1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/blkdev.h> 4 #include <linux/fscrypt.h> 5 #include <linux/iversion.h> 6 #include "ctree.h" 7 #include "fs.h" 8 #include "messages.h" 9 #include "compression.h" 10 #include "delalloc-space.h" 11 #include "disk-io.h" 12 #include "reflink.h" 13 #include "transaction.h" 14 #include "subpage.h" 15 #include "accessors.h" 16 #include "file-item.h" 17 #include "file.h" 18 #include "super.h" 19 20 #define BTRFS_MAX_DEDUPE_LEN SZ_16M 21 22 static int clone_finish_inode_update(struct btrfs_trans_handle *trans, 23 struct inode *inode, 24 u64 endoff, 25 const u64 destoff, 26 const u64 olen, 27 bool no_time_update) 28 { 29 int ret; 30 31 inode_inc_iversion(inode); 32 if (!no_time_update) { 33 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 34 } 35 /* 36 * We round up to the block size at eof when determining which 37 * extents to clone above, but shouldn't round up the file size. 38 */ 39 if (endoff > destoff + olen) 40 endoff = destoff + olen; 41 if (endoff > inode->i_size) { 42 i_size_write(inode, endoff); 43 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 44 } 45 46 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 47 if (unlikely(ret)) { 48 btrfs_abort_transaction(trans, ret); 49 btrfs_end_transaction(trans); 50 return ret; 51 } 52 return btrfs_end_transaction(trans); 53 } 54 55 static int copy_inline_to_page(struct btrfs_inode *inode, 56 const u64 file_offset, 57 char *inline_data, 58 const u64 size, 59 const u64 datal, 60 const u8 comp_type) 61 { 62 struct btrfs_fs_info *fs_info = inode->root->fs_info; 63 const u32 block_size = fs_info->sectorsize; 64 const u64 range_end = file_offset + block_size - 1; 65 const size_t inline_size = size - btrfs_file_extent_calc_inline_size(0); 66 char *data_start = inline_data + btrfs_file_extent_calc_inline_size(0); 67 struct extent_changeset *data_reserved = NULL; 68 struct folio *folio = NULL; 69 struct address_space *mapping = inode->vfs_inode.i_mapping; 70 int ret; 71 72 ASSERT(IS_ALIGNED(file_offset, block_size)); 73 74 /* 75 * We have flushed and locked the ranges of the source and destination 76 * inodes, we also have locked the inodes, so we are safe to do a 77 * reservation here. Also we must not do the reservation while holding 78 * a transaction open, otherwise we would deadlock. 79 */ 80 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, file_offset, 81 block_size); 82 if (ret) 83 goto out; 84 85 folio = __filemap_get_folio(mapping, file_offset >> PAGE_SHIFT, 86 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, 87 btrfs_alloc_write_mask(mapping)); 88 if (IS_ERR(folio)) { 89 ret = PTR_ERR(folio); 90 goto out_unlock; 91 } 92 93 ret = set_folio_extent_mapped(folio); 94 if (ret < 0) 95 goto out_unlock; 96 97 btrfs_clear_extent_bit(&inode->io_tree, file_offset, range_end, 98 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, NULL); 99 ret = btrfs_set_extent_delalloc(inode, file_offset, range_end, 0, NULL); 100 if (ret) 101 goto out_unlock; 102 103 /* 104 * After dirtying the page our caller will need to start a transaction, 105 * and if we are low on metadata free space, that can cause flushing of 106 * delalloc for all inodes in order to get metadata space released. 107 * However we are holding the range locked for the whole duration of 108 * the clone/dedupe operation, so we may deadlock if that happens and no 109 * other task releases enough space. So mark this inode as not being 110 * possible to flush to avoid such deadlock. We will clear that flag 111 * when we finish cloning all extents, since a transaction is started 112 * after finding each extent to clone. 