xref: /linux/fs/btrfs/file.c (revision 3f1c07fc21c68bd3bd2df9d2c9441f6485e934d9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
19 #include <linux/fsverity.h>
20 #include "ctree.h"
21 #include "direct-io.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "btrfs_inode.h"
25 #include "tree-log.h"
26 #include "locking.h"
27 #include "qgroup.h"
28 #include "compression.h"
29 #include "delalloc-space.h"
30 #include "reflink.h"
31 #include "subpage.h"
32 #include "fs.h"
33 #include "accessors.h"
34 #include "extent-tree.h"
35 #include "file-item.h"
36 #include "ioctl.h"
37 #include "file.h"
38 #include "super.h"
39 #include "print-tree.h"
40 
41 /*
42  * Unlock folio after btrfs_file_write() is done with it.
43  */
btrfs_drop_folio(struct btrfs_fs_info * fs_info,struct folio * folio,u64 pos,u64 copied)44 static void btrfs_drop_folio(struct btrfs_fs_info *fs_info, struct folio *folio,
45 			     u64 pos, u64 copied)
46 {
47 	u64 block_start = round_down(pos, fs_info->sectorsize);
48 	u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start;
49 
50 	ASSERT(block_len <= U32_MAX);
51 	/*
52 	 * Folio checked is some magic around finding folios that have been
53 	 * modified without going through btrfs_dirty_folio().  Clear it here.
54 	 * There should be no need to mark the pages accessed as
55 	 * prepare_one_folio() should have marked them accessed in
56 	 * prepare_one_folio() via find_or_create_page()
57 	 */
58 	btrfs_folio_clamp_clear_checked(fs_info, folio, block_start, block_len);
59 	folio_unlock(folio);
60 	folio_put(folio);
61 }
62 
63 /*
64  * After copy_folio_from_iter_atomic(), update the following things for delalloc:
65  * - Mark newly dirtied folio as DELALLOC in the io tree.
66  *   Used to advise which range is to be written back.
67  * - Mark modified folio as Uptodate/Dirty and not needing COW fixup
68  * - Update inode size for past EOF write
69  */
btrfs_dirty_folio(struct btrfs_inode * inode,struct folio * folio,loff_t pos,size_t write_bytes,struct extent_state ** cached,bool noreserve)70 int btrfs_dirty_folio(struct btrfs_inode *inode, struct folio *folio, loff_t pos,
71 		      size_t write_bytes, struct extent_state **cached, bool noreserve)
72 {
73 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
74 	int ret = 0;
75 	u64 num_bytes;
76 	u64 start_pos;
77 	u64 end_of_last_block;
78 	const u64 end_pos = pos + write_bytes;
79 	loff_t isize = i_size_read(&inode->vfs_inode);
80 	unsigned int extra_bits = 0;
81 
82 	if (write_bytes == 0)
83 		return 0;
84 
85 	if (noreserve)
86 		extra_bits |= EXTENT_NORESERVE;
87 
88 	start_pos = round_down(pos, fs_info->sectorsize);
89 	num_bytes = round_up(end_pos - start_pos, fs_info->sectorsize);
90 	ASSERT(num_bytes <= U32_MAX);
91 	ASSERT(folio_pos(folio) <= pos && folio_next_pos(folio) >= end_pos);
92 
93 	end_of_last_block = start_pos + num_bytes - 1;
94 
95 	/*
96 	 * The pages may have already been dirty, clear out old accounting so
97 	 * we can set things up properly
98 	 */
99 	btrfs_clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
100 			       EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
101 			       cached);
102 
103 	ret = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
104 					extra_bits, cached);
105 	if (ret)
106 		return ret;
107 
108 	btrfs_folio_clamp_set_uptodate(fs_info, folio, start_pos, num_bytes);
109 	btrfs_folio_clamp_clear_checked(fs_info, folio, start_pos, num_bytes);
110 	btrfs_folio_clamp_set_dirty(fs_info, folio, start_pos, num_bytes);
111 
112 	/*
113 	 * we've only changed i_size in ram, and we haven't updated
114 	 * the disk i_size.  There is no need to log the inode
115 	 * at this time.
116 	 */
117 	if (end_pos > isize)
118 		i_size_write(&inode->vfs_inode, end_pos);
119 	return 0;
120 }
121 
122 /*
123  * this is very complex, but the basic idea is to drop all extents
124  * in the range start - end.  hint_block is filled in with a block number
125  * that would be a good hint to the block allocator for this file.
126  *
127  * If an extent intersects the range but is not entirely inside the range
128  * it is either truncated or split.  Anything entirely inside the range
129  * is deleted from the tree.
