xref: /linux/fs/btrfs/tree-log.c (revision f3827213abae9291b7525b05e6fd29b1f0536ce6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/blkdev.h>
9 #include <linux/list_sort.h>
10 #include <linux/iversion.h>
11 #include "misc.h"
12 #include "ctree.h"
13 #include "tree-log.h"
14 #include "disk-io.h"
15 #include "locking.h"
16 #include "backref.h"
17 #include "compression.h"
18 #include "qgroup.h"
19 #include "block-group.h"
20 #include "space-info.h"
21 #include "inode-item.h"
22 #include "fs.h"
23 #include "accessors.h"
24 #include "extent-tree.h"
25 #include "root-tree.h"
26 #include "dir-item.h"
27 #include "file-item.h"
28 #include "file.h"
29 #include "orphan.h"
30 #include "print-tree.h"
31 #include "tree-checker.h"
32 
33 #define MAX_CONFLICT_INODES 10
34 
35 /* magic values for the inode_only field in btrfs_log_inode:
36  *
37  * LOG_INODE_ALL means to log everything
38  * LOG_INODE_EXISTS means to log just enough to recreate the inode
39  * during log replay
40  */
41 enum {
42 	LOG_INODE_ALL,
43 	LOG_INODE_EXISTS,
44 };
45 
46 /*
47  * directory trouble cases
48  *
49  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
50  * log, we must force a full commit before doing an fsync of the directory
51  * where the unlink was done.
52  * ---> record transid of last unlink/rename per directory
53  *
54  * mkdir foo/some_dir
55  * normal commit
56  * rename foo/some_dir foo2/some_dir
57  * mkdir foo/some_dir
58  * fsync foo/some_dir/some_file
59  *
60  * The fsync above will unlink the original some_dir without recording
61  * it in its new location (foo2).  After a crash, some_dir will be gone
62  * unless the fsync of some_file forces a full commit
63  *
64  * 2) we must log any new names for any file or dir that is in the fsync
65  * log. ---> check inode while renaming/linking.
66  *
67  * 2a) we must log any new names for any file or dir during rename
68  * when the directory they are being removed from was logged.
69  * ---> check inode and old parent dir during rename
70  *
71  *  2a is actually the more important variant.  With the extra logging
72  *  a crash might unlink the old name without recreating the new one
73  *
74  * 3) after a crash, we must go through any directories with a link count
75  * of zero and redo the rm -rf
76  *
77  * mkdir f1/foo
78  * normal commit
79  * rm -rf f1/foo
80  * fsync(f1)
81  *
82  * The directory f1 was fully removed from the FS, but fsync was never
83  * called on f1, only its parent dir.  After a crash the rm -rf must
84  * be replayed.  This must be able to recurse down the entire
85  * directory tree.  The inode link count fixup code takes care of the
86  * ugly details.
87  */
88 
89 /*
90  * stages for the tree walking.  The first
91  * stage (0) is to only pin down the blocks we find
92  * the second stage (1) is to make sure that all the inodes
93  * we find in the log are created in the subvolume.
94  *
95  * The last stage is to deal with directories and links and extents
96  * and all the other fun semantics
97  */
98 enum {
99 	LOG_WALK_PIN_ONLY,
100 	LOG_WALK_REPLAY_INODES,
101 	LOG_WALK_REPLAY_DIR_INDEX,
102 	LOG_WALK_REPLAY_ALL,
103 };
104 
105 /*
106  * The walk control struct is used to pass state down the chain when processing
107  * the log tree. The stage field tells us which part of the log tree processing
108  * we are currently doing.
109  */
110 struct walk_control {
111 	/*
112 	 * Signal that we are freeing the metadata extents of a log tree.
113 	 * This is used at transaction commit time while freeing a log tree.
114 	 */
115 	bool free;
116 
117 	/*
118 	 * Signal that we are pinning the metadata extents of a log tree and the
119 	 * data extents its leaves point to (if using mixed block groups).
120 	 * This happens in the first stage of log replay to ensure that during
121 	 * replay, while we are modifying subvolume trees, we don't overwrite
122 	 * the metadata extents of log trees.
123 	 */
124 	bool pin;
125 
126 	/* What stage of the replay code we're currently in. */
127 	int stage;
128 
129 	/*
130 	 * Ignore any items from the inode currently being processed. Needs
131 	 * to be set every time we find a BTRFS_INODE_ITEM_KEY.
132 	 */
133 	bool ignore_cur_inode;
134 
135 	/*
136 	 * The root we are currently replaying to. This is NULL for the replay
137 	 * stage LOG_WALK_PIN_ONLY.
138 	 */
139 	struct btrfs_root *root;
140 
141 	/* The log tree we are currently processing (not NULL for any stage). */
142 	struct btrfs_root *log;
143 
144 	/* The transaction handle used for replaying all log trees. */
145 	struct btrfs_trans_handle *trans;
146 
147 	/*
148 	 * The function that gets used to process blocks we find in the tree.
149 	 * Note the extent_buffer might not be up to date when it is passed in,
150 	 * and it must be checked or read if you need the data inside it.
151 	 */
152 	int (*process_func)(struct extent_buffer *eb,
153 			    struct walk_control *wc, u64 gen, int level);
154 
155 	/*
156 	 * The following are used only when stage is >= LOG_WALK_REPLAY_INODES
157 	 * and by the replay_one_buffer() callback.
158 	 */
159 
160 	/* The current log leaf being processed. */
161 	struct extent_buffer *log_leaf;
162 	/* The key being processed of the current log leaf. */
163 	struct btrfs_key log_key;
164 	/* The slot being processed of the current log leaf. */
165 	int log_slot;
166 
167 	/* A path used for searches and modifications to subvolume trees. */
168 	struct btrfs_path *subvol_path;
169 };
170 
do_abort_log_replay(struct walk_control * wc,const char * function,unsigned int line,int error,const char * fmt,...)171 static void do_abort_log_replay(struct walk_control *wc, const char *function,
172 				unsigned int line, int error, const char *fmt, ...)
173 {
174 	struct btrfs_fs_info *fs_info = wc->trans->fs_info;
175 	struct va_format vaf;
176 	va_list args;
177 
178 	/*
179 	 * Do nothing if we already aborted, to avoid dumping leaves again which
180 	 * can be verbose. Further more, only the first call is useful since it
181 	 * is where we have a problem. Note that we do not use the flag
182 	 * BTRFS_FS_STATE_TRANS_ABORTED because log replay calls functions that
183 	 * are outside of tree-log.c that can abort transactions (such as
184 	 * btrfs_add_link() for example), so if that happens we still want to
185 	 * dump all log replay specific information below.
186 	 */
187 	if (test_and_set_bit(BTRFS_FS_STATE_LOG_REPLAY_ABORTED, &fs_info->fs_state))
188 		return;
189 
190 	btrfs_abort_transaction(wc->trans, error);
191 
192 	if (wc->subvol_path->nodes[0]) {
193 		btrfs_crit(fs_info,
194 			   "subvolume (root %llu) leaf currently being processed:",
195 			   btrfs_root_id(wc->root));
196 		btrfs_print_leaf(wc->subvol_path->nodes[0]);
197 	}
198 
199 	if (wc->log_leaf) {
200 		btrfs_crit(fs_info,
201 	  "log tree (for root %llu) leaf currently being processed (slot %d key %llu %u %llu):",
202 			   btrfs_root_id(wc->root), wc->log_slot,
203 			   wc->log_key.objectid, wc->log_key.type, wc->log_key.offset);
204 		btrfs_print_leaf(wc->log_leaf);
205 	}
206 
207 	va_start(args, fmt);
208 	vaf.fmt = fmt;
209 	vaf.va = &args;
210 
211 	btrfs_crit(fs_info,
212 	   "log replay failed in %s:%u for root %llu, stage %d, with error %d: %pV",
213 		   function, line, btrfs_root_id(wc->root), wc->stage, error, &vaf);
214 
215 	va_end(args);
216 }
217 
218 /*
219  * Use this for aborting a transaction during log replay while we are down the
220  * call chain of replay_one_buffer(), so that we get a lot more useful
221  * information for debugging issues when compared to a plain call to
222  * btrfs_abort_transaction().
223  */
224 #define btrfs_abort_log_replay(wc, error, fmt, args...) \
225 	do_abort_log_replay((wc), __func__, __LINE__, (error), fmt, ##args)
226 
227 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
228 			   struct btrfs_inode *inode,
229 			   int inode_only,
230 			   struct btrfs_log_ctx *ctx);
231 static int link_to_fixup_dir(struct walk_control *wc, u64 objectid);
232 static noinline int replay_dir_deletes(struct walk_control *wc,
233 				       u64 dirid, bool del_all);
234 static void wait_log_commit(struct btrfs_root *root, int transid);
235 
236 /*
237  * tree logging is a special write ahead log used to make sure that
238  * fsyncs and O_SYNCs can happen without doing full tree commits.
239  *
240  * Full tree commits are expensive because they require commonly
241  * modified blocks to be recowed, creating many dirty pages in the
242  * extent tree an 4x-6x higher write load than ext3.
243  *
244  * Instead of doing a tree commit on every fsync, we use the
245  * key ranges and transaction ids to find items for a given file or directory
246  * that have changed in this transaction.  Those items are copied into
247  * a special tree (one per subvolume root), that tree is written to disk
248  * and then the fsync is considered complete.
249  *
250  * After a crash, items are copied out of the log-tree back into the
251  * subvolume tree.  Any file data extents found are recorded in the extent
252  * allocation tree, and the log-tree freed.
253  *
254  * The log tree is read three times, once to pin down all the extents it is
255  * using in ram and once, once to create all the inodes logged in the tree
256  * and once to do all the other items.
257  */
258 
btrfs_iget_logging(u64 objectid,struct btrfs_root * root)259 static struct btrfs_inode *btrfs_iget_logging(u64 objectid, struct btrfs_root *root)
260 {
261 	unsigned int nofs_flag;
262 	struct btrfs_inode *inode;
263 
264 	/* Only meant to be called for subvolume roots and not for log roots. */
265 	ASSERT(btrfs_is_fstree(btrfs_root_id(root)));
266 
267 	/*
268 	 * We're holding a transaction handle whether we are logging or
269 	 * replaying a log tree, so we must make sure NOFS semantics apply
270 	 * because btrfs_alloc_inode() may be triggered and it uses GFP_KERNEL
271 	 * to allocate an inode, which can recurse back into the filesystem and
272 	 * attempt a transaction commit, resulting in a deadlock.
273 	 */
274 	nofs_flag = memalloc_nofs_save();
275 	inode = btrfs_iget(objectid, root);
276 	memalloc_nofs_restore(nofs_flag);
277 
278 	return inode;
279 }
280 
281 /*
282  * start a sub transaction and setup the log tree
283  * this increments the log tree writer count to make the people
284  * syncing the tree wait for us to finish
285  */
start_log_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_log_ctx * ctx)286 static int start_log_trans(struct btrfs_trans_handle *trans,
287 			   struct btrfs_root *root,
288 			   struct btrfs_log_ctx *ctx)
289 {
290 	struct btrfs_fs_info *fs_info = root->fs_info;
291 	struct btrfs_root *tree_root = fs_info->tree_root;
292 	const bool zoned = btrfs_is_zoned(fs_info);
293 	int ret = 0;
294 	bool created = false;
295 
296 	/*
297 	 * First check if the log root tree was already created. If not, create
298 	 * it before locking the root's log_mutex, just to keep lockdep happy.
299 	 */
300 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
301 		mutex_lock(&tree_root->log_mutex);
302 		if (!fs_info->log_root_tree) {
303 			ret = btrfs_init_log_root_tree(trans, fs_info);
304 			if (!ret) {
305 				set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
306 				created = true;
307 			}
308 		}
309 		mutex_unlock(&tree_root->log_mutex);
310 		if (ret)
311 			return ret;
312 	}
313 
314 	mutex_lock(&root->log_mutex);
315 
316 again:
317 	if (root->log_root) {
318 		int index = (root->log_transid + 1) % 2;
319 
320 		if (btrfs_need_log_full_commit(trans)) {
321 			ret = BTRFS_LOG_FORCE_COMMIT;
322 			goto out;
323 		}
324 
325 		if (zoned && atomic_read(&root->log_commit[index])) {
326 			wait_log_commit(root, root->log_transid - 1);
327 			goto again;
328 		}
329 
330 		if (!root->log_start_pid) {
331 			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
332 			root->log_start_pid = current->pid;
333 		} else if (root->log_start_pid != current->pid) {
334 			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
335 		}
336 	} else {
337 		/*
338 		 * This means fs_info->log_root_tree was already created
339 		 * for some other FS trees. Do the full commit not to mix
340 		 * nodes from multiple log transactions to do sequential
341 		 * writing.
342 		 */
343 		if (zoned && !created) {
344 			ret = BTRFS_LOG_FORCE_COMMIT;
345 			goto out;
346 		}
347 
348 		ret = btrfs_add_log_tree(trans, root);
349 		if (ret)
350 			goto out;
351 
352 		set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
353 		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
354 		root->log_start_pid = current->pid;
355 	}
356 
357 	atomic_inc(&root->log_writers);
358 	if (!ctx->logging_new_name) {
359 		int index = root->log_transid % 2;
360 		list_add_tail(&ctx->list, &root->log_ctxs[index]);
361 		ctx->log_transid = root->log_transid;
362 	}
363 
364 out:
365 	mutex_unlock(&root->log_mutex);
366 	return ret;
367 }
368 
369 /*
370  * returns 0 if there was a log transaction running and we were able
371  * to join, or returns -ENOENT if there were not transactions
372  * in progress
373  */
join_running_log_trans(struct btrfs_root * root)374 static int join_running_log_trans(struct btrfs_root *root)
375 {
376 	const bool zoned = btrfs_is_zoned(root->fs_info);
377 	int ret = -ENOENT;
378 
379 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
380 		return ret;
381 
382 	mutex_lock(&root->log_mutex);
383 again:
384 	if (root->log_root) {
385 		int index = (root->log_transid + 1) % 2;
386 
387 		ret = 0;
388 		if (zoned && atomic_read(&root->log_commit[index])) {
389 			wait_log_commit(root, root->log_transid - 1);
390 			goto again;
391 		}
392 		atomic_inc(&root->log_writers);
393 	}
394 	mutex_unlock(&root->log_mutex);
395 	return ret;
396 }
397 
398 /*
399  * This either makes the current running log transaction wait
400  * until you call btrfs_end_log_trans() or it makes any future
401  * log transactions wait until you call btrfs_end_log_trans()
402  */
btrfs_pin_log_trans(struct btrfs_root * root)403 void btrfs_pin_log_trans(struct btrfs_root *root)
404 {
405 	atomic_inc(&root->log_writers);
406 }
407 
408 /*
409  * indicate we're done making changes to the log tree
410  * and wake up anyone waiting to do a sync
411  */
btrfs_end_log_trans(struct btrfs_root * root)412 void btrfs_end_log_trans(struct btrfs_root *root)
413 {
414 	if (atomic_dec_and_test(&root->log_writers)) {
415 		/* atomic_dec_and_test implies a barrier */
416 		cond_wake_up_nomb(&root->log_writer_wait);
417 	}
418 }
419 
420 /*
421  * process_func used to pin down extents, write them or wait on them
422  */
process_one_buffer(struct extent_buffer * eb,struct walk_control * wc,u64 gen,int level)423 static int process_one_buffer(struct extent_buffer *eb,
424 			      struct walk_control *wc, u64 gen, int level)
425 {
426 	struct btrfs_root *log = wc->log;
427 	struct btrfs_trans_handle *trans = wc->trans;
428 	struct btrfs_fs_info *fs_info = log->fs_info;
429 	int ret = 0;
430 
431 	/*
432 	 * If this fs is mixed then we need to be able to process the leaves to
433 	 * pin down any logged extents, so we have to read the block.
434 	 */
435 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
436 		struct btrfs_tree_parent_check check = {
437 			.level = level,
438 			.transid = gen
439 		};
440 
441 		ret = btrfs_read_extent_buffer(eb, &check);
442 		if (unlikely(ret)) {
443 			if (trans)
444 				btrfs_abort_transaction(trans, ret);
445 			else
446 				btrfs_handle_fs_error(fs_info, ret, NULL);
447 			return ret;
448 		}
449 	}
450 
451 	if (wc->pin) {
452 		ASSERT(trans != NULL);
453 		ret = btrfs_pin_extent_for_log_replay(trans, eb);
454 		if (unlikely(ret)) {
455 			btrfs_abort_transaction(trans, ret);
456 			return ret;
457 		}
458 
459 		if (btrfs_buffer_uptodate(eb, gen, false) && level == 0) {
460 			ret = btrfs_exclude_logged_extents(eb);
461 			if (ret)
462 				btrfs_abort_transaction(trans, ret);
463 		}
464 	}
465 	return ret;
466 }
467 
468 /*
469  * Item overwrite used by log replay. The given log tree leaf, slot and key
470  * from the walk_control structure all refer to the source data we are copying
471  * out.
472  *
473  * The given root is for the tree we are copying into, and path is a scratch
474  * path for use in this function (it should be released on entry and will be
475  * released on exit).
476  *
477  * If the key is already in the destination tree the existing item is
478  * overwritten.  If the existing item isn't big enough, it is extended.
479  * If it is too large, it is truncated.
480  *
481  * If the key isn't in the destination yet, a new item is inserted.
482  */
overwrite_item(struct walk_control * wc)483 static int overwrite_item(struct walk_control *wc)
484 {
485 	struct btrfs_trans_handle *trans = wc->trans;
486 	struct btrfs_root *root = wc->root;
487 	int ret;
488 	u32 item_size;
489 	u64 saved_i_size = 0;
490 	int save_old_i_size = 0;
491 	unsigned long src_ptr;
492 	unsigned long dst_ptr;
493 	struct extent_buffer *dst_eb;
494 	int dst_slot;
495 	const bool is_inode_item = (wc->log_key.type == BTRFS_INODE_ITEM_KEY);
496 
497 	/*
498 	 * This is only used during log replay, so the root is always from a
499 	 * fs/subvolume tree. In case we ever need to support a log root, then
500 	 * we'll have to clone the leaf in the path, release the path and use
501 	 * the leaf before writing into the log tree. See the comments at
502 	 * copy_items() for more details.
503 	 */
504 	ASSERT(btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID);
505 
506 	item_size = btrfs_item_size(wc->log_leaf, wc->log_slot);
507 	src_ptr = btrfs_item_ptr_offset(wc->log_leaf, wc->log_slot);
508 
509 	/* Look for the key in the destination tree. */
510 	ret = btrfs_search_slot(NULL, root, &wc->log_key, wc->subvol_path, 0, 0);
511 	if (ret < 0) {
512 		btrfs_abort_log_replay(wc, ret,
513 		"failed to search subvolume tree for key (%llu %u %llu) root %llu",
514 				       wc->log_key.objectid, wc->log_key.type,
515 				       wc->log_key.offset, btrfs_root_id(root));
516 		return ret;
517 	}
518 
519 	dst_eb = wc->subvol_path->nodes[0];
520 	dst_slot = wc->subvol_path->slots[0];
521 
522 	if (ret == 0) {
523 		char *src_copy;
524 		const u32 dst_size = btrfs_item_size(dst_eb, dst_slot);
525 
526 		if (dst_size != item_size)
527 			goto insert;
528 
529 		if (item_size == 0) {
530 			btrfs_release_path(wc->subvol_path);
531 			return 0;
532 		}
533 		src_copy = kmalloc(item_size, GFP_NOFS);
534 		if (!src_copy) {
535 			btrfs_abort_log_replay(wc, -ENOMEM,
536 			       "failed to allocate memory for log leaf item");
537 			return -ENOMEM;
538 		}
539 
540 		read_extent_buffer(wc->log_leaf, src_copy, src_ptr, item_size);
541 		dst_ptr = btrfs_item_ptr_offset(dst_eb, dst_slot);
542 		ret = memcmp_extent_buffer(dst_eb, src_copy, dst_ptr, item_size);
543 
544 		kfree(src_copy);
545 		/*
546 		 * they have the same contents, just return, this saves
547 		 * us from cowing blocks in the destination tree and doing
548 		 * extra writes that may not have been done by a previous
549 		 * sync
550 		 */
551 		if (ret == 0) {
552 			btrfs_release_path(wc->subvol_path);
553 			return 0;
554 		}
555 
556 		/*
557 		 * We need to load the old nbytes into the inode so when we
558 		 * replay the extents we've logged we get the right nbytes.
559 		 */
560 		if (is_inode_item) {
561 			struct btrfs_inode_item *item;
562 			u64 nbytes;
563 			u32 mode;
564 
565 			item = btrfs_item_ptr(dst_eb, dst_slot,
566 					      struct btrfs_inode_item);
567 			nbytes = btrfs_inode_nbytes(dst_eb, item);
568 			item = btrfs_item_ptr(wc->log_leaf, wc->log_slot,
569 					      struct btrfs_inode_item);
570 			btrfs_set_inode_nbytes(wc->log_leaf, item, nbytes);
571 
572 			/*
573 			 * If this is a directory we need to reset the i_size to
574 			 * 0 so that we can set it up properly when replaying
575 			 * the rest of the items in this log.
576 			 */
577 			mode = btrfs_inode_mode(wc->log_leaf, item);
578 			if (S_ISDIR(mode))
579 				btrfs_set_inode_size(wc->log_leaf, item, 0);
580 		}
581 	} else if (is_inode_item) {
582 		struct btrfs_inode_item *item;
583 		u32 mode;
584 
585 		/*
586 		 * New inode, set nbytes to 0 so that the nbytes comes out
587 		 * properly when we replay the extents.
588 		 */
589 		item = btrfs_item_ptr(wc->log_leaf, wc->log_slot, struct btrfs_inode_item);
590 		btrfs_set_inode_nbytes(wc->log_leaf, item, 0);
591 
592 		/*
593 		 * If this is a directory we need to reset the i_size to 0 so
594 		 * that we can set it up properly when replaying the rest of
595 		 * the items in this log.
596 		 */
597 		mode = btrfs_inode_mode(wc->log_leaf, item);
598 		if (S_ISDIR(mode))
599 			btrfs_set_inode_size(wc->log_leaf, item, 0);
600 	}
601 insert:
602 	btrfs_release_path(wc->subvol_path);
603 	/* try to insert the key into the destination tree */
604 	wc->subvol_path->skip_release_on_error = 1;
605 	ret = btrfs_insert_empty_item(trans, root, wc->subvol_path, &wc->log_key, item_size);
606 	wc->subvol_path->skip_release_on_error = 0;
607 
608 	dst_eb = wc->subvol_path->nodes[0];
609 	dst_slot = wc->subvol_path->slots[0];
610 
611 	/* make sure any existing item is the correct size */
612 	if (ret == -EEXIST || ret == -EOVERFLOW) {
613 		const u32 found_size = btrfs_item_size(dst_eb, dst_slot);
614 
615 		if (found_size > item_size)
616 			btrfs_truncate_item(trans, wc->subvol_path, item_size, 1);
617 		else if (found_size < item_size)
618 			btrfs_extend_item(trans, wc->subvol_path, item_size - found_size);
619 	} else if (ret) {
620 		btrfs_abort_log_replay(wc, ret,
621 				       "failed to insert item for key (%llu %u %llu)",
622 				       wc->log_key.objectid, wc->log_key.type,
623 				       wc->log_key.offset);
624 		return ret;
625 	}
626 	dst_ptr = btrfs_item_ptr_offset(dst_eb, dst_slot);
627 
628 	/* don't overwrite an existing inode if the generation number
629 	 * was logged as zero.  This is done when the tree logging code
630 	 * is just logging an inode to make sure it exists after recovery.
631 	 *
632 	 * Also, don't overwrite i_size on directories during replay.
633 	 * log replay inserts and removes directory items based on the
634 	 * state of the tree found in the subvolume, and i_size is modified
635 	 * as it goes
636 	 */
637 	if (is_inode_item && ret == -EEXIST) {
638 		struct btrfs_inode_item *src_item;
639 		struct btrfs_inode_item *dst_item;
640 
641 		src_item = (struct btrfs_inode_item *)src_ptr;
642 		dst_item = (struct btrfs_inode_item *)dst_ptr;
643 
644 		if (btrfs_inode_generation(wc->log_leaf, src_item) == 0) {
645 			const u64 ino_size = btrfs_inode_size(wc->log_leaf, src_item);
646 
647 			/*
648 			 * For regular files an ino_size == 0 is used only when
649 			 * logging that an inode exists, as part of a directory
650 			 * fsync, and the inode wasn't fsynced before. In this
651 			 * case don't set the size of the inode in the fs/subvol
652 			 * tree, otherwise we would be throwing valid data away.
653 			 */
654 			if (S_ISREG(btrfs_inode_mode(wc->log_leaf, src_item)) &&
655 			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
656 			    ino_size != 0)
657 				btrfs_set_inode_size(dst_eb, dst_item, ino_size);
658 			goto no_copy;
659 		}
660 
661 		if (S_ISDIR(btrfs_inode_mode(wc->log_leaf, src_item)) &&
662 		    S_ISDIR(btrfs_inode_mode(dst_eb, dst_item))) {
663 			save_old_i_size = 1;
664 			saved_i_size = btrfs_inode_size(dst_eb, dst_item);
665 		}
666 	}
667 
668 	copy_extent_buffer(dst_eb, wc->log_leaf, dst_ptr, src_ptr, item_size);
669 
670 	if (save_old_i_size) {
671 		struct btrfs_inode_item *dst_item;
672 
673 		dst_item = (struct btrfs_inode_item *)dst_ptr;
674 		btrfs_set_inode_size(dst_eb, dst_item, saved_i_size);
675 	}
676 
677 	/* make sure the generation is filled in */
678 	if (is_inode_item) {
679 		struct btrfs_inode_item *dst_item;
680 
681 		dst_item = (struct btrfs_inode_item *)dst_ptr;
682 		if (btrfs_inode_generation(dst_eb, dst_item) == 0)
683 			btrfs_set_inode_generation(dst_eb, dst_item, trans->transid);
684 	}
685 no_copy:
686 	btrfs_release_path(wc->subvol_path);
687 	return 0;
688 }
689 
read_alloc_one_name(struct extent_buffer * eb,void * start,int len,struct fscrypt_str * name)690 static int read_alloc_one_name(struct extent_buffer *eb, void *start, int len,
691 			       struct fscrypt_str *name)
692 {
693 	char *buf;
694 
695 	buf = kmalloc(len, GFP_NOFS);
696 	if (!buf)
697 		return -ENOMEM;
698 
699 	read_extent_buffer(eb, buf, (unsigned long)start, len);
700 	name->name = buf;
701 	name->len = len;
702 	return 0;
703 }
704 
705 /* replays a single extent in 'eb' at 'slot' with 'key' into the
706  * subvolume 'root'.  path is released on entry and should be released
707  * on exit.
708  *
709  * extents in the log tree have not been allocated out of the extent
710  * tree yet.  So, this completes the allocation, taking a reference
711  * as required if the extent already exists or creating a new extent
712  * if it isn't in the extent allocation tree yet.
713  *
714  * The extent is inserted into the file, dropping any existing extents
715  * from the file that overlap the new one.
716  */
replay_one_extent(struct walk_control * wc)717 static noinline int replay_one_extent(struct walk_control *wc)
718 {
719 	struct btrfs_trans_handle *trans = wc->trans;
720 	struct btrfs_root *root = wc->root;
721 	struct btrfs_drop_extents_args drop_args = { 0 };
722 	struct btrfs_fs_info *fs_info = root->fs_info;
723 	int found_type;
724 	u64 extent_end;
725 	const u64 start = wc->log_key.offset;
726 	u64 nbytes = 0;
727 	u64 csum_start;
728 	u64 csum_end;
729 	LIST_HEAD(ordered_sums);
730 	u64 offset;
731 	unsigned long dest_offset;
732 	struct btrfs_key ins;
733 	struct btrfs_file_extent_item *item;
734 	struct btrfs_inode *inode = NULL;
735 	int ret = 0;
736 
737 	item = btrfs_item_ptr(wc->log_leaf, wc->log_slot, struct btrfs_file_extent_item);
738 	found_type = btrfs_file_extent_type(wc->log_leaf, item);
739 
740 	if (found_type == BTRFS_FILE_EXTENT_REG ||
741 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
742 		extent_end = start + btrfs_file_extent_num_bytes(wc->log_leaf, item);
743 		/* Holes don't take up space. */
744 		if (btrfs_file_extent_disk_bytenr(wc->log_leaf, item) != 0)
745 			nbytes = btrfs_file_extent_num_bytes(wc->log_leaf, item);
746 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
747 		nbytes = btrfs_file_extent_ram_bytes(wc->log_leaf, item);
748 		extent_end = ALIGN(start + nbytes, fs_info->sectorsize);
749 	} else {
750 		btrfs_abort_log_replay(wc, -EUCLEAN,
751 		       "unexpected extent type=%d root=%llu inode=%llu offset=%llu",
752 				       found_type, btrfs_root_id(root),
753 				       wc->log_key.objectid, wc->log_key.offset);
754 		return -EUCLEAN;
755 	}
756 
757 	inode = btrfs_iget_logging(wc->log_key.objectid, root);
758 	if (IS_ERR(inode)) {
759 		ret = PTR_ERR(inode);
760 		btrfs_abort_log_replay(wc, ret,
761 				       "failed to get inode %llu for root %llu",
762 				       wc->log_key.objectid, btrfs_root_id(root));
763 		return ret;
764 	}
765 
766 	/*
767 	 * first check to see if we already have this extent in the
768 	 * file.  This must be done before the btrfs_drop_extents run
769 	 * so we don't try to drop this extent.
770 	 */
771 	ret = btrfs_lookup_file_extent(trans, root, wc->subvol_path,
772 				       btrfs_ino(inode), start, 0);
773 
774 	if (ret == 0 &&
775 	    (found_type == BTRFS_FILE_EXTENT_REG ||
776 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
777 		struct extent_buffer *leaf = wc->subvol_path->nodes[0];
778 		struct btrfs_file_extent_item existing;
779 		unsigned long ptr;
780 
781 		ptr = btrfs_item_ptr_offset(leaf, wc->subvol_path->slots[0]);
782 		read_extent_buffer(leaf, &existing, ptr, sizeof(existing));
783 
784 		/*
785 		 * we already have a pointer to this exact extent,
786 		 * we don't have to do anything
787 		 */
788 		if (memcmp_extent_buffer(wc->log_leaf, &existing, (unsigned long)item,
789 					 sizeof(existing)) == 0) {
790 			btrfs_release_path(wc->subvol_path);
791 			goto out;
792 		}
793 	}
794 	btrfs_release_path(wc->subvol_path);
795 
796 	/* drop any overlapping extents */
797 	drop_args.start = start;
798 	drop_args.end = extent_end;
799 	drop_args.drop_cache = true;
800 	drop_args.path = wc->subvol_path;
801 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
802 	if (ret) {
803 		btrfs_abort_log_replay(wc, ret,
804 	       "failed to drop extents for inode %llu range [%llu, %llu) root %llu",
805 				       wc->log_key.objectid, start, extent_end,
806 				       btrfs_root_id(root));
807 		goto out;
808 	}
809 
810 	if (found_type == BTRFS_FILE_EXTENT_INLINE) {
811 		/* inline extents are easy, we just overwrite them */
812 		ret = overwrite_item(wc);
813 		if (ret)
814 			goto out;
815 		goto update_inode;
816 	}
817 
818 	/*
819 	 * If not an inline extent, it can only be a regular or prealloc one.
820 	 * We have checked that above and returned -EUCLEAN if not.
821 	 */
822 
823 	/* A hole and NO_HOLES feature enabled, nothing else to do. */
824 	if (btrfs_file_extent_disk_bytenr(wc->log_leaf, item) == 0 &&
825 	    btrfs_fs_incompat(fs_info, NO_HOLES))
826 		goto update_inode;
827 
828 	ret = btrfs_insert_empty_item(trans, root, wc->subvol_path,
829 				      &wc->log_key, sizeof(*item));
830 	if (ret) {
831 		btrfs_abort_log_replay(wc, ret,
832 		       "failed to insert item with key (%llu %u %llu) root %llu",
833 				       wc->log_key.objectid, wc->log_key.type,
834 				       wc->log_key.offset, btrfs_root_id(root));
835 		goto out;
836 	}
837 	dest_offset = btrfs_item_ptr_offset(wc->subvol_path->nodes[0],
838 					    wc->subvol_path->slots[0]);
839 	copy_extent_buffer(wc->subvol_path->nodes[0], wc->log_leaf, dest_offset,
840 			   (unsigned long)item, sizeof(*item));
841 
842 	/*
843 	 * We have an explicit hole and NO_HOLES is not enabled. We have added
844 	 * the hole file extent item to the subvolume tree, so we don't have
845 	 * anything else to do other than update the file extent item range and
846 	 * update the inode item.
847 	 */
848 	if (btrfs_file_extent_disk_bytenr(wc->log_leaf, item) == 0) {
849 		btrfs_release_path(wc->subvol_path);
850 		goto update_inode;
851 	}
852 
853 	ins.objectid = btrfs_file_extent_disk_bytenr(wc->log_leaf, item);
854 	ins.type = BTRFS_EXTENT_ITEM_KEY;
855 	ins.offset = btrfs_file_extent_disk_num_bytes(wc->log_leaf, item);
856 	offset = wc->log_key.offset - btrfs_file_extent_offset(wc->log_leaf, item);
857 
858 	/*
859 	 * Manually record dirty extent, as here we did a shallow file extent
860 	 * item copy and skip normal backref update, but modifying extent tree
861 	 * all by ourselves. So need to manually record dirty extent for qgroup,
862 	 * as the owner of the file extent changed from log tree (doesn't affect
863 	 * qgroup) to fs/file tree (affects qgroup).
864 	 */
865 	ret = btrfs_qgroup_trace_extent(trans, ins.objectid, ins.offset);
866 	if (ret < 0) {
867 		btrfs_abort_log_replay(wc, ret,
868 "failed to trace extent for bytenr %llu disk_num_bytes %llu inode %llu root %llu",
869 				       ins.objectid, ins.offset,
870 				       wc->log_key.objectid, btrfs_root_id(root));
871 		goto out;
872 	}
873 
874 	/*
875 	 * Is this extent already allocated in the extent tree?
876 	 * If so, just add a reference.
877 	 */
878 	ret = btrfs_lookup_data_extent(fs_info, ins.objectid, ins.offset);
879 	if (ret < 0) {
880 		btrfs_abort_log_replay(wc, ret,
881 "failed to lookup data extent for bytenr %llu disk_num_bytes %llu inode %llu root %llu",
882 				       ins.objectid, ins.offset,
883 				       wc->log_key.objectid, btrfs_root_id(root));
884 		goto out;
885 	} else if (ret == 0) {
886 		struct btrfs_ref ref = {
887 			.action = BTRFS_ADD_DELAYED_REF,
888 			.bytenr = ins.objectid,
889 			.num_bytes = ins.offset,
890 			.owning_root = btrfs_root_id(root),
891 			.ref_root = btrfs_root_id(root),
892 		};
893 
894 		btrfs_init_data_ref(&ref, wc->log_key.objectid, offset, 0, false);
895 		ret = btrfs_inc_extent_ref(trans, &ref);
896 		if (ret) {
897 			btrfs_abort_log_replay(wc, ret,
898 "failed to increment data extent for bytenr %llu disk_num_bytes %llu inode %llu root %llu",
899 					       ins.objectid, ins.offset,
900 					       wc->log_key.objectid,
901 					       btrfs_root_id(root));
902 			goto out;
903 		}
904 	} else {
905 		/* Insert the extent pointer in the extent tree. */
906 		ret = btrfs_alloc_logged_file_extent(trans, btrfs_root_id(root),
907 						     wc->log_key.objectid, offset, &ins);
908 		if (ret) {
909 			btrfs_abort_log_replay(wc, ret,
910 "failed to allocate logged data extent for bytenr %llu disk_num_bytes %llu offset %llu inode %llu root %llu",
911 					       ins.objectid, ins.offset, offset,
912 					       wc->log_key.objectid, btrfs_root_id(root));
913 			goto out;
914 		}
915 	}
916 
917 	btrfs_release_path(wc->subvol_path);
918 
919 	if (btrfs_file_extent_compression(wc->log_leaf, item)) {
920 		csum_start = ins.objectid;
921 		csum_end = csum_start + ins.offset;
922 	} else {
923 		csum_start = ins.objectid + btrfs_file_extent_offset(wc->log_leaf, item);
924 		csum_end = csum_start + btrfs_file_extent_num_bytes(wc->log_leaf, item);
925 	}
926 
927 	ret = btrfs_lookup_csums_list(root->log_root, csum_start, csum_end - 1,
928 				      &ordered_sums, false);
929 	if (ret < 0) {
930 		btrfs_abort_log_replay(wc, ret,
931 	       "failed to lookups csums for range [%llu, %llu) inode %llu root %llu",
932 				       csum_start, csum_end, wc->log_key.objectid,
933 				       btrfs_root_id(root));
934 		goto out;
935 	}
936 	ret = 0;
937 	/*
938 	 * Now delete all existing cums in the csum root that cover our range.
939 	 * We do this because we can have an extent that is completely
940 	 * referenced by one file extent item and partially referenced by
941 	 * another file extent item (like after using the clone or extent_same
942 	 * ioctls). In this case if we end up doing the replay of the one that
943 	 * partially references the extent first, and we do not do the csum
944 	 * deletion below, we can get 2 csum items in the csum tree that overlap
945 	 * each other. For example, imagine our log has the two following file
946 	 * extent items:
947 	 *
948 	 * key (257 EXTENT_DATA 409600)
949 	 *     extent data disk byte 12845056 nr 102400
950 	 *     extent data offset 20480 nr 20480 ram 102400
951 	 *
952 	 * key (257 EXTENT_DATA 819200)
953 	 *     extent data disk byte 12845056 nr 102400
954 	 *     extent data offset 0 nr 102400 ram 102400
955 	 *
956 	 * Where the second one fully references the 100K extent that starts at
957 	 * disk byte 12845056, and the log tree has a single csum item that
958 	 * covers the entire range of the extent:
959 	 *
960 	 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
961 	 *
962 	 * After the first file extent item is replayed, the csum tree gets the
963 	 * following csum item:
964 	 *
965 	 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
966 	 *
967 	 * Which covers the 20K sub-range starting at offset 20K of our extent.
968 	 * Now when we replay the second file extent item, if we do not delete
969 	 * existing csum items that cover any of its blocks, we end up getting
970 	 * two csum items in our csum tree that overlap each other:
971 	 *
972 	 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
973 	 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
974 	 *
975 	 * Which is a problem, because after this anyone trying to lookup for
976 	 * the checksum of any block of our extent starting at an offset of 40K
977 	 * or higher, will end up looking at the second csum item only, which
978 	 * does not contain the checksum for any block starting at offset 40K or
979 	 * higher of our extent.