113 */ 114 set_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &inode->runtime_flags); 115 116 if (comp_type == BTRFS_COMPRESS_NONE) { 117 memcpy_to_folio(folio, offset_in_folio(folio, file_offset), data_start, 118 datal); 119 } else { 120 ret = btrfs_decompress(comp_type, data_start, folio, 121 offset_in_folio(folio, file_offset), 122 inline_size, datal); 123 if (ret) 124 goto out_unlock; 125 flush_dcache_folio(folio); 126 } 127 128 /* 129 * If our inline data is smaller then the block/page size, then the 130 * remaining of the block/page is equivalent to zeroes. We had something 131 * like the following done: 132 * 133 * $ xfs_io -f -c "pwrite -S 0xab 0 500" file 134 * $ sync # (or fsync) 135 * $ xfs_io -c "falloc 0 4K" file 136 * $ xfs_io -c "pwrite -S 0xcd 4K 4K" 137 * 138 * So what's in the range [500, 4095] corresponds to zeroes. 139 */ 140 if (datal < block_size) 141 folio_zero_range(folio, datal, block_size - datal); 142 143 btrfs_folio_set_uptodate(fs_info, folio, file_offset, block_size); 144 btrfs_folio_clear_checked(fs_info, folio, file_offset, block_size); 145 btrfs_folio_set_dirty(fs_info, folio, file_offset, block_size); 146 out_unlock: 147 if (!IS_ERR(folio)) { 148 folio_unlock(folio); 149 folio_put(folio); 150 } 151 if (ret) 152 btrfs_delalloc_release_space(inode, data_reserved, file_offset, 153 block_size, true); 154 btrfs_delalloc_release_extents(inode, block_size); 155 out: 156 extent_changeset_free(data_reserved); 157 158 return ret; 159 } 160 161 /* 162 * Deal with cloning of inline extents. We try to copy the inline extent from 163 * the source inode to destination inode when possible. When not possible we 164 * copy the inline extent's data into the respective page of the inode. 165 */ 166 static int clone_copy_inline_extent(struct btrfs_inode *inode, 167 struct btrfs_path *path, 168 struct btrfs_key *new_key, 169 const u64 drop_start, 170 const u64 datal, 171 const u64 size, 172 const u8 comp_type, 173 char *inline_data, 174 struct btrfs_trans_handle **trans_out) 175 { 176 struct btrfs_root *root = inode->root; 177 struct btrfs_fs_info *fs_info = root->fs_info; 178 const u64 aligned_end = ALIGN(new_key->offset + datal, 179 fs_info->sectorsize); 180 struct btrfs_trans_handle *trans = NULL; 181 struct btrfs_drop_extents_args drop_args = { 0 }; 182 int ret; 183 struct btrfs_key key; 184 185 if (new_key->offset > 0) { 186 ret = copy_inline_to_page(inode, new_key->offset, 187 inline_data, size, datal, comp_type); 188 goto out; 189 } 190 191 key.objectid = btrfs_ino(inode); 192 key.type = BTRFS_EXTENT_DATA_KEY; 193 key.offset = 0; 194 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 195 if (ret < 0) { 196 return ret; 197 } else if (ret > 0) { 198 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 199 ret = btrfs_next_leaf(root, path); 200 if (ret < 0) 201 return ret; 202 else if (ret > 0) 203 goto copy_inline_extent; 204 } 205 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 206 if (key.objectid == btrfs_ino(inode) && 207 key.type == BTRFS_EXTENT_DATA_KEY) { 208 /* 209 * There's an implicit hole at file offset 0, copy the 210 * inline extent's data to the page. 211 */ 212 ASSERT(key.offset > 0); 213 goto copy_to_page; 214 } 215 } else if (i_size_read(&inode->vfs_inode) <= datal) { 216 struct btrfs_file_extent_item *ei; 217 218 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 219 struct btrfs_file_extent_item); 220 /* 221 * If it's an inline extent replace it with the source inline 222 * extent, otherwise copy the source inline extent data into 223 * the respective page at the destination inode. 224 */ 225 if (btrfs_file_extent_type(path->nodes[0], ei) == 226 BTRFS_FILE_EXTENT_INLINE) 227 goto copy_inline_extent; 228 229 goto copy_to_page; 230 } 231 232 copy_inline_extent: 233 /* 234 * We have no extent items, or we have an extent at offset 0 which may 235 * or may not be inlined. All these cases are dealt the same way. 236 */ 237 if (i_size_read(&inode->vfs_inode) > datal) { 238 /* 239 * At the destination offset 0 we have either a hole, a regular 240 * extent or an inline extent larger then the one we want to 241 * clone. Deal with all these cases by copying the inline extent 242 * data into the respective page at the destination inode. 