xref: /linux/fs/btrfs/bio.c (revision f3827213abae9291b7525b05e6fd29b1f0536ce6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  * Copyright (C) 2022 Christoph Hellwig.
5  */
6 
7 #include <linux/bio.h>
8 #include "bio.h"
9 #include "ctree.h"
10 #include "volumes.h"
11 #include "raid56.h"
12 #include "async-thread.h"
13 #include "dev-replace.h"
14 #include "zoned.h"
15 #include "file-item.h"
16 #include "raid-stripe-tree.h"
17 
18 static struct bio_set btrfs_bioset;
19 static struct bio_set btrfs_clone_bioset;
20 static struct bio_set btrfs_repair_bioset;
21 static mempool_t btrfs_failed_bio_pool;
22 
23 struct btrfs_failed_bio {
24 	struct btrfs_bio *bbio;
25 	int num_copies;
26 	atomic_t repair_count;
27 };
28 
29 /* Is this a data path I/O that needs storage layer checksum and repair? */
is_data_bbio(const struct btrfs_bio * bbio)30 static inline bool is_data_bbio(const struct btrfs_bio *bbio)
31 {
32 	return bbio->inode && is_data_inode(bbio->inode);
33 }
34 
bbio_has_ordered_extent(const struct btrfs_bio * bbio)35 static bool bbio_has_ordered_extent(const struct btrfs_bio *bbio)
36 {
37 	return is_data_bbio(bbio) && btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE;
38 }
39 
40 /*
41  * Initialize a btrfs_bio structure.  This skips the embedded bio itself as it
42  * is already initialized by the block layer.
43  */
btrfs_bio_init(struct btrfs_bio * bbio,struct btrfs_fs_info * fs_info,btrfs_bio_end_io_t end_io,void * private)44 void btrfs_bio_init(struct btrfs_bio *bbio, struct btrfs_fs_info *fs_info,
45 		    btrfs_bio_end_io_t end_io, void *private)
46 {
47 	memset(bbio, 0, offsetof(struct btrfs_bio, bio));
48 	bbio->fs_info = fs_info;
49 	bbio->end_io = end_io;
50 	bbio->private = private;
51 	atomic_set(&bbio->pending_ios, 1);
52 	WRITE_ONCE(bbio->status, BLK_STS_OK);
53 }
54 
55 /*
56  * Allocate a btrfs_bio structure.  The btrfs_bio is the main I/O container for
57  * btrfs, and is used for all I/O submitted through btrfs_submit_bbio().
58  *
59  * Just like the underlying bio_alloc_bioset it will not fail as it is backed by
60  * a mempool.
61  */
btrfs_bio_alloc(unsigned int nr_vecs,blk_opf_t opf,struct btrfs_fs_info * fs_info,btrfs_bio_end_io_t end_io,void * private)62 struct btrfs_bio *btrfs_bio_alloc(unsigned int nr_vecs, blk_opf_t opf,
63 				  struct btrfs_fs_info *fs_info,
64 				  btrfs_bio_end_io_t end_io, void *private)
65 {
66 	struct btrfs_bio *bbio;
67 	struct bio *bio;
68 
69 	bio = bio_alloc_bioset(NULL, nr_vecs, opf, GFP_NOFS, &btrfs_bioset);
70 	bbio = btrfs_bio(bio);
71 	btrfs_bio_init(bbio, fs_info, end_io, private);
72 	return bbio;
73 }
74 
btrfs_split_bio(struct btrfs_fs_info * fs_info,struct btrfs_bio * orig_bbio,u64 map_length)75 static struct btrfs_bio *btrfs_split_bio(struct btrfs_fs_info *fs_info,
76 					 struct btrfs_bio *orig_bbio,
77 					 u64 map_length)
78 {
79 	struct btrfs_bio *bbio;
80 	struct bio *bio;
81 
82 	bio = bio_split(&orig_bbio->bio, map_length >> SECTOR_SHIFT, GFP_NOFS,
83 			&btrfs_clone_bioset);
84 	if (IS_ERR(bio))
85 		return ERR_CAST(bio);
86 
87 	bbio = btrfs_bio(bio);
88 	btrfs_bio_init(bbio, fs_info, NULL, orig_bbio);
89 	bbio->inode = orig_bbio->inode;
90 	bbio->file_offset = orig_bbio->file_offset;
91 	orig_bbio->file_offset += map_length;
92 	if (bbio_has_ordered_extent(bbio)) {
93 		refcount_inc(&orig_bbio->ordered->refs);
94 		bbio->ordered = orig_bbio->ordered;
95 	}
96 	bbio->csum_search_commit_root = orig_bbio->csum_search_commit_root;
97 	atomic_inc(&orig_bbio->pending_ios);
98 	return bbio;
99 }
100 
btrfs_bio_end_io(struct btrfs_bio * bbio,blk_status_t status)101 void btrfs_bio_end_io(struct btrfs_bio *bbio, blk_status_t status)
102 {
103 	bbio->bio.bi_status = status;
104 	if (bbio->bio.bi_pool == &btrfs_clone_bioset) {
105 		struct btrfs_bio *orig_bbio = bbio->private;
106 
107 		/* Free bio that was never submitted to the underlying device. */
108 		if (bbio_has_ordered_extent(bbio))
109 			btrfs_put_ordered_extent(bbio->ordered);
110 		bio_put(&bbio->bio);
111 
112 		bbio = orig_bbio;
113 	}
114 
115 	/*
116 	 * At this point, bbio always points to the original btrfs_bio. Save
117 	 * the first error in it.