980 	 */
981 	while (!list_empty(&ordered_sums)) {
982 		struct btrfs_ordered_sum *sums;
983 		struct btrfs_root *csum_root;
984 
985 		sums = list_first_entry(&ordered_sums, struct btrfs_ordered_sum, list);
986 		csum_root = btrfs_csum_root(fs_info, sums->logical);
987 		if (!ret) {
988 			ret = btrfs_del_csums(trans, csum_root, sums->logical,
989 					      sums->len);
990 			if (ret)
991 				btrfs_abort_log_replay(wc, ret,
992 	       "failed to delete csums for range [%llu, %llu) inode %llu root %llu",
993 						       sums->logical,
994 						       sums->logical + sums->len,
995 						       wc->log_key.objectid,
996 						       btrfs_root_id(root));
997 		}
998 		if (!ret) {
999 			ret = btrfs_csum_file_blocks(trans, csum_root, sums);
1000 			if (ret)
1001 				btrfs_abort_log_replay(wc, ret,
1002 	       "failed to add csums for range [%llu, %llu) inode %llu root %llu",
1003 						       sums->logical,
1004 						       sums->logical + sums->len,
1005 						       wc->log_key.objectid,
1006 						       btrfs_root_id(root));
1007 		}
1008 		list_del(&sums->list);
1009 		kfree(sums);
1010 	}
1011 	if (ret)
1012 		goto out;
1013 
1014 update_inode:
1015 	ret = btrfs_inode_set_file_extent_range(inode, start, extent_end - start);
1016 	if (ret) {
1017 		btrfs_abort_log_replay(wc, ret,
1018 	       "failed to set file extent range [%llu, %llu) inode %llu root %llu",
1019 				       start, extent_end, wc->log_key.objectid,
1020 				       btrfs_root_id(root));
1021 		goto out;
1022 	}
1023 
1024 	btrfs_update_inode_bytes(inode, nbytes, drop_args.bytes_found);
1025 	ret = btrfs_update_inode(trans, inode);
1026 	if (ret)
1027 		btrfs_abort_log_replay(wc, ret,
1028 				       "failed to update inode %llu root %llu",
1029 				       wc->log_key.objectid, btrfs_root_id(root));
1030 out:
1031 	iput(&inode->vfs_inode);
1032 	return ret;
1033 }
1034 
unlink_inode_for_log_replay(struct walk_control * wc,struct btrfs_inode * dir,struct btrfs_inode * inode,const struct fscrypt_str * name)1035 static int unlink_inode_for_log_replay(struct walk_control *wc,
1036 				       struct btrfs_inode *dir,
1037 				       struct btrfs_inode *inode,
1038 				       const struct fscrypt_str *name)
1039 {
1040 	struct btrfs_trans_handle *trans = wc->trans;
1041 	int ret;
1042 
1043 	ret = btrfs_unlink_inode(trans, dir, inode, name);
1044 	if (ret) {
1045 		btrfs_abort_log_replay(wc, ret,
1046 	       "failed to unlink inode %llu parent dir %llu name %.*s root %llu",
1047 				       btrfs_ino(inode), btrfs_ino(dir), name->len,
1048 				       name->name, btrfs_root_id(inode->root));
1049 		return ret;
1050 	}
1051 	/*
1052 	 * Whenever we need to check if a name exists or not, we check the
1053 	 * fs/subvolume tree. So after an unlink we must run delayed items, so
1054 	 * that future checks for a name during log replay see that the name
1055 	 * does not exists anymore.
1056 	 */
1057 	ret = btrfs_run_delayed_items(trans);
1058 	if (ret)
1059 		btrfs_abort_log_replay(wc, ret,
1060 "failed to run delayed items current inode %llu parent dir %llu name %.*s root %llu",
1061 				       btrfs_ino(inode), btrfs_ino(dir), name->len,
1062 				       name->name, btrfs_root_id(inode->root));
1063 
1064 	return ret;
1065 }
1066 
1067 /*
1068  * when cleaning up conflicts between the directory names in the
1069  * subvolume, directory names in the log and directory names in the
1070  * inode back references, we may have to unlink inodes from directories.
1071  *
1072  * This is a helper function to do the unlink of a specific directory
1073  * item
1074  */
drop_one_dir_item(struct walk_control * wc,struct btrfs_inode * dir,struct btrfs_dir_item * di)1075 static noinline int drop_one_dir_item(struct walk_control *wc,
1076 				      struct btrfs_inode *dir,
1077 				      struct btrfs_dir_item *di)
1078 {
1079 	struct btrfs_root *root = dir->root;
1080 	struct btrfs_inode *inode;
1081 	struct fscrypt_str name;
1082 	struct extent_buffer *leaf = wc->subvol_path->nodes[0];
1083 	struct btrfs_key location;
1084 	int ret;
1085 
1086 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
1087 	ret = read_alloc_one_name(leaf, di + 1, btrfs_dir_name_len(leaf, di), &name);
1088 	if (ret) {
1089 		btrfs_abort_log_replay(wc, ret,
1090 				       "failed to allocate name for dir %llu root %llu",
1091 				       btrfs_ino(dir), btrfs_root_id(root));
1092 		return ret;
1093 	}
1094 
1095 	btrfs_release_path(wc->subvol_path);
1096 
1097 	inode = btrfs_iget_logging(location.objectid, root);
1098 	if (IS_ERR(inode)) {
1099 		ret = PTR_ERR(inode);
1100 		btrfs_abort_log_replay(wc, ret,
1101 		       "failed to open inode %llu parent dir %llu name %.*s root %llu",
1102 				       location.objectid, btrfs_ino(dir),
1103 				       name.len, name.name, btrfs_root_id(root));
1104 		inode = NULL;
1105 		goto out;
1106 	}
1107 
1108 	ret = link_to_fixup_dir(wc, location.objectid);
1109 	if (ret)
1110 		goto out;
1111 
1112 	ret = unlink_inode_for_log_replay(wc, dir, inode, &name);
1113 out:
1114 	kfree(name.name);
1115 	if (inode)
1116 		iput(&inode->vfs_inode);
1117 	return ret;
1118 }
1119 
1120 /*
1121  * See if a given name and sequence number found in an inode back reference are
1122  * already in a directory and correctly point to this inode.
1123  *
1124  * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
1125  * exists.
1126  */
inode_in_dir(struct btrfs_root * root,struct btrfs_path * path,u64 dirid,u64 objectid,u64 index,struct fscrypt_str * name)1127 static noinline int inode_in_dir(struct btrfs_root *root,
1128 				 struct btrfs_path *path,
1129 				 u64 dirid, u64 objectid, u64 index,
1130 				 struct fscrypt_str *name)
1131 {
1132 	struct btrfs_dir_item *di;
1133 	struct btrfs_key location;
1134 	int ret = 0;
1135 
1136 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
1137 					 index, name, 0);
1138 	if (IS_ERR(di)) {
1139 		ret = PTR_ERR(di);
1140 		goto out;
1141 	} else if (di) {
1142 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1143 		if (location.objectid != objectid)
1144 			goto out;
1145 	} else {
1146 		goto out;
1147 	}
1148 
1149 	btrfs_release_path(path);
1150 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, 0);
1151 	if (IS_ERR(di)) {
1152 		ret = PTR_ERR(di);
1153 		goto out;
1154 	} else if (di) {
1155 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1156 		if (location.objectid == objectid)
1157 			ret = 1;
1158 	}
1159 out:
1160 	btrfs_release_path(path);
1161 	return ret;
1162 }
1163 
1164 /*
1165  * helper function to check a log tree for a named back reference in
1166  * an inode.  This is used to decide if a back reference that is
1167  * found in the subvolume conflicts with what we find in the log.
1168  *
1169  * inode backreferences may have multiple refs in a single item,
1170  * during replay we process one reference at a time, and we don't
1171  * want to delete valid links to a file from the subvolume if that
1172  * link is also in the log.
1173  */
backref_in_log(struct btrfs_root * log,struct btrfs_key * key,u64 ref_objectid,const struct fscrypt_str * name)1174 static noinline int backref_in_log(struct btrfs_root *log,
1175 				   struct btrfs_key *key,
1176 				   u64 ref_objectid,
1177 				   const struct fscrypt_str *name)
1178 {
1179 	BTRFS_PATH_AUTO_FREE(path);
1180 	int ret;
1181 
1182 	path = btrfs_alloc_path();
1183 	if (!path)
1184 		return -ENOMEM;
1185 
1186 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
1187 	if (ret < 0)
1188 		return ret;
1189 	if (ret == 1)
1190 		return 0;
1191 
1192 	if (key->type == BTRFS_INODE_EXTREF_KEY)
1193 		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1194 						       path->slots[0],
1195 						       ref_objectid, name);
1196 	else
1197 		ret = !!btrfs_find_name_in_backref(path->nodes[0],
1198 						   path->slots[0], name);
1199 	return ret;
1200 }
1201 
unlink_refs_not_in_log(struct walk_control * wc,struct btrfs_key * search_key,struct btrfs_inode * dir,struct btrfs_inode * inode)1202 static int unlink_refs_not_in_log(struct walk_control *wc,
1203 				  struct btrfs_key *search_key,
1204 				  struct btrfs_inode *dir,
1205 				  struct btrfs_inode *inode)
1206 {
1207 	struct extent_buffer *leaf = wc->subvol_path->nodes[0];
1208 	unsigned long ptr;
1209 	unsigned long ptr_end;
1210 
1211 	/*
1212 	 * Check all the names in this back reference to see if they are in the
1213 	 * log. If so, we allow them to stay otherwise they must be unlinked as
1214 	 * a conflict.
1215 	 */
1216 	ptr = btrfs_item_ptr_offset(leaf, wc->subvol_path->slots[0]);
1217 	ptr_end = ptr + btrfs_item_size(leaf, wc->subvol_path->slots[0]);
1218 	while (ptr < ptr_end) {
1219 		struct fscrypt_str victim_name;
1220 		struct btrfs_inode_ref *victim_ref;
1221 		int ret;
1222 
1223 		victim_ref = (struct btrfs_inode_ref *)ptr;
1224 		ret = read_alloc_one_name(leaf, (victim_ref + 1),
1225 					  btrfs_inode_ref_name_len(leaf, victim_ref),
1226 					  &victim_name);
1227 		if (ret) {
1228 			btrfs_abort_log_replay(wc, ret,
1229 	       "failed to allocate name for inode %llu parent dir %llu root %llu",
1230 					       btrfs_ino(inode), btrfs_ino(dir),
1231 					       btrfs_root_id(inode->root));
1232 			return ret;
1233 		}
1234 
1235 		ret = backref_in_log(wc->log, search_key, btrfs_ino(dir), &victim_name);
1236 		if (ret) {
1237 			if (ret < 0) {
1238 				btrfs_abort_log_replay(wc, ret,
1239 "failed to check if backref is in log tree for inode %llu parent dir %llu name %.*s root %llu",
1240 						       btrfs_ino(inode), btrfs_ino(dir),
1241 						       victim_name.len, victim_name.name,
1242 						       btrfs_root_id(inode->root));
1243 				kfree(victim_name.name);
1244 				return ret;
1245 			}
1246 			kfree(victim_name.name);
1247 			ptr = (unsigned long)(victim_ref + 1) + victim_name.len;
1248 			continue;
1249 		}
1250 
1251 		inc_nlink(&inode->vfs_inode);
1252 		btrfs_release_path(wc->subvol_path);
1253 
1254 		ret = unlink_inode_for_log_replay(wc, dir, inode, &victim_name);
1255 		kfree(victim_name.name);
1256 		if (ret)
1257 			return ret;
1258 		return -EAGAIN;
1259 	}
1260 
1261 	return 0;
1262 }
1263 
unlink_extrefs_not_in_log(struct walk_control * wc,struct btrfs_key * search_key,struct btrfs_inode * dir,struct btrfs_inode * inode)1264 static int unlink_extrefs_not_in_log(struct walk_control *wc,
1265 				     struct btrfs_key *search_key,
1266 				     struct btrfs_inode *dir,
1267 				     struct btrfs_inode *inode)
1268 {
1269 	struct extent_buffer *leaf = wc->subvol_path->nodes[0];
1270 	const unsigned long base = btrfs_item_ptr_offset(leaf, wc->subvol_path->slots[0]);
1271 	const u32 item_size = btrfs_item_size(leaf, wc->subvol_path->slots[0]);
1272 	u32 cur_offset = 0;
1273 
1274 	while (cur_offset < item_size) {
1275 		struct btrfs_root *log_root = wc->log;
1276 		struct btrfs_inode_extref *extref;
1277 		struct fscrypt_str victim_name;
1278 		int ret;
1279 
1280 		extref = (struct btrfs_inode_extref *)(base + cur_offset);
1281 		victim_name.len = btrfs_inode_extref_name_len(leaf, extref);
1282 
1283 		if (btrfs_inode_extref_parent(leaf, extref) != btrfs_ino(dir))
1284 			goto next;
1285 
1286 		ret = read_alloc_one_name(leaf, &extref->name, victim_name.len,
1287 					  &victim_name);
1288 		if (ret) {
1289 			btrfs_abort_log_replay(wc, ret,
1290 	       "failed to allocate name for inode %llu parent dir %llu root %llu",
1291 					       btrfs_ino(inode), btrfs_ino(dir),
1292 					       btrfs_root_id(inode->root));
1293 			return ret;
1294 		}
1295 
1296 		search_key->objectid = btrfs_ino(inode);
1297 		search_key->type = BTRFS_INODE_EXTREF_KEY;
1298 		search_key->offset = btrfs_extref_hash(btrfs_ino(dir),
1299 						       victim_name.name,
1300 						       victim_name.len);
1301 		ret = backref_in_log(log_root, search_key, btrfs_ino(dir), &victim_name);
1302 		if (ret) {
1303 			if (ret < 0) {
1304 				btrfs_abort_log_replay(wc, ret,
1305 "failed to check if backref is in log tree for inode %llu parent dir %llu name %.*s root %llu",
1306 						       btrfs_ino(inode), btrfs_ino(dir),
1307 						       victim_name.len, victim_name.name,
1308 						       btrfs_root_id(inode->root));
1309 				kfree(victim_name.name);
1310 				return ret;
1311 			}
1312 			kfree(victim_name.name);
1313 next:
1314 			cur_offset += victim_name.len + sizeof(*extref);
1315 			continue;
1316 		}
1317 
1318 		inc_nlink(&inode->vfs_inode);
1319 		btrfs_release_path(wc->subvol_path);
1320 
1321 		ret = unlink_inode_for_log_replay(wc, dir, inode, &victim_name);
1322 		kfree(victim_name.name);
1323 		if (ret)
1324 			return ret;
1325 		return -EAGAIN;
1326 	}
1327 
1328 	return 0;
1329 }
1330 
__add_inode_ref(struct walk_control * wc,struct btrfs_inode * dir,struct btrfs_inode * inode,u64 ref_index,struct fscrypt_str * name)1331 static inline int __add_inode_ref(struct walk_control *wc,
1332 				  struct btrfs_inode *dir,
1333 				  struct btrfs_inode *inode,
1334 				  u64 ref_index, struct fscrypt_str *name)
1335 {
1336 	int ret;
1337 	struct btrfs_trans_handle *trans = wc->trans;
1338 	struct btrfs_root *root = wc->root;
1339 	struct btrfs_dir_item *di;
1340 	struct btrfs_key search_key;
1341 	struct btrfs_inode_extref *extref;
1342 
1343 again:
1344 	/* Search old style refs */
1345 	search_key.objectid = btrfs_ino(inode);
1346 	search_key.type = BTRFS_INODE_REF_KEY;
1347 	search_key.offset = btrfs_ino(dir);
1348 	ret = btrfs_search_slot(NULL, root, &search_key, wc->subvol_path, 0, 0);
1349 	if (ret < 0) {
1350 		btrfs_abort_log_replay(wc, ret,
1351 	       "failed to search subvolume tree for key (%llu %u %llu) root %llu",
1352 				       search_key.objectid, search_key.type,
1353 				       search_key.offset, btrfs_root_id(root));
1354 		return ret;
1355 	} else if (ret == 0) {
1356 		/*
1357 		 * Are we trying to overwrite a back ref for the root directory?
1358 		 * If so, we're done.
1359 		 */
1360 		if (search_key.objectid == search_key.offset)
1361 			return 1;
1362 
1363 		ret = unlink_refs_not_in_log(wc, &search_key, dir, inode);
1364 		if (ret == -EAGAIN)
1365 			goto again;
1366 		else if (ret)
1367 			return ret;
1368 	}
1369 	btrfs_release_path(wc->subvol_path);
1370 
1371 	/* Same search but for extended refs */
1372 	extref = btrfs_lookup_inode_extref(root, wc->subvol_path, name,
1373 					   btrfs_ino(inode), btrfs_ino(dir));
1374 	if (IS_ERR(extref)) {
1375 		return PTR_ERR(extref);
1376 	} else if (extref) {
1377 		ret = unlink_extrefs_not_in_log(wc, &search_key, dir, inode);
1378 		if (ret == -EAGAIN)
1379 			goto again;
1380 		else if (ret)
1381 			return ret;
1382 	}
1383 	btrfs_release_path(wc->subvol_path);
1384 
1385 	/* look for a conflicting sequence number */
1386 	di = btrfs_lookup_dir_index_item(trans, root, wc->subvol_path, btrfs_ino(dir),
1387 					 ref_index, name, 0);
1388 	if (IS_ERR(di)) {
1389 		ret = PTR_ERR(di);
1390 		btrfs_abort_log_replay(wc, ret,
1391 "failed to lookup dir index item for dir %llu ref_index %llu name %.*s root %llu",
1392 				       btrfs_ino(dir), ref_index, name->len,
1393 				       name->name, btrfs_root_id(root));
1394 		return ret;
1395 	} else if (di) {
1396 		ret = drop_one_dir_item(wc, dir, di);
1397 		if (ret)
1398 			return ret;
1399 	}
1400 	btrfs_release_path(wc->subvol_path);
1401 
1402 	/* look for a conflicting name */
1403 	di = btrfs_lookup_dir_item(trans, root, wc->subvol_path, btrfs_ino(dir), name, 0);
1404 	if (IS_ERR(di)) {
1405 		ret = PTR_ERR(di);
1406 		btrfs_abort_log_replay(wc, ret,
1407 	"failed to lookup dir item for dir %llu name %.*s root %llu",
1408 				       btrfs_ino(dir), name->len, name->name,
1409 				       btrfs_root_id(root));
1410 		return ret;
1411 	} else if (di) {
1412 		ret = drop_one_dir_item(wc, dir, di);
1413 		if (ret)
1414 			return ret;
1415 	}
1416 	btrfs_release_path(wc->subvol_path);
1417 
1418 	return 0;
1419 }
1420 
extref_get_fields(struct extent_buffer * eb,unsigned long ref_ptr,struct fscrypt_str * name,u64 * index,u64 * parent_objectid)1421 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1422 			     struct fscrypt_str *name, u64 *index,
1423 			     u64 *parent_objectid)
1424 {
1425 	struct btrfs_inode_extref *extref;
1426 	int ret;
1427 
1428 	extref = (struct btrfs_inode_extref *)ref_ptr;
1429 
1430 	ret = read_alloc_one_name(eb, &extref->name,
1431 				  btrfs_inode_extref_name_len(eb, extref), name);
1432 	if (ret)
1433 		return ret;
1434 
1435 	if (index)
1436 		*index = btrfs_inode_extref_index(eb, extref);
1437 	if (parent_objectid)
1438 		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1439 
1440 	return 0;
1441 }
1442 
ref_get_fields(struct extent_buffer * eb,unsigned long ref_ptr,struct fscrypt_str * name,u64 * index)1443 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1444 			  struct fscrypt_str *name, u64 *index)
1445 {
1446 	struct btrfs_inode_ref *ref;
1447 	int ret;
1448 
1449 	ref = (struct btrfs_inode_ref *)ref_ptr;
1450 
1451 	ret = read_alloc_one_name(eb, ref + 1, btrfs_inode_ref_name_len(eb, ref),
1452 				  name);
1453 	if (ret)
1454 		return ret;
1455 
1456 	if (index)
1457 		*index = btrfs_inode_ref_index(eb, ref);
1458 
1459 	return 0;
1460 }
1461 
1462 /*
1463  * Take an inode reference item from the log tree and iterate all names from the
1464  * inode reference item in the subvolume tree with the same key (if it exists).
1465  * For any name that is not in the inode reference item from the log tree, do a
1466  * proper unlink of that name (that is, remove its entry from the inode
1467  * reference item and both dir index keys).
1468  */
unlink_old_inode_refs(struct walk_control * wc,struct btrfs_inode * inode)1469 static int unlink_old_inode_refs(struct walk_control *wc, struct btrfs_inode *inode)
1470 {
1471 	struct btrfs_root *root = wc->root;
1472 	int ret;
1473 	unsigned long ref_ptr;
1474 	unsigned long ref_end;
1475 	struct extent_buffer *eb;
1476 
1477 again:
1478 	btrfs_release_path(wc->subvol_path);
1479 	ret = btrfs_search_slot(NULL, root, &wc->log_key, wc->subvol_path, 0, 0);
1480 	if (ret > 0) {
1481 		ret = 0;
1482 		goto out;
1483 	}
1484 	if (ret < 0) {
1485 		btrfs_abort_log_replay(wc, ret,
1486 	       "failed to search subvolume tree for key (%llu %u %llu) root %llu",
1487 				       wc->log_key.objectid, wc->log_key.type,
1488 				       wc->log_key.offset, btrfs_root_id(root));
1489 		goto out;
1490 	}
1491 
1492 	eb = wc->subvol_path->nodes[0];
1493 	ref_ptr = btrfs_item_ptr_offset(eb, wc->subvol_path->slots[0]);
1494 	ref_end = ref_ptr + btrfs_item_size(eb, wc->subvol_path->slots[0]);
1495 	while (ref_ptr < ref_end) {
1496 		struct fscrypt_str name;
1497 		u64 parent_id;
1498 
1499 		if (wc->log_key.type == BTRFS_INODE_EXTREF_KEY) {
1500 			ret = extref_get_fields(eb, ref_ptr, &name,
1501 						NULL, &parent_id);
1502 			if (ret) {
1503 				btrfs_abort_log_replay(wc, ret,
1504 			       "failed to get extref details for inode %llu root %llu",
1505 						       btrfs_ino(inode),
1506 						       btrfs_root_id(root));
1507 				goto out;
1508 			}
1509 		} else {
1510 			parent_id = wc->log_key.offset;
1511 			ret = ref_get_fields(eb, ref_ptr, &name, NULL);
1512 			if (ret) {
1513 				btrfs_abort_log_replay(wc, ret,
1514 	       "failed to get ref details for inode %llu parent_id %llu root %llu",
1515 						       btrfs_ino(inode), parent_id,
1516 						       btrfs_root_id(root));
1517 				goto out;
1518 			}
1519 		}
1520 
1521 		if (wc->log_key.type == BTRFS_INODE_EXTREF_KEY)
1522 			ret = !!btrfs_find_name_in_ext_backref(wc->log_leaf, wc->log_slot,
1523 							       parent_id, &name);
1524 		else
1525 			ret = !!btrfs_find_name_in_backref(wc->log_leaf, wc->log_slot,
1526 							   &name);
1527 
1528 		if (!ret) {
1529 			struct btrfs_inode *dir;
1530 
1531 			btrfs_release_path(wc->subvol_path);
1532 			dir = btrfs_iget_logging(parent_id, root);
1533 			if (IS_ERR(dir)) {
1534 				ret = PTR_ERR(dir);
1535 				kfree(name.name);
1536 				btrfs_abort_log_replay(wc, ret,
1537 				       "failed to lookup dir inode %llu root %llu",
1538 						       parent_id, btrfs_root_id(root));
1539 				goto out;
1540 			}
1541 			ret = unlink_inode_for_log_replay(wc, dir, inode, &name);
1542 			kfree(name.name);
1543 			iput(&dir->vfs_inode);
1544 			if (ret)
1545 				goto out;
1546 			goto again;
1547 		}
1548 
1549 		kfree(name.name);
1550 		ref_ptr += name.len;
1551 		if (wc->log_key.type == BTRFS_INODE_EXTREF_KEY)
1552 			ref_ptr += sizeof(struct btrfs_inode_extref);
1553 		else
1554 			ref_ptr += sizeof(struct btrfs_inode_ref);
1555 	}
1556 	ret = 0;
1557  out:
1558 	btrfs_release_path(wc->subvol_path);
1559 	return ret;
1560 }
1561 
1562 /*
1563  * Replay one inode back reference item found in the log tree.
1564  * Path is for temporary use by this function (it should be released on return).
1565  */
add_inode_ref(struct walk_control * wc)1566 static noinline int add_inode_ref(struct walk_control *wc)
1567 {
1568 	struct btrfs_trans_handle *trans = wc->trans;
1569 	struct btrfs_root *root = wc->root;
1570 	struct btrfs_inode *dir = NULL;
1571 	struct btrfs_inode *inode = NULL;
1572 	unsigned long ref_ptr;
1573 	unsigned long ref_end;
1574 	struct fscrypt_str name = { 0 };
1575 	int ret;
1576 	const bool is_extref_item = (wc->log_key.type == BTRFS_INODE_EXTREF_KEY);
1577 	u64 parent_objectid;
1578 	u64 inode_objectid;
1579 	u64 ref_index = 0;
1580 	int ref_struct_size;
1581 
1582 	ref_ptr = btrfs_item_ptr_offset(wc->log_leaf, wc->log_slot);
1583 	ref_end = ref_ptr + btrfs_item_size(wc->log_leaf, wc->log_slot);
1584 
1585 	if (is_extref_item) {
1586 		struct btrfs_inode_extref *r;
1587 
1588 		ref_struct_size = sizeof(struct btrfs_inode_extref);
1589 		r = (struct btrfs_inode_extref *)ref_ptr;
1590 		parent_objectid = btrfs_inode_extref_parent(wc->log_leaf, r);
1591 	} else {
1592 		ref_struct_size = sizeof(struct btrfs_inode_ref);
1593 		parent_objectid = wc->log_key.offset;
1594 	}
1595 	inode_objectid = wc->log_key.objectid;
1596 
1597 	/*
1598 	 * it is possible that we didn't log all the parent directories
1599 	 * for a given inode.  If we don't find the dir, just don't
1600 	 * copy the back ref in.  The link count fixup code will take
1601 	 * care of the rest
1602 	 */
1603 	dir = btrfs_iget_logging(parent_objectid, root);
1604 	if (IS_ERR(dir)) {
1605 		ret = PTR_ERR(dir);
1606 		if (ret == -ENOENT)
1607 			ret = 0;
1608 		else
1609 			btrfs_abort_log_replay(wc, ret,
1610 			       "failed to lookup dir inode %llu root %llu",
1611 					       parent_objectid, btrfs_root_id(root));
1612 		dir = NULL;
1613 		goto out;
1614 	}
1615 
1616 	inode = btrfs_iget_logging(inode_objectid, root);
1617 	if (IS_ERR(inode)) {
1618 		ret = PTR_ERR(inode);
1619 		btrfs_abort_log_replay(wc, ret,
1620 				       "failed to lookup inode %llu root %llu",
1621 				       inode_objectid, btrfs_root_id(root));
1622 		inode = NULL;
1623 		goto out;
1624 	}
1625 
1626 	while (ref_ptr < ref_end) {
1627 		if (is_extref_item) {
1628 			ret = extref_get_fields(wc->log_leaf, ref_ptr, &name,
1629 						&ref_index, &parent_objectid);
1630 			if (ret) {
1631 				btrfs_abort_log_replay(wc, ret,
1632 			       "failed to get extref details for inode %llu root %llu",
1633 						       btrfs_ino(inode),
1634 						       btrfs_root_id(root));
1635 				goto out;
1636 			}
1637 			/*
1638 			 * parent object can change from one array
1639 			 * item to another.
1640 			 */
1641 			if (!dir) {
1642 				dir = btrfs_iget_logging(parent_objectid, root);
1643 				if (IS_ERR(dir)) {
1644 					ret = PTR_ERR(dir);
1645 					dir = NULL;
1646 					/*
1647 					 * A new parent dir may have not been
1648 					 * logged and not exist in the subvolume
1649 					 * tree, see the comment above before
1650 					 * the loop when getting the first
1651 					 * parent dir.
1652 					 */
1653 					if (ret == -ENOENT) {
1654 						/*
1655 						 * The next extref may refer to
1656 						 * another parent dir that
1657 						 * exists, so continue.
1658 						 */
1659 						ret = 0;
1660 						goto next;
1661 					} else {
1662 						btrfs_abort_log_replay(wc, ret,
1663 				       "failed to lookup dir inode %llu root %llu",
1664 								       parent_objectid,
1665 								       btrfs_root_id(root));
1666 					}
1667 					goto out;
1668 				}
1669 			}
1670 		} else {
1671 			ret = ref_get_fields(wc->log_leaf, ref_ptr, &name, &ref_index);
1672 			if (ret) {
1673 				btrfs_abort_log_replay(wc, ret,
1674 	"failed to get ref details for inode %llu parent_objectid %llu root %llu",
1675 						       btrfs_ino(inode),
1676 						       parent_objectid,
1677 						       btrfs_root_id(root));
1678 				goto out;
1679 			}
1680 		}
1681 
1682 		ret = inode_in_dir(root, wc->subvol_path, btrfs_ino(dir),
1683 				   btrfs_ino(inode), ref_index, &name);
1684 		if (ret < 0) {
1685 			btrfs_abort_log_replay(wc, ret,
1686 "failed to check if inode %llu is in dir %llu ref_index %llu name %.*s root %llu",
1687 					       btrfs_ino(inode), btrfs_ino(dir),
1688 					       ref_index, name.len, name.name,
1689 					       btrfs_root_id(root));
1690 			goto out;
1691 		} else if (ret == 0) {
1692 			/*
1693 			 * look for a conflicting back reference in the
1694 			 * metadata. if we find one we have to unlink that name
1695 			 * of the file before we add our new link.  Later on, we
1696 			 * overwrite any existing back reference, and we don't
1697 			 * want to create dangling pointers in the directory.
1698 			 */
1699 			ret = __add_inode_ref(wc, dir, inode, ref_index, &name);
1700 			if (ret) {
1701 				if (ret == 1)
1702 					ret = 0;
1703 				goto out;
1704 			}
1705 
1706 			/* insert our name */
1707 			ret = btrfs_add_link(trans, dir, inode, &name, 0, ref_index);
1708 			if (ret) {
1709 				btrfs_abort_log_replay(wc, ret,
1710 "failed to add link for inode %llu in dir %llu ref_index %llu name %.*s root %llu",
1711 						       btrfs_ino(inode),
1712 						       btrfs_ino(dir), ref_index,
1713 						       name.len, name.name,
1714 						       btrfs_root_id(root));
1715 				goto out;
1716 			}
1717 
1718 			ret = btrfs_update_inode(trans, inode);
1719 			if (ret) {
1720 				btrfs_abort_log_replay(wc, ret,
1721 				       "failed to update inode %llu root %llu",
1722 						       btrfs_ino(inode),
1723 						       btrfs_root_id(root));
1724 				goto out;
1725 			}
1726 		}
1727 		/* Else, ret == 1, we already have a perfect match, we're done. */
1728 
1729 next:
1730 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + name.len;
1731 		kfree(name.name);
1732 		name.name = NULL;
1733 		if (is_extref_item && dir) {
1734 			iput(&dir->vfs_inode);
1735 			dir = NULL;
1736 		}
1737 	}
1738 
1739 	/*
1740 	 * Before we overwrite the inode reference item in the subvolume tree
1741 	 * with the item from the log tree, we must unlink all names from the
1742 	 * parent directory that are in the subvolume's tree inode reference
1743 	 * item, otherwise we end up with an inconsistent subvolume tree where
1744 	 * dir index entries exist for a name but there is no inode reference
1745 	 * item with the same name.
1746 	 */
1747 	ret = unlink_old_inode_refs(wc, inode);
1748 	if (ret)
1749 		goto out;
1750 
1751 	/* finally write the back reference in the inode */
1752 	ret = overwrite_item(wc);
1753 out:
1754 	btrfs_release_path(wc->subvol_path);
1755 	kfree(name.name);
1756 	if (dir)
1757 		iput(&dir->vfs_inode);
1758 	if (inode)
1759 		iput(&inode->vfs_inode);
1760 	return ret;
1761 }
1762 
count_inode_extrefs(struct btrfs_inode * inode,struct btrfs_path * path)1763 static int count_inode_extrefs(struct btrfs_inode *inode, struct btrfs_path *path)
1764 {
1765 	int ret = 0;
1766 	int name_len;
1767 	unsigned int nlink = 0;
1768 	u32 item_size;
1769 	u32 cur_offset = 0;
1770 	u64 inode_objectid = btrfs_ino(inode);
1771 	u64 offset = 0;
1772 	unsigned long ptr;
1773 	struct btrfs_inode_extref *extref;
1774 	struct extent_buffer *leaf;
1775 
1776 	while (1) {
1777 		ret = btrfs_find_one_extref(inode->root, inode_objectid, offset,
1778 					    path, &extref, &offset);
1779 		if (ret)
1780 			break;
1781 
1782 		leaf = path->nodes[0];
1783 		item_size = btrfs_item_size(leaf, path->slots[0]);
1784 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1785 		cur_offset = 0;
1786 
1787 		while (cur_offset < item_size) {
1788 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1789 			name_len = btrfs_inode_extref_name_len(leaf, extref);
1790 
1791 			nlink++;
1792 
1793 			cur_offset += name_len + sizeof(*extref);
1794 		}
1795 
1796 		offset++;
1797 		btrfs_release_path(path);
1798 	}
1799 	btrfs_release_path(path);
1800 
1801 	if (ret < 0 && ret != -ENOENT)
1802 		return ret;
1803 	return nlink;
1804 }
1805 
count_inode_refs(struct btrfs_inode * inode,struct btrfs_path * path)1806 static int count_inode_refs(struct btrfs_inode *inode, struct btrfs_path *path)
1807 {
1808 	int ret;
1809 	struct btrfs_key key;
1810 	unsigned int nlink = 0;
1811 	unsigned long ptr;
1812 	unsigned long ptr_end;
1813 	int name_len;
1814 	u64 ino = btrfs_ino(inode);
1815 
1816 	key.objectid = ino;
1817 	key.type = BTRFS_INODE_REF_KEY;
1818 	key.offset = (u64)-1;
1819 
1820 	while (1) {
1821 		ret = btrfs_search_slot(NULL, inode->root, &key, path, 0, 0);
1822 		if (ret < 0)
1823 			break;
1824 		if (ret > 0) {
1825 			if (path->slots[0] == 0)
1826 				break;
1827 			path->slots[0]--;
1828 		}
1829 process_slot:
1830 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1831 				      path->slots[0]);
1832 		if (key.objectid != ino ||
1833 		    key.type != BTRFS_INODE_REF_KEY)
1834 			break;
1835 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1836 		ptr_end = ptr + btrfs_item_size(path->nodes[0],
1837 						   path->slots[0]);
1838 		while (ptr < ptr_end) {
1839 			struct btrfs_inode_ref *ref;
1840 
1841 			ref = (struct btrfs_inode_ref *)ptr;
1842 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1843 							    ref);
1844 			ptr = (unsigned long)(ref + 1) + name_len;
1845 			nlink++;
1846 		}
1847 
1848 		if (key.offset == 0)
1849 			break;
1850 		if (path->slots[0] > 0) {
1851 			path->slots[0]--;
1852 			goto process_slot;
1853 		}
1854 		key.offset--;
1855 		btrfs_release_path(path);
1856 	}
1857 	btrfs_release_path(path);
1858 
1859 	return nlink;
1860 }
1861 
1862 /*
1863  * There are a few corners where the link count of the file can't
1864  * be properly maintained during replay.  So, instead of adding
1865  * lots of complexity to the log code, we just scan the backrefs
1866  * for any file that has been through replay.
1867  *
1868  * The scan will update the link count on the inode to reflect the
1869  * number of back refs found.  If it goes down to zero, the iput
1870  * will free the inode.
1871  */
fixup_inode_link_count(struct walk_control * wc,struct btrfs_inode * inode)1872 static noinline int fixup_inode_link_count(struct walk_control *wc,
1873 					   struct btrfs_inode *inode)
1874 {
1875 	struct btrfs_trans_handle *trans = wc->trans;
1876 	struct btrfs_root *root = inode->root;
1877 	int ret;
1878 	u64 nlink = 0;
1879 	const u64 ino = btrfs_ino(inode);
1880 
1881 	ret = count_inode_refs(inode, wc->subvol_path);
1882 	if (ret < 0)
1883 		goto out;
1884 
1885 	nlink = ret;
1886 
1887 	ret = count_inode_extrefs(inode, wc->subvol_path);
1888 	if (ret < 0)
1889 		goto out;
1890 
1891 	nlink += ret;
1892 
1893 	ret = 0;
1894 
1895 	if (nlink != inode->vfs_inode.i_nlink) {
1896 		set_nlink(&inode->vfs_inode, nlink);
1897 		ret = btrfs_update_inode(trans, inode);
1898 		if (ret)
1899 			goto out;
1900 	}
1901 	if (S_ISDIR(inode->vfs_inode.i_mode))
1902 		inode->index_cnt = (u64)-1;
1903 
1904 	if (inode->vfs_inode.i_nlink == 0) {
1905 		if (S_ISDIR(inode->vfs_inode.i_mode)) {
1906 			ret = replay_dir_deletes(wc, ino, true);
1907 			if (ret)
1908 				goto out;
1909 		}
1910 		ret = btrfs_insert_orphan_item(trans, root, ino);
1911 		if (ret == -EEXIST)
1912 			ret = 0;
1913 	}
1914 
1915 out:
1916 	btrfs_release_path(wc->subvol_path);
1917 	return ret;
1918 }
1919 
fixup_inode_link_counts(struct walk_control * wc)1920 static noinline int fixup_inode_link_counts(struct walk_control *wc)
1921 {
1922 	int ret;
1923 	struct btrfs_key key;
1924 
1925 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1926 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1927 	key.offset = (u64)-1;
1928 	while (1) {
1929 		struct btrfs_trans_handle *trans = wc->trans;
1930 		struct btrfs_root *root = wc->root;
1931 		struct btrfs_inode *inode;
1932 
1933 		ret = btrfs_search_slot(trans, root, &key, wc->subvol_path, -1, 1);
1934 		if (ret < 0)
1935 			break;
1936 
1937 		if (ret == 1) {
1938 			ret = 0;
1939 			if (wc->subvol_path->slots[0] == 0)
1940 				break;
1941 			wc->subvol_path->slots[0]--;
1942 		}
1943 
1944 		btrfs_item_key_to_cpu(wc->subvol_path->nodes[0], &key, wc->subvol_path->slots[0]);
1945 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1946 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1947 			break;
1948 
1949 		ret = btrfs_del_item(trans, root, wc->subvol_path);
1950 		if (ret)
1951 			break;
1952 
1953 		btrfs_release_path(wc->subvol_path);
1954 		inode = btrfs_iget_logging(key.offset, root);
1955 		if (IS_ERR(inode)) {
1956 			ret = PTR_ERR(inode);
1957 			break;
1958 		}
1959 
1960 		ret = fixup_inode_link_count(wc, inode);
1961 		iput(&inode->vfs_inode);
1962 		if (ret)
1963 			break;
1964 
1965 		/*
1966 		 * fixup on a directory may create new entries,
1967 		 * make sure we always look for the highest possible
1968 		 * offset
1969 		 */
1970 		key.offset = (u64)-1;
1971 	}
1972 	btrfs_release_path(wc->subvol_path);
1973 	return ret;
1974 }
1975 
1976 
1977 /*
1978  * record a given inode in the fixup dir so we can check its link
1979  * count when replay is done.  The link count is incremented here
1980  * so the inode won't go away until we check it
1981  */
link_to_fixup_dir(struct walk_control * wc,u64 objectid)1982 static noinline int link_to_fixup_dir(struct walk_control *wc, u64 objectid)
1983 {
1984 	struct btrfs_trans_handle *trans = wc->trans;
1985 	struct btrfs_root *root = wc->root;
1986 	struct btrfs_key key;
1987 	int ret = 0;
1988 	struct btrfs_inode *inode;
1989 	struct inode *vfs_inode;
1990 
1991 	inode = btrfs_iget_logging(objectid, root);
1992 	if (IS_ERR(inode)) {
1993 		ret = PTR_ERR(inode);
1994 		btrfs_abort_log_replay(wc, ret,
1995 				       "failed to lookup inode %llu root %llu",
1996 				       objectid, btrfs_root_id(root));
1997 		return ret;
1998 	}
1999 
2000 	vfs_inode = &inode->vfs_inode;
2001 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
2002 	key.type = BTRFS_ORPHAN_ITEM_KEY;
2003 	key.offset = objectid;
2004 
2005 	ret = btrfs_insert_empty_item(trans, root, wc->subvol_path, &key, 0);
2006 
2007 	btrfs_release_path(wc->subvol_path);
2008 	if (ret == 0) {
2009 		if (!vfs_inode->i_nlink)
2010 			set_nlink(vfs_inode, 1);
2011 		else
2012 			inc_nlink(vfs_inode);
2013 		ret = btrfs_update_inode(trans, inode);
2014 		if (ret)
2015 			btrfs_abort_log_replay(wc, ret,
2016 				       "failed to update inode %llu root %llu",
2017 					       objectid, btrfs_root_id(root));
2018 	} else if (ret == -EEXIST) {
2019 		ret = 0;
2020 	} else {
2021 		btrfs_abort_log_replay(wc, ret,
2022 		       "failed to insert fixup item for inode %llu root %llu",
2023 				       objectid, btrfs_root_id(root));
2024 	}
2025 	iput(vfs_inode);
2026 
2027 	return ret;
2028 }
2029 
2030 /*
2031  * when replaying the log for a directory, we only insert names
2032  * for inodes that actually exist.  This means an fsync on a directory
2033  * does not implicitly fsync all the new files in it
2034  */
insert_one_name(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 dirid,u64 index,const struct fscrypt_str * name,struct btrfs_key * location)2035 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
2036 				    struct btrfs_root *root,
2037 				    u64 dirid, u64 index,
2038 				    const struct fscrypt_str *name,
2039 				    struct btrfs_key *location)
2040 {
2041 	struct btrfs_inode *inode;
2042 	struct btrfs_inode *dir;
2043 	int ret;
2044 
2045 	inode = btrfs_iget_logging(location->objectid, root);
2046 	if (IS_ERR(inode))
2047 		return PTR_ERR(inode);
2048 
2049 	dir = btrfs_iget_logging(dirid, root);
2050 	if (IS_ERR(dir)) {
2051 		iput(&inode->vfs_inode);
2052 		return PTR_ERR(dir);
2053 	}
2054 
2055 	ret = btrfs_add_link(trans, dir, inode, name, 1, index);
2056 
2057 	/* FIXME, put inode into FIXUP list */
2058 
2059 	iput(&inode->vfs_inode);
2060 	iput(&dir->vfs_inode);
2061 	return ret;
2062 }
2063 
delete_conflicting_dir_entry(struct walk_control * wc,struct btrfs_inode * dir,struct btrfs_dir_item * dst_di,const struct btrfs_key * log_key,u8 log_flags,bool exists)2064 static int delete_conflicting_dir_entry(struct walk_control *wc,
2065 					struct btrfs_inode *dir,
2066 					struct btrfs_dir_item *dst_di,
2067 					const struct btrfs_key *log_key,
2068 					u8 log_flags,
2069 					bool exists)
2070 {
2071 	struct btrfs_key found_key;
2072 
2073 	btrfs_dir_item_key_to_cpu(wc->subvol_path->nodes[0], dst_di, &found_key);
2074 	/* The existing dentry points to the same inode, don't delete it. */
2075 	if (found_key.objectid == log_key->objectid &&
2076 	    found_key.type == log_key->type &&
2077 	    found_key.offset == log_key->offset &&
2078 	    btrfs_dir_flags(wc->subvol_path->nodes[0], dst_di) == log_flags)
2079 		return 1;
2080 
2081 	/*
2082 	 * Don't drop the conflicting directory entry if the inode for the new
2083 	 * entry doesn't exist.
