inode item with the correct link count.
6432 */
6433 set_nlink(inode, 0);
6434 } else {
6435 trace_btrfs_inode_request(dir);
6436
6437 ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index);
6438 if (ret)
6439 goto out;
6440 }
6441
6442 if (S_ISDIR(inode->i_mode))
6443 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX;
6444
6445 BTRFS_I(inode)->generation = trans->transid;
6446 inode->i_generation = BTRFS_I(inode)->generation;
6447
6448 /*
6449 * We don't have any capability xattrs set here yet, shortcut any
6450 * queries for the xattrs here. If we add them later via the inode
6451 * security init path or any other path this flag will be cleared.
6452 */
6453 set_bit(BTRFS_INODE_NO_CAP_XATTR, &BTRFS_I(inode)->runtime_flags);
6454
6455 /*
6456 * Subvolumes don't inherit flags from their parent directory.
6457 * Originally this was probably by accident, but we probably can't
6458 * change it now without compatibility issues.
6459 */
6460 if (!args->subvol)
6461 btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir));
6462
6463 if (S_ISREG(inode->i_mode)) {
6464 if (btrfs_test_opt(fs_info, NODATASUM))
6465 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6466 if (btrfs_test_opt(fs_info, NODATACOW))
6467 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6468 BTRFS_INODE_NODATASUM;
6469 btrfs_update_inode_mapping_flags(BTRFS_I(inode));
6470 }
6471
6472 ret = btrfs_insert_inode_locked(inode);
6473 if (ret < 0) {
6474 if (!args->orphan)
6475 BTRFS_I(dir)->index_cnt--;
6476 goto out;
6477 }
6478
6479 /*
6480 * We could have gotten an inode number from somebody who was fsynced
6481 * and then removed in this same transaction, so let's just set full
6482 * sync since it will be a full sync anyway and this will blow away the
6483 * old info in the log.
6484 */
6485 btrfs_set_inode_full_sync(BTRFS_I(inode));
6486
6487 key[0].objectid = objectid;
6488 key[0].type = BTRFS_INODE_ITEM_KEY;
6489 key[0].offset = 0;
6490
6491 sizes[0] = sizeof(struct btrfs_inode_item);
6492
6493 if (!args->orphan) {
6494 /*
6495 * Start new inodes with an inode_ref. This is slightly more
6496 * efficient for small numbers of hard links since they will
6497 * be packed into one item. Extended refs will kick in if we
6498 * add more hard links than can fit in the ref item.
6499 */
6500 key[1].objectid = objectid;
6501 key[1].type = BTRFS_INODE_REF_KEY;
6502 if (args->subvol) {
6503 key[1].offset = objectid;
6504 sizes[1] = 2 + sizeof(*ref);
6505 } else {
6506 key[1].offset = btrfs_ino(BTRFS_I(dir));
6507 sizes[1] = name->len + sizeof(*ref);
6508 }
6509 }
6510
6511 batch.keys = &key[0];
6512 batch.data_sizes = &sizes[0];
6513 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]);
6514 batch.nr = args->orphan ? 1 : 2;
6515 ret = btrfs_insert_empty_items(trans, root, path, &batch);
6516 if (ret != 0) {
6517 btrfs_abort_transaction(trans, ret);
6518 goto discard;
6519 }
6520
6521 ts = simple_inode_init_ts(inode);
6522 BTRFS_I(inode)->i_otime_sec = ts.tv_sec;
6523 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec;
6524
6525 /*
6526 * We're going to fill the inode item now, so at this point the inode
6527 * must be fully initialized.
6528 */
6529
6530 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6531 struct btrfs_inode_item);
6532 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6533 sizeof(*inode_item));
6534 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6535
6536 if (!args->orphan) {
6537 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6538 struct btrfs_inode_ref);
6539 ptr = (unsigned long)(ref + 1);
6540 if (args->subvol) {
6541 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2);
6542 btrfs_set_inode_ref_index(path->nodes[0], ref, 0);
6543 write_extent_buffer(path->nodes[0], "..", ptr, 2);
6544 } else {
6545 btrfs_set_inode_ref_name_len(path->nodes[0], ref,
6546 name->len);
6547 btrfs_set_inode_ref_index(path->nodes[0], ref,
6548 BTRFS_I(inode)->dir_index);
6549 write_extent_buffer(path->nodes[0], name->name, ptr,
6550 name->len);
6551 }
6552 }
6553
6554 /*
6555 * We don't need the path anymore, plus inheriting properties, adding
6556 * ACLs, security xattrs, orphan item or adding the link, will result in
6557 * allocating yet another path. So just free our path.
6558 */
6559 btrfs_free_path(path);
6560 path = NULL;
6561
6562 if (args->subvol) {
6563 struct btrfs_inode *parent;
6564
6565 /*
6566 * Subvolumes inherit properties from their parent subvolume,
6567 * not the directory they were created in.
6568 */
6569 parent = btrfs_iget(BTRFS_FIRST_FREE_OBJECTID, BTRFS_I(dir)->root);
6570 if (IS_ERR(parent)) {
6571 ret = PTR_ERR(parent);
6572 } else {
6573 ret = btrfs_inode_inherit_props(trans, BTRFS_I(inode),
6574 parent);
6575 iput(&parent->vfs_inode);
6576 }
6577 } else {
6578 ret = btrfs_inode_inherit_props(trans, BTRFS_I(inode),
6579 BTRFS_I(dir));
6580 }
6581 if (ret) {
6582 btrfs_err(fs_info,
6583 "error inheriting props for ino %llu (root %llu): %d",
6584 btrfs_ino(BTRFS_I(inode)), btrfs_root_id(root), ret);
6585 }
6586
6587 /*
6588 * Subvolumes don't inherit ACLs or get passed to the LSM. This is
6589 * probably a bug.
6590 */
6591 if (!args->subvol) {
6592 ret = btrfs_init_inode_security(trans, args);
6593 if (ret) {
6594 btrfs_abort_transaction(trans, ret);
6595 goto discard;
6596 }
6597 }
6598
6599 ret = btrfs_add_inode_to_root(BTRFS_I(inode), false);
6600 if (WARN_ON(ret)) {
6601 /* Shouldn't happen, we used xa_reserve() before. */
6602 btrfs_abort_transaction(trans, ret);
6603 goto discard;
6604 }
6605
6606 trace_btrfs_inode_new(inode);
6607 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6608
6609 btrfs_update_root_times(trans, root);
6610
6611 if (args->orphan) {
6612 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
6613 } else {
6614 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
6615 0, BTRFS_I(inode)->dir_index);
6616 }
6617 if (ret) {
6618 btrfs_abort_transaction(trans, ret);
6619 goto discard;
6620 }
6621
6622 return 0;
6623
6624 discard:
6625 /*
6626 * discard_new_inode() calls iput(), but the caller owns the reference
6627 * to the inode.
6628 */
6629 ihold(inode);
6630 discard_new_inode(inode);
6631 out:
6632 if (xa_reserved)
6633 xa_release(&root->inodes, objectid);
6634
6635 btrfs_free_path(path);
6636 return ret;
6637 }
6638
6639 /*
6640 * utility function to add 'inode' into 'parent_inode' with
6641 * a give name and a given sequence number.
6642 * if 'add_backref' is true, also insert a backref from the
6643 * inode to the parent directory.
6644 */
btrfs_add_link(struct btrfs_trans_handle * trans,struct btrfs_inode * parent_inode,struct btrfs_inode * inode,const struct fscrypt_str * name,int add_backref,u64 index)6645 int btrfs_add_link(struct btrfs_trans_handle *trans,
6646 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6647 const struct fscrypt_str *name, int add_backref, u64 index)
6648 {
6649 int ret = 0;
6650 struct btrfs_key key;
6651 struct btrfs_root *root = parent_inode->root;
6652 u64 ino = btrfs_ino(inode);
6653 u64 parent_ino = btrfs_ino(parent_inode);
6654
6655 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6656 memcpy(&key, &inode->root->root_key, sizeof(key));
6657 } else {
6658 key.objectid = ino;
6659 key.type = BTRFS_INODE_ITEM_KEY;
6660 key.offset = 0;
6661 }
6662
6663 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6664 ret = btrfs_add_root_ref(trans, key.objectid,
6665 btrfs_root_id(root), parent_ino,
6666 index, name);
6667 } else if (add_backref) {
6668 ret = btrfs_insert_inode_ref(trans, root, name,
6669 ino, parent_ino, index);
6670 }
6671
6672 /* Nothing to clean up yet */
6673 if (ret)
6674 return ret;
6675
6676 ret = btrfs_insert_dir_item(trans, name, parent_inode, &key,
6677 btrfs_inode_type(inode), index);
6678 if (ret == -EEXIST || ret == -EOVERFLOW)
6679 goto fail_dir_item;
6680 else if (ret) {
6681 btrfs_abort_transaction(trans, ret);
6682 return ret;
6683 }
6684
6685 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6686 name->len * 2);
6687 inode_inc_iversion(&parent_inode->vfs_inode);
6688 /*
6689 * If we are replaying a log tree, we do not want to update the mtime
6690 * and ctime of the parent directory with the current time, since the
6691 * log replay procedure is responsible for setting them to their correct
6692 * values (the ones it had when the fsync was done).
6693 */
6694 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags))
6695 inode_set_mtime_to_ts(&parent_inode->vfs_inode,
6696 inode_set_ctime_current(&parent_inode->vfs_inode));
6697
6698 ret = btrfs_update_inode(trans, parent_inode);
6699 if (ret)
6700 btrfs_abort_transaction(trans, ret);
6701 return ret;
6702
6703 fail_dir_item:
6704 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6705 u64 local_index;
6706 int err;
6707 err = btrfs_del_root_ref(trans, key.objectid,
6708 btrfs_root_id(root), parent_ino,
6709 &local_index, name);
6710 if (err)
6711 btrfs_abort_transaction(trans, err);
6712 } else if (add_backref) {
6713 u64 local_index;
6714 int err;
6715
6716 err = btrfs_del_inode_ref(trans, root, name, ino, parent_ino,
6717 &local_index);
6718 if (err)
6719 btrfs_abort_transaction(trans, err);
6720 }
6721
6722 /* Return the original error code */
6723 return ret;
6724 }
6725
btrfs_create_common(struct inode * dir,struct dentry * dentry,struct inode * inode)6726 static int btrfs_create_common(struct inode *dir, struct dentry *dentry,
6727 struct inode *inode)
6728 {
6729 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
6730 struct btrfs_root *root = BTRFS_I(dir)->root;
6731 struct btrfs_new_inode_args new_inode_args = {
6732 .dir = dir,
6733 .dentry = dentry,
6734 .inode = inode,
6735 };
6736 unsigned int trans_num_items;
6737 struct btrfs_trans_handle *trans;
6738 int err;
6739
6740 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
6741 if (err)
6742 goto out_inode;
6743
6744 trans = btrfs_start_transaction(root, trans_num_items);
6745 if (IS_ERR(trans)) {
6746 err = PTR_ERR(trans);
6747 goto out_new_inode_args;
6748 }
6749
6750 err = btrfs_create_new_inode(trans, &new_inode_args);
6751 if (!err)
6752 d_instantiate_new(dentry, inode);
6753
6754 btrfs_end_transaction(trans);
6755 btrfs_btree_balance_dirty(fs_info);
6756 out_new_inode_args:
6757 btrfs_new_inode_args_destroy(&new_inode_args);
6758 out_inode:
6759 if (err)
6760 iput(inode);
6761 return err;
6762 }
6763
btrfs_mknod(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t rdev)6764 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
6765 struct dentry *dentry, umode_t mode, dev_t rdev)
6766 {
6767 struct inode *inode;
6768
6769 inode = new_inode(dir->i_sb);
6770 if (!inode)
6771 return -ENOMEM;
6772 inode_init_owner(idmap, inode, dir, mode);
6773 inode->i_op = &btrfs_special_inode_operations;
6774 init_special_inode(inode, inode->i_mode, rdev);
6775 return btrfs_create_common(dir, dentry, inode);
6776 }
6777
btrfs_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)6778 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir,
6779 struct dentry *dentry, umode_t mode, bool excl)
6780 {
6781 struct inode *inode;
6782
6783 inode = new_inode(dir->i_sb);
6784 if (!inode)
6785 return -ENOMEM;
6786 inode_init_owner(idmap, inode, dir, mode);
6787 inode->i_fop = &btrfs_file_operations;
6788 inode->i_op = &btrfs_file_inode_operations;
6789 inode->i_mapping->a_ops = &btrfs_aops;
6790 return btrfs_create_common(dir, dentry, inode);
6791 }
6792
btrfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)6793 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6794 struct dentry *dentry)
6795 {
6796 struct btrfs_trans_handle *trans = NULL;
6797 struct btrfs_root *root = BTRFS_I(dir)->root;
6798 struct inode *inode = d_inode(old_dentry);
6799 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
6800 struct fscrypt_name fname;
6801 u64 index;
6802 int err;
6803 int drop_inode = 0;
6804
6805 /* do not allow sys_link's with other subvols of the same device */
6806 if (btrfs_root_id(root) != btrfs_root_id(BTRFS_I(inode)->root))
6807 return -EXDEV;
6808
6809 if (inode->i_nlink >= BTRFS_LINK_MAX)
6810 return -EMLINK;
6811
6812 err = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname);
6813 if (err)
6814 goto fail;
6815
6816 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6817 if (err)
6818 goto fail;
6819
6820 /*
6821 * 2 items for inode and inode ref
6822 * 2 items for dir items
6823 * 1 item for parent inode
6824 * 1 item for orphan item deletion if O_TMPFILE
6825 */
6826 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6827 if (IS_ERR(trans)) {
6828 err = PTR_ERR(trans);
6829 trans = NULL;
6830 goto fail;
6831 }
6832
6833 /* There are several dir indexes for this inode, clear the cache. */
6834 BTRFS_I(inode)->dir_index = 0ULL;
6835 inc_nlink(inode);
6836 inode_inc_iversion(inode);
6837 inode_set_ctime_current(inode);
6838 ihold(inode);
6839 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6840
6841 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6842 &fname.disk_name, 1, index);
6843
6844 if (err) {
6845 drop_inode = 1;
6846 } else {
6847 struct dentry *parent = dentry->d_parent;
6848
6849 err = btrfs_update_inode(trans, BTRFS_I(inode));
6850 if (err)
6851 goto fail;
6852 if (inode->i_nlink == 1) {
6853 /*
6854 * If new hard link count is 1, it's a file created
6855 * with open(2) O_TMPFILE flag.
6856 */
6857 err = btrfs_orphan_del(trans, BTRFS_I(inode));
6858 if (err)
6859 goto fail;
6860 }
6861 d_instantiate(dentry, inode);
6862 btrfs_log_new_name(trans, old_dentry, NULL, 0, parent);
6863 }
6864
6865 fail:
6866 fscrypt_free_filename(&fname);
6867 if (trans)
6868 btrfs_end_transaction(trans);
6869 if (drop_inode) {
6870 inode_dec_link_count(inode);
6871 iput(inode);
6872 }
6873 btrfs_btree_balance_dirty(fs_info);
6874 return err;
6875 }
6876
btrfs_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)6877 static struct dentry *btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
6878 struct dentry *dentry, umode_t mode)
6879 {
6880 struct inode *inode;
6881
6882 inode = new_inode(dir->i_sb);
6883 if (!inode)
6884 return ERR_PTR(-ENOMEM);
6885 inode_init_owner(idmap, inode, dir, S_IFDIR | mode);
6886 inode->i_op = &btrfs_dir_inode_operations;
6887 inode->i_fop = &btrfs_dir_file_operations;
6888 return ERR_PTR(btrfs_create_common(dir, dentry, inode));
6889 }
6890
uncompress_inline(struct btrfs_path * path,struct folio * folio,struct btrfs_file_extent_item * item)6891 static noinline int uncompress_inline(struct btrfs_path *path,
6892 struct folio *folio,
6893 struct btrfs_file_extent_item *item)
6894 {
6895 int ret;
6896 struct extent_buffer *leaf = path->nodes[0];
6897 const u32 blocksize = leaf->fs_info->sectorsize;
6898 char *tmp;
6899 size_t max_size;
6900 unsigned long inline_size;
6901 unsigned long ptr;
6902 int compress_type;
6903
6904 compress_type = btrfs_file_extent_compression(leaf, item);
6905 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6906 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
6907 tmp = kmalloc(inline_size, GFP_NOFS);
6908 if (!tmp)
6909 return -ENOMEM;
6910 ptr = btrfs_file_extent_inline_start(item);
6911
6912 read_extent_buffer(leaf, tmp, ptr, inline_size);
6913
6914 max_size = min_t(unsigned long, blocksize, max_size);
6915 ret = btrfs_decompress(compress_type, tmp, folio, 0, inline_size,
6916 max_size);
6917
6918 /*
6919 * decompression code contains a memset to fill in any space between the end
6920 * of the uncompressed data and the end of max_size in case the decompressed
6921 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6922 * the end of an inline extent and the beginning of the next block, so we
6923 * cover that region here.
6924 */
6925
6926 if (max_size < blocksize)
6927 folio_zero_range(folio, max_size, blocksize - max_size);
6928 kfree(tmp);
6929 return ret;
6930 }
6931
read_inline_extent(struct btrfs_path * path,struct folio * folio)6932 static int read_inline_extent(struct btrfs_path *path, struct folio *folio)
6933 {
6934 const u32 blocksize = path->nodes[0]->fs_info->sectorsize;
6935 struct btrfs_file_extent_item *fi;
6936 void *kaddr;
6937 size_t copy_size;
6938
6939 if (!folio || folio_test_uptodate(folio))
6940 return 0;
6941
6942 ASSERT(folio_pos(folio) == 0);
6943
6944 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
6945 struct btrfs_file_extent_item);
6946 if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE)
6947 return uncompress_inline(path, folio, fi);
6948
6949 copy_size = min_t(u64, blocksize,
6950 btrfs_file_extent_ram_bytes(path->nodes[0], fi));
6951 kaddr = kmap_local_folio(folio, 0);
6952 read_extent_buffer(path->nodes[0], kaddr,
6953 btrfs_file_extent_inline_start(fi), copy_size);
6954 kunmap_local(kaddr);
6955 if (copy_size < blocksize)
6956 folio_zero_range(folio, copy_size, blocksize - copy_size);
6957 return 0;
6958 }
6959
6960 /*
6961 * Lookup the first extent overlapping a range in a file.
