xref: /linux/fs/btrfs/space-info.c (revision 7696286034ac72cf9b46499be1715ac62fd302c3)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/spinlock.h>
4 #include <linux/minmax.h>
5 #include "misc.h"
6 #include "ctree.h"
7 #include "space-info.h"
8 #include "sysfs.h"
9 #include "volumes.h"
10 #include "free-space-cache.h"
11 #include "ordered-data.h"
12 #include "transaction.h"
13 #include "block-group.h"
14 #include "fs.h"
15 #include "accessors.h"
16 #include "extent-tree.h"
17 #include "zoned.h"
18 #include "delayed-inode.h"
19 
20 /*
21  * HOW DOES SPACE RESERVATION WORK
22  *
23  * If you want to know about delalloc specifically, there is a separate comment
24  * for that with the delalloc code.  This comment is about how the whole system
25  * works generally.
26  *
27  * BASIC CONCEPTS
28  *
29  *   1) space_info.  This is the ultimate arbiter of how much space we can use.
30  *   There's a description of the bytes_ fields with the struct declaration,
31  *   refer to that for specifics on each field.  Suffice it to say that for
32  *   reservations we care about total_bytes - SUM(space_info->bytes_) when
33  *   determining if there is space to make an allocation.  There is a space_info
34  *   for METADATA, SYSTEM, and DATA areas.
35  *
36  *   2) block_rsv's.  These are basically buckets for every different type of
37  *   metadata reservation we have.  You can see the comment in the block_rsv
38  *   code on the rules for each type, but generally block_rsv->reserved is how
39  *   much space is accounted for in space_info->bytes_may_use.
40  *
41  *   3) btrfs_calc*_size.  These are the worst case calculations we used based
42  *   on the number of items we will want to modify.  We have one for changing
43  *   items, and one for inserting new items.  Generally we use these helpers to
44  *   determine the size of the block reserves, and then use the actual bytes
45  *   values to adjust the space_info counters.
46  *
47  * MAKING RESERVATIONS, THE NORMAL CASE
48  *
49  *   We call into either btrfs_reserve_data_bytes() or
50  *   btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
51  *   num_bytes we want to reserve.
52  *
53  *   ->reserve
54  *     space_info->bytes_may_use += num_bytes
55  *
56  *   ->extent allocation
57  *     Call btrfs_add_reserved_bytes() which does
58  *     space_info->bytes_may_use -= num_bytes
59  *     space_info->bytes_reserved += extent_bytes
60  *
61  *   ->insert reference
62  *     Call btrfs_update_block_group() which does
63  *     space_info->bytes_reserved -= extent_bytes
64  *     space_info->bytes_used += extent_bytes
65  *
66  * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
67  *
68  *   Assume we are unable to simply make the reservation because we do not have
69  *   enough space
70  *
71  *   -> reserve_bytes
72  *     create a reserve_ticket with ->bytes set to our reservation, add it to
73  *     the tail of space_info->tickets, kick async flush thread
74  *
75  *   ->handle_reserve_ticket
76  *     wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
77  *     on the ticket.
78  *
79  *   -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
80  *     Flushes various things attempting to free up space.
81  *
82  *   -> btrfs_try_granting_tickets()
83  *     This is called by anything that either subtracts space from
84  *     space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
85  *     space_info->total_bytes.  This loops through the ->priority_tickets and
86  *     then the ->tickets list checking to see if the reservation can be
87  *     completed.  If it can the space is added to space_info->bytes_may_use and
88  *     the ticket is woken up.
89  *
90  *   -> ticket wakeup
91  *     Check if ->bytes == 0, if it does we got our reservation and we can carry
92  *     on, if not return the appropriate error (ENOSPC, but can be EINTR if we
93  *     were interrupted.)
94  *
95  * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
96  *
97  *   Same as the above, except we add ourselves to the
98  *   space_info->priority_tickets, and we do not use ticket->wait, we simply
99  *   call flush_space() ourselves for the states that are safe for us to call
100  *   without deadlocking and hope for the best.
101  *
102  * THE FLUSHING STATES
103  *
104  *   Generally speaking we will have two cases for each state, a "nice" state
105  *   and a "ALL THE THINGS" state.  In btrfs we delay a lot of work in order to
106  *   reduce the locking over head on the various trees, and even to keep from
107  *   doing any work at all in the case of delayed refs.  Each of these delayed
108  *   things however hold reservations, and so letting them run allows us to
109  *   reclaim space so we can make new reservations.
110  *
111  *   FLUSH_DELAYED_ITEMS
112  *     Every inode has a delayed item to update the inode.  Take a simple write
113  *     for example, we would update the inode item at write time to update the
114  *     mtime, and then again at finish_ordered_io() time in order to update the
115  *     isize or bytes.  We keep these delayed items to coalesce these operations
116  *     into a single operation done on demand.  These are an easy way to reclaim
117  *     metadata space.
118  *
119  *   FLUSH_DELALLOC
120  *     Look at the delalloc comment to get an idea of how much space is reserved
121  *     for delayed allocation.  We can reclaim some of this space simply by
122  *     running delalloc, but usually we need to wait for ordered extents to
123  *     reclaim the bulk of this space.
124  *
125  *   FLUSH_DELAYED_REFS
126  *     We have a block reserve for the outstanding delayed refs space, and every
127  *     delayed ref operation holds a reservation.  Running these is a quick way
128  *     to reclaim space, but we want to hold this until the end because COW can
129  *     churn a lot and we can avoid making some extent tree modifications if we
130  *     are able to delay for as long as possible.
131  *
132  *   RESET_ZONES
133  *     This state works only for the zoned mode. On the zoned mode, we cannot
134  *     reuse once allocated then freed region until we reset the zone, due to
135  *     the sequential write zone requirement. The RESET_ZONES state resets the
136  *     zones of an unused block group and let us reuse the space. The reusing
137  *     is faster than removing the block group and allocating another block
138  *     group on the zones.
139  *
140  *   ALLOC_CHUNK
141  *     We will skip this the first time through space reservation, because of
142  *     overcommit and we don't want to have a lot of useless metadata space when
143  *     our worst case reservations will likely never come true.
144  *
145  *   RUN_DELAYED_IPUTS
146  *     If we're freeing inodes we're likely freeing checksums, file extent
147  *     items, and extent tree items.  Loads of space could be freed up by these
148  *     operations, however they won't be usable until the transaction commits.
149  *
150  *   COMMIT_TRANS
151  *     This will commit the transaction.  Historically we had a lot of logic
152  *     surrounding whether or not we'd commit the transaction, but this waits born
153  *     out of a pre-tickets era where we could end up committing the transaction
154  *     thousands of times in a row without making progress.  Now thanks to our
155  *     ticketing system we know if we're not making progress and can error
156  *     everybody out after a few commits rather than burning the disk hoping for
157  *     a different answer.
158  *
159  * OVERCOMMIT
160  *
161  *   Because we hold so many reservations for metadata we will allow you to
162  *   reserve more space than is currently free in the currently allocate
163  *   metadata space.  This only happens with metadata, data does not allow
164  *   overcommitting.
165  *
166  *   You can see the current logic for when we allow overcommit in
167  *   btrfs_can_overcommit(), but it only applies to unallocated space.  If there
168  *   is no unallocated space to be had, all reservations are kept within the
169  *   free space in the allocated metadata chunks.
170  *
171  *   Because of overcommitting, you generally want to use the
172  *   btrfs_can_overcommit() logic for metadata allocations, as it does the right
173  *   thing with or without extra unallocated space.
174  */
175 
176 struct reserve_ticket {
177 	u64 bytes;
178 	int error;
179 	bool steal;
180 	struct list_head list;
181 	wait_queue_head_t wait;
182 	spinlock_t lock;
183 };
184 
185 /*
186  * after adding space to the filesystem, we need to clear the full flags
187  * on all the space infos.
188  */
189 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
190 {
191 	struct list_head *head = &info->space_info;
192 	struct btrfs_space_info *found;
193 
194 	list_for_each_entry(found, head, list)
195 		found->full = false;
196 }
197 
198 /*
199  * Block groups with more than this value (percents) of unusable space will be
200  * scheduled for background reclaim.
201  */
202 #define BTRFS_DEFAULT_ZONED_RECLAIM_THRESH			(75)
203 
204 #define BTRFS_UNALLOC_BLOCK_GROUP_TARGET			(10ULL)
205 
206 /*
207  * Calculate chunk size depending on volume type (regular or zoned).
208  */
209 static u64 calc_chunk_size(const struct btrfs_fs_info *fs_info, u64 flags)
210 {
211 	if (btrfs_is_zoned(fs_info))
212 		return fs_info->zone_size;
213 
214 	ASSERT(flags & BTRFS_BLOCK_GROUP_TYPE_MASK, "flags=%llu", flags);
215 
216 	if (flags & BTRFS_BLOCK_GROUP_DATA)
217 		return BTRFS_MAX_DATA_CHUNK_SIZE;
218 	else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
219 		return SZ_32M;
220 
221 	/* Handle BTRFS_BLOCK_GROUP_METADATA */
222 	if (fs_info->fs_devices->total_rw_bytes > 50ULL * SZ_1G)
223 		return SZ_1G;
224 
225 	return SZ_256M;
226 }
227 
228 /*
229  * Update default chunk size.