118 	 */
119 	if (status != BLK_STS_OK)
120 		cmpxchg(&bbio->status, BLK_STS_OK, status);
121 
122 	if (atomic_dec_and_test(&bbio->pending_ios)) {
123 		/* Load split bio's error which might be set above. */
124 		if (status == BLK_STS_OK)
125 			bbio->bio.bi_status = READ_ONCE(bbio->status);
126 
127 		if (bbio_has_ordered_extent(bbio)) {
128 			struct btrfs_ordered_extent *ordered = bbio->ordered;
129 
130 			bbio->end_io(bbio);
131 			btrfs_put_ordered_extent(ordered);
132 		} else {
133 			bbio->end_io(bbio);
134 		}
135 	}
136 }
137 
next_repair_mirror(const struct btrfs_failed_bio * fbio,int cur_mirror)138 static int next_repair_mirror(const struct btrfs_failed_bio *fbio, int cur_mirror)
139 {
140 	if (cur_mirror == fbio->num_copies)
141 		return cur_mirror + 1 - fbio->num_copies;
142 	return cur_mirror + 1;
143 }
144 
prev_repair_mirror(const struct btrfs_failed_bio * fbio,int cur_mirror)145 static int prev_repair_mirror(const struct btrfs_failed_bio *fbio, int cur_mirror)
146 {
147 	if (cur_mirror == 1)
148 		return fbio->num_copies;
149 	return cur_mirror - 1;
150 }
151 
btrfs_repair_done(struct btrfs_failed_bio * fbio)152 static void btrfs_repair_done(struct btrfs_failed_bio *fbio)
153 {
154 	if (atomic_dec_and_test(&fbio->repair_count)) {
155 		btrfs_bio_end_io(fbio->bbio, fbio->bbio->bio.bi_status);
156 		mempool_free(fbio, &btrfs_failed_bio_pool);
157 	}
158 }
159 
btrfs_end_repair_bio(struct btrfs_bio * repair_bbio,struct btrfs_device * dev)160 static void btrfs_end_repair_bio(struct btrfs_bio *repair_bbio,
161 				 struct btrfs_device *dev)
162 {
163 	struct btrfs_failed_bio *fbio = repair_bbio->private;
164 	struct btrfs_inode *inode = repair_bbio->inode;
165 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
166 	struct bio_vec *bv = bio_first_bvec_all(&repair_bbio->bio);
167 	int mirror = repair_bbio->mirror_num;
168 
169 	if (repair_bbio->bio.bi_status ||
170 	    !btrfs_data_csum_ok(repair_bbio, dev, 0, bvec_phys(bv))) {
171 		bio_reset(&repair_bbio->bio, NULL, REQ_OP_READ);
172 		repair_bbio->bio.bi_iter = repair_bbio->saved_iter;
173 
174 		mirror = next_repair_mirror(fbio, mirror);
175 		if (mirror == fbio->bbio->mirror_num) {
176 			btrfs_debug(fs_info, "no mirror left");
177 			fbio->bbio->bio.bi_status = BLK_STS_IOERR;
178 			goto done;
179 		}
180 
181 		btrfs_submit_bbio(repair_bbio, mirror);
182 		return;
183 	}
184 
185 	do {
186 		mirror = prev_repair_mirror(fbio, mirror);
187 		btrfs_repair_io_failure(fs_info, btrfs_ino(inode),
188 				  repair_bbio->file_offset, fs_info->sectorsize,
189 				  repair_bbio->saved_iter.bi_sector << SECTOR_SHIFT,
190 				  bvec_phys(bv), mirror);
191 	} while (mirror != fbio->bbio->mirror_num);
192 
193 done:
194 	btrfs_repair_done(fbio);
195 	bio_put(&repair_bbio->bio);
196 }
197 
198 /*
199  * Try to kick off a repair read to the next available mirror for a bad sector.
200  *
201  * This primarily tries to recover good data to serve the actual read request,
202  * but also tries to write the good data back to the bad mirror(s) when a
203  * read succeeded to restore the redundancy.