6962 *
6963 * @inode: file to search in
6964 * @page: page to read extent data into if the extent is inline
6965 * @start: file offset
6966 * @len: length of range starting at @start
6967 *
6968 * Return the first &struct extent_map which overlaps the given range, reading
6969 * it from the B-tree and caching it if necessary. Note that there may be more
6970 * extents which overlap the given range after the returned extent_map.
6971 *
6972 * If @page is not NULL and the extent is inline, this also reads the extent
6973 * data directly into the page and marks the extent up to date in the io_tree.
6974 *
6975 * Return: ERR_PTR on error, non-NULL extent_map on success.
6976 */
btrfs_get_extent(struct btrfs_inode * inode,struct folio * folio,u64 start,u64 len)6977 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6978 struct folio *folio, u64 start, u64 len)
6979 {
6980 struct btrfs_fs_info *fs_info = inode->root->fs_info;
6981 int ret = 0;
6982 u64 extent_start = 0;
6983 u64 extent_end = 0;
6984 u64 objectid = btrfs_ino(inode);
6985 int extent_type = -1;
6986 struct btrfs_path *path = NULL;
6987 struct btrfs_root *root = inode->root;
6988 struct btrfs_file_extent_item *item;
6989 struct extent_buffer *leaf;
6990 struct btrfs_key found_key;
6991 struct extent_map *em = NULL;
6992 struct extent_map_tree *em_tree = &inode->extent_tree;
6993
6994 read_lock(&em_tree->lock);
6995 em = btrfs_lookup_extent_mapping(em_tree, start, len);
6996 read_unlock(&em_tree->lock);
6997
6998 if (em) {
6999 if (em->start > start || em->start + em->len <= start)
7000 btrfs_free_extent_map(em);
7001 else if (em->disk_bytenr == EXTENT_MAP_INLINE && folio)
7002 btrfs_free_extent_map(em);
7003 else
7004 goto out;
7005 }
7006 em = btrfs_alloc_extent_map();
7007 if (!em) {
7008 ret = -ENOMEM;
7009 goto out;
7010 }
7011 em->start = EXTENT_MAP_HOLE;
7012 em->disk_bytenr = EXTENT_MAP_HOLE;
7013 em->len = (u64)-1;
7014
7015 path = btrfs_alloc_path();
7016 if (!path) {
7017 ret = -ENOMEM;
7018 goto out;
7019 }
7020
7021 /* Chances are we'll be called again, so go ahead and do readahead */
7022 path->reada = READA_FORWARD;
7023
7024 /*
7025 * The same explanation in load_free_space_cache applies here as well,
7026 * we only read when we're loading the free space cache, and at that
7027 * point the commit_root has everything we need.
7028 */
7029 if (btrfs_is_free_space_inode(inode)) {
7030 path->search_commit_root = 1;
7031 path->skip_locking = 1;
7032 }
7033
7034 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
7035 if (ret < 0) {
7036 goto out;
7037 } else if (ret > 0) {
7038 if (path->slots[0] == 0)
7039 goto not_found;
7040 path->slots[0]--;
7041 ret = 0;
7042 }
7043
7044 leaf = path->nodes[0];
7045 item = btrfs_item_ptr(leaf, path->slots[0],
7046 struct btrfs_file_extent_item);
7047 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7048 if (found_key.objectid != objectid ||
7049 found_key.type != BTRFS_EXTENT_DATA_KEY) {
7050 /*
7051 * If we backup past the first extent we want to move forward
7052 * and see if there is an extent in front of us, otherwise we'll
7053 * say there is a hole for our whole search range which can
7054 * cause problems.
7055 */
7056 extent_end = start;
7057 goto next;
7058 }
7059
7060 extent_type = btrfs_file_extent_type(leaf, item);
7061 extent_start = found_key.offset;
7062 extent_end = btrfs_file_extent_end(path);
7063 if (extent_type == BTRFS_FILE_EXTENT_REG ||
7064 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
7065 /* Only regular file could have regular/prealloc extent */
7066 if (!S_ISREG(inode->vfs_inode.i_mode)) {
7067 ret = -EUCLEAN;
7068 btrfs_crit(fs_info,
7069 "regular/prealloc extent found for non-regular inode %llu",
7070 btrfs_ino(inode));
7071 goto out;
7072 }
7073 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
7074 extent_start);
7075 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
7076 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
7077 path->slots[0],
7078 extent_start);
7079 }
7080 next:
7081 if (start >= extent_end) {
7082 path->slots[0]++;
7083 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
7084 ret = btrfs_next_leaf(root, path);
7085 if (ret < 0)
7086 goto out;
7087 else if (ret > 0)
7088 goto not_found;
7089
7090 leaf = path->nodes[0];
7091 }
7092 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7093 if (found_key.objectid != objectid ||
7094 found_key.type != BTRFS_EXTENT_DATA_KEY)
7095 goto not_found;
7096 if (start + len <= found_key.offset)
7097 goto not_found;
7098 if (start > found_key.offset)
7099 goto next;
7100
7101 /* New extent overlaps with existing one */
7102 em->start = start;
7103 em->len = found_key.offset - start;
7104 em->disk_bytenr = EXTENT_MAP_HOLE;
7105 goto insert;
7106 }
7107
7108 btrfs_extent_item_to_extent_map(inode, path, item, em);
7109
7110 if (extent_type == BTRFS_FILE_EXTENT_REG ||
7111 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
7112 goto insert;
7113 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
7114 /*
7115 * Inline extent can only exist at file offset 0. This is
7116 * ensured by tree-checker and inline extent creation path.
7117 * Thus all members representing file offsets should be zero.
7118 */
7119 ASSERT(extent_start == 0);
7120 ASSERT(em->start == 0);
7121
7122 /*
7123 * btrfs_extent_item_to_extent_map() should have properly
7124 * initialized em members already.
7125 *
7126 * Other members are not utilized for inline extents.
7127 */
7128 ASSERT(em->disk_bytenr == EXTENT_MAP_INLINE);
7129 ASSERT(em->len == fs_info->sectorsize);
7130
7131 ret = read_inline_extent(path, folio);
7132 if (ret < 0)
7133 goto out;
7134 goto insert;
7135 }
7136 not_found:
7137 em->start = start;
7138 em->len = len;
7139 em->disk_bytenr = EXTENT_MAP_HOLE;
7140 insert:
7141 ret = 0;
7142 btrfs_release_path(path);
7143 if (em->start > start || btrfs_extent_map_end(em) <= start) {
7144 btrfs_err(fs_info,
7145 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7146 em->start, em->len, start, len);
7147 ret = -EIO;
7148 goto out;
7149 }
7150
7151 write_lock(&em_tree->lock);
7152 ret = btrfs_add_extent_mapping(inode, &em, start, len);
7153 write_unlock(&em_tree->lock);
7154 out:
7155 btrfs_free_path(path);
7156
7157 trace_btrfs_get_extent(root, inode, em);
7158
7159 if (ret) {
7160 btrfs_free_extent_map(em);
7161 return ERR_PTR(ret);
7162 }
7163 return em;
7164 }
7165
btrfs_extent_readonly(struct btrfs_fs_info * fs_info,u64 bytenr)7166 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
7167 {
7168 struct btrfs_block_group *block_group;
7169 bool readonly = false;
7170
7171 block_group = btrfs_lookup_block_group(fs_info, bytenr);
7172 if (!block_group || block_group->ro)
7173 readonly = true;
7174 if (block_group)
7175 btrfs_put_block_group(block_group);
7176 return readonly;
7177 }
7178
7179 /*
7180 * Check if we can do nocow write into the range [@offset, @offset + @len)
7181 *
7182 * @offset: File offset
7183 * @len: The length to write, will be updated to the nocow writeable
7184 * range
7185 * @orig_start: (optional) Return the original file offset of the file extent
7186 * @orig_len: (optional) Return the original on-disk length of the file extent
7187 * @ram_bytes: (optional) Return the ram_bytes of the file extent
7188 *
7189 * Return:
7190 * >0 and update @len if we can do nocow write
7191 * 0 if we can't do nocow write
7192 * <0 if error happened
7193 *
7194 * NOTE: This only checks the file extents, caller is responsible to wait for
7195 * any ordered extents.
7196 */
can_nocow_extent(struct btrfs_inode * inode,u64 offset,u64 * len,struct btrfs_file_extent * file_extent,bool nowait)7197 noinline int can_nocow_extent(struct btrfs_inode *inode, u64 offset, u64 *len,
7198 struct btrfs_file_extent *file_extent,
7199 bool nowait)
7200 {
7201 struct btrfs_root *root = inode->root;
7202 struct btrfs_fs_info *fs_info = root->fs_info;
7203 struct can_nocow_file_extent_args nocow_args = { 0 };
7204 BTRFS_PATH_AUTO_FREE(path);
7205 int ret;
7206 struct extent_buffer *leaf;
7207 struct extent_io_tree *io_tree = &inode->io_tree;
7208 struct btrfs_file_extent_item *fi;
7209 struct btrfs_key key;
7210 int found_type;
7211
7212 path = btrfs_alloc_path();
7213 if (!path)
7214 return -ENOMEM;
7215 path->nowait = nowait;
7216
7217 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
7218 offset, 0);
7219 if (ret < 0)
7220 return ret;
7221
7222 if (ret == 1) {
7223 if (path->slots[0] == 0) {
7224 /* Can't find the item, must COW. */
7225 return 0;
7226 }
7227 path->slots[0]--;
7228 }
7229 ret = 0;
7230 leaf = path->nodes[0];
7231 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
7232 if (key.objectid != btrfs_ino(inode) ||
7233 key.type != BTRFS_EXTENT_DATA_KEY) {
7234 /* Not our file or wrong item type, must COW. */
7235 return 0;
7236 }
7237
7238 if (key.offset > offset) {
7239 /* Wrong offset, must COW. */
7240 return 0;
7241 }
7242
7243 if (btrfs_file_extent_end(path) <= offset)
7244 return 0;
7245
7246 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
7247 found_type = btrfs_file_extent_type(leaf, fi);
7248
7249 nocow_args.start = offset;
7250 nocow_args.end = offset + *len - 1;
7251 nocow_args.free_path = true;
7252
7253 ret = can_nocow_file_extent(path, &key, inode, &nocow_args);
7254 /* can_nocow_file_extent() has freed the path. */
7255 path = NULL;
7256
7257 if (ret != 1) {
7258 /* Treat errors as not being able to NOCOW. */
7259 return 0;
7260 }
7261
7262 if (btrfs_extent_readonly(fs_info,
7263 nocow_args.file_extent.disk_bytenr +
7264 nocow_args.file_extent.offset))
7265 return 0;
7266
7267 if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
7268 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7269 u64 range_end;
7270
7271 range_end = round_up(offset + nocow_args.file_extent.num_bytes,
7272 root->fs_info->sectorsize) - 1;
7273 ret = btrfs_test_range_bit_exists(io_tree, offset, range_end,
7274 EXTENT_DELALLOC);
7275 if (ret)
7276 return -EAGAIN;
7277 }
7278
7279 if (file_extent)
7280 memcpy(file_extent, &nocow_args.file_extent, sizeof(*file_extent));
7281
7282 *len = nocow_args.file_extent.num_bytes;
7283
7284 return 1;
7285 }
7286
7287 /* The callers of this must take lock_extent() */
btrfs_create_io_em(struct btrfs_inode * inode,u64 start,const struct btrfs_file_extent * file_extent,int type)7288 struct extent_map *btrfs_create_io_em(struct btrfs_inode *inode, u64 start,
7289 const struct btrfs_file_extent *file_extent,
7290 int type)
7291 {
7292 struct extent_map *em;
7293 int ret;
7294
7295 /*
7296 * Note the missing NOCOW type.
7297 *
7298 * For pure NOCOW writes, we should not create an io extent map, but
7299 * just reusing the existing one.
7300 * Only PREALLOC writes (NOCOW write into preallocated range) can
7301 * create an io extent map.
7302 */
7303 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7304 type == BTRFS_ORDERED_COMPRESSED ||
7305 type == BTRFS_ORDERED_REGULAR);
7306
7307 switch (type) {
7308 case BTRFS_ORDERED_PREALLOC:
7309 /* We're only referring part of a larger preallocated extent. */
7310 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes);
7311 break;
7312 case BTRFS_ORDERED_REGULAR:
7313 /* COW results a new extent matching our file extent size. */
7314 ASSERT(file_extent->disk_num_bytes == file_extent->num_bytes);
7315 ASSERT(file_extent->ram_bytes == file_extent->num_bytes);
7316
7317 /* Since it's a new extent, we should not have any offset. */
7318 ASSERT(file_extent->offset == 0);
7319 break;
7320 case BTRFS_ORDERED_COMPRESSED:
7321 /* Must be compressed. */
7322 ASSERT(file_extent->compression != BTRFS_COMPRESS_NONE);
7323
7324 /*
7325 * Encoded write can make us to refer to part of the
7326 * uncompressed extent.
7327 */
7328 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes);
7329 break;
7330 }
7331
7332 em = btrfs_alloc_extent_map();
7333 if (!em)
7334 return ERR_PTR(-ENOMEM);
7335
7336 em->start = start;
7337 em->len = file_extent->num_bytes;
7338 em->disk_bytenr = file_extent->disk_bytenr;
7339 em->disk_num_bytes = file_extent->disk_num_bytes;
7340 em->ram_bytes = file_extent->ram_bytes;
7341 em->generation = -1;
7342 em->offset = file_extent->offset;
7343 em->flags |= EXTENT_FLAG_PINNED;
7344 if (type == BTRFS_ORDERED_COMPRESSED)
7345 btrfs_extent_map_set_compression(em, file_extent->compression);
7346
7347 ret = btrfs_replace_extent_map_range(inode, em, true);
7348 if (ret) {
7349 btrfs_free_extent_map(em);
7350 return ERR_PTR(ret);
7351 }
7352
7353 /* em got 2 refs now, callers needs to do btrfs_free_extent_map once. */
7354 return em;
7355 }
7356
7357 /*
7358 * For release_folio() and invalidate_folio() we have a race window where
7359 * folio_end_writeback() is called but the subpage spinlock is not yet released.
7360 * If we continue to release/invalidate the page, we could cause use-after-free
7361 * for subpage spinlock. So this function is to spin and wait for subpage
7362 * spinlock.
7363 */
wait_subpage_spinlock(struct folio * folio)7364 static void wait_subpage_spinlock(struct folio *folio)
7365 {
7366 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
7367 struct btrfs_subpage *subpage;
7368
7369 if (!btrfs_is_subpage(fs_info, folio))
7370 return;
7371
7372 ASSERT(folio_test_private(folio) && folio_get_private(folio));
7373 subpage = folio_get_private(folio);
7374
7375 /*
7376 * This may look insane as we just acquire the spinlock and release it,
7377 * without doing anything. But we just want to make sure no one is
7378 * still holding the subpage spinlock.
7379 * And since the page is not dirty nor writeback, and we have page
7380 * locked, the only possible way to hold a spinlock is from the endio
7381 * function to clear page writeback.
7382 *
7383 * Here we just acquire the spinlock so that all existing callers
7384 * should exit and we're safe to release/invalidate the page.
7385 */
7386 spin_lock_irq(&subpage->lock);
7387 spin_unlock_irq(&subpage->lock);
7388 }
7389
btrfs_launder_folio(struct folio * folio)7390 static int btrfs_launder_folio(struct folio *folio)
7391 {
7392 return btrfs_qgroup_free_data(folio_to_inode(folio), NULL, folio_pos(folio),
7393 folio_size(folio), NULL);
7394 }
7395
__btrfs_release_folio(struct folio * folio,gfp_t gfp_flags)7396 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7397 {
7398 if (try_release_extent_mapping(folio, gfp_flags)) {
7399 wait_subpage_spinlock(folio);
7400 clear_folio_extent_mapped(folio);
7401 return true;
7402 }
7403 return false;
7404 }
7405
btrfs_release_folio(struct folio * folio,gfp_t gfp_flags)7406 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7407 {
7408 if (folio_test_writeback(folio) || folio_test_dirty(folio))
7409 return false;
7410 return __btrfs_release_folio(folio, gfp_flags);
7411 }
7412
7413 #ifdef CONFIG_MIGRATION
btrfs_migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode)7414 static int btrfs_migrate_folio(struct address_space *mapping,
7415 struct folio *dst, struct folio *src,
7416 enum migrate_mode mode)
7417 {
7418 int ret = filemap_migrate_folio(mapping, dst, src, mode);
7419
7420 if (ret != MIGRATEPAGE_SUCCESS)
7421 return ret;
7422
7423 if (folio_test_ordered(src)) {
7424 folio_clear_ordered(src);
7425 folio_set_ordered(dst);
7426 }
7427
7428 return MIGRATEPAGE_SUCCESS;
7429 }
7430 #else
7431 #define btrfs_migrate_folio NULL
7432 #endif
7433
btrfs_invalidate_folio(struct folio * folio,size_t offset,size_t length)7434 static void btrfs_invalidate_folio(struct folio *folio, size_t offset,
7435 size_t length)
7436 {
7437 struct btrfs_inode *inode = folio_to_inode(folio);
7438 struct btrfs_fs_info *fs_info = inode->root->fs_info;
7439 struct extent_io_tree *tree = &inode->io_tree;
7440 struct extent_state *cached_state = NULL;
7441 u64 page_start = folio_pos(folio);
7442 u64 page_end = page_start + folio_size(folio) - 1;
7443 u64 cur;
7444 int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
7445
7446 /*
7447 * We have folio locked so no new ordered extent can be created on this
7448 * page, nor bio can be submitted for this folio.
7449 *
7450 * But already submitted bio can still be finished on this folio.
7451 * Furthermore, endio function won't skip folio which has Ordered
7452 * already cleared, so it's possible for endio and
7453 * invalidate_folio to do the same ordered extent accounting twice
7454 * on one folio.