2084 	 */
2085 	if (!exists)
2086 		return 0;
2087 
2088 	return drop_one_dir_item(wc, dir, dst_di);
2089 }
2090 
2091 /*
2092  * take a single entry in a log directory item and replay it into
2093  * the subvolume.
2094  *
2095  * if a conflicting item exists in the subdirectory already,
2096  * the inode it points to is unlinked and put into the link count
2097  * fix up tree.
2098  *
2099  * If a name from the log points to a file or directory that does
2100  * not exist in the FS, it is skipped.  fsyncs on directories
2101  * do not force down inodes inside that directory, just changes to the
2102  * names or unlinks in a directory.
2103  *
2104  * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
2105  * non-existing inode) and 1 if the name was replayed.
2106  */
replay_one_name(struct walk_control * wc,struct btrfs_dir_item * di)2107 static noinline int replay_one_name(struct walk_control *wc, struct btrfs_dir_item *di)
2108 {
2109 	struct btrfs_trans_handle *trans = wc->trans;
2110 	struct btrfs_root *root = wc->root;
2111 	struct fscrypt_str name = { 0 };
2112 	struct btrfs_dir_item *dir_dst_di;
2113 	struct btrfs_dir_item *index_dst_di;
2114 	bool dir_dst_matches = false;
2115 	bool index_dst_matches = false;
2116 	struct btrfs_key log_key;
2117 	struct btrfs_key search_key;
2118 	struct btrfs_inode *dir;
2119 	u8 log_flags;
2120 	bool exists;
2121 	int ret;
2122 	bool update_size = true;
2123 	bool name_added = false;
2124 
2125 	dir = btrfs_iget_logging(wc->log_key.objectid, root);
2126 	if (IS_ERR(dir)) {
2127 		ret = PTR_ERR(dir);
2128 		btrfs_abort_log_replay(wc, ret,
2129 				       "failed to lookup dir inode %llu root %llu",
2130 				       wc->log_key.objectid, btrfs_root_id(root));
2131 		return ret;
2132 	}
2133 
2134 	ret = read_alloc_one_name(wc->log_leaf, di + 1,
2135 				  btrfs_dir_name_len(wc->log_leaf, di), &name);
2136 	if (ret) {
2137 		btrfs_abort_log_replay(wc, ret,
2138 			       "failed to allocate name for dir %llu root %llu",
2139 				       btrfs_ino(dir), btrfs_root_id(root));
2140 		goto out;
2141 	}
2142 
2143 	log_flags = btrfs_dir_flags(wc->log_leaf, di);
2144 	btrfs_dir_item_key_to_cpu(wc->log_leaf, di, &log_key);
2145 	ret = btrfs_lookup_inode(trans, root, wc->subvol_path, &log_key, 0);
2146 	btrfs_release_path(wc->subvol_path);
2147 	if (ret < 0) {
2148 		btrfs_abort_log_replay(wc, ret,
2149 				       "failed to lookup inode %llu root %llu",
2150 				       log_key.objectid, btrfs_root_id(root));
2151 		goto out;
2152 	}
2153 	exists = (ret == 0);
2154 	ret = 0;
2155 
2156 	dir_dst_di = btrfs_lookup_dir_item(trans, root, wc->subvol_path,
2157 					   wc->log_key.objectid, &name, 1);
2158 	if (IS_ERR(dir_dst_di)) {
2159 		ret = PTR_ERR(dir_dst_di);
2160 		btrfs_abort_log_replay(wc, ret,
2161 		       "failed to lookup dir item for dir %llu name %.*s root %llu",
2162 				       wc->log_key.objectid, name.len, name.name,
2163 				       btrfs_root_id(root));
2164 		goto out;
2165 	} else if (dir_dst_di) {
2166 		ret = delete_conflicting_dir_entry(wc, dir, dir_dst_di,
2167 						   &log_key, log_flags, exists);
2168 		if (ret < 0) {
2169 			btrfs_abort_log_replay(wc, ret,
2170 	       "failed to delete conflicting entry for dir %llu name %.*s root %llu",
2171 					       btrfs_ino(dir), name.len, name.name,
2172 					       btrfs_root_id(root));
2173 			goto out;
2174 		}
2175 		dir_dst_matches = (ret == 1);
2176 	}
2177 
2178 	btrfs_release_path(wc->subvol_path);
2179 
2180 	index_dst_di = btrfs_lookup_dir_index_item(trans, root, wc->subvol_path,
2181 						   wc->log_key.objectid,
2182 						   wc->log_key.offset, &name, 1);
2183 	if (IS_ERR(index_dst_di)) {
2184 		ret = PTR_ERR(index_dst_di);
2185 		btrfs_abort_log_replay(wc, ret,
2186 	       "failed to lookup dir index item for dir %llu name %.*s root %llu",
2187 				       wc->log_key.objectid, name.len, name.name,
2188 				       btrfs_root_id(root));
2189 		goto out;
2190 	} else if (index_dst_di) {
2191 		ret = delete_conflicting_dir_entry(wc, dir, index_dst_di,
2192 						   &log_key, log_flags, exists);
2193 		if (ret < 0) {
2194 			btrfs_abort_log_replay(wc, ret,
2195 	       "failed to delete conflicting entry for dir %llu name %.*s root %llu",
2196 					       btrfs_ino(dir), name.len, name.name,
2197 					       btrfs_root_id(root));
2198 			goto out;
2199 		}
2200 		index_dst_matches = (ret == 1);
2201 	}
2202 
2203 	btrfs_release_path(wc->subvol_path);
2204 
2205 	if (dir_dst_matches && index_dst_matches) {
2206 		ret = 0;
2207 		update_size = false;
2208 		goto out;
2209 	}
2210 
2211 	/*
2212 	 * Check if the inode reference exists in the log for the given name,
2213 	 * inode and parent inode
2214 	 */
2215 	search_key.objectid = log_key.objectid;
2216 	search_key.type = BTRFS_INODE_REF_KEY;
2217 	search_key.offset = wc->log_key.objectid;
2218 	ret = backref_in_log(root->log_root, &search_key, 0, &name);
2219 	if (ret < 0) {
2220 		btrfs_abort_log_replay(wc, ret,
2221 "failed to check if ref item is logged for inode %llu dir %llu name %.*s root %llu",
2222 				       search_key.objectid, btrfs_ino(dir),
2223 				       name.len, name.name, btrfs_root_id(root));
2224 	        goto out;
2225 	} else if (ret) {
2226 	        /* The dentry will be added later. */
2227 	        ret = 0;
2228 	        update_size = false;
2229 	        goto out;
2230 	}
2231 
2232 	search_key.objectid = log_key.objectid;
2233 	search_key.type = BTRFS_INODE_EXTREF_KEY;
2234 	search_key.offset = btrfs_extref_hash(wc->log_key.objectid, name.name, name.len);
2235 	ret = backref_in_log(root->log_root, &search_key, wc->log_key.objectid, &name);
2236 	if (ret < 0) {
2237 		btrfs_abort_log_replay(wc, ret,
2238 "failed to check if extref item is logged for inode %llu dir %llu name %.*s root %llu",
2239 				       search_key.objectid, btrfs_ino(dir),
2240 				       name.len, name.name, btrfs_root_id(root));
2241 		goto out;
2242 	} else if (ret) {
2243 		/* The dentry will be added later. */
2244 		ret = 0;
2245 		update_size = false;
2246 		goto out;
2247 	}
2248 	ret = insert_one_name(trans, root, wc->log_key.objectid, wc->log_key.offset,
2249 			      &name, &log_key);
2250 	if (ret && ret != -ENOENT && ret != -EEXIST) {
2251 		btrfs_abort_log_replay(wc, ret,
2252 		       "failed to insert name %.*s for inode %llu dir %llu root %llu",
2253 				       name.len, name.name, log_key.objectid,
2254 				       btrfs_ino(dir), btrfs_root_id(root));
2255 		goto out;
2256 	}
2257 	if (!ret)
2258 		name_added = true;
2259 	update_size = false;
2260 	ret = 0;
2261 
2262 out:
2263 	if (!ret && update_size) {
2264 		btrfs_i_size_write(dir, dir->vfs_inode.i_size + name.len * 2);
2265 		ret = btrfs_update_inode(trans, dir);
2266 		if (ret)
2267 			btrfs_abort_log_replay(wc, ret,
2268 				       "failed to update dir inode %llu root %llu",
2269 					       btrfs_ino(dir), btrfs_root_id(root));
2270 	}
2271 	kfree(name.name);
2272 	iput(&dir->vfs_inode);
2273 	if (!ret && name_added)
2274 		ret = 1;
2275 	return ret;
2276 }
2277 
2278 /* Replay one dir item from a BTRFS_DIR_INDEX_KEY key. */
replay_one_dir_item(struct walk_control * wc)2279 static noinline int replay_one_dir_item(struct walk_control *wc)
2280 {
2281 	int ret;
2282 	struct btrfs_dir_item *di;
2283 
2284 	/* We only log dir index keys, which only contain a single dir item. */
2285 	ASSERT(wc->log_key.type == BTRFS_DIR_INDEX_KEY);
2286 
2287 	di = btrfs_item_ptr(wc->log_leaf, wc->log_slot, struct btrfs_dir_item);
2288 	ret = replay_one_name(wc, di);
2289 	if (ret < 0)
2290 		return ret;
2291 
2292 	/*
2293 	 * If this entry refers to a non-directory (directories can not have a
2294 	 * link count > 1) and it was added in the transaction that was not
2295 	 * committed, make sure we fixup the link count of the inode the entry
2296 	 * points to. Otherwise something like the following would result in a
2297 	 * directory pointing to an inode with a wrong link that does not account
2298 	 * for this dir entry:
2299 	 *
2300 	 * mkdir testdir
2301 	 * touch testdir/foo
2302 	 * touch testdir/bar
2303 	 * sync
2304 	 *
2305 	 * ln testdir/bar testdir/bar_link
2306 	 * ln testdir/foo testdir/foo_link
2307 	 * xfs_io -c "fsync" testdir/bar
2308 	 *
2309 	 * <power failure>
2310 	 *
2311 	 * mount fs, log replay happens
2312 	 *
2313 	 * File foo would remain with a link count of 1 when it has two entries
2314 	 * pointing to it in the directory testdir. This would make it impossible
2315 	 * to ever delete the parent directory has it would result in stale
2316 	 * dentries that can never be deleted.
2317 	 */
2318 	if (ret == 1 && btrfs_dir_ftype(wc->log_leaf, di) != BTRFS_FT_DIR) {
2319 		struct btrfs_key di_key;
2320 
2321 		btrfs_dir_item_key_to_cpu(wc->log_leaf, di, &di_key);
2322 		ret = link_to_fixup_dir(wc, di_key.objectid);
2323 	}
2324 
2325 	return ret;
2326 }
2327 
2328 /*
2329  * directory replay has two parts.  There are the standard directory
2330  * items in the log copied from the subvolume, and range items
2331  * created in the log while the subvolume was logged.
2332  *
2333  * The range items tell us which parts of the key space the log
2334  * is authoritative for.  During replay, if a key in the subvolume
2335  * directory is in a logged range item, but not actually in the log
2336  * that means it was deleted from the directory before the fsync
2337  * and should be removed.
2338  */
find_dir_range(struct btrfs_root * root,struct btrfs_path * path,u64 dirid,u64 * start_ret,u64 * end_ret)2339 static noinline int find_dir_range(struct btrfs_root *root,
2340 				   struct btrfs_path *path,
2341 				   u64 dirid,
2342 				   u64 *start_ret, u64 *end_ret)
2343 {
2344 	struct btrfs_key key;
2345 	u64 found_end;
2346 	struct btrfs_dir_log_item *item;
2347 	int ret;
2348 	int nritems;
2349 
2350 	if (*start_ret == (u64)-1)
2351 		return 1;
2352 
2353 	key.objectid = dirid;
2354 	key.type = BTRFS_DIR_LOG_INDEX_KEY;
2355 	key.offset = *start_ret;
2356 
2357 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2358 	if (ret < 0)
2359 		goto out;
2360 	if (ret > 0) {
2361 		if (path->slots[0] == 0)
2362 			goto out;
2363 		path->slots[0]--;
2364 	}
2365 	if (ret != 0)
2366 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2367 
2368 	if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2369 		ret = 1;
2370 		goto next;
2371 	}
2372 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2373 			      struct btrfs_dir_log_item);
2374 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2375 
2376 	if (*start_ret >= key.offset && *start_ret <= found_end) {
2377 		ret = 0;
2378 		*start_ret = key.offset;
2379 		*end_ret = found_end;
2380 		goto out;
2381 	}
2382 	ret = 1;
2383 next:
2384 	/* check the next slot in the tree to see if it is a valid item */
2385 	nritems = btrfs_header_nritems(path->nodes[0]);
2386 	path->slots[0]++;
2387 	if (path->slots[0] >= nritems) {
2388 		ret = btrfs_next_leaf(root, path);
2389 		if (ret)
2390 			goto out;
2391 	}
2392 
2393 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2394 
2395 	if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2396 		ret = 1;
2397 		goto out;
2398 	}
2399 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2400 			      struct btrfs_dir_log_item);
2401 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2402 	*start_ret = key.offset;
2403 	*end_ret = found_end;
2404 	ret = 0;
2405 out:
2406 	btrfs_release_path(path);
2407 	return ret;
2408 }
2409 
2410 /*
2411  * this looks for a given directory item in the log.  If the directory
2412  * item is not in the log, the item is removed and the inode it points
2413  * to is unlinked
2414  */
check_item_in_log(struct walk_control * wc,struct btrfs_path * log_path,struct btrfs_inode * dir,struct btrfs_key * dir_key,bool force_remove)2415 static noinline int check_item_in_log(struct walk_control *wc,
2416 				      struct btrfs_path *log_path,
2417 				      struct btrfs_inode *dir,
2418 				      struct btrfs_key *dir_key,
2419 				      bool force_remove)
2420 {
2421 	struct btrfs_trans_handle *trans = wc->trans;
2422 	struct btrfs_root *root = dir->root;
2423 	int ret;
2424 	struct extent_buffer *eb;
2425 	int slot;
2426 	struct btrfs_dir_item *di;
2427 	struct fscrypt_str name = { 0 };
2428 	struct btrfs_inode *inode = NULL;
2429 	struct btrfs_key location;
2430 
2431 	/*
2432 	 * Currently we only log dir index keys. Even if we replay a log created
2433 	 * by an older kernel that logged both dir index and dir item keys, all
2434 	 * we need to do is process the dir index keys, we (and our caller) can
2435 	 * safely ignore dir item keys (key type BTRFS_DIR_ITEM_KEY).
2436 	 */
2437 	ASSERT(dir_key->type == BTRFS_DIR_INDEX_KEY);
2438 
2439 	eb = wc->subvol_path->nodes[0];
2440 	slot = wc->subvol_path->slots[0];
2441 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2442 	ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
2443 	if (ret) {
2444 		btrfs_abort_log_replay(wc, ret,
2445 		       "failed to allocate name for dir %llu index %llu root %llu",
2446 				       btrfs_ino(dir), dir_key->offset,
2447 				       btrfs_root_id(root));
2448 		goto out;
2449 	}
2450 
2451 	if (!force_remove) {
2452 		struct btrfs_dir_item *log_di;
2453 
2454 		log_di = btrfs_lookup_dir_index_item(trans, wc->log, log_path,
2455 						     dir_key->objectid,
2456 						     dir_key->offset, &name, 0);
2457 		if (IS_ERR(log_di)) {
2458 			ret = PTR_ERR(log_di);
2459 			btrfs_abort_log_replay(wc, ret,
2460 	"failed to lookup dir index item for dir %llu index %llu name %.*s root %llu",
2461 					       btrfs_ino(dir), dir_key->offset,
2462 					       name.len, name.name,
2463 					       btrfs_root_id(root));
2464 			goto out;
2465 		} else if (log_di) {
2466 			/* The dentry exists in the log, we have nothing to do. */
2467 			ret = 0;
2468 			goto out;
2469 		}
2470 	}
2471 
2472 	btrfs_dir_item_key_to_cpu(eb, di, &location);
2473 	btrfs_release_path(wc->subvol_path);
2474 	btrfs_release_path(log_path);
2475 	inode = btrfs_iget_logging(location.objectid, root);
2476 	if (IS_ERR(inode)) {
2477 		ret = PTR_ERR(inode);
2478 		inode = NULL;
2479 		btrfs_abort_log_replay(wc, ret,
2480 				       "failed to lookup inode %llu root %llu",
2481 				       location.objectid, btrfs_root_id(root));
2482 		goto out;
2483 	}
2484 
2485 	ret = link_to_fixup_dir(wc, location.objectid);
2486 	if (ret)
2487 		goto out;
2488 
2489 	inc_nlink(&inode->vfs_inode);
2490 	ret = unlink_inode_for_log_replay(wc, dir, inode, &name);
2491 	/*
2492 	 * Unlike dir item keys, dir index keys can only have one name (entry) in
2493 	 * them, as there are no key collisions since each key has a unique offset
2494 	 * (an index number), so we're done.
2495 	 */
2496 out:
2497 	btrfs_release_path(wc->subvol_path);
2498 	btrfs_release_path(log_path);
2499 	kfree(name.name);
2500 	if (inode)
2501 		iput(&inode->vfs_inode);
2502 	return ret;
2503 }
2504 
replay_xattr_deletes(struct walk_control * wc)2505 static int replay_xattr_deletes(struct walk_control *wc)
2506 {
2507 	struct btrfs_trans_handle *trans = wc->trans;
2508 	struct btrfs_root *root = wc->root;
2509 	struct btrfs_root *log = wc->log;
2510 	struct btrfs_key search_key;
2511 	BTRFS_PATH_AUTO_FREE(log_path);
2512 	const u64 ino = wc->log_key.objectid;
2513 	int nritems;
2514 	int ret;
2515 
2516 	log_path = btrfs_alloc_path();
2517 	if (!log_path) {
2518 		btrfs_abort_log_replay(wc, -ENOMEM, "failed to allocate path");
2519 		return -ENOMEM;
2520 	}
2521 
2522 	search_key.objectid = ino;
2523 	search_key.type = BTRFS_XATTR_ITEM_KEY;
2524 	search_key.offset = 0;
2525 again:
2526 	ret = btrfs_search_slot(NULL, root, &search_key, wc->subvol_path, 0, 0);
2527 	if (ret < 0) {
2528 		btrfs_abort_log_replay(wc, ret,
2529 			       "failed to search xattrs for inode %llu root %llu",
2530 				       ino, btrfs_root_id(root));
2531 		goto out;
2532 	}
2533 process_leaf:
2534 	nritems = btrfs_header_nritems(wc->subvol_path->nodes[0]);
2535 	for (int i = wc->subvol_path->slots[0]; i < nritems; i++) {
2536 		struct btrfs_key key;
2537 		struct btrfs_dir_item *di;
2538 		struct btrfs_dir_item *log_di;
2539 		u32 total_size;
2540 		u32 cur;
2541 
2542 		btrfs_item_key_to_cpu(wc->subvol_path->nodes[0], &key, i);
2543 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2544 			ret = 0;
2545 			goto out;
2546 		}
2547 
2548 		di = btrfs_item_ptr(wc->subvol_path->nodes[0], i, struct btrfs_dir_item);
2549 		total_size = btrfs_item_size(wc->subvol_path->nodes[0], i);
2550 		cur = 0;
2551 		while (cur < total_size) {
2552 			u16 name_len = btrfs_dir_name_len(wc->subvol_path->nodes[0], di);
2553 			u16 data_len = btrfs_dir_data_len(wc->subvol_path->nodes[0], di);
2554 			u32 this_len = sizeof(*di) + name_len + data_len;
2555 			char *name;
2556 
2557 			name = kmalloc(name_len, GFP_NOFS);
2558 			if (!name) {
2559 				ret = -ENOMEM;
2560 				btrfs_abort_log_replay(wc, ret,
2561 				       "failed to allocate memory for name of length %u",
2562 						       name_len);
2563 				goto out;
2564 			}
2565 			read_extent_buffer(wc->subvol_path->nodes[0], name,
2566 					   (unsigned long)(di + 1), name_len);
2567 
2568 			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2569 						    name, name_len, 0);
2570 			btrfs_release_path(log_path);
2571 			if (!log_di) {
2572 				/* Doesn't exist in log tree, so delete it. */
2573 				btrfs_release_path(wc->subvol_path);
2574 				di = btrfs_lookup_xattr(trans, root, wc->subvol_path, ino,
2575 							name, name_len, -1);
2576 				if (IS_ERR(di)) {
2577 					ret = PTR_ERR(di);
2578 					btrfs_abort_log_replay(wc, ret,
2579 		       "failed to lookup xattr with name %.*s for inode %llu root %llu",
2580 							       name_len, name, ino,
2581 							       btrfs_root_id(root));
2582 					kfree(name);
2583 					goto out;
2584 				}
2585 				ASSERT(di);
2586 				ret = btrfs_delete_one_dir_name(trans, root,
2587 								wc->subvol_path, di);
2588 				if (ret) {
2589 					btrfs_abort_log_replay(wc, ret,
2590 		       "failed to delete xattr with name %.*s for inode %llu root %llu",
2591 							       name_len, name, ino,
2592 							       btrfs_root_id(root));
2593 					kfree(name);
2594 					goto out;
2595 				}
2596 				btrfs_release_path(wc->subvol_path);
2597 				kfree(name);
2598 				search_key = key;
2599 				goto again;
2600 			}
2601 			if (IS_ERR(log_di)) {
2602 				ret = PTR_ERR(log_di);
2603 				btrfs_abort_log_replay(wc, ret,
2604 	"failed to lookup xattr in log tree with name %.*s for inode %llu root %llu",
2605 						       name_len, name, ino,
2606 						       btrfs_root_id(root));
2607 				kfree(name);
2608 				goto out;
2609 			}
2610 			kfree(name);
2611 			cur += this_len;
2612 			di = (struct btrfs_dir_item *)((char *)di + this_len);
2613 		}
2614 	}
2615 	ret = btrfs_next_leaf(root, wc->subvol_path);
2616 	if (ret > 0)
2617 		ret = 0;
2618 	else if (ret == 0)
2619 		goto process_leaf;
2620 	else
2621 		btrfs_abort_log_replay(wc, ret,
2622 			       "failed to get next leaf in subvolume root %llu",
2623 				       btrfs_root_id(root));
2624 out:
2625 	btrfs_release_path(wc->subvol_path);
2626 	return ret;
2627 }
2628 
2629 
2630 /*
2631  * deletion replay happens before we copy any new directory items
2632  * out of the log or out of backreferences from inodes.  It
2633  * scans the log to find ranges of keys that log is authoritative for,
2634  * and then scans the directory to find items in those ranges that are
2635  * not present in the log.
2636  *
2637  * Anything we don't find in the log is unlinked and removed from the
2638  * directory.
2639  */
replay_dir_deletes(struct walk_control * wc,u64 dirid,bool del_all)2640 static noinline int replay_dir_deletes(struct walk_control *wc,
2641 				       u64 dirid, bool del_all)
2642 {
2643 	struct btrfs_root *root = wc->root;
2644 	struct btrfs_root *log = (del_all ? NULL : wc->log);
2645 	u64 range_start;
2646 	u64 range_end;
2647 	int ret = 0;
2648 	struct btrfs_key dir_key;
2649 	struct btrfs_key found_key;
2650 	struct btrfs_path *log_path;
2651 	struct btrfs_inode *dir;
2652 
2653 	dir_key.objectid = dirid;
2654 	dir_key.type = BTRFS_DIR_INDEX_KEY;
2655 	log_path = btrfs_alloc_path();
2656 	if (!log_path) {
2657 		btrfs_abort_log_replay(wc, -ENOMEM, "failed to allocate path");
2658 		return -ENOMEM;
2659 	}
2660 
2661 	dir = btrfs_iget_logging(dirid, root);
2662 	/*
2663 	 * It isn't an error if the inode isn't there, that can happen because
2664 	 * we replay the deletes before we copy in the inode item from the log.
2665 	 */
2666 	if (IS_ERR(dir)) {
2667 		btrfs_free_path(log_path);
2668 		ret = PTR_ERR(dir);
2669 		if (ret == -ENOENT)
2670 			ret = 0;
2671 		else
2672 			btrfs_abort_log_replay(wc, ret,
2673 			       "failed to lookup dir inode %llu root %llu",
2674 					       dirid, btrfs_root_id(root));
2675 		return ret;
2676 	}
2677 
2678 	range_start = 0;
2679 	range_end = 0;
2680 	while (1) {
2681 		if (del_all)
2682 			range_end = (u64)-1;
2683 		else {
2684 			ret = find_dir_range(log, wc->subvol_path, dirid,
2685 					     &range_start, &range_end);
2686 			if (ret < 0) {
2687 				btrfs_abort_log_replay(wc, ret,
2688 			       "failed to find range for dir %llu in log tree root %llu",
2689 						       dirid, btrfs_root_id(root));
2690 				goto out;
2691 			} else if (ret > 0) {
2692 				break;
2693 			}
2694 		}
2695 
2696 		dir_key.offset = range_start;
2697 		while (1) {
2698 			int nritems;
2699 			ret = btrfs_search_slot(NULL, root, &dir_key,
2700 						wc->subvol_path, 0, 0);
2701 			if (ret < 0) {
2702 				btrfs_abort_log_replay(wc, ret,
2703 			       "failed to search root %llu for key (%llu %u %llu)",
2704 						       btrfs_root_id(root),
2705 						       dir_key.objectid, dir_key.type,
2706 						       dir_key.offset);
2707 				goto out;
2708 			}
2709 
2710 			nritems = btrfs_header_nritems(wc->subvol_path->nodes[0]);
2711 			if (wc->subvol_path->slots[0] >= nritems) {
2712 				ret = btrfs_next_leaf(root, wc->subvol_path);
2713 				if (ret == 1) {
2714 					break;
2715 				} else if (ret < 0) {
2716 					btrfs_abort_log_replay(wc, ret,
2717 				       "failed to get next leaf in subvolume root %llu",
2718 							       btrfs_root_id(root));
2719 					goto out;
2720 				}
2721 			}
2722 			btrfs_item_key_to_cpu(wc->subvol_path->nodes[0], &found_key,
2723 					      wc->subvol_path->slots[0]);
2724 			if (found_key.objectid != dirid ||
2725 			    found_key.type != dir_key.type) {
2726 				ret = 0;
2727 				goto out;
2728 			}
2729 
2730 			if (found_key.offset > range_end)
2731 				break;
2732 
2733 			ret = check_item_in_log(wc, log_path, dir, &found_key, del_all);
2734 			if (ret)
2735 				goto out;
2736 			if (found_key.offset == (u64)-1)
2737 				break;
2738 			dir_key.offset = found_key.offset + 1;
2739 		}
2740 		btrfs_release_path(wc->subvol_path);
2741 		if (range_end == (u64)-1)
2742 			break;
2743 		range_start = range_end + 1;
2744 	}
2745 	ret = 0;
2746 out:
2747 	btrfs_release_path(wc->subvol_path);
2748 	btrfs_free_path(log_path);
2749 	iput(&dir->vfs_inode);
2750 	return ret;
2751 }
2752 
2753 /*
2754  * the process_func used to replay items from the log tree.  This
2755  * gets called in two different stages.  The first stage just looks
2756  * for inodes and makes sure they are all copied into the subvolume.
2757  *
2758  * The second stage copies all the other item types from the log into
2759  * the subvolume.  The two stage approach is slower, but gets rid of
2760  * lots of complexity around inodes referencing other inodes that exist
2761  * only in the log (references come from either directory items or inode
2762  * back refs).
2763  */
replay_one_buffer(struct extent_buffer * eb,struct walk_control * wc,u64 gen,int level)2764 static int replay_one_buffer(struct extent_buffer *eb,
2765 			     struct walk_control *wc, u64 gen, int level)
2766 {
2767 	int nritems;
2768 	struct btrfs_tree_parent_check check = {
2769 		.transid = gen,
2770 		.level = level
2771 	};
2772 	struct btrfs_root *root = wc->root;
2773 	struct btrfs_trans_handle *trans = wc->trans;
2774 	int ret;
2775 
2776 	if (level != 0)
2777 		return 0;
2778 
2779 	/*
2780 	 * Set to NULL since it was not yet read and in case we abort log replay
2781 	 * on error, we have no valid log tree leaf to dump.
2782 	 */
2783 	wc->log_leaf = NULL;
2784 	ret = btrfs_read_extent_buffer(eb, &check);
2785 	if (ret) {
2786 		btrfs_abort_log_replay(wc, ret,
2787 		       "failed to read log tree leaf %llu for root %llu",
2788 				       eb->start, btrfs_root_id(root));
2789 		return ret;
2790 	}
2791 
2792 	ASSERT(wc->subvol_path == NULL);
2793 	wc->subvol_path = btrfs_alloc_path();
2794 	if (!wc->subvol_path) {
2795 		btrfs_abort_log_replay(wc, -ENOMEM, "failed to allocate path");
2796 		return -ENOMEM;
2797 	}
2798 
2799 	wc->log_leaf = eb;
2800 
2801 	nritems = btrfs_header_nritems(eb);
2802 	for (wc->log_slot = 0; wc->log_slot < nritems; wc->log_slot++) {
2803 		struct btrfs_inode_item *inode_item;
2804 
2805 		btrfs_item_key_to_cpu(eb, &wc->log_key, wc->log_slot);
2806 
2807 		if (wc->log_key.type == BTRFS_INODE_ITEM_KEY) {
2808 			inode_item = btrfs_item_ptr(eb, wc->log_slot,
2809 						    struct btrfs_inode_item);
2810 			/*
2811 			 * An inode with no links is either:
2812 			 *
2813 			 * 1) A tmpfile (O_TMPFILE) that got fsync'ed and never
2814 			 *    got linked before the fsync, skip it, as replaying
2815 			 *    it is pointless since it would be deleted later.
2816 			 *    We skip logging tmpfiles, but it's always possible
2817 			 *    we are replaying a log created with a kernel that
2818 			 *    used to log tmpfiles;
2819 			 *
2820 			 * 2) A non-tmpfile which got its last link deleted
2821 			 *    while holding an open fd on it and later got
2822 			 *    fsynced through that fd. We always log the
2823 			 *    parent inodes when inode->last_unlink_trans is
2824 			 *    set to the current transaction, so ignore all the
2825 			 *    inode items for this inode. We will delete the
2826 			 *    inode when processing the parent directory with
2827 			 *    replay_dir_deletes().
2828 			 */
2829 			if (btrfs_inode_nlink(eb, inode_item) == 0) {
2830 				wc->ignore_cur_inode = true;
2831 				continue;
2832 			} else {
2833 				wc->ignore_cur_inode = false;
2834 			}
2835 		}
2836 
2837 		/* Inode keys are done during the first stage. */
2838 		if (wc->log_key.type == BTRFS_INODE_ITEM_KEY &&
2839 		    wc->stage == LOG_WALK_REPLAY_INODES) {
2840 			u32 mode;
2841 
2842 			ret = replay_xattr_deletes(wc);
2843 			if (ret)
2844 				break;
2845 			mode = btrfs_inode_mode(eb, inode_item);
2846 			if (S_ISDIR(mode)) {
2847 				ret = replay_dir_deletes(wc, wc->log_key.objectid, false);
2848 				if (ret)
2849 					break;
2850 			}
2851 			ret = overwrite_item(wc);
2852 			if (ret)
2853 				break;
2854 
2855 			/*
2856 			 * Before replaying extents, truncate the inode to its
2857 			 * size. We need to do it now and not after log replay
2858 			 * because before an fsync we can have prealloc extents
2859 			 * added beyond the inode's i_size. If we did it after,
2860 			 * through orphan cleanup for example, we would drop
2861 			 * those prealloc extents just after replaying them.
2862 			 */
2863 			if (S_ISREG(mode)) {
2864 				struct btrfs_drop_extents_args drop_args = { 0 };
2865 				struct btrfs_inode *inode;
2866 				u64 from;
2867 
2868 				inode = btrfs_iget_logging(wc->log_key.objectid, root);
2869 				if (IS_ERR(inode)) {
2870 					ret = PTR_ERR(inode);
2871 					btrfs_abort_log_replay(wc, ret,
2872 					       "failed to lookup inode %llu root %llu",
2873 							       wc->log_key.objectid,
2874 							       btrfs_root_id(root));
2875 					break;
2876 				}
2877 				from = ALIGN(i_size_read(&inode->vfs_inode),
2878 					     root->fs_info->sectorsize);
2879 				drop_args.start = from;
2880 				drop_args.end = (u64)-1;
2881 				drop_args.drop_cache = true;
2882 				drop_args.path = wc->subvol_path;
2883 				ret = btrfs_drop_extents(trans, root, inode,  &drop_args);
2884 				if (ret) {
2885 					btrfs_abort_log_replay(wc, ret,
2886 		       "failed to drop extents for inode %llu root %llu offset %llu",
2887 							       btrfs_ino(inode),
2888 							       btrfs_root_id(root),
2889 							       from);
2890 				} else {
2891 					inode_sub_bytes(&inode->vfs_inode,
2892 							drop_args.bytes_found);
2893 					/* Update the inode's nbytes. */
2894 					ret = btrfs_update_inode(trans, inode);
2895 					if (ret)
2896 						btrfs_abort_log_replay(wc, ret,
2897 					       "failed to update inode %llu root %llu",
2898 								       btrfs_ino(inode),
2899 								       btrfs_root_id(root));
2900 				}
2901 				iput(&inode->vfs_inode);
2902 				if (ret)
2903 					break;
2904 			}
2905 
2906 			ret = link_to_fixup_dir(wc, wc->log_key.objectid);
2907 			if (ret)
2908 				break;
2909 		}
2910 
2911 		if (wc->ignore_cur_inode)
2912 			continue;
2913 
2914 		if (wc->log_key.type == BTRFS_DIR_INDEX_KEY &&
2915 		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2916 			ret = replay_one_dir_item(wc);
2917 			if (ret)
2918 				break;
2919 		}
2920 
2921 		if (wc->stage < LOG_WALK_REPLAY_ALL)
2922 			continue;
2923 
2924 		/* these keys are simply copied */
2925 		if (wc->log_key.type == BTRFS_XATTR_ITEM_KEY) {
2926 			ret = overwrite_item(wc);
2927 			if (ret)
2928 				break;
2929 		} else if (wc->log_key.type == BTRFS_INODE_REF_KEY ||
2930 			   wc->log_key.type == BTRFS_INODE_EXTREF_KEY) {
2931 			ret = add_inode_ref(wc);
2932 			if (ret)
2933 				break;
2934 		} else if (wc->log_key.type == BTRFS_EXTENT_DATA_KEY) {
2935 			ret = replay_one_extent(wc);
2936 			if (ret)
2937 				break;
2938 		}
2939 		/*
2940 		 * We don't log BTRFS_DIR_ITEM_KEY keys anymore, only the
2941 		 * BTRFS_DIR_INDEX_KEY items which we use to derive the
2942 		 * BTRFS_DIR_ITEM_KEY items. If we are replaying a log from an
2943 		 * older kernel with such keys, ignore them.