130  *
131  * Note: the VFS' inode number of bytes is not updated, it's up to the caller
132  * to deal with that. We set the field 'bytes_found' of the arguments structure
133  * with the number of allocated bytes found in the target range, so that the
134  * caller can update the inode's number of bytes in an atomic way when
135  * replacing extents in a range to avoid races with stat(2).
136  */
btrfs_drop_extents(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_drop_extents_args * args)137 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
138 		       struct btrfs_root *root, struct btrfs_inode *inode,
139 		       struct btrfs_drop_extents_args *args)
140 {
141 	struct btrfs_fs_info *fs_info = root->fs_info;
142 	struct extent_buffer *leaf;
143 	struct btrfs_file_extent_item *fi;
144 	struct btrfs_key key;
145 	struct btrfs_key new_key;
146 	u64 ino = btrfs_ino(inode);
147 	u64 search_start = args->start;
148 	u64 disk_bytenr = 0;
149 	u64 num_bytes = 0;
150 	u64 extent_offset = 0;
151 	u64 extent_end = 0;
152 	u64 last_end = args->start;
153 	int del_nr = 0;
154 	int del_slot = 0;
155 	int extent_type;
156 	int recow;
157 	int ret;
158 	int modify_tree = -1;
159 	int update_refs;
160 	int found = 0;
161 	struct btrfs_path *path = args->path;
162 
163 	args->bytes_found = 0;
164 	args->extent_inserted = false;
165 
166 	/* Must always have a path if ->replace_extent is true */
167 	ASSERT(!(args->replace_extent && !args->path));
168 
169 	if (!path) {
170 		path = btrfs_alloc_path();
171 		if (!path) {
172 			ret = -ENOMEM;
173 			goto out;
174 		}
175 	}
176 
177 	if (args->drop_cache)
178 		btrfs_drop_extent_map_range(inode, args->start, args->end - 1, false);
179 
180 	if (data_race(args->start >= inode->disk_i_size) && !args->replace_extent)
181 		modify_tree = 0;
182 
183 	update_refs = (btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID);
184 	while (1) {
185 		recow = 0;
186 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
187 					       search_start, modify_tree);
188 		if (ret < 0)
189 			break;
190 		if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
191 			leaf = path->nodes[0];
192 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
193 			if (key.objectid == ino &&
194 			    key.type == BTRFS_EXTENT_DATA_KEY)
195 				path->slots[0]--;
196 		}
197 		ret = 0;
198 next_slot:
199 		leaf = path->nodes[0];
200 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
201 			if (WARN_ON(del_nr > 0)) {
202 				btrfs_print_leaf(leaf);
203 				ret = -EINVAL;
204 				break;
205 			}
206 			ret = btrfs_next_leaf(root, path);
207 			if (ret < 0)
208 				break;
209 			if (ret > 0) {
210 				ret = 0;
211 				break;
212 			}
213 			leaf = path->nodes[0];
214 			recow = 1;
215 		}
216 
217 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
218 
219 		if (key.objectid > ino)
220 			break;
221 		if (WARN_ON_ONCE(key.objectid < ino) ||
222 		    key.type < BTRFS_EXTENT_DATA_KEY) {
223 			ASSERT(del_nr == 0);
224 			path->slots[0]++;
225 			goto next_slot;
226 		}
227 		if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
228 			break;
229 
230 		fi = btrfs_item_ptr(leaf, path->slots[0],
231 				    struct btrfs_file_extent_item);
232 		extent_type = btrfs_file_extent_type(leaf, fi);
233 
234 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
235 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
236 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
237 			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
238 			extent_offset = btrfs_file_extent_offset(leaf, fi);
239 			extent_end = key.offset +
240 				btrfs_file_extent_num_bytes(leaf, fi);
241 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
242 			extent_end = key.offset +
243 				btrfs_file_extent_ram_bytes(leaf, fi);
244 		} else {
245 			/* can't happen */
246 			BUG();
247 		}
248 
249 		/*
250 		 * Don't skip extent items representing 0 byte lengths. They
251 		 * used to be created (bug) if while punching holes we hit
252 		 * -ENOSPC condition. So if we find one here, just ensure we
253 		 * delete it, otherwise we would insert a new file extent item
254 		 * with the same key (offset) as that 0 bytes length file
255 		 * extent item in the call to setup_items_for_insert() later
256 		 * in this function.