7455 *
7456 * So here we wait for any submitted bios to finish, so that we won't
7457 * do double ordered extent accounting on the same folio.
7458 */
7459 folio_wait_writeback(folio);
7460 wait_subpage_spinlock(folio);
7461
7462 /*
7463 * For subpage case, we have call sites like
7464 * btrfs_punch_hole_lock_range() which passes range not aligned to
7465 * sectorsize.
7466 * If the range doesn't cover the full folio, we don't need to and
7467 * shouldn't clear page extent mapped, as folio->private can still
7468 * record subpage dirty bits for other part of the range.
7469 *
7470 * For cases that invalidate the full folio even the range doesn't
7471 * cover the full folio, like invalidating the last folio, we're
7472 * still safe to wait for ordered extent to finish.
7473 */
7474 if (!(offset == 0 && length == folio_size(folio))) {
7475 btrfs_release_folio(folio, GFP_NOFS);
7476 return;
7477 }
7478
7479 if (!inode_evicting)
7480 btrfs_lock_extent(tree, page_start, page_end, &cached_state);
7481
7482 cur = page_start;
7483 while (cur < page_end) {
7484 struct btrfs_ordered_extent *ordered;
7485 u64 range_end;
7486 u32 range_len;
7487 u32 extra_flags = 0;
7488
7489 ordered = btrfs_lookup_first_ordered_range(inode, cur,
7490 page_end + 1 - cur);
7491 if (!ordered) {
7492 range_end = page_end;
7493 /*
7494 * No ordered extent covering this range, we are safe
7495 * to delete all extent states in the range.
7496 */
7497 extra_flags = EXTENT_CLEAR_ALL_BITS;
7498 goto next;
7499 }
7500 if (ordered->file_offset > cur) {
7501 /*
7502 * There is a range between [cur, oe->file_offset) not
7503 * covered by any ordered extent.
7504 * We are safe to delete all extent states, and handle
7505 * the ordered extent in the next iteration.
7506 */
7507 range_end = ordered->file_offset - 1;
7508 extra_flags = EXTENT_CLEAR_ALL_BITS;
7509 goto next;
7510 }
7511
7512 range_end = min(ordered->file_offset + ordered->num_bytes - 1,
7513 page_end);
7514 ASSERT(range_end + 1 - cur < U32_MAX);
7515 range_len = range_end + 1 - cur;
7516 if (!btrfs_folio_test_ordered(fs_info, folio, cur, range_len)) {
7517 /*
7518 * If Ordered is cleared, it means endio has
7519 * already been executed for the range.
7520 * We can't delete the extent states as
7521 * btrfs_finish_ordered_io() may still use some of them.
7522 */
7523 goto next;
7524 }
7525 btrfs_folio_clear_ordered(fs_info, folio, cur, range_len);
7526
7527 /*
7528 * IO on this page will never be started, so we need to account
7529 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
7530 * here, must leave that up for the ordered extent completion.
7531 *
7532 * This will also unlock the range for incoming
7533 * btrfs_finish_ordered_io().
7534 */
7535 if (!inode_evicting)
7536 btrfs_clear_extent_bit(tree, cur, range_end,
7537 EXTENT_DELALLOC |
7538 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
7539 EXTENT_DEFRAG, &cached_state);
7540
7541 spin_lock_irq(&inode->ordered_tree_lock);
7542 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
7543 ordered->truncated_len = min(ordered->truncated_len,
7544 cur - ordered->file_offset);
7545 spin_unlock_irq(&inode->ordered_tree_lock);
7546
7547 /*
7548 * If the ordered extent has finished, we're safe to delete all
7549 * the extent states of the range, otherwise
7550 * btrfs_finish_ordered_io() will get executed by endio for
7551 * other pages, so we can't delete extent states.
7552 */
7553 if (btrfs_dec_test_ordered_pending(inode, &ordered,
7554 cur, range_end + 1 - cur)) {
7555 btrfs_finish_ordered_io(ordered);
7556 /*
7557 * The ordered extent has finished, now we're again
7558 * safe to delete all extent states of the range.
7559 */
7560 extra_flags = EXTENT_CLEAR_ALL_BITS;
7561 }
7562 next:
7563 if (ordered)
7564 btrfs_put_ordered_extent(ordered);
7565 /*
7566 * Qgroup reserved space handler
7567 * Sector(s) here will be either:
7568 *
7569 * 1) Already written to disk or bio already finished
7570 * Then its QGROUP_RESERVED bit in io_tree is already cleared.
7571 * Qgroup will be handled by its qgroup_record then.
7572 * btrfs_qgroup_free_data() call will do nothing here.
7573 *
7574 * 2) Not written to disk yet
7575 * Then btrfs_qgroup_free_data() call will clear the
7576 * QGROUP_RESERVED bit of its io_tree, and free the qgroup
7577 * reserved data space.
7578 * Since the IO will never happen for this page.
7579 */
7580 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur, NULL);
7581 if (!inode_evicting)
7582 btrfs_clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED |
7583 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
7584 EXTENT_DEFRAG | extra_flags,
7585 &cached_state);
7586 cur = range_end + 1;
7587 }
7588 /*
7589 * We have iterated through all ordered extents of the page, the page
7590 * should not have Ordered anymore, or the above iteration
7591 * did something wrong.
7592 */
7593 ASSERT(!folio_test_ordered(folio));
7594 btrfs_folio_clear_checked(fs_info, folio, folio_pos(folio), folio_size(folio));
7595 if (!inode_evicting)
7596 __btrfs_release_folio(folio, GFP_NOFS);
7597 clear_folio_extent_mapped(folio);
7598 }
7599
btrfs_truncate(struct btrfs_inode * inode,bool skip_writeback)7600 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback)
7601 {
7602 struct btrfs_truncate_control control = {
7603 .inode = inode,
7604 .ino = btrfs_ino(inode),
7605 .min_type = BTRFS_EXTENT_DATA_KEY,
7606 .clear_extent_range = true,
7607 };
7608 struct btrfs_root *root = inode->root;
7609 struct btrfs_fs_info *fs_info = root->fs_info;
7610 struct btrfs_block_rsv *rsv;
7611 int ret;
7612 struct btrfs_trans_handle *trans;
7613 u64 mask = fs_info->sectorsize - 1;
7614 const u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
7615
7616 if (!skip_writeback) {
7617 ret = btrfs_wait_ordered_range(inode,
7618 inode->vfs_inode.i_size & (~mask),
7619 (u64)-1);
7620 if (ret)
7621 return ret;
7622 }
7623
7624 /*
7625 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
7626 * things going on here:
7627 *
7628 * 1) We need to reserve space to update our inode.
7629 *
7630 * 2) We need to have something to cache all the space that is going to
7631 * be free'd up by the truncate operation, but also have some slack
7632 * space reserved in case it uses space during the truncate (thank you
7633 * very much snapshotting).
7634 *
7635 * And we need these to be separate. The fact is we can use a lot of
7636 * space doing the truncate, and we have no earthly idea how much space
7637 * we will use, so we need the truncate reservation to be separate so it
7638 * doesn't end up using space reserved for updating the inode. We also
7639 * need to be able to stop the transaction and start a new one, which
7640 * means we need to be able to update the inode several times, and we
7641 * have no idea of knowing how many times that will be, so we can't just
7642 * reserve 1 item for the entirety of the operation, so that has to be
7643 * done separately as well.
7644 *
7645 * So that leaves us with
7646 *
7647 * 1) rsv - for the truncate reservation, which we will steal from the
7648 * transaction reservation.
7649 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
7650 * updating the inode.
7651 */
7652 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
7653 if (!rsv)
7654 return -ENOMEM;
7655 rsv->size = min_size;
7656 rsv->failfast = true;
7657
7658 /*
7659 * 1 for the truncate slack space
7660 * 1 for updating the inode.
7661 */
7662 trans = btrfs_start_transaction(root, 2);
7663 if (IS_ERR(trans)) {
7664 ret = PTR_ERR(trans);
7665 goto out;
7666 }
7667
7668 /* Migrate the slack space for the truncate to our reserve */
7669 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
7670 min_size, false);
7671 /*
7672 * We have reserved 2 metadata units when we started the transaction and
7673 * min_size matches 1 unit, so this should never fail, but if it does,
7674 * it's not critical we just fail truncation.
7675 */
7676 if (WARN_ON(ret)) {
7677 btrfs_end_transaction(trans);
7678 goto out;
7679 }
7680
7681 trans->block_rsv = rsv;
7682
7683 while (1) {
7684 struct extent_state *cached_state = NULL;
7685 const u64 new_size = inode->vfs_inode.i_size;
7686 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
7687
7688 control.new_size = new_size;
7689 btrfs_lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
7690 /*
7691 * We want to drop from the next block forward in case this new
7692 * size is not block aligned since we will be keeping the last
7693 * block of the extent just the way it is.
7694 */
7695 btrfs_drop_extent_map_range(inode,
7696 ALIGN(new_size, fs_info->sectorsize),
7697 (u64)-1, false);
7698
7699 ret = btrfs_truncate_inode_items(trans, root, &control);
7700
7701 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
7702 btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
7703
7704 btrfs_unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
7705
7706 trans->block_rsv = &fs_info->trans_block_rsv;
7707 if (ret != -ENOSPC && ret != -EAGAIN)
7708 break;
7709
7710 ret = btrfs_update_inode(trans, inode);
7711 if (ret)
7712 break;
7713
7714 btrfs_end_transaction(trans);
7715 btrfs_btree_balance_dirty(fs_info);
7716
7717 trans = btrfs_start_transaction(root, 2);
7718 if (IS_ERR(trans)) {
7719 ret = PTR_ERR(trans);
7720 trans = NULL;
7721 break;
7722 }
7723
7724 btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
7725 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
7726 rsv, min_size, false);
7727 /*
7728 * We have reserved 2 metadata units when we started the
7729 * transaction and min_size matches 1 unit, so this should never
7730 * fail, but if it does, it's not critical we just fail truncation.
7731 */
7732 if (WARN_ON(ret))
7733 break;
7734
7735 trans->block_rsv = rsv;
7736 }
7737
7738 /*
7739 * We can't call btrfs_truncate_block inside a trans handle as we could
7740 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we
7741 * know we've truncated everything except the last little bit, and can
7742 * do btrfs_truncate_block and then update the disk_i_size.
7743 */
7744 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) {
7745 btrfs_end_transaction(trans);
7746 btrfs_btree_balance_dirty(fs_info);
7747
7748 ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size,
7749 inode->vfs_inode.i_size, (u64)-1);
7750 if (ret)
7751 goto out;
7752 trans = btrfs_start_transaction(root, 1);
7753 if (IS_ERR(trans)) {
7754 ret = PTR_ERR(trans);
7755 goto out;
7756 }
7757 btrfs_inode_safe_disk_i_size_write(inode, 0);
7758 }
7759
7760 if (trans) {
7761 int ret2;
7762
7763 trans->block_rsv = &fs_info->trans_block_rsv;
7764 ret2 = btrfs_update_inode(trans, inode);
7765 if (ret2 && !ret)
7766 ret = ret2;
7767
7768 ret2 = btrfs_end_transaction(trans);
7769 if (ret2 && !ret)
7770 ret = ret2;
7771 btrfs_btree_balance_dirty(fs_info);
7772 }
7773 out:
7774 btrfs_free_block_rsv(fs_info, rsv);
7775 /*
7776 * So if we truncate and then write and fsync we normally would just
7777 * write the extents that changed, which is a problem if we need to
7778 * first truncate that entire inode. So set this flag so we write out
7779 * all of the extents in the inode to the sync log so we're completely
7780 * safe.
7781 *
7782 * If no extents were dropped or trimmed we don't need to force the next
7783 * fsync to truncate all the inode's items from the log and re-log them
7784 * all. This means the truncate operation did not change the file size,
7785 * or changed it to a smaller size but there was only an implicit hole
7786 * between the old i_size and the new i_size, and there were no prealloc
7787 * extents beyond i_size to drop.
7788 */
7789 if (control.extents_found > 0)
7790 btrfs_set_inode_full_sync(inode);
7791
7792 return ret;
7793 }
7794
btrfs_new_subvol_inode(struct mnt_idmap * idmap,struct inode * dir)7795 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap,
7796 struct inode *dir)
7797 {
7798 struct inode *inode;
7799
7800 inode = new_inode(dir->i_sb);
7801 if (inode) {
7802 /*
7803 * Subvolumes don't inherit the sgid bit or the parent's gid if
7804 * the parent's sgid bit is set. This is probably a bug.
7805 */
7806 inode_init_owner(idmap, inode, NULL,
7807 S_IFDIR | (~current_umask() & S_IRWXUGO));
7808 inode->i_op = &btrfs_dir_inode_operations;
7809 inode->i_fop = &btrfs_dir_file_operations;
7810 }
7811 return inode;
7812 }
7813
btrfs_alloc_inode(struct super_block * sb)7814 struct inode *btrfs_alloc_inode(struct super_block *sb)
7815 {
7816 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
7817 struct btrfs_inode *ei;
7818 struct inode *inode;
7819
7820 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL);
7821 if (!ei)
7822 return NULL;
7823
7824 ei->root = NULL;
7825 ei->generation = 0;
7826 ei->last_trans = 0;
7827 ei->last_sub_trans = 0;
7828 ei->logged_trans = 0;
7829 ei->delalloc_bytes = 0;
7830 ei->new_delalloc_bytes = 0;
7831 ei->defrag_bytes = 0;
7832 ei->disk_i_size = 0;
7833 ei->flags = 0;
7834 ei->ro_flags = 0;
7835 /*
7836 * ->index_cnt will be properly initialized later when creating a new
7837 * inode (btrfs_create_new_inode()) or when reading an existing inode
7838 * from disk (btrfs_read_locked_inode()).
7839 */
7840 ei->csum_bytes = 0;
7841 ei->dir_index = 0;
7842 ei->last_unlink_trans = 0;
7843 ei->last_reflink_trans = 0;
7844 ei->last_log_commit = 0;
7845
7846 spin_lock_init(&ei->lock);
7847 ei->outstanding_extents = 0;
7848 if (sb->s_magic != BTRFS_TEST_MAGIC)
7849 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
7850 BTRFS_BLOCK_RSV_DELALLOC);
7851 ei->runtime_flags = 0;
7852 ei->prop_compress = BTRFS_COMPRESS_NONE;
7853 ei->defrag_compress = BTRFS_COMPRESS_NONE;
7854
7855 ei->delayed_node = NULL;
7856
7857 ei->i_otime_sec = 0;
7858 ei->i_otime_nsec = 0;
7859
7860 inode = &ei->vfs_inode;
7861 btrfs_extent_map_tree_init(&ei->extent_tree);
7862
7863 /* This io tree sets the valid inode. */
7864 btrfs_extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO);
7865 ei->io_tree.inode = ei;
7866
7867 ei->file_extent_tree = NULL;
7868
7869 mutex_init(&ei->log_mutex);
7870 spin_lock_init(&ei->ordered_tree_lock);
7871 ei->ordered_tree = RB_ROOT;
7872 ei->ordered_tree_last = NULL;
7873 INIT_LIST_HEAD(&ei->delalloc_inodes);
7874 INIT_LIST_HEAD(&ei->delayed_iput);
7875 init_rwsem(&ei->i_mmap_lock);
7876
7877 return inode;
7878 }
7879
7880 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
btrfs_test_destroy_inode(struct inode * inode)7881 void btrfs_test_destroy_inode(struct inode *inode)
7882 {
7883 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
7884 kfree(BTRFS_I(inode)->file_extent_tree);
7885 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7886 }
7887 #endif
7888
btrfs_free_inode(struct inode * inode)7889 void btrfs_free_inode(struct inode *inode)
7890 {
7891 kfree(BTRFS_I(inode)->file_extent_tree);
7892 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7893 }
7894
btrfs_destroy_inode(struct inode * vfs_inode)7895 void btrfs_destroy_inode(struct inode *vfs_inode)
7896 {
7897 struct btrfs_ordered_extent *ordered;
7898 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
7899 struct btrfs_root *root = inode->root;
7900 bool freespace_inode;
7901
7902 WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
7903 WARN_ON(vfs_inode->i_data.nrpages);
7904 WARN_ON(inode->block_rsv.reserved);
7905 WARN_ON(inode->block_rsv.size);
7906 WARN_ON(inode->outstanding_extents);
7907 if (!S_ISDIR(vfs_inode->i_mode)) {
7908 WARN_ON(inode->delalloc_bytes);
7909 WARN_ON(inode->new_delalloc_bytes);
7910 WARN_ON(inode->csum_bytes);
7911 }
7912 if (!root || !btrfs_is_data_reloc_root(root))
7913 WARN_ON(inode->defrag_bytes);
7914
7915 /*
7916 * This can happen where we create an inode, but somebody else also
7917 * created the same inode and we need to destroy the one we already
7918 * created.
7919 */
7920 if (!root)
7921 return;
7922
7923 /*
7924 * If this is a free space inode do not take the ordered extents lockdep
7925 * map.
7926 */
7927 freespace_inode = btrfs_is_free_space_inode(inode);
7928
7929 while (1) {
7930 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7931 if (!ordered)
7932 break;
7933 else {
7934 btrfs_err(root->fs_info,
7935 "found ordered extent %llu %llu on inode cleanup",
7936 ordered->file_offset, ordered->num_bytes);
7937
7938 if (!freespace_inode)
7939 btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent);
7940
7941 btrfs_remove_ordered_extent(inode, ordered);
7942 btrfs_put_ordered_extent(ordered);
7943 btrfs_put_ordered_extent(ordered);
7944 }
7945 }
7946 btrfs_qgroup_check_reserved_leak(inode);
7947 btrfs_del_inode_from_root(inode);
7948 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
7949 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
7950 btrfs_put_root(inode->root);
7951 }
7952
btrfs_drop_inode(struct inode * inode)7953 int btrfs_drop_inode(struct inode *inode)
7954 {
7955 struct btrfs_root *root = BTRFS_I(inode)->root;
7956
7957 if (root == NULL)
7958 return 1;
7959
7960 /* the snap/subvol tree is on deleting */
7961 if (btrfs_root_refs(&root->root_item) == 0)
7962 return 1;
7963 else
7964 return generic_drop_inode(inode);
7965 }
7966
init_once(void * foo)7967 static void init_once(void *foo)
7968 {
7969 struct btrfs_inode *ei = foo;
7970
7971 inode_init_once(&ei->vfs_inode);
7972 }
7973
btrfs_destroy_cachep(void)7974 void __cold btrfs_destroy_cachep(void)
7975 {
7976 /*
7977 * Make sure all delayed rcu free inodes are flushed before we
7978 * destroy cache.