2944 		 */
2945 	}
2946 	btrfs_free_path(wc->subvol_path);
2947 	wc->subvol_path = NULL;
2948 	return ret;
2949 }
2950 
clean_log_buffer(struct btrfs_trans_handle * trans,struct extent_buffer * eb)2951 static int clean_log_buffer(struct btrfs_trans_handle *trans,
2952 			    struct extent_buffer *eb)
2953 {
2954 	struct btrfs_fs_info *fs_info = eb->fs_info;
2955 	struct btrfs_block_group *bg;
2956 
2957 	btrfs_tree_lock(eb);
2958 	btrfs_clear_buffer_dirty(trans, eb);
2959 	wait_on_extent_buffer_writeback(eb);
2960 	btrfs_tree_unlock(eb);
2961 
2962 	if (trans) {
2963 		int ret;
2964 
2965 		ret = btrfs_pin_reserved_extent(trans, eb);
2966 		if (ret)
2967 			btrfs_abort_transaction(trans, ret);
2968 		return ret;
2969 	}
2970 
2971 	bg = btrfs_lookup_block_group(fs_info, eb->start);
2972 	if (!bg) {
2973 		btrfs_err(fs_info, "unable to find block group for %llu", eb->start);
2974 		btrfs_handle_fs_error(fs_info, -ENOENT, NULL);
2975 		return -ENOENT;
2976 	}
2977 
2978 	spin_lock(&bg->space_info->lock);
2979 	spin_lock(&bg->lock);
2980 	bg->reserved -= fs_info->nodesize;
2981 	bg->space_info->bytes_reserved -= fs_info->nodesize;
2982 	spin_unlock(&bg->lock);
2983 	spin_unlock(&bg->space_info->lock);
2984 
2985 	btrfs_put_block_group(bg);
2986 
2987 	return 0;
2988 }
2989 
walk_down_log_tree(struct btrfs_path * path,int * level,struct walk_control * wc)2990 static noinline int walk_down_log_tree(struct btrfs_path *path, int *level,
2991 				       struct walk_control *wc)
2992 {
2993 	struct btrfs_trans_handle *trans = wc->trans;
2994 	struct btrfs_fs_info *fs_info = wc->log->fs_info;
2995 	u64 bytenr;
2996 	u64 ptr_gen;
2997 	struct extent_buffer *next;
2998 	struct extent_buffer *cur;
2999 	int ret = 0;
3000 
3001 	while (*level > 0) {
3002 		struct btrfs_tree_parent_check check = { 0 };
3003 
3004 		cur = path->nodes[*level];
3005 
3006 		WARN_ON(btrfs_header_level(cur) != *level);
3007 
3008 		if (path->slots[*level] >=
3009 		    btrfs_header_nritems(cur))
3010 			break;
3011 
3012 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
3013 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
3014 		check.transid = ptr_gen;
3015 		check.level = *level - 1;
3016 		check.has_first_key = true;
3017 		btrfs_node_key_to_cpu(cur, &check.first_key, path->slots[*level]);
3018 
3019 		next = btrfs_find_create_tree_block(fs_info, bytenr,
3020 						    btrfs_header_owner(cur),
3021 						    *level - 1);
3022 		if (IS_ERR(next)) {
3023 			ret = PTR_ERR(next);
3024 			if (trans)
3025 				btrfs_abort_transaction(trans, ret);
3026 			else
3027 				btrfs_handle_fs_error(fs_info, ret, NULL);
3028 			return ret;
3029 		}
3030 
3031 		if (*level == 1) {
3032 			ret = wc->process_func(next, wc, ptr_gen, *level - 1);
3033 			if (ret) {
3034 				free_extent_buffer(next);
3035 				return ret;
3036 			}
3037 
3038 			path->slots[*level]++;
3039 			if (wc->free) {
3040 				ret = btrfs_read_extent_buffer(next, &check);
3041 				if (ret) {
3042 					free_extent_buffer(next);
3043 					if (trans)
3044 						btrfs_abort_transaction(trans, ret);
3045 					else
3046 						btrfs_handle_fs_error(fs_info, ret, NULL);
3047 					return ret;
3048 				}
3049 
3050 				ret = clean_log_buffer(trans, next);
3051 				if (ret) {
3052 					free_extent_buffer(next);
3053 					return ret;
3054 				}
3055 			}
3056 			free_extent_buffer(next);
3057 			continue;
3058 		}
3059 		ret = btrfs_read_extent_buffer(next, &check);
3060 		if (ret) {
3061 			free_extent_buffer(next);
3062 			if (trans)
3063 				btrfs_abort_transaction(trans, ret);
3064 			else
3065 				btrfs_handle_fs_error(fs_info, ret, NULL);
3066 			return ret;
3067 		}
3068 
3069 		if (path->nodes[*level-1])
3070 			free_extent_buffer(path->nodes[*level-1]);
3071 		path->nodes[*level-1] = next;
3072 		*level = btrfs_header_level(next);
3073 		path->slots[*level] = 0;
3074 		cond_resched();
3075 	}
3076 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
3077 
3078 	cond_resched();
3079 	return 0;
3080 }
3081 
walk_up_log_tree(struct btrfs_path * path,int * level,struct walk_control * wc)3082 static noinline int walk_up_log_tree(struct btrfs_path *path, int *level,
3083 				     struct walk_control *wc)
3084 {
3085 	int i;
3086 	int slot;
3087 	int ret;
3088 
3089 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
3090 		slot = path->slots[i];
3091 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
3092 			path->slots[i]++;
3093 			*level = i;
3094 			WARN_ON(*level == 0);
3095 			return 0;
3096 		} else {
3097 			ret = wc->process_func(path->nodes[*level], wc,
3098 				 btrfs_header_generation(path->nodes[*level]),
3099 				 *level);
3100 			if (ret)
3101 				return ret;
3102 
3103 			if (wc->free) {
3104 				ret = clean_log_buffer(wc->trans, path->nodes[*level]);
3105 				if (ret)
3106 					return ret;
3107 			}
3108 			free_extent_buffer(path->nodes[*level]);
3109 			path->nodes[*level] = NULL;
3110 			*level = i + 1;
3111 		}
3112 	}
3113 	return 1;
3114 }
3115 
3116 /*
3117  * drop the reference count on the tree rooted at 'snap'.  This traverses
3118  * the tree freeing any blocks that have a ref count of zero after being
3119  * decremented.
3120  */
walk_log_tree(struct walk_control * wc)3121 static int walk_log_tree(struct walk_control *wc)
3122 {
3123 	struct btrfs_root *log = wc->log;
3124 	int ret = 0;
3125 	int wret;
3126 	int level;
3127 	BTRFS_PATH_AUTO_FREE(path);
3128 	int orig_level;
3129 
3130 	path = btrfs_alloc_path();
3131 	if (!path)
3132 		return -ENOMEM;
3133 
3134 	level = btrfs_header_level(log->node);
3135 	orig_level = level;
3136 	path->nodes[level] = log->node;
3137 	refcount_inc(&log->node->refs);
3138 	path->slots[level] = 0;
3139 
3140 	while (1) {
3141 		wret = walk_down_log_tree(path, &level, wc);
3142 		if (wret > 0)
3143 			break;
3144 		if (wret < 0)
3145 			return wret;
3146 
3147 		wret = walk_up_log_tree(path, &level, wc);
3148 		if (wret > 0)
3149 			break;
3150 		if (wret < 0)
3151 			return wret;
3152 	}
3153 
3154 	/* was the root node processed? if not, catch it here */
3155 	if (path->nodes[orig_level]) {
3156 		ret = wc->process_func(path->nodes[orig_level], wc,
3157 			 btrfs_header_generation(path->nodes[orig_level]),
3158 			 orig_level);
3159 		if (ret)
3160 			return ret;
3161 		if (wc->free)
3162 			ret = clean_log_buffer(wc->trans, path->nodes[orig_level]);
3163 	}
3164 
3165 	return ret;
3166 }
3167 
3168 /*
3169  * helper function to update the item for a given subvolumes log root
3170  * in the tree of log roots
3171  */
update_log_root(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_root_item * root_item)3172 static int update_log_root(struct btrfs_trans_handle *trans,
3173 			   struct btrfs_root *log,
3174 			   struct btrfs_root_item *root_item)
3175 {
3176 	struct btrfs_fs_info *fs_info = log->fs_info;
3177 	int ret;
3178 
3179 	if (log->log_transid == 1) {
3180 		/* insert root item on the first sync */
3181 		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
3182 				&log->root_key, root_item);
3183 	} else {
3184 		ret = btrfs_update_root(trans, fs_info->log_root_tree,
3185 				&log->root_key, root_item);
3186 	}
3187 	return ret;
3188 }
3189 
wait_log_commit(struct btrfs_root * root,int transid)3190 static void wait_log_commit(struct btrfs_root *root, int transid)
3191 {
3192 	DEFINE_WAIT(wait);
3193 	int index = transid % 2;
3194 
3195 	/*
3196 	 * we only allow two pending log transactions at a time,
3197 	 * so we know that if ours is more than 2 older than the
3198 	 * current transaction, we're done
3199 	 */
3200 	for (;;) {
3201 		prepare_to_wait(&root->log_commit_wait[index],
3202 				&wait, TASK_UNINTERRUPTIBLE);
3203 
3204 		if (!(root->log_transid_committed < transid &&
3205 		      atomic_read(&root->log_commit[index])))
3206 			break;
3207 
3208 		mutex_unlock(&root->log_mutex);
3209 		schedule();
3210 		mutex_lock(&root->log_mutex);
3211 	}
3212 	finish_wait(&root->log_commit_wait[index], &wait);
3213 }
3214 
wait_for_writer(struct btrfs_root * root)3215 static void wait_for_writer(struct btrfs_root *root)
3216 {
3217 	DEFINE_WAIT(wait);
3218 
3219 	for (;;) {
3220 		prepare_to_wait(&root->log_writer_wait, &wait,
3221 				TASK_UNINTERRUPTIBLE);
3222 		if (!atomic_read(&root->log_writers))
3223 			break;
3224 
3225 		mutex_unlock(&root->log_mutex);
3226 		schedule();
3227 		mutex_lock(&root->log_mutex);
3228 	}
3229 	finish_wait(&root->log_writer_wait, &wait);
3230 }
3231 
btrfs_init_log_ctx(struct btrfs_log_ctx * ctx,struct btrfs_inode * inode)3232 void btrfs_init_log_ctx(struct btrfs_log_ctx *ctx, struct btrfs_inode *inode)
3233 {
3234 	ctx->log_ret = 0;
3235 	ctx->log_transid = 0;
3236 	ctx->log_new_dentries = false;
3237 	ctx->logging_new_name = false;
3238 	ctx->logging_new_delayed_dentries = false;
3239 	ctx->logged_before = false;
3240 	ctx->inode = inode;
3241 	INIT_LIST_HEAD(&ctx->list);
3242 	INIT_LIST_HEAD(&ctx->ordered_extents);
3243 	INIT_LIST_HEAD(&ctx->conflict_inodes);
3244 	ctx->num_conflict_inodes = 0;
3245 	ctx->logging_conflict_inodes = false;
3246 	ctx->scratch_eb = NULL;
3247 }
3248 
btrfs_init_log_ctx_scratch_eb(struct btrfs_log_ctx * ctx)3249 void btrfs_init_log_ctx_scratch_eb(struct btrfs_log_ctx *ctx)
3250 {
3251 	struct btrfs_inode *inode = ctx->inode;
3252 
3253 	if (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
3254 	    !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
3255 		return;
3256 
3257 	/*
3258 	 * Don't care about allocation failure. This is just for optimization,
3259 	 * if we fail to allocate here, we will try again later if needed.
3260 	 */
3261 	ctx->scratch_eb = alloc_dummy_extent_buffer(inode->root->fs_info, 0);
3262 }
3263 
btrfs_release_log_ctx_extents(struct btrfs_log_ctx * ctx)3264 void btrfs_release_log_ctx_extents(struct btrfs_log_ctx *ctx)
3265 {
3266 	struct btrfs_ordered_extent *ordered;
3267 	struct btrfs_ordered_extent *tmp;
3268 
3269 	btrfs_assert_inode_locked(ctx->inode);
3270 
3271 	list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
3272 		list_del_init(&ordered->log_list);
3273 		btrfs_put_ordered_extent(ordered);
3274 	}
3275 }
3276 
3277 
btrfs_remove_log_ctx(struct btrfs_root * root,struct btrfs_log_ctx * ctx)3278 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
3279 					struct btrfs_log_ctx *ctx)
3280 {
3281 	mutex_lock(&root->log_mutex);
3282 	list_del_init(&ctx->list);
3283 	mutex_unlock(&root->log_mutex);
3284 }
3285 
3286 /*
3287  * Invoked in log mutex context, or be sure there is no other task which
3288  * can access the list.
3289  */
btrfs_remove_all_log_ctxs(struct btrfs_root * root,int index,int error)3290 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
3291 					     int index, int error)
3292 {
3293 	struct btrfs_log_ctx *ctx;
3294 	struct btrfs_log_ctx *safe;
3295 
3296 	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
3297 		list_del_init(&ctx->list);
3298 		ctx->log_ret = error;
3299 	}
3300 }
3301 
3302 /*
3303  * Sends a given tree log down to the disk and updates the super blocks to
3304  * record it.  When this call is done, you know that any inodes previously
3305  * logged are safely on disk only if it returns 0.
3306  *
3307  * Any other return value means you need to call btrfs_commit_transaction.
3308  * Some of the edge cases for fsyncing directories that have had unlinks
3309  * or renames done in the past mean that sometimes the only safe
3310  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
3311  * that has happened.
3312  */
btrfs_sync_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_log_ctx * ctx)3313 int btrfs_sync_log(struct btrfs_trans_handle *trans,
3314 		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
3315 {
3316 	int index1;
3317 	int index2;
3318 	int mark;
3319 	int ret;
3320 	struct btrfs_fs_info *fs_info = root->fs_info;
3321 	struct btrfs_root *log = root->log_root;
3322 	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
3323 	struct btrfs_root_item new_root_item;
3324 	int log_transid = 0;
3325 	struct btrfs_log_ctx root_log_ctx;
3326 	struct blk_plug plug;
3327 	u64 log_root_start;
3328 	u64 log_root_level;
3329 
3330 	mutex_lock(&root->log_mutex);
3331 	log_transid = ctx->log_transid;
3332 	if (root->log_transid_committed >= log_transid) {
3333 		mutex_unlock(&root->log_mutex);
3334 		return ctx->log_ret;
3335 	}
3336 
3337 	index1 = log_transid % 2;
3338 	if (atomic_read(&root->log_commit[index1])) {
3339 		wait_log_commit(root, log_transid);
3340 		mutex_unlock(&root->log_mutex);
3341 		return ctx->log_ret;
3342 	}
3343 	ASSERT(log_transid == root->log_transid);
3344 	atomic_set(&root->log_commit[index1], 1);
3345 
3346 	/* wait for previous tree log sync to complete */
3347 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
3348 		wait_log_commit(root, log_transid - 1);
3349 
3350 	while (1) {
3351 		int batch = atomic_read(&root->log_batch);
3352 		/* when we're on an ssd, just kick the log commit out */
3353 		if (!btrfs_test_opt(fs_info, SSD) &&
3354 		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
3355 			mutex_unlock(&root->log_mutex);
3356 			schedule_timeout_uninterruptible(1);
3357 			mutex_lock(&root->log_mutex);
3358 		}
3359 		wait_for_writer(root);
3360 		if (batch == atomic_read(&root->log_batch))
3361 			break;
3362 	}
3363 
3364 	/* bail out if we need to do a full commit */
3365 	if (btrfs_need_log_full_commit(trans)) {
3366 		ret = BTRFS_LOG_FORCE_COMMIT;
3367 		mutex_unlock(&root->log_mutex);
3368 		goto out;
3369 	}
3370 
3371 	if (log_transid % 2 == 0)
3372 		mark = EXTENT_DIRTY_LOG1;
3373 	else
3374 		mark = EXTENT_DIRTY_LOG2;
3375 
3376 	/* we start IO on  all the marked extents here, but we don't actually
3377 	 * wait for them until later.
3378 	 */
3379 	blk_start_plug(&plug);
3380 	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
3381 	/*
3382 	 * -EAGAIN happens when someone, e.g., a concurrent transaction
3383 	 *  commit, writes a dirty extent in this tree-log commit. This
3384 	 *  concurrent write will create a hole writing out the extents,
3385 	 *  and we cannot proceed on a zoned filesystem, requiring
3386 	 *  sequential writing. While we can bail out to a full commit
3387 	 *  here, but we can continue hoping the concurrent writing fills
3388 	 *  the hole.
3389 	 */
3390 	if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
3391 		ret = 0;
3392 	if (ret) {
3393 		blk_finish_plug(&plug);
3394 		btrfs_set_log_full_commit(trans);
3395 		mutex_unlock(&root->log_mutex);
3396 		goto out;
3397 	}
3398 
3399 	/*
3400 	 * We _must_ update under the root->log_mutex in order to make sure we
3401 	 * have a consistent view of the log root we are trying to commit at
3402 	 * this moment.
3403 	 *
3404 	 * We _must_ copy this into a local copy, because we are not holding the
3405 	 * log_root_tree->log_mutex yet.  This is important because when we
3406 	 * commit the log_root_tree we must have a consistent view of the
3407 	 * log_root_tree when we update the super block to point at the
3408 	 * log_root_tree bytenr.  If we update the log_root_tree here we'll race
3409 	 * with the commit and possibly point at the new block which we may not
3410 	 * have written out.
3411 	 */
3412 	btrfs_set_root_node(&log->root_item, log->node);
3413 	memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3414 
3415 	btrfs_set_root_log_transid(root, root->log_transid + 1);
3416 	log->log_transid = root->log_transid;
3417 	root->log_start_pid = 0;
3418 	/*
3419 	 * IO has been started, blocks of the log tree have WRITTEN flag set
3420 	 * in their headers. new modifications of the log will be written to
3421 	 * new positions. so it's safe to allow log writers to go in.
3422 	 */
3423 	mutex_unlock(&root->log_mutex);
3424 
3425 	if (btrfs_is_zoned(fs_info)) {
3426 		mutex_lock(&fs_info->tree_root->log_mutex);
3427 		if (!log_root_tree->node) {
3428 			ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
3429 			if (ret) {
3430 				mutex_unlock(&fs_info->tree_root->log_mutex);
3431 				blk_finish_plug(&plug);
3432 				goto out;
3433 			}
3434 		}
3435 		mutex_unlock(&fs_info->tree_root->log_mutex);
3436 	}
3437 
3438 	btrfs_init_log_ctx(&root_log_ctx, NULL);
3439 
3440 	mutex_lock(&log_root_tree->log_mutex);
3441 
3442 	index2 = log_root_tree->log_transid % 2;
3443 	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3444 	root_log_ctx.log_transid = log_root_tree->log_transid;
3445 
3446 	/*
3447 	 * Now we are safe to update the log_root_tree because we're under the
3448 	 * log_mutex, and we're a current writer so we're holding the commit
3449 	 * open until we drop the log_mutex.
3450 	 */
3451 	ret = update_log_root(trans, log, &new_root_item);
3452 	if (ret) {
3453 		list_del_init(&root_log_ctx.list);
3454 		blk_finish_plug(&plug);
3455 		btrfs_set_log_full_commit(trans);
3456 		if (ret != -ENOSPC)
3457 			btrfs_err(fs_info,
3458 				  "failed to update log for root %llu ret %d",
3459 				  btrfs_root_id(root), ret);
3460 		btrfs_wait_tree_log_extents(log, mark);
3461 		mutex_unlock(&log_root_tree->log_mutex);
3462 		goto out;
3463 	}
3464 
3465 	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3466 		blk_finish_plug(&plug);
3467 		list_del_init(&root_log_ctx.list);
3468 		mutex_unlock(&log_root_tree->log_mutex);
3469 		ret = root_log_ctx.log_ret;
3470 		goto out;
3471 	}
3472 
3473 	if (atomic_read(&log_root_tree->log_commit[index2])) {
3474 		blk_finish_plug(&plug);
3475 		ret = btrfs_wait_tree_log_extents(log, mark);
3476 		wait_log_commit(log_root_tree,
3477 				root_log_ctx.log_transid);
3478 		mutex_unlock(&log_root_tree->log_mutex);
3479 		if (!ret)
3480 			ret = root_log_ctx.log_ret;
3481 		goto out;
3482 	}
3483 	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3484 	atomic_set(&log_root_tree->log_commit[index2], 1);
3485 
3486 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3487 		wait_log_commit(log_root_tree,
3488 				root_log_ctx.log_transid - 1);
3489 	}
3490 
3491 	/*
3492 	 * now that we've moved on to the tree of log tree roots,
3493 	 * check the full commit flag again
3494 	 */
3495 	if (btrfs_need_log_full_commit(trans)) {
3496 		blk_finish_plug(&plug);
3497 		btrfs_wait_tree_log_extents(log, mark);
3498 		mutex_unlock(&log_root_tree->log_mutex);
3499 		ret = BTRFS_LOG_FORCE_COMMIT;
3500 		goto out_wake_log_root;
3501 	}
3502 
3503 	ret = btrfs_write_marked_extents(fs_info,
3504 					 &log_root_tree->dirty_log_pages,
3505 					 EXTENT_DIRTY_LOG1 | EXTENT_DIRTY_LOG2);
3506 	blk_finish_plug(&plug);
3507 	/*
3508 	 * As described above, -EAGAIN indicates a hole in the extents. We
3509 	 * cannot wait for these write outs since the waiting cause a
3510 	 * deadlock. Bail out to the full commit instead.
3511 	 */
3512 	if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3513 		btrfs_set_log_full_commit(trans);
3514 		btrfs_wait_tree_log_extents(log, mark);
3515 		mutex_unlock(&log_root_tree->log_mutex);
3516 		goto out_wake_log_root;
3517 	} else if (ret) {
3518 		btrfs_set_log_full_commit(trans);
3519 		mutex_unlock(&log_root_tree->log_mutex);
3520 		goto out_wake_log_root;
3521 	}
3522 	ret = btrfs_wait_tree_log_extents(log, mark);
3523 	if (!ret)
3524 		ret = btrfs_wait_tree_log_extents(log_root_tree,
3525 						  EXTENT_DIRTY_LOG1 | EXTENT_DIRTY_LOG2);
3526 	if (ret) {
3527 		btrfs_set_log_full_commit(trans);
3528 		mutex_unlock(&log_root_tree->log_mutex);
3529 		goto out_wake_log_root;
3530 	}
3531 
3532 	log_root_start = log_root_tree->node->start;
3533 	log_root_level = btrfs_header_level(log_root_tree->node);
3534 	log_root_tree->log_transid++;
3535 	mutex_unlock(&log_root_tree->log_mutex);
3536 
3537 	/*
3538 	 * Here we are guaranteed that nobody is going to write the superblock
3539 	 * for the current transaction before us and that neither we do write
3540 	 * our superblock before the previous transaction finishes its commit
3541 	 * and writes its superblock, because:
3542 	 *
3543 	 * 1) We are holding a handle on the current transaction, so no body
3544 	 *    can commit it until we release the handle;
3545 	 *
3546 	 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3547 	 *    if the previous transaction is still committing, and hasn't yet
3548 	 *    written its superblock, we wait for it to do it, because a
3549 	 *    transaction commit acquires the tree_log_mutex when the commit
3550 	 *    begins and releases it only after writing its superblock.
3551 	 */
3552 	mutex_lock(&fs_info->tree_log_mutex);
3553 
3554 	/*
3555 	 * The previous transaction writeout phase could have failed, and thus
3556 	 * marked the fs in an error state.  We must not commit here, as we
3557 	 * could have updated our generation in the super_for_commit and
3558 	 * writing the super here would result in transid mismatches.  If there
3559 	 * is an error here just bail.
3560 	 */
3561 	if (BTRFS_FS_ERROR(fs_info)) {
3562 		ret = -EIO;
3563 		btrfs_set_log_full_commit(trans);
3564 		btrfs_abort_transaction(trans, ret);
3565 		mutex_unlock(&fs_info->tree_log_mutex);
3566 		goto out_wake_log_root;
3567 	}
3568 
3569 	btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3570 	btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
3571 	ret = write_all_supers(fs_info, 1);
3572 	mutex_unlock(&fs_info->tree_log_mutex);
3573 	if (unlikely(ret)) {
3574 		btrfs_set_log_full_commit(trans);
3575 		btrfs_abort_transaction(trans, ret);
3576 		goto out_wake_log_root;
3577 	}
3578 
3579 	/*
3580 	 * We know there can only be one task here, since we have not yet set
3581 	 * root->log_commit[index1] to 0 and any task attempting to sync the
3582 	 * log must wait for the previous log transaction to commit if it's
3583 	 * still in progress or wait for the current log transaction commit if
3584 	 * someone else already started it. We use <= and not < because the
3585 	 * first log transaction has an ID of 0.
3586 	 */
3587 	ASSERT(btrfs_get_root_last_log_commit(root) <= log_transid);
3588 	btrfs_set_root_last_log_commit(root, log_transid);
3589 
3590 out_wake_log_root:
3591 	mutex_lock(&log_root_tree->log_mutex);
3592 	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3593 
3594 	log_root_tree->log_transid_committed++;
3595 	atomic_set(&log_root_tree->log_commit[index2], 0);
3596 	mutex_unlock(&log_root_tree->log_mutex);
3597 
3598 	/*
3599 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3600 	 * all the updates above are seen by the woken threads. It might not be
3601 	 * necessary, but proving that seems to be hard.
3602 	 */
3603 	cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3604 out:
3605 	mutex_lock(&root->log_mutex);
3606 	btrfs_remove_all_log_ctxs(root, index1, ret);
3607 	root->log_transid_committed++;
3608 	atomic_set(&root->log_commit[index1], 0);
3609 	mutex_unlock(&root->log_mutex);
3610 
3611 	/*
3612 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3613 	 * all the updates above are seen by the woken threads. It might not be
3614 	 * necessary, but proving that seems to be hard.
3615 	 */
3616 	cond_wake_up(&root->log_commit_wait[index1]);
3617 	return ret;
3618 }
3619 
free_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * log)3620 static void free_log_tree(struct btrfs_trans_handle *trans,
3621 			  struct btrfs_root *log)
3622 {
3623 	int ret;
3624 	struct walk_control wc = {
3625 		.free = true,
3626 		.process_func = process_one_buffer,
3627 		.log = log,
3628 		.trans = trans,
3629 	};
3630 
3631 	if (log->node) {
3632 		ret = walk_log_tree(&wc);
3633 		if (ret) {
3634 			/*
3635 			 * We weren't able to traverse the entire log tree, the
3636 			 * typical scenario is getting an -EIO when reading an
3637 			 * extent buffer of the tree, due to a previous writeback
3638 			 * failure of it.
3639 			 */
3640 			set_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
3641 				&log->fs_info->fs_state);
3642 
3643 			/*
3644 			 * Some extent buffers of the log tree may still be dirty
3645 			 * and not yet written back to storage, because we may
3646 			 * have updates to a log tree without syncing a log tree,
3647 			 * such as during rename and link operations. So flush
3648 			 * them out and wait for their writeback to complete, so
3649 			 * that we properly cleanup their state and pages.
3650 			 */
3651 			btrfs_write_marked_extents(log->fs_info,
3652 						   &log->dirty_log_pages,
3653 						   EXTENT_DIRTY_LOG1 | EXTENT_DIRTY_LOG2);
3654 			btrfs_wait_tree_log_extents(log,
3655 						    EXTENT_DIRTY_LOG1 | EXTENT_DIRTY_LOG2);
3656 
3657 			if (trans)
3658 				btrfs_abort_transaction(trans, ret);
3659 			else
3660 				btrfs_handle_fs_error(log->fs_info, ret, NULL);
3661 		}
3662 	}
3663 
3664 	btrfs_extent_io_tree_release(&log->dirty_log_pages);
3665 	btrfs_extent_io_tree_release(&log->log_csum_range);
3666 
3667 	btrfs_put_root(log);
3668 }
3669 
3670 /*
3671  * free all the extents used by the tree log.  This should be called
3672  * at commit time of the full transaction
3673  */
btrfs_free_log(struct btrfs_trans_handle * trans,struct btrfs_root * root)3674 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3675 {
3676 	if (root->log_root) {
3677 		free_log_tree(trans, root->log_root);
3678 		root->log_root = NULL;
3679 		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3680 	}
3681 	return 0;
3682 }
3683 
btrfs_free_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)3684 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3685 			     struct btrfs_fs_info *fs_info)
3686 {
3687 	if (fs_info->log_root_tree) {
3688 		free_log_tree(trans, fs_info->log_root_tree);
3689 		fs_info->log_root_tree = NULL;
3690 		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
3691 	}
3692 	return 0;
3693 }
3694 
mark_inode_as_not_logged(const struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3695 static bool mark_inode_as_not_logged(const struct btrfs_trans_handle *trans,
3696 				     struct btrfs_inode *inode)
3697 {
3698 	bool ret = false;
3699 
3700 	/*
3701 	 * Do this only if ->logged_trans is still 0 to prevent races with
3702 	 * concurrent logging as we may see the inode not logged when
3703 	 * inode_logged() is called but it gets logged after inode_logged() did
3704 	 * not find it in the log tree and we end up setting ->logged_trans to a
3705 	 * value less than trans->transid after the concurrent logging task has
3706 	 * set it to trans->transid. As a consequence, subsequent rename, unlink
3707 	 * and link operations may end up not logging new names and removing old
3708 	 * names from the log.
3709 	 */
3710 	spin_lock(&inode->lock);
3711 	if (inode->logged_trans == 0)
3712 		inode->logged_trans = trans->transid - 1;
3713 	else if (inode->logged_trans == trans->transid)
3714 		ret = true;
3715 	spin_unlock(&inode->lock);
3716 
3717 	return ret;
3718 }
3719 
3720 /*
3721  * Check if an inode was logged in the current transaction. This correctly deals
3722  * with the case where the inode was logged but has a logged_trans of 0, which
3723  * happens if the inode is evicted and loaded again, as logged_trans is an in
3724  * memory only field (not persisted).
3725  *
3726  * Returns 1 if the inode was logged before in the transaction, 0 if it was not,
3727  * and < 0 on error.
3728  */
inode_logged(const struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path_in)3729 static int inode_logged(const struct btrfs_trans_handle *trans,
3730 			struct btrfs_inode *inode,
3731 			struct btrfs_path *path_in)
3732 {
3733 	struct btrfs_path *path = path_in;
3734 	struct btrfs_key key;
3735 	int ret;
3736 
3737 	/*
3738 	 * Quick lockless call, since once ->logged_trans is set to the current
3739 	 * transaction, we never set it to a lower value anywhere else.
3740 	 */
3741 	if (data_race(inode->logged_trans) == trans->transid)
3742 		return 1;
3743 
3744 	/*
3745 	 * If logged_trans is not 0 and not trans->transid, then we know the
3746 	 * inode was not logged in this transaction, so we can return false
3747 	 * right away. We take the lock to avoid a race caused by load/store
3748 	 * tearing with a concurrent btrfs_log_inode() call or a concurrent task
3749 	 * in this function further below - an update to trans->transid can be
3750 	 * teared into two 32 bits updates for example, in which case we could
3751 	 * see a positive value that is not trans->transid and assume the inode
3752 	 * was not logged when it was.
3753 	 */
3754 	spin_lock(&inode->lock);
3755 	if (inode->logged_trans == trans->transid) {
3756 		spin_unlock(&inode->lock);
3757 		return 1;
3758 	} else if (inode->logged_trans > 0) {
3759 		spin_unlock(&inode->lock);
3760 		return 0;
3761 	}
3762 	spin_unlock(&inode->lock);
3763 
3764 	/*
3765 	 * If no log tree was created for this root in this transaction, then
3766 	 * the inode can not have been logged in this transaction. In that case
3767 	 * set logged_trans to anything greater than 0 and less than the current
3768 	 * transaction's ID, to avoid the search below in a future call in case
3769 	 * a log tree gets created after this.
3770 	 */
3771 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state))
3772 		return mark_inode_as_not_logged(trans, inode);
3773 
3774 	/*
3775 	 * We have a log tree and the inode's logged_trans is 0. We can't tell
3776 	 * for sure if the inode was logged before in this transaction by looking
3777 	 * only at logged_trans. We could be pessimistic and assume it was, but
3778 	 * that can lead to unnecessarily logging an inode during rename and link
3779 	 * operations, and then further updating the log in followup rename and
3780 	 * link operations, specially if it's a directory, which adds latency
3781 	 * visible to applications doing a series of rename or link operations.
3782 	 *
3783 	 * A logged_trans of 0 here can mean several things:
3784 	 *
3785 	 * 1) The inode was never logged since the filesystem was mounted, and may
3786 	 *    or may have not been evicted and loaded again;
3787 	 *
3788 	 * 2) The inode was logged in a previous transaction, then evicted and
3789 	 *    then loaded again;
3790 	 *
3791 	 * 3) The inode was logged in the current transaction, then evicted and
3792 	 *    then loaded again.
3793 	 *
3794 	 * For cases 1) and 2) we don't want to return true, but we need to detect
3795 	 * case 3) and return true. So we do a search in the log root for the inode
3796 	 * item.
3797 	 */
3798 	key.objectid = btrfs_ino(inode);
3799 	key.type = BTRFS_INODE_ITEM_KEY;
3800 	key.offset = 0;
3801 
3802 	if (!path) {
3803 		path = btrfs_alloc_path();
3804 		if (!path)
3805 			return -ENOMEM;
3806 	}
3807 
3808 	ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
3809 
3810 	if (path_in)
3811 		btrfs_release_path(path);
3812 	else
3813 		btrfs_free_path(path);
3814 
3815 	/*
3816 	 * Logging an inode always results in logging its inode item. So if we
3817 	 * did not find the item we know the inode was not logged for sure.
3818 	 */
3819 	if (ret < 0) {
3820 		return ret;
3821 	} else if (ret > 0) {
3822 		/*
3823 		 * Set logged_trans to a value greater than 0 and less then the
3824 		 * current transaction to avoid doing the search in future calls.
3825 		 */
3826 		return mark_inode_as_not_logged(trans, inode);
3827 	}
3828 
3829 	/*
3830 	 * The inode was previously logged and then evicted, set logged_trans to
3831 	 * the current transaction's ID, to avoid future tree searches as long as
3832 	 * the inode is not evicted again.
3833 	 */
3834 	spin_lock(&inode->lock);
3835 	inode->logged_trans = trans->transid;
3836 	spin_unlock(&inode->lock);
3837 
3838 	return 1;
3839 }
3840 
3841 /*
3842  * Delete a directory entry from the log if it exists.
3843  *
3844  * Returns < 0 on error
3845  *           1 if the entry does not exists
3846  *           0 if the entry existed and was successfully deleted
3847  */
del_logged_dentry(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,u64 dir_ino,const struct fscrypt_str * name,u64 index)3848 static int del_logged_dentry(struct btrfs_trans_handle *trans,
3849 			     struct btrfs_root *log,
3850 			     struct btrfs_path *path,
3851 			     u64 dir_ino,
3852 			     const struct fscrypt_str *name,
3853 			     u64 index)
3854 {
3855 	struct btrfs_dir_item *di;
3856 
3857 	/*
3858 	 * We only log dir index items of a directory, so we don't need to look
3859 	 * for dir item keys.
3860 	 */
3861 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3862 					 index, name, -1);
3863 	if (IS_ERR(di))
3864 		return PTR_ERR(di);
3865 	else if (!di)
3866 		return 1;
3867 
3868 	/*
3869 	 * We do not need to update the size field of the directory's
3870 	 * inode item because on log replay we update the field to reflect
3871 	 * all existing entries in the directory (see overwrite_item()).
3872 	 */
3873 	return btrfs_del_item(trans, log, path);
3874 }
3875 
3876 /*
3877  * If both a file and directory are logged, and unlinks or renames are
3878  * mixed in, we have a few interesting corners:
3879  *
3880  * create file X in dir Y
3881  * link file X to X.link in dir Y
3882  * fsync file X
3883  * unlink file X but leave X.link
3884  * fsync dir Y
3885  *
3886  * After a crash we would expect only X.link to exist.  But file X
3887  * didn't get fsync'd again so the log has back refs for X and X.link.
3888  *
3889  * We solve this by removing directory entries and inode backrefs from the
3890  * log when a file that was logged in the current transaction is
3891  * unlinked.  Any later fsync will include the updated log entries, and
3892  * we'll be able to reconstruct the proper directory items from backrefs.
3893  *
3894  * This optimizations allows us to avoid relogging the entire inode
3895  * or the entire directory.
3896  */
btrfs_del_dir_entries_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct fscrypt_str * name,struct btrfs_inode * dir,u64 index)3897 void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3898 				  struct btrfs_root *root,
3899 				  const struct fscrypt_str *name,
3900 				  struct btrfs_inode *dir, u64 index)
3901 {
3902 	BTRFS_PATH_AUTO_FREE(path);
3903 	int ret;
3904 
3905 	ret = inode_logged(trans, dir, NULL);
3906 	if (ret == 0)
3907 		return;
3908 	if (ret < 0) {
3909 		btrfs_set_log_full_commit(trans);
3910 		return;
3911 	}
3912 
3913 	path = btrfs_alloc_path();
3914 	if (!path) {
3915 		btrfs_set_log_full_commit(trans);
3916 		return;
3917 	}
3918 
3919 	ret = join_running_log_trans(root);
3920 	ASSERT(ret == 0, "join_running_log_trans() ret=%d", ret);
3921 	if (WARN_ON(ret))
3922 		return;
3923 
3924 	mutex_lock(&dir->log_mutex);
3925 
3926 	ret = del_logged_dentry(trans, root->log_root, path, btrfs_ino(dir),
3927 				name, index);
3928 	mutex_unlock(&dir->log_mutex);
3929 	if (ret < 0)
3930 		btrfs_set_log_full_commit(trans);
3931 	btrfs_end_log_trans(root);
3932 }
3933 
3934 /* see comments for btrfs_del_dir_entries_in_log */
btrfs_del_inode_ref_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct fscrypt_str * name,struct btrfs_inode * inode,u64 dirid)3935 void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3936 				struct btrfs_root *root,
3937 				const struct fscrypt_str *name,
3938 				struct btrfs_inode *inode, u64 dirid)
3939 {
3940 	struct btrfs_root *log;
3941 	int ret;
3942 
3943 	ret = inode_logged(trans, inode, NULL);
3944 	if (ret == 0)
3945 		return;
3946 	else if (ret < 0) {
3947 		btrfs_set_log_full_commit(trans);
3948 		return;
3949 	}
3950 
3951 	ret = join_running_log_trans(root);
3952 	ASSERT(ret == 0, "join_running_log_trans() ret=%d", ret);
3953 	if (WARN_ON(ret))
3954 		return;
3955 	log = root->log_root;
3956 	mutex_lock(&inode->log_mutex);
3957 
3958 	ret = btrfs_del_inode_ref(trans, log, name, btrfs_ino(inode), dirid, NULL);
3959 	mutex_unlock(&inode->log_mutex);
3960 	if (ret < 0 && ret != -ENOENT)
3961 		btrfs_set_log_full_commit(trans);
3962 	btrfs_end_log_trans(root);
3963 }
3964 
3965 /*
3966  * creates a range item in the log for 'dirid'.  first_offset and
3967  * last_offset tell us which parts of the key space the log should
3968  * be considered authoritative for.
3969  */
insert_dir_log_key(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,u64 dirid,u64 first_offset,u64 last_offset)3970 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3971 				       struct btrfs_root *log,
3972 				       struct btrfs_path *path,
3973 				       u64 dirid,
3974 				       u64 first_offset, u64 last_offset)
3975 {
3976 	int ret;
3977 	struct btrfs_key key;
3978 	struct btrfs_dir_log_item *item;
3979 
3980 	key.objectid = dirid;
3981 	key.type = BTRFS_DIR_LOG_INDEX_KEY;
3982 	key.offset = first_offset;
3983 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3984 	/*
3985 	 * -EEXIST is fine and can happen sporadically when we are logging a
3986 	 * directory and have concurrent insertions in the subvolume's tree for
3987 	 * items from other inodes and that result in pushing off some dir items
3988 	 * from one leaf to another in order to accommodate for the new items.