243 */ 244 goto copy_to_page; 245 } 246 247 /* 248 * Release path before starting a new transaction so we don't hold locks 249 * that would confuse lockdep. 250 */ 251 btrfs_release_path(path); 252 /* 253 * If we end up here it means were copy the inline extent into a leaf 254 * of the destination inode. We know we will drop or adjust at most one 255 * extent item in the destination root. 256 * 257 * 1 unit - adjusting old extent (we may have to split it) 258 * 1 unit - add new extent 259 * 1 unit - inode update 260 */ 261 trans = btrfs_start_transaction(root, 3); 262 if (IS_ERR(trans)) { 263 ret = PTR_ERR(trans); 264 trans = NULL; 265 goto out; 266 } 267 drop_args.path = path; 268 drop_args.start = drop_start; 269 drop_args.end = aligned_end; 270 drop_args.drop_cache = true; 271 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 272 if (unlikely(ret)) { 273 btrfs_abort_transaction(trans, ret); 274 goto out; 275 } 276 ret = btrfs_insert_empty_item(trans, root, path, new_key, size); 277 if (unlikely(ret)) { 278 btrfs_abort_transaction(trans, ret); 279 goto out; 280 } 281 282 write_extent_buffer(path->nodes[0], inline_data, 283 btrfs_item_ptr_offset(path->nodes[0], 284 path->slots[0]), 285 size); 286 btrfs_update_inode_bytes(inode, datal, drop_args.bytes_found); 287 btrfs_set_inode_full_sync(inode); 288 ret = btrfs_inode_set_file_extent_range(inode, 0, aligned_end); 289 if (unlikely(ret)) 290 btrfs_abort_transaction(trans, ret); 291 out: 292 if (!ret && !trans) { 293 /* 294 * No transaction here means we copied the inline extent into a 295 * page of the destination inode. 296 * 297 * 1 unit to update inode item 298 */ 299 trans = btrfs_start_transaction(root, 1); 300 if (IS_ERR(trans)) { 301 ret = PTR_ERR(trans); 302 trans = NULL; 303 } 304 } 305 if (ret && trans) 306 btrfs_end_transaction(trans); 307 if (!ret) 308 *trans_out = trans; 309 310 return ret; 311 312 copy_to_page: 313 /* 314 * Release our path because we don't need it anymore and also because 315 * copy_inline_to_page() needs to reserve data and metadata, which may 316 * need to flush delalloc when we are low on available space and 317 * therefore cause a deadlock if writeback of an inline extent needs to 318 * write to the same leaf or an ordered extent completion needs to write 319 * to the same leaf. 320 */ 321 btrfs_release_path(path); 322 323 ret = copy_inline_to_page(inode, new_key->offset, 324 inline_data, size, datal, comp_type); 325 goto out; 326 } 327 328 /* 329 * Clone a range from inode file to another. 330 * 331 * @src: Inode to clone from 332 * @inode: Inode to clone to 333 * @off: Offset within source to start clone from 334 * @olen: Original length, passed by user, of range to clone 335 * @olen_aligned: Block-aligned value of olen 336 * @destoff: Offset within @inode to start clone 337 * @no_time_update: Whether to update mtime/ctime on the target inode 338 */ 339 static int btrfs_clone(struct inode *src, struct inode *inode, 340 const u64 off, const u64 olen, const u64 olen_aligned, 341 const u64 destoff, bool no_time_update) 342 { 343 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 344 BTRFS_PATH_AUTO_FREE(path); 345 struct extent_buffer *leaf; 346 struct btrfs_trans_handle *trans; 347 char AUTO_KVFREE(buf); 348 struct btrfs_key key; 349 u32 nritems; 350 int slot; 351 int ret; 352 const u64 len = olen_aligned; 353 u64 last_dest_end = destoff; 354 u64 prev_extent_end = off; 355 356 ret = -ENOMEM; 357 buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); 358 if (!buf) 359 