7979 */
7980 rcu_barrier();
7981 kmem_cache_destroy(btrfs_inode_cachep);
7982 }
7983
btrfs_init_cachep(void)7984 int __init btrfs_init_cachep(void)
7985 {
7986 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
7987 sizeof(struct btrfs_inode), 0,
7988 SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT,
7989 init_once);
7990 if (!btrfs_inode_cachep)
7991 return -ENOMEM;
7992
7993 return 0;
7994 }
7995
btrfs_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int flags)7996 static int btrfs_getattr(struct mnt_idmap *idmap,
7997 const struct path *path, struct kstat *stat,
7998 u32 request_mask, unsigned int flags)
7999 {
8000 u64 delalloc_bytes;
8001 u64 inode_bytes;
8002 struct inode *inode = d_inode(path->dentry);
8003 u32 blocksize = btrfs_sb(inode->i_sb)->sectorsize;
8004 u32 bi_flags = BTRFS_I(inode)->flags;
8005 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
8006
8007 stat->result_mask |= STATX_BTIME;
8008 stat->btime.tv_sec = BTRFS_I(inode)->i_otime_sec;
8009 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime_nsec;
8010 if (bi_flags & BTRFS_INODE_APPEND)
8011 stat->attributes |= STATX_ATTR_APPEND;
8012 if (bi_flags & BTRFS_INODE_COMPRESS)
8013 stat->attributes |= STATX_ATTR_COMPRESSED;
8014 if (bi_flags & BTRFS_INODE_IMMUTABLE)
8015 stat->attributes |= STATX_ATTR_IMMUTABLE;
8016 if (bi_flags & BTRFS_INODE_NODUMP)
8017 stat->attributes |= STATX_ATTR_NODUMP;
8018 if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
8019 stat->attributes |= STATX_ATTR_VERITY;
8020
8021 stat->attributes_mask |= (STATX_ATTR_APPEND |
8022 STATX_ATTR_COMPRESSED |
8023 STATX_ATTR_IMMUTABLE |
8024 STATX_ATTR_NODUMP);
8025
8026 generic_fillattr(idmap, request_mask, inode, stat);
8027 stat->dev = BTRFS_I(inode)->root->anon_dev;
8028
8029 stat->subvol = BTRFS_I(inode)->root->root_key.objectid;
8030 stat->result_mask |= STATX_SUBVOL;
8031
8032 spin_lock(&BTRFS_I(inode)->lock);
8033 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
8034 inode_bytes = inode_get_bytes(inode);
8035 spin_unlock(&BTRFS_I(inode)->lock);
8036 stat->blocks = (ALIGN(inode_bytes, blocksize) +
8037 ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT;
8038 return 0;
8039 }
8040
btrfs_rename_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)8041 static int btrfs_rename_exchange(struct inode *old_dir,
8042 struct dentry *old_dentry,
8043 struct inode *new_dir,
8044 struct dentry *new_dentry)
8045 {
8046 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir);
8047 struct btrfs_trans_handle *trans;
8048 unsigned int trans_num_items;
8049 struct btrfs_root *root = BTRFS_I(old_dir)->root;
8050 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8051 struct inode *new_inode = new_dentry->d_inode;
8052 struct inode *old_inode = old_dentry->d_inode;
8053 struct btrfs_rename_ctx old_rename_ctx;
8054 struct btrfs_rename_ctx new_rename_ctx;
8055 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8056 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
8057 u64 old_idx = 0;
8058 u64 new_idx = 0;
8059 int ret;
8060 int ret2;
8061 bool need_abort = false;
8062 bool logs_pinned = false;
8063 struct fscrypt_name old_fname, new_fname;
8064 struct fscrypt_str *old_name, *new_name;
8065
8066 /*
8067 * For non-subvolumes allow exchange only within one subvolume, in the
8068 * same inode namespace. Two subvolumes (represented as directory) can
8069 * be exchanged as they're a logical link and have a fixed inode number.
8070 */
8071 if (root != dest &&
8072 (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
8073 new_ino != BTRFS_FIRST_FREE_OBJECTID))
8074 return -EXDEV;
8075
8076 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
8077 if (ret)
8078 return ret;
8079
8080 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
8081 if (ret) {
8082 fscrypt_free_filename(&old_fname);
8083 return ret;
8084 }
8085
8086 old_name = &old_fname.disk_name;
8087 new_name = &new_fname.disk_name;
8088
8089 /* close the race window with snapshot create/destroy ioctl */
8090 if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
8091 new_ino == BTRFS_FIRST_FREE_OBJECTID)
8092 down_read(&fs_info->subvol_sem);
8093
8094 /*
8095 * For each inode:
8096 * 1 to remove old dir item
8097 * 1 to remove old dir index
8098 * 1 to add new dir item
8099 * 1 to add new dir index
8100 * 1 to update parent inode
8101 *
8102 * If the parents are the same, we only need to account for one
8103 */
8104 trans_num_items = (old_dir == new_dir ? 9 : 10);
8105 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8106 /*
8107 * 1 to remove old root ref
8108 * 1 to remove old root backref
8109 * 1 to add new root ref
8110 * 1 to add new root backref
8111 */
8112 trans_num_items += 4;
8113 } else {
8114 /*
8115 * 1 to update inode item
8116 * 1 to remove old inode ref
8117 * 1 to add new inode ref
8118 */
8119 trans_num_items += 3;
8120 }
8121 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
8122 trans_num_items += 4;
8123 else
8124 trans_num_items += 3;
8125 trans = btrfs_start_transaction(root, trans_num_items);
8126 if (IS_ERR(trans)) {
8127 ret = PTR_ERR(trans);
8128 goto out_notrans;
8129 }
8130
8131 if (dest != root) {
8132 ret = btrfs_record_root_in_trans(trans, dest);
8133 if (ret)
8134 goto out_fail;
8135 }
8136
8137 /*
8138 * We need to find a free sequence number both in the source and
8139 * in the destination directory for the exchange.
8140 */
8141 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
8142 if (ret)
8143 goto out_fail;
8144 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
8145 if (ret)
8146 goto out_fail;
8147
8148 BTRFS_I(old_inode)->dir_index = 0ULL;
8149 BTRFS_I(new_inode)->dir_index = 0ULL;
8150
8151 /* Reference for the source. */
8152 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8153 /* force full log commit if subvolume involved. */
8154 btrfs_set_log_full_commit(trans);
8155 } else {
8156 ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino,
8157 btrfs_ino(BTRFS_I(new_dir)),
8158 old_idx);
8159 if (ret)
8160 goto out_fail;
8161 need_abort = true;
8162 }
8163
8164 /* And now for the dest. */
8165 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8166 /* force full log commit if subvolume involved. */
8167 btrfs_set_log_full_commit(trans);
8168 } else {
8169 ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino,
8170 btrfs_ino(BTRFS_I(old_dir)),
8171 new_idx);
8172 if (ret) {
8173 if (need_abort)
8174 btrfs_abort_transaction(trans, ret);
8175 goto out_fail;
8176 }
8177 }
8178
8179 /* Update inode version and ctime/mtime. */
8180 inode_inc_iversion(old_dir);
8181 inode_inc_iversion(new_dir);
8182 inode_inc_iversion(old_inode);
8183 inode_inc_iversion(new_inode);
8184 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
8185
8186 if (old_ino != BTRFS_FIRST_FREE_OBJECTID &&
8187 new_ino != BTRFS_FIRST_FREE_OBJECTID) {
8188 /*
8189 * If we are renaming in the same directory (and it's not for
8190 * root entries) pin the log early to prevent any concurrent
8191 * task from logging the directory after we removed the old
8192 * entries and before we add the new entries, otherwise that
8193 * task can sync a log without any entry for the inodes we are
8194 * renaming and therefore replaying that log, if a power failure
8195 * happens after syncing the log, would result in deleting the
8196 * inodes.
8197 *
8198 * If the rename affects two different directories, we want to
8199 * make sure the that there's no log commit that contains
8200 * updates for only one of the directories but not for the
8201 * other.
8202 *
8203 * If we are renaming an entry for a root, we don't care about
8204 * log updates since we called btrfs_set_log_full_commit().
8205 */
8206 btrfs_pin_log_trans(root);
8207 btrfs_pin_log_trans(dest);
8208 logs_pinned = true;
8209 }
8210
8211 if (old_dentry->d_parent != new_dentry->d_parent) {
8212 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8213 BTRFS_I(old_inode), true);
8214 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
8215 BTRFS_I(new_inode), true);
8216 }
8217
8218 /* src is a subvolume */
8219 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8220 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
8221 if (ret) {
8222 btrfs_abort_transaction(trans, ret);
8223 goto out_fail;
8224 }
8225 } else { /* src is an inode */
8226 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
8227 BTRFS_I(old_dentry->d_inode),
8228 old_name, &old_rename_ctx);
8229 if (ret) {
8230 btrfs_abort_transaction(trans, ret);
8231 goto out_fail;
8232 }
8233 ret = btrfs_update_inode(trans, BTRFS_I(old_inode));
8234 if (ret) {
8235 btrfs_abort_transaction(trans, ret);
8236 goto out_fail;
8237 }
8238 }
8239
8240 /* dest is a subvolume */
8241 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8242 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
8243 if (ret) {
8244 btrfs_abort_transaction(trans, ret);
8245 goto out_fail;
8246 }
8247 } else { /* dest is an inode */
8248 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir),
8249 BTRFS_I(new_dentry->d_inode),
8250 new_name, &new_rename_ctx);
8251 if (ret) {
8252 btrfs_abort_transaction(trans, ret);
8253 goto out_fail;
8254 }
8255 ret = btrfs_update_inode(trans, BTRFS_I(new_inode));
8256 if (ret) {
8257 btrfs_abort_transaction(trans, ret);
8258 goto out_fail;
8259 }
8260 }
8261
8262 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8263 new_name, 0, old_idx);
8264 if (ret) {
8265 btrfs_abort_transaction(trans, ret);
8266 goto out_fail;
8267 }
8268
8269 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
8270 old_name, 0, new_idx);
8271 if (ret) {
8272 btrfs_abort_transaction(trans, ret);
8273 goto out_fail;
8274 }
8275
8276 if (old_inode->i_nlink == 1)
8277 BTRFS_I(old_inode)->dir_index = old_idx;
8278 if (new_inode->i_nlink == 1)
8279 BTRFS_I(new_inode)->dir_index = new_idx;
8280
8281 /*
8282 * Do the log updates for all inodes.
8283 *
8284 * If either entry is for a root we don't need to update the logs since
8285 * we've called btrfs_set_log_full_commit() before.
8286 */
8287 if (logs_pinned) {
8288 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
8289 old_rename_ctx.index, new_dentry->d_parent);
8290 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir),
8291 new_rename_ctx.index, old_dentry->d_parent);
8292 }
8293
8294 out_fail:
8295 if (logs_pinned) {
8296 btrfs_end_log_trans(root);
8297 btrfs_end_log_trans(dest);
8298 }
8299 ret2 = btrfs_end_transaction(trans);
8300 ret = ret ? ret : ret2;
8301 out_notrans:
8302 if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
8303 old_ino == BTRFS_FIRST_FREE_OBJECTID)
8304 up_read(&fs_info->subvol_sem);
8305
8306 fscrypt_free_filename(&new_fname);
8307 fscrypt_free_filename(&old_fname);
8308 return ret;
8309 }
8310
new_whiteout_inode(struct mnt_idmap * idmap,struct inode * dir)8311 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap,
8312 struct inode *dir)
8313 {
8314 struct inode *inode;
8315
8316 inode = new_inode(dir->i_sb);
8317 if (inode) {
8318 inode_init_owner(idmap, inode, dir,
8319 S_IFCHR | WHITEOUT_MODE);
8320 inode->i_op = &btrfs_special_inode_operations;
8321 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV);
8322 }
8323 return inode;
8324 }
8325
btrfs_rename(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)8326 static int btrfs_rename(struct mnt_idmap *idmap,
8327 struct inode *old_dir, struct dentry *old_dentry,
8328 struct inode *new_dir, struct dentry *new_dentry,
8329 unsigned int flags)
8330 {
8331 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir);
8332 struct btrfs_new_inode_args whiteout_args = {
8333 .dir = old_dir,
8334 .dentry = old_dentry,
8335 };
8336 struct btrfs_trans_handle *trans;
8337 unsigned int trans_num_items;
8338 struct btrfs_root *root = BTRFS_I(old_dir)->root;
8339 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8340 struct inode *new_inode = d_inode(new_dentry);
8341 struct inode *old_inode = d_inode(old_dentry);
8342 struct btrfs_rename_ctx rename_ctx;
8343 u64 index = 0;
8344 int ret;
8345 int ret2;
8346 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8347 struct fscrypt_name old_fname, new_fname;
8348 bool logs_pinned = false;
8349
8350 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
8351 return -EPERM;
8352
8353 /* we only allow rename subvolume link between subvolumes */
8354 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8355 return -EXDEV;
8356
8357 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8358 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
8359 return -ENOTEMPTY;
8360
8361 if (S_ISDIR(old_inode->i_mode) && new_inode &&
8362 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8363 return -ENOTEMPTY;
8364
8365 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
8366 if (ret)
8367 return ret;
8368
8369 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
8370 if (ret) {
8371 fscrypt_free_filename(&old_fname);
8372 return ret;
8373 }
8374
8375 /* check for collisions, even if the name isn't there */
8376 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name);
8377 if (ret) {
8378 if (ret == -EEXIST) {
8379 /* we shouldn't get
8380 * eexist without a new_inode */
8381 if (WARN_ON(!new_inode)) {
8382 goto out_fscrypt_names;
8383 }
8384 } else {
8385 /* maybe -EOVERFLOW */
8386 goto out_fscrypt_names;
8387 }
8388 }
8389 ret = 0;
8390
8391 /*
8392 * we're using rename to replace one file with another. Start IO on it
8393 * now so we don't add too much work to the end of the transaction
8394 */
8395 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
8396 filemap_flush(old_inode->i_mapping);
8397
8398 if (flags & RENAME_WHITEOUT) {
8399 whiteout_args.inode = new_whiteout_inode(idmap, old_dir);
8400 if (!whiteout_args.inode) {
8401 ret = -ENOMEM;
8402 goto out_fscrypt_names;
8403 }
8404 ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items);
8405 if (ret)
8406 goto out_whiteout_inode;
8407 } else {
8408 /* 1 to update the old parent inode. */
8409 trans_num_items = 1;
8410 }
8411
8412 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8413 /* Close the race window with snapshot create/destroy ioctl */
8414 down_read(&fs_info->subvol_sem);
8415 /*
8416 * 1 to remove old root ref
8417 * 1 to remove old root backref
8418 * 1 to add new root ref
8419 * 1 to add new root backref
8420 */
8421 trans_num_items += 4;
8422 } else {
8423 /*
8424 * 1 to update inode
8425 * 1 to remove old inode ref
8426 * 1 to add new inode ref
8427 */
8428 trans_num_items += 3;
8429 }
8430 /*
8431 * 1 to remove old dir item
8432 * 1 to remove old dir index
8433 * 1 to add new dir item
8434 * 1 to add new dir index
8435 */
8436 trans_num_items += 4;
8437 /* 1 to update new parent inode if it's not the same as the old parent */
8438 if (new_dir != old_dir)
8439 trans_num_items++;
8440 if (new_inode) {
8441 /*
8442 * 1 to update inode
8443 * 1 to remove inode ref
8444 * 1 to remove dir item
8445 * 1 to remove dir index
8446 * 1 to possibly add orphan item
8447 */
8448 trans_num_items += 5;
8449 }
8450 trans = btrfs_start_transaction(root, trans_num_items);
8451 if (IS_ERR(trans)) {
8452 ret = PTR_ERR(trans);
8453 goto out_notrans;
8454 }
8455
8456 if (dest != root) {
8457 ret = btrfs_record_root_in_trans(trans, dest);
8458 if (ret)
8459 goto out_fail;
8460 }
8461
8462 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
8463 if (ret)
8464 goto out_fail;
8465
8466 BTRFS_I(old_inode)->dir_index = 0ULL;
8467 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8468 /* force full log commit if subvolume involved. */
8469 btrfs_set_log_full_commit(trans);
8470 } else {
8471 ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name,
8472 old_ino, btrfs_ino(BTRFS_I(new_dir)),
8473 index);
8474 if (ret)
8475 goto out_fail;
8476 }
8477
8478 inode_inc_iversion(old_dir);
8479 inode_inc_iversion(new_dir);
8480 inode_inc_iversion(old_inode);
8481 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
8482
8483 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
8484 /*
8485 * If we are renaming in the same directory (and it's not a
8486 * root entry) pin the log to prevent any concurrent task from
8487 * logging the directory after we removed the old entry and
8488 * before we add the new entry, otherwise that task can sync
8489 * a log without any entry for the inode we are renaming and
8490 * therefore replaying that log, if a power failure happens
8491 * after syncing the log, would result in deleting the inode.
8492 *
8493 * If the rename affects two different directories, we want to
8494 * make sure the that there's no log commit that contains
8495 * updates for only one of the directories but not for the
8496 * other.
8497 *
8498 * If we are renaming an entry for a root, we don't care about
8499 * log updates since we called btrfs_set_log_full_commit().