230  */
231 void btrfs_update_space_info_chunk_size(struct btrfs_space_info *space_info,
232 					u64 chunk_size)
233 {
234 	WRITE_ONCE(space_info->chunk_size, chunk_size);
235 }
236 
237 static void init_space_info(struct btrfs_fs_info *info,
238 			    struct btrfs_space_info *space_info, u64 flags)
239 {
240 	space_info->fs_info = info;
241 	for (int i = 0; i < BTRFS_NR_RAID_TYPES; i++)
242 		INIT_LIST_HEAD(&space_info->block_groups[i]);
243 	init_rwsem(&space_info->groups_sem);
244 	spin_lock_init(&space_info->lock);
245 	space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
246 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
247 	INIT_LIST_HEAD(&space_info->ro_bgs);
248 	INIT_LIST_HEAD(&space_info->tickets);
249 	INIT_LIST_HEAD(&space_info->priority_tickets);
250 	space_info->clamp = 1;
251 	btrfs_update_space_info_chunk_size(space_info, calc_chunk_size(info, flags));
252 	space_info->subgroup_id = BTRFS_SUB_GROUP_PRIMARY;
253 
254 	if (btrfs_is_zoned(info))
255 		space_info->bg_reclaim_threshold = BTRFS_DEFAULT_ZONED_RECLAIM_THRESH;
256 }
257 
258 static int create_space_info_sub_group(struct btrfs_space_info *parent, u64 flags,
259 				       enum btrfs_space_info_sub_group id, int index)
260 {
261 	struct btrfs_fs_info *fs_info = parent->fs_info;
262 	struct btrfs_space_info *sub_group;
263 	int ret;
264 
265 	ASSERT(parent->subgroup_id == BTRFS_SUB_GROUP_PRIMARY,
266 	       "parent->subgroup_id=%d", parent->subgroup_id);
267 	ASSERT(id != BTRFS_SUB_GROUP_PRIMARY, "id=%d", id);
268 
269 	sub_group = kzalloc(sizeof(*sub_group), GFP_NOFS);
270 	if (!sub_group)
271 		return -ENOMEM;
272 
273 	init_space_info(fs_info, sub_group, flags);
274 	parent->sub_group[index] = sub_group;
275 	sub_group->parent = parent;
276 	sub_group->subgroup_id = id;
277 
278 	ret = btrfs_sysfs_add_space_info_type(sub_group);
279 	if (ret) {
280 		kfree(sub_group);
281 		parent->sub_group[index] = NULL;
282 	}
283 	return ret;
284 }
285 
286 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
287 {
288 
289 	struct btrfs_space_info *space_info;
290 	int ret = 0;
291 
292 	space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
293 	if (!space_info)
294 		return -ENOMEM;
295 
296 	init_space_info(info, space_info, flags);
297 
298 	if (btrfs_is_zoned(info)) {
299 		if (flags & BTRFS_BLOCK_GROUP_DATA)
300 			ret = create_space_info_sub_group(space_info, flags,
301 							  BTRFS_SUB_GROUP_DATA_RELOC,
302 							  0);
303 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
304 			ret = create_space_info_sub_group(space_info, flags,
305 							  BTRFS_SUB_GROUP_TREELOG,
306 							  0);
307 
308 		if (ret)
309 			return ret;
310 	}
311 
312 	ret = btrfs_sysfs_add_space_info_type(space_info);
313 	if (ret)
314 		return ret;
315 
316 	list_add(&space_info->list, &info->space_info);
317 	if (flags & BTRFS_BLOCK_GROUP_DATA)
318 		info->data_sinfo = space_info;
319 
320 	return ret;
321 }
322 
323 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
324 {
325 	struct btrfs_super_block *disk_super;
326 	u64 features;
327 	u64 flags;
328 	int mixed = 0;
329 	int ret;
330 
331 	disk_super = fs_info->super_copy;
332 	if (!btrfs_super_root(disk_super))
333 		return -EINVAL;
334 
335 	features = btrfs_super_incompat_flags(disk_super);
336 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
337 		mixed = 1;
338 
339 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
340 	ret = create_space_info(fs_info, flags);
341 	if (ret)
342 		goto out;
343 
344 	if (mixed) {
345 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
346 		ret = create_space_info(fs_info, flags);
347 	} else {
348 		flags = BTRFS_BLOCK_GROUP_METADATA;
349 		ret = create_space_info(fs_info, flags);
350 		if (ret)
351 			goto out;
352 
353 		flags = BTRFS_BLOCK_GROUP_DATA;
354 		ret = create_space_info(fs_info, flags);
355 	}
356 out:
357 	return ret;
358 }
359 
360 void btrfs_add_bg_to_space_info(struct btrfs_fs_info *info,
361 				struct btrfs_block_group *block_group)
362 {
363 	struct btrfs_space_info *space_info = block_group->space_info;
364 	int factor, index;
365 
366 	factor = btrfs_bg_type_to_factor(block_group->flags);
367 
368 	spin_lock(&space_info->lock);
369 	space_info->total_bytes += block_group->length;
370 	space_info->disk_total += block_group->length * factor;
371 	space_info->bytes_used += block_group->used;
372 	space_info->disk_used += block_group->used * factor;
373 	space_info->bytes_readonly += block_group->bytes_super;
374 	btrfs_space_info_update_bytes_zone_unusable(space_info, block_group->zone_unusable);
375 	if (block_group->length > 0)
376 		space_info->full = false;
377 	btrfs_try_granting_tickets(space_info);
378 	spin_unlock(&space_info->lock);
379 
380 	block_group->space_info = space_info;
381 
382 	index = btrfs_bg_flags_to_raid_index(block_group->flags);
383 	down_write(&space_info->groups_sem);
384 	list_add_tail(&block_group->list, &space_info->block_groups[index]);
385 	up_write(&space_info->groups_sem);
386 }
387 
388 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
389 					       u64 flags)
390 {
391 	struct list_head *head = &info->space_info;
392 	struct btrfs_space_info *found;
393 
394 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
395 
396 	list_for_each_entry(found, head, list) {
397 		if (found->flags & flags)
398 			return found;
399 	}
400 	return NULL;
401 }
402 
403 static u64 calc_effective_data_chunk_size(struct btrfs_fs_info *fs_info)
404 {
405 	struct btrfs_space_info *data_sinfo;
406 	u64 data_chunk_size;
407 
408 	/*
409 	 * Calculate the data_chunk_size, space_info->chunk_size is the
410 	 * "optimal" chunk size based on the fs size.  However when we actually
411 	 * allocate the chunk we will strip this down further, making it no
412 	 * more than 10% of the disk or 1G, whichever is smaller.
413 	 *
414 	 * On the zoned mode, we need to use zone_size (= data_sinfo->chunk_size)
415 	 * as it is.
416 	 */
417 	data_sinfo = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
418 	if (btrfs_is_zoned(fs_info))
419 		return data_sinfo->chunk_size;
420 	data_chunk_size = min(data_sinfo->chunk_size,
421 			      mult_perc(fs_info->fs_devices->total_rw_bytes, 10));
422 	return min_t(u64, data_chunk_size, SZ_1G);
423 }
424 
425 static u64 calc_available_free_space(const struct btrfs_space_info *space_info,
426 				     enum btrfs_reserve_flush_enum flush)
427 {
428 	struct btrfs_fs_info *fs_info = space_info->fs_info;
429 	u64 profile;
430 	u64 avail;
431 	u64 data_chunk_size;
432 	int factor;
433 
434 	if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
435 		profile = btrfs_system_alloc_profile(fs_info);
436 	else
437 		profile = btrfs_metadata_alloc_profile(fs_info);
438 
439 	avail = atomic64_read(&fs_info->free_chunk_space);
440 
441 	/*
442 	 * If we have dup, raid1 or raid10 then only half of the free
443 	 * space is actually usable.  For raid56, the space info used
444 	 * doesn't include the parity drive, so we don't have to
445 	 * change the math
446 	 */
447 	factor = btrfs_bg_type_to_factor(profile);
448 	avail = div_u64(avail, factor);
449 	if (avail == 0)
450 		return 0;
451 
452 	data_chunk_size = calc_effective_data_chunk_size(fs_info);
453 
454 	/*
455 	 * Since data allocations immediately use block groups as part of the
456 	 * reservation, because we assume that data reservations will == actual
457 	 * usage, we could potentially overcommit and then immediately have that
458 	 * available space used by a data allocation, which could put us in a
459 	 * bind when we get close to filling the file system.
460 	 *
461 	 * To handle this simply remove the data_chunk_size from the available
462 	 * space.  If we are relatively empty this won't affect our ability to
463 	 * overcommit much, and if we're very close to full it'll keep us from
464 	 * getting into a position where we've given ourselves very little
465 	 * metadata wiggle room.
466 	 */
467 	if (avail <= data_chunk_size)
468 		return 0;
469 	avail -= data_chunk_size;
470 
471 	/*
472 	 * If we aren't flushing all things, let us overcommit up to
473 	 * 1/2th of the space. If we can flush, don't let us overcommit
474 	 * too much, let it overcommit up to 1/8 of the space.
475 	 */
476 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
477 		avail >>= 3;
478 	else
479 		avail >>= 1;
480 
481 	/*
482 	 * On the zoned mode, we always allocate one zone as one chunk.
483 	 * Returning non-zone size aligned bytes here will result in
484 	 * less pressure for the async metadata reclaim process, and it
485 	 * will over-commit too much leading to ENOSPC. Align down to the
486 	 * zone size to avoid that.
487 	 */
488 	if (btrfs_is_zoned(fs_info))
489 		avail = ALIGN_DOWN(avail, fs_info->zone_size);
490 
491 	return avail;
492 }
493 
494 static inline bool check_can_overcommit(const struct btrfs_space_info *space_info,
495 					u64 space_info_used_bytes, u64 bytes,
496 					enum btrfs_reserve_flush_enum flush)
497 {
498 	const u64 avail = calc_available_free_space(space_info, flush);
499 
500 	return (space_info_used_bytes + bytes < space_info->total_bytes + avail);
501 }
502 
503 static inline bool can_overcommit(const struct btrfs_space_info *space_info,
504 				  u64 space_info_used_bytes, u64 bytes,
505 				  enum btrfs_reserve_flush_enum flush)
506 {
507 	/* Don't overcommit when in mixed mode. */
508 	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
509 		return false;
510 
511 	return check_can_overcommit(space_info, space_info_used_bytes, bytes, flush);
512 }
513 
514 bool btrfs_can_overcommit(const struct btrfs_space_info *space_info, u64 bytes,
515 			  enum btrfs_reserve_flush_enum flush)
516 {
517 	u64 used;
518 
519 	/* Don't overcommit when in mixed mode */
520 	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
521 		return false;
522 
523 	used = btrfs_space_info_used(space_info, true);
524 
525 	return check_can_overcommit(space_info, used, bytes, flush);
526 }
527 
528 static void remove_ticket(struct btrfs_space_info *space_info,
529 			  struct reserve_ticket *ticket, int error)
530 {
531 	lockdep_assert_held(&space_info->lock);
532 
533 	if (!list_empty(&ticket->list)) {
534 		list_del_init(&ticket->list);
535 		ASSERT(space_info->reclaim_size >= ticket->bytes,
536 		       "space_info->reclaim_size=%llu ticket->bytes=%llu",
537 		       space_info->reclaim_size, ticket->bytes);
538 		space_info->reclaim_size -= ticket->bytes;
539 	}
540 
541 	spin_lock(&ticket->lock);
542 	/*
543 	 * If we are called from a task waiting on the ticket, it may happen
544 	 * that before it sets an error on the ticket, a reclaim task was able
545 	 * to satisfy the ticket. In that case ignore the error.
546 	 */
547 	if (error && ticket->bytes > 0)
548 		ticket->error = error;
549 	else
550 		ticket->bytes = 0;
551 
552 	wake_up(&ticket->wait);
553 	spin_unlock(&ticket->lock);
554 }
555 
556 /*
557  * This is for space we already have accounted in space_info->bytes_may_use, so
558  * basically when we're returning space from block_rsv's.