return ret; 360 361 path = btrfs_alloc_path(); 362 if (!path) 363 return ret; 364 365 path->reada = READA_FORWARD; 366 /* Clone data */ 367 key.objectid = btrfs_ino(BTRFS_I(src)); 368 key.type = BTRFS_EXTENT_DATA_KEY; 369 key.offset = off; 370 371 while (1) { 372 struct btrfs_file_extent_item *extent; 373 u64 extent_gen; 374 int type; 375 u32 size; 376 struct btrfs_key new_key; 377 u64 disko = 0, diskl = 0; 378 u64 datao = 0, datal = 0; 379 u8 comp; 380 u64 drop_start; 381 382 /* Note the key will change type as we walk through the tree */ 383 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path, 384 0, 0); 385 if (ret < 0) 386 goto out; 387 /* 388 * First search, if no extent item that starts at offset off was 389 * found but the previous item is an extent item, it's possible 390 * it might overlap our target range, therefore process it. 391 */ 392 if (key.offset == off && ret > 0 && path->slots[0] > 0) { 393 btrfs_item_key_to_cpu(path->nodes[0], &key, 394 path->slots[0] - 1); 395 if (key.type == BTRFS_EXTENT_DATA_KEY) 396 path->slots[0]--; 397 } 398 399 nritems = btrfs_header_nritems(path->nodes[0]); 400 process_slot: 401 if (path->slots[0] >= nritems) { 402 ret = btrfs_next_leaf(BTRFS_I(src)->root, path); 403 if (ret < 0) 404 goto out; 405 if (ret > 0) 406 break; 407 nritems = btrfs_header_nritems(path->nodes[0]); 408 } 409 leaf = path->nodes[0]; 410 slot = path->slots[0]; 411 412 btrfs_item_key_to_cpu(leaf, &key, slot); 413 if (key.type > BTRFS_EXTENT_DATA_KEY || 414 key.objectid != btrfs_ino(BTRFS_I(src))) 415 break; 416 417 ASSERT(key.type == BTRFS_EXTENT_DATA_KEY); 418 419 extent = btrfs_item_ptr(leaf, slot, 420 struct btrfs_file_extent_item); 421 extent_gen = btrfs_file_extent_generation(leaf, extent); 422 comp = btrfs_file_extent_compression(leaf, extent); 423 type = btrfs_file_extent_type(leaf, extent); 424 if (type == BTRFS_FILE_EXTENT_REG || 425 type == BTRFS_FILE_EXTENT_PREALLOC) { 426 disko = btrfs_file_extent_disk_bytenr(leaf, extent); 427 diskl = btrfs_file_extent_disk_num_bytes(leaf, extent); 428 datao = btrfs_file_extent_offset(leaf, extent); 429 datal = btrfs_file_extent_num_bytes(leaf, extent); 430 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 431 /* Take upper bound, may be compressed */ 432 datal = btrfs_file_extent_ram_bytes(leaf, extent); 433 } 434 435 /* 436 * The first search might have left us at an extent item that 437 * ends before our target range's start, can happen if we have 438 * holes and NO_HOLES feature enabled. 439 * 440 * Subsequent searches may leave us on a file range we have 441 * processed before - this happens due to a race with ordered 442 * extent completion for a file range that is outside our source 443 * range, but that range was part of a file extent item that 444 * also covered a leading part of our source range. 445 */ 446 if (key.offset + datal <= prev_extent_end) { 447 path->slots[0]++; 448 goto process_slot; 449 } else if (key.offset >= off + len) { 450 break; 451 } 452 453 prev_extent_end = key.offset + datal; 454 size = btrfs_item_size(leaf, slot); 455 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, slot), 456 size); 457 458 btrfs_release_path(path); 459 460 memcpy(&new_key, &key, sizeof(new_key)); 461 new_key.objectid = btrfs_ino(BTRFS_I(inode)); 462 if (off <= key.offset) 463 new_key.offset = key.offset + destoff - off; 464 else 465 new_key.offset = destoff; 466 467 /* 468 * Deal with a hole that doesn't have an extent item that 469 * represents it (NO_HOLES feature enabled). 470 * This hole is either in the middle of the cloning range or at 471 * the beginning (fully overlaps it or partially overlaps it). 