204  */
repair_one_sector(struct btrfs_bio * failed_bbio,u32 bio_offset,phys_addr_t paddr,struct btrfs_failed_bio * fbio)205 static struct btrfs_failed_bio *repair_one_sector(struct btrfs_bio *failed_bbio,
206 						  u32 bio_offset,
207 						  phys_addr_t paddr,
208 						  struct btrfs_failed_bio *fbio)
209 {
210 	struct btrfs_inode *inode = failed_bbio->inode;
211 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
212 	struct folio *folio = page_folio(phys_to_page(paddr));
213 	const u32 sectorsize = fs_info->sectorsize;
214 	const u32 foff = offset_in_folio(folio, paddr);
215 	const u64 logical = (failed_bbio->saved_iter.bi_sector << SECTOR_SHIFT);
216 	struct btrfs_bio *repair_bbio;
217 	struct bio *repair_bio;
218 	int num_copies;
219 	int mirror;
220 
221 	ASSERT(foff + sectorsize <= folio_size(folio));
222 	btrfs_debug(fs_info, "repair read error: read error at %llu",
223 		    failed_bbio->file_offset + bio_offset);
224 
225 	num_copies = btrfs_num_copies(fs_info, logical, sectorsize);
226 	if (num_copies == 1) {
227 		btrfs_debug(fs_info, "no copy to repair from");
228 		failed_bbio->bio.bi_status = BLK_STS_IOERR;
229 		return fbio;
230 	}
231 
232 	if (!fbio) {
233 		fbio = mempool_alloc(&btrfs_failed_bio_pool, GFP_NOFS);
234 		fbio->bbio = failed_bbio;
235 		fbio->num_copies = num_copies;
236 		atomic_set(&fbio->repair_count, 1);
237 	}
238 
239 	atomic_inc(&fbio->repair_count);
240 
241 	repair_bio = bio_alloc_bioset(NULL, 1, REQ_OP_READ, GFP_NOFS,
242 				      &btrfs_repair_bioset);
243 	repair_bio->bi_iter.bi_sector = failed_bbio->saved_iter.bi_sector;
244 	bio_add_folio_nofail(repair_bio, folio, sectorsize, foff);
245 
246 	repair_bbio = btrfs_bio(repair_bio);
247 	btrfs_bio_init(repair_bbio, fs_info, NULL, fbio);
248 	repair_bbio->inode = failed_bbio->inode;
249 	repair_bbio->file_offset = failed_bbio->file_offset + bio_offset;
250 
251 	mirror = next_repair_mirror(fbio, failed_bbio->mirror_num);
252 	btrfs_debug(fs_info, "submitting repair read to mirror %d", mirror);
253 	btrfs_submit_bbio(repair_bbio, mirror);
254 	return fbio;
255 }
256 
btrfs_check_read_bio(struct btrfs_bio * bbio,struct btrfs_device * dev)257 static void btrfs_check_read_bio(struct btrfs_bio *bbio, struct btrfs_device *dev)
258 {
259 	struct btrfs_inode *inode = bbio->inode;
260 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
261 	u32 sectorsize = fs_info->sectorsize;
262 	struct bvec_iter *iter = &bbio->saved_iter;
263 	blk_status_t status = bbio->bio.bi_status;
264 	struct btrfs_failed_bio *fbio = NULL;
265 	phys_addr_t paddr;
266 	u32 offset = 0;
267 
268 	/* Read-repair requires the inode field to be set by the submitter. */
269 	ASSERT(inode);
270 
271 	/*
272 	 * Hand off repair bios to the repair code as there is no upper level
273 	 * submitter for them.
274 	 */
275 	if (bbio->bio.bi_pool == &btrfs_repair_bioset) {
276 		btrfs_end_repair_bio(bbio, dev);
277 		return;
278 	}
279 
280 	/* Clear the I/O error. A failed repair will reset it. */
281 	bbio->bio.bi_status = BLK_STS_OK;
282 
283 	btrfs_bio_for_each_block(paddr, &bbio->bio, iter, fs_info->sectorsize) {
284 		if (status || !btrfs_data_csum_ok(bbio, dev, offset, paddr))
285 			fbio = repair_one_sector(bbio, offset, paddr, fbio);
286 		offset += sectorsize;
287 	}
288 	if (bbio->csum != bbio->csum_inline)
289 		kfree(bbio->csum);
290 
291 	if (fbio)
292 		btrfs_repair_done(fbio);
293 	else
294 		btrfs_bio_end_io(bbio, bbio->bio.bi_status);
295 }
296 
btrfs_log_dev_io_error(const struct bio * bio,struct btrfs_device * dev)297 static void btrfs_log_dev_io_error(const struct bio *bio, struct btrfs_device *dev)
298 {
299 	if (!dev || !dev->bdev)
300 		return;
301 	if (bio->bi_status != BLK_STS_IOERR && bio->bi_status != BLK_STS_TARGET)
302 		return;
303 
304 	if (btrfs_op(bio) == BTRFS_MAP_WRITE)
305 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
306 	else if (!(bio->bi_opf & REQ_RAHEAD))
307 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
308 	if (bio->bi_opf & REQ_PREFLUSH)
309 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_FLUSH_ERRS);
310 }
311 
btrfs_end_io_wq(const struct btrfs_fs_info * fs_info,const struct bio * bio)312 static struct workqueue_struct *btrfs_end_io_wq(const struct btrfs_fs_info *fs_info,
313 						const struct bio *bio)
314 {
315 	if (bio->bi_opf & REQ_META)
316 		return fs_info->endio_meta_workers;