559  */
560 void btrfs_try_granting_tickets(struct btrfs_space_info *space_info)
561 {
562 	struct list_head *head;
563 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
564 	u64 used = btrfs_space_info_used(space_info, true);
565 
566 	lockdep_assert_held(&space_info->lock);
567 
568 	head = &space_info->priority_tickets;
569 again:
570 	while (!list_empty(head)) {
571 		struct reserve_ticket *ticket;
572 		u64 used_after;
573 
574 		ticket = list_first_entry(head, struct reserve_ticket, list);
575 		used_after = used + ticket->bytes;
576 
577 		/* Check and see if our ticket can be satisfied now. */
578 		if (used_after <= space_info->total_bytes ||
579 		    can_overcommit(space_info, used, ticket->bytes, flush)) {
580 			btrfs_space_info_update_bytes_may_use(space_info, ticket->bytes);
581 			remove_ticket(space_info, ticket, 0);
582 			space_info->tickets_id++;
583 			used = used_after;
584 		} else {
585 			break;
586 		}
587 	}
588 
589 	if (head == &space_info->priority_tickets) {
590 		head = &space_info->tickets;
591 		flush = BTRFS_RESERVE_FLUSH_ALL;
592 		goto again;
593 	}
594 }
595 
596 #define DUMP_BLOCK_RSV(fs_info, rsv_name)				\
597 do {									\
598 	struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;		\
599 	spin_lock(&__rsv->lock);					\
600 	btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",	\
601 		   __rsv->size, __rsv->reserved);			\
602 	spin_unlock(&__rsv->lock);					\
603 } while (0)
604 
605 static const char *space_info_flag_to_str(const struct btrfs_space_info *space_info)
606 {
607 	switch (space_info->flags) {
608 	case BTRFS_BLOCK_GROUP_SYSTEM:
609 		return "SYSTEM";
610 	case BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA:
611 		return "DATA+METADATA";
612 	case BTRFS_BLOCK_GROUP_DATA:
613 		return "DATA";
614 	case BTRFS_BLOCK_GROUP_METADATA:
615 		return "METADATA";
616 	default:
617 		return "UNKNOWN";
618 	}
619 }
620 
621 static void dump_global_block_rsv(struct btrfs_fs_info *fs_info)
622 {
623 	DUMP_BLOCK_RSV(fs_info, global_block_rsv);
624 	DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
625 	DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
626 	DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
627 	DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
628 }
629 
630 static void __btrfs_dump_space_info(const struct btrfs_space_info *info)
631 {
632 	const struct btrfs_fs_info *fs_info = info->fs_info;
633 	const char *flag_str = space_info_flag_to_str(info);
634 	lockdep_assert_held(&info->lock);
635 
636 	/* The free space could be negative in case of overcommit */
637 	btrfs_info(fs_info,
638 		   "space_info %s (sub-group id %d) has %lld free, is %sfull",
639 		   flag_str, info->subgroup_id,
640 		   (s64)(info->total_bytes - btrfs_space_info_used(info, true)),
641 		   info->full ? "" : "not ");
642 	btrfs_info(fs_info,
643 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu zone_unusable=%llu",
644 		info->total_bytes, info->bytes_used, info->bytes_pinned,
645 		info->bytes_reserved, info->bytes_may_use,
646 		info->bytes_readonly, info->bytes_zone_unusable);
647 }
648 
649 void btrfs_dump_space_info(struct btrfs_space_info *info, u64 bytes,
650 			   bool dump_block_groups)
651 {
652 	struct btrfs_fs_info *fs_info = info->fs_info;
653 	struct btrfs_block_group *cache;
654 	u64 total_avail = 0;
655 	int index = 0;
656 
657 	spin_lock(&info->lock);
658 	__btrfs_dump_space_info(info);
659 	dump_global_block_rsv(fs_info);
660 	spin_unlock(&info->lock);
661 
662 	if (!dump_block_groups)
663 		return;
664 
665 	down_read(&info->groups_sem);
666 again:
667 	list_for_each_entry(cache, &info->block_groups[index], list) {
668 		u64 avail;
669 
670 		spin_lock(&cache->lock);
671 		avail = cache->length - cache->used - cache->pinned -
672 			cache->reserved - cache->bytes_super - cache->zone_unusable;
673 		btrfs_info(fs_info,
674 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %llu delalloc %llu super %llu zone_unusable (%llu bytes available) %s",
675 			   cache->start, cache->length, cache->used, cache->pinned,
676 			   cache->reserved, cache->delalloc_bytes,
677 			   cache->bytes_super, cache->zone_unusable,
678 			   avail, cache->ro ? "[readonly]" : "");
679 		spin_unlock(&cache->lock);
680 		btrfs_dump_free_space(cache, bytes);
681 		total_avail += avail;
682 	}
683 	if (++index < BTRFS_NR_RAID_TYPES)
684 		goto again;
685 	up_read(&info->groups_sem);
686 
687 	btrfs_info(fs_info, "%llu bytes available across all block groups", total_avail);
688 }
689 
690 static inline u64 calc_reclaim_items_nr(const struct btrfs_fs_info *fs_info,
691 					u64 to_reclaim)
692 {
693 	u64 bytes;
694 	u64 nr;
695 
696 	bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
697 	nr = div64_u64(to_reclaim, bytes);
698 	if (!nr)
699 		nr = 1;
700 	return nr;
701 }
702 
703 /*
704  * shrink metadata reservation for delalloc
705  */
706 static void shrink_delalloc(struct btrfs_space_info *space_info,
707 			    u64 to_reclaim, bool wait_ordered,
708 			    bool for_preempt)
709 {
710 	struct btrfs_fs_info *fs_info = space_info->fs_info;
711 	struct btrfs_trans_handle *trans;
712 	u64 delalloc_bytes;
713 	u64 ordered_bytes;
714 	u64 items;
715 	long time_left;
716 	int loops;
717 
718 	delalloc_bytes = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
719 	ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes);
720 	if (delalloc_bytes == 0 && ordered_bytes == 0)
721 		return;
722 
723 	/* Calc the number of the pages we need flush for space reservation */
724 	if (to_reclaim == U64_MAX) {
725 		items = U64_MAX;
726 	} else {
727 		/*
728 		 * to_reclaim is set to however much metadata we need to
729 		 * reclaim, but reclaiming that much data doesn't really track
730 		 * exactly.  What we really want to do is reclaim full inode's
731 		 * worth of reservations, however that's not available to us
732 		 * here.  We will take a fraction of the delalloc bytes for our
733 		 * flushing loops and hope for the best.  Delalloc will expand
734 		 * the amount we write to cover an entire dirty extent, which
735 		 * will reclaim the metadata reservation for that range.  If
736 		 * it's not enough subsequent flush stages will be more
737 		 * aggressive.
738 		 */
739 		to_reclaim = max(to_reclaim, delalloc_bytes >> 3);
740 		items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2;
741 	}
742 
743 	trans = current->journal_info;
744 
745 	/*
746 	 * If we are doing more ordered than delalloc we need to just wait on
747 	 * ordered extents, otherwise we'll waste time trying to flush delalloc
748 	 * that likely won't give us the space back we need.
749 	 */
750 	if (ordered_bytes > delalloc_bytes && !for_preempt)
751 		wait_ordered = true;
752 
753 	loops = 0;
754 	while ((delalloc_bytes || ordered_bytes) && loops < 3) {
755 		u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
756 		long nr_pages = min_t(u64, temp, LONG_MAX);
757 		int async_pages;
758 
759 		btrfs_start_delalloc_roots(fs_info, nr_pages, true);
760 
761 		/*
762 		 * We need to make sure any outstanding async pages are now
763 		 * processed before we continue.  This is because things like
764 		 * sync_inode() try to be smart and skip writing if the inode is
765 		 * marked clean.  We don't use filemap_fwrite for flushing
766 		 * because we want to control how many pages we write out at a
767 		 * time, thus this is the only safe way to make sure we've
768 		 * waited for outstanding compressed workers to have started
769 		 * their jobs and thus have ordered extents set up properly.
770 		 *
771 		 * This exists because we do not want to wait for each
772 		 * individual inode to finish its async work, we simply want to
773 		 * start the IO on everybody, and then come back here and wait
774 		 * for all of the async work to catch up.  Once we're done with
775 		 * that we know we'll have ordered extents for everything and we
776 		 * can decide if we wait for that or not.
777 		 *
778 		 * If we choose to replace this in the future, make absolutely
779 		 * sure that the proper waiting is being done in the async case,
780 		 * as there have been bugs in that area before.
781 		 */
782 		async_pages = atomic_read(&fs_info->async_delalloc_pages);
783 		if (!async_pages)
784 			goto skip_async;
785 
786 		/*
787 		 * We don't want to wait forever, if we wrote less pages in this
788 		 * loop than we have outstanding, only wait for that number of
789 		 * pages, otherwise we can wait for all async pages to finish
790 		 * before continuing.
791 		 */
792 		if (async_pages > nr_pages)
793 			async_pages -= nr_pages;
794 		else
795 			async_pages = 0;
796 		wait_event(fs_info->async_submit_wait,
797 			   atomic_read(&fs_info->async_delalloc_pages) <=
798 			   async_pages);
799 skip_async:
800 		loops++;
801 		if (wait_ordered && !trans) {
802 			btrfs_wait_ordered_roots(fs_info, items, NULL);
803 		} else {
804 			time_left = schedule_timeout_killable(1);
805 			if (time_left)
806 				break;
807 		}
808 
809 		/*
810 		 * If we are for preemption we just want a one-shot of delalloc
811 		 * flushing so we can stop flushing if we decide we don't need
812 		 * to anymore.
813 		 */
814 		if (for_preempt)
815 			break;
816 
817 		spin_lock(&space_info->lock);
818 		if (list_empty(&space_info->tickets) &&
819 		    list_empty(&space_info->priority_tickets)) {
820 			spin_unlock(&space_info->lock);
821 			break;
822 		}
823 		spin_unlock(&space_info->lock);
824 
825 		delalloc_bytes = percpu_counter_sum_positive(
826 						&fs_info->delalloc_bytes);
827 		ordered_bytes = percpu_counter_sum_positive(
828 						&fs_info->ordered_bytes);
829 	}
830 }
831 
832 /*
833  * Try to flush some data based on policy set by @state. This is only advisory
834  * and may fail for various reasons. The caller is supposed to examine the
835  * state of @space_info to detect the outcome.
836  */
837 static void flush_space(struct btrfs_space_info *space_info, u64 num_bytes,
838 			enum btrfs_flush_state state, bool for_preempt)
839 {
840 	struct btrfs_fs_info *fs_info = space_info->fs_info;
841 	struct btrfs_root *root = fs_info->tree_root;
842 	struct btrfs_trans_handle *trans;
843 	int nr;
844 	int ret = 0;
845 
846 	switch (state) {
847 	case FLUSH_DELAYED_ITEMS_NR:
848 	case FLUSH_DELAYED_ITEMS:
849 		if (state == FLUSH_DELAYED_ITEMS_NR)
850 			nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
851 		else
852 			nr = -1;
853 
854 		trans = btrfs_join_transaction_nostart(root);
855 		if (IS_ERR(trans)) {
856 			ret = PTR_ERR(trans);
857 			if (ret == -ENOENT)
858 				ret = 0;
859 			break;
860 		}
861 		ret = btrfs_run_delayed_items_nr(trans, nr);
862 		btrfs_end_transaction(trans);
863 		break;
864 	case FLUSH_DELALLOC:
865 	case FLUSH_DELALLOC_WAIT:
866 	case FLUSH_DELALLOC_FULL:
867 		if (state == FLUSH_DELALLOC_FULL)
868 			num_bytes = U64_MAX;
869 		shrink_delalloc(space_info, num_bytes,
870 				state != FLUSH_DELALLOC, for_preempt);
871 		break;
872 	case FLUSH_DELAYED_REFS_NR:
873 	case FLUSH_DELAYED_REFS:
874 		trans = btrfs_join_transaction_nostart(root);
875 		if (IS_ERR(trans)) {
876 			ret = PTR_ERR(trans);
877 			if (ret == -ENOENT)
878 				ret = 0;
879 			break;
880 		}
881 		if (state == FLUSH_DELAYED_REFS_NR)
882 			btrfs_run_delayed_refs(trans, num_bytes);
883 		else
884 			btrfs_run_delayed_refs(trans, 0);
885 		btrfs_end_transaction(trans);
886 		break;
887 	case ALLOC_CHUNK:
888 	case ALLOC_CHUNK_FORCE:
889 		trans = btrfs_join_transaction(root);
890 		if (IS_ERR(trans)) {
891 			ret = PTR_ERR(trans);
892 			break;
893 		}
894 		ret = btrfs_chunk_alloc(trans, space_info,
895 				btrfs_get_alloc_profile(fs_info, space_info->flags),
896 				(state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
897 					CHUNK_ALLOC_FORCE);
898 		btrfs_end_transaction(trans);
899 
900 		if (ret > 0 || ret == -ENOSPC)
901 			ret = 0;
902 		break;
903 	case RUN_DELAYED_IPUTS:
904 		/*
905 		 * If we have pending delayed iputs then we could free up a
906 		 * bunch of pinned space, so make sure we run the iputs before
907 		 * we do our pinned bytes check below.