472 */ 473 if (new_key.offset != last_dest_end) 474 drop_start = last_dest_end; 475 else 476 drop_start = new_key.offset; 477 478 if (type == BTRFS_FILE_EXTENT_REG || 479 type == BTRFS_FILE_EXTENT_PREALLOC) { 480 struct btrfs_replace_extent_info clone_info; 481 482 /* 483 * a | --- range to clone ---| b 484 * | ------------- extent ------------- | 485 */ 486 487 /* Subtract range b */ 488 if (key.offset + datal > off + len) 489 datal = off + len - key.offset; 490 491 /* Subtract range a */ 492 if (off > key.offset) { 493 datao += off - key.offset; 494 datal -= off - key.offset; 495 } 496 497 clone_info.disk_offset = disko; 498 clone_info.disk_len = diskl; 499 clone_info.data_offset = datao; 500 clone_info.data_len = datal; 501 clone_info.file_offset = new_key.offset; 502 clone_info.extent_buf = buf; 503 clone_info.is_new_extent = false; 504 clone_info.update_times = !no_time_update; 505 ret = btrfs_replace_file_extents(BTRFS_I(inode), path, 506 drop_start, new_key.offset + datal - 1, 507 &clone_info, &trans); 508 if (ret) 509 goto out; 510 } else { 511 ASSERT(type == BTRFS_FILE_EXTENT_INLINE); 512 /* 513 * Inline extents always have to start at file offset 0 514 * and can never be bigger then the sector size. We can 515 * never clone only parts of an inline extent, since all 516 * reflink operations must start at a sector size aligned 517 * offset, and the length must be aligned too or end at 518 * the i_size (which implies the whole inlined data). 519 */ 520 ASSERT(key.offset == 0); 521 ASSERT(datal <= fs_info->sectorsize); 522 if (WARN_ON(type != BTRFS_FILE_EXTENT_INLINE) || 523 WARN_ON(key.offset != 0) || 524 WARN_ON(datal > fs_info->sectorsize)) { 525 ret = -EUCLEAN; 526 goto out; 527 } 528 529 ret = clone_copy_inline_extent(BTRFS_I(inode), path, &new_key, 530 drop_start, datal, size, 531 comp, buf, &trans); 532 if (ret) 533 goto out; 534 } 535 536 btrfs_release_path(path); 537 538 /* 539 * Whenever we share an extent we update the last_reflink_trans 540 * of each inode to the current transaction. This is needed to 541 * make sure fsync does not log multiple checksum items with 542 * overlapping ranges (because some extent items might refer 543 * only to sections of the original extent). For the destination 544 * inode we do this regardless of the generation of the extents 545 * or even if they are inline extents or explicit holes, to make 546 * sure a full fsync does not skip them. For the source inode, 547 * we only need to update last_reflink_trans in case it's a new 548 * extent that is not a hole or an inline extent, to deal with 549 * the checksums problem on fsync. 550 */ 551 if (extent_gen == trans->transid && disko > 0) 552 BTRFS_I(src)->last_reflink_trans = trans->transid; 553 554 BTRFS_I(inode)->last_reflink_trans = trans->transid; 555 556 last_dest_end = ALIGN(new_key.offset + datal, 557 fs_info->sectorsize); 558 ret = clone_finish_inode_update(trans, inode, last_dest_end, 559 destoff, olen, no_time_update); 560 if (ret) 561 goto out; 562 if (new_key.offset + datal >= destoff + len) 563 break; 564 565 btrfs_release_path(path); 566 key.offset = prev_extent_end; 567 568 if (fatal_signal_pending(current)) { 569 ret = -EINTR; 570 goto out; 571 } 572 573 cond_resched(); 574 } 575 ret = 0; 576 577 if (last_dest_end < destoff + len) { 578 /* 579 * We have an implicit hole that fully or partially overlaps our 580 * cloning range at its end. This means that we either have the 581 * NO_HOLES feature enabled or the implicit hole happened due to 582 * mixing buffered and direct IO writes against this file. 583 */ 584 btrfs_release_path(path); 585 586 /* 587 * When using NO_HOLES and we are cloning a range that covers 588 * only a hole (no extents) into a range beyond the current 589 * i_size, punching a hole in the target range will not create 590 * an extent map defining a hole, because the range starts at or 591 * beyond current i_size. If the file previously had an i_size 592 * greater than the new i_size set by this clone operation, we 593 * need to make sure the next fsync is a full fsync, so that it 594 * detects and logs a hole covering a range from the current 595 * i_size to the new i_size. If the clone range covers extents, 596 * besides a hole, then we know the full sync flag was already 597 * set by previous calls to btrfs_replace_file_extents() that 598 * replaced file extent items. 