317 	return fs_info->endio_workers;
318 }
319 
btrfs_end_bio_work(struct work_struct * work)320 static void btrfs_end_bio_work(struct work_struct *work)
321 {
322 	struct btrfs_bio *bbio = container_of(work, struct btrfs_bio, end_io_work);
323 
324 	/* Metadata reads are checked and repaired by the submitter. */
325 	if (is_data_bbio(bbio))
326 		btrfs_check_read_bio(bbio, bbio->bio.bi_private);
327 	else
328 		btrfs_bio_end_io(bbio, bbio->bio.bi_status);
329 }
330 
btrfs_simple_end_io(struct bio * bio)331 static void btrfs_simple_end_io(struct bio *bio)
332 {
333 	struct btrfs_bio *bbio = btrfs_bio(bio);
334 	struct btrfs_device *dev = bio->bi_private;
335 	struct btrfs_fs_info *fs_info = bbio->fs_info;
336 
337 	btrfs_bio_counter_dec(fs_info);
338 
339 	if (bio->bi_status)
340 		btrfs_log_dev_io_error(bio, dev);
341 
342 	if (bio_op(bio) == REQ_OP_READ) {
343 		INIT_WORK(&bbio->end_io_work, btrfs_end_bio_work);
344 		queue_work(btrfs_end_io_wq(fs_info, bio), &bbio->end_io_work);
345 	} else {
346 		if (bio_is_zone_append(bio) && !bio->bi_status)
347 			btrfs_record_physical_zoned(bbio);
348 		btrfs_bio_end_io(bbio, bbio->bio.bi_status);
349 	}
350 }
351 
btrfs_raid56_end_io(struct bio * bio)352 static void btrfs_raid56_end_io(struct bio *bio)
353 {
354 	struct btrfs_io_context *bioc = bio->bi_private;
355 	struct btrfs_bio *bbio = btrfs_bio(bio);
356 
357 	btrfs_bio_counter_dec(bioc->fs_info);
358 	bbio->mirror_num = bioc->mirror_num;
359 	if (bio_op(bio) == REQ_OP_READ && is_data_bbio(bbio))
360 		btrfs_check_read_bio(bbio, NULL);
361 	else
362 		btrfs_bio_end_io(bbio, bbio->bio.bi_status);
363 
364 	btrfs_put_bioc(bioc);
365 }
366 
btrfs_orig_write_end_io(struct bio * bio)367 static void btrfs_orig_write_end_io(struct bio *bio)
368 {
369 	struct btrfs_io_stripe *stripe = bio->bi_private;
370 	struct btrfs_io_context *bioc = stripe->bioc;
371 	struct btrfs_bio *bbio = btrfs_bio(bio);
372 
373 	btrfs_bio_counter_dec(bioc->fs_info);
374 
375 	if (bio->bi_status) {
376 		atomic_inc(&bioc->error);
377 		btrfs_log_dev_io_error(bio, stripe->dev);
378 	}
379 
380 	/*
381 	 * Only send an error to the higher layers if it is beyond the tolerance
382 	 * threshold.
383 	 */
384 	if (atomic_read(&bioc->error) > bioc->max_errors)
385 		bio->bi_status = BLK_STS_IOERR;
386 	else
387 		bio->bi_status = BLK_STS_OK;
388 
389 	if (bio_is_zone_append(bio) && !bio->bi_status)
390 		stripe->physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
391 
392 	btrfs_bio_end_io(bbio, bbio->bio.bi_status);
393 	btrfs_put_bioc(bioc);
394 }
395 
btrfs_clone_write_end_io(struct bio * bio)396 static void btrfs_clone_write_end_io(struct bio *bio)
397 {
398 	struct btrfs_io_stripe *stripe = bio->bi_private;
399 
400 	if (bio->bi_status) {
401 		atomic_inc(&stripe->bioc->error);
402 		btrfs_log_dev_io_error(bio, stripe->dev);
403 	} else if (bio_is_zone_append(bio)) {
404 		stripe->physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
405 	}
406 
407 	/* Pass on control to the original bio this one was cloned from */
408 	bio_endio(stripe->bioc->orig_bio);
409 	bio_put(bio);
410 }
411 
btrfs_submit_dev_bio(struct btrfs_device * dev,struct bio * bio)412 static void btrfs_submit_dev_bio(struct btrfs_device *dev, struct bio *bio)
413 {
414 	if (!dev || !dev->bdev ||
415 	    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
416 	    (btrfs_op(bio) == BTRFS_MAP_WRITE &&
417 	     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
418 		bio_io_error(bio);
419 		return;
420 	}
421 
422 	bio_set_dev(bio, dev->bdev);
423 
424 	/*
425 	 * For zone append writing, bi_sector must point the beginning of the
426 	 * zone
427 	 */
428 	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
429 		u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
430 		u64 zone_start = round_down(physical, dev->fs_info->zone_size);
431 
432 		ASSERT(btrfs_dev_is_sequential(dev, physical));
433 		bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
434 	}
435 	btrfs_debug(dev->fs_info,
436 	"%s: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
437 		__func__, bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
438 		(unsigned long)dev->bdev->bd_dev, btrfs_dev_name(dev),
439 		dev->devid, bio->bi_iter.bi_size);
440 
441 	/*
442 	 * Track reads if tracking is enabled; ignore I/O operations before the
443 	 * filesystem is fully initialized.