3989 	 * This results in logging the same dir index range key.
3990 	 */
3991 	if (ret && ret != -EEXIST)
3992 		return ret;
3993 
3994 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3995 			      struct btrfs_dir_log_item);
3996 	if (ret == -EEXIST) {
3997 		const u64 curr_end = btrfs_dir_log_end(path->nodes[0], item);
3998 
3999 		/*
4000 		 * btrfs_del_dir_entries_in_log() might have been called during
4001 		 * an unlink between the initial insertion of this key and the
4002 		 * current update, or we might be logging a single entry deletion
4003 		 * during a rename, so set the new last_offset to the max value.
4004 		 */
4005 		last_offset = max(last_offset, curr_end);
4006 	}
4007 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
4008 	btrfs_release_path(path);
4009 	return 0;
4010 }
4011 
flush_dir_items_batch(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct extent_buffer * src,struct btrfs_path * dst_path,int start_slot,int count)4012 static int flush_dir_items_batch(struct btrfs_trans_handle *trans,
4013 				 struct btrfs_inode *inode,
4014 				 struct extent_buffer *src,
4015 				 struct btrfs_path *dst_path,
4016 				 int start_slot,
4017 				 int count)
4018 {
4019 	struct btrfs_root *log = inode->root->log_root;
4020 	char *ins_data = NULL;
4021 	struct btrfs_item_batch batch;
4022 	struct extent_buffer *dst;
4023 	unsigned long src_offset;
4024 	unsigned long dst_offset;
4025 	u64 last_index;
4026 	struct btrfs_key key;
4027 	u32 item_size;
4028 	int ret;
4029 	int i;
4030 
4031 	ASSERT(count > 0);
4032 	batch.nr = count;
4033 
4034 	if (count == 1) {
4035 		btrfs_item_key_to_cpu(src, &key, start_slot);
4036 		item_size = btrfs_item_size(src, start_slot);
4037 		batch.keys = &key;
4038 		batch.data_sizes = &item_size;
4039 		batch.total_data_size = item_size;
4040 	} else {
4041 		struct btrfs_key *ins_keys;
4042 		u32 *ins_sizes;
4043 
4044 		ins_data = kmalloc_array(count, sizeof(u32) + sizeof(struct btrfs_key), GFP_NOFS);
4045 		if (!ins_data)
4046 			return -ENOMEM;
4047 
4048 		ins_sizes = (u32 *)ins_data;
4049 		ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32));
4050 		batch.keys = ins_keys;
4051 		batch.data_sizes = ins_sizes;
4052 		batch.total_data_size = 0;
4053 
4054 		for (i = 0; i < count; i++) {
4055 			const int slot = start_slot + i;
4056 
4057 			btrfs_item_key_to_cpu(src, &ins_keys[i], slot);
4058 			ins_sizes[i] = btrfs_item_size(src, slot);
4059 			batch.total_data_size += ins_sizes[i];
4060 		}
4061 	}
4062 
4063 	ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
4064 	if (ret)
4065 		goto out;
4066 
4067 	dst = dst_path->nodes[0];
4068 	/*
4069 	 * Copy all the items in bulk, in a single copy operation. Item data is
4070 	 * organized such that it's placed at the end of a leaf and from right
4071 	 * to left. For example, the data for the second item ends at an offset
4072 	 * that matches the offset where the data for the first item starts, the
4073 	 * data for the third item ends at an offset that matches the offset
4074 	 * where the data of the second items starts, and so on.
4075 	 * Therefore our source and destination start offsets for copy match the
4076 	 * offsets of the last items (highest slots).
4077 	 */
4078 	dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1);
4079 	src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1);
4080 	copy_extent_buffer(dst, src, dst_offset, src_offset, batch.total_data_size);
4081 	btrfs_release_path(dst_path);
4082 
4083 	last_index = batch.keys[count - 1].offset;
4084 	ASSERT(last_index > inode->last_dir_index_offset);
4085 
4086 	/*
4087 	 * If for some unexpected reason the last item's index is not greater
4088 	 * than the last index we logged, warn and force a transaction commit.
4089 	 */
4090 	if (WARN_ON(last_index <= inode->last_dir_index_offset))
4091 		ret = BTRFS_LOG_FORCE_COMMIT;
4092 	else
4093 		inode->last_dir_index_offset = last_index;
4094 
4095 	if (btrfs_get_first_dir_index_to_log(inode) == 0)
4096 		btrfs_set_first_dir_index_to_log(inode, batch.keys[0].offset);
4097 out:
4098 	kfree(ins_data);
4099 
4100 	return ret;
4101 }
4102 
clone_leaf(struct btrfs_path * path,struct btrfs_log_ctx * ctx)4103 static int clone_leaf(struct btrfs_path *path, struct btrfs_log_ctx *ctx)
4104 {
4105 	const int slot = path->slots[0];
4106 
4107 	if (ctx->scratch_eb) {
4108 		copy_extent_buffer_full(ctx->scratch_eb, path->nodes[0]);
4109 	} else {
4110 		ctx->scratch_eb = btrfs_clone_extent_buffer(path->nodes[0]);
4111 		if (!ctx->scratch_eb)
4112 			return -ENOMEM;
4113 	}
4114 
4115 	btrfs_release_path(path);
4116 	path->nodes[0] = ctx->scratch_eb;
4117 	path->slots[0] = slot;
4118 	/*
4119 	 * Add extra ref to scratch eb so that it is not freed when callers
4120 	 * release the path, so we can reuse it later if needed.
4121 	 */
4122 	refcount_inc(&ctx->scratch_eb->refs);
4123 
4124 	return 0;
4125 }
4126 
process_dir_items_leaf(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,struct btrfs_log_ctx * ctx,u64 * last_old_dentry_offset)4127 static int process_dir_items_leaf(struct btrfs_trans_handle *trans,
4128 				  struct btrfs_inode *inode,
4129 				  struct btrfs_path *path,
4130 				  struct btrfs_path *dst_path,
4131 				  struct btrfs_log_ctx *ctx,
4132 				  u64 *last_old_dentry_offset)
4133 {
4134 	struct btrfs_root *log = inode->root->log_root;
4135 	struct extent_buffer *src;
4136 	const int nritems = btrfs_header_nritems(path->nodes[0]);
4137 	const u64 ino = btrfs_ino(inode);
4138 	bool last_found = false;
4139 	int batch_start = 0;
4140 	int batch_size = 0;
4141 	int ret;
4142 
4143 	/*
4144 	 * We need to clone the leaf, release the read lock on it, and use the
4145 	 * clone before modifying the log tree. See the comment at copy_items()
4146 	 * about why we need to do this.
4147 	 */
4148 	ret = clone_leaf(path, ctx);
4149 	if (ret < 0)
4150 		return ret;
4151 
4152 	src = path->nodes[0];
4153 
4154 	for (int i = path->slots[0]; i < nritems; i++) {
4155 		struct btrfs_dir_item *di;
4156 		struct btrfs_key key;
4157 		int ret;
4158 
4159 		btrfs_item_key_to_cpu(src, &key, i);
4160 
4161 		if (key.objectid != ino || key.type != BTRFS_DIR_INDEX_KEY) {
4162 			last_found = true;
4163 			break;
4164 		}
4165 
4166 		di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
4167 
4168 		/*
4169 		 * Skip ranges of items that consist only of dir item keys created
4170 		 * in past transactions. However if we find a gap, we must log a
4171 		 * dir index range item for that gap, so that index keys in that
4172 		 * gap are deleted during log replay.
4173 		 */
4174 		if (btrfs_dir_transid(src, di) < trans->transid) {
4175 			if (key.offset > *last_old_dentry_offset + 1) {
4176 				ret = insert_dir_log_key(trans, log, dst_path,
4177 						 ino, *last_old_dentry_offset + 1,
4178 						 key.offset - 1);
4179 				if (ret < 0)
4180 					return ret;
4181 			}
4182 
4183 			*last_old_dentry_offset = key.offset;
4184 			continue;
4185 		}
4186 
4187 		/* If we logged this dir index item before, we can skip it. */
4188 		if (key.offset <= inode->last_dir_index_offset)
4189 			continue;
4190 
4191 		/*
4192 		 * We must make sure that when we log a directory entry, the
4193 		 * corresponding inode, after log replay, has a matching link
4194 		 * count. For example:
4195 		 *
4196 		 * touch foo
4197 		 * mkdir mydir
4198 		 * sync
4199 		 * ln foo mydir/bar
4200 		 * xfs_io -c "fsync" mydir
4201 		 * <crash>
4202 		 * <mount fs and log replay>
4203 		 *
4204 		 * Would result in a fsync log that when replayed, our file inode
4205 		 * would have a link count of 1, but we get two directory entries
4206 		 * pointing to the same inode. After removing one of the names,
4207 		 * it would not be possible to remove the other name, which
4208 		 * resulted always in stale file handle errors, and would not be
4209 		 * possible to rmdir the parent directory, since its i_size could
4210 		 * never be decremented to the value BTRFS_EMPTY_DIR_SIZE,
4211 		 * resulting in -ENOTEMPTY errors.
4212 		 */
4213 		if (!ctx->log_new_dentries) {
4214 			struct btrfs_key di_key;
4215 
4216 			btrfs_dir_item_key_to_cpu(src, di, &di_key);
4217 			if (di_key.type != BTRFS_ROOT_ITEM_KEY)
4218 				ctx->log_new_dentries = true;
4219 		}
4220 
4221 		if (batch_size == 0)
4222 			batch_start = i;
4223 		batch_size++;
4224 	}
4225 
4226 	if (batch_size > 0) {
4227 		int ret;
4228 
4229 		ret = flush_dir_items_batch(trans, inode, src, dst_path,
4230 					    batch_start, batch_size);
4231 		if (ret < 0)
4232 			return ret;
4233 	}
4234 
4235 	return last_found ? 1 : 0;
4236 }
4237 
4238 /*
4239  * log all the items included in the current transaction for a given
4240  * directory.  This also creates the range items in the log tree required
4241  * to replay anything deleted before the fsync
4242  */
log_dir_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,struct btrfs_log_ctx * ctx,u64 min_offset,u64 * last_offset_ret)4243 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
4244 			  struct btrfs_inode *inode,
4245 			  struct btrfs_path *path,
4246 			  struct btrfs_path *dst_path,
4247 			  struct btrfs_log_ctx *ctx,
4248 			  u64 min_offset, u64 *last_offset_ret)
4249 {
4250 	struct btrfs_key min_key;
4251 	struct btrfs_root *root = inode->root;
4252 	struct btrfs_root *log = root->log_root;
4253 	int ret;
4254 	u64 last_old_dentry_offset = min_offset - 1;
4255 	u64 last_offset = (u64)-1;
4256 	u64 ino = btrfs_ino(inode);
4257 
4258 	min_key.objectid = ino;
4259 	min_key.type = BTRFS_DIR_INDEX_KEY;
4260 	min_key.offset = min_offset;
4261 
4262 	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
4263 
4264 	/*
4265 	 * we didn't find anything from this transaction, see if there
4266 	 * is anything at all
4267 	 */
4268 	if (ret != 0 || min_key.objectid != ino ||
4269 	    min_key.type != BTRFS_DIR_INDEX_KEY) {
4270 		min_key.objectid = ino;
4271 		min_key.type = BTRFS_DIR_INDEX_KEY;
4272 		min_key.offset = (u64)-1;
4273 		btrfs_release_path(path);
4274 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
4275 		if (ret < 0) {
4276 			btrfs_release_path(path);
4277 			return ret;
4278 		}
4279 		ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
4280 
4281 		/* if ret == 0 there are items for this type,
4282 		 * create a range to tell us the last key of this type.
4283 		 * otherwise, there are no items in this directory after
4284 		 * *min_offset, and we create a range to indicate that.
4285 		 */
4286 		if (ret == 0) {
4287 			struct btrfs_key tmp;
4288 
4289 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
4290 					      path->slots[0]);
4291 			if (tmp.type == BTRFS_DIR_INDEX_KEY)
4292 				last_old_dentry_offset = tmp.offset;
4293 		} else if (ret > 0) {
4294 			ret = 0;
4295 		}
4296 
4297 		goto done;
4298 	}
4299 
4300 	/* go backward to find any previous key */
4301 	ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
4302 	if (ret == 0) {
4303 		struct btrfs_key tmp;
4304 
4305 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
4306 		/*
4307 		 * The dir index key before the first one we found that needs to
4308 		 * be logged might be in a previous leaf, and there might be a
4309 		 * gap between these keys, meaning that we had deletions that
4310 		 * happened. So the key range item we log (key type
4311 		 * BTRFS_DIR_LOG_INDEX_KEY) must cover a range that starts at the
4312 		 * previous key's offset plus 1, so that those deletes are replayed.
4313 		 */
4314 		if (tmp.type == BTRFS_DIR_INDEX_KEY)
4315 			last_old_dentry_offset = tmp.offset;
4316 	} else if (ret < 0) {
4317 		goto done;
4318 	}
4319 
4320 	btrfs_release_path(path);
4321 
4322 	/*
4323 	 * Find the first key from this transaction again or the one we were at
4324 	 * in the loop below in case we had to reschedule. We may be logging the
4325 	 * directory without holding its VFS lock, which happen when logging new
4326 	 * dentries (through log_new_dir_dentries()) or in some cases when we
4327 	 * need to log the parent directory of an inode. This means a dir index
4328 	 * key might be deleted from the inode's root, and therefore we may not
4329 	 * find it anymore. If we can't find it, just move to the next key. We
4330 	 * can not bail out and ignore, because if we do that we will simply
4331 	 * not log dir index keys that come after the one that was just deleted
4332 	 * and we can end up logging a dir index range that ends at (u64)-1
4333 	 * (@last_offset is initialized to that), resulting in removing dir
4334 	 * entries we should not remove at log replay time.
4335 	 */
4336 search:
4337 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
4338 	if (ret > 0) {
4339 		ret = btrfs_next_item(root, path);
4340 		if (ret > 0) {
4341 			/* There are no more keys in the inode's root. */
4342 			ret = 0;
4343 			goto done;
4344 		}
4345 	}
4346 	if (ret < 0)
4347 		goto done;
4348 
4349 	/*
4350 	 * we have a block from this transaction, log every item in it
4351 	 * from our directory
4352 	 */
4353 	while (1) {
4354 		ret = process_dir_items_leaf(trans, inode, path, dst_path, ctx,
4355 					     &last_old_dentry_offset);
4356 		if (ret != 0) {
4357 			if (ret > 0)
4358 				ret = 0;
4359 			goto done;
4360 		}
4361 		path->slots[0] = btrfs_header_nritems(path->nodes[0]);
4362 
4363 		/*
4364 		 * look ahead to the next item and see if it is also
4365 		 * from this directory and from this transaction
4366 		 */
4367 		ret = btrfs_next_leaf(root, path);
4368 		if (ret) {
4369 			if (ret == 1) {
4370 				last_offset = (u64)-1;
4371 				ret = 0;
4372 			}
4373 			goto done;
4374 		}
4375 		btrfs_item_key_to_cpu(path->nodes[0], &min_key, path->slots[0]);
4376 		if (min_key.objectid != ino || min_key.type != BTRFS_DIR_INDEX_KEY) {
4377 			last_offset = (u64)-1;
4378 			goto done;
4379 		}
4380 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
4381 			/*
4382 			 * The next leaf was not changed in the current transaction
4383 			 * and has at least one dir index key.
4384 			 * We check for the next key because there might have been
4385 			 * one or more deletions between the last key we logged and
4386 			 * that next key. So the key range item we log (key type
4387 			 * BTRFS_DIR_LOG_INDEX_KEY) must end at the next key's
4388 			 * offset minus 1, so that those deletes are replayed.
4389 			 */
4390 			last_offset = min_key.offset - 1;
4391 			goto done;
4392 		}
4393 		if (need_resched()) {
4394 			btrfs_release_path(path);
4395 			cond_resched();
4396 			goto search;
4397 		}
4398 	}
4399 done:
4400 	btrfs_release_path(path);
4401 	btrfs_release_path(dst_path);
4402 
4403 	if (ret == 0) {
4404 		*last_offset_ret = last_offset;
4405 		/*
4406 		 * In case the leaf was changed in the current transaction but
4407 		 * all its dir items are from a past transaction, the last item
4408 		 * in the leaf is a dir item and there's no gap between that last
4409 		 * dir item and the first one on the next leaf (which did not
4410 		 * change in the current transaction), then we don't need to log
4411 		 * a range, last_old_dentry_offset is == to last_offset.
4412 		 */
4413 		ASSERT(last_old_dentry_offset <= last_offset);
4414 		if (last_old_dentry_offset < last_offset)
4415 			ret = insert_dir_log_key(trans, log, path, ino,
4416 						 last_old_dentry_offset + 1,
4417 						 last_offset);
4418 	}
4419 
4420 	return ret;
4421 }
4422 
4423 /*
4424  * If the inode was logged before and it was evicted, then its
4425  * last_dir_index_offset is 0, so we don't know the value of the last index
4426  * key offset. If that's the case, search for it and update the inode. This
4427  * is to avoid lookups in the log tree every time we try to insert a dir index
4428  * key from a leaf changed in the current transaction, and to allow us to always
4429  * do batch insertions of dir index keys.
4430  */
update_last_dir_index_offset(struct btrfs_inode * inode,struct btrfs_path * path,const struct btrfs_log_ctx * ctx)4431 static int update_last_dir_index_offset(struct btrfs_inode *inode,
4432 					struct btrfs_path *path,
4433 					const struct btrfs_log_ctx *ctx)
4434 {
4435 	const u64 ino = btrfs_ino(inode);
4436 	struct btrfs_key key;
4437 	int ret;
4438 
4439 	lockdep_assert_held(&inode->log_mutex);
4440 
4441 	if (inode->last_dir_index_offset != 0)
4442 		return 0;
4443 
4444 	if (!ctx->logged_before) {
4445 		inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
4446 		return 0;
4447 	}
4448 
4449 	key.objectid = ino;
4450 	key.type = BTRFS_DIR_INDEX_KEY;
4451 	key.offset = (u64)-1;
4452 
4453 	ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
4454 	/*
4455 	 * An error happened or we actually have an index key with an offset
4456 	 * value of (u64)-1. Bail out, we're done.
4457 	 */
4458 	if (ret <= 0)
4459 		goto out;
4460 
4461 	ret = 0;
4462 	inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
4463 
4464 	/*
4465 	 * No dir index items, bail out and leave last_dir_index_offset with
4466 	 * the value right before the first valid index value.
4467 	 */
4468 	if (path->slots[0] == 0)
4469 		goto out;
4470 
4471 	/*
4472 	 * btrfs_search_slot() left us at one slot beyond the slot with the last
4473 	 * index key, or beyond the last key of the directory that is not an
4474 	 * index key. If we have an index key before, set last_dir_index_offset
4475 	 * to its offset value, otherwise leave it with a value right before the
4476 	 * first valid index value, as it means we have an empty directory.
4477 	 */
4478 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
4479 	if (key.objectid == ino && key.type == BTRFS_DIR_INDEX_KEY)
4480 		inode->last_dir_index_offset = key.offset;
4481 
4482 out:
4483 	btrfs_release_path(path);
4484 
4485 	return ret;
4486 }
4487 
4488 /*
4489  * logging directories is very similar to logging inodes, We find all the items
4490  * from the current transaction and write them to the log.
4491  *
4492  * The recovery code scans the directory in the subvolume, and if it finds a
4493  * key in the range logged that is not present in the log tree, then it means
4494  * that dir entry was unlinked during the transaction.
4495  *
4496  * In order for that scan to work, we must include one key smaller than
4497  * the smallest logged by this transaction and one key larger than the largest
4498  * key logged by this transaction.
4499  */
log_directory_changes(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,struct btrfs_log_ctx * ctx)4500 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
4501 			  struct btrfs_inode *inode,
4502 			  struct btrfs_path *path,
4503 			  struct btrfs_path *dst_path,
4504 			  struct btrfs_log_ctx *ctx)
4505 {
4506 	u64 min_key;
4507 	u64 max_key;
4508 	int ret;
4509 
4510 	ret = update_last_dir_index_offset(inode, path, ctx);
4511 	if (ret)
4512 		return ret;
4513 
4514 	min_key = BTRFS_DIR_START_INDEX;
4515 	max_key = 0;
4516 
4517 	while (1) {
4518 		ret = log_dir_items(trans, inode, path, dst_path,
4519 				ctx, min_key, &max_key);
4520 		if (ret)
4521 			return ret;
4522 		if (max_key == (u64)-1)
4523 			break;
4524 		min_key = max_key + 1;
4525 	}
4526 
4527 	return 0;
4528 }
4529 
4530 /*
4531  * a helper function to drop items from the log before we relog an
4532  * inode.  max_key_type indicates the highest item type to remove.
4533  * This cannot be run for file data extents because it does not
4534  * free the extents they point to.
4535  */
drop_inode_items(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,struct btrfs_inode * inode,int max_key_type)4536 static int drop_inode_items(struct btrfs_trans_handle *trans,
4537 				  struct btrfs_root *log,
4538 				  struct btrfs_path *path,
4539 				  struct btrfs_inode *inode,
4540 				  int max_key_type)
4541 {
4542 	int ret;
4543 	struct btrfs_key key;
4544 	struct btrfs_key found_key;
4545 	int start_slot;
4546 
4547 	key.objectid = btrfs_ino(inode);
4548 	key.type = max_key_type;
4549 	key.offset = (u64)-1;
4550 
4551 	while (1) {
4552 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
4553 		if (ret < 0) {
4554 			break;
4555 		} else if (ret > 0) {
4556 			if (path->slots[0] == 0)
4557 				break;
4558 			path->slots[0]--;
4559 		}
4560 
4561 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4562 				      path->slots[0]);
4563 
4564 		if (found_key.objectid != key.objectid)
4565 			break;
4566 
4567 		found_key.offset = 0;
4568 		found_key.type = 0;
4569 		ret = btrfs_bin_search(path->nodes[0], 0, &found_key, &start_slot);
4570 		if (ret < 0)
4571 			break;
4572 
4573 		ret = btrfs_del_items(trans, log, path, start_slot,
4574 				      path->slots[0] - start_slot + 1);
4575 		/*
4576 		 * If start slot isn't 0 then we don't need to re-search, we've
4577 		 * found the last guy with the objectid in this tree.
4578 		 */
4579 		if (ret || start_slot != 0)
4580 			break;
4581 		btrfs_release_path(path);
4582 	}
4583 	btrfs_release_path(path);
4584 	if (ret > 0)
4585 		ret = 0;
4586 	return ret;
4587 }
4588 
truncate_inode_items(struct btrfs_trans_handle * trans,struct btrfs_root * log_root,struct btrfs_inode * inode,u64 new_size,u32 min_type)4589 static int truncate_inode_items(struct btrfs_trans_handle *trans,
4590 				struct btrfs_root *log_root,
4591 				struct btrfs_inode *inode,
4592 				u64 new_size, u32 min_type)
4593 {
4594 	struct btrfs_truncate_control control = {
4595 		.new_size = new_size,
4596 		.ino = btrfs_ino(inode),
4597 		.min_type = min_type,
4598 		.skip_ref_updates = true,
4599 	};
4600 
4601 	return btrfs_truncate_inode_items(trans, log_root, &control);
4602 }
4603 
fill_inode_item(struct btrfs_trans_handle * trans,struct extent_buffer * leaf,struct btrfs_inode_item * item,struct inode * inode,bool log_inode_only,u64 logged_isize)4604 static void fill_inode_item(struct btrfs_trans_handle *trans,
4605 			    struct extent_buffer *leaf,
4606 			    struct btrfs_inode_item *item,
4607 			    struct inode *inode, bool log_inode_only,
4608 			    u64 logged_isize)
4609 {
4610 	u64 flags;
4611 
4612 	if (log_inode_only) {
4613 		/* set the generation to zero so the recover code
4614 		 * can tell the difference between an logging
4615 		 * just to say 'this inode exists' and a logging
4616 		 * to say 'update this inode with these values'
4617 		 */
4618 		btrfs_set_inode_generation(leaf, item, 0);
4619 		btrfs_set_inode_size(leaf, item, logged_isize);
4620 	} else {
4621 		btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
4622 		btrfs_set_inode_size(leaf, item, inode->i_size);
4623 	}
4624 
4625 	btrfs_set_inode_uid(leaf, item, i_uid_read(inode));
4626 	btrfs_set_inode_gid(leaf, item, i_gid_read(inode));
4627 	btrfs_set_inode_mode(leaf, item, inode->i_mode);
4628 	btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
4629 
4630 	btrfs_set_timespec_sec(leaf, &item->atime, inode_get_atime_sec(inode));
4631 	btrfs_set_timespec_nsec(leaf, &item->atime, inode_get_atime_nsec(inode));
4632 
4633 	btrfs_set_timespec_sec(leaf, &item->mtime, inode_get_mtime_sec(inode));
4634 	btrfs_set_timespec_nsec(leaf, &item->mtime, inode_get_mtime_nsec(inode));
4635 
4636 	btrfs_set_timespec_sec(leaf, &item->ctime, inode_get_ctime_sec(inode));
4637 	btrfs_set_timespec_nsec(leaf, &item->ctime, inode_get_ctime_nsec(inode));
4638 
4639 	btrfs_set_timespec_sec(leaf, &item->otime, BTRFS_I(inode)->i_otime_sec);
4640 	btrfs_set_timespec_nsec(leaf, &item->otime, BTRFS_I(inode)->i_otime_nsec);
4641 
4642 	/*
4643 	 * We do not need to set the nbytes field, in fact during a fast fsync
4644 	 * its value may not even be correct, since a fast fsync does not wait
4645 	 * for ordered extent completion, which is where we update nbytes, it
4646 	 * only waits for writeback to complete. During log replay as we find
4647 	 * file extent items and replay them, we adjust the nbytes field of the
4648 	 * inode item in subvolume tree as needed (see overwrite_item()).
4649 	 */
4650 
4651 	btrfs_set_inode_sequence(leaf, item, inode_peek_iversion(inode));
4652 	btrfs_set_inode_transid(leaf, item, trans->transid);
4653 	btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
4654 	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4655 					  BTRFS_I(inode)->ro_flags);
4656 	btrfs_set_inode_flags(leaf, item, flags);
4657 	btrfs_set_inode_block_group(leaf, item, 0);
4658 }
4659 
log_inode_item(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,struct btrfs_inode * inode,bool inode_item_dropped)4660 static int log_inode_item(struct btrfs_trans_handle *trans,
4661 			  struct btrfs_root *log, struct btrfs_path *path,
4662 			  struct btrfs_inode *inode, bool inode_item_dropped)
4663 {
4664 	struct btrfs_inode_item *inode_item;
4665 	struct btrfs_key key;
4666 	int ret;
4667 
4668 	btrfs_get_inode_key(inode, &key);
4669 	/*
4670 	 * If we are doing a fast fsync and the inode was logged before in the
4671 	 * current transaction, then we know the inode was previously logged and
4672 	 * it exists in the log tree. For performance reasons, in this case use
4673 	 * btrfs_search_slot() directly with ins_len set to 0 so that we never
4674 	 * attempt a write lock on the leaf's parent, which adds unnecessary lock
4675 	 * contention in case there are concurrent fsyncs for other inodes of the
4676 	 * same subvolume. Using btrfs_insert_empty_item() when the inode item
4677 	 * already exists can also result in unnecessarily splitting a leaf.
4678 	 */
4679 	if (!inode_item_dropped && inode->logged_trans == trans->transid) {
4680 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
4681 		ASSERT(ret <= 0);
4682 		if (ret > 0)
4683 			ret = -ENOENT;
4684 	} else {
4685 		/*
4686 		 * This means it is the first fsync in the current transaction,
4687 		 * so the inode item is not in the log and we need to insert it.
4688 		 * We can never get -EEXIST because we are only called for a fast
4689 		 * fsync and in case an inode eviction happens after the inode was
4690 		 * logged before in the current transaction, when we load again
4691 		 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime
4692 		 * flags and set ->logged_trans to 0.
4693 		 */
4694 		ret = btrfs_insert_empty_item(trans, log, path, &key,
4695 					      sizeof(*inode_item));
4696 		ASSERT(ret != -EEXIST);
4697 	}
4698 	if (ret)
4699 		return ret;
4700 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4701 				    struct btrfs_inode_item);
4702 	fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
4703 			false, 0);
4704 	btrfs_release_path(path);
4705 	return 0;
4706 }
4707 
log_csums(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_root * log_root,struct btrfs_ordered_sum * sums)4708 static int log_csums(struct btrfs_trans_handle *trans,
4709 		     struct btrfs_inode *inode,
4710 		     struct btrfs_root *log_root,
4711 		     struct btrfs_ordered_sum *sums)
4712 {
4713 	const u64 lock_end = sums->logical + sums->len - 1;
4714 	struct extent_state *cached_state = NULL;
4715 	int ret;
4716 
4717 	/*
4718 	 * If this inode was not used for reflink operations in the current
4719 	 * transaction with new extents, then do the fast path, no need to
4720 	 * worry about logging checksum items with overlapping ranges.
4721 	 */
4722 	if (inode->last_reflink_trans < trans->transid)
4723 		return btrfs_csum_file_blocks(trans, log_root, sums);
4724 
4725 	/*
4726 	 * Serialize logging for checksums. This is to avoid racing with the
4727 	 * same checksum being logged by another task that is logging another
4728 	 * file which happens to refer to the same extent as well. Such races
4729 	 * can leave checksum items in the log with overlapping ranges.
4730 	 */
4731 	ret = btrfs_lock_extent(&log_root->log_csum_range, sums->logical, lock_end,
4732 				&cached_state);
4733 	if (ret)
4734 		return ret;
4735 	/*
4736 	 * Due to extent cloning, we might have logged a csum item that covers a
4737 	 * subrange of a cloned extent, and later we can end up logging a csum
4738 	 * item for a larger subrange of the same extent or the entire range.
4739 	 * This would leave csum items in the log tree that cover the same range
4740 	 * and break the searches for checksums in the log tree, resulting in
4741 	 * some checksums missing in the fs/subvolume tree. So just delete (or
4742 	 * trim and adjust) any existing csum items in the log for this range.
4743 	 */
4744 	ret = btrfs_del_csums(trans, log_root, sums->logical, sums->len);
4745 	if (!ret)
4746 		ret = btrfs_csum_file_blocks(trans, log_root, sums);
4747 
4748 	btrfs_unlock_extent(&log_root->log_csum_range, sums->logical, lock_end,
4749 			    &cached_state);
4750 
4751 	return ret;
4752 }
4753 
copy_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * dst_path,struct btrfs_path * src_path,int start_slot,int nr,int inode_only,u64 logged_isize,struct btrfs_log_ctx * ctx)4754 static noinline int copy_items(struct btrfs_trans_handle *trans,
4755 			       struct btrfs_inode *inode,
4756 			       struct btrfs_path *dst_path,
4757 			       struct btrfs_path *src_path,
4758 			       int start_slot, int nr, int inode_only,
4759 			       u64 logged_isize, struct btrfs_log_ctx *ctx)
4760 {
4761 	struct btrfs_root *log = inode->root->log_root;
4762 	struct btrfs_file_extent_item *extent;
4763 	struct extent_buffer *src;
4764 	int ret;
4765 	struct btrfs_key *ins_keys;
4766 	u32 *ins_sizes;
4767 	struct btrfs_item_batch batch;
4768 	char *ins_data;
4769 	int dst_index;
4770 	const bool skip_csum = (inode->flags & BTRFS_INODE_NODATASUM);
4771 	const u64 i_size = i_size_read(&inode->vfs_inode);
4772 
4773 	/*
4774 	 * To keep lockdep happy and avoid deadlocks, clone the source leaf and
4775 	 * use the clone. This is because otherwise we would be changing the log
4776 	 * tree, to insert items from the subvolume tree or insert csum items,
4777 	 * while holding a read lock on a leaf from the subvolume tree, which
4778 	 * creates a nasty lock dependency when COWing log tree nodes/leaves:
4779 	 *
4780 	 * 1) Modifying the log tree triggers an extent buffer allocation while
4781 	 *    holding a write lock on a parent extent buffer from the log tree.
4782 	 *    Allocating the pages for an extent buffer, or the extent buffer
4783 	 *    struct, can trigger inode eviction and finally the inode eviction
4784 	 *    will trigger a release/remove of a delayed node, which requires
4785 	 *    taking the delayed node's mutex;
4786 	 *
4787 	 * 2) Allocating a metadata extent for a log tree can trigger the async
4788 	 *    reclaim thread and make us wait for it to release enough space and
4789 	 *    unblock our reservation ticket. The reclaim thread can start
4790 	 *    flushing delayed items, and that in turn results in the need to
4791 	 *    lock delayed node mutexes and in the need to write lock extent
4792 	 *    buffers of a subvolume tree - all this while holding a write lock
4793 	 *    on the parent extent buffer in the log tree.
4794 	 *
4795 	 * So one task in scenario 1) running in parallel with another task in
4796 	 * scenario 2) could lead to a deadlock, one wanting to lock a delayed
4797 	 * node mutex while having a read lock on a leaf from the subvolume,
4798 	 * while the other is holding the delayed node's mutex and wants to
4799 	 * write lock the same subvolume leaf for flushing delayed items.
4800 	 */
4801 	ret = clone_leaf(src_path, ctx);
4802 	if (ret < 0)
4803 		return ret;
4804 
4805 	src = src_path->nodes[0];
4806 
4807 	ins_data = kmalloc_array(nr, sizeof(struct btrfs_key) + sizeof(u32), GFP_NOFS);
4808 	if (!ins_data)
4809 		return -ENOMEM;
4810 
4811 	ins_sizes = (u32 *)ins_data;
4812 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
4813 	batch.keys = ins_keys;
4814 	batch.data_sizes = ins_sizes;
4815 	batch.total_data_size = 0;
4816 	batch.nr = 0;
4817 
4818 	dst_index = 0;
4819 	for (int i = 0; i < nr; i++) {
4820 		const int src_slot = start_slot + i;
4821 		struct btrfs_root *csum_root;
4822 		struct btrfs_ordered_sum *sums;
4823 		struct btrfs_ordered_sum *sums_next;
4824 		LIST_HEAD(ordered_sums);
4825 		u64 disk_bytenr;
4826 		u64 disk_num_bytes;
4827 		u64 extent_offset;
4828 		u64 extent_num_bytes;
4829 		bool is_old_extent;
4830 
4831 		btrfs_item_key_to_cpu(src, &ins_keys[dst_index], src_slot);
4832 
4833 		if (ins_keys[dst_index].type != BTRFS_EXTENT_DATA_KEY)
4834 			goto add_to_batch;
4835 
4836 		extent = btrfs_item_ptr(src, src_slot,
4837 					struct btrfs_file_extent_item);
4838 
4839 		is_old_extent = (btrfs_file_extent_generation(src, extent) <
4840 				 trans->transid);
4841 
4842 		/*
4843 		 * Don't copy extents from past generations. That would make us
4844 		 * log a lot more metadata for common cases like doing only a
4845 		 * few random writes into a file and then fsync it for the first
4846 		 * time or after the full sync flag is set on the inode. We can
4847 		 * get leaves full of extent items, most of which are from past
4848 		 * generations, so we can skip them - as long as the inode has
4849 		 * not been the target of a reflink operation in this transaction,
4850 		 * as in that case it might have had file extent items with old
4851 		 * generations copied into it. We also must always log prealloc
4852 		 * extents that start at or beyond eof, otherwise we would lose
4853 		 * them on log replay.
4854 		 */
4855 		if (is_old_extent &&
4856 		    ins_keys[dst_index].offset < i_size &&
4857 		    inode->last_reflink_trans < trans->transid)
4858 			continue;
4859 
4860 		if (skip_csum)
4861 			goto add_to_batch;
4862 
4863 		/* Only regular extents have checksums. */
4864 		if (btrfs_file_extent_type(src, extent) != BTRFS_FILE_EXTENT_REG)
4865 			goto add_to_batch;
4866 
4867 		/*
4868 		 * If it's an extent created in a past transaction, then its
4869 		 * checksums are already accessible from the committed csum tree,
4870 		 * no need to log them.
4871 		 */
4872 		if (is_old_extent)
4873 			goto add_to_batch;
4874 
4875 		disk_bytenr = btrfs_file_extent_disk_bytenr(src, extent);
4876 		/* If it's an explicit hole, there are no checksums. */
4877 		if (disk_bytenr == 0)
4878 			goto add_to_batch;
4879 
4880 		disk_num_bytes = btrfs_file_extent_disk_num_bytes(src, extent);
4881 
4882 		if (btrfs_file_extent_compression(src, extent)) {
4883 			extent_offset = 0;
4884 			extent_num_bytes = disk_num_bytes;
4885 		} else {
4886 			extent_offset = btrfs_file_extent_offset(src, extent);
4887 			extent_num_bytes = btrfs_file_extent_num_bytes(src, extent);
4888 		}
4889 
4890 		csum_root = btrfs_csum_root(trans->fs_info, disk_bytenr);
4891 		disk_bytenr += extent_offset;
4892 		ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4893 					      disk_bytenr + extent_num_bytes - 1,
4894 					      &ordered_sums, false);
4895 		if (ret < 0)
4896 			goto out;
4897 		ret = 0;
4898 
4899 		list_for_each_entry_safe(sums, sums_next, &ordered_sums, list) {
4900 			if (!ret)
4901 				ret = log_csums(trans, inode, log, sums);
4902 			list_del(&sums->list);
4903 			kfree(sums);
4904 		}
4905 		if (ret)
4906 			goto out;
4907 
4908 add_to_batch:
4909 		ins_sizes[dst_index] = btrfs_item_size(src, src_slot);
4910 		batch.total_data_size += ins_sizes[dst_index];
4911 		batch.nr++;
4912 		dst_index++;
4913 	}
4914 
4915 	/*
4916 	 * We have a leaf full of old extent items that don't need to be logged,
4917 	 * so we don't need to do anything.
4918 	 */
4919 	if (batch.nr == 0)
4920 		goto out;
4921 
4922 	ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
4923 	if (ret)
4924 		goto out;
4925 
4926 	dst_index = 0;
4927 	for (int i = 0; i < nr; i++) {
4928 		const int src_slot = start_slot + i;
4929 		const int dst_slot = dst_path->slots[0] + dst_index;
4930 		struct btrfs_key key;
4931 		unsigned long src_offset;
4932 		unsigned long dst_offset;
4933 
4934 		/*
4935 		 * We're done, all the remaining items in the source leaf
4936 		 * correspond to old file extent items.