599 */ 600 if (last_dest_end >= i_size_read(inode)) 601 btrfs_set_inode_full_sync(BTRFS_I(inode)); 602 603 ret = btrfs_replace_file_extents(BTRFS_I(inode), path, 604 last_dest_end, destoff + len - 1, NULL, &trans); 605 if (ret) 606 goto out; 607 608 ret = clone_finish_inode_update(trans, inode, destoff + len, 609 destoff, olen, no_time_update); 610 } 611 612 out: 613 clear_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &BTRFS_I(inode)->runtime_flags); 614 615 return ret; 616 } 617 618 static void btrfs_double_mmap_lock(struct btrfs_inode *inode1, struct btrfs_inode *inode2) 619 { 620 if (inode1 < inode2) 621 swap(inode1, inode2); 622 down_write(&inode1->i_mmap_lock); 623 down_write_nested(&inode2->i_mmap_lock, SINGLE_DEPTH_NESTING); 624 } 625 626 static void btrfs_double_mmap_unlock(struct btrfs_inode *inode1, struct btrfs_inode *inode2) 627 { 628 up_write(&inode1->i_mmap_lock); 629 up_write(&inode2->i_mmap_lock); 630 } 631 632 static int btrfs_extent_same_range(struct btrfs_inode *src, u64 loff, u64 len, 633 struct btrfs_inode *dst, u64 dst_loff) 634 { 635 const u64 end = dst_loff + len - 1; 636 struct extent_state *cached_state = NULL; 637 struct btrfs_fs_info *fs_info = src->root->fs_info; 638 const u64 bs = fs_info->sectorsize; 639 int ret; 640 641 /* 642 * Lock destination range to serialize with concurrent readahead(), and 643 * we are safe from concurrency with relocation of source extents 644 * because we have already locked the inode's i_mmap_lock in exclusive 645 * mode. 646 */ 647 btrfs_lock_extent(&dst->io_tree, dst_loff, end, &cached_state); 648 ret = btrfs_clone(&src->vfs_inode, &dst->vfs_inode, loff, len, 649 ALIGN(len, bs), dst_loff, 1); 650 btrfs_unlock_extent(&dst->io_tree, dst_loff, end, &cached_state); 651 652 btrfs_btree_balance_dirty(fs_info); 653 654 return ret; 655 } 656 657 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen, 658 struct inode *dst, u64 dst_loff) 659 { 660 int ret = 0; 661 u64 i, tail_len, chunk_count; 662 struct btrfs_root *root_dst = BTRFS_I(dst)->root; 663 664 spin_lock(&root_dst->root_item_lock); 665 if (root_dst->send_in_progress) { 666 btrfs_warn_rl(root_dst->fs_info, 667 "cannot deduplicate to root %llu while send operations are using it (%d in progress)", 668 btrfs_root_id(root_dst), 669 root_dst->send_in_progress); 670 spin_unlock(&root_dst->root_item_lock); 671 return -EAGAIN; 672 } 673 root_dst->dedupe_in_progress++; 674 spin_unlock(&root_dst->root_item_lock); 675 676 tail_len = olen % BTRFS_MAX_DEDUPE_LEN; 677 chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN); 678 679 for (i = 0; i < chunk_count; i++) { 680 ret = btrfs_extent_same_range(BTRFS_I(src), loff, BTRFS_MAX_DEDUPE_LEN, 681 BTRFS_I(dst), dst_loff); 682 if (ret) 683 goto out; 684 685 loff += BTRFS_MAX_DEDUPE_LEN; 686 dst_loff += BTRFS_MAX_DEDUPE_LEN; 687 } 688 689 if (tail_len > 0) 690 ret = btrfs_extent_same_range(BTRFS_I(src), loff, tail_len, 691 BTRFS_I(dst), dst_loff); 692 out: 693 spin_lock(&root_dst->root_item_lock); 694 root_dst->dedupe_in_progress--; 695 spin_unlock(&root_dst->root_item_lock); 696 697 return ret; 698 } 699 700 static noinline int btrfs_clone_files(struct file *file, struct file *file_src, 701 u64 off, u64 olen, u64 destoff) 702 { 703 struct extent_state *cached_state = NULL; 704 struct inode *inode = file_inode(file); 705 struct inode *src = file_inode(file_src); 706 