908 		 */
909 		btrfs_run_delayed_iputs(fs_info);
910 		btrfs_wait_on_delayed_iputs(fs_info);
911 		break;
912 	case COMMIT_TRANS:
913 		ASSERT(current->journal_info == NULL);
914 		/*
915 		 * We don't want to start a new transaction, just attach to the
916 		 * current one or wait it fully commits in case its commit is
917 		 * happening at the moment. Note: we don't use a nostart join
918 		 * because that does not wait for a transaction to fully commit
919 		 * (only for it to be unblocked, state TRANS_STATE_UNBLOCKED).
920 		 */
921 		ret = btrfs_commit_current_transaction(root);
922 		break;
923 	case RESET_ZONES:
924 		ret = btrfs_reset_unused_block_groups(space_info, num_bytes);
925 		break;
926 	default:
927 		ret = -ENOSPC;
928 		break;
929 	}
930 
931 	trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
932 				ret, for_preempt);
933 	return;
934 }
935 
936 static u64 btrfs_calc_reclaim_metadata_size(const struct btrfs_space_info *space_info)
937 {
938 	u64 used;
939 	u64 avail;
940 	u64 to_reclaim = space_info->reclaim_size;
941 
942 	lockdep_assert_held(&space_info->lock);
943 
944 	avail = calc_available_free_space(space_info, BTRFS_RESERVE_FLUSH_ALL);
945 	used = btrfs_space_info_used(space_info, true);
946 
947 	/*
948 	 * We may be flushing because suddenly we have less space than we had
949 	 * before, and now we're well over-committed based on our current free
950 	 * space.  If that's the case add in our overage so we make sure to put
951 	 * appropriate pressure on the flushing state machine.
952 	 */
953 	if (space_info->total_bytes + avail < used)
954 		to_reclaim += used - (space_info->total_bytes + avail);
955 
956 	return to_reclaim;
957 }
958 
959 static bool need_preemptive_reclaim(const struct btrfs_space_info *space_info)
960 {
961 	struct btrfs_fs_info *fs_info = space_info->fs_info;
962 	const u64 global_rsv_size = btrfs_block_rsv_reserved(&fs_info->global_block_rsv);
963 	u64 ordered, delalloc;
964 	u64 thresh;
965 	u64 used;
966 
967 	lockdep_assert_held(&space_info->lock);
968 
969 	/*
970 	 * We have tickets queued, bail so we don't compete with the async
971 	 * flushers.
972 	 */
973 	if (space_info->reclaim_size)
974 		return false;
975 
976 	thresh = mult_perc(space_info->total_bytes, 90);
977 
978 	/* If we're just plain full then async reclaim just slows us down. */
979 	if ((space_info->bytes_used + space_info->bytes_reserved +
980 	     global_rsv_size) >= thresh)
981 		return false;
982 
983 	used = space_info->bytes_may_use + space_info->bytes_pinned;
984 
985 	/* The total flushable belongs to the global rsv, don't flush. */
986 	if (global_rsv_size >= used)
987 		return false;
988 
989 	/*
990 	 * 128MiB is 1/4 of the maximum global rsv size.  If we have less than
991 	 * that devoted to other reservations then there's no sense in flushing,
992 	 * we don't have a lot of things that need flushing.
993 	 */
994 	if (used - global_rsv_size <= SZ_128M)
995 		return false;
996 
997 	/*
998 	 * If we have over half of the free space occupied by reservations or
999 	 * pinned then we want to start flushing.
1000 	 *
1001 	 * We do not do the traditional thing here, which is to say
1002 	 *
1003 	 *   if (used >= ((total_bytes + avail) / 2))
1004 	 *     return 1;
1005 	 *
1006 	 * because this doesn't quite work how we want.  If we had more than 50%
1007 	 * of the space_info used by bytes_used and we had 0 available we'd just
1008 	 * constantly run the background flusher.  Instead we want it to kick in
1009 	 * if our reclaimable space exceeds our clamped free space.
1010 	 *
1011 	 * Our clamping range is 2^1 -> 2^8.  Practically speaking that means
1012 	 * the following:
1013 	 *
1014 	 * Amount of RAM        Minimum threshold       Maximum threshold
1015 	 *
1016 	 *        256GiB                     1GiB                  128GiB
1017 	 *        128GiB                   512MiB                   64GiB
1018 	 *         64GiB                   256MiB                   32GiB
1019 	 *         32GiB                   128MiB                   16GiB
1020 	 *         16GiB                    64MiB                    8GiB
1021 	 *
1022 	 * These are the range our thresholds will fall in, corresponding to how
1023 	 * much delalloc we need for the background flusher to kick in.
1024 	 */
1025 
1026 	thresh = calc_available_free_space(space_info, BTRFS_RESERVE_FLUSH_ALL);
1027 	used = space_info->bytes_used + space_info->bytes_reserved +
1028 	       space_info->bytes_readonly + global_rsv_size;
1029 	if (used < space_info->total_bytes)
1030 		thresh += space_info->total_bytes - used;
1031 	thresh >>= space_info->clamp;
1032 
1033 	used = space_info->bytes_pinned;
1034 
1035 	/*
1036 	 * If we have more ordered bytes than delalloc bytes then we're either
1037 	 * doing a lot of DIO, or we simply don't have a lot of delalloc waiting
1038 	 * around.  Preemptive flushing is only useful in that it can free up
1039 	 * space before tickets need to wait for things to finish.  In the case
1040 	 * of ordered extents, preemptively waiting on ordered extents gets us
1041 	 * nothing, if our reservations are tied up in ordered extents we'll
1042 	 * simply have to slow down writers by forcing them to wait on ordered
1043 	 * extents.
1044 	 *
1045 	 * In the case that ordered is larger than delalloc, only include the
1046 	 * block reserves that we would actually be able to directly reclaim
1047 	 * from.  In this case if we're heavy on metadata operations this will
1048 	 * clearly be heavy enough to warrant preemptive flushing.  In the case
1049 	 * of heavy DIO or ordered reservations, preemptive flushing will just
1050 	 * waste time and cause us to slow down.
1051 	 *
1052 	 * We want to make sure we truly are maxed out on ordered however, so
1053 	 * cut ordered in half, and if it's still higher than delalloc then we
1054 	 * can keep flushing.  This is to avoid the case where we start
1055 	 * flushing, and now delalloc == ordered and we stop preemptively
1056 	 * flushing when we could still have several gigs of delalloc to flush.
1057 	 */
1058 	ordered = percpu_counter_read_positive(&fs_info->ordered_bytes) >> 1;
1059 	delalloc = percpu_counter_read_positive(&fs_info->delalloc_bytes);
1060 	if (ordered >= delalloc)
1061 		used += btrfs_block_rsv_reserved(&fs_info->delayed_refs_rsv) +
1062 			btrfs_block_rsv_reserved(&fs_info->delayed_block_rsv);
1063 	else
1064 		used += space_info->bytes_may_use - global_rsv_size;
1065 
1066 	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
1067 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
1068 }
1069 
1070 static bool steal_from_global_rsv(struct btrfs_space_info *space_info,
1071 				  struct reserve_ticket *ticket)
1072 {
1073 	struct btrfs_fs_info *fs_info = space_info->fs_info;
1074 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
1075 	u64 min_bytes;
1076 
1077 	lockdep_assert_held(&space_info->lock);
1078 
1079 	if (!ticket->steal)
1080 		return false;
1081 
1082 	if (global_rsv->space_info != space_info)
1083 		return false;
1084 
1085 	spin_lock(&global_rsv->lock);
1086 	min_bytes = mult_perc(global_rsv->size, 10);
1087 	if (global_rsv->reserved < min_bytes + ticket->bytes) {
1088 		spin_unlock(&global_rsv->lock);
1089 		return false;
1090 	}
1091 	global_rsv->reserved -= ticket->bytes;
1092 	if (global_rsv->reserved < global_rsv->size)
1093 		global_rsv->full = false;
1094 	spin_unlock(&global_rsv->lock);
1095 
1096 	remove_ticket(space_info, ticket, 0);
1097 	space_info->tickets_id++;
1098 
1099 	return true;
1100 }
1101 
1102 /*
1103  * We've exhausted our flushing, start failing tickets.
1104  *
1105  * @space_info - the space info we were flushing
1106  *
1107  * We call this when we've exhausted our flushing ability and haven't made
1108  * progress in satisfying tickets.  The reservation code handles tickets in
1109  * order, so if there is a large ticket first and then smaller ones we could
1110  * very well satisfy the smaller tickets.  This will attempt to wake up any
1111  * tickets in the list to catch this case.
1112  *
1113  * This function returns true if it was able to make progress by clearing out
1114  * other tickets, or if it stumbles across a ticket that was smaller than the
1115  * first ticket.
1116  */
1117 static bool maybe_fail_all_tickets(struct btrfs_space_info *space_info)
1118 {
1119 	struct btrfs_fs_info *fs_info = space_info->fs_info;
1120 	struct reserve_ticket *ticket;
1121 	u64 tickets_id = space_info->tickets_id;
1122 	const int abort_error = BTRFS_FS_ERROR(fs_info);
1123 
1124 	trace_btrfs_fail_all_tickets(fs_info, space_info);
1125 
1126 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1127 		btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
1128 		__btrfs_dump_space_info(space_info);
1129 	}
1130 
1131 	while (!list_empty(&space_info->tickets) &&
1132 	       tickets_id == space_info->tickets_id) {
1133 		ticket = list_first_entry(&space_info->tickets,
1134 					  struct reserve_ticket, list);
1135 		if (unlikely(abort_error)) {
1136 			remove_ticket(space_info, ticket, abort_error);
1137 		} else {
1138 			if (steal_from_global_rsv(space_info, ticket))
1139 				return true;
1140 
1141 			if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1142 				btrfs_info(fs_info, "failing ticket with %llu bytes",
1143 					   ticket->bytes);
1144 
1145 			remove_ticket(space_info, ticket, -ENOSPC);
1146 
1147 			/*
1148 			 * We're just throwing tickets away, so more flushing may
1149 			 * not trip over btrfs_try_granting_tickets, so we need
1150 			 * to call it here to see if we can make progress with
1151 			 * the next ticket in the list.