8500 */
8501 btrfs_pin_log_trans(root);
8502 btrfs_pin_log_trans(dest);
8503 logs_pinned = true;
8504 }
8505
8506 if (old_dentry->d_parent != new_dentry->d_parent)
8507 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8508 BTRFS_I(old_inode), true);
8509
8510 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8511 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
8512 if (ret) {
8513 btrfs_abort_transaction(trans, ret);
8514 goto out_fail;
8515 }
8516 } else {
8517 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
8518 BTRFS_I(d_inode(old_dentry)),
8519 &old_fname.disk_name, &rename_ctx);
8520 if (ret) {
8521 btrfs_abort_transaction(trans, ret);
8522 goto out_fail;
8523 }
8524 ret = btrfs_update_inode(trans, BTRFS_I(old_inode));
8525 if (ret) {
8526 btrfs_abort_transaction(trans, ret);
8527 goto out_fail;
8528 }
8529 }
8530
8531 if (new_inode) {
8532 inode_inc_iversion(new_inode);
8533 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
8534 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8535 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
8536 if (ret) {
8537 btrfs_abort_transaction(trans, ret);
8538 goto out_fail;
8539 }
8540 BUG_ON(new_inode->i_nlink == 0);
8541 } else {
8542 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir),
8543 BTRFS_I(d_inode(new_dentry)),
8544 &new_fname.disk_name);
8545 if (ret) {
8546 btrfs_abort_transaction(trans, ret);
8547 goto out_fail;
8548 }
8549 }
8550 if (new_inode->i_nlink == 0) {
8551 ret = btrfs_orphan_add(trans,
8552 BTRFS_I(d_inode(new_dentry)));
8553 if (ret) {
8554 btrfs_abort_transaction(trans, ret);
8555 goto out_fail;
8556 }
8557 }
8558 }
8559
8560 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8561 &new_fname.disk_name, 0, index);
8562 if (ret) {
8563 btrfs_abort_transaction(trans, ret);
8564 goto out_fail;
8565 }
8566
8567 if (old_inode->i_nlink == 1)
8568 BTRFS_I(old_inode)->dir_index = index;
8569
8570 if (logs_pinned)
8571 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
8572 rename_ctx.index, new_dentry->d_parent);
8573
8574 if (flags & RENAME_WHITEOUT) {
8575 ret = btrfs_create_new_inode(trans, &whiteout_args);
8576 if (ret) {
8577 btrfs_abort_transaction(trans, ret);
8578 goto out_fail;
8579 } else {
8580 unlock_new_inode(whiteout_args.inode);
8581 iput(whiteout_args.inode);
8582 whiteout_args.inode = NULL;
8583 }
8584 }
8585 out_fail:
8586 if (logs_pinned) {
8587 btrfs_end_log_trans(root);
8588 btrfs_end_log_trans(dest);
8589 }
8590 ret2 = btrfs_end_transaction(trans);
8591 ret = ret ? ret : ret2;
8592 out_notrans:
8593 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8594 up_read(&fs_info->subvol_sem);
8595 if (flags & RENAME_WHITEOUT)
8596 btrfs_new_inode_args_destroy(&whiteout_args);
8597 out_whiteout_inode:
8598 if (flags & RENAME_WHITEOUT)
8599 iput(whiteout_args.inode);
8600 out_fscrypt_names:
8601 fscrypt_free_filename(&old_fname);
8602 fscrypt_free_filename(&new_fname);
8603 return ret;
8604 }
8605
btrfs_rename2(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)8606 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir,
8607 struct dentry *old_dentry, struct inode *new_dir,
8608 struct dentry *new_dentry, unsigned int flags)
8609 {
8610 int ret;
8611
8612 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
8613 return -EINVAL;
8614
8615 if (flags & RENAME_EXCHANGE)
8616 ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir,
8617 new_dentry);
8618 else
8619 ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir,
8620 new_dentry, flags);
8621
8622 btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info);
8623
8624 return ret;
8625 }
8626
8627 struct btrfs_delalloc_work {
8628 struct inode *inode;
8629 struct completion completion;
8630 struct list_head list;
8631 struct btrfs_work work;
8632 };
8633
btrfs_run_delalloc_work(struct btrfs_work * work)8634 static void btrfs_run_delalloc_work(struct btrfs_work *work)
8635 {
8636 struct btrfs_delalloc_work *delalloc_work;
8637 struct inode *inode;
8638
8639 delalloc_work = container_of(work, struct btrfs_delalloc_work,
8640 work);
8641 inode = delalloc_work->inode;
8642 filemap_flush(inode->i_mapping);
8643 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8644 &BTRFS_I(inode)->runtime_flags))
8645 filemap_flush(inode->i_mapping);
8646
8647 iput(inode);
8648 complete(&delalloc_work->completion);
8649 }
8650
btrfs_alloc_delalloc_work(struct inode * inode)8651 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
8652 {
8653 struct btrfs_delalloc_work *work;
8654
8655 work = kmalloc(sizeof(*work), GFP_NOFS);
8656 if (!work)
8657 return NULL;
8658
8659 init_completion(&work->completion);
8660 INIT_LIST_HEAD(&work->list);
8661 work->inode = inode;
8662 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL);
8663
8664 return work;
8665 }
8666
8667 /*
8668 * some fairly slow code that needs optimization. This walks the list
8669 * of all the inodes with pending delalloc and forces them to disk.
8670 */
start_delalloc_inodes(struct btrfs_root * root,struct writeback_control * wbc,bool snapshot,bool in_reclaim_context)8671 static int start_delalloc_inodes(struct btrfs_root *root,
8672 struct writeback_control *wbc, bool snapshot,
8673 bool in_reclaim_context)
8674 {
8675 struct btrfs_delalloc_work *work, *next;
8676 LIST_HEAD(works);
8677 LIST_HEAD(splice);
8678 int ret = 0;
8679 bool full_flush = wbc->nr_to_write == LONG_MAX;
8680
8681 mutex_lock(&root->delalloc_mutex);
8682 spin_lock(&root->delalloc_lock);
8683 list_splice_init(&root->delalloc_inodes, &splice);
8684 while (!list_empty(&splice)) {
8685 struct btrfs_inode *inode;
8686 struct inode *tmp_inode;
8687
8688 inode = list_first_entry(&splice, struct btrfs_inode, delalloc_inodes);
8689
8690 list_move_tail(&inode->delalloc_inodes, &root->delalloc_inodes);
8691
8692 if (in_reclaim_context &&
8693 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &inode->runtime_flags))
8694 continue;
8695
8696 tmp_inode = igrab(&inode->vfs_inode);
8697 if (!tmp_inode) {
8698 cond_resched_lock(&root->delalloc_lock);
8699 continue;
8700 }
8701 spin_unlock(&root->delalloc_lock);
8702
8703 if (snapshot)
8704 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, &inode->runtime_flags);
8705 if (full_flush) {
8706 work = btrfs_alloc_delalloc_work(&inode->vfs_inode);
8707 if (!work) {
8708 iput(&inode->vfs_inode);
8709 ret = -ENOMEM;
8710 goto out;
8711 }
8712 list_add_tail(&work->list, &works);
8713 btrfs_queue_work(root->fs_info->flush_workers,
8714 &work->work);
8715 } else {
8716 ret = filemap_fdatawrite_wbc(inode->vfs_inode.i_mapping, wbc);
8717 btrfs_add_delayed_iput(inode);
8718 if (ret || wbc->nr_to_write <= 0)
8719 goto out;
8720 }
8721 cond_resched();
8722 spin_lock(&root->delalloc_lock);
8723 }
8724 spin_unlock(&root->delalloc_lock);
8725
8726 out:
8727 list_for_each_entry_safe(work, next, &works, list) {
8728 list_del_init(&work->list);
8729 wait_for_completion(&work->completion);
8730 kfree(work);
8731 }
8732
8733 if (!list_empty(&splice)) {
8734 spin_lock(&root->delalloc_lock);
8735 list_splice_tail(&splice, &root->delalloc_inodes);
8736 spin_unlock(&root->delalloc_lock);
8737 }
8738 mutex_unlock(&root->delalloc_mutex);
8739 return ret;
8740 }
8741
btrfs_start_delalloc_snapshot(struct btrfs_root * root,bool in_reclaim_context)8742 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
8743 {
8744 struct writeback_control wbc = {
8745 .nr_to_write = LONG_MAX,
8746 .sync_mode = WB_SYNC_NONE,
8747 .range_start = 0,
8748 .range_end = LLONG_MAX,
8749 };
8750 struct btrfs_fs_info *fs_info = root->fs_info;
8751
8752 if (BTRFS_FS_ERROR(fs_info))
8753 return -EROFS;
8754
8755 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context);
8756 }
8757
btrfs_start_delalloc_roots(struct btrfs_fs_info * fs_info,long nr,bool in_reclaim_context)8758 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
8759 bool in_reclaim_context)
8760 {
8761 struct writeback_control wbc = {
8762 .nr_to_write = nr,
8763 .sync_mode = WB_SYNC_NONE,
8764 .range_start = 0,
8765 .range_end = LLONG_MAX,
8766 };
8767 struct btrfs_root *root;
8768 LIST_HEAD(splice);
8769 int ret;
8770
8771 if (BTRFS_FS_ERROR(fs_info))
8772 return -EROFS;
8773
8774 mutex_lock(&fs_info->delalloc_root_mutex);
8775 spin_lock(&fs_info->delalloc_root_lock);
8776 list_splice_init(&fs_info->delalloc_roots, &splice);
8777 while (!list_empty(&splice)) {
8778 /*
8779 * Reset nr_to_write here so we know that we're doing a full
8780 * flush.
8781 */
8782 if (nr == LONG_MAX)
8783 wbc.nr_to_write = LONG_MAX;
8784
8785 root = list_first_entry(&splice, struct btrfs_root,
8786 delalloc_root);
8787 root = btrfs_grab_root(root);
8788 BUG_ON(!root);
8789 list_move_tail(&root->delalloc_root,
8790 &fs_info->delalloc_roots);
8791 spin_unlock(&fs_info->delalloc_root_lock);
8792
8793 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
8794 btrfs_put_root(root);
8795 if (ret < 0 || wbc.nr_to_write <= 0)
8796 goto out;
8797 spin_lock(&fs_info->delalloc_root_lock);
8798 }
8799 spin_unlock(&fs_info->delalloc_root_lock);
8800
8801 ret = 0;
8802 out:
8803 if (!list_empty(&splice)) {
8804 spin_lock(&fs_info->delalloc_root_lock);
8805 list_splice_tail(&splice, &fs_info->delalloc_roots);
8806 spin_unlock(&fs_info->delalloc_root_lock);
8807 }
8808 mutex_unlock(&fs_info->delalloc_root_mutex);
8809 return ret;
8810 }
8811
btrfs_symlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,const char * symname)8812 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
8813 struct dentry *dentry, const char *symname)
8814 {
8815 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
8816 struct btrfs_trans_handle *trans;
8817 struct btrfs_root *root = BTRFS_I(dir)->root;
8818 struct btrfs_path *path;
8819 struct btrfs_key key;
8820 struct inode *inode;
8821 struct btrfs_new_inode_args new_inode_args = {
8822 .dir = dir,
8823 .dentry = dentry,
8824 };
8825 unsigned int trans_num_items;
8826 int err;
8827 int name_len;
8828 int datasize;
8829 unsigned long ptr;
8830 struct btrfs_file_extent_item *ei;
8831 struct extent_buffer *leaf;
8832
8833 name_len = strlen(symname);
8834 /*
8835 * Symlinks utilize uncompressed inline extent data, which should not
8836 * reach block size.
8837 */
8838 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
8839 name_len >= fs_info->sectorsize)
8840 return -ENAMETOOLONG;
8841
8842 inode = new_inode(dir->i_sb);
8843 if (!inode)
8844 return -ENOMEM;
8845 inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO);
8846 inode->i_op = &btrfs_symlink_inode_operations;
8847 inode_nohighmem(inode);
8848 inode->i_mapping->a_ops = &btrfs_aops;
8849 btrfs_i_size_write(BTRFS_I(inode), name_len);
8850 inode_set_bytes(inode, name_len);
8851
8852 new_inode_args.inode = inode;
8853 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
8854 if (err)
8855 goto out_inode;
8856 /* 1 additional item for the inline extent */
8857 trans_num_items++;
8858
8859 trans = btrfs_start_transaction(root, trans_num_items);
8860 if (IS_ERR(trans)) {
8861 err = PTR_ERR(trans);
8862 goto out_new_inode_args;
8863 }
8864
8865 err = btrfs_create_new_inode(trans, &new_inode_args);
8866 if (err)
8867 goto out;
8868
8869 path = btrfs_alloc_path();
8870 if (!path) {
8871 err = -ENOMEM;
8872 btrfs_abort_transaction(trans, err);
8873 discard_new_inode(inode);
8874 inode = NULL;
8875 goto out;
8876 }
8877 key.objectid = btrfs_ino(BTRFS_I(inode));
8878 key.type = BTRFS_EXTENT_DATA_KEY;
8879 key.offset = 0;
8880 datasize = btrfs_file_extent_calc_inline_size(name_len);
8881 err = btrfs_insert_empty_item(trans, root, path, &key,
8882 datasize);
8883 if (err) {
8884 btrfs_abort_transaction(trans, err);
8885 btrfs_free_path(path);
8886 discard_new_inode(inode);
8887 inode = NULL;
8888 goto out;
8889 }
8890 leaf = path->nodes[0];
8891 ei = btrfs_item_ptr(leaf, path->slots[0],
8892 struct btrfs_file_extent_item);
8893 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
8894 btrfs_set_file_extent_type(leaf, ei,
8895 BTRFS_FILE_EXTENT_INLINE);
8896 btrfs_set_file_extent_encryption(leaf, ei, 0);
8897 btrfs_set_file_extent_compression(leaf, ei, 0);
8898 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
8899 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
8900
8901 ptr = btrfs_file_extent_inline_start(ei);
8902 write_extent_buffer(leaf, symname, ptr, name_len);
8903 btrfs_free_path(path);
8904
8905 d_instantiate_new(dentry, inode);
8906 err = 0;
8907 out:
8908 btrfs_end_transaction(trans);
8909 btrfs_btree_balance_dirty(fs_info);
8910 out_new_inode_args:
8911 btrfs_new_inode_args_destroy(&new_inode_args);
8912 out_inode:
8913 if (err)
8914 iput(inode);
8915 return err;
8916 }
8917
insert_prealloc_file_extent(struct btrfs_trans_handle * trans_in,struct btrfs_inode * inode,struct btrfs_key * ins,u64 file_offset)8918 static struct btrfs_trans_handle *insert_prealloc_file_extent(
8919 struct btrfs_trans_handle *trans_in,
8920 struct btrfs_inode *inode,
8921 struct btrfs_key *ins,
8922 u64 file_offset)
8923 {
8924 struct btrfs_file_extent_item stack_fi;
8925 struct btrfs_replace_extent_info extent_info;
8926 struct btrfs_trans_handle *trans = trans_in;
8927 struct btrfs_path *path;
8928 u64 start = ins->objectid;
8929 u64 len = ins->offset;
8930 u64 qgroup_released = 0;
8931 int ret;
8932
8933 memset(&stack_fi, 0, sizeof(stack_fi));
8934
8935 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
8936 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
8937 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
8938 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
8939 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
8940 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
8941 /* Encryption and other encoding is reserved and all 0 */
8942
8943 ret = btrfs_qgroup_release_data(inode, file_offset, len, &qgroup_released);
8944 if (ret < 0)
8945 return ERR_PTR(ret);
8946
8947 if (trans) {
8948 ret = insert_reserved_file_extent(trans, inode,
8949 file_offset, &stack_fi,
8950 true, qgroup_released);
8951 if (ret)
8952 goto free_qgroup;
8953 return trans;
8954 }
8955
8956 extent_info.disk_offset = start;
8957 extent_info.disk_len = len;
8958 extent_info.data_offset = 0;
8959 extent_info.data_len = len;
8960 extent_info.file_offset = file_offset;
8961 extent_info.extent_buf = (char *)&stack_fi;
8962 extent_info.is_new_extent = true;
8963 extent_info.update_times = true;
8964 extent_info.qgroup_reserved = qgroup_released;
8965 extent_info.insertions = 0;
8966
8967 path = btrfs_alloc_path();
8968 if (!path) {
8969 ret = -ENOMEM;
8970 goto free_qgroup;
8971 }
8972
8973 ret = btrfs_replace_file_extents(inode, path, file_offset,
8974 file_offset + len - 1, &extent_info,
8975 &trans);
8976 btrfs_free_path(path);
8977 if (ret)
8978 goto free_qgroup;
8979 return trans;
8980
8981 free_qgroup:
8982 /*
8983 * We have released qgroup data range at the beginning of the function,
8984 * and normally qgroup_released bytes will be freed when committing
8985 * transaction.
8986 * But if we error out early, we have to free what we have released
8987 * or we leak qgroup data reservation.
8988 */
8989 btrfs_qgroup_free_refroot(inode->root->fs_info,
8990 btrfs_root_id(inode->root), qgroup_released,
8991 BTRFS_QGROUP_RSV_DATA);
8992 return ERR_PTR(ret);
8993 }
8994
__btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint,struct btrfs_trans_handle * trans)8995 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
8996 u64 start, u64 num_bytes, u64 min_size,
8997 loff_t actual_len, u64 *alloc_hint,
8998 struct btrfs_trans_handle *trans)
8999 {
9000 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
9001 struct extent_map *em;
9002 struct btrfs_root *root = BTRFS_I(inode)->root;
9003 struct btrfs_key ins;
9004 u64 cur_offset = start;
9005 u64 clear_offset = start;
9006 u64 i_size;
9007 u64 cur_bytes;
9008 u64 last_alloc = (u64)-1;
9009 int ret = 0;
9010 bool own_trans = true;
9011 u64 end = start + num_bytes - 1;
9012
9013 if (trans)
9014 own_trans = false;
9015 while (num_bytes > 0) {
9016 cur_bytes = min_t(u64, num_bytes, SZ_256M);
9017 cur_bytes = max(cur_bytes, min_size);
9018 /*
9019 * If we are severely fragmented we could end up with really
9020 * small allocations, so if the allocator is returning small
9021 * chunks lets make its job easier by only searching for those
9022 * sized chunks.