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 707 int ret; 708 int wb_ret; 709 u64 len = olen; 710 u64 bs = fs_info->sectorsize; 711 u64 end; 712 713 /* 714 * VFS's generic_remap_file_range_prep() protects us from cloning the 715 * eof block into the middle of a file, which would result in corruption 716 * if the file size is not blocksize aligned. So we don't need to check 717 * for that case here. 718 */ 719 if (off + len == src->i_size) 720 len = ALIGN(src->i_size, bs) - off; 721 722 if (destoff > inode->i_size) { 723 const u64 wb_start = ALIGN_DOWN(inode->i_size, bs); 724 725 ret = btrfs_cont_expand(BTRFS_I(inode), inode->i_size, destoff); 726 if (ret) 727 return ret; 728 /* 729 * We may have truncated the last block if the inode's size is 730 * not sector size aligned, so we need to wait for writeback to 731 * complete before proceeding further, otherwise we can race 732 * with cloning and attempt to increment a reference to an 733 * extent that no longer exists (writeback completed right after 734 * we found the previous extent covering eof and before we 735 * attempted to increment its reference count). 736 */ 737 ret = btrfs_wait_ordered_range(BTRFS_I(inode), wb_start, 738 destoff - wb_start); 739 if (ret) 740 return ret; 741 } 742 743 /* 744 * Lock destination range to serialize with concurrent readahead(), and 745 * we are safe from concurrency with relocation of source extents 746 * because we have already locked the inode's i_mmap_lock in exclusive 747 * mode. 748 */ 749 end = destoff + len - 1; 750 btrfs_lock_extent(&BTRFS_I(inode)->io_tree, destoff, end, &cached_state); 751 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0); 752 btrfs_unlock_extent(&BTRFS_I(inode)->io_tree, destoff, end, &cached_state); 753 754 /* 755 * We may have copied an inline extent into a page of the destination 756 * range, so wait for writeback to complete before truncating pages 757 * from the page cache. This is a rare case. 758 */ 759 wb_ret = btrfs_wait_ordered_range(BTRFS_I(inode), destoff, len); 760 ret = ret ? ret : wb_ret; 761 /* 762 * Truncate page cache pages so that future reads will see the cloned 763 * data immediately and not the previous data. 764 */ 765 truncate_inode_pages_range(&inode->i_data, 766 round_down(destoff, PAGE_SIZE), 767 round_up(destoff + len, PAGE_SIZE) - 1); 768 769 btrfs_btree_balance_dirty(fs_info); 770 771 return ret; 772 } 773 774 static int btrfs_remap_file_range_prep(struct file *file_in, loff_t pos_in, 775 struct file *file_out, loff_t pos_out, 776 loff_t *len, unsigned int remap_flags) 777 { 778 struct btrfs_inode *inode_in = BTRFS_I(file_inode(file_in)); 779 struct btrfs_inode *inode_out = BTRFS_I(file_inode(file_out)); 780 u64 bs = inode_out->root->fs_info->sectorsize; 781 u64 wb_len; 782 int ret; 783 784 if (!(remap_flags & REMAP_FILE_DEDUP)) { 785 struct btrfs_root *root_out = inode_out->root; 786 787 if (btrfs_root_readonly(root_out)) 788 return -EROFS; 789 790 ASSERT(inode_in->vfs_inode.i_sb == inode_out->vfs_inode.i_sb); 791 } 792 793 /* Can only reflink encrypted files if both files are encrypted. */ 794 if (IS_ENCRYPTED(&inode_in->vfs_inode) != IS_ENCRYPTED(&inode_out->vfs_inode)) 795 return -EINVAL; 796 797 /* Don't make the dst file partly checksummed */ 798 if ((inode_in->flags & BTRFS_INODE_NODATASUM) != 799 (inode_out->flags & BTRFS_INODE_NODATASUM)) { 800 return -EINVAL; 801 } 802 803 /* 804 * Now that the inodes are locked, we need to start writeback ourselves 805 * and can not rely on the writeback from the VFS's generic helper 806 * generic_remap_file_range_prep() because: 807 * 808 * 1) For compression we must call filemap_fdatawrite_range() range 809 * twice (btrfs_fdatawrite_range() does it for us), and the generic 810 * helper only calls it once; 811 * 812 * 2) filemap_fdatawrite_range(), called by the generic helper only 813 * waits for the writeback to complete, i.e. for IO to be done, and 814 * not for the ordered extents to complete. We need to wait for them 815 * to complete so that new file extent items are in the fs tree. 816 */ 817 if (*len == 0 && !