4937 		 */
4938 		if (dst_index >= batch.nr)
4939 			break;
4940 
4941 		btrfs_item_key_to_cpu(src, &key, src_slot);
4942 
4943 		if (key.type != BTRFS_EXTENT_DATA_KEY)
4944 			goto copy_item;
4945 
4946 		extent = btrfs_item_ptr(src, src_slot,
4947 					struct btrfs_file_extent_item);
4948 
4949 		/* See the comment in the previous loop, same logic. */
4950 		if (btrfs_file_extent_generation(src, extent) < trans->transid &&
4951 		    key.offset < i_size &&
4952 		    inode->last_reflink_trans < trans->transid)
4953 			continue;
4954 
4955 copy_item:
4956 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], dst_slot);
4957 		src_offset = btrfs_item_ptr_offset(src, src_slot);
4958 
4959 		if (key.type == BTRFS_INODE_ITEM_KEY) {
4960 			struct btrfs_inode_item *inode_item;
4961 
4962 			inode_item = btrfs_item_ptr(dst_path->nodes[0], dst_slot,
4963 						    struct btrfs_inode_item);
4964 			fill_inode_item(trans, dst_path->nodes[0], inode_item,
4965 					&inode->vfs_inode,
4966 					inode_only == LOG_INODE_EXISTS,
4967 					logged_isize);
4968 		} else {
4969 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4970 					   src_offset, ins_sizes[dst_index]);
4971 		}
4972 
4973 		dst_index++;
4974 	}
4975 
4976 	btrfs_release_path(dst_path);
4977 out:
4978 	kfree(ins_data);
4979 
4980 	return ret;
4981 }
4982 
extent_cmp(void * priv,const struct list_head * a,const struct list_head * b)4983 static int extent_cmp(void *priv, const struct list_head *a,
4984 		      const struct list_head *b)
4985 {
4986 	const struct extent_map *em1, *em2;
4987 
4988 	em1 = list_entry(a, struct extent_map, list);
4989 	em2 = list_entry(b, struct extent_map, list);
4990 
4991 	if (em1->start < em2->start)
4992 		return -1;
4993 	else if (em1->start > em2->start)
4994 		return 1;
4995 	return 0;
4996 }
4997 
log_extent_csums(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_root * log_root,const struct extent_map * em,struct btrfs_log_ctx * ctx)4998 static int log_extent_csums(struct btrfs_trans_handle *trans,
4999 			    struct btrfs_inode *inode,
5000 			    struct btrfs_root *log_root,
5001 			    const struct extent_map *em,
5002 			    struct btrfs_log_ctx *ctx)
5003 {
5004 	struct btrfs_ordered_extent *ordered;
5005 	struct btrfs_root *csum_root;
5006 	u64 block_start;
5007 	u64 csum_offset;
5008 	u64 csum_len;
5009 	u64 mod_start = em->start;
5010 	u64 mod_len = em->len;
5011 	LIST_HEAD(ordered_sums);
5012 	int ret = 0;
5013 
5014 	if (inode->flags & BTRFS_INODE_NODATASUM ||
5015 	    (em->flags & EXTENT_FLAG_PREALLOC) ||
5016 	    em->disk_bytenr == EXTENT_MAP_HOLE)
5017 		return 0;
5018 
5019 	list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
5020 		const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
5021 		const u64 mod_end = mod_start + mod_len;
5022 		struct btrfs_ordered_sum *sums;
5023 
5024 		if (mod_len == 0)
5025 			break;
5026 
5027 		if (ordered_end <= mod_start)
5028 			continue;
5029 		if (mod_end <= ordered->file_offset)
5030 			break;
5031 
5032 		/*
5033 		 * We are going to copy all the csums on this ordered extent, so
5034 		 * go ahead and adjust mod_start and mod_len in case this ordered
5035 		 * extent has already been logged.
5036 		 */
5037 		if (ordered->file_offset > mod_start) {
5038 			if (ordered_end >= mod_end)
5039 				mod_len = ordered->file_offset - mod_start;
5040 			/*
5041 			 * If we have this case
5042 			 *
5043 			 * |--------- logged extent ---------|
5044 			 *       |----- ordered extent ----|
5045 			 *
5046 			 * Just don't mess with mod_start and mod_len, we'll
5047 			 * just end up logging more csums than we need and it
5048 			 * will be ok.
5049 			 */
5050 		} else {
5051 			if (ordered_end < mod_end) {
5052 				mod_len = mod_end - ordered_end;
5053 				mod_start = ordered_end;
5054 			} else {
5055 				mod_len = 0;
5056 			}
5057 		}
5058 
5059 		/*
5060 		 * To keep us from looping for the above case of an ordered
5061 		 * extent that falls inside of the logged extent.
5062 		 */
5063 		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
5064 			continue;
5065 
5066 		list_for_each_entry(sums, &ordered->list, list) {
5067 			ret = log_csums(trans, inode, log_root, sums);
5068 			if (ret)
5069 				return ret;
5070 		}
5071 	}
5072 
5073 	/* We're done, found all csums in the ordered extents. */
5074 	if (mod_len == 0)
5075 		return 0;
5076 
5077 	/* If we're compressed we have to save the entire range of csums. */
5078 	if (btrfs_extent_map_is_compressed(em)) {
5079 		csum_offset = 0;
5080 		csum_len = em->disk_num_bytes;
5081 	} else {
5082 		csum_offset = mod_start - em->start;
5083 		csum_len = mod_len;
5084 	}
5085 
5086 	/* block start is already adjusted for the file extent offset. */
5087 	block_start = btrfs_extent_map_block_start(em);
5088 	csum_root = btrfs_csum_root(trans->fs_info, block_start);
5089 	ret = btrfs_lookup_csums_list(csum_root, block_start + csum_offset,
5090 				      block_start + csum_offset + csum_len - 1,
5091 				      &ordered_sums, false);
5092 	if (ret < 0)
5093 		return ret;
5094 	ret = 0;
5095 
5096 	while (!list_empty(&ordered_sums)) {
5097 		struct btrfs_ordered_sum *sums = list_first_entry(&ordered_sums,
5098 								  struct btrfs_ordered_sum,
5099 								  list);
5100 		if (!ret)
5101 			ret = log_csums(trans, inode, log_root, sums);
5102 		list_del(&sums->list);
5103 		kfree(sums);
5104 	}
5105 
5106 	return ret;
5107 }
5108 
log_one_extent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,const struct extent_map * em,struct btrfs_path * path,struct btrfs_log_ctx * ctx)5109 static int log_one_extent(struct btrfs_trans_handle *trans,
5110 			  struct btrfs_inode *inode,
5111 			  const struct extent_map *em,
5112 			  struct btrfs_path *path,
5113 			  struct btrfs_log_ctx *ctx)
5114 {
5115 	struct btrfs_drop_extents_args drop_args = { 0 };
5116 	struct btrfs_root *log = inode->root->log_root;
5117 	struct btrfs_file_extent_item fi = { 0 };
5118 	struct extent_buffer *leaf;
5119 	struct btrfs_key key;
5120 	enum btrfs_compression_type compress_type;
5121 	u64 extent_offset = em->offset;
5122 	u64 block_start = btrfs_extent_map_block_start(em);
5123 	u64 block_len;
5124 	int ret;
5125 
5126 	btrfs_set_stack_file_extent_generation(&fi, trans->transid);
5127 	if (em->flags & EXTENT_FLAG_PREALLOC)
5128 		btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_PREALLOC);
5129 	else
5130 		btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_REG);
5131 
5132 	block_len = em->disk_num_bytes;
5133 	compress_type = btrfs_extent_map_compression(em);
5134 	if (compress_type != BTRFS_COMPRESS_NONE) {
5135 		btrfs_set_stack_file_extent_disk_bytenr(&fi, block_start);
5136 		btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
5137 	} else if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE) {
5138 		btrfs_set_stack_file_extent_disk_bytenr(&fi, block_start - extent_offset);
5139 		btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
5140 	}
5141 
5142 	btrfs_set_stack_file_extent_offset(&fi, extent_offset);
5143 	btrfs_set_stack_file_extent_num_bytes(&fi, em->len);
5144 	btrfs_set_stack_file_extent_ram_bytes(&fi, em->ram_bytes);
5145 	btrfs_set_stack_file_extent_compression(&fi, compress_type);
5146 
5147 	ret = log_extent_csums(trans, inode, log, em, ctx);
5148 	if (ret)
5149 		return ret;
5150 
5151 	/*
5152 	 * If this is the first time we are logging the inode in the current
5153 	 * transaction, we can avoid btrfs_drop_extents(), which is expensive
5154 	 * because it does a deletion search, which always acquires write locks
5155 	 * for extent buffers at levels 2, 1 and 0. This not only wastes time
5156 	 * but also adds significant contention in a log tree, since log trees
5157 	 * are small, with a root at level 2 or 3 at most, due to their short
5158 	 * life span.
5159 	 */
5160 	if (ctx->logged_before) {
5161 		drop_args.path = path;
5162 		drop_args.start = em->start;
5163 		drop_args.end = em->start + em->len;
5164 		drop_args.replace_extent = true;
5165 		drop_args.extent_item_size = sizeof(fi);
5166 		ret = btrfs_drop_extents(trans, log, inode, &drop_args);
5167 		if (ret)
5168 			return ret;
5169 	}
5170 
5171 	if (!drop_args.extent_inserted) {
5172 		key.objectid = btrfs_ino(inode);
5173 		key.type = BTRFS_EXTENT_DATA_KEY;
5174 		key.offset = em->start;
5175 
5176 		ret = btrfs_insert_empty_item(trans, log, path, &key,
5177 					      sizeof(fi));
5178 		if (ret)
5179 			return ret;
5180 	}
5181 	leaf = path->nodes[0];
5182 	write_extent_buffer(leaf, &fi,
5183 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
5184 			    sizeof(fi));
5185 
5186 	btrfs_release_path(path);
5187 
5188 	return ret;
5189 }
5190 
5191 /*
5192  * Log all prealloc extents beyond the inode's i_size to make sure we do not
5193  * lose them after doing a full/fast fsync and replaying the log. We scan the
5194  * subvolume's root instead of iterating the inode's extent map tree because
5195  * otherwise we can log incorrect extent items based on extent map conversion.
5196  * That can happen due to the fact that extent maps are merged when they
5197  * are not in the extent map tree's list of modified extents.
5198  */
btrfs_log_prealloc_extents(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_log_ctx * ctx)5199 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
5200 				      struct btrfs_inode *inode,
5201 				      struct btrfs_path *path,
5202 				      struct btrfs_log_ctx *ctx)
5203 {
5204 	struct btrfs_root *root = inode->root;
5205 	struct btrfs_key key;
5206 	const u64 i_size = i_size_read(&inode->vfs_inode);
5207 	const u64 ino = btrfs_ino(inode);
5208 	BTRFS_PATH_AUTO_FREE(dst_path);
5209 	bool dropped_extents = false;
5210 	u64 truncate_offset = i_size;
5211 	struct extent_buffer *leaf;
5212 	int slot;
5213 	int ins_nr = 0;
5214 	int start_slot = 0;
5215 	int ret;
5216 
5217 	if (!(inode->flags & BTRFS_INODE_PREALLOC))
5218 		return 0;
5219 
5220 	key.objectid = ino;
5221 	key.type = BTRFS_EXTENT_DATA_KEY;
5222 	key.offset = i_size;
5223 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5224 	if (ret < 0)
5225 		goto out;
5226 
5227 	/*
5228 	 * We must check if there is a prealloc extent that starts before the
5229 	 * i_size and crosses the i_size boundary. This is to ensure later we
5230 	 * truncate down to the end of that extent and not to the i_size, as
5231 	 * otherwise we end up losing part of the prealloc extent after a log
5232 	 * replay and with an implicit hole if there is another prealloc extent
5233 	 * that starts at an offset beyond i_size.
5234 	 */
5235 	ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
5236 	if (ret < 0)
5237 		goto out;
5238 
5239 	if (ret == 0) {
5240 		struct btrfs_file_extent_item *ei;
5241 
5242 		leaf = path->nodes[0];
5243 		slot = path->slots[0];
5244 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5245 
5246 		if (btrfs_file_extent_type(leaf, ei) ==
5247 		    BTRFS_FILE_EXTENT_PREALLOC) {
5248 			u64 extent_end;
5249 
5250 			btrfs_item_key_to_cpu(leaf, &key, slot);
5251 			extent_end = key.offset +
5252 				btrfs_file_extent_num_bytes(leaf, ei);
5253 
5254 			if (extent_end > i_size)
5255 				truncate_offset = extent_end;
5256 		}
5257 	} else {
5258 		ret = 0;
5259 	}
5260 
5261 	while (true) {
5262 		leaf = path->nodes[0];
5263 		slot = path->slots[0];
5264 
5265 		if (slot >= btrfs_header_nritems(leaf)) {
5266 			if (ins_nr > 0) {
5267 				ret = copy_items(trans, inode, dst_path, path,
5268 						 start_slot, ins_nr, 1, 0, ctx);
5269 				if (ret < 0)
5270 					goto out;
5271 				ins_nr = 0;
5272 			}
5273 			ret = btrfs_next_leaf(root, path);
5274 			if (ret < 0)
5275 				goto out;
5276 			if (ret > 0) {
5277 				ret = 0;
5278 				break;
5279 			}
5280 			continue;
5281 		}
5282 
5283 		btrfs_item_key_to_cpu(leaf, &key, slot);
5284 		if (key.objectid > ino)
5285 			break;
5286 		if (WARN_ON_ONCE(key.objectid < ino) ||
5287 		    key.type < BTRFS_EXTENT_DATA_KEY ||
5288 		    key.offset < i_size) {
5289 			path->slots[0]++;
5290 			continue;
5291 		}
5292 		/*
5293 		 * Avoid overlapping items in the log tree. The first time we
5294 		 * get here, get rid of everything from a past fsync. After
5295 		 * that, if the current extent starts before the end of the last
5296 		 * extent we copied, truncate the last one. This can happen if
5297 		 * an ordered extent completion modifies the subvolume tree
5298 		 * while btrfs_next_leaf() has the tree unlocked.
5299 		 */
5300 		if (!dropped_extents || key.offset < truncate_offset) {
5301 			ret = truncate_inode_items(trans, root->log_root, inode,
5302 						   min(key.offset, truncate_offset),
5303 						   BTRFS_EXTENT_DATA_KEY);
5304 			if (ret)
5305 				goto out;
5306 			dropped_extents = true;
5307 		}
5308 		truncate_offset = btrfs_file_extent_end(path);
5309 		if (ins_nr == 0)
5310 			start_slot = slot;
5311 		ins_nr++;
5312 		path->slots[0]++;
5313 		if (!dst_path) {
5314 			dst_path = btrfs_alloc_path();
5315 			if (!dst_path) {
5316 				ret = -ENOMEM;
5317 				goto out;
5318 			}
5319 		}
5320 	}
5321 	if (ins_nr > 0)
5322 		ret = copy_items(trans, inode, dst_path, path,
5323 				 start_slot, ins_nr, 1, 0, ctx);
5324 out:
5325 	btrfs_release_path(path);
5326 	return ret;
5327 }
5328 
btrfs_log_changed_extents(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_log_ctx * ctx)5329 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
5330 				     struct btrfs_inode *inode,
5331 				     struct btrfs_path *path,
5332 				     struct btrfs_log_ctx *ctx)
5333 {
5334 	struct btrfs_ordered_extent *ordered;
5335 	struct btrfs_ordered_extent *tmp;
5336 	struct extent_map *em, *n;
5337 	LIST_HEAD(extents);
5338 	struct extent_map_tree *tree = &inode->extent_tree;
5339 	int ret = 0;
5340 	int num = 0;
5341 
5342 	write_lock(&tree->lock);
5343 
5344 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
5345 		list_del_init(&em->list);
5346 		/*
5347 		 * Just an arbitrary number, this can be really CPU intensive
5348 		 * once we start getting a lot of extents, and really once we
5349 		 * have a bunch of extents we just want to commit since it will
5350 		 * be faster.
5351 		 */
5352 		if (++num > 32768) {
5353 			list_del_init(&tree->modified_extents);
5354 			ret = -EFBIG;
5355 			goto process;
5356 		}
5357 
5358 		if (em->generation < trans->transid)
5359 			continue;
5360 
5361 		/* We log prealloc extents beyond eof later. */
5362 		if ((em->flags & EXTENT_FLAG_PREALLOC) &&
5363 		    em->start >= i_size_read(&inode->vfs_inode))
5364 			continue;
5365 
5366 		/* Need a ref to keep it from getting evicted from cache */
5367 		refcount_inc(&em->refs);
5368 		em->flags |= EXTENT_FLAG_LOGGING;
5369 		list_add_tail(&em->list, &extents);
5370 		num++;
5371 	}
5372 
5373 	list_sort(NULL, &extents, extent_cmp);
5374 process:
5375 	while (!list_empty(&extents)) {
5376 		em = list_first_entry(&extents, struct extent_map, list);
5377 
5378 		list_del_init(&em->list);
5379 
5380 		/*
5381 		 * If we had an error we just need to delete everybody from our
5382 		 * private list.
5383 		 */
5384 		if (ret) {
5385 			btrfs_clear_em_logging(inode, em);
5386 			btrfs_free_extent_map(em);
5387 			continue;
5388 		}
5389 
5390 		write_unlock(&tree->lock);
5391 
5392 		ret = log_one_extent(trans, inode, em, path, ctx);
5393 		write_lock(&tree->lock);
5394 		btrfs_clear_em_logging(inode, em);
5395 		btrfs_free_extent_map(em);
5396 	}
5397 	WARN_ON(!list_empty(&extents));
5398 	write_unlock(&tree->lock);
5399 
5400 	if (!ret)
5401 		ret = btrfs_log_prealloc_extents(trans, inode, path, ctx);
5402 	if (ret)
5403 		return ret;
5404 
5405 	/*
5406 	 * We have logged all extents successfully, now make sure the commit of
5407 	 * the current transaction waits for the ordered extents to complete
5408 	 * before it commits and wipes out the log trees, otherwise we would
5409 	 * lose data if an ordered extents completes after the transaction
5410 	 * commits and a power failure happens after the transaction commit.
5411 	 */
5412 	list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
5413 		list_del_init(&ordered->log_list);
5414 		set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
5415 
5416 		if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
5417 			spin_lock_irq(&inode->ordered_tree_lock);
5418 			if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
5419 				set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
5420 				atomic_inc(&trans->transaction->pending_ordered);
5421 			}
5422 			spin_unlock_irq(&inode->ordered_tree_lock);
5423 		}
5424 		btrfs_put_ordered_extent(ordered);
5425 	}
5426 
5427 	return 0;
5428 }
5429 
logged_inode_size(struct btrfs_root * log,struct btrfs_inode * inode,struct btrfs_path * path,u64 * size_ret)5430 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
5431 			     struct btrfs_path *path, u64 *size_ret)
5432 {
5433 	struct btrfs_key key;
5434 	int ret;
5435 
5436 	key.objectid = btrfs_ino(inode);
5437 	key.type = BTRFS_INODE_ITEM_KEY;
5438 	key.offset = 0;
5439 
5440 	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
5441 	if (ret < 0) {
5442 		return ret;
5443 	} else if (ret > 0) {
5444 		*size_ret = 0;
5445 	} else {
5446 		struct btrfs_inode_item *item;
5447 
5448 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5449 				      struct btrfs_inode_item);
5450 		*size_ret = btrfs_inode_size(path->nodes[0], item);
5451 		/*
5452 		 * If the in-memory inode's i_size is smaller then the inode
5453 		 * size stored in the btree, return the inode's i_size, so
5454 		 * that we get a correct inode size after replaying the log
5455 		 * when before a power failure we had a shrinking truncate
5456 		 * followed by addition of a new name (rename / new hard link).
5457 		 * Otherwise return the inode size from the btree, to avoid
5458 		 * data loss when replaying a log due to previously doing a
5459 		 * write that expands the inode's size and logging a new name
5460 		 * immediately after.
5461 		 */
5462 		if (*size_ret > inode->vfs_inode.i_size)
5463 			*size_ret = inode->vfs_inode.i_size;
5464 	}
5465 
5466 	btrfs_release_path(path);
5467 	return 0;
5468 }
5469 
5470 /*
5471  * At the moment we always log all xattrs. This is to figure out at log replay
5472  * time which xattrs must have their deletion replayed. If a xattr is missing
5473  * in the log tree and exists in the fs/subvol tree, we delete it. This is
5474  * because if a xattr is deleted, the inode is fsynced and a power failure
5475  * happens, causing the log to be replayed the next time the fs is mounted,
5476  * we want the xattr to not exist anymore (same behaviour as other filesystems
5477  * with a journal, ext3/4, xfs, f2fs, etc).
5478  */
btrfs_log_all_xattrs(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,struct btrfs_log_ctx * ctx)5479 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
5480 				struct btrfs_inode *inode,
5481 				struct btrfs_path *path,
5482 				struct btrfs_path *dst_path,
5483 				struct btrfs_log_ctx *ctx)
5484 {
5485 	struct btrfs_root *root = inode->root;
5486 	int ret;
5487 	struct btrfs_key key;
5488 	const u64 ino = btrfs_ino(inode);
5489 	int ins_nr = 0;
5490 	int start_slot = 0;
5491 	bool found_xattrs = false;
5492 
5493 	if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
5494 		return 0;
5495 
5496 	key.objectid = ino;
5497 	key.type = BTRFS_XATTR_ITEM_KEY;
5498 	key.offset = 0;
5499 
5500 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5501 	if (ret < 0)
5502 		return ret;
5503 
5504 	while (true) {
5505 		int slot = path->slots[0];
5506 		struct extent_buffer *leaf = path->nodes[0];
5507 		int nritems = btrfs_header_nritems(leaf);
5508 
5509 		if (slot >= nritems) {
5510 			if (ins_nr > 0) {
5511 				ret = copy_items(trans, inode, dst_path, path,
5512 						 start_slot, ins_nr, 1, 0, ctx);
5513 				if (ret < 0)
5514 					return ret;
5515 				ins_nr = 0;
5516 			}
5517 			ret = btrfs_next_leaf(root, path);
5518 			if (ret < 0)
5519 				return ret;
5520 			else if (ret > 0)
5521 				break;
5522 			continue;
5523 		}
5524 
5525 		btrfs_item_key_to_cpu(leaf, &key, slot);
5526 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
5527 			break;
5528 
5529 		if (ins_nr == 0)
5530 			start_slot = slot;
5531 		ins_nr++;
5532 		path->slots[0]++;
5533 		found_xattrs = true;
5534 		cond_resched();
5535 	}
5536 	if (ins_nr > 0) {
5537 		ret = copy_items(trans, inode, dst_path, path,
5538 				 start_slot, ins_nr, 1, 0, ctx);
5539 		if (ret < 0)
5540 			return ret;
5541 	}
5542 
5543 	if (!found_xattrs)
5544 		set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
5545 
5546 	return 0;
5547 }
5548 
5549 /*
5550  * When using the NO_HOLES feature if we punched a hole that causes the
5551  * deletion of entire leafs or all the extent items of the first leaf (the one
5552  * that contains the inode item and references) we may end up not processing
5553  * any extents, because there are no leafs with a generation matching the
5554  * current transaction that have extent items for our inode. So we need to find
5555  * if any holes exist and then log them. We also need to log holes after any
5556  * truncate operation that changes the inode's size.
5557  */
btrfs_log_holes(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path)5558 static int btrfs_log_holes(struct btrfs_trans_handle *trans,
5559 			   struct btrfs_inode *inode,
5560 			   struct btrfs_path *path)
5561 {
5562 	struct btrfs_root *root = inode->root;
5563 	struct btrfs_fs_info *fs_info = root->fs_info;
5564 	struct btrfs_key key;
5565 	const u64 ino = btrfs_ino(inode);
5566 	const u64 i_size = i_size_read(&inode->vfs_inode);
5567 	u64 prev_extent_end = 0;
5568 	int ret;
5569 
5570 	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
5571 		return 0;
5572 
5573 	key.objectid = ino;
5574 	key.type = BTRFS_EXTENT_DATA_KEY;
5575 	key.offset = 0;
5576 
5577 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5578 	if (ret < 0)
5579 		return ret;
5580 
5581 	while (true) {
5582 		struct extent_buffer *leaf = path->nodes[0];
5583 
5584 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
5585 			ret = btrfs_next_leaf(root, path);
5586 			if (ret < 0)
5587 				return ret;
5588 			if (ret > 0) {
5589 				ret = 0;
5590 				break;
5591 			}
5592 			leaf = path->nodes[0];
5593 		}
5594 
5595 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5596 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
5597 			break;
5598 
5599 		/* We have a hole, log it. */
5600 		if (prev_extent_end < key.offset) {
5601 			const u64 hole_len = key.offset - prev_extent_end;
5602 
5603 			/*
5604 			 * Release the path to avoid deadlocks with other code
5605 			 * paths that search the root while holding locks on
5606 			 * leafs from the log root.
5607 			 */
5608 			btrfs_release_path(path);
5609 			ret = btrfs_insert_hole_extent(trans, root->log_root,
5610 						       ino, prev_extent_end,
5611 						       hole_len);
5612 			if (ret < 0)
5613 				return ret;
5614 
5615 			/*
5616 			 * Search for the same key again in the root. Since it's
5617 			 * an extent item and we are holding the inode lock, the
5618 			 * key must still exist. If it doesn't just emit warning
5619 			 * and return an error to fall back to a transaction
5620 			 * commit.
5621 			 */
5622 			ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5623 			if (ret < 0)
5624 				return ret;
5625 			if (WARN_ON(ret > 0))
5626 				return -ENOENT;
5627 			leaf = path->nodes[0];
5628 		}
5629 
5630 		prev_extent_end = btrfs_file_extent_end(path);
5631 		path->slots[0]++;
5632 		cond_resched();
5633 	}
5634 
5635 	if (prev_extent_end < i_size) {
5636 		u64 hole_len;
5637 
5638 		btrfs_release_path(path);
5639 		hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
5640 		ret = btrfs_insert_hole_extent(trans, root->log_root, ino,
5641 					       prev_extent_end, hole_len);
5642 		if (ret < 0)
5643 			return ret;
5644 	}
5645 
5646 	return 0;
5647 }
5648 
5649 /*
5650  * When we are logging a new inode X, check if it doesn't have a reference that
5651  * matches the reference from some other inode Y created in a past transaction
5652  * and that was renamed in the current transaction. If we don't do this, then at
5653  * log replay time we can lose inode Y (and all its files if it's a directory):
5654  *
5655  * mkdir /mnt/x
5656  * echo "hello world" > /mnt/x/foobar
5657  * sync
5658  * mv /mnt/x /mnt/y
5659  * mkdir /mnt/x                 # or touch /mnt/x
5660  * xfs_io -c fsync /mnt/x
5661  * <power fail>
5662  * mount fs, trigger log replay
5663  *
5664  * After the log replay procedure, we would lose the first directory and all its
5665  * files (file foobar).
5666  * For the case where inode Y is not a directory we simply end up losing it:
5667  *
5668  * echo "123" > /mnt/foo
5669  * sync
5670  * mv /mnt/foo /mnt/bar
5671  * echo "abc" > /mnt/foo
5672  * xfs_io -c fsync /mnt/foo
5673  * <power fail>
5674  *
5675  * We also need this for cases where a snapshot entry is replaced by some other
5676  * entry (file or directory) otherwise we end up with an unreplayable log due to
5677  * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
5678  * if it were a regular entry:
5679  *
5680  * mkdir /mnt/x
5681  * btrfs subvolume snapshot /mnt /mnt/x/snap
5682  * btrfs subvolume delete /mnt/x/snap
5683  * rmdir /mnt/x
5684  * mkdir /mnt/x
5685  * fsync /mnt/x or fsync some new file inside it
5686  * <power fail>
5687  *
5688  * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
5689  * the same transaction.
5690  */
btrfs_check_ref_name_override(struct extent_buffer * eb,const int slot,const struct btrfs_key * key,struct btrfs_inode * inode,u64 * other_ino,u64 * other_parent)5691 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
5692 					 const int slot,
5693 					 const struct btrfs_key *key,
5694 					 struct btrfs_inode *inode,
5695 					 u64 *other_ino, u64 *other_parent)
5696 {
5697 	int ret;
5698 	BTRFS_PATH_AUTO_FREE(search_path);
5699 	char *name = NULL;
5700 	u32 name_len = 0;
5701 	u32 item_size = btrfs_item_size(eb, slot);
5702 	u32 cur_offset = 0;
5703 	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
5704 
5705 	search_path = btrfs_alloc_path();
5706 	if (!search_path)
5707 		return -ENOMEM;
5708 	search_path->search_commit_root = 1;
5709 	search_path->skip_locking = 1;
5710 
5711 	while (cur_offset < item_size) {
5712 		u64 parent;
5713 		u32 this_name_len;
5714 		u32 this_len;
5715 		unsigned long name_ptr;
5716 		struct btrfs_dir_item *di;
5717 		struct fscrypt_str name_str;
5718 
5719 		if (key->type == BTRFS_INODE_REF_KEY) {
5720 			struct btrfs_inode_ref *iref;
5721 
5722 			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
5723 			parent = key->offset;
5724 			this_name_len = btrfs_inode_ref_name_len(eb, iref);
5725 			name_ptr = (unsigned long)(iref + 1);
5726 			this_len = sizeof(*iref) + this_name_len;
5727 		} else {
5728 			struct btrfs_inode_extref *extref;
5729 
5730 			extref = (struct btrfs_inode_extref *)(ptr +
5731 							       cur_offset);
5732 			parent = btrfs_inode_extref_parent(eb, extref);
5733 			this_name_len = btrfs_inode_extref_name_len(eb, extref);
5734 			name_ptr = (unsigned long)&extref->name;
5735 			this_len = sizeof(*extref) + this_name_len;
5736 		}
5737 
5738 		if (this_name_len > name_len) {
5739 			char *new_name;
5740 
5741 			new_name = krealloc(name, this_name_len, GFP_NOFS);
5742 			if (!new_name) {
5743 				ret = -ENOMEM;
5744 				goto out;
5745 			}
5746 			name_len = this_name_len;
5747 			name = new_name;
5748 		}
5749 
5750 		read_extent_buffer(eb, name, name_ptr, this_name_len);
5751 
5752 		name_str.name = name;
5753 		name_str.len = this_name_len;
5754 		di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
5755 				parent, &name_str, 0);
5756 		if (di && !IS_ERR(di)) {
5757 			struct btrfs_key di_key;
5758 
5759 			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
5760 						  di, &di_key);
5761 			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
5762 				if (di_key.objectid != key->objectid) {
5763 					ret = 1;
5764 					*other_ino = di_key.objectid;
5765 					*other_parent = parent;
5766 				} else {
5767 					ret = 0;
5768 				}
5769 			} else {
5770 				ret = -EAGAIN;
5771 			}
5772 			goto out;
5773 		} else if (IS_ERR(di)) {
5774 			ret = PTR_ERR(di);
5775 			goto out;
5776 		}
5777 		btrfs_release_path(search_path);
5778 
5779 		cur_offset += this_len;
5780 	}
5781 	ret = 0;
5782 out:
5783 	kfree(name);
5784 	return ret;
5785 }
5786 
5787 /*
5788  * Check if we need to log an inode. This is used in contexts where while
5789  * logging an inode we need to log another inode (either that it exists or in
5790  * full mode). This is used instead of btrfs_inode_in_log() because the later
5791  * requires the inode to be in the log and have the log transaction committed,
5792  * while here we do not care if the log transaction was already committed - our
5793  * caller will commit the log later - and we want to avoid logging an inode
5794  * multiple times when multiple tasks have joined the same log transaction.
5795  */
need_log_inode(const struct btrfs_trans_handle * trans,struct btrfs_inode * inode)5796 static bool need_log_inode(const struct btrfs_trans_handle *trans,
5797 			   struct btrfs_inode *inode)
5798 {
5799 	/*
5800 	 * If a directory was not modified, no dentries added or removed, we can
5801 	 * and should avoid logging it.
5802 	 */
5803 	if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid)
5804 		return false;
5805 
5806 	/*
5807 	 * If this inode does not have new/updated/deleted xattrs since the last
5808 	 * time it was logged and is flagged as logged in the current transaction,
5809 	 * we can skip logging it. As for new/deleted names, those are updated in
5810 	 * the log by link/unlink/rename operations.
5811 	 * In case the inode was logged and then evicted and reloaded, its
5812 	 * logged_trans will be 0, in which case we have to fully log it since
5813 	 * logged_trans is a transient field, not persisted.
5814 	 */
5815 	if (inode_logged(trans, inode, NULL) == 1 &&
5816 	    !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
5817 		return false;
5818 
5819 	return true;
5820 }
5821 
5822 struct btrfs_dir_list {
5823 	u64 ino;
5824 	struct list_head list;
5825 };
5826 
5827 /*
5828  * Log the inodes of the new dentries of a directory.
5829  * See process_dir_items_leaf() for details about why it is needed.
5830  * This is a recursive operation - if an existing dentry corresponds to a
5831  * directory, that directory's new entries are logged too (same behaviour as
5832  * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5833  * the dentries point to we do not acquire their VFS lock, otherwise lockdep
5834  * complains about the following circular lock dependency / possible deadlock:
5835  *
5836  *        CPU0                                        CPU1
5837  *        ----                                        ----
5838  * lock(&type->i_mutex_dir_key#3/2);
5839  *                                            lock(sb_internal#2);
5840  *                                            lock(&type->i_mutex_dir_key#3/2);
5841  * lock(&sb->s_type->i_mutex_key#14);
5842  *
5843  * Where sb_internal is the lock (a counter that works as a lock) acquired by
5844  * sb_start_intwrite() in btrfs_start_transaction().
5845  * Not acquiring the VFS lock of the inodes is still safe because:
5846  *
5847  * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5848  *    that while logging the inode new references (names) are added or removed
5849  *    from the inode, leaving the logged inode item with a link count that does
5850  *    not match the number of logged inode reference items. This is fine because
5851  *    at log replay time we compute the real number of links and correct the
5852  *    link count in the inode item (see replay_one_buffer() and
5853  *    link_to_fixup_dir());
5854  *
5855  * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5856  *    while logging the inode's items new index items (key type
5857  *    BTRFS_DIR_INDEX_KEY) are added to fs/subvol tree and the logged inode item
5858  *    has a size that doesn't match the sum of the lengths of all the logged
5859  *    names - this is ok, not a problem, because at log replay time we set the
5860  *    directory's i_size to the correct value (see replay_one_name() and
5861  *    overwrite_item()).
5862  */
log_new_dir_dentries(struct btrfs_trans_handle * trans,struct btrfs_inode * start_inode,struct btrfs_log_ctx * ctx)5863 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5864 				struct btrfs_inode *start_inode,
5865 				struct btrfs_log_ctx *ctx)
5866 {
5867 	struct btrfs_root *root = start_inode->root;
5868 	struct btrfs_path *path;
5869 	LIST_HEAD(dir_list);
5870 	struct btrfs_dir_list *dir_elem;
5871 	u64 ino = btrfs_ino(start_inode);
5872 	struct btrfs_inode *curr_inode = start_inode;
5873 	int ret = 0;
5874 
5875 	/*
5876 	 * If we are logging a new name, as part of a link or rename operation,
5877 	 * don't bother logging new dentries, as we just want to log the names
5878 	 * of an inode and that any new parents exist.
5879 	 */
5880 	if (ctx->logging_new_name)
5881 		return 0;
5882 
5883 	path = btrfs_alloc_path();
5884 	if (!path)
5885 		return -ENOMEM;
5886 
5887 	/* Pairs with btrfs_add_delayed_iput below. */
5888 	ihold(&curr_inode->vfs_inode);
5889 
5890 	while (true) {
5891 		struct btrfs_key key;
5892 		struct btrfs_key found_key;
5893 		u64 next_index;
5894 		bool continue_curr_inode = true;
5895 		int iter_ret;
5896 
5897 		key.objectid = ino;
5898 		key.type = BTRFS_DIR_INDEX_KEY;
5899 		key.offset = btrfs_get_first_dir_index_to_log(curr_inode);
5900 		next_index = key.offset;
5901 again:
5902 		btrfs_for_each_slot(root->log_root, &key, &found_key, path, iter_ret) {
5903 			struct extent_buffer *leaf = path->nodes[0];
5904 			struct btrfs_dir_item *di;
5905 			struct btrfs_key di_key;
5906 			struct btrfs_inode *di_inode;
5907 			int log_mode = LOG_INODE_EXISTS;
5908 			int type;
5909 
5910 			if (found_key.objectid != ino ||
5911 			    found_key.type != BTRFS_DIR_INDEX_KEY) {
5912 				continue_curr_inode = false;
5913 				break;
5914 			}
5915 
5916 			next_index = found_key.offset + 1;
5917 
5918 			di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
5919 			type = btrfs_dir_ftype(leaf, di);
5920 			if (btrfs_dir_transid(leaf, di) < trans->transid)
5921 				continue;
5922 			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5923 			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5924 				continue;
5925 
5926 			btrfs_release_path(path);
5927 			di_inode = btrfs_iget_logging(di_key.objectid, root);
5928 			if (IS_ERR(di_inode)) {
5929 				ret = PTR_ERR(di_inode);
5930 				goto out;
5931 			}
5932 
5933 			if (!need_log_inode(trans, di_inode)) {
5934 				btrfs_add_delayed_iput(di_inode);
5935 				break;
5936 			}
5937 
5938 			ctx->log_new_dentries = false;
5939 			if (type == BTRFS_FT_DIR)
5940 				log_mode = LOG_INODE_ALL;
5941 			ret = btrfs_log_inode(trans, di_inode, log_mode, ctx);
5942 			btrfs_add_delayed_iput(di_inode);
5943 			if (ret)
5944 				goto out;
5945 			if (ctx->log_new_dentries) {
5946 				dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5947 				if (!dir_elem) {
5948 					ret = -ENOMEM;
5949 					goto out;
5950 				}
5951 				dir_elem->ino = di_key.objectid;
5952 				list_add_tail(&dir_elem->list, &dir_list);
5953 			}
5954 			break;
5955 		}
5956 
5957 		btrfs_release_path(path);
5958 
5959 		if (iter_ret < 0) {
5960 			ret = iter_ret;
5961 			goto out;
5962 		} else if (iter_ret > 0) {
5963 			continue_curr_inode = false;
5964 		} else {
5965 			key = found_key;
5966 		}
5967 
5968 		if (continue_curr_inode && key.offset < (u64)-1) {
5969 			key.offset++;
5970 			goto again;
5971 		}
5972 
5973 		btrfs_set_first_dir_index_to_log(curr_inode, next_index);
5974 
5975 		if (list_empty(&dir_list))
5976 			break;
5977 
5978 		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, list);
5979 		ino = dir_elem->ino;
5980 		list_del(&dir_elem->list);
5981 		kfree(dir_elem);
5982 
5983 		btrfs_add_delayed_iput(curr_inode);
5984 
5985 		curr_inode = btrfs_iget_logging(ino, root);
5986 		if (IS_ERR(curr_inode)) {
5987 			ret = PTR_ERR(curr_inode);
5988 			curr_inode = NULL;
5989 			break;
5990 		}
5991 	}
5992 out:
5993 	btrfs_free_path(path);
5994 	if (curr_inode)
5995 		btrfs_add_delayed_iput(curr_inode);
5996 
5997 	if (ret) {
5998 		struct btrfs_dir_list *next;
5999 
6000 		list_for_each_entry_safe(dir_elem, next, &dir_list, list)
6001 			kfree(dir_elem);
6002 	}
6003 
6004 	return ret;
6005 }
6006 
6007 struct btrfs_ino_list {
6008 	u64 ino;
6009 	u64 parent;
6010 	struct list_head list;
6011 };
6012 
free_conflicting_inodes(struct btrfs_log_ctx * ctx)6013 static void free_conflicting_inodes(struct btrfs_log_ctx *ctx)
6014 {
6015 	struct btrfs_ino_list *curr;
6016 	struct btrfs_ino_list *next;
6017 
6018 	list_for_each_entry_safe(curr, next, &ctx->conflict_inodes, list) {
6019 		list_del(&curr->list);
6020 		kfree(curr);
6021 	}
6022 }
6023 
conflicting_inode_is_dir(struct btrfs_root * root,u64 ino,struct btrfs_path * path)6024 static int conflicting_inode_is_dir(struct btrfs_root *root, u64 ino,
6025 				    struct btrfs_path *path)
6026 {
6027 	struct btrfs_key key;
6028 	int ret;
6029 
6030 	key.objectid = ino;
6031 	key.type = BTRFS_INODE_ITEM_KEY;
6032 	key.offset = 0;
6033 
6034 	path->search_commit_root = 1;
6035 	path->skip_locking = 1;
6036 
6037 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6038 	if (WARN_ON_ONCE(ret > 0)) {
6039 		/*
6040 		 * We have previously found the inode through the commit root
6041 		 * so this should not happen. If it does, just error out and
6042 		 * fallback to a transaction commit.