1152 			 */
1153 			btrfs_try_granting_tickets(space_info);
1154 		}
1155 	}
1156 	return (tickets_id != space_info->tickets_id);
1157 }
1158 
1159 static void do_async_reclaim_metadata_space(struct btrfs_space_info *space_info)
1160 {
1161 	struct btrfs_fs_info *fs_info = space_info->fs_info;
1162 	u64 to_reclaim;
1163 	enum btrfs_flush_state flush_state;
1164 	int commit_cycles = 0;
1165 	u64 last_tickets_id;
1166 	enum btrfs_flush_state final_state;
1167 
1168 	if (btrfs_is_zoned(fs_info))
1169 		final_state = RESET_ZONES;
1170 	else
1171 		final_state = COMMIT_TRANS;
1172 
1173 	spin_lock(&space_info->lock);
1174 	to_reclaim = btrfs_calc_reclaim_metadata_size(space_info);
1175 	if (!to_reclaim) {
1176 		space_info->flush = false;
1177 		spin_unlock(&space_info->lock);
1178 		return;
1179 	}
1180 	last_tickets_id = space_info->tickets_id;
1181 	spin_unlock(&space_info->lock);
1182 
1183 	flush_state = FLUSH_DELAYED_ITEMS_NR;
1184 	do {
1185 		flush_space(space_info, to_reclaim, flush_state, false);
1186 		spin_lock(&space_info->lock);
1187 		if (list_empty(&space_info->tickets)) {
1188 			space_info->flush = false;
1189 			spin_unlock(&space_info->lock);
1190 			return;
1191 		}
1192 		to_reclaim = btrfs_calc_reclaim_metadata_size(space_info);
1193 		if (last_tickets_id == space_info->tickets_id) {
1194 			flush_state++;
1195 		} else {
1196 			last_tickets_id = space_info->tickets_id;
1197 			flush_state = FLUSH_DELAYED_ITEMS_NR;
1198 			if (commit_cycles)
1199 				commit_cycles--;
1200 		}
1201 
1202 		/*
1203 		 * We do not want to empty the system of delalloc unless we're
1204 		 * under heavy pressure, so allow one trip through the flushing
1205 		 * logic before we start doing a FLUSH_DELALLOC_FULL.
1206 		 */
1207 		if (flush_state == FLUSH_DELALLOC_FULL && !commit_cycles)
1208 			flush_state++;
1209 
1210 		/*
1211 		 * We don't want to force a chunk allocation until we've tried
1212 		 * pretty hard to reclaim space.  Think of the case where we
1213 		 * freed up a bunch of space and so have a lot of pinned space
1214 		 * to reclaim.  We would rather use that than possibly create a
1215 		 * underutilized metadata chunk.  So if this is our first run
1216 		 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
1217 		 * commit the transaction.  If nothing has changed the next go
1218 		 * around then we can force a chunk allocation.
1219 		 */
1220 		if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
1221 			flush_state++;
1222 
1223 		if (flush_state > final_state) {
1224 			commit_cycles++;
1225 			if (commit_cycles > 2) {
1226 				if (maybe_fail_all_tickets(space_info)) {
1227 					flush_state = FLUSH_DELAYED_ITEMS_NR;
1228 					commit_cycles--;
1229 				} else {
1230 					space_info->flush = false;
1231 				}
1232 			} else {
1233 				flush_state = FLUSH_DELAYED_ITEMS_NR;
1234 			}
1235 		}
1236 		spin_unlock(&space_info->lock);
1237 	} while (flush_state <= final_state);
1238 }
1239 
1240 /*
1241  * This is for normal flushers, it can wait as much time as needed. We will
1242  * loop and continuously try to flush as long as we are making progress.  We
1243  * count progress as clearing off tickets each time we have to loop.
1244  */
1245 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
1246 {
1247 	struct btrfs_fs_info *fs_info;
1248 	struct btrfs_space_info *space_info;
1249 
1250 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
1251 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1252 	do_async_reclaim_metadata_space(space_info);
1253 	for (int i = 0; i < BTRFS_SPACE_INFO_SUB_GROUP_MAX; i++) {
1254 		if (space_info->sub_group[i])
1255 			do_async_reclaim_metadata_space(space_info->sub_group[i]);
1256 	}
1257 }
1258 
1259 /*
1260  * This handles pre-flushing of metadata space before we get to the point that
1261  * we need to start blocking threads on tickets.  The logic here is different
1262  * from the other flush paths because it doesn't rely on tickets to tell us how
1263  * much we need to flush, instead it attempts to keep us below the 80% full
1264  * watermark of space by flushing whichever reservation pool is currently the
1265  * largest.
1266  */
1267 static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work)
1268 {
1269 	struct btrfs_fs_info *fs_info;
1270 	struct btrfs_space_info *space_info;
1271 	struct btrfs_block_rsv *delayed_block_rsv;
1272 	struct btrfs_block_rsv *delayed_refs_rsv;
1273 	struct btrfs_block_rsv *global_rsv;
1274 	struct btrfs_block_rsv *trans_rsv;
1275 	int loops = 0;
1276 
1277 	fs_info = container_of(work, struct btrfs_fs_info,
1278 			       preempt_reclaim_work);
1279 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1280 	delayed_block_rsv = &fs_info->delayed_block_rsv;
1281 	delayed_refs_rsv = &fs_info->delayed_refs_rsv;
1282 	global_rsv = &fs_info->global_block_rsv;
1283 	trans_rsv = &fs_info->trans_block_rsv;
1284 
1285 	spin_lock(&space_info->lock);
1286 	while (need_preemptive_reclaim(space_info)) {
1287 		enum btrfs_flush_state flush;
1288 		u64 delalloc_size = 0;
1289 		u64 to_reclaim, block_rsv_size;
1290 		const u64 global_rsv_size = btrfs_block_rsv_reserved(global_rsv);
1291 		const u64 bytes_may_use = space_info->bytes_may_use;
1292 		const u64 bytes_pinned = space_info->bytes_pinned;
1293 
1294 		spin_unlock(&space_info->lock);
1295 		/*
1296 		 * We don't have a precise counter for the metadata being
1297 		 * reserved for delalloc, so we'll approximate it by subtracting
1298 		 * out the block rsv's space from the bytes_may_use.  If that
1299 		 * amount is higher than the individual reserves, then we can
1300 		 * assume it's tied up in delalloc reservations.
1301 		 */
1302 		block_rsv_size = global_rsv_size +
1303 			btrfs_block_rsv_reserved(delayed_block_rsv) +
1304 			btrfs_block_rsv_reserved(delayed_refs_rsv) +
1305 			btrfs_block_rsv_reserved(trans_rsv);
1306 		if (block_rsv_size < bytes_may_use)
1307 			delalloc_size = bytes_may_use - block_rsv_size;
1308 
1309 		/*
1310 		 * We don't want to include the global_rsv in our calculation,
1311 		 * because that's space we can't touch.  Subtract it from the
1312 		 * block_rsv_size for the next checks.
1313 		 */
1314 		block_rsv_size -= global_rsv_size;
1315 
1316 		/*
1317 		 * We really want to avoid flushing delalloc too much, as it
1318 		 * could result in poor allocation patterns, so only flush it if
1319 		 * it's larger than the rest of the pools combined.
1320 		 */
1321 		if (delalloc_size > block_rsv_size) {
1322 			to_reclaim = delalloc_size;
1323 			flush = FLUSH_DELALLOC;
1324 		} else if (bytes_pinned >
1325 			   (btrfs_block_rsv_reserved(delayed_block_rsv) +
1326 			    btrfs_block_rsv_reserved(delayed_refs_rsv))) {
1327 			to_reclaim = bytes_pinned;
1328 			flush = COMMIT_TRANS;
1329 		} else if (btrfs_block_rsv_reserved(delayed_block_rsv) >
1330 			   btrfs_block_rsv_reserved(delayed_refs_rsv)) {
1331 			to_reclaim = btrfs_block_rsv_reserved(delayed_block_rsv);
1332 			flush = FLUSH_DELAYED_ITEMS_NR;
1333 		} else {
1334 			to_reclaim = btrfs_block_rsv_reserved(delayed_refs_rsv);
1335 			flush = FLUSH_DELAYED_REFS_NR;
1336 		}
1337 
1338 		loops++;
1339 
1340 		/*
1341 		 * We don't want to reclaim everything, just a portion, so scale
1342 		 * down the to_reclaim by 1/4.  If it takes us down to 0,
1343 		 * reclaim 1 items worth.
1344 		 */
1345 		to_reclaim >>= 2;
1346 		if (!to_reclaim)
1347 			to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1);
1348 		flush_space(space_info, to_reclaim, flush, true);
1349 		cond_resched();
1350 		spin_lock(&space_info->lock);
1351 	}
1352 
1353 	/* We only went through once, back off our clamping. */
1354 	if (loops == 1 && !space_info->reclaim_size)
1355 		space_info->clamp = max(1, space_info->clamp - 1);
1356 	trace_btrfs_done_preemptive_reclaim(fs_info, space_info);
1357 	spin_unlock(&space_info->lock);
1358 }
1359 
1360 /*
1361  * FLUSH_DELALLOC_WAIT:
1362  *   Space is freed from flushing delalloc in one of two ways.
1363  *
1364  *   1) compression is on and we allocate less space than we reserved
1365  *   2) we are overwriting existing space
1366  *
1367  *   For #1 that extra space is reclaimed as soon as the delalloc pages are
1368  *   COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent
1369  *   length to ->bytes_reserved, and subtracts the reserved space from
1370  *   ->bytes_may_use.
1371  *
1372  *   For #2 this is trickier.  Once the ordered extent runs we will drop the
1373  *   extent in the range we are overwriting, which creates a delayed ref for
1374  *   that freed extent.  This however is not reclaimed until the transaction
1375  *   commits, thus the next stages.
1376  *
1377  * RUN_DELAYED_IPUTS
1378  *   If we are freeing inodes, we want to make sure all delayed iputs have
1379  *   completed, because they could have been on an inode with i_nlink == 0, and
1380  *   thus have been truncated and freed up space.  But again this space is not
1381  *   immediately reusable, it comes in the form of a delayed ref, which must be
1382  *   run and then the transaction must be committed.
1383  *
1384  * COMMIT_TRANS
1385  *   This is where we reclaim all of the pinned space generated by running the
1386  *   iputs
1387  *
1388  * RESET_ZONES
1389  *   This state works only for the zoned mode. We scan the unused block group
1390  *   list and reset the zones and reuse the block group.
1391  *
1392  * ALLOC_CHUNK_FORCE
1393  *   For data we start with alloc chunk force, however we could have been full
1394  *   before, and then the transaction commit could have freed new block groups,
1395  *   so if we now have space to allocate do the force chunk allocation.