(remap_flags & REMAP_FILE_DEDUP)) 818 wb_len = ALIGN(inode_in->vfs_inode.i_size, bs) - ALIGN_DOWN(pos_in, bs); 819 else 820 wb_len = ALIGN(*len, bs); 821 822 /* 823 * Workaround to make sure NOCOW buffered write reach disk as NOCOW. 824 * 825 * Btrfs' back references do not have a block level granularity, they 826 * work at the whole extent level. 827 * NOCOW buffered write without data space reserved may not be able 828 * to fall back to CoW due to lack of data space, thus could cause 829 * data loss. 830 * 831 * Here we take a shortcut by flushing the whole inode, so that all 832 * nocow write should reach disk as nocow before we increase the 833 * reference of the extent. We could do better by only flushing NOCOW 834 * data, but that needs extra accounting. 835 * 836 * Also we don't need to check ASYNC_EXTENT, as async extent will be 837 * CoWed anyway, not affecting nocow part. 838 */ 839 ret = filemap_flush(inode_in->vfs_inode.i_mapping); 840 if (ret < 0) 841 return ret; 842 843 ret = btrfs_wait_ordered_range(inode_in, ALIGN_DOWN(pos_in, bs), wb_len); 844 if (ret < 0) 845 return ret; 846 ret = btrfs_wait_ordered_range(inode_out, ALIGN_DOWN(pos_out, bs), wb_len); 847 if (ret < 0) 848 return ret; 849 850 return generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out, 851 len, remap_flags); 852 } 853 854 static bool file_sync_write(const struct file *file) 855 { 856 if (file->f_flags & (__O_SYNC | O_DSYNC)) 857 return true; 858 if (IS_SYNC(file_inode(file))) 859 return true; 860 861 return false; 862 } 863 864 loff_t btrfs_remap_file_range(struct file *src_file, loff_t off, 865 struct file *dst_file, loff_t destoff, loff_t len, 866 unsigned int remap_flags) 867 { 868 struct btrfs_inode *src_inode = BTRFS_I(file_inode(src_file)); 869 struct btrfs_inode *dst_inode = BTRFS_I(file_inode(dst_file)); 870 bool same_inode = dst_inode == src_inode; 871 int ret; 872 873 if (unlikely(btrfs_is_shutdown(inode_to_fs_info(file_inode(src_file))))) 874 return -EIO; 875 876 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY)) 877 return -EINVAL; 878 879 if (same_inode) { 880 btrfs_inode_lock(src_inode, BTRFS_ILOCK_MMAP); 881 } else { 882 lock_two_nondirectories(&src_inode->vfs_inode, &dst_inode->vfs_inode); 883 btrfs_double_mmap_lock(src_inode, dst_inode); 884 } 885 886 ret = btrfs_remap_file_range_prep(src_file, off, dst_file, destoff, 887 &len, remap_flags); 888 if (ret < 0 || len == 0) 889 goto out_unlock; 890 891 if (remap_flags & REMAP_FILE_DEDUP) 892 ret = btrfs_extent_same(&src_inode->vfs_inode, off, len, 893 &dst_inode->vfs_inode, destoff); 894 else 895 ret = btrfs_clone_files(dst_file, src_file, off, len, destoff); 896 897 out_unlock: 898 if (same_inode) { 899 btrfs_inode_unlock(src_inode, BTRFS_ILOCK_MMAP); 900 } else { 901 btrfs_double_mmap_unlock(src_inode, dst_inode); 902 unlock_two_nondirectories(&src_inode->vfs_inode, 903 &dst_inode->vfs_inode); 904 } 905 906 /* 907 * If either the source or the destination file was opened with O_SYNC, 908 * O_DSYNC or has the S_SYNC attribute, fsync both the destination and 909 * source files/ranges, so that after a successful return (0) followed 910 * by a power failure results in the reflinked data to be readable from 911 * both files/ranges. 912 */ 913 if (ret == 0 && len > 0 && 914 (file_sync_write(src_file) || file_sync_write(dst_file))) { 915 ret = btrfs_sync_file(src_file, off, off + len - 1, 0); 916 if (ret == 0) 917 ret = btrfs_sync_file(dst_file, destoff, 918 destoff + len - 1, 0); 919 } 920 921 return ret < 0 ? ret : len; 922 } 923