9023 */
9024 cur_bytes = min(cur_bytes, last_alloc);
9025 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9026 min_size, 0, *alloc_hint, &ins, 1, 0);
9027 if (ret)
9028 break;
9029
9030 /*
9031 * We've reserved this space, and thus converted it from
9032 * ->bytes_may_use to ->bytes_reserved. Any error that happens
9033 * from here on out we will only need to clear our reservation
9034 * for the remaining unreserved area, so advance our
9035 * clear_offset by our extent size.
9036 */
9037 clear_offset += ins.offset;
9038
9039 last_alloc = ins.offset;
9040 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
9041 &ins, cur_offset);
9042 /*
9043 * Now that we inserted the prealloc extent we can finally
9044 * decrement the number of reservations in the block group.
9045 * If we did it before, we could race with relocation and have
9046 * relocation miss the reserved extent, making it fail later.
9047 */
9048 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9049 if (IS_ERR(trans)) {
9050 ret = PTR_ERR(trans);
9051 btrfs_free_reserved_extent(fs_info, ins.objectid,
9052 ins.offset, false);
9053 break;
9054 }
9055
9056 em = btrfs_alloc_extent_map();
9057 if (!em) {
9058 btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset,
9059 cur_offset + ins.offset - 1, false);
9060 btrfs_set_inode_full_sync(BTRFS_I(inode));
9061 goto next;
9062 }
9063
9064 em->start = cur_offset;
9065 em->len = ins.offset;
9066 em->disk_bytenr = ins.objectid;
9067 em->offset = 0;
9068 em->disk_num_bytes = ins.offset;
9069 em->ram_bytes = ins.offset;
9070 em->flags |= EXTENT_FLAG_PREALLOC;
9071 em->generation = trans->transid;
9072
9073 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true);
9074 btrfs_free_extent_map(em);
9075 next:
9076 num_bytes -= ins.offset;
9077 cur_offset += ins.offset;
9078 *alloc_hint = ins.objectid + ins.offset;
9079
9080 inode_inc_iversion(inode);
9081 inode_set_ctime_current(inode);
9082 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9083 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9084 (actual_len > inode->i_size) &&
9085 (cur_offset > inode->i_size)) {
9086 if (cur_offset > actual_len)
9087 i_size = actual_len;
9088 else
9089 i_size = cur_offset;
9090 i_size_write(inode, i_size);
9091 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
9092 }
9093
9094 ret = btrfs_update_inode(trans, BTRFS_I(inode));
9095
9096 if (ret) {
9097 btrfs_abort_transaction(trans, ret);
9098 if (own_trans)
9099 btrfs_end_transaction(trans);
9100 break;
9101 }
9102
9103 if (own_trans) {
9104 btrfs_end_transaction(trans);
9105 trans = NULL;
9106 }
9107 }
9108 if (clear_offset < end)
9109 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
9110 end - clear_offset + 1);
9111 return ret;
9112 }
9113
btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)9114 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9115 u64 start, u64 num_bytes, u64 min_size,
9116 loff_t actual_len, u64 *alloc_hint)
9117 {
9118 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9119 min_size, actual_len, alloc_hint,
9120 NULL);
9121 }
9122
btrfs_prealloc_file_range_trans(struct inode * inode,struct btrfs_trans_handle * trans,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)9123 int btrfs_prealloc_file_range_trans(struct inode *inode,
9124 struct btrfs_trans_handle *trans, int mode,
9125 u64 start, u64 num_bytes, u64 min_size,
9126 loff_t actual_len, u64 *alloc_hint)
9127 {
9128 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9129 min_size, actual_len, alloc_hint, trans);
9130 }
9131
btrfs_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)9132 static int btrfs_permission(struct mnt_idmap *idmap,
9133 struct inode *inode, int mask)
9134 {
9135 struct btrfs_root *root = BTRFS_I(inode)->root;
9136 umode_t mode = inode->i_mode;
9137
9138 if (mask & MAY_WRITE &&
9139 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9140 if (btrfs_root_readonly(root))
9141 return -EROFS;
9142 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9143 return -EACCES;
9144 }
9145 return generic_permission(idmap, inode, mask);
9146 }
9147
btrfs_tmpfile(struct mnt_idmap * idmap,struct inode * dir,struct file * file,umode_t mode)9148 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
9149 struct file *file, umode_t mode)
9150 {
9151 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
9152 struct btrfs_trans_handle *trans;
9153 struct btrfs_root *root = BTRFS_I(dir)->root;
9154 struct inode *inode;
9155 struct btrfs_new_inode_args new_inode_args = {
9156 .dir = dir,
9157 .dentry = file->f_path.dentry,
9158 .orphan = true,
9159 };
9160 unsigned int trans_num_items;
9161 int ret;
9162
9163 inode = new_inode(dir->i_sb);
9164 if (!inode)
9165 return -ENOMEM;
9166 inode_init_owner(idmap, inode, dir, mode);
9167 inode->i_fop = &btrfs_file_operations;
9168 inode->i_op = &btrfs_file_inode_operations;
9169 inode->i_mapping->a_ops = &btrfs_aops;
9170
9171 new_inode_args.inode = inode;
9172 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
9173 if (ret)
9174 goto out_inode;
9175
9176 trans = btrfs_start_transaction(root, trans_num_items);
9177 if (IS_ERR(trans)) {
9178 ret = PTR_ERR(trans);
9179 goto out_new_inode_args;
9180 }
9181
9182 ret = btrfs_create_new_inode(trans, &new_inode_args);
9183
9184 /*
9185 * We set number of links to 0 in btrfs_create_new_inode(), and here we
9186 * set it to 1 because d_tmpfile() will issue a warning if the count is
9187 * 0, through:
9188 *
9189 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9190 */
9191 set_nlink(inode, 1);
9192
9193 if (!ret) {
9194 d_tmpfile(file, inode);
9195 unlock_new_inode(inode);
9196 mark_inode_dirty(inode);
9197 }
9198
9199 btrfs_end_transaction(trans);
9200 btrfs_btree_balance_dirty(fs_info);
9201 out_new_inode_args:
9202 btrfs_new_inode_args_destroy(&new_inode_args);
9203 out_inode:
9204 if (ret)
9205 iput(inode);
9206 return finish_open_simple(file, ret);
9207 }
9208
btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info * fs_info,int compress_type)9209 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
9210 int compress_type)
9211 {
9212 switch (compress_type) {
9213 case BTRFS_COMPRESS_NONE:
9214 return BTRFS_ENCODED_IO_COMPRESSION_NONE;
9215 case BTRFS_COMPRESS_ZLIB:
9216 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB;
9217 case BTRFS_COMPRESS_LZO:
9218 /*
9219 * The LZO format depends on the sector size. 64K is the maximum
9220 * sector size that we support.
9221 */
9222 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K)
9223 return -EINVAL;
9224 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K +
9225 (fs_info->sectorsize_bits - 12);
9226 case BTRFS_COMPRESS_ZSTD:
9227 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD;
9228 default:
9229 return -EUCLEAN;
9230 }
9231 }
9232
btrfs_encoded_read_inline(struct kiocb * iocb,struct iov_iter * iter,u64 start,u64 lockend,struct extent_state ** cached_state,u64 extent_start,size_t count,struct btrfs_ioctl_encoded_io_args * encoded,bool * unlocked)9233 static ssize_t btrfs_encoded_read_inline(
9234 struct kiocb *iocb,
9235 struct iov_iter *iter, u64 start,
9236 u64 lockend,
9237 struct extent_state **cached_state,
9238 u64 extent_start, size_t count,
9239 struct btrfs_ioctl_encoded_io_args *encoded,
9240 bool *unlocked)
9241 {
9242 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9243 struct btrfs_root *root = inode->root;
9244 struct btrfs_fs_info *fs_info = root->fs_info;
9245 struct extent_io_tree *io_tree = &inode->io_tree;
9246 BTRFS_PATH_AUTO_FREE(path);
9247 struct extent_buffer *leaf;
9248 struct btrfs_file_extent_item *item;
9249 u64 ram_bytes;
9250 unsigned long ptr;
9251 void *tmp;
9252 ssize_t ret;
9253 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
9254
9255 path = btrfs_alloc_path();
9256 if (!path)
9257 return -ENOMEM;
9258
9259 path->nowait = nowait;
9260
9261 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
9262 extent_start, 0);
9263 if (ret) {
9264 if (ret > 0) {
9265 /* The extent item disappeared? */
9266 return -EIO;
9267 }
9268 return ret;
9269 }
9270 leaf = path->nodes[0];
9271 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
9272
9273 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
9274 ptr = btrfs_file_extent_inline_start(item);
9275
9276 encoded->len = min_t(u64, extent_start + ram_bytes,
9277 inode->vfs_inode.i_size) - iocb->ki_pos;
9278 ret = btrfs_encoded_io_compression_from_extent(fs_info,
9279 btrfs_file_extent_compression(leaf, item));
9280 if (ret < 0)
9281 return ret;
9282 encoded->compression = ret;
9283 if (encoded->compression) {
9284 size_t inline_size;
9285
9286 inline_size = btrfs_file_extent_inline_item_len(leaf,
9287 path->slots[0]);
9288 if (inline_size > count)
9289 return -ENOBUFS;
9290
9291 count = inline_size;
9292 encoded->unencoded_len = ram_bytes;
9293 encoded->unencoded_offset = iocb->ki_pos - extent_start;
9294 } else {
9295 count = min_t(u64, count, encoded->len);
9296 encoded->len = count;
9297 encoded->unencoded_len = count;
9298 ptr += iocb->ki_pos - extent_start;
9299 }
9300
9301 tmp = kmalloc(count, GFP_NOFS);
9302 if (!tmp)
9303 return -ENOMEM;
9304
9305 read_extent_buffer(leaf, tmp, ptr, count);
9306 btrfs_release_path(path);
9307 btrfs_unlock_extent(io_tree, start, lockend, cached_state);
9308 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9309 *unlocked = true;
9310
9311 ret = copy_to_iter(tmp, count, iter);
9312 if (ret != count)
9313 ret = -EFAULT;
9314 kfree(tmp);
9315
9316 return ret;
9317 }
9318
9319 struct btrfs_encoded_read_private {
9320 struct completion *sync_reads;
9321 void *uring_ctx;
9322 refcount_t pending_refs;
9323 blk_status_t status;
9324 };
9325
btrfs_encoded_read_endio(struct btrfs_bio * bbio)9326 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio)
9327 {
9328 struct btrfs_encoded_read_private *priv = bbio->private;
9329
9330 if (bbio->bio.bi_status) {
9331 /*
9332 * The memory barrier implied by the refcount_dec_and_test() here
9333 * pairs with the memory barrier implied by the refcount_dec_and_test()
9334 * in btrfs_encoded_read_regular_fill_pages() to ensure that
9335 * this write is observed before the load of status in
9336 * btrfs_encoded_read_regular_fill_pages().
9337 */
9338 WRITE_ONCE(priv->status, bbio->bio.bi_status);
9339 }
9340 if (refcount_dec_and_test(&priv->pending_refs)) {
9341 int err = blk_status_to_errno(READ_ONCE(priv->status));
9342
9343 if (priv->uring_ctx) {
9344 btrfs_uring_read_extent_endio(priv->uring_ctx, err);
9345 kfree(priv);
9346 } else {
9347 complete(priv->sync_reads);
9348 }
9349 }
9350 bio_put(&bbio->bio);
9351 }
9352
btrfs_encoded_read_regular_fill_pages(struct btrfs_inode * inode,u64 disk_bytenr,u64 disk_io_size,struct page ** pages,void * uring_ctx)9353 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
9354 u64 disk_bytenr, u64 disk_io_size,
9355 struct page **pages, void *uring_ctx)
9356 {
9357 struct btrfs_fs_info *fs_info = inode->root->fs_info;
9358 struct btrfs_encoded_read_private *priv, sync_priv;
9359 struct completion sync_reads;
9360 unsigned long i = 0;
9361 struct btrfs_bio *bbio;
9362 int ret;
9363
9364 /*
9365 * Fast path for synchronous reads which completes in this call, io_uring
9366 * needs longer time span.
9367 */
9368 if (uring_ctx) {
9369 priv = kmalloc(sizeof(struct btrfs_encoded_read_private), GFP_NOFS);
9370 if (!priv)
9371 return -ENOMEM;
9372 } else {
9373 priv = &sync_priv;
9374 init_completion(&sync_reads);
9375 priv->sync_reads = &sync_reads;
9376 }
9377
9378 refcount_set(&priv->pending_refs, 1);
9379 priv->status = 0;
9380 priv->uring_ctx = uring_ctx;
9381
9382 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
9383 btrfs_encoded_read_endio, priv);
9384 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
9385 bbio->inode = inode;
9386
9387 do {
9388 size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE);
9389
9390 if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) {
9391 refcount_inc(&priv->pending_refs);
9392 btrfs_submit_bbio(bbio, 0);
9393
9394 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
9395 btrfs_encoded_read_endio, priv);
9396 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
9397 bbio->inode = inode;
9398 continue;
9399 }
9400
9401 i++;
9402 disk_bytenr += bytes;
9403 disk_io_size -= bytes;
9404 } while (disk_io_size);
9405
9406 refcount_inc(&priv->pending_refs);
9407 btrfs_submit_bbio(bbio, 0);
9408
9409 if (uring_ctx) {
9410 if (refcount_dec_and_test(&priv->pending_refs)) {
9411 ret = blk_status_to_errno(READ_ONCE(priv->status));
9412 btrfs_uring_read_extent_endio(uring_ctx, ret);
9413 kfree(priv);
9414 return ret;
9415 }
9416
9417 return -EIOCBQUEUED;
9418 } else {
9419 if (!refcount_dec_and_test(&priv->pending_refs))
9420 wait_for_completion_io(&sync_reads);
9421 /* See btrfs_encoded_read_endio() for ordering. */
9422 return blk_status_to_errno(READ_ONCE(priv->status));
9423 }
9424 }
9425
btrfs_encoded_read_regular(struct kiocb * iocb,struct iov_iter * iter,u64 start,u64 lockend,struct extent_state ** cached_state,u64 disk_bytenr,u64 disk_io_size,size_t count,bool compressed,bool * unlocked)9426 ssize_t btrfs_encoded_read_regular(struct kiocb *iocb, struct iov_iter *iter,
9427 u64 start, u64 lockend,
9428 struct extent_state **cached_state,
9429 u64 disk_bytenr, u64 disk_io_size,
9430 size_t count, bool compressed, bool *unlocked)
9431 {
9432 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9433 struct extent_io_tree *io_tree = &inode->io_tree;
9434 struct page **pages;
9435 unsigned long nr_pages, i;
9436 u64 cur;
9437 size_t page_offset;
9438 ssize_t ret;
9439
9440 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
9441 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
9442 if (!pages)
9443 return -ENOMEM;
9444 ret = btrfs_alloc_page_array(nr_pages, pages, false);
9445 if (ret) {
9446 ret = -ENOMEM;
9447 goto out;
9448 }
9449
9450 ret = btrfs_encoded_read_regular_fill_pages(inode, disk_bytenr,
9451 disk_io_size, pages, NULL);
9452 if (ret)
9453 goto out;
9454
9455 btrfs_unlock_extent(io_tree, start, lockend, cached_state);
9456 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9457 *unlocked = true;
9458
9459 if (compressed) {
9460 i = 0;
9461 page_offset = 0;
9462 } else {
9463 i = (iocb->ki_pos - start) >> PAGE_SHIFT;
9464 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1);
9465 }
9466 cur = 0;
9467 while (cur < count) {
9468 size_t bytes = min_t(size_t, count - cur,
9469 PAGE_SIZE - page_offset);
9470
9471 if (copy_page_to_iter(pages[i], page_offset, bytes,
9472 iter) != bytes) {
9473 ret = -EFAULT;
9474 goto out;
9475 }
9476 i++;
9477 cur += bytes;
9478 page_offset = 0;
9479 }
9480 ret = count;
9481 out:
9482 for (i = 0; i < nr_pages; i++) {
9483 if (pages[i])
9484 __free_page(pages[i]);
9485 }
9486 kfree(pages);
9487 return ret;
9488 }
9489
btrfs_encoded_read(struct kiocb * iocb,struct iov_iter * iter,struct btrfs_ioctl_encoded_io_args * encoded,struct extent_state ** cached_state,u64 * disk_bytenr,u64 * disk_io_size)9490 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
9491 struct btrfs_ioctl_encoded_io_args *encoded,
9492 struct extent_state **cached_state,
9493 u64 *disk_bytenr, u64 *disk_io_size)
9494 {
9495 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9496 struct btrfs_fs_info *fs_info = inode->root->fs_info;
9497 struct extent_io_tree *io_tree = &inode->io_tree;
9498 ssize_t ret;
9499 size_t count = iov_iter_count(iter);
9500 u64 start, lockend;
9501 struct extent_map *em;
9502 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
9503 bool unlocked = false;
9504
9505 file_accessed(iocb->ki_filp);
9506
9507 ret = btrfs_inode_lock(inode,
9508 BTRFS_ILOCK_SHARED | (nowait ? BTRFS_ILOCK_TRY : 0));
9509 if (ret)
9510 return ret;
9511
9512 if (iocb->ki_pos >= inode->vfs_inode.i_size) {
9513 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9514 return 0;
9515 }
9516 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize);
9517 /*
9518 * We don't know how long the extent containing iocb->ki_pos is, but if
9519 * it's compressed we know that it won't be longer than this.