1396  */
1397 static const enum btrfs_flush_state data_flush_states[] = {
1398 	FLUSH_DELALLOC_FULL,
1399 	RUN_DELAYED_IPUTS,
1400 	COMMIT_TRANS,
1401 	RESET_ZONES,
1402 	ALLOC_CHUNK_FORCE,
1403 };
1404 
1405 static void do_async_reclaim_data_space(struct btrfs_space_info *space_info)
1406 {
1407 	struct btrfs_fs_info *fs_info = space_info->fs_info;
1408 	u64 last_tickets_id;
1409 	enum btrfs_flush_state flush_state = 0;
1410 
1411 	spin_lock(&space_info->lock);
1412 	if (list_empty(&space_info->tickets)) {
1413 		space_info->flush = false;
1414 		spin_unlock(&space_info->lock);
1415 		return;
1416 	}
1417 	last_tickets_id = space_info->tickets_id;
1418 	spin_unlock(&space_info->lock);
1419 
1420 	while (!space_info->full) {
1421 		flush_space(space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1422 		spin_lock(&space_info->lock);
1423 		if (list_empty(&space_info->tickets)) {
1424 			space_info->flush = false;
1425 			spin_unlock(&space_info->lock);
1426 			return;
1427 		}
1428 
1429 		/* Something happened, fail everything and bail. */
1430 		if (unlikely(BTRFS_FS_ERROR(fs_info)))
1431 			goto aborted_fs;
1432 		last_tickets_id = space_info->tickets_id;
1433 		spin_unlock(&space_info->lock);
1434 	}
1435 
1436 	while (flush_state < ARRAY_SIZE(data_flush_states)) {
1437 		flush_space(space_info, U64_MAX,
1438 			    data_flush_states[flush_state], false);
1439 		spin_lock(&space_info->lock);
1440 		if (list_empty(&space_info->tickets)) {
1441 			space_info->flush = false;
1442 			spin_unlock(&space_info->lock);
1443 			return;
1444 		}
1445 
1446 		if (last_tickets_id == space_info->tickets_id) {
1447 			flush_state++;
1448 		} else {
1449 			last_tickets_id = space_info->tickets_id;
1450 			flush_state = 0;
1451 		}
1452 
1453 		if (flush_state >= ARRAY_SIZE(data_flush_states)) {
1454 			if (space_info->full) {
1455 				if (maybe_fail_all_tickets(space_info))
1456 					flush_state = 0;
1457 				else
1458 					space_info->flush = false;
1459 			} else {
1460 				flush_state = 0;
1461 			}
1462 
1463 			/* Something happened, fail everything and bail. */
1464 			if (unlikely(BTRFS_FS_ERROR(fs_info)))
1465 				goto aborted_fs;
1466 
1467 		}
1468 		spin_unlock(&space_info->lock);
1469 	}
1470 	return;
1471 
1472 aborted_fs:
1473 	maybe_fail_all_tickets(space_info);
1474 	space_info->flush = false;
1475 	spin_unlock(&space_info->lock);
1476 }
1477 
1478 static void btrfs_async_reclaim_data_space(struct work_struct *work)
1479 {
1480 	struct btrfs_fs_info *fs_info;
1481 	struct btrfs_space_info *space_info;
1482 
1483 	fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work);
1484 	space_info = fs_info->data_sinfo;
1485 	do_async_reclaim_data_space(space_info);
1486 	for (int i = 0; i < BTRFS_SPACE_INFO_SUB_GROUP_MAX; i++)
1487 		if (space_info->sub_group[i])
1488 			do_async_reclaim_data_space(space_info->sub_group[i]);
1489 }
1490 
1491 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info)
1492 {
1493 	INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space);
1494 	INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space);
1495 	INIT_WORK(&fs_info->preempt_reclaim_work,
1496 		  btrfs_preempt_reclaim_metadata_space);
1497 }
1498 
1499 static const enum btrfs_flush_state priority_flush_states[] = {
1500 	FLUSH_DELAYED_ITEMS_NR,
1501 	FLUSH_DELAYED_ITEMS,
1502 	RESET_ZONES,
1503 	ALLOC_CHUNK,
1504 };
1505 
1506 static const enum btrfs_flush_state evict_flush_states[] = {
1507 	FLUSH_DELAYED_ITEMS_NR,
1508 	FLUSH_DELAYED_ITEMS,
1509 	FLUSH_DELAYED_REFS_NR,
1510 	FLUSH_DELAYED_REFS,
1511 	FLUSH_DELALLOC,
1512 	FLUSH_DELALLOC_WAIT,
1513 	FLUSH_DELALLOC_FULL,
1514 	ALLOC_CHUNK,
1515 	COMMIT_TRANS,
1516 	RESET_ZONES,
1517 };
1518 
1519 static bool is_ticket_served(struct reserve_ticket *ticket)
1520 {
1521 	bool ret;
1522 
1523 	spin_lock(&ticket->lock);
1524 	ret = (ticket->bytes == 0);
1525 	spin_unlock(&ticket->lock);
1526 
1527 	return ret;
1528 }
1529 
1530 static void priority_reclaim_metadata_space(struct btrfs_space_info *space_info,
1531 					    struct reserve_ticket *ticket,
1532 					    const enum btrfs_flush_state *states,
1533 					    int states_nr)
1534 {
1535 	struct btrfs_fs_info *fs_info = space_info->fs_info;
1536 	u64 to_reclaim;
1537 	int flush_state = 0;
1538 
1539 	/*
1540 	 * This is the priority reclaim path, so to_reclaim could be >0 still
1541 	 * because we may have only satisfied the priority tickets and still
1542 	 * left non priority tickets on the list.  We would then have
1543 	 * to_reclaim but ->bytes == 0.
1544 	 */
1545 	if (is_ticket_served(ticket))
1546 		return;
1547 
1548 	spin_lock(&space_info->lock);
1549 	to_reclaim = btrfs_calc_reclaim_metadata_size(space_info);
1550 	spin_unlock(&space_info->lock);
1551 
1552 	while (flush_state < states_nr) {
1553 		flush_space(space_info, to_reclaim, states[flush_state], false);
1554 		if (is_ticket_served(ticket))
1555 			return;
1556 		flush_state++;
1557 	}
1558 
1559 	spin_lock(&space_info->lock);
1560 	/*
1561 	 * Attempt to steal from the global rsv if we can, except if the fs was
1562 	 * turned into error mode due to a transaction abort when flushing space
1563 	 * above, in that case fail with the abort error instead of returning
1564 	 * success to the caller if we can steal from the global rsv - this is
1565 	 * just to have caller fail immediately instead of later when trying to
1566 	 * modify the fs, making it easier to debug -ENOSPC problems.
1567 	 */
1568 	if (unlikely(BTRFS_FS_ERROR(fs_info)))
1569 		remove_ticket(space_info, ticket, BTRFS_FS_ERROR(fs_info));
1570 	else if (!steal_from_global_rsv(space_info, ticket))
1571 		remove_ticket(space_info, ticket, -ENOSPC);
1572 
1573 	/*
1574 	 * We must run try_granting_tickets here because we could be a large
1575 	 * ticket in front of a smaller ticket that can now be satisfied with
1576 	 * the available space.
1577 	 */
1578 	btrfs_try_granting_tickets(space_info);
1579 	spin_unlock(&space_info->lock);
1580 }
1581 
1582 static void priority_reclaim_data_space(struct btrfs_space_info *space_info,
1583 					struct reserve_ticket *ticket)
1584 {
1585 	/* We could have been granted before we got here. */
1586 	if (is_ticket_served(ticket))
1587 		return;
1588 
1589 	spin_lock(&space_info->lock);
1590 	while (!space_info->full) {
1591 		spin_unlock(&space_info->lock);
1592 		flush_space(space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1593 		if (is_ticket_served(ticket))
1594 			return;
1595 		spin_lock(&space_info->lock);
1596 	}
1597 
1598 	remove_ticket(space_info, ticket, -ENOSPC);
1599 	btrfs_try_granting_tickets(space_info);
1600 	spin_unlock(&space_info->lock);
1601 }
1602 
1603 static void wait_reserve_ticket(struct btrfs_space_info *space_info,
1604 				struct reserve_ticket *ticket)
1605 
1606 {
1607 	DEFINE_WAIT(wait);
1608 
1609 	spin_lock(&ticket->lock);
1610 	while (ticket->bytes > 0 && ticket->error == 0) {
1611 		int ret;
1612 
1613 		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1614 		spin_unlock(&ticket->lock);
1615 		if (ret) {
1616 			/*
1617 			 * Delete us from the list. After we unlock the space
1618 			 * info, we don't want the async reclaim job to reserve
1619 			 * space for this ticket. If that would happen, then the
1620 			 * ticket's task would not known that space was reserved
1621 			 * despite getting an error, resulting in a space leak
1622 			 * (bytes_may_use counter of our space_info).
1623 			 */
1624 			spin_lock(&space_info->lock);
1625 			remove_ticket(space_info, ticket, -EINTR);
1626 			spin_unlock(&space_info->lock);
1627 			return;
1628 		}
1629 
1630 		schedule();
1631 
1632 		finish_wait(&ticket->wait, &wait);
1633 		spin_lock(&ticket->lock);
1634 	}
1635 	spin_unlock(&ticket->lock);
1636 }
1637 
1638 /*
1639  * Do the appropriate flushing and waiting for a ticket.
1640  *
1641  * @space_info: space info for the reservation
1642  * @ticket:     ticket for the reservation
1643  * @start_ns:   timestamp when the reservation started
1644  * @orig_bytes: amount of bytes originally reserved
1645  * @flush:      how much we can flush
1646  *
1647  * This does the work of figuring out how to flush for the ticket, waiting for
1648  * the reservation, and returning the appropriate error if there is one.
1649  */
1650 static int handle_reserve_ticket(struct btrfs_space_info *space_info,
1651 				 struct reserve_ticket *ticket,
1652 				 u64 start_ns, u64 orig_bytes,
1653 				 enum btrfs_reserve_flush_enum flush)
1654 {
1655 	int ret;
1656 
1657 	switch (flush) {
1658 	case BTRFS_RESERVE_FLUSH_DATA:
1659 	case BTRFS_RESERVE_FLUSH_ALL:
1660 	case BTRFS_RESERVE_FLUSH_ALL_STEAL:
1661 		wait_reserve_ticket(space_info, ticket);
1662 		break;
1663 	case BTRFS_RESERVE_FLUSH_LIMIT:
1664 		priority_reclaim_metadata_space(space_info, ticket,
1665 						priority_flush_states,
1666 						ARRAY_SIZE(priority_flush_states));
1667 		break;
1668 	case BTRFS_RESERVE_FLUSH_EVICT:
1669 		priority_reclaim_metadata_space(space_info, ticket,
1670 						evict_flush_states,
1671 						ARRAY_SIZE(evict_flush_states));
1672 		break;
1673 	case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE:
1674 		priority_reclaim_data_space(space_info, ticket);
1675 		break;
1676 	default:
1677 		ASSERT(0, "flush=%d", flush);
1678 		break;
1679 	}
1680 
1681 	ret = ticket->error;
1682 	ASSERT(list_empty(&ticket->list));
1683 	/*
1684 	 * Check that we can't have an error set if the reservation succeeded,
1685 	 * as that would confuse tasks and lead them to error out without
1686 	 * releasing reserved space (if an error happens the expectation is that
1687 	 * space wasn't reserved at all).