444 	 */
445 	if (dev->fs_devices->collect_fs_stats && bio_op(bio) == REQ_OP_READ && dev->fs_info)
446 		percpu_counter_add(&dev->fs_info->stats_read_blocks,
447 				   bio->bi_iter.bi_size >> dev->fs_info->sectorsize_bits);
448 
449 	if (bio->bi_opf & REQ_BTRFS_CGROUP_PUNT)
450 		blkcg_punt_bio_submit(bio);
451 	else
452 		submit_bio(bio);
453 }
454 
btrfs_submit_mirrored_bio(struct btrfs_io_context * bioc,int dev_nr)455 static void btrfs_submit_mirrored_bio(struct btrfs_io_context *bioc, int dev_nr)
456 {
457 	struct bio *orig_bio = bioc->orig_bio, *bio;
458 
459 	ASSERT(bio_op(orig_bio) != REQ_OP_READ);
460 
461 	/* Reuse the bio embedded into the btrfs_bio for the last mirror */
462 	if (dev_nr == bioc->num_stripes - 1) {
463 		bio = orig_bio;
464 		bio->bi_end_io = btrfs_orig_write_end_io;
465 	} else {
466 		bio = bio_alloc_clone(NULL, orig_bio, GFP_NOFS, &fs_bio_set);
467 		bio_inc_remaining(orig_bio);
468 		bio->bi_end_io = btrfs_clone_write_end_io;
469 	}
470 
471 	bio->bi_private = &bioc->stripes[dev_nr];
472 	bio->bi_iter.bi_sector = bioc->stripes[dev_nr].physical >> SECTOR_SHIFT;
473 	bioc->stripes[dev_nr].bioc = bioc;
474 	bioc->size = bio->bi_iter.bi_size;
475 	btrfs_submit_dev_bio(bioc->stripes[dev_nr].dev, bio);
476 }
477 
btrfs_submit_bio(struct bio * bio,struct btrfs_io_context * bioc,struct btrfs_io_stripe * smap,int mirror_num)478 static void btrfs_submit_bio(struct bio *bio, struct btrfs_io_context *bioc,
479 			     struct btrfs_io_stripe *smap, int mirror_num)
480 {
481 	if (!bioc) {
482 		/* Single mirror read/write fast path. */
483 		btrfs_bio(bio)->mirror_num = mirror_num;
484 		bio->bi_iter.bi_sector = smap->physical >> SECTOR_SHIFT;
485 		if (bio_op(bio) != REQ_OP_READ)
486 			btrfs_bio(bio)->orig_physical = smap->physical;
487 		bio->bi_private = smap->dev;
488 		bio->bi_end_io = btrfs_simple_end_io;
489 		btrfs_submit_dev_bio(smap->dev, bio);
490 	} else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
491 		/* Parity RAID write or read recovery. */
492 		bio->bi_private = bioc;
493 		bio->bi_end_io = btrfs_raid56_end_io;
494 		if (bio_op(bio) == REQ_OP_READ)
495 			raid56_parity_recover(bio, bioc, mirror_num);
496 		else
497 			raid56_parity_write(bio, bioc);
498 	} else {
499 		/* Write to multiple mirrors. */
500 		int total_devs = bioc->num_stripes;
501 
502 		bioc->orig_bio = bio;
503 		for (int dev_nr = 0; dev_nr < total_devs; dev_nr++)
504 			btrfs_submit_mirrored_bio(bioc, dev_nr);
505 	}
506 }
507 
btrfs_bio_csum(struct btrfs_bio * bbio)508 static int btrfs_bio_csum(struct btrfs_bio *bbio)
509 {
510 	if (bbio->bio.bi_opf & REQ_META)
511 		return btree_csum_one_bio(bbio);
512 	return btrfs_csum_one_bio(bbio);
513 }
514 
515 /*
516  * Async submit bios are used to offload expensive checksumming onto the worker
517  * threads.
518  */
519 struct async_submit_bio {
520 	struct btrfs_bio *bbio;
521 	struct btrfs_io_context *bioc;
522 	struct btrfs_io_stripe smap;
523 	int mirror_num;
524 	struct btrfs_work work;
525 };
526 
527 /*
528  * In order to insert checksums into the metadata in large chunks, we wait
529  * until bio submission time.   All the pages in the bio are checksummed and
530  * sums are attached onto the ordered extent record.
531  *
532  * At IO completion time the csums attached on the ordered extent record are
533  * inserted into the btree.
534  */
run_one_async_start(struct btrfs_work * work)535 static void run_one_async_start(struct btrfs_work *work)
536 {
537 	struct async_submit_bio *async =
538 		container_of(work, struct async_submit_bio, work);
539 	int ret;
540 
541 	ret = btrfs_bio_csum(async->bbio);
542 	if (ret)
543 		async->bbio->bio.bi_status = errno_to_blk_status(ret);
544 }
545 
546 /*
547  * In order to insert checksums into the metadata in large chunks, we wait
548  * until bio submission time.   All the pages in the bio are checksummed and
549  * sums are attached onto the ordered extent record.
550  *
551  * At IO completion time the csums attached on the ordered extent record are
552  * inserted into the tree.
553  *
554  * If called with @do_free == true, then it will free the work struct.
555  */
run_one_async_done(struct btrfs_work * work,bool do_free)556 static void run_one_async_done(struct btrfs_work *work, bool do_free)
557 {
558 	struct async_submit_bio *async =
559 		container_of(work, struct async_submit_bio, work);
560 	struct bio *bio = &async->bbio->bio;
561 
562 	if (do_free) {
563 		kfree(container_of(work, struct async_submit_bio, work));
564 		return;
565 	}
566 
567 	/* If an error occurred we just want to clean up the bio and move on. */
568 	if (bio->bi_status) {
569 		btrfs_bio_end_io(async->bbio, bio->bi_status);
570 		return;
571 	}
572 
573 	/*
574 	 * All of the bios that pass through here are from async helpers.