6043 		 */
6044 		ret = -ENOENT;
6045 	} else if (ret == 0) {
6046 		struct btrfs_inode_item *item;
6047 
6048 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6049 				      struct btrfs_inode_item);
6050 		if (S_ISDIR(btrfs_inode_mode(path->nodes[0], item)))
6051 			ret = 1;
6052 	}
6053 
6054 	btrfs_release_path(path);
6055 	path->search_commit_root = 0;
6056 	path->skip_locking = 0;
6057 
6058 	return ret;
6059 }
6060 
add_conflicting_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 ino,u64 parent,struct btrfs_log_ctx * ctx)6061 static int add_conflicting_inode(struct btrfs_trans_handle *trans,
6062 				 struct btrfs_root *root,
6063 				 struct btrfs_path *path,
6064 				 u64 ino, u64 parent,
6065 				 struct btrfs_log_ctx *ctx)
6066 {
6067 	struct btrfs_ino_list *ino_elem;
6068 	struct btrfs_inode *inode;
6069 
6070 	/*
6071 	 * It's rare to have a lot of conflicting inodes, in practice it is not
6072 	 * common to have more than 1 or 2. We don't want to collect too many,
6073 	 * as we could end up logging too many inodes (even if only in
6074 	 * LOG_INODE_EXISTS mode) and slow down other fsyncs or transaction
6075 	 * commits.
6076 	 */
6077 	if (ctx->num_conflict_inodes >= MAX_CONFLICT_INODES)
6078 		return BTRFS_LOG_FORCE_COMMIT;
6079 
6080 	inode = btrfs_iget_logging(ino, root);
6081 	/*
6082 	 * If the other inode that had a conflicting dir entry was deleted in
6083 	 * the current transaction then we either:
6084 	 *
6085 	 * 1) Log the parent directory (later after adding it to the list) if
6086 	 *    the inode is a directory. This is because it may be a deleted
6087 	 *    subvolume/snapshot or it may be a regular directory that had
6088 	 *    deleted subvolumes/snapshots (or subdirectories that had them),
6089 	 *    and at the moment we can't deal with dropping subvolumes/snapshots
6090 	 *    during log replay. So we just log the parent, which will result in
6091 	 *    a fallback to a transaction commit if we are dealing with those
6092 	 *    cases (last_unlink_trans will match the current transaction);
6093 	 *
6094 	 * 2) Do nothing if it's not a directory. During log replay we simply
6095 	 *    unlink the conflicting dentry from the parent directory and then
6096 	 *    add the dentry for our inode. Like this we can avoid logging the
6097 	 *    parent directory (and maybe fallback to a transaction commit in
6098 	 *    case it has a last_unlink_trans == trans->transid, due to moving
6099 	 *    some inode from it to some other directory).
6100 	 */
6101 	if (IS_ERR(inode)) {
6102 		int ret = PTR_ERR(inode);
6103 
6104 		if (ret != -ENOENT)
6105 			return ret;
6106 
6107 		ret = conflicting_inode_is_dir(root, ino, path);
6108 		/* Not a directory or we got an error. */
6109 		if (ret <= 0)
6110 			return ret;
6111 
6112 		/* Conflicting inode is a directory, so we'll log its parent. */
6113 		ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
6114 		if (!ino_elem)
6115 			return -ENOMEM;
6116 		ino_elem->ino = ino;
6117 		ino_elem->parent = parent;
6118 		list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
6119 		ctx->num_conflict_inodes++;
6120 
6121 		return 0;
6122 	}
6123 
6124 	/*
6125 	 * If the inode was already logged skip it - otherwise we can hit an
6126 	 * infinite loop. Example:
6127 	 *
6128 	 * From the commit root (previous transaction) we have the following
6129 	 * inodes:
6130 	 *
6131 	 * inode 257 a directory
6132 	 * inode 258 with references "zz" and "zz_link" on inode 257
6133 	 * inode 259 with reference "a" on inode 257
6134 	 *
6135 	 * And in the current (uncommitted) transaction we have:
6136 	 *
6137 	 * inode 257 a directory, unchanged
6138 	 * inode 258 with references "a" and "a2" on inode 257
6139 	 * inode 259 with reference "zz_link" on inode 257
6140 	 * inode 261 with reference "zz" on inode 257
6141 	 *
6142 	 * When logging inode 261 the following infinite loop could
6143 	 * happen if we don't skip already logged inodes:
6144 	 *
6145 	 * - we detect inode 258 as a conflicting inode, with inode 261
6146 	 *   on reference "zz", and log it;
6147 	 *
6148 	 * - we detect inode 259 as a conflicting inode, with inode 258
6149 	 *   on reference "a", and log it;
6150 	 *
6151 	 * - we detect inode 258 as a conflicting inode, with inode 259
6152 	 *   on reference "zz_link", and log it - again! After this we
6153 	 *   repeat the above steps forever.
6154 	 *
6155 	 * Here we can use need_log_inode() because we only need to log the
6156 	 * inode in LOG_INODE_EXISTS mode and rename operations update the log,
6157 	 * so that the log ends up with the new name and without the old name.
6158 	 */
6159 	if (!need_log_inode(trans, inode)) {
6160 		btrfs_add_delayed_iput(inode);
6161 		return 0;
6162 	}
6163 
6164 	btrfs_add_delayed_iput(inode);
6165 
6166 	ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
6167 	if (!ino_elem)
6168 		return -ENOMEM;
6169 	ino_elem->ino = ino;
6170 	ino_elem->parent = parent;
6171 	list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
6172 	ctx->num_conflict_inodes++;
6173 
6174 	return 0;
6175 }
6176 
log_conflicting_inodes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_log_ctx * ctx)6177 static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
6178 				  struct btrfs_root *root,
6179 				  struct btrfs_log_ctx *ctx)
6180 {
6181 	int ret = 0;
6182 
6183 	/*
6184 	 * Conflicting inodes are logged by the first call to btrfs_log_inode(),
6185 	 * otherwise we could have unbounded recursion of btrfs_log_inode()
6186 	 * calls. This check guarantees we can have only 1 level of recursion.
6187 	 */
6188 	if (ctx->logging_conflict_inodes)
6189 		return 0;
6190 
6191 	ctx->logging_conflict_inodes = true;
6192 
6193 	/*
6194 	 * New conflicting inodes may be found and added to the list while we
6195 	 * are logging a conflicting inode, so keep iterating while the list is
6196 	 * not empty.
6197 	 */
6198 	while (!list_empty(&ctx->conflict_inodes)) {
6199 		struct btrfs_ino_list *curr;
6200 		struct btrfs_inode *inode;
6201 		u64 ino;
6202 		u64 parent;
6203 
6204 		curr = list_first_entry(&ctx->conflict_inodes,
6205 					struct btrfs_ino_list, list);
6206 		ino = curr->ino;
6207 		parent = curr->parent;
6208 		list_del(&curr->list);
6209 		kfree(curr);
6210 
6211 		inode = btrfs_iget_logging(ino, root);
6212 		/*
6213 		 * If the other inode that had a conflicting dir entry was
6214 		 * deleted in the current transaction, we need to log its parent
6215 		 * directory. See the comment at add_conflicting_inode().
6216 		 */
6217 		if (IS_ERR(inode)) {
6218 			ret = PTR_ERR(inode);
6219 			if (ret != -ENOENT)
6220 				break;
6221 
6222 			inode = btrfs_iget_logging(parent, root);
6223 			if (IS_ERR(inode)) {
6224 				ret = PTR_ERR(inode);
6225 				break;
6226 			}
6227 
6228 			/*
6229 			 * Always log the directory, we cannot make this
6230 			 * conditional on need_log_inode() because the directory
6231 			 * might have been logged in LOG_INODE_EXISTS mode or
6232 			 * the dir index of the conflicting inode is not in a
6233 			 * dir index key range logged for the directory. So we
6234 			 * must make sure the deletion is recorded.
6235 			 */
6236 			ret = btrfs_log_inode(trans, inode, LOG_INODE_ALL, ctx);
6237 			btrfs_add_delayed_iput(inode);
6238 			if (ret)
6239 				break;
6240 			continue;
6241 		}
6242 
6243 		/*
6244 		 * Here we can use need_log_inode() because we only need to log
6245 		 * the inode in LOG_INODE_EXISTS mode and rename operations
6246 		 * update the log, so that the log ends up with the new name and
6247 		 * without the old name.
6248 		 *
6249 		 * We did this check at add_conflicting_inode(), but here we do
6250 		 * it again because if some other task logged the inode after
6251 		 * that, we can avoid doing it again.
6252 		 */
6253 		if (!need_log_inode(trans, inode)) {
6254 			btrfs_add_delayed_iput(inode);
6255 			continue;
6256 		}
6257 
6258 		/*
6259 		 * We are safe logging the other inode without acquiring its
6260 		 * lock as long as we log with the LOG_INODE_EXISTS mode. We
6261 		 * are safe against concurrent renames of the other inode as
6262 		 * well because during a rename we pin the log and update the
6263 		 * log with the new name before we unpin it.
6264 		 */
6265 		ret = btrfs_log_inode(trans, inode, LOG_INODE_EXISTS, ctx);
6266 		btrfs_add_delayed_iput(inode);
6267 		if (ret)
6268 			break;
6269 	}
6270 
6271 	ctx->logging_conflict_inodes = false;
6272 	if (ret)
6273 		free_conflicting_inodes(ctx);
6274 
6275 	return ret;
6276 }
6277 
copy_inode_items_to_log(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_key * min_key,const struct btrfs_key * max_key,struct btrfs_path * path,struct btrfs_path * dst_path,const u64 logged_isize,const int inode_only,struct btrfs_log_ctx * ctx,bool * need_log_inode_item)6278 static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
6279 				   struct btrfs_inode *inode,
6280 				   struct btrfs_key *min_key,
6281 				   const struct btrfs_key *max_key,
6282 				   struct btrfs_path *path,
6283 				   struct btrfs_path *dst_path,
6284 				   const u64 logged_isize,
6285 				   const int inode_only,
6286 				   struct btrfs_log_ctx *ctx,
6287 				   bool *need_log_inode_item)
6288 {
6289 	const u64 i_size = i_size_read(&inode->vfs_inode);
6290 	struct btrfs_root *root = inode->root;
6291 	int ins_start_slot = 0;
6292 	int ins_nr = 0;
6293 	int ret;
6294 
6295 	while (1) {
6296 		ret = btrfs_search_forward(root, min_key, path, trans->transid);
6297 		if (ret < 0)
6298 			return ret;
6299 		if (ret > 0) {
6300 			ret = 0;
6301 			break;
6302 		}
6303 again:
6304 		/* Note, ins_nr might be > 0 here, cleanup outside the loop */
6305 		if (min_key->objectid != max_key->objectid)
6306 			break;
6307 		if (min_key->type > max_key->type)
6308 			break;
6309 
6310 		if (min_key->type == BTRFS_INODE_ITEM_KEY) {
6311 			*need_log_inode_item = false;
6312 		} else if (min_key->type == BTRFS_EXTENT_DATA_KEY &&
6313 			   min_key->offset >= i_size) {
6314 			/*
6315 			 * Extents at and beyond eof are logged with
6316 			 * btrfs_log_prealloc_extents().
6317 			 * Only regular files have BTRFS_EXTENT_DATA_KEY keys,
6318 			 * and no keys greater than that, so bail out.
6319 			 */
6320 			break;
6321 		} else if ((min_key->type == BTRFS_INODE_REF_KEY ||
6322 			    min_key->type == BTRFS_INODE_EXTREF_KEY) &&
6323 			   (inode->generation == trans->transid ||
6324 			    ctx->logging_conflict_inodes)) {
6325 			u64 other_ino = 0;
6326 			u64 other_parent = 0;
6327 
6328 			ret = btrfs_check_ref_name_override(path->nodes[0],
6329 					path->slots[0], min_key, inode,
6330 					&other_ino, &other_parent);
6331 			if (ret < 0) {
6332 				return ret;
6333 			} else if (ret > 0 &&
6334 				   other_ino != btrfs_ino(ctx->inode)) {
6335 				if (ins_nr > 0) {
6336 					ins_nr++;
6337 				} else {
6338 					ins_nr = 1;
6339 					ins_start_slot = path->slots[0];
6340 				}
6341 				ret = copy_items(trans, inode, dst_path, path,
6342 						 ins_start_slot, ins_nr,
6343 						 inode_only, logged_isize, ctx);
6344 				if (ret < 0)
6345 					return ret;
6346 				ins_nr = 0;
6347 
6348 				btrfs_release_path(path);
6349 				ret = add_conflicting_inode(trans, root, path,
6350 							    other_ino,
6351 							    other_parent, ctx);
6352 				if (ret)
6353 					return ret;
6354 				goto next_key;
6355 			}
6356 		} else if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
6357 			/* Skip xattrs, logged later with btrfs_log_all_xattrs() */
6358 			if (ins_nr == 0)
6359 				goto next_slot;
6360 			ret = copy_items(trans, inode, dst_path, path,
6361 					 ins_start_slot,
6362 					 ins_nr, inode_only, logged_isize, ctx);
6363 			if (ret < 0)
6364 				return ret;
6365 			ins_nr = 0;
6366 			goto next_slot;
6367 		}
6368 
6369 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
6370 			ins_nr++;
6371 			goto next_slot;
6372 		} else if (!ins_nr) {
6373 			ins_start_slot = path->slots[0];
6374 			ins_nr = 1;
6375 			goto next_slot;
6376 		}
6377 
6378 		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
6379 				 ins_nr, inode_only, logged_isize, ctx);
6380 		if (ret < 0)
6381 			return ret;
6382 		ins_nr = 1;
6383 		ins_start_slot = path->slots[0];
6384 next_slot:
6385 		path->slots[0]++;
6386 		if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
6387 			btrfs_item_key_to_cpu(path->nodes[0], min_key,
6388 					      path->slots[0]);
6389 			goto again;
6390 		}
6391 		if (ins_nr) {
6392 			ret = copy_items(trans, inode, dst_path, path,
6393 					 ins_start_slot, ins_nr, inode_only,
6394 					 logged_isize, ctx);
6395 			if (ret < 0)
6396 				return ret;
6397 			ins_nr = 0;
6398 		}
6399 		btrfs_release_path(path);
6400 next_key:
6401 		if (min_key->offset < (u64)-1) {
6402 			min_key->offset++;
6403 		} else if (min_key->type < max_key->type) {
6404 			min_key->type++;
6405 			min_key->offset = 0;
6406 		} else {
6407 			break;
6408 		}
6409 
6410 		/*
6411 		 * We may process many leaves full of items for our inode, so
6412 		 * avoid monopolizing a cpu for too long by rescheduling while
6413 		 * not holding locks on any tree.
6414 		 */
6415 		cond_resched();
6416 	}
6417 	if (ins_nr) {
6418 		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
6419 				 ins_nr, inode_only, logged_isize, ctx);
6420 		if (ret)
6421 			return ret;
6422 	}
6423 
6424 	if (inode_only == LOG_INODE_ALL && S_ISREG(inode->vfs_inode.i_mode)) {
6425 		/*
6426 		 * Release the path because otherwise we might attempt to double
6427 		 * lock the same leaf with btrfs_log_prealloc_extents() below.
6428 		 */
6429 		btrfs_release_path(path);
6430 		ret = btrfs_log_prealloc_extents(trans, inode, dst_path, ctx);
6431 	}
6432 
6433 	return ret;
6434 }
6435 
insert_delayed_items_batch(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,const struct btrfs_item_batch * batch,const struct btrfs_delayed_item * first_item)6436 static int insert_delayed_items_batch(struct btrfs_trans_handle *trans,
6437 				      struct btrfs_root *log,
6438 				      struct btrfs_path *path,
6439 				      const struct btrfs_item_batch *batch,
6440 				      const struct btrfs_delayed_item *first_item)
6441 {
6442 	const struct btrfs_delayed_item *curr = first_item;
6443 	int ret;
6444 
6445 	ret = btrfs_insert_empty_items(trans, log, path, batch);
6446 	if (ret)
6447 		return ret;
6448 
6449 	for (int i = 0; i < batch->nr; i++) {
6450 		char *data_ptr;
6451 
6452 		data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
6453 		write_extent_buffer(path->nodes[0], &curr->data,
6454 				    (unsigned long)data_ptr, curr->data_len);
6455 		curr = list_next_entry(curr, log_list);
6456 		path->slots[0]++;
6457 	}
6458 
6459 	btrfs_release_path(path);
6460 
6461 	return 0;
6462 }
6463 
log_delayed_insertion_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,const struct list_head * delayed_ins_list,struct btrfs_log_ctx * ctx)6464 static int log_delayed_insertion_items(struct btrfs_trans_handle *trans,
6465 				       struct btrfs_inode *inode,
6466 				       struct btrfs_path *path,
6467 				       const struct list_head *delayed_ins_list,
6468 				       struct btrfs_log_ctx *ctx)
6469 {
6470 	/* 195 (4095 bytes of keys and sizes) fits in a single 4K page. */
6471 	const int max_batch_size = 195;
6472 	const int leaf_data_size = BTRFS_LEAF_DATA_SIZE(trans->fs_info);
6473 	const u64 ino = btrfs_ino(inode);
6474 	struct btrfs_root *log = inode->root->log_root;
6475 	struct btrfs_item_batch batch = {
6476 		.nr = 0,
6477 		.total_data_size = 0,
6478 	};
6479 	const struct btrfs_delayed_item *first = NULL;
6480 	const struct btrfs_delayed_item *curr;
6481 	char *ins_data;
6482 	struct btrfs_key *ins_keys;
6483 	u32 *ins_sizes;
6484 	u64 curr_batch_size = 0;
6485 	int batch_idx = 0;
6486 	int ret;
6487 
6488 	/* We are adding dir index items to the log tree. */
6489 	lockdep_assert_held(&inode->log_mutex);
6490 
6491 	/*
6492 	 * We collect delayed items before copying index keys from the subvolume
6493 	 * to the log tree. However just after we collected them, they may have
6494 	 * been flushed (all of them or just some of them), and therefore we
6495 	 * could have copied them from the subvolume tree to the log tree.
6496 	 * So find the first delayed item that was not yet logged (they are
6497 	 * sorted by index number).
6498 	 */
6499 	list_for_each_entry(curr, delayed_ins_list, log_list) {
6500 		if (curr->index > inode->last_dir_index_offset) {
6501 			first = curr;
6502 			break;
6503 		}
6504 	}
6505 
6506 	/* Empty list or all delayed items were already logged. */
6507 	if (!first)
6508 		return 0;
6509 
6510 	ins_data = kmalloc_array(max_batch_size, sizeof(u32) + sizeof(struct btrfs_key), GFP_NOFS);
6511 	if (!ins_data)
6512 		return -ENOMEM;
6513 	ins_sizes = (u32 *)ins_data;
6514 	batch.data_sizes = ins_sizes;
6515 	ins_keys = (struct btrfs_key *)(ins_data + max_batch_size * sizeof(u32));
6516 	batch.keys = ins_keys;
6517 
6518 	curr = first;
6519 	while (!list_entry_is_head(curr, delayed_ins_list, log_list)) {
6520 		const u32 curr_size = curr->data_len + sizeof(struct btrfs_item);
6521 
6522 		if (curr_batch_size + curr_size > leaf_data_size ||
6523 		    batch.nr == max_batch_size) {
6524 			ret = insert_delayed_items_batch(trans, log, path,
6525 							 &batch, first);
6526 			if (ret)
6527 				goto out;
6528 			batch_idx = 0;
6529 			batch.nr = 0;
6530 			batch.total_data_size = 0;
6531 			curr_batch_size = 0;
6532 			first = curr;
6533 		}
6534 
6535 		ins_sizes[batch_idx] = curr->data_len;
6536 		ins_keys[batch_idx].objectid = ino;
6537 		ins_keys[batch_idx].type = BTRFS_DIR_INDEX_KEY;
6538 		ins_keys[batch_idx].offset = curr->index;
6539 		curr_batch_size += curr_size;
6540 		batch.total_data_size += curr->data_len;
6541 		batch.nr++;
6542 		batch_idx++;
6543 		curr = list_next_entry(curr, log_list);
6544 	}
6545 
6546 	ASSERT(batch.nr >= 1);
6547 	ret = insert_delayed_items_batch(trans, log, path, &batch, first);
6548 
6549 	curr = list_last_entry(delayed_ins_list, struct btrfs_delayed_item,
6550 			       log_list);
6551 	inode->last_dir_index_offset = curr->index;
6552 out:
6553 	kfree(ins_data);
6554 
6555 	return ret;
6556 }
6557 
log_delayed_deletions_full(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,const struct list_head * delayed_del_list,struct btrfs_log_ctx * ctx)6558 static int log_delayed_deletions_full(struct btrfs_trans_handle *trans,
6559 				      struct btrfs_inode *inode,
6560 				      struct btrfs_path *path,
6561 				      const struct list_head *delayed_del_list,
6562 				      struct btrfs_log_ctx *ctx)
6563 {
6564 	const u64 ino = btrfs_ino(inode);
6565 	const struct btrfs_delayed_item *curr;
6566 
6567 	curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6568 				log_list);
6569 
6570 	while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6571 		u64 first_dir_index = curr->index;
6572 		u64 last_dir_index;
6573 		const struct btrfs_delayed_item *next;
6574 		int ret;
6575 
6576 		/*
6577 		 * Find a range of consecutive dir index items to delete. Like
6578 		 * this we log a single dir range item spanning several contiguous
6579 		 * dir items instead of logging one range item per dir index item.
6580 		 */
6581 		next = list_next_entry(curr, log_list);
6582 		while (!list_entry_is_head(next, delayed_del_list, log_list)) {
6583 			if (next->index != curr->index + 1)
6584 				break;
6585 			curr = next;
6586 			next = list_next_entry(next, log_list);
6587 		}
6588 
6589 		last_dir_index = curr->index;
6590 		ASSERT(last_dir_index >= first_dir_index);
6591 
6592 		ret = insert_dir_log_key(trans, inode->root->log_root, path,
6593 					 ino, first_dir_index, last_dir_index);
6594 		if (ret)
6595 			return ret;
6596 		curr = list_next_entry(curr, log_list);
6597 	}
6598 
6599 	return 0;
6600 }
6601 
batch_delete_dir_index_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,const struct list_head * delayed_del_list,const struct btrfs_delayed_item * first,const struct btrfs_delayed_item ** last_ret)6602 static int batch_delete_dir_index_items(struct btrfs_trans_handle *trans,
6603 					struct btrfs_inode *inode,
6604 					struct btrfs_path *path,
6605 					const struct list_head *delayed_del_list,
6606 					const struct btrfs_delayed_item *first,
6607 					const struct btrfs_delayed_item **last_ret)
6608 {
6609 	const struct btrfs_delayed_item *next;
6610 	struct extent_buffer *leaf = path->nodes[0];
6611 	const int last_slot = btrfs_header_nritems(leaf) - 1;
6612 	int slot = path->slots[0] + 1;
6613 	const u64 ino = btrfs_ino(inode);
6614 
6615 	next = list_next_entry(first, log_list);
6616 
6617 	while (slot < last_slot &&
6618 	       !list_entry_is_head(next, delayed_del_list, log_list)) {
6619 		struct btrfs_key key;
6620 
6621 		btrfs_item_key_to_cpu(leaf, &key, slot);
6622 		if (key.objectid != ino ||
6623 		    key.type != BTRFS_DIR_INDEX_KEY ||
6624 		    key.offset != next->index)
6625 			break;
6626 
6627 		slot++;
6628 		*last_ret = next;
6629 		next = list_next_entry(next, log_list);
6630 	}
6631 
6632 	return btrfs_del_items(trans, inode->root->log_root, path,
6633 			       path->slots[0], slot - path->slots[0]);
6634 }
6635 
log_delayed_deletions_incremental(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,const struct list_head * delayed_del_list,struct btrfs_log_ctx * ctx)6636 static int log_delayed_deletions_incremental(struct btrfs_trans_handle *trans,
6637 					     struct btrfs_inode *inode,
6638 					     struct btrfs_path *path,
6639 					     const struct list_head *delayed_del_list,
6640 					     struct btrfs_log_ctx *ctx)
6641 {
6642 	struct btrfs_root *log = inode->root->log_root;
6643 	const struct btrfs_delayed_item *curr;
6644 	u64 last_range_start = 0;
6645 	u64 last_range_end = 0;
6646 	struct btrfs_key key;
6647 
6648 	key.objectid = btrfs_ino(inode);
6649 	key.type = BTRFS_DIR_INDEX_KEY;
6650 	curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6651 				log_list);
6652 
6653 	while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6654 		const struct btrfs_delayed_item *last = curr;
6655 		u64 first_dir_index = curr->index;
6656 		u64 last_dir_index;
6657 		bool deleted_items = false;
6658 		int ret;
6659 
6660 		key.offset = curr->index;
6661 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
6662 		if (ret < 0) {
6663 			return ret;
6664 		} else if (ret == 0) {
6665 			ret = batch_delete_dir_index_items(trans, inode, path,
6666 							   delayed_del_list, curr,
6667 							   &last);
6668 			if (ret)
6669 				return ret;
6670 			deleted_items = true;
6671 		}
6672 
6673 		btrfs_release_path(path);
6674 
6675 		/*
6676 		 * If we deleted items from the leaf, it means we have a range
6677 		 * item logging their range, so no need to add one or update an
6678 		 * existing one. Otherwise we have to log a dir range item.
6679 		 */
6680 		if (deleted_items)
6681 			goto next_batch;
6682 
6683 		last_dir_index = last->index;
6684 		ASSERT(last_dir_index >= first_dir_index);
6685 		/*
6686 		 * If this range starts right after where the previous one ends,
6687 		 * then we want to reuse the previous range item and change its
6688 		 * end offset to the end of this range. This is just to minimize
6689 		 * leaf space usage, by avoiding adding a new range item.
6690 		 */
6691 		if (last_range_end != 0 && first_dir_index == last_range_end + 1)
6692 			first_dir_index = last_range_start;
6693 
6694 		ret = insert_dir_log_key(trans, log, path, key.objectid,
6695 					 first_dir_index, last_dir_index);
6696 		if (ret)
6697 			return ret;
6698 
6699 		last_range_start = first_dir_index;
6700 		last_range_end = last_dir_index;
6701 next_batch:
6702 		curr = list_next_entry(last, log_list);
6703 	}
6704 
6705 	return 0;
6706 }
6707 
log_delayed_deletion_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,const struct list_head * delayed_del_list,struct btrfs_log_ctx * ctx)6708 static int log_delayed_deletion_items(struct btrfs_trans_handle *trans,
6709 				      struct btrfs_inode *inode,
6710 				      struct btrfs_path *path,
6711 				      const struct list_head *delayed_del_list,
6712 				      struct btrfs_log_ctx *ctx)
6713 {
6714 	/*
6715 	 * We are deleting dir index items from the log tree or adding range
6716 	 * items to it.
6717 	 */
6718 	lockdep_assert_held(&inode->log_mutex);
6719 
6720 	if (list_empty(delayed_del_list))
6721 		return 0;
6722 
6723 	if (ctx->logged_before)
6724 		return log_delayed_deletions_incremental(trans, inode, path,
6725 							 delayed_del_list, ctx);
6726 
6727 	return log_delayed_deletions_full(trans, inode, path, delayed_del_list,
6728 					  ctx);
6729 }
6730 
6731 /*
6732  * Similar logic as for log_new_dir_dentries(), but it iterates over the delayed
6733  * items instead of the subvolume tree.
6734  */
log_new_delayed_dentries(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,const struct list_head * delayed_ins_list,struct btrfs_log_ctx * ctx)6735 static int log_new_delayed_dentries(struct btrfs_trans_handle *trans,
6736 				    struct btrfs_inode *inode,
6737 				    const struct list_head *delayed_ins_list,
6738 				    struct btrfs_log_ctx *ctx)
6739 {
6740 	const bool orig_log_new_dentries = ctx->log_new_dentries;
6741 	struct btrfs_delayed_item *item;
6742 	int ret = 0;
6743 
6744 	/*
6745 	 * No need for the log mutex, plus to avoid potential deadlocks or
6746 	 * lockdep annotations due to nesting of delayed inode mutexes and log
6747 	 * mutexes.
6748 	 */
6749 	lockdep_assert_not_held(&inode->log_mutex);
6750 
6751 	ASSERT(!ctx->logging_new_delayed_dentries);
6752 	ctx->logging_new_delayed_dentries = true;
6753 
6754 	list_for_each_entry(item, delayed_ins_list, log_list) {
6755 		struct btrfs_dir_item *dir_item;
6756 		struct btrfs_inode *di_inode;
6757 		struct btrfs_key key;
6758 		int log_mode = LOG_INODE_EXISTS;
6759 
6760 		dir_item = (struct btrfs_dir_item *)item->data;
6761 		btrfs_disk_key_to_cpu(&key, &dir_item->location);
6762 
6763 		if (key.type == BTRFS_ROOT_ITEM_KEY)
6764 			continue;
6765 
6766 		di_inode = btrfs_iget_logging(key.objectid, inode->root);
6767 		if (IS_ERR(di_inode)) {
6768 			ret = PTR_ERR(di_inode);
6769 			break;
6770 		}
6771 
6772 		if (!need_log_inode(trans, di_inode)) {
6773 			btrfs_add_delayed_iput(di_inode);
6774 			continue;
6775 		}
6776 
6777 		if (btrfs_stack_dir_ftype(dir_item) == BTRFS_FT_DIR)
6778 			log_mode = LOG_INODE_ALL;
6779 
6780 		ctx->log_new_dentries = false;
6781 		ret = btrfs_log_inode(trans, di_inode, log_mode, ctx);
6782 
6783 		if (!ret && ctx->log_new_dentries)
6784 			ret = log_new_dir_dentries(trans, di_inode, ctx);
6785 
6786 		btrfs_add_delayed_iput(di_inode);
6787 
6788 		if (ret)
6789 			break;
6790 	}
6791 
6792 	ctx->log_new_dentries = orig_log_new_dentries;
6793 	ctx->logging_new_delayed_dentries = false;
6794 
6795 	return ret;
6796 }
6797 
6798 /* log a single inode in the tree log.
6799  * At least one parent directory for this inode must exist in the tree
6800  * or be logged already.
6801  *
6802  * Any items from this inode changed by the current transaction are copied
6803  * to the log tree.  An extra reference is taken on any extents in this
6804  * file, allowing us to avoid a whole pile of corner cases around logging
6805  * blocks that have been removed from the tree.
6806  *
6807  * See LOG_INODE_ALL and related defines for a description of what inode_only
6808  * does.
6809  *
6810  * This handles both files and directories.
6811  */
btrfs_log_inode(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,int inode_only,struct btrfs_log_ctx * ctx)6812 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
6813 			   struct btrfs_inode *inode,
6814 			   int inode_only,
6815 			   struct btrfs_log_ctx *ctx)
6816 {
6817 	struct btrfs_path *path;
6818 	struct btrfs_path *dst_path;
6819 	struct btrfs_key min_key;
6820 	struct btrfs_key max_key;
6821 	struct btrfs_root *log = inode->root->log_root;
6822 	int ret;
6823 	bool fast_search = false;
6824 	u64 ino = btrfs_ino(inode);
6825 	struct extent_map_tree *em_tree = &inode->extent_tree;
6826 	u64 logged_isize = 0;
6827 	bool need_log_inode_item = true;
6828 	bool xattrs_logged = false;
6829 	bool inode_item_dropped = true;
6830 	bool full_dir_logging = false;
6831 	LIST_HEAD(delayed_ins_list);
6832 	LIST_HEAD(delayed_del_list);
6833 
6834 	path = btrfs_alloc_path();
6835 	if (!path)
6836 		return -ENOMEM;
6837 	dst_path = btrfs_alloc_path();
6838 	if (!dst_path) {
6839 		btrfs_free_path(path);
6840 		return -ENOMEM;
6841 	}
6842 
6843 	min_key.objectid = ino;
6844 	min_key.type = BTRFS_INODE_ITEM_KEY;
6845 	min_key.offset = 0;
6846 
6847 	max_key.objectid = ino;
6848 
6849 
6850 	/* today the code can only do partial logging of directories */
6851 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
6852 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6853 		       &inode->runtime_flags) &&
6854 	     inode_only >= LOG_INODE_EXISTS))
6855 		max_key.type = BTRFS_XATTR_ITEM_KEY;
6856 	else
6857 		max_key.type = (u8)-1;
6858 	max_key.offset = (u64)-1;
6859 
6860 	if (S_ISDIR(inode->vfs_inode.i_mode) && inode_only == LOG_INODE_ALL)
6861 		full_dir_logging = true;
6862 
6863 	/*
6864 	 * If we are logging a directory while we are logging dentries of the
6865 	 * delayed items of some other inode, then we need to flush the delayed
6866 	 * items of this directory and not log the delayed items directly. This
6867 	 * is to prevent more than one level of recursion into btrfs_log_inode()
6868 	 * by having something like this:
6869 	 *
6870 	 *     $ mkdir -p a/b/c/d/e/f/g/h/...
6871 	 *     $ xfs_io -c "fsync" a
6872 	 *
6873 	 * Where all directories in the path did not exist before and are
6874 	 * created in the current transaction.
6875 	 * So in such a case we directly log the delayed items of the main
6876 	 * directory ("a") without flushing them first, while for each of its
6877 	 * subdirectories we flush their delayed items before logging them.
6878 	 * This prevents a potential unbounded recursion like this:
6879 	 *
6880 	 * btrfs_log_inode()
6881 	 *   log_new_delayed_dentries()
6882 	 *      btrfs_log_inode()
6883 	 *        log_new_delayed_dentries()
6884 	 *          btrfs_log_inode()
6885 	 *            log_new_delayed_dentries()
6886 	 *              (...)
6887 	 *
6888 	 * We have thresholds for the maximum number of delayed items to have in
6889 	 * memory, and once they are hit, the items are flushed asynchronously.
6890 	 * However the limit is quite high, so lets prevent deep levels of
6891 	 * recursion to happen by limiting the maximum depth to be 1.
6892 	 */
6893 	if (full_dir_logging && ctx->logging_new_delayed_dentries) {
6894 		ret = btrfs_commit_inode_delayed_items(trans, inode);
6895 		if (ret)
6896 			goto out;
6897 	}
6898 
6899 	mutex_lock(&inode->log_mutex);
6900 
6901 	/*
6902 	 * For symlinks, we must always log their content, which is stored in an
6903 	 * inline extent, otherwise we could end up with an empty symlink after
6904 	 * log replay, which is invalid on linux (symlink(2) returns -ENOENT if
6905 	 * one attempts to create an empty symlink).
6906 	 * We don't need to worry about flushing delalloc, because when we create
6907 	 * the inline extent when the symlink is created (we never have delalloc
6908 	 * for symlinks).
6909 	 */
6910 	if (S_ISLNK(inode->vfs_inode.i_mode))
6911 		inode_only = LOG_INODE_ALL;
6912 
6913 	/*
6914 	 * Before logging the inode item, cache the value returned by
6915 	 * inode_logged(), because after that we have the need to figure out if
6916 	 * the inode was previously logged in this transaction.
6917 	 */
6918 	ret = inode_logged(trans, inode, path);
6919 	if (ret < 0)
6920 		goto out_unlock;
6921 	ctx->logged_before = (ret == 1);
6922 	ret = 0;
6923 
6924 	/*
6925 	 * This is for cases where logging a directory could result in losing a
6926 	 * a file after replaying the log. For example, if we move a file from a
6927 	 * directory A to a directory B, then fsync directory A, we have no way
6928 	 * to known the file was moved from A to B, so logging just A would
6929 	 * result in losing the file after a log replay.
6930 	 */
6931 	if (full_dir_logging && inode->last_unlink_trans >= trans->transid) {
6932 		ret = BTRFS_LOG_FORCE_COMMIT;
6933 		goto out_unlock;
6934 	}
6935 
6936 	/*
6937 	 * a brute force approach to making sure we get the most uptodate
6938 	 * copies of everything.
6939 	 */
6940 	if (S_ISDIR(inode->vfs_inode.i_mode)) {
6941 		clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
6942 		if (ctx->logged_before)
6943 			ret = drop_inode_items(trans, log, path, inode,
6944 					       BTRFS_XATTR_ITEM_KEY);
6945 	} else {
6946 		if (inode_only == LOG_INODE_EXISTS && ctx->logged_before) {
6947 			/*
6948 			 * Make sure the new inode item we write to the log has
6949 			 * the same isize as the current one (if it exists).
6950 			 * This is necessary to prevent data loss after log
6951 			 * replay, and also to prevent doing a wrong expanding
6952 			 * truncate - for e.g. create file, write 4K into offset
6953 			 * 0, fsync, write 4K into offset 4096, add hard link,
6954 			 * fsync some other file (to sync log), power fail - if
6955 			 * we use the inode's current i_size, after log replay
6956 			 * we get a 8Kb file, with the last 4Kb extent as a hole
6957 			 * (zeroes), as if an expanding truncate happened,
6958 			 * instead of getting a file of 4Kb only.
6959 			 */
6960 			ret = logged_inode_size(log, inode, path, &logged_isize);
6961 			if (ret)
6962 				goto out_unlock;
6963 		}
6964 		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6965 			     &inode->runtime_flags)) {
6966 			if (inode_only == LOG_INODE_EXISTS) {
6967 				max_key.type = BTRFS_XATTR_ITEM_KEY;
6968 				if (ctx->logged_before)
6969 					ret = drop_inode_items(trans, log, path,
6970 							       inode, max_key.type);
6971 			} else {
6972 				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6973 					  &inode->runtime_flags);
6974 				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6975 					  &inode->runtime_flags);
6976 				if (ctx->logged_before)
6977 					ret = truncate_inode_items(trans, log,
6978 								   inode, 0, 0);
6979 			}
6980 		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6981 					      &inode->runtime_flags) ||
6982 			   inode_only == LOG_INODE_EXISTS) {
6983 			if (inode_only == LOG_INODE_ALL)
6984 				fast_search = true;
6985 			max_key.type = BTRFS_XATTR_ITEM_KEY;
6986 			if (ctx->logged_before)
6987 				ret = drop_inode_items(trans, log, path, inode,
6988 						       max_key.type);
6989 		} else {
6990 			if (inode_only == LOG_INODE_ALL)
6991 				fast_search = true;
6992 			inode_item_dropped = false;
6993 			goto log_extents;
6994 		}
6995 
6996 	}
6997 	if (ret)
6998 		goto out_unlock;
6999 
7000 	/*
7001 	 * If we are logging a directory in full mode, collect the delayed items
7002 	 * before iterating the subvolume tree, so that we don't miss any new
7003 	 * dir index items in case they get flushed while or right after we are
7004 	 * iterating the subvolume tree.