1688 	 */
1689 	ASSERT(!(ticket->bytes == 0 && ticket->error),
1690 	       "ticket->bytes=%llu ticket->error=%d", ticket->bytes, ticket->error);
1691 	trace_btrfs_reserve_ticket(space_info->fs_info, space_info->flags,
1692 				   orig_bytes, start_ns, flush, ticket->error);
1693 	return ret;
1694 }
1695 
1696 /*
1697  * This returns true if this flush state will go through the ordinary flushing
1698  * code.
1699  */
1700 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush)
1701 {
1702 	return	(flush == BTRFS_RESERVE_FLUSH_ALL) ||
1703 		(flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1704 }
1705 
1706 static inline void maybe_clamp_preempt(struct btrfs_space_info *space_info)
1707 {
1708 	struct btrfs_fs_info *fs_info = space_info->fs_info;
1709 	u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes);
1710 	u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
1711 
1712 	/*
1713 	 * If we're heavy on ordered operations then clamping won't help us.  We
1714 	 * need to clamp specifically to keep up with dirty'ing buffered
1715 	 * writers, because there's not a 1:1 correlation of writing delalloc
1716 	 * and freeing space, like there is with flushing delayed refs or
1717 	 * delayed nodes.  If we're already more ordered than delalloc then
1718 	 * we're keeping up, otherwise we aren't and should probably clamp.
1719 	 */
1720 	if (ordered < delalloc)
1721 		space_info->clamp = min(space_info->clamp + 1, 8);
1722 }
1723 
1724 static inline bool can_steal(enum btrfs_reserve_flush_enum flush)
1725 {
1726 	return (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1727 		flush == BTRFS_RESERVE_FLUSH_EVICT);
1728 }
1729 
1730 /*
1731  * NO_FLUSH and FLUSH_EMERGENCY don't want to create a ticket, they just want to
1732  * fail as quickly as possible.
1733  */
1734 static inline bool can_ticket(enum btrfs_reserve_flush_enum flush)
1735 {
1736 	return (flush != BTRFS_RESERVE_NO_FLUSH &&
1737 		flush != BTRFS_RESERVE_FLUSH_EMERGENCY);
1738 }
1739 
1740 /*
1741  * Try to reserve bytes from the block_rsv's space.
1742  *
1743  * @space_info: space info we want to allocate from
1744  * @orig_bytes: number of bytes we want
1745  * @flush:      whether or not we can flush to make our reservation
1746  *
1747  * This will reserve orig_bytes number of bytes from the space info associated
1748  * with the block_rsv.  If there is not enough space it will make an attempt to
1749  * flush out space to make room.  It will do this by flushing delalloc if
1750  * possible or committing the transaction.  If flush is 0 then no attempts to
1751  * regain reservations will be made and this will fail if there is not enough
1752  * space already.
1753  */
1754 static int reserve_bytes(struct btrfs_space_info *space_info, u64 orig_bytes,
1755 			 enum btrfs_reserve_flush_enum flush)
1756 {
1757 	struct btrfs_fs_info *fs_info = space_info->fs_info;
1758 	struct work_struct *async_work;
1759 	struct reserve_ticket ticket;
1760 	u64 start_ns = 0;
1761 	u64 used;
1762 	int ret = -ENOSPC;
1763 	bool pending_tickets;
1764 
1765 	ASSERT(orig_bytes, "orig_bytes=%llu", orig_bytes);
1766 	/*
1767 	 * If have a transaction handle (current->journal_info != NULL), then
1768 	 * the flush method can not be neither BTRFS_RESERVE_FLUSH_ALL* nor
1769 	 * BTRFS_RESERVE_FLUSH_EVICT, as we could deadlock because those
1770 	 * flushing methods can trigger transaction commits.
1771 	 */
1772 	if (current->journal_info) {
1773 		/* One assert per line for easier debugging. */
1774 		ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL, "flush=%d", flush);
1775 		ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL_STEAL, "flush=%d", flush);
1776 		ASSERT(flush != BTRFS_RESERVE_FLUSH_EVICT, "flush=%d", flush);
1777 	}
1778 
1779 	if (flush == BTRFS_RESERVE_FLUSH_DATA)
1780 		async_work = &fs_info->async_data_reclaim_work;
1781 	else
1782 		async_work = &fs_info->async_reclaim_work;
1783 
1784 	spin_lock(&space_info->lock);
1785 	used = btrfs_space_info_used(space_info, true);
1786 
1787 	/*
1788 	 * We don't want NO_FLUSH allocations to jump everybody, they can
1789 	 * generally handle ENOSPC in a different way, so treat them the same as
1790 	 * normal flushers when it comes to skipping pending tickets.
1791 	 */
1792 	if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH))
1793 		pending_tickets = !list_empty(&space_info->tickets) ||
1794 			!list_empty(&space_info->priority_tickets);
1795 	else
1796 		pending_tickets = !list_empty(&space_info->priority_tickets);
1797 
1798 	/*
1799 	 * Carry on if we have enough space (short-circuit) OR call
1800 	 * can_overcommit() to ensure we can overcommit to continue.
1801 	 */
1802 	if (!pending_tickets &&
1803 	    ((used + orig_bytes <= space_info->total_bytes) ||
1804 	     can_overcommit(space_info, used, orig_bytes, flush))) {
1805 		btrfs_space_info_update_bytes_may_use(space_info, orig_bytes);
1806 		ret = 0;
1807 	}
1808 
1809 	/*
1810 	 * Things are dire, we need to make a reservation so we don't abort.  We
1811 	 * will let this reservation go through as long as we have actual space
1812 	 * left to allocate for the block.
1813 	 */
1814 	if (ret && unlikely(flush == BTRFS_RESERVE_FLUSH_EMERGENCY)) {
1815 		used -= space_info->bytes_may_use;
1816 		if (used + orig_bytes <= space_info->total_bytes) {
1817 			btrfs_space_info_update_bytes_may_use(space_info, orig_bytes);
1818 			ret = 0;
1819 		}
1820 	}
1821 
1822 	/*
1823 	 * If we couldn't make a reservation then setup our reservation ticket
1824 	 * and kick the async worker if it's not already running.
1825 	 *
1826 	 * If we are a priority flusher then we just need to add our ticket to
1827 	 * the list and we will do our own flushing further down.
1828 	 */
1829 	if (ret && can_ticket(flush)) {
1830 		ticket.bytes = orig_bytes;
1831 		ticket.error = 0;
1832 		space_info->reclaim_size += ticket.bytes;
1833 		init_waitqueue_head(&ticket.wait);
1834 		spin_lock_init(&ticket.lock);
1835 		ticket.steal = can_steal(flush);
1836 		if (trace_btrfs_reserve_ticket_enabled())
1837 			start_ns = ktime_get_ns();
1838 
1839 		if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1840 		    flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1841 		    flush == BTRFS_RESERVE_FLUSH_DATA) {
1842 			list_add_tail(&ticket.list, &space_info->tickets);
1843 			if (!space_info->flush) {
1844 				/*
1845 				 * We were forced to add a reserve ticket, so
1846 				 * our preemptive flushing is unable to keep
1847 				 * up.  Clamp down on the threshold for the
1848 				 * preemptive flushing in order to keep up with
1849 				 * the workload.
1850 				 */
1851 				maybe_clamp_preempt(space_info);
1852 
1853 				space_info->flush = true;
1854 				trace_btrfs_trigger_flush(fs_info,
1855 							  space_info->flags,
1856 							  orig_bytes, flush,
1857 							  "enospc");
1858 				queue_work(system_dfl_wq, async_work);
1859 			}
1860 		} else {
1861 			list_add_tail(&ticket.list,
1862 				      &space_info->priority_tickets);
1863 		}
1864 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1865 		/*
1866 		 * We will do the space reservation dance during log replay,
1867 		 * which means we won't have fs_info->fs_root set, so don't do
1868 		 * the async reclaim as we will panic.
1869 		 */
1870 		if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1871 		    !work_busy(&fs_info->preempt_reclaim_work) &&
1872 		    need_preemptive_reclaim(space_info)) {
1873 			trace_btrfs_trigger_flush(fs_info, space_info->flags,
1874 						  orig_bytes, flush, "preempt");
1875 			queue_work(system_dfl_wq,
1876 				   &fs_info->preempt_reclaim_work);
1877 		}
1878 	}
1879 	spin_unlock(&space_info->lock);
1880 	if (!ret || !can_ticket(flush))
1881 		return ret;
1882 
1883 	return handle_reserve_ticket(space_info, &ticket, start_ns, orig_bytes, flush);
1884 }
1885 
1886 /*
1887  * Try to reserve metadata bytes from the block_rsv's space.
1888  *
1889  * @space_info: the space_info we're allocating for
1890  * @orig_bytes: number of bytes we want
1891  * @flush:      whether or not we can flush to make our reservation
1892  *
1893  * This will reserve orig_bytes number of bytes from the space info associated
1894  * with the block_rsv.  If there is not enough space it will make an attempt to
1895  * flush out space to make room.  It will do this by flushing delalloc if
1896  * possible or committing the transaction.  If flush is 0 then no attempts to
1897  * regain reservations will be made and this will fail if there is not enough
1898  * space already.
1899  */
1900 int btrfs_reserve_metadata_bytes(struct btrfs_space_info *space_info,
1901 				 u64 orig_bytes,
1902 				 enum btrfs_reserve_flush_enum flush)
1903 {
1904 	int ret;
1905 
1906 	ret = reserve_bytes(space_info, orig_bytes, flush);
1907 	if (ret == -ENOSPC) {
1908 		struct btrfs_fs_info *fs_info = space_info->fs_info;
1909 
1910 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1911 					      space_info->flags, orig_bytes, 1);
1912 
1913 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1914 			btrfs_dump_space_info(space_info, orig_bytes, false);
1915 	}
1916 	return ret;
1917 }
1918 
1919 /*
1920  * Try to reserve data bytes for an allocation.
1921  *
1922  * @space_info: the space_info we're allocating for
1923  * @bytes:   number of bytes we need
1924  * @flush:   how we are allowed to flush
1925  *
1926  * This will reserve bytes from the data space info.  If there is not enough
1927  * space then we will attempt to flush space as specified by flush.