575 	 * Use REQ_BTRFS_CGROUP_PUNT to issue them from the owning cgroup's
576 	 * context.  This changes nothing when cgroups aren't in use.
577 	 */
578 	bio->bi_opf |= REQ_BTRFS_CGROUP_PUNT;
579 	btrfs_submit_bio(bio, async->bioc, &async->smap, async->mirror_num);
580 }
581 
should_async_write(struct btrfs_bio * bbio)582 static bool should_async_write(struct btrfs_bio *bbio)
583 {
584 	bool auto_csum_mode = true;
585 
586 #ifdef CONFIG_BTRFS_EXPERIMENTAL
587 	struct btrfs_fs_devices *fs_devices = bbio->fs_info->fs_devices;
588 	enum btrfs_offload_csum_mode csum_mode = READ_ONCE(fs_devices->offload_csum_mode);
589 
590 	if (csum_mode == BTRFS_OFFLOAD_CSUM_FORCE_OFF)
591 		return false;
592 
593 	auto_csum_mode = (csum_mode == BTRFS_OFFLOAD_CSUM_AUTO);
594 #endif
595 
596 	/* Submit synchronously if the checksum implementation is fast. */
597 	if (auto_csum_mode && test_bit(BTRFS_FS_CSUM_IMPL_FAST, &bbio->fs_info->flags))
598 		return false;
599 
600 	/*
601 	 * Try to defer the submission to a workqueue to parallelize the
602 	 * checksum calculation unless the I/O is issued synchronously.
603 	 */
604 	if (op_is_sync(bbio->bio.bi_opf))
605 		return false;
606 
607 	/* Zoned devices require I/O to be submitted in order. */
608 	if ((bbio->bio.bi_opf & REQ_META) && btrfs_is_zoned(bbio->fs_info))
609 		return false;
610 
611 	return true;
612 }
613 
614 /*
615  * Submit bio to an async queue.
616  *
617  * Return true if the work has been successfully submitted, else false.
618  */
btrfs_wq_submit_bio(struct btrfs_bio * bbio,struct btrfs_io_context * bioc,struct btrfs_io_stripe * smap,int mirror_num)619 static bool btrfs_wq_submit_bio(struct btrfs_bio *bbio,
620 				struct btrfs_io_context *bioc,
621 				struct btrfs_io_stripe *smap, int mirror_num)
622 {
623 	struct btrfs_fs_info *fs_info = bbio->fs_info;
624 	struct async_submit_bio *async;
625 
626 	async = kmalloc(sizeof(*async), GFP_NOFS);
627 	if (!async)
628 		return false;
629 
630 	async->bbio = bbio;
631 	async->bioc = bioc;
632 	async->smap = *smap;
633 	async->mirror_num = mirror_num;
634 
635 	btrfs_init_work(&async->work, run_one_async_start, run_one_async_done);
636 	btrfs_queue_work(fs_info->workers, &async->work);
637 	return true;
638 }
639 
btrfs_append_map_length(struct btrfs_bio * bbio,u64 map_length)640 static u64 btrfs_append_map_length(struct btrfs_bio *bbio, u64 map_length)
641 {
642 	unsigned int nr_segs;
643 	int sector_offset;
644 
645 	map_length = min(map_length, bbio->fs_info->max_zone_append_size);
646 	sector_offset = bio_split_rw_at(&bbio->bio, &bbio->fs_info->limits,
647 					&nr_segs, map_length);
648 	if (sector_offset) {
649 		/*
650 		 * bio_split_rw_at() could split at a size smaller than our
651 		 * sectorsize and thus cause unaligned I/Os.  Fix that by
652 		 * always rounding down to the nearest boundary.
653 		 */
654 		return ALIGN_DOWN(sector_offset << SECTOR_SHIFT, bbio->fs_info->sectorsize);
655 	}
656 	return map_length;
657 }
658 
btrfs_submit_chunk(struct btrfs_bio * bbio,int mirror_num)659 static bool btrfs_submit_chunk(struct btrfs_bio *bbio, int mirror_num)
660 {
661 	struct btrfs_inode *inode = bbio->inode;
662 	struct btrfs_fs_info *fs_info = bbio->fs_info;
663 	struct bio *bio = &bbio->bio;
664 	u64 logical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
665 	u64 length = bio->bi_iter.bi_size;
666 	u64 map_length = length;
667 	bool use_append = btrfs_use_zone_append(bbio);
668 	struct btrfs_io_context *bioc = NULL;
669 	struct btrfs_io_stripe smap;
670 	blk_status_t status;
671 	int ret;
672 
673 	if (!bbio->inode || btrfs_is_data_reloc_root(inode->root))
674 		smap.rst_search_commit_root = true;
675 	else
676 		smap.rst_search_commit_root = false;
677 
678 	btrfs_bio_counter_inc_blocked(fs_info);
679 	ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
680 			      &bioc, &smap, &mirror_num);
681 	if (ret) {
682 		status = errno_to_blk_status(ret);
683 		btrfs_bio_counter_dec(fs_info);
684 		goto end_bbio;
685 	}
686 
687 	map_length = min(map_length, length);
688 	if (use_append)
689 		map_length = btrfs_append_map_length(bbio, map_length);
690 
691 	if (map_length < length) {
692 		struct btrfs_bio *split;
693 
694 		split = btrfs_split_bio(fs_info, bbio, map_length);
695 		if (IS_ERR(split)) {
696 			status = errno_to_blk_status(PTR_ERR(split));
697 			btrfs_bio_counter_dec(fs_info);
698 			goto end_bbio;
699 		}
700 		bbio = split;
701 		bio = &bbio->bio;
702 	}
703 
704 	/*
705 	 * Save the iter for the end_io handler and preload the checksums for
706 	 * data reads.