9520 */
9521 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
9522
9523 if (nowait) {
9524 struct btrfs_ordered_extent *ordered;
9525
9526 if (filemap_range_needs_writeback(inode->vfs_inode.i_mapping,
9527 start, lockend)) {
9528 ret = -EAGAIN;
9529 goto out_unlock_inode;
9530 }
9531
9532 if (!btrfs_try_lock_extent(io_tree, start, lockend, cached_state)) {
9533 ret = -EAGAIN;
9534 goto out_unlock_inode;
9535 }
9536
9537 ordered = btrfs_lookup_ordered_range(inode, start,
9538 lockend - start + 1);
9539 if (ordered) {
9540 btrfs_put_ordered_extent(ordered);
9541 btrfs_unlock_extent(io_tree, start, lockend, cached_state);
9542 ret = -EAGAIN;
9543 goto out_unlock_inode;
9544 }
9545 } else {
9546 for (;;) {
9547 struct btrfs_ordered_extent *ordered;
9548
9549 ret = btrfs_wait_ordered_range(inode, start,
9550 lockend - start + 1);
9551 if (ret)
9552 goto out_unlock_inode;
9553
9554 btrfs_lock_extent(io_tree, start, lockend, cached_state);
9555 ordered = btrfs_lookup_ordered_range(inode, start,
9556 lockend - start + 1);
9557 if (!ordered)
9558 break;
9559 btrfs_put_ordered_extent(ordered);
9560 btrfs_unlock_extent(io_tree, start, lockend, cached_state);
9561 cond_resched();
9562 }
9563 }
9564
9565 em = btrfs_get_extent(inode, NULL, start, lockend - start + 1);
9566 if (IS_ERR(em)) {
9567 ret = PTR_ERR(em);
9568 goto out_unlock_extent;
9569 }
9570
9571 if (em->disk_bytenr == EXTENT_MAP_INLINE) {
9572 u64 extent_start = em->start;
9573
9574 /*
9575 * For inline extents we get everything we need out of the
9576 * extent item.
9577 */
9578 btrfs_free_extent_map(em);
9579 em = NULL;
9580 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend,
9581 cached_state, extent_start,
9582 count, encoded, &unlocked);
9583 goto out_unlock_extent;
9584 }
9585
9586 /*
9587 * We only want to return up to EOF even if the extent extends beyond
9588 * that.
9589 */
9590 encoded->len = min_t(u64, btrfs_extent_map_end(em),
9591 inode->vfs_inode.i_size) - iocb->ki_pos;
9592 if (em->disk_bytenr == EXTENT_MAP_HOLE ||
9593 (em->flags & EXTENT_FLAG_PREALLOC)) {
9594 *disk_bytenr = EXTENT_MAP_HOLE;
9595 count = min_t(u64, count, encoded->len);
9596 encoded->len = count;
9597 encoded->unencoded_len = count;
9598 } else if (btrfs_extent_map_is_compressed(em)) {
9599 *disk_bytenr = em->disk_bytenr;
9600 /*
9601 * Bail if the buffer isn't large enough to return the whole
9602 * compressed extent.
9603 */
9604 if (em->disk_num_bytes > count) {
9605 ret = -ENOBUFS;
9606 goto out_em;
9607 }
9608 *disk_io_size = em->disk_num_bytes;
9609 count = em->disk_num_bytes;
9610 encoded->unencoded_len = em->ram_bytes;
9611 encoded->unencoded_offset = iocb->ki_pos - (em->start - em->offset);
9612 ret = btrfs_encoded_io_compression_from_extent(fs_info,
9613 btrfs_extent_map_compression(em));
9614 if (ret < 0)
9615 goto out_em;
9616 encoded->compression = ret;
9617 } else {
9618 *disk_bytenr = btrfs_extent_map_block_start(em) + (start - em->start);
9619 if (encoded->len > count)
9620 encoded->len = count;
9621 /*
9622 * Don't read beyond what we locked. This also limits the page
9623 * allocations that we'll do.
9624 */
9625 *disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start;
9626 count = start + *disk_io_size - iocb->ki_pos;
9627 encoded->len = count;
9628 encoded->unencoded_len = count;
9629 *disk_io_size = ALIGN(*disk_io_size, fs_info->sectorsize);
9630 }
9631 btrfs_free_extent_map(em);
9632 em = NULL;
9633
9634 if (*disk_bytenr == EXTENT_MAP_HOLE) {
9635 btrfs_unlock_extent(io_tree, start, lockend, cached_state);
9636 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9637 unlocked = true;
9638 ret = iov_iter_zero(count, iter);
9639 if (ret != count)
9640 ret = -EFAULT;
9641 } else {
9642 ret = -EIOCBQUEUED;
9643 goto out_unlock_extent;
9644 }
9645
9646 out_em:
9647 btrfs_free_extent_map(em);
9648 out_unlock_extent:
9649 /* Leave inode and extent locked if we need to do a read. */
9650 if (!unlocked && ret != -EIOCBQUEUED)
9651 btrfs_unlock_extent(io_tree, start, lockend, cached_state);
9652 out_unlock_inode:
9653 if (!unlocked && ret != -EIOCBQUEUED)
9654 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9655 return ret;
9656 }
9657
btrfs_do_encoded_write(struct kiocb * iocb,struct iov_iter * from,const struct btrfs_ioctl_encoded_io_args * encoded)9658 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
9659 const struct btrfs_ioctl_encoded_io_args *encoded)
9660 {
9661 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9662 struct btrfs_root *root = inode->root;
9663 struct btrfs_fs_info *fs_info = root->fs_info;
9664 struct extent_io_tree *io_tree = &inode->io_tree;
9665 struct extent_changeset *data_reserved = NULL;
9666 struct extent_state *cached_state = NULL;
9667 struct btrfs_ordered_extent *ordered;
9668 struct btrfs_file_extent file_extent;
9669 int compression;
9670 size_t orig_count;
9671 u64 start, end;
9672 u64 num_bytes, ram_bytes, disk_num_bytes;
9673 unsigned long nr_folios, i;
9674 struct folio **folios;
9675 struct btrfs_key ins;
9676 bool extent_reserved = false;
9677 struct extent_map *em;
9678 ssize_t ret;
9679
9680 switch (encoded->compression) {
9681 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB:
9682 compression = BTRFS_COMPRESS_ZLIB;
9683 break;
9684 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD:
9685 compression = BTRFS_COMPRESS_ZSTD;
9686 break;
9687 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K:
9688 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K:
9689 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K:
9690 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K:
9691 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K:
9692 /* The sector size must match for LZO. */
9693 if (encoded->compression -
9694 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 !=
9695 fs_info->sectorsize_bits)
9696 return -EINVAL;
9697 compression = BTRFS_COMPRESS_LZO;
9698 break;
9699 default:
9700 return -EINVAL;
9701 }
9702 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE)
9703 return -EINVAL;
9704
9705 /*
9706 * Compressed extents should always have checksums, so error out if we
9707 * have a NOCOW file or inode was created while mounted with NODATASUM.
9708 */
9709 if (inode->flags & BTRFS_INODE_NODATASUM)
9710 return -EINVAL;
9711
9712 orig_count = iov_iter_count(from);
9713
9714 /* The extent size must be sane. */
9715 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED ||
9716 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0)
9717 return -EINVAL;
9718
9719 /*
9720 * The compressed data must be smaller than the decompressed data.
9721 *
9722 * It's of course possible for data to compress to larger or the same
9723 * size, but the buffered I/O path falls back to no compression for such
9724 * data, and we don't want to break any assumptions by creating these
9725 * extents.
9726 *
9727 * Note that this is less strict than the current check we have that the
9728 * compressed data must be at least one sector smaller than the
9729 * decompressed data. We only want to enforce the weaker requirement
9730 * from old kernels that it is at least one byte smaller.
9731 */
9732 if (orig_count >= encoded->unencoded_len)
9733 return -EINVAL;
9734
9735 /* The extent must start on a sector boundary. */
9736 start = iocb->ki_pos;
9737 if (!IS_ALIGNED(start, fs_info->sectorsize))
9738 return -EINVAL;
9739
9740 /*
9741 * The extent must end on a sector boundary. However, we allow a write
9742 * which ends at or extends i_size to have an unaligned length; we round
9743 * up the extent size and set i_size to the unaligned end.
9744 */
9745 if (start + encoded->len < inode->vfs_inode.i_size &&
9746 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize))
9747 return -EINVAL;
9748
9749 /* Finally, the offset in the unencoded data must be sector-aligned. */
9750 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize))
9751 return -EINVAL;
9752
9753 num_bytes = ALIGN(encoded->len, fs_info->sectorsize);
9754 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize);
9755 end = start + num_bytes - 1;
9756
9757 /*
9758 * If the extent cannot be inline, the compressed data on disk must be
9759 * sector-aligned. For convenience, we extend it with zeroes if it
9760 * isn't.
9761 */
9762 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize);
9763 nr_folios = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE);
9764 folios = kvcalloc(nr_folios, sizeof(struct folio *), GFP_KERNEL_ACCOUNT);
9765 if (!folios)
9766 return -ENOMEM;
9767 for (i = 0; i < nr_folios; i++) {
9768 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from));
9769 char *kaddr;
9770
9771 folios[i] = folio_alloc(GFP_KERNEL_ACCOUNT, 0);
9772 if (!folios[i]) {
9773 ret = -ENOMEM;
9774 goto out_folios;
9775 }
9776 kaddr = kmap_local_folio(folios[i], 0);
9777 if (copy_from_iter(kaddr, bytes, from) != bytes) {
9778 kunmap_local(kaddr);
9779 ret = -EFAULT;
9780 goto out_folios;
9781 }
9782 if (bytes < PAGE_SIZE)
9783 memset(kaddr + bytes, 0, PAGE_SIZE - bytes);
9784 kunmap_local(kaddr);
9785 }
9786
9787 for (;;) {
9788 struct btrfs_ordered_extent *ordered;
9789
9790 ret = btrfs_wait_ordered_range(inode, start, num_bytes);
9791 if (ret)
9792 goto out_folios;
9793 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping,
9794 start >> PAGE_SHIFT,
9795 end >> PAGE_SHIFT);
9796 if (ret)
9797 goto out_folios;
9798 btrfs_lock_extent(io_tree, start, end, &cached_state);
9799 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes);
9800 if (!ordered &&
9801 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end))
9802 break;
9803 if (ordered)
9804 btrfs_put_ordered_extent(ordered);
9805 btrfs_unlock_extent(io_tree, start, end, &cached_state);
9806 cond_resched();
9807 }
9808
9809 /*
9810 * We don't use the higher-level delalloc space functions because our
9811 * num_bytes and disk_num_bytes are different.
9812 */
9813 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes);
9814 if (ret)
9815 goto out_unlock;
9816 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes);
9817 if (ret)
9818 goto out_free_data_space;
9819 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes,
9820 false);
9821 if (ret)
9822 goto out_qgroup_free_data;
9823
9824 /* Try an inline extent first. */
9825 if (encoded->unencoded_len == encoded->len &&
9826 encoded->unencoded_offset == 0 &&
9827 can_cow_file_range_inline(inode, start, encoded->len, orig_count)) {
9828 ret = __cow_file_range_inline(inode, encoded->len,
9829 orig_count, compression, folios[0],
9830 true);
9831 if (ret <= 0) {
9832 if (ret == 0)
9833 ret = orig_count;
9834 goto out_delalloc_release;
9835 }
9836 }
9837
9838 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes,
9839 disk_num_bytes, 0, 0, &ins, 1, 1);
9840 if (ret)
9841 goto out_delalloc_release;
9842 extent_reserved = true;
9843
9844 file_extent.disk_bytenr = ins.objectid;
9845 file_extent.disk_num_bytes = ins.offset;
9846 file_extent.num_bytes = num_bytes;
9847 file_extent.ram_bytes = ram_bytes;
9848 file_extent.offset = encoded->unencoded_offset;
9849 file_extent.compression = compression;
9850 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED);
9851 if (IS_ERR(em)) {
9852 ret = PTR_ERR(em);
9853 goto out_free_reserved;
9854 }
9855 btrfs_free_extent_map(em);
9856
9857 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent,
9858 (1U << BTRFS_ORDERED_ENCODED) |
9859 (1U << BTRFS_ORDERED_COMPRESSED));
9860 if (IS_ERR(ordered)) {
9861 btrfs_drop_extent_map_range(inode, start, end, false);
9862 ret = PTR_ERR(ordered);
9863 goto out_free_reserved;
9864 }
9865 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9866
9867 if (start + encoded->len > inode->vfs_inode.i_size)
9868 i_size_write(&inode->vfs_inode, start + encoded->len);
9869
9870 btrfs_unlock_extent(io_tree, start, end, &cached_state);
9871
9872 btrfs_delalloc_release_extents(inode, num_bytes);
9873
9874 btrfs_submit_compressed_write(ordered, folios, nr_folios, 0, false);
9875 ret = orig_count;
9876 goto out;
9877
9878 out_free_reserved:
9879 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9880 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, true);
9881 out_delalloc_release:
9882 btrfs_delalloc_release_extents(inode, num_bytes);
9883 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0);
9884 out_qgroup_free_data:
9885 if (ret < 0)
9886 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes, NULL);
9887 out_free_data_space:
9888 /*
9889 * If btrfs_reserve_extent() succeeded, then we already decremented
9890 * bytes_may_use.
9891 */
9892 if (!extent_reserved)
9893 btrfs_free_reserved_data_space_noquota(inode, disk_num_bytes);
9894 out_unlock:
9895 btrfs_unlock_extent(io_tree, start, end, &cached_state);
9896 out_folios:
9897 for (i = 0; i < nr_folios; i++) {
9898 if (folios[i])
9899 folio_put(folios[i]);
9900 }
9901 kvfree(folios);
9902 out:
9903 if (ret >= 0)
9904 iocb->ki_pos += encoded->len;
9905 return ret;
9906 }
9907
9908 #ifdef CONFIG_SWAP
9909 /*
9910 * Add an entry indicating a block group or device which is pinned by a
9911 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
9912 * negative errno on failure.
9913 */
btrfs_add_swapfile_pin(struct inode * inode,void * ptr,bool is_block_group)9914 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
9915 bool is_block_group)
9916 {
9917 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
9918 struct btrfs_swapfile_pin *sp, *entry;
9919 struct rb_node **p;
9920 struct rb_node *parent = NULL;
9921
9922 sp = kmalloc(sizeof(*sp), GFP_NOFS);
9923 if (!sp)
9924 return -ENOMEM;
9925 sp->ptr = ptr;
9926 sp->inode = inode;
9927 sp->is_block_group = is_block_group;
9928 sp->bg_extent_count = 1;
9929
9930 spin_lock(&fs_info->swapfile_pins_lock);
9931 p = &fs_info->swapfile_pins.rb_node;
9932 while (*p) {
9933 parent = *p;
9934 entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
9935 if (sp->ptr < entry->ptr ||
9936 (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
9937 p = &(*p)->rb_left;
9938 } else if (sp->ptr > entry->ptr ||
9939 (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
9940 p = &(*p)->rb_right;
9941 } else {
9942 if (is_block_group)
9943 entry->bg_extent_count++;
9944 spin_unlock(&fs_info->swapfile_pins_lock);
9945 kfree(sp);
9946 return 1;
9947 }
9948 }
9949 rb_link_node(&sp->node, parent, p);
9950 rb_insert_color(&sp->node, &fs_info->swapfile_pins);
9951 spin_unlock(&fs_info->swapfile_pins_lock);
9952 return 0;
9953 }
9954
9955 /* Free all of the entries pinned by this swapfile. */
btrfs_free_swapfile_pins(struct inode * inode)9956 static void btrfs_free_swapfile_pins(struct inode *inode)
9957 {
9958 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
9959 struct btrfs_swapfile_pin *sp;
9960 struct rb_node *node, *next;
9961
9962 spin_lock(&fs_info->swapfile_pins_lock);
9963 node = rb_first(&fs_info->swapfile_pins);
9964 while (node) {
9965 next = rb_next(node);
9966 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
9967 if (sp->inode == inode) {
9968 rb_erase(&sp->node, &fs_info->swapfile_pins);
9969 if (sp->is_block_group) {
9970 btrfs_dec_block_group_swap_extents(sp->ptr,
9971 sp->bg_extent_count);
9972 btrfs_put_block_group(sp->ptr);
9973 }
9974 kfree(sp);
9975 }
9976 node = next;
9977 }
9978 spin_unlock(&fs_info->swapfile_pins_lock);
9979 }
9980
9981 struct btrfs_swap_info {
9982 u64 start;
9983 u64 block_start;
9984 u64 block_len;
9985 u64 lowest_ppage;
9986 u64 highest_ppage;
9987 unsigned long nr_pages;
9988 int nr_extents;
9989 };
9990
btrfs_add_swap_extent(struct swap_info_struct * sis,struct btrfs_swap_info * bsi)9991 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
9992 struct btrfs_swap_info *bsi)
9993 {
9994 unsigned long nr_pages;
9995 unsigned long max_pages;
9996 u64 first_ppage, first_ppage_reported, next_ppage;
9997 int ret;
9998
9999 /*
10000 * Our swapfile may have had its size extended after the swap header was
10001 * written. In that case activating the swapfile should not go beyond
10002 * the max size set in the swap header.
10003 */
10004 if (bsi->nr_pages >= sis->max)
10005 return 0;
10006
10007 max_pages = sis->max - bsi->nr_pages;
10008 first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT;
10009 next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT;
10010
10011 if (first_ppage >= next_ppage)
10012 return 0;
10013 nr_pages = next_ppage - first_ppage;
10014 nr_pages = min(nr_pages, max_pages);
10015
10016 first_ppage_reported = first_ppage;
10017 if (bsi->start == 0)
10018 first_ppage_reported++;
10019 if (bsi->lowest_ppage > first_ppage_reported)
10020 bsi->lowest_ppage = first_ppage_reported;
10021 if (bsi->highest_ppage < (next_ppage - 1))
10022 bsi->highest_ppage = next_ppage - 1;
10023
10024 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10025 if (ret < 0)
10026 return ret;
10027 bsi->nr_extents += ret;
10028 bsi->nr_pages += nr_pages;
10029 return 0;
10030 }
10031
btrfs_swap_deactivate(struct file * file)10032 static void btrfs_swap_deactivate(struct file *file)
10033 {
10034 struct inode *inode = file_inode(file);
10035
10036 btrfs_free_swapfile_pins(inode);
10037 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10038 }
10039
btrfs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)10040 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10041 sector_t *span)
10042 {
10043 struct inode *inode = file_inode(file);
10044 struct btrfs_root *root = BTRFS_I(inode)->root;
10045 struct btrfs_fs_info *fs_info = root->fs_info;
10046 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10047 struct extent_state *cached_state = NULL;
10048 struct btrfs_chunk_map *map = NULL;
10049 struct btrfs_device *device = NULL;
10050 struct btrfs_swap_info bsi = {
10051 .lowest_ppage = (sector_t)-1ULL,
10052 };
10053 struct btrfs_backref_share_check_ctx *backref_ctx = NULL;
10054 struct btrfs_path *path = NULL;
10055 int ret = 0;
10056 u64 isize;
10057 u64 prev_extent_end = 0;
10058
10059 /*
10060 * Acquire the inode's mmap lock to prevent races with memory mapped
10061 * writes, as they could happen after we flush delalloc below and before
10062 * we lock the extent range further below. The inode was already locked
10063 * up in the call chain.