1928  */
1929 int btrfs_reserve_data_bytes(struct btrfs_space_info *space_info, u64 bytes,
1930 			     enum btrfs_reserve_flush_enum flush)
1931 {
1932 	struct btrfs_fs_info *fs_info = space_info->fs_info;
1933 	int ret;
1934 
1935 	ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA ||
1936 	       flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE ||
1937 	       flush == BTRFS_RESERVE_NO_FLUSH, "flush=%d", flush);
1938 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA,
1939 	       "current->journal_info=0x%lx flush=%d",
1940 	       (unsigned long)current->journal_info, flush);
1941 
1942 	ret = reserve_bytes(space_info, bytes, flush);
1943 	if (ret == -ENOSPC) {
1944 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1945 					      space_info->flags, bytes, 1);
1946 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1947 			btrfs_dump_space_info(space_info, bytes, false);
1948 	}
1949 	return ret;
1950 }
1951 
1952 /* Dump all the space infos when we abort a transaction due to ENOSPC. */
1953 __cold void btrfs_dump_space_info_for_trans_abort(struct btrfs_fs_info *fs_info)
1954 {
1955 	struct btrfs_space_info *space_info;
1956 
1957 	btrfs_info(fs_info, "dumping space info:");
1958 	list_for_each_entry(space_info, &fs_info->space_info, list) {
1959 		spin_lock(&space_info->lock);
1960 		__btrfs_dump_space_info(space_info);
1961 		spin_unlock(&space_info->lock);
1962 	}
1963 	dump_global_block_rsv(fs_info);
1964 }
1965 
1966 /*
1967  * Account the unused space of all the readonly block group in the space_info.
1968  * takes mirrors into account.
1969  */
1970 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
1971 {
1972 	struct btrfs_block_group *block_group;
1973 	u64 free_bytes = 0;
1974 	int factor;
1975 
1976 	/* It's df, we don't care if it's racy */
1977 	if (data_race(list_empty(&sinfo->ro_bgs)))
1978 		return 0;
1979 
1980 	spin_lock(&sinfo->lock);
1981 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
1982 		spin_lock(&block_group->lock);
1983 
1984 		if (!block_group->ro) {
1985 			spin_unlock(&block_group->lock);
1986 			continue;
1987 		}
1988 
1989 		factor = btrfs_bg_type_to_factor(block_group->flags);
1990 		free_bytes += (block_group->length -
1991 			       block_group->used) * factor;
1992 
1993 		spin_unlock(&block_group->lock);
1994 	}
1995 	spin_unlock(&sinfo->lock);
1996 
1997 	return free_bytes;
1998 }
1999 
2000 static u64 calc_pct_ratio(u64 x, u64 y)
2001 {
2002 	int ret;
2003 
2004 	if (!y)
2005 		return 0;
2006 again:
2007 	ret = check_mul_overflow(100, x, &x);
2008 	if (ret)
2009 		goto lose_precision;
2010 	return div64_u64(x, y);
2011 lose_precision:
2012 	x >>= 10;
2013 	y >>= 10;
2014 	if (!y)
2015 		y = 1;
2016 	goto again;
2017 }
2018 
2019 /*
2020  * A reasonable buffer for unallocated space is 10 data block_groups.
2021  * If we claw this back repeatedly, we can still achieve efficient
2022  * utilization when near full, and not do too much reclaim while
2023  * always maintaining a solid buffer for workloads that quickly
2024  * allocate and pressure the unallocated space.
2025  */
2026 static u64 calc_unalloc_target(struct btrfs_fs_info *fs_info)
2027 {
2028 	u64 chunk_sz = calc_effective_data_chunk_size(fs_info);
2029 
2030 	return BTRFS_UNALLOC_BLOCK_GROUP_TARGET * chunk_sz;
2031 }
2032 
2033 /*
2034  * The fundamental goal of automatic reclaim is to protect the filesystem's
2035  * unallocated space and thus minimize the probability of the filesystem going
2036  * read only when a metadata allocation failure causes a transaction abort.
2037  *
2038  * However, relocations happen into the space_info's unused space, therefore
2039  * automatic reclaim must also back off as that space runs low. There is no
2040  * value in doing trivial "relocations" of re-writing the same block group
2041  * into a fresh one.
2042  *
2043  * Furthermore, we want to avoid doing too much reclaim even if there are good
2044  * candidates. This is because the allocator is pretty good at filling up the
2045  * holes with writes. So we want to do just enough reclaim to try and stay
2046  * safe from running out of unallocated space but not be wasteful about it.
2047  *
2048  * Therefore, the dynamic reclaim threshold is calculated as follows:
2049  * - calculate a target unallocated amount of 5 block group sized chunks
2050  * - ratchet up the intensity of reclaim depending on how far we are from
2051  *   that target by using a formula of unalloc / target to set the threshold.
2052  *
2053  * Typically with 10 block groups as the target, the discrete values this comes
2054  * out to are 0, 10, 20, ... , 80, 90, and 99.
2055  */
2056 static int calc_dynamic_reclaim_threshold(const struct btrfs_space_info *space_info)
2057 {
2058 	struct btrfs_fs_info *fs_info = space_info->fs_info;
2059 	u64 unalloc = atomic64_read(&fs_info->free_chunk_space);
2060 	u64 target = calc_unalloc_target(fs_info);
2061 	u64 alloc = space_info->total_bytes;
2062 	u64 used = btrfs_space_info_used(space_info, false);
2063 	u64 unused = alloc - used;
2064 	u64 want = target > unalloc ? target - unalloc : 0;
2065 	u64 data_chunk_size = calc_effective_data_chunk_size(fs_info);
2066 
2067 	/* If we have no unused space, don't bother, it won't work anyway. */
2068 	if (unused < data_chunk_size)
2069 		return 0;
2070 
2071 	/* Cast to int is OK because want <= target. */
2072 	return calc_pct_ratio(want, target);
2073 }
2074 
2075 int btrfs_calc_reclaim_threshold(const struct btrfs_space_info *space_info)
2076 {
2077 	lockdep_assert_held(&space_info->lock);
2078 
2079 	if (READ_ONCE(space_info->dynamic_reclaim))
2080 		return calc_dynamic_reclaim_threshold(space_info);
2081 	return READ_ONCE(space_info->bg_reclaim_threshold);
2082 }
2083 
2084 /*
2085  * Under "urgent" reclaim, we will reclaim even fresh block groups that have
2086  * recently seen successful allocations, as we are desperate to reclaim
2087  * whatever we can to avoid ENOSPC in a transaction leading to a readonly fs.
2088  */
2089 static bool is_reclaim_urgent(struct btrfs_space_info *space_info)
2090 {
2091 	struct btrfs_fs_info *fs_info = space_info->fs_info;
2092 	u64 unalloc = atomic64_read(&fs_info->free_chunk_space);
2093 	u64 data_chunk_size = calc_effective_data_chunk_size(fs_info);
2094 
2095 	return unalloc < data_chunk_size;
2096 }
2097 
2098 static void do_reclaim_sweep(struct btrfs_space_info *space_info, int raid)
2099 {
2100 	struct btrfs_block_group *bg;
2101 	int thresh_pct;
2102 	bool try_again = true;
2103 	bool urgent;
2104 
2105 	spin_lock(&space_info->lock);
2106 	urgent = is_reclaim_urgent(space_info);
2107 	thresh_pct = btrfs_calc_reclaim_threshold(space_info);
2108 	spin_unlock(&space_info->lock);
2109 
2110 	down_read(&space_info->groups_sem);
2111 again:
2112 	list_for_each_entry(bg, &space_info->block_groups[raid], list) {
2113 		u64 thresh;
2114 		bool reclaim = false;
2115 
2116 		btrfs_get_block_group(bg);
2117 		spin_lock(&bg->lock);
2118 		thresh = mult_perc(bg->length, thresh_pct);
2119 		if (bg->used < thresh && bg->reclaim_mark) {
2120 			try_again = false;
2121 			reclaim = true;
2122 		}
2123 		bg->reclaim_mark++;
2124 		spin_unlock(&bg->lock);
2125 		if (reclaim)
2126 			btrfs_mark_bg_to_reclaim(bg);
2127 		btrfs_put_block_group(bg);
2128 	}
2129 
2130 	/*
2131 	 * In situations where we are very motivated to reclaim (low unalloc)
2132 	 * use two passes to make the reclaim mark check best effort.
2133 	 *
2134 	 * If we have any staler groups, we don't touch the fresher ones, but if we
2135 	 * really need a block group, do take a fresh one.
2136 	 */
2137 	if (try_again && urgent) {
2138 		try_again = false;
2139 		goto again;
2140 	}
2141 
2142 	up_read(&space_info->groups_sem);
2143 }
2144 
2145 void btrfs_space_info_update_reclaimable(struct btrfs_space_info *space_info, s64 bytes)
2146 {
2147 	u64 chunk_sz = calc_effective_data_chunk_size(space_info->fs_info);
2148 
2149 	lockdep_assert_held(&space_info->lock);
2150 	space_info->reclaimable_bytes += bytes;
2151 
2152 	if (space_info->reclaimable_bytes >= chunk_sz)
2153 		btrfs_set_periodic_reclaim_ready(space_info, true);
2154 }
2155 
2156 void btrfs_set_periodic_reclaim_ready(struct btrfs_space_info *space_info, bool ready)
2157 {
2158 	lockdep_assert_held(&space_info->lock);
2159 	if (!READ_ONCE(space_info->periodic_reclaim))
2160 		return;
2161 	if (ready != space_info->periodic_reclaim_ready) {
2162 		space_info->periodic_reclaim_ready = ready;
2163 		if (!ready)
2164 			space_info->reclaimable_bytes = 0;
2165 	}
2166 }
2167 
2168 static bool btrfs_should_periodic_reclaim(struct btrfs_space_info *space_info)
2169 {
2170 	bool ret;
2171 
2172 	if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
2173 		return false;
2174 	if (!READ_ONCE(space_info->periodic_reclaim))
2175 		return false;
2176 
2177 	spin_lock(&space_info->lock);
2178 	ret = space_info->periodic_reclaim_ready;
2179 	btrfs_set_periodic_reclaim_ready(space_info, false);
2180 	spin_unlock(&space_info->lock);
2181 
2182 	return ret;
2183 }
2184 
2185 void btrfs_reclaim_sweep(const struct btrfs_fs_info *fs_info)
2186 {
2187 	int raid;
2188 	struct btrfs_space_info *space_info;
2189 
2190 	list_for_each_entry(space_info, &fs_info->space_info, list) {
2191 		if (!btrfs_should_periodic_reclaim(space_info))
2192 			continue;
2193 		for (raid = 0; raid < BTRFS_NR_RAID_TYPES; raid++)
2194 			do_reclaim_sweep(space_info, raid);
2195 	}
2196 }
2197 
2198 void btrfs_return_free_space(struct btrfs_space_info *space_info, u64 len)
2199 {
2200 	struct btrfs_fs_info *fs_info = space_info->fs_info;
2201 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2202 
2203 	lockdep_assert_held(&space_info->lock);
2204 
2205 	/* Prioritize the global reservation to receive the freed space. */
2206 	if (global_rsv->space_info != space_info)
2207 		goto grant;
2208 
2209 	spin_lock(&global_rsv->lock);
2210 	if (!global_rsv->full) {
2211 		u64 to_add = min(len, global_rsv->size - global_rsv->reserved);
2212 
2213 		global_rsv->reserved += to_add;
2214 		btrfs_space_info_update_bytes_may_use(space_info, to_add);
2215 		if (global_rsv->reserved >= global_rsv->size)
2216 			global_rsv->full = true;
2217 		len -= to_add;
2218 	}
2219 	spin_unlock(&global_rsv->lock);
2220 
2221 grant:
2222 	/* Add to any tickets we may have. */
2223 	if (len)
2224 		btrfs_try_granting_tickets(space_info);
2225 }
2226