707 	 */
708 	if (bio_op(bio) == REQ_OP_READ && is_data_bbio(bbio)) {
709 		bbio->saved_iter = bio->bi_iter;
710 		ret = btrfs_lookup_bio_sums(bbio);
711 		status = errno_to_blk_status(ret);
712 		if (status)
713 			goto fail;
714 	}
715 
716 	if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
717 		if (use_append) {
718 			bio->bi_opf &= ~REQ_OP_WRITE;
719 			bio->bi_opf |= REQ_OP_ZONE_APPEND;
720 		}
721 
722 		if (is_data_bbio(bbio) && bioc && bioc->use_rst) {
723 			/*
724 			 * No locking for the list update, as we only add to
725 			 * the list in the I/O submission path, and list
726 			 * iteration only happens in the completion path, which
727 			 * can't happen until after the last submission.
728 			 */
729 			btrfs_get_bioc(bioc);
730 			list_add_tail(&bioc->rst_ordered_entry, &bbio->ordered->bioc_list);
731 		}
732 
733 		/*
734 		 * Csum items for reloc roots have already been cloned at this
735 		 * point, so they are handled as part of the no-checksum case.
736 		 */
737 		if (inode && !(inode->flags & BTRFS_INODE_NODATASUM) &&
738 		    !test_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state) &&
739 		    !btrfs_is_data_reloc_root(inode->root)) {
740 			if (should_async_write(bbio) &&
741 			    btrfs_wq_submit_bio(bbio, bioc, &smap, mirror_num))
742 				goto done;
743 
744 			ret = btrfs_bio_csum(bbio);
745 			status = errno_to_blk_status(ret);
746 			if (status)
747 				goto fail;
748 		} else if (use_append ||
749 			   (btrfs_is_zoned(fs_info) && inode &&
750 			    inode->flags & BTRFS_INODE_NODATASUM)) {
751 			ret = btrfs_alloc_dummy_sum(bbio);
752 			status = errno_to_blk_status(ret);
753 			if (status)
754 				goto fail;
755 		}
756 	}
757 
758 	btrfs_submit_bio(bio, bioc, &smap, mirror_num);
759 done:
760 	return map_length == length;
761 
762 fail:
763 	btrfs_bio_counter_dec(fs_info);
764 	/*
765 	 * We have split the original bbio, now we have to end both the current
766 	 * @bbio and remaining one, as the remaining one will never be submitted.
767 	 */
768 	if (map_length < length) {
769 		struct btrfs_bio *remaining = bbio->private;
770 
771 		ASSERT(bbio->bio.bi_pool == &btrfs_clone_bioset);
772 		ASSERT(remaining);
773 
774 		btrfs_bio_end_io(remaining, status);
775 	}
776 end_bbio:
777 	btrfs_bio_end_io(bbio, status);
778 	/* Do not submit another chunk */
779 	return true;
780 }
781 
assert_bbio_alignment(struct btrfs_bio * bbio)782 static void assert_bbio_alignment(struct btrfs_bio *bbio)
783 {
784 #ifdef CONFIG_BTRFS_ASSERT
785 	struct btrfs_fs_info *fs_info = bbio->fs_info;
786 	struct bio_vec bvec;
787 	struct bvec_iter iter;
788 	const u32 blocksize = fs_info->sectorsize;
789 
790 	/* Metadata has no extra bs > ps alignment requirement. */
791 	if (!is_data_bbio(bbio))
792 		return;
793 
794 	bio_for_each_bvec(bvec, &bbio->bio, iter)
795 		ASSERT(IS_ALIGNED(bvec.bv_offset, blocksize) &&
796 		       IS_ALIGNED(bvec.bv_len, blocksize),
797 		"root=%llu inode=%llu logical=%llu length=%u index=%u bv_offset=%u bv_len=%u",
798 		btrfs_root_id(bbio->inode->root),
799 		btrfs_ino(bbio->inode),
800 		bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT,
801 		bbio->bio.bi_iter.bi_size, iter.bi_idx,
802 		bvec.bv_offset,
803 		bvec.bv_len);
804 #endif
805 }
806 
btrfs_submit_bbio(struct btrfs_bio * bbio,int mirror_num)807 void btrfs_submit_bbio(struct btrfs_bio *bbio, int mirror_num)
808 {
809 	/* If bbio->inode is not populated, its file_offset must be 0. */
810 	ASSERT(bbio->inode || bbio->file_offset == 0);
811 
812 	assert_bbio_alignment(bbio);
813 
814 	while (!btrfs_submit_chunk(bbio, mirror_num))
815 		;
816 }
817 
818 /*
819  * Submit a repair write.