7005 	 */
7006 	if (full_dir_logging && !ctx->logging_new_delayed_dentries)
7007 		btrfs_log_get_delayed_items(inode, &delayed_ins_list,
7008 					    &delayed_del_list);
7009 
7010 	/*
7011 	 * If we are fsyncing a file with 0 hard links, then commit the delayed
7012 	 * inode because the last inode ref (or extref) item may still be in the
7013 	 * subvolume tree and if we log it the file will still exist after a log
7014 	 * replay. So commit the delayed inode to delete that last ref and we
7015 	 * skip logging it.
7016 	 */
7017 	if (inode->vfs_inode.i_nlink == 0) {
7018 		ret = btrfs_commit_inode_delayed_inode(inode);
7019 		if (ret)
7020 			goto out_unlock;
7021 	}
7022 
7023 	ret = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
7024 				      path, dst_path, logged_isize,
7025 				      inode_only, ctx,
7026 				      &need_log_inode_item);
7027 	if (ret)
7028 		goto out_unlock;
7029 
7030 	btrfs_release_path(path);
7031 	btrfs_release_path(dst_path);
7032 	ret = btrfs_log_all_xattrs(trans, inode, path, dst_path, ctx);
7033 	if (ret)
7034 		goto out_unlock;
7035 	xattrs_logged = true;
7036 	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
7037 		btrfs_release_path(path);
7038 		btrfs_release_path(dst_path);
7039 		ret = btrfs_log_holes(trans, inode, path);
7040 		if (ret)
7041 			goto out_unlock;
7042 	}
7043 log_extents:
7044 	btrfs_release_path(path);
7045 	btrfs_release_path(dst_path);
7046 	if (need_log_inode_item) {
7047 		ret = log_inode_item(trans, log, dst_path, inode, inode_item_dropped);
7048 		if (ret)
7049 			goto out_unlock;
7050 		/*
7051 		 * If we are doing a fast fsync and the inode was logged before
7052 		 * in this transaction, we don't need to log the xattrs because
7053 		 * they were logged before. If xattrs were added, changed or
7054 		 * deleted since the last time we logged the inode, then we have
7055 		 * already logged them because the inode had the runtime flag
7056 		 * BTRFS_INODE_COPY_EVERYTHING set.
7057 		 */
7058 		if (!xattrs_logged && inode->logged_trans < trans->transid) {
7059 			ret = btrfs_log_all_xattrs(trans, inode, path, dst_path, ctx);
7060 			if (ret)
7061 				goto out_unlock;
7062 			btrfs_release_path(path);
7063 		}
7064 	}
7065 	if (fast_search) {
7066 		ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx);
7067 		if (ret)
7068 			goto out_unlock;
7069 	} else if (inode_only == LOG_INODE_ALL) {
7070 		struct extent_map *em, *n;
7071 
7072 		write_lock(&em_tree->lock);
7073 		list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
7074 			list_del_init(&em->list);
7075 		write_unlock(&em_tree->lock);
7076 	}
7077 
7078 	if (full_dir_logging) {
7079 		ret = log_directory_changes(trans, inode, path, dst_path, ctx);
7080 		if (ret)
7081 			goto out_unlock;
7082 		ret = log_delayed_insertion_items(trans, inode, path,
7083 						  &delayed_ins_list, ctx);
7084 		if (ret)
7085 			goto out_unlock;
7086 		ret = log_delayed_deletion_items(trans, inode, path,
7087 						 &delayed_del_list, ctx);
7088 		if (ret)
7089 			goto out_unlock;
7090 	}
7091 
7092 	spin_lock(&inode->lock);
7093 	inode->logged_trans = trans->transid;
7094 	/*
7095 	 * Don't update last_log_commit if we logged that an inode exists.
7096 	 * We do this for three reasons:
7097 	 *
7098 	 * 1) We might have had buffered writes to this inode that were
7099 	 *    flushed and had their ordered extents completed in this
7100 	 *    transaction, but we did not previously log the inode with
7101 	 *    LOG_INODE_ALL. Later the inode was evicted and after that
7102 	 *    it was loaded again and this LOG_INODE_EXISTS log operation
7103 	 *    happened. We must make sure that if an explicit fsync against
7104 	 *    the inode is performed later, it logs the new extents, an
7105 	 *    updated inode item, etc, and syncs the log. The same logic
7106 	 *    applies to direct IO writes instead of buffered writes.
7107 	 *
7108 	 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
7109 	 *    is logged with an i_size of 0 or whatever value was logged
7110 	 *    before. If later the i_size of the inode is increased by a
7111 	 *    truncate operation, the log is synced through an fsync of
7112 	 *    some other inode and then finally an explicit fsync against
7113 	 *    this inode is made, we must make sure this fsync logs the
7114 	 *    inode with the new i_size, the hole between old i_size and
7115 	 *    the new i_size, and syncs the log.
7116 	 *
7117 	 * 3) If we are logging that an ancestor inode exists as part of
7118 	 *    logging a new name from a link or rename operation, don't update
7119 	 *    its last_log_commit - otherwise if an explicit fsync is made
7120 	 *    against an ancestor, the fsync considers the inode in the log
7121 	 *    and doesn't sync the log, resulting in the ancestor missing after
7122 	 *    a power failure unless the log was synced as part of an fsync
7123 	 *    against any other unrelated inode.
7124 	 */
7125 	if (inode_only != LOG_INODE_EXISTS)
7126 		inode->last_log_commit = inode->last_sub_trans;
7127 	spin_unlock(&inode->lock);
7128 
7129 	/*
7130 	 * Reset the last_reflink_trans so that the next fsync does not need to
7131 	 * go through the slower path when logging extents and their checksums.
7132 	 */
7133 	if (inode_only == LOG_INODE_ALL)
7134 		inode->last_reflink_trans = 0;
7135 
7136 out_unlock:
7137 	mutex_unlock(&inode->log_mutex);
7138 out:
7139 	btrfs_free_path(path);
7140 	btrfs_free_path(dst_path);
7141 
7142 	if (ret)
7143 		free_conflicting_inodes(ctx);
7144 	else
7145 		ret = log_conflicting_inodes(trans, inode->root, ctx);
7146 
7147 	if (full_dir_logging && !ctx->logging_new_delayed_dentries) {
7148 		if (!ret)
7149 			ret = log_new_delayed_dentries(trans, inode,
7150 						       &delayed_ins_list, ctx);
7151 
7152 		btrfs_log_put_delayed_items(inode, &delayed_ins_list,
7153 					    &delayed_del_list);
7154 	}
7155 
7156 	return ret;
7157 }
7158 
btrfs_log_all_parents(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_log_ctx * ctx)7159 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
7160 				 struct btrfs_inode *inode,
7161 				 struct btrfs_log_ctx *ctx)
7162 {
7163 	int ret;
7164 	BTRFS_PATH_AUTO_FREE(path);
7165 	struct btrfs_key key;
7166 	struct btrfs_root *root = inode->root;
7167 	const u64 ino = btrfs_ino(inode);
7168 
7169 	path = btrfs_alloc_path();
7170 	if (!path)
7171 		return -ENOMEM;
7172 	path->skip_locking = 1;
7173 	path->search_commit_root = 1;
7174 
7175 	key.objectid = ino;
7176 	key.type = BTRFS_INODE_REF_KEY;
7177 	key.offset = 0;
7178 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7179 	if (ret < 0)
7180 		return ret;
7181 
7182 	while (true) {
7183 		struct extent_buffer *leaf = path->nodes[0];
7184 		int slot = path->slots[0];
7185 		u32 cur_offset = 0;
7186 		u32 item_size;
7187 		unsigned long ptr;
7188 
7189 		if (slot >= btrfs_header_nritems(leaf)) {
7190 			ret = btrfs_next_leaf(root, path);
7191 			if (ret < 0)
7192 				return ret;
7193 			if (ret > 0)
7194 				break;
7195 			continue;
7196 		}
7197 
7198 		btrfs_item_key_to_cpu(leaf, &key, slot);
7199 		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
7200 		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
7201 			break;
7202 
7203 		item_size = btrfs_item_size(leaf, slot);
7204 		ptr = btrfs_item_ptr_offset(leaf, slot);
7205 		while (cur_offset < item_size) {
7206 			struct btrfs_key inode_key;
7207 			struct btrfs_inode *dir_inode;
7208 
7209 			inode_key.type = BTRFS_INODE_ITEM_KEY;
7210 			inode_key.offset = 0;
7211 
7212 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
7213 				struct btrfs_inode_extref *extref;
7214 
7215 				extref = (struct btrfs_inode_extref *)
7216 					(ptr + cur_offset);
7217 				inode_key.objectid = btrfs_inode_extref_parent(
7218 					leaf, extref);
7219 				cur_offset += sizeof(*extref);
7220 				cur_offset += btrfs_inode_extref_name_len(leaf,
7221 					extref);
7222 			} else {
7223 				inode_key.objectid = key.offset;
7224 				cur_offset = item_size;
7225 			}
7226 
7227 			dir_inode = btrfs_iget_logging(inode_key.objectid, root);
7228 			/*
7229 			 * If the parent inode was deleted, return an error to
7230 			 * fallback to a transaction commit. This is to prevent
7231 			 * getting an inode that was moved from one parent A to
7232 			 * a parent B, got its former parent A deleted and then
7233 			 * it got fsync'ed, from existing at both parents after
7234 			 * a log replay (and the old parent still existing).
7235 			 * Example:
7236 			 *
7237 			 * mkdir /mnt/A
7238 			 * mkdir /mnt/B
7239 			 * touch /mnt/B/bar
7240 			 * sync
7241 			 * mv /mnt/B/bar /mnt/A/bar
7242 			 * mv -T /mnt/A /mnt/B
7243 			 * fsync /mnt/B/bar
7244 			 * <power fail>
7245 			 *
7246 			 * If we ignore the old parent B which got deleted,
7247 			 * after a log replay we would have file bar linked
7248 			 * at both parents and the old parent B would still
7249 			 * exist.
7250 			 */
7251 			if (IS_ERR(dir_inode))
7252 				return PTR_ERR(dir_inode);
7253 
7254 			if (!need_log_inode(trans, dir_inode)) {
7255 				btrfs_add_delayed_iput(dir_inode);
7256 				continue;
7257 			}
7258 
7259 			ctx->log_new_dentries = false;
7260 			ret = btrfs_log_inode(trans, dir_inode, LOG_INODE_ALL, ctx);
7261 			if (!ret && ctx->log_new_dentries)
7262 				ret = log_new_dir_dentries(trans, dir_inode, ctx);
7263 			btrfs_add_delayed_iput(dir_inode);
7264 			if (ret)
7265 				return ret;
7266 		}
7267 		path->slots[0]++;
7268 	}
7269 	return 0;
7270 }
7271 
log_new_ancestors(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_log_ctx * ctx)7272 static int log_new_ancestors(struct btrfs_trans_handle *trans,
7273 			     struct btrfs_root *root,
7274 			     struct btrfs_path *path,
7275 			     struct btrfs_log_ctx *ctx)
7276 {
7277 	struct btrfs_key found_key;
7278 
7279 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
7280 
7281 	while (true) {
7282 		struct extent_buffer *leaf;
7283 		int slot;
7284 		struct btrfs_key search_key;
7285 		struct btrfs_inode *inode;
7286 		u64 ino;
7287 		int ret = 0;
7288 
7289 		btrfs_release_path(path);
7290 
7291 		ino = found_key.offset;
7292 
7293 		search_key.objectid = found_key.offset;
7294 		search_key.type = BTRFS_INODE_ITEM_KEY;
7295 		search_key.offset = 0;
7296 		inode = btrfs_iget_logging(ino, root);
7297 		if (IS_ERR(inode))
7298 			return PTR_ERR(inode);
7299 
7300 		if (inode->generation >= trans->transid &&
7301 		    need_log_inode(trans, inode))
7302 			ret = btrfs_log_inode(trans, inode, LOG_INODE_EXISTS, ctx);
7303 		btrfs_add_delayed_iput(inode);
7304 		if (ret)
7305 			return ret;
7306 
7307 		if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
7308 			break;
7309 
7310 		search_key.type = BTRFS_INODE_REF_KEY;
7311 		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
7312 		if (ret < 0)
7313 			return ret;
7314 
7315 		leaf = path->nodes[0];
7316 		slot = path->slots[0];
7317 		if (slot >= btrfs_header_nritems(leaf)) {
7318 			ret = btrfs_next_leaf(root, path);
7319 			if (ret < 0)
7320 				return ret;
7321 			else if (ret > 0)
7322 				return -ENOENT;
7323 			leaf = path->nodes[0];
7324 			slot = path->slots[0];
7325 		}
7326 
7327 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
7328 		if (found_key.objectid != search_key.objectid ||
7329 		    found_key.type != BTRFS_INODE_REF_KEY)
7330 			return -ENOENT;
7331 	}
7332 	return 0;
7333 }
7334 
log_new_ancestors_fast(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,struct btrfs_log_ctx * ctx)7335 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
7336 				  struct btrfs_inode *inode,
7337 				  struct dentry *parent,
7338 				  struct btrfs_log_ctx *ctx)
7339 {
7340 	struct btrfs_root *root = inode->root;
7341 	struct dentry *old_parent = NULL;
7342 	struct super_block *sb = inode->vfs_inode.i_sb;
7343 	int ret = 0;
7344 
7345 	while (true) {
7346 		if (!parent || d_really_is_negative(parent) ||
7347 		    sb != parent->d_sb)
7348 			break;
7349 
7350 		inode = BTRFS_I(d_inode(parent));
7351 		if (root != inode->root)
7352 			break;
7353 
7354 		if (inode->generation >= trans->transid &&
7355 		    need_log_inode(trans, inode)) {
7356 			ret = btrfs_log_inode(trans, inode,
7357 					      LOG_INODE_EXISTS, ctx);
7358 			if (ret)
7359 				break;
7360 		}
7361 		if (IS_ROOT(parent))
7362 			break;
7363 
7364 		parent = dget_parent(parent);
7365 		dput(old_parent);
7366 		old_parent = parent;
7367 	}
7368 	dput(old_parent);
7369 
7370 	return ret;
7371 }
7372 
log_all_new_ancestors(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,struct btrfs_log_ctx * ctx)7373 static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
7374 				 struct btrfs_inode *inode,
7375 				 struct dentry *parent,
7376 				 struct btrfs_log_ctx *ctx)
7377 {
7378 	struct btrfs_root *root = inode->root;
7379 	const u64 ino = btrfs_ino(inode);
7380 	BTRFS_PATH_AUTO_FREE(path);
7381 	struct btrfs_key search_key;
7382 	int ret;
7383 
7384 	/*
7385 	 * For a single hard link case, go through a fast path that does not
7386 	 * need to iterate the fs/subvolume tree.
7387 	 */
7388 	if (inode->vfs_inode.i_nlink < 2)
7389 		return log_new_ancestors_fast(trans, inode, parent, ctx);
7390 
7391 	path = btrfs_alloc_path();
7392 	if (!path)
7393 		return -ENOMEM;
7394 
7395 	search_key.objectid = ino;
7396 	search_key.type = BTRFS_INODE_REF_KEY;
7397 	search_key.offset = 0;
7398 again:
7399 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
7400 	if (ret < 0)
7401 		return ret;
7402 	if (ret == 0)
7403 		path->slots[0]++;
7404 
7405 	while (true) {
7406 		struct extent_buffer *leaf = path->nodes[0];
7407 		int slot = path->slots[0];
7408 		struct btrfs_key found_key;
7409 
7410 		if (slot >= btrfs_header_nritems(leaf)) {
7411 			ret = btrfs_next_leaf(root, path);
7412 			if (ret < 0)
7413 				return ret;
7414 			if (ret > 0)
7415 				break;
7416 			continue;
7417 		}
7418 
7419 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
7420 		if (found_key.objectid != ino ||
7421 		    found_key.type > BTRFS_INODE_EXTREF_KEY)
7422 			break;
7423 
7424 		/*
7425 		 * Don't deal with extended references because they are rare
7426 		 * cases and too complex to deal with (we would need to keep
7427 		 * track of which subitem we are processing for each item in
7428 		 * this loop, etc). So just return some error to fallback to
7429 		 * a transaction commit.
7430 		 */
7431 		if (found_key.type == BTRFS_INODE_EXTREF_KEY)
7432 			return -EMLINK;
7433 
7434 		/*
7435 		 * Logging ancestors needs to do more searches on the fs/subvol
7436 		 * tree, so it releases the path as needed to avoid deadlocks.
7437 		 * Keep track of the last inode ref key and resume from that key
7438 		 * after logging all new ancestors for the current hard link.
7439 		 */
7440 		memcpy(&search_key, &found_key, sizeof(search_key));
7441 
7442 		ret = log_new_ancestors(trans, root, path, ctx);
7443 		if (ret)
7444 			return ret;
7445 		btrfs_release_path(path);
7446 		goto again;
7447 	}
7448 	return 0;
7449 }
7450 
7451 /*
7452  * helper function around btrfs_log_inode to make sure newly created
7453  * parent directories also end up in the log.  A minimal inode and backref
7454  * only logging is done of any parent directories that are older than
7455  * the last committed transaction
7456  */
btrfs_log_inode_parent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,int inode_only,struct btrfs_log_ctx * ctx)7457 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
7458 				  struct btrfs_inode *inode,
7459 				  struct dentry *parent,
7460 				  int inode_only,
7461 				  struct btrfs_log_ctx *ctx)
7462 {
7463 	struct btrfs_root *root = inode->root;
7464 	struct btrfs_fs_info *fs_info = root->fs_info;
7465 	int ret = 0;
7466 	bool log_dentries;
7467 
7468 	if (btrfs_test_opt(fs_info, NOTREELOG))
7469 		return BTRFS_LOG_FORCE_COMMIT;
7470 
7471 	if (btrfs_root_refs(&root->root_item) == 0)
7472 		return BTRFS_LOG_FORCE_COMMIT;
7473 
7474 	/*
7475 	 * If we're logging an inode from a subvolume created in the current
7476 	 * transaction we must force a commit since the root is not persisted.
7477 	 */
7478 	if (btrfs_root_generation(&root->root_item) == trans->transid)
7479 		return BTRFS_LOG_FORCE_COMMIT;
7480 
7481 	/* Skip already logged inodes and without new extents. */
7482 	if (btrfs_inode_in_log(inode, trans->transid) &&
7483 	    list_empty(&ctx->ordered_extents))
7484 		return BTRFS_NO_LOG_SYNC;
7485 
7486 	ret = start_log_trans(trans, root, ctx);
7487 	if (ret)
7488 		return ret;
7489 
7490 	ret = btrfs_log_inode(trans, inode, inode_only, ctx);
7491 	if (ret)
7492 		goto end_trans;
7493 
7494 	/*
7495 	 * for regular files, if its inode is already on disk, we don't
7496 	 * have to worry about the parents at all.  This is because
7497 	 * we can use the last_unlink_trans field to record renames
7498 	 * and other fun in this file.
7499 	 */
7500 	if (S_ISREG(inode->vfs_inode.i_mode) &&
7501 	    inode->generation < trans->transid &&
7502 	    inode->last_unlink_trans < trans->transid) {
7503 		ret = 0;
7504 		goto end_trans;
7505 	}
7506 
7507 	/*
7508 	 * Track if we need to log dentries because ctx->log_new_dentries can
7509 	 * be modified in the call chains below.
7510 	 */
7511 	log_dentries = ctx->log_new_dentries;
7512 
7513 	/*
7514 	 * On unlink we must make sure all our current and old parent directory
7515 	 * inodes are fully logged. This is to prevent leaving dangling
7516 	 * directory index entries in directories that were our parents but are
7517 	 * not anymore. Not doing this results in old parent directory being
7518 	 * impossible to delete after log replay (rmdir will always fail with
7519 	 * error -ENOTEMPTY).
7520 	 *
7521 	 * Example 1:
7522 	 *
7523 	 * mkdir testdir
7524 	 * touch testdir/foo
7525 	 * ln testdir/foo testdir/bar
7526 	 * sync
7527 	 * unlink testdir/bar
7528 	 * xfs_io -c fsync testdir/foo
7529 	 * <power failure>
7530 	 * mount fs, triggers log replay
7531 	 *
7532 	 * If we don't log the parent directory (testdir), after log replay the
7533 	 * directory still has an entry pointing to the file inode using the bar
7534 	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
7535 	 * the file inode has a link count of 1.
7536 	 *
7537 	 * Example 2:
7538 	 *
7539 	 * mkdir testdir
7540 	 * touch foo
7541 	 * ln foo testdir/foo2
7542 	 * ln foo testdir/foo3
7543 	 * sync
7544 	 * unlink testdir/foo3
7545 	 * xfs_io -c fsync foo
7546 	 * <power failure>
7547 	 * mount fs, triggers log replay
7548 	 *
7549 	 * Similar as the first example, after log replay the parent directory
7550 	 * testdir still has an entry pointing to the inode file with name foo3
7551 	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
7552 	 * and has a link count of 2.
7553 	 */
7554 	if (inode->last_unlink_trans >= trans->transid) {
7555 		ret = btrfs_log_all_parents(trans, inode, ctx);
7556 		if (ret)
7557 			goto end_trans;
7558 	}
7559 
7560 	ret = log_all_new_ancestors(trans, inode, parent, ctx);
7561 	if (ret)
7562 		goto end_trans;
7563 
7564 	if (log_dentries)
7565 		ret = log_new_dir_dentries(trans, inode, ctx);
7566 end_trans:
7567 	if (ret < 0) {
7568 		btrfs_set_log_full_commit(trans);
7569 		ret = BTRFS_LOG_FORCE_COMMIT;
7570 	}
7571 
7572 	if (ret)
7573 		btrfs_remove_log_ctx(root, ctx);
7574 	btrfs_end_log_trans(root);
7575 
7576 	return ret;
7577 }
7578 
7579 /*
7580  * it is not safe to log dentry if the chunk root has added new
7581  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
7582  * If this returns 1, you must commit the transaction to safely get your
7583  * data on disk.
7584  */
btrfs_log_dentry_safe(struct btrfs_trans_handle * trans,struct dentry * dentry,struct btrfs_log_ctx * ctx)7585 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
7586 			  struct dentry *dentry,
7587 			  struct btrfs_log_ctx *ctx)
7588 {
7589 	struct dentry *parent = dget_parent(dentry);
7590 	int ret;
7591 
7592 	ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
7593 				     LOG_INODE_ALL, ctx);
7594 	dput(parent);
7595 
7596 	return ret;
7597 }
7598 
7599 /*
7600  * should be called during mount to recover any replay any log trees
7601  * from the FS
7602  */
btrfs_recover_log_trees(struct btrfs_root * log_root_tree)7603 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
7604 {
7605 	int ret;
7606 	struct btrfs_path *path;
7607 	struct btrfs_trans_handle *trans;
7608 	struct btrfs_key key;
7609 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
7610 	struct walk_control wc = {
7611 		.process_func = process_one_buffer,
7612 		.stage = LOG_WALK_PIN_ONLY,
7613 	};
7614 
7615 	path = btrfs_alloc_path();
7616 	if (!path)
7617 		return -ENOMEM;
7618 
7619 	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7620 
7621 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
7622 	if (IS_ERR(trans)) {
7623 		ret = PTR_ERR(trans);
7624 		goto error;
7625 	}
7626 
7627 	wc.trans = trans;
7628 	wc.pin = true;
7629 	wc.log = log_root_tree;
7630 
7631 	ret = walk_log_tree(&wc);
7632 	wc.log = NULL;
7633 	if (unlikely(ret)) {
7634 		btrfs_abort_transaction(trans, ret);
7635 		goto error;
7636 	}
7637 
7638 again:
7639 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
7640 	key.type = BTRFS_ROOT_ITEM_KEY;
7641 	key.offset = (u64)-1;
7642 
7643 	while (1) {
7644 		struct btrfs_key found_key;
7645 
7646 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
7647 
7648 		if (unlikely(ret < 0)) {
7649 			btrfs_abort_transaction(trans, ret);
7650 			goto error;
7651 		}
7652 		if (ret > 0) {
7653 			if (path->slots[0] == 0)
7654 				break;
7655 			path->slots[0]--;
7656 		}
7657 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
7658 				      path->slots[0]);
7659 		btrfs_release_path(path);
7660 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7661 			break;
7662 
7663 		wc.log = btrfs_read_tree_root(log_root_tree, &found_key);
7664 		if (IS_ERR(wc.log)) {
7665 			ret = PTR_ERR(wc.log);
7666 			wc.log = NULL;
7667 			btrfs_abort_transaction(trans, ret);
7668 			goto error;
7669 		}
7670 
7671 		wc.root = btrfs_get_fs_root(fs_info, found_key.offset, true);
7672 		if (IS_ERR(wc.root)) {
7673 			ret = PTR_ERR(wc.root);
7674 			wc.root = NULL;
7675 			if (unlikely(ret != -ENOENT)) {
7676 				btrfs_abort_transaction(trans, ret);
7677 				goto error;
7678 			}
7679 
7680 			/*
7681 			 * We didn't find the subvol, likely because it was
7682 			 * deleted.  This is ok, simply skip this log and go to
7683 			 * the next one.
7684 			 *
7685 			 * We need to exclude the root because we can't have
7686 			 * other log replays overwriting this log as we'll read
7687 			 * it back in a few more times.  This will keep our
7688 			 * block from being modified, and we'll just bail for
7689 			 * each subsequent pass.
7690 			 */
7691 			ret = btrfs_pin_extent_for_log_replay(trans, wc.log->node);
7692 			if (unlikely(ret)) {
7693 				btrfs_abort_transaction(trans, ret);
7694 				goto error;
7695 			}
7696 			goto next;
7697 		}
7698 
7699 		wc.root->log_root = wc.log;
7700 		ret = btrfs_record_root_in_trans(trans, wc.root);
7701 		if (unlikely(ret)) {
7702 			btrfs_abort_transaction(trans, ret);
7703 			goto next;
7704 		}
7705 
7706 		ret = walk_log_tree(&wc);
7707 		if (unlikely(ret)) {
7708 			btrfs_abort_transaction(trans, ret);
7709 			goto next;
7710 		}
7711 
7712 		if (wc.stage == LOG_WALK_REPLAY_ALL) {
7713 			struct btrfs_root *root = wc.root;
7714 
7715 			wc.subvol_path = path;
7716 			ret = fixup_inode_link_counts(&wc);
7717 			wc.subvol_path = NULL;
7718 			if (unlikely(ret)) {
7719 				btrfs_abort_transaction(trans, ret);
7720 				goto next;
7721 			}
7722 			/*
7723 			 * We have just replayed everything, and the highest
7724 			 * objectid of fs roots probably has changed in case
7725 			 * some inode_item's got replayed.
7726 			 *
7727 			 * root->objectid_mutex is not acquired as log replay
7728 			 * could only happen during mount.
7729 			 */
7730 			ret = btrfs_init_root_free_objectid(root);
7731 			if (unlikely(ret)) {
7732 				btrfs_abort_transaction(trans, ret);
7733 				goto next;
7734 			}
7735 		}
7736 next:
7737 		if (wc.root) {
7738 			wc.root->log_root = NULL;
7739 			btrfs_put_root(wc.root);
7740 		}
7741 		btrfs_put_root(wc.log);
7742 		wc.log = NULL;
7743 
7744 		if (ret)
7745 			goto error;
7746 		if (found_key.offset == 0)
7747 			break;
7748 		key.offset = found_key.offset - 1;
7749 	}
7750 	btrfs_release_path(path);
7751 
7752 	/* step one is to pin it all, step two is to replay just inodes */
7753 	if (wc.pin) {
7754 		wc.pin = false;
7755 		wc.process_func = replay_one_buffer;
7756 		wc.stage = LOG_WALK_REPLAY_INODES;
7757 		goto again;
7758 	}
7759 	/* step three is to replay everything */
7760 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
7761 		wc.stage++;
7762 		goto again;
7763 	}
7764 
7765 	btrfs_free_path(path);
7766 
7767 	/* step 4: commit the transaction, which also unpins the blocks */
7768 	ret = btrfs_commit_transaction(trans);
7769 	if (ret)
7770 		return ret;
7771 
7772 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7773 
7774 	return 0;
7775 error:
7776 	if (wc.trans)
7777 		btrfs_end_transaction(wc.trans);
7778 	btrfs_put_root(wc.log);
7779 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7780 	btrfs_free_path(path);
7781 	return ret;
7782 }
7783 
7784 /*
7785  * there are some corner cases where we want to force a full
7786  * commit instead of allowing a directory to be logged.
7787  *
7788  * They revolve around files there were unlinked from the directory, and
7789  * this function updates the parent directory so that a full commit is
7790  * properly done if it is fsync'd later after the unlinks are done.
7791  *
7792  * Must be called before the unlink operations (updates to the subvolume tree,
7793  * inodes, etc) are done.
7794  */
btrfs_record_unlink_dir(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_inode * inode,bool for_rename)7795 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
7796 			     struct btrfs_inode *dir, struct btrfs_inode *inode,
7797 			     bool for_rename)
7798 {
7799 	/*
7800 	 * when we're logging a file, if it hasn't been renamed
7801 	 * or unlinked, and its inode is fully committed on disk,
7802 	 * we don't have to worry about walking up the directory chain
7803 	 * to log its parents.
7804 	 *
7805 	 * So, we use the last_unlink_trans field to put this transid
7806 	 * into the file.  When the file is logged we check it and
7807 	 * don't log the parents if the file is fully on disk.
7808 	 */
7809 	mutex_lock(&inode->log_mutex);
7810 	inode->last_unlink_trans = trans->transid;
7811 	mutex_unlock(&inode->log_mutex);
7812 
7813 	if (!for_rename)
7814 		return;
7815 
7816 	/*
7817 	 * If this directory was already logged, any new names will be logged
7818 	 * with btrfs_log_new_name() and old names will be deleted from the log
7819 	 * tree with btrfs_del_dir_entries_in_log() or with
7820 	 * btrfs_del_inode_ref_in_log().
7821 	 */
7822 	if (inode_logged(trans, dir, NULL) == 1)
7823 		return;
7824 
7825 	/*
7826 	 * If the inode we're about to unlink was logged before, the log will be
7827 	 * properly updated with the new name with btrfs_log_new_name() and the
7828 	 * old name removed with btrfs_del_dir_entries_in_log() or with
7829 	 * btrfs_del_inode_ref_in_log().
7830 	 */
7831 	if (inode_logged(trans, inode, NULL) == 1)
7832 		return;
7833 
7834 	/*
7835 	 * when renaming files across directories, if the directory
7836 	 * there we're unlinking from gets fsync'd later on, there's
7837 	 * no way to find the destination directory later and fsync it
7838 	 * properly.  So, we have to be conservative and force commits
7839 	 * so the new name gets discovered.
7840 	 */
7841 	mutex_lock(&dir->log_mutex);
7842 	dir->last_unlink_trans = trans->transid;
7843 	mutex_unlock(&dir->log_mutex);
7844 }
7845 
7846 /*
7847  * Make sure that if someone attempts to fsync the parent directory of a deleted
7848  * snapshot, it ends up triggering a transaction commit. This is to guarantee
7849  * that after replaying the log tree of the parent directory's root we will not
7850  * see the snapshot anymore and at log replay time we will not see any log tree
7851  * corresponding to the deleted snapshot's root, which could lead to replaying
7852  * it after replaying the log tree of the parent directory (which would replay
7853  * the snapshot delete operation).
7854  *
7855  * Must be called before the actual snapshot destroy operation (updates to the
7856  * parent root and tree of tree roots trees, etc) are done.
7857  */
btrfs_record_snapshot_destroy(struct btrfs_trans_handle * trans,struct btrfs_inode * dir)7858 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
7859 				   struct btrfs_inode *dir)
7860 {
7861 	mutex_lock(&dir->log_mutex);
7862 	dir->last_unlink_trans = trans->transid;
7863 	mutex_unlock(&dir->log_mutex);
7864 }
7865 
7866 /*
7867  * Call this when creating a subvolume in a directory.
7868  * Because we don't commit a transaction when creating a subvolume, we can't
7869  * allow the directory pointing to the subvolume to be logged with an entry that
7870  * points to an unpersisted root if we are still in the transaction used to
7871  * create the subvolume, so make any attempt to log the directory to result in a
7872  * full log sync.
7873  * Also we don't need to worry with renames, since btrfs_rename() marks the log
7874  * for full commit when renaming a subvolume.
7875  *
7876  * Must be called before creating the subvolume entry in its parent directory.
7877  */
btrfs_record_new_subvolume(const struct btrfs_trans_handle * trans,struct btrfs_inode * dir)7878 void btrfs_record_new_subvolume(const struct btrfs_trans_handle *trans,
7879 				struct btrfs_inode *dir)
7880 {
7881 	mutex_lock(&dir->log_mutex);
7882 	dir->last_unlink_trans = trans->transid;
7883 	mutex_unlock(&dir->log_mutex);
7884 }
7885 
7886 /*
7887  * Update the log after adding a new name for an inode.
7888  *
7889  * @trans:              Transaction handle.
7890  * @old_dentry:         The dentry associated with the old name and the old
7891  *                      parent directory.
7892  * @old_dir:            The inode of the previous parent directory for the case
7893  *                      of a rename. For a link operation, it must be NULL.
7894  * @old_dir_index:      The index number associated with the old name, meaningful
7895  *                      only for rename operations (when @old_dir is not NULL).
7896  *                      Ignored for link operations.
7897  * @parent:             The dentry associated with the directory under which the
7898  *                      new name is located.
7899  *
7900  * Call this after adding a new name for an inode, as a result of a link or
7901  * rename operation, and it will properly update the log to reflect the new name.
7902  */
btrfs_log_new_name(struct btrfs_trans_handle * trans,struct dentry * old_dentry,struct btrfs_inode * old_dir,u64 old_dir_index,struct dentry * parent)7903 void btrfs_log_new_name(struct btrfs_trans_handle *trans,
7904 			struct dentry *old_dentry, struct btrfs_inode *old_dir,
7905 			u64 old_dir_index, struct dentry *parent)
7906 {
7907 	struct btrfs_inode *inode = BTRFS_I(d_inode(old_dentry));
7908 	struct btrfs_root *root = inode->root;
7909 	struct btrfs_log_ctx ctx;
7910 	bool log_pinned = false;
7911 	int ret;
7912 
7913 	btrfs_init_log_ctx(&ctx, inode);
7914 	ctx.logging_new_name = true;
7915 
7916 	/*
7917 	 * this will force the logging code to walk the dentry chain
7918 	 * up for the file
7919 	 */
7920 	if (!S_ISDIR(inode->vfs_inode.i_mode))
7921 		inode->last_unlink_trans = trans->transid;
7922 
7923 	/*
7924 	 * if this inode hasn't been logged and directory we're renaming it
7925 	 * from hasn't been logged, we don't need to log it
7926 	 */
7927 	ret = inode_logged(trans, inode, NULL);
7928 	if (ret < 0) {
7929 		goto out;
7930 	} else if (ret == 0) {
7931 		if (!old_dir)
7932 			return;
7933 		/*
7934 		 * If the inode was not logged and we are doing a rename (old_dir is not
7935 		 * NULL), check if old_dir was logged - if it was not we can return and
7936 		 * do nothing.
7937 		 */
7938 		ret = inode_logged(trans, old_dir, NULL);
7939 		if (ret < 0)
7940 			goto out;
7941 		else if (ret == 0)
7942 			return;
7943 	}
7944 	ret = 0;
7945 
7946 	/*
7947 	 * Now that we know we need to update the log, allocate the scratch eb
7948 	 * for the context before joining a log transaction below, as this can
7949 	 * take time and therefore we could delay log commits from other tasks.
7950 	 */
7951 	btrfs_init_log_ctx_scratch_eb(&ctx);
7952 
7953 	/*
7954 	 * If we are doing a rename (old_dir is not NULL) from a directory that
7955 	 * was previously logged, make sure that on log replay we get the old
7956 	 * dir entry deleted. This is needed because we will also log the new
7957 	 * name of the renamed inode, so we need to make sure that after log
7958 	 * replay we don't end up with both the new and old dir entries existing.
7959 	 */
7960 	if (old_dir && old_dir->logged_trans == trans->transid) {
7961 		struct btrfs_root *log = old_dir->root->log_root;
7962 		struct btrfs_path *path;
7963 		struct fscrypt_name fname;
7964 
7965 		ASSERT(old_dir_index >= BTRFS_DIR_START_INDEX);
7966 
7967 		ret = fscrypt_setup_filename(&old_dir->vfs_inode,
7968 					     &old_dentry->d_name, 0, &fname);
7969 		if (ret)
7970 			goto out;
7971 
7972 		path = btrfs_alloc_path();
7973 		if (!path) {
7974 			ret = -ENOMEM;
7975 			fscrypt_free_filename(&fname);
7976 			goto out;
7977 		}
7978 
7979 		/*
7980 		 * We have two inodes to update in the log, the old directory and
7981 		 * the inode that got renamed, so we must pin the log to prevent
7982 		 * anyone from syncing the log until we have updated both inodes
7983 		 * in the log.
7984 		 */
7985 		ret = join_running_log_trans(root);
7986 		/*
7987 		 * At least one of the inodes was logged before, so this should
7988 		 * not fail, but if it does, it's not serious, just bail out and
7989 		 * mark the log for a full commit.
7990 		 */
7991 		if (WARN_ON_ONCE(ret < 0)) {
7992 			btrfs_free_path(path);
7993 			fscrypt_free_filename(&fname);
7994 			goto out;
7995 		}
7996 
7997 		log_pinned = true;
7998 
7999 		/*
8000 		 * Other concurrent task might be logging the old directory,
8001 		 * as it can be triggered when logging other inode that had or
8002 		 * still has a dentry in the old directory. We lock the old
8003 		 * directory's log_mutex to ensure the deletion of the old
8004 		 * name is persisted, because during directory logging we
8005 		 * delete all BTRFS_DIR_LOG_INDEX_KEY keys and the deletion of
8006 		 * the old name's dir index item is in the delayed items, so
8007 		 * it could be missed by an in progress directory logging.
8008 		 */
8009 		mutex_lock(&old_dir->log_mutex);
8010 		ret = del_logged_dentry(trans, log, path, btrfs_ino(old_dir),
8011 					&fname.disk_name, old_dir_index);
8012 		if (ret > 0) {
8013 			/*
8014 			 * The dentry does not exist in the log, so record its
8015 			 * deletion.
8016 			 */
8017 			btrfs_release_path(path);
8018 			ret = insert_dir_log_key(trans, log, path,
8019 						 btrfs_ino(old_dir),
8020 						 old_dir_index, old_dir_index);
8021 		}
8022 		mutex_unlock(&old_dir->log_mutex);
8023 
8024 		btrfs_free_path(path);
8025 		fscrypt_free_filename(&fname);
8026 		if (ret < 0)
8027 			goto out;
8028 	}
8029 
8030 	/*
8031 	 * We don't care about the return value. If we fail to log the new name
8032 	 * then we know the next attempt to sync the log will fallback to a full
8033 	 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
8034 	 * we don't need to worry about getting a log committed that has an
8035 	 * inconsistent state after a rename operation.
8036 	 */
8037 	btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
8038 	ASSERT(list_empty(&ctx.conflict_inodes));
8039 out:
8040 	/*
8041 	 * If an error happened mark the log for a full commit because it's not
8042 	 * consistent and up to date or we couldn't find out if one of the
8043 	 * inodes was logged before in this transaction. Do it before unpinning
8044 	 * the log, to avoid any races with someone else trying to commit it.
8045 	 */
8046 	if (ret < 0)
8047 		btrfs_set_log_full_commit(trans);
8048 	if (log_pinned)
8049 		btrfs_end_log_trans(root);
8050 	free_extent_buffer(ctx.scratch_eb);
8051 }
8052 
8053