10064 */
10065 btrfs_assert_inode_locked(BTRFS_I(inode));
10066 down_write(&BTRFS_I(inode)->i_mmap_lock);
10067
10068 /*
10069 * If the swap file was just created, make sure delalloc is done. If the
10070 * file changes again after this, the user is doing something stupid and
10071 * we don't really care.
10072 */
10073 ret = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1);
10074 if (ret)
10075 goto out_unlock_mmap;
10076
10077 /*
10078 * The inode is locked, so these flags won't change after we check them.
10079 */
10080 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10081 btrfs_warn(fs_info, "swapfile must not be compressed");
10082 ret = -EINVAL;
10083 goto out_unlock_mmap;
10084 }
10085 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10086 btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10087 ret = -EINVAL;
10088 goto out_unlock_mmap;
10089 }
10090 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10091 btrfs_warn(fs_info, "swapfile must not be checksummed");
10092 ret = -EINVAL;
10093 goto out_unlock_mmap;
10094 }
10095
10096 path = btrfs_alloc_path();
10097 backref_ctx = btrfs_alloc_backref_share_check_ctx();
10098 if (!path || !backref_ctx) {
10099 ret = -ENOMEM;
10100 goto out_unlock_mmap;
10101 }
10102
10103 /*
10104 * Balance or device remove/replace/resize can move stuff around from
10105 * under us. The exclop protection makes sure they aren't running/won't
10106 * run concurrently while we are mapping the swap extents, and
10107 * fs_info->swapfile_pins prevents them from running while the swap
10108 * file is active and moving the extents. Note that this also prevents
10109 * a concurrent device add which isn't actually necessary, but it's not
10110 * really worth the trouble to allow it.
10111 */
10112 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
10113 btrfs_warn(fs_info,
10114 "cannot activate swapfile while exclusive operation is running");
10115 ret = -EBUSY;
10116 goto out_unlock_mmap;
10117 }
10118
10119 /*
10120 * Prevent snapshot creation while we are activating the swap file.
10121 * We do not want to race with snapshot creation. If snapshot creation
10122 * already started before we bumped nr_swapfiles from 0 to 1 and
10123 * completes before the first write into the swap file after it is
10124 * activated, than that write would fallback to COW.
10125 */
10126 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
10127 btrfs_exclop_finish(fs_info);
10128 btrfs_warn(fs_info,
10129 "cannot activate swapfile because snapshot creation is in progress");
10130 ret = -EINVAL;
10131 goto out_unlock_mmap;
10132 }
10133 /*
10134 * Snapshots can create extents which require COW even if NODATACOW is
10135 * set. We use this counter to prevent snapshots. We must increment it
10136 * before walking the extents because we don't want a concurrent
10137 * snapshot to run after we've already checked the extents.
10138 *
10139 * It is possible that subvolume is marked for deletion but still not
10140 * removed yet. To prevent this race, we check the root status before
10141 * activating the swapfile.
10142 */
10143 spin_lock(&root->root_item_lock);
10144 if (btrfs_root_dead(root)) {
10145 spin_unlock(&root->root_item_lock);
10146
10147 btrfs_drew_write_unlock(&root->snapshot_lock);
10148 btrfs_exclop_finish(fs_info);
10149 btrfs_warn(fs_info,
10150 "cannot activate swapfile because subvolume %llu is being deleted",
10151 btrfs_root_id(root));
10152 ret = -EPERM;
10153 goto out_unlock_mmap;
10154 }
10155 atomic_inc(&root->nr_swapfiles);
10156 spin_unlock(&root->root_item_lock);
10157
10158 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10159
10160 btrfs_lock_extent(io_tree, 0, isize - 1, &cached_state);
10161 while (prev_extent_end < isize) {
10162 struct btrfs_key key;
10163 struct extent_buffer *leaf;
10164 struct btrfs_file_extent_item *ei;
10165 struct btrfs_block_group *bg;
10166 u64 logical_block_start;
10167 u64 physical_block_start;
10168 u64 extent_gen;
10169 u64 disk_bytenr;
10170 u64 len;
10171
10172 key.objectid = btrfs_ino(BTRFS_I(inode));
10173 key.type = BTRFS_EXTENT_DATA_KEY;
10174 key.offset = prev_extent_end;
10175
10176 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
10177 if (ret < 0)
10178 goto out;
10179
10180 /*
10181 * If key not found it means we have an implicit hole (NO_HOLES
10182 * is enabled).
10183 */
10184 if (ret > 0) {
10185 btrfs_warn(fs_info, "swapfile must not have holes");
10186 ret = -EINVAL;
10187 goto out;
10188 }
10189
10190 leaf = path->nodes[0];
10191 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
10192
10193 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) {
10194 /*
10195 * It's unlikely we'll ever actually find ourselves
10196 * here, as a file small enough to fit inline won't be
10197 * big enough to store more than the swap header, but in
10198 * case something changes in the future, let's catch it
10199 * here rather than later.
10200 */
10201 btrfs_warn(fs_info, "swapfile must not be inline");
10202 ret = -EINVAL;
10203 goto out;
10204 }
10205
10206 if (btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) {
10207 btrfs_warn(fs_info, "swapfile must not be compressed");
10208 ret = -EINVAL;
10209 goto out;
10210 }
10211
10212 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
10213 if (disk_bytenr == 0) {
10214 btrfs_warn(fs_info, "swapfile must not have holes");
10215 ret = -EINVAL;
10216 goto out;
10217 }
10218
10219 logical_block_start = disk_bytenr + btrfs_file_extent_offset(leaf, ei);
10220 extent_gen = btrfs_file_extent_generation(leaf, ei);
10221 prev_extent_end = btrfs_file_extent_end(path);
10222
10223 if (prev_extent_end > isize)
10224 len = isize - key.offset;
10225 else
10226 len = btrfs_file_extent_num_bytes(leaf, ei);
10227
10228 backref_ctx->curr_leaf_bytenr = leaf->start;
10229
10230 /*
10231 * Don't need the path anymore, release to avoid deadlocks when
10232 * calling btrfs_is_data_extent_shared() because when joining a
10233 * transaction it can block waiting for the current one's commit
10234 * which in turn may be trying to lock the same leaf to flush
10235 * delayed items for example.
10236 */
10237 btrfs_release_path(path);
10238
10239 ret = btrfs_is_data_extent_shared(BTRFS_I(inode), disk_bytenr,
10240 extent_gen, backref_ctx);
10241 if (ret < 0) {
10242 goto out;
10243 } else if (ret > 0) {
10244 btrfs_warn(fs_info,
10245 "swapfile must not be copy-on-write");
10246 ret = -EINVAL;
10247 goto out;
10248 }
10249
10250 map = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10251 if (IS_ERR(map)) {
10252 ret = PTR_ERR(map);
10253 goto out;
10254 }
10255
10256 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10257 btrfs_warn(fs_info,
10258 "swapfile must have single data profile");
10259 ret = -EINVAL;
10260 goto out;
10261 }
10262
10263 if (device == NULL) {
10264 device = map->stripes[0].dev;
10265 ret = btrfs_add_swapfile_pin(inode, device, false);
10266 if (ret == 1)
10267 ret = 0;
10268 else if (ret)
10269 goto out;
10270 } else if (device != map->stripes[0].dev) {
10271 btrfs_warn(fs_info, "swapfile must be on one device");
10272 ret = -EINVAL;
10273 goto out;
10274 }
10275
10276 physical_block_start = (map->stripes[0].physical +
10277 (logical_block_start - map->start));
10278 btrfs_free_chunk_map(map);
10279 map = NULL;
10280
10281 bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10282 if (!bg) {
10283 btrfs_warn(fs_info,
10284 "could not find block group containing swapfile");
10285 ret = -EINVAL;
10286 goto out;
10287 }
10288
10289 if (!btrfs_inc_block_group_swap_extents(bg)) {
10290 btrfs_warn(fs_info,
10291 "block group for swapfile at %llu is read-only%s",
10292 bg->start,
10293 atomic_read(&fs_info->scrubs_running) ?
10294 " (scrub running)" : "");
10295 btrfs_put_block_group(bg);
10296 ret = -EINVAL;
10297 goto out;
10298 }
10299
10300 ret = btrfs_add_swapfile_pin(inode, bg, true);
10301 if (ret) {
10302 btrfs_put_block_group(bg);
10303 if (ret == 1)
10304 ret = 0;
10305 else
10306 goto out;
10307 }
10308
10309 if (bsi.block_len &&
10310 bsi.block_start + bsi.block_len == physical_block_start) {
10311 bsi.block_len += len;
10312 } else {
10313 if (bsi.block_len) {
10314 ret = btrfs_add_swap_extent(sis, &bsi);
10315 if (ret)
10316 goto out;
10317 }
10318 bsi.start = key.offset;
10319 bsi.block_start = physical_block_start;
10320 bsi.block_len = len;
10321 }
10322
10323 if (fatal_signal_pending(current)) {
10324 ret = -EINTR;
10325 goto out;
10326 }
10327
10328 cond_resched();
10329 }
10330
10331 if (bsi.block_len)
10332 ret = btrfs_add_swap_extent(sis, &bsi);
10333
10334 out:
10335 if (!IS_ERR_OR_NULL(map))
10336 btrfs_free_chunk_map(map);
10337
10338 btrfs_unlock_extent(io_tree, 0, isize - 1, &cached_state);
10339
10340 if (ret)
10341 btrfs_swap_deactivate(file);
10342
10343 btrfs_drew_write_unlock(&root->snapshot_lock);
10344
10345 btrfs_exclop_finish(fs_info);
10346
10347 out_unlock_mmap:
10348 up_write(&BTRFS_I(inode)->i_mmap_lock);
10349 btrfs_free_backref_share_ctx(backref_ctx);
10350 btrfs_free_path(path);
10351 if (ret)
10352 return ret;
10353
10354 if (device)
10355 sis->bdev = device->bdev;
10356 *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10357 sis->max = bsi.nr_pages;
10358 sis->pages = bsi.nr_pages - 1;
10359 return bsi.nr_extents;
10360 }
10361 #else
btrfs_swap_deactivate(struct file * file)10362 static void btrfs_swap_deactivate(struct file *file)
10363 {
10364 }
10365
btrfs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)10366 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10367 sector_t *span)
10368 {
10369 return -EOPNOTSUPP;
10370 }
10371 #endif
10372
10373 /*
10374 * Update the number of bytes used in the VFS' inode. When we replace extents in
10375 * a range (clone, dedupe, fallocate's zero range), we must update the number of
10376 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
10377 * always get a correct value.
10378 */
btrfs_update_inode_bytes(struct btrfs_inode * inode,const u64 add_bytes,const u64 del_bytes)10379 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
10380 const u64 add_bytes,
10381 const u64 del_bytes)
10382 {
10383 if (add_bytes == del_bytes)
10384 return;
10385
10386 spin_lock(&inode->lock);
10387 if (del_bytes > 0)
10388 inode_sub_bytes(&inode->vfs_inode, del_bytes);
10389 if (add_bytes > 0)
10390 inode_add_bytes(&inode->vfs_inode, add_bytes);
10391 spin_unlock(&inode->lock);
10392 }
10393
10394 /*
10395 * Verify that there are no ordered extents for a given file range.
10396 *
10397 * @inode: The target inode.
10398 * @start: Start offset of the file range, should be sector size aligned.
10399 * @end: End offset (inclusive) of the file range, its value +1 should be
10400 * sector size aligned.
10401 *
10402 * This should typically be used for cases where we locked an inode's VFS lock in
10403 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode,
10404 * we have flushed all delalloc in the range, we have waited for all ordered
10405 * extents in the range to complete and finally we have locked the file range in
10406 * the inode's io_tree.
10407 */
btrfs_assert_inode_range_clean(struct btrfs_inode * inode,u64 start,u64 end)10408 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end)
10409 {
10410 struct btrfs_root *root = inode->root;
10411 struct btrfs_ordered_extent *ordered;
10412
10413 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
10414 return;
10415
10416 ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start);
10417 if (ordered) {
10418 btrfs_err(root->fs_info,
10419 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])",
10420 start, end, btrfs_ino(inode), btrfs_root_id(root),
10421 ordered->file_offset,
10422 ordered->file_offset + ordered->num_bytes - 1);
10423 btrfs_put_ordered_extent(ordered);
10424 }
10425
10426 ASSERT(ordered == NULL);
10427 }
10428
10429 /*
10430 * Find the first inode with a minimum number.
10431 *
10432 * @root: The root to search for.
10433 * @min_ino: The minimum inode number.
10434 *
10435 * Find the first inode in the @root with a number >= @min_ino and return it.
10436 * Returns NULL if no such inode found.
10437 */
btrfs_find_first_inode(struct btrfs_root * root,u64 min_ino)10438 struct btrfs_inode *btrfs_find_first_inode(struct btrfs_root *root, u64 min_ino)
10439 {
10440 struct btrfs_inode *inode;
10441 unsigned long from = min_ino;
10442
10443 xa_lock(&root->inodes);
10444 while (true) {
10445 inode = xa_find(&root->inodes, &from, ULONG_MAX, XA_PRESENT);
10446 if (!inode)
10447 break;
10448 if (igrab(&inode->vfs_inode))
10449 break;
10450
10451 from = btrfs_ino(inode) + 1;
10452 cond_resched_lock(&root->inodes.xa_lock);
10453 }
10454 xa_unlock(&root->inodes);
10455
10456 return inode;
10457 }
10458
10459 static const struct inode_operations btrfs_dir_inode_operations = {
10460 .getattr = btrfs_getattr,
10461 .lookup = btrfs_lookup,
10462 .create = btrfs_create,
10463 .unlink = btrfs_unlink,
10464 .link = btrfs_link,
10465 .mkdir = btrfs_mkdir,
10466 .rmdir = btrfs_rmdir,
10467 .rename = btrfs_rename2,
10468 .symlink = btrfs_symlink,
10469 .setattr = btrfs_setattr,
10470 .mknod = btrfs_mknod,
10471 .listxattr = btrfs_listxattr,
10472 .permission = btrfs_permission,
10473 .get_inode_acl = btrfs_get_acl,
10474 .set_acl = btrfs_set_acl,
10475 .update_time = btrfs_update_time,
10476 .tmpfile = btrfs_tmpfile,
10477 .fileattr_get = btrfs_fileattr_get,
10478 .fileattr_set = btrfs_fileattr_set,
10479 };
10480
10481 static const struct file_operations btrfs_dir_file_operations = {
10482 .llseek = btrfs_dir_llseek,
10483 .read = generic_read_dir,
10484 .iterate_shared = btrfs_real_readdir,
10485 .open = btrfs_opendir,
10486 .unlocked_ioctl = btrfs_ioctl,
10487 #ifdef CONFIG_COMPAT
10488 .compat_ioctl = btrfs_compat_ioctl,
10489 #endif
10490 .release = btrfs_release_file,
10491 .fsync = btrfs_sync_file,
10492 };
10493
10494 /*
10495 * btrfs doesn't support the bmap operation because swapfiles
10496 * use bmap to make a mapping of extents in the file. They assume
10497 * these extents won't change over the life of the file and they
10498 * use the bmap result to do IO directly to the drive.
10499 *
10500 * the btrfs bmap call would return logical addresses that aren't
10501 * suitable for IO and they also will change frequently as COW
10502 * operations happen. So, swapfile + btrfs == corruption.
10503 *
10504 * For now we're avoiding this by dropping bmap.
10505 */
10506 static const struct address_space_operations btrfs_aops = {
10507 .read_folio = btrfs_read_folio,
10508 .writepages = btrfs_writepages,
10509 .readahead = btrfs_readahead,
10510 .invalidate_folio = btrfs_invalidate_folio,
10511 .launder_folio = btrfs_launder_folio,
10512 .release_folio = btrfs_release_folio,
10513 .migrate_folio = btrfs_migrate_folio,
10514 .dirty_folio = filemap_dirty_folio,
10515 .error_remove_folio = generic_error_remove_folio,
10516 .swap_activate = btrfs_swap_activate,
10517 .swap_deactivate = btrfs_swap_deactivate,
10518 };
10519
10520 static const struct inode_operations btrfs_file_inode_operations = {
10521 .getattr = btrfs_getattr,
10522 .setattr = btrfs_setattr,
10523 .listxattr = btrfs_listxattr,
10524 .permission = btrfs_permission,
10525 .fiemap = btrfs_fiemap,
10526 .get_inode_acl = btrfs_get_acl,
10527 .set_acl = btrfs_set_acl,
10528 .update_time = btrfs_update_time,
10529 .fileattr_get = btrfs_fileattr_get,
10530 .fileattr_set = btrfs_fileattr_set,
10531 };
10532 static const struct inode_operations btrfs_special_inode_operations = {
10533 .getattr = btrfs_getattr,
10534 .setattr = btrfs_setattr,
10535 .permission = btrfs_permission,
10536 .listxattr = btrfs_listxattr,
10537 .get_inode_acl = btrfs_get_acl,
10538 .set_acl = btrfs_set_acl,
10539 .update_time = btrfs_update_time,
10540 };
10541 static const struct inode_operations btrfs_symlink_inode_operations = {
10542 .get_link = page_get_link,
10543 .getattr = btrfs_getattr,
10544 .setattr = btrfs_setattr,
10545 .permission = btrfs_permission,
10546 .listxattr = btrfs_listxattr,
10547 .update_time = btrfs_update_time,
10548 };
10549
10550 const struct dentry_operations btrfs_dentry_operations = {
10551 .d_delete = btrfs_dentry_delete,
10552 };
10553