820  *
821  * This bypasses btrfs_submit_bbio() deliberately, as that writes all copies in a
822  * RAID setup.  Here we only want to write the one bad copy, so we do the
823  * mapping ourselves and submit the bio directly.
824  *
825  * The I/O is issued synchronously to block the repair read completion from
826  * freeing the bio.
827  */
btrfs_repair_io_failure(struct btrfs_fs_info * fs_info,u64 ino,u64 start,u64 length,u64 logical,phys_addr_t paddr,int mirror_num)828 int btrfs_repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
829 			    u64 length, u64 logical, phys_addr_t paddr, int mirror_num)
830 {
831 	struct btrfs_io_stripe smap = { 0 };
832 	struct bio_vec bvec;
833 	struct bio bio;
834 	int ret = 0;
835 
836 	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
837 	BUG_ON(!mirror_num);
838 
839 	if (btrfs_repair_one_zone(fs_info, logical))
840 		return 0;
841 
842 	/*
843 	 * Avoid races with device replace and make sure our bioc has devices
844 	 * associated to its stripes that don't go away while we are doing the
845 	 * read repair operation.
846 	 */
847 	btrfs_bio_counter_inc_blocked(fs_info);
848 	ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num);
849 	if (ret < 0)
850 		goto out_counter_dec;
851 
852 	if (unlikely(!smap.dev->bdev ||
853 		     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &smap.dev->dev_state))) {
854 		ret = -EIO;
855 		goto out_counter_dec;
856 	}
857 
858 	bio_init(&bio, smap.dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC);
859 	bio.bi_iter.bi_sector = smap.physical >> SECTOR_SHIFT;
860 	__bio_add_page(&bio, phys_to_page(paddr), length, offset_in_page(paddr));
861 	ret = submit_bio_wait(&bio);
862 	if (ret) {
863 		/* try to remap that extent elsewhere? */
864 		btrfs_dev_stat_inc_and_print(smap.dev, BTRFS_DEV_STAT_WRITE_ERRS);
865 		goto out_bio_uninit;
866 	}
867 
868 	btrfs_info_rl(fs_info,
869 		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
870 			     ino, start, btrfs_dev_name(smap.dev),
871 			     smap.physical >> SECTOR_SHIFT);
872 	ret = 0;
873 
874 out_bio_uninit:
875 	bio_uninit(&bio);
876 out_counter_dec:
877 	btrfs_bio_counter_dec(fs_info);
878 	return ret;
879 }
880 
881 /*
882  * Submit a btrfs_bio based repair write.
883  *
884  * If @dev_replace is true, the write would be submitted to dev-replace target.
885  */
btrfs_submit_repair_write(struct btrfs_bio * bbio,int mirror_num,bool dev_replace)886 void btrfs_submit_repair_write(struct btrfs_bio *bbio, int mirror_num, bool dev_replace)
887 {
888 	struct btrfs_fs_info *fs_info = bbio->fs_info;
889 	u64 logical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
890 	u64 length = bbio->bio.bi_iter.bi_size;
891 	struct btrfs_io_stripe smap = { 0 };
892 	int ret;
893 
894 	ASSERT(fs_info);
895 	ASSERT(mirror_num > 0);
896 	ASSERT(btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE);
897 	ASSERT(!bbio->inode);
898 
899 	btrfs_bio_counter_inc_blocked(fs_info);
900 	ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num);
901 	if (ret < 0)
902 		goto fail;
903 
904 	if (dev_replace) {
905 		ASSERT(smap.dev == fs_info->dev_replace.srcdev);
906 		smap.dev = fs_info->dev_replace.tgtdev;
907 	}
908 	btrfs_submit_bio(&bbio->bio, NULL, &smap, mirror_num);
909 	return;
910 
911 fail:
912 	btrfs_bio_counter_dec(fs_info);
913 	btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
914 }
915 
btrfs_bioset_init(void)916 int __init btrfs_bioset_init(void)
917 {
918 	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
919 			offsetof(struct btrfs_bio, bio),
920 			BIOSET_NEED_BVECS))
921 		return -ENOMEM;
922 	if (bioset_init(&btrfs_clone_bioset, BIO_POOL_SIZE,
923 			offsetof(struct btrfs_bio, bio), 0))
924 		goto out;
925 	if (bioset_init(&btrfs_repair_bioset, BIO_POOL_SIZE,
926 			offsetof(struct btrfs_bio, bio),
927 			BIOSET_NEED_BVECS))
928 		goto out;
929 	if (mempool_init_kmalloc_pool(&btrfs_failed_bio_pool, BIO_POOL_SIZE,
930 				      sizeof(struct btrfs_failed_bio)))
931 		goto out;
932 	return 0;
933 
934 out:
935 	btrfs_bioset_exit();
936 	return -ENOMEM;
937 }
938 
btrfs_bioset_exit(void)939 void __cold btrfs_bioset_exit(void)
940 {
941 	mempool_exit(&btrfs_failed_bio_pool);
942 	bioset_exit(&btrfs_repair_bioset);
943 	bioset_exit(&btrfs_clone_bioset);
944 	bioset_exit(&btrfs_bioset);
945 }
946