257 		 */
258 		if (extent_end == key.offset && extent_end >= search_start) {
259 			last_end = extent_end;
260 			goto delete_extent_item;
261 		}
262 
263 		if (extent_end <= search_start) {
264 			path->slots[0]++;
265 			goto next_slot;
266 		}
267 
268 		found = 1;
269 		search_start = max(key.offset, args->start);
270 		if (recow || !modify_tree) {
271 			modify_tree = -1;
272 			btrfs_release_path(path);
273 			continue;
274 		}
275 
276 		/*
277 		 *     | - range to drop - |
278 		 *  | -------- extent -------- |
279 		 */
280 		if (args->start > key.offset && args->end < extent_end) {
281 			if (WARN_ON(del_nr > 0)) {
282 				btrfs_print_leaf(leaf);
283 				ret = -EINVAL;
284 				break;
285 			}
286 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
287 				ret = -EOPNOTSUPP;
288 				break;
289 			}
290 
291 			memcpy(&new_key, &key, sizeof(new_key));
292 			new_key.offset = args->start;
293 			ret = btrfs_duplicate_item(trans, root, path,
294 						   &new_key);
295 			if (ret == -EAGAIN) {
296 				btrfs_release_path(path);
297 				continue;
298 			}
299 			if (ret < 0)
300 				break;
301 
302 			leaf = path->nodes[0];
303 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
304 					    struct btrfs_file_extent_item);
305 			btrfs_set_file_extent_num_bytes(leaf, fi,
306 							args->start - key.offset);
307 
308 			fi = btrfs_item_ptr(leaf, path->slots[0],
309 					    struct btrfs_file_extent_item);
310 
311 			extent_offset += args->start - key.offset;
312 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
313 			btrfs_set_file_extent_num_bytes(leaf, fi,
314 							extent_end - args->start);
315 
316 			if (update_refs && disk_bytenr > 0) {
317 				struct btrfs_ref ref = {
318 					.action = BTRFS_ADD_DELAYED_REF,
319 					.bytenr = disk_bytenr,
320 					.num_bytes = num_bytes,
321 					.parent = 0,
322 					.owning_root = btrfs_root_id(root),
323 					.ref_root = btrfs_root_id(root),
324 				};
325 				btrfs_init_data_ref(&ref, new_key.objectid,
326 						    args->start - extent_offset,
327 						    0, false);
328 				ret = btrfs_inc_extent_ref(trans, &ref);
329 				if (unlikely(ret)) {
330 					btrfs_abort_transaction(trans, ret);
331 					break;
332 				}
333 			}
334 			key.offset = args->start;
335 		}
336 		/*
337 		 * From here on out we will have actually dropped something, so
338 		 * last_end can be updated.
339 		 */
340 		last_end = extent_end;
341 
342 		/*
343 		 *  | ---- range to drop ----- |
344 		 *      | -------- extent -------- |
345 		 */
346 		if (args->start <= key.offset && args->end < extent_end) {
347 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
348 				ret = -EOPNOTSUPP;
349 				break;
350 			}
351 
352 			memcpy(&new_key, &key, sizeof(new_key));
353 			new_key.offset = args->end;
354 			btrfs_set_item_key_safe(trans, path, &new_key);
355 
356 			extent_offset += args->end - key.offset;
357 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
358 			btrfs_set_file_extent_num_bytes(leaf, fi,
359 							extent_end - args->end);
360 			if (update_refs && disk_bytenr > 0)
361 				args->bytes_found += args->end - key.offset;
362 			break;
363 		}
364 
365 		search_start = extent_end;
366 		/*
367 		 *       | ---- range to drop ----- |
368 		 *  | -------- extent -------- |
369 		 */
370 		if (args->start > key.offset && args->end >= extent_end) {
371 			if (WARN_ON(del_nr > 0)) {
372 				btrfs_print_leaf(leaf);
373 				ret = -EINVAL;
374 				break;
375 			}
376 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
377 				ret = -EOPNOTSUPP;
378 				break;
379 			}
380 
381 			btrfs_set_file_extent_num_bytes(leaf, fi,
382 							args->start - key.offset);
383 			if (update_refs && disk_bytenr > 0)
384 				args->bytes_found += extent_end - args->start;
385 			if (args->end == extent_end)
386 				break;
387 
388 			path->slots[0]++;
389 			goto next_slot;
390 		}
391 
392 		/*
393 		 *  | ---- range to drop ----- |
394 		 *    | ------ extent ------ |
395 		 */
396 		if (args->start <= key.offset && args->end >= extent_end) {
397 delete_extent_item:
398 			if (del_nr == 0) {
399 				del_slot = path->slots[0];
400 				del_nr = 1;
401 			} else {
402 				if (WARN_ON(del_slot + del_nr != path->slots[0])) {
403 					btrfs_print_leaf(leaf);
404 					ret = -EINVAL;
405 					break;
406 				}
407 				del_nr++;
408 			}
409 
410 			if (update_refs &&
411 			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
412 				args->bytes_found += extent_end - key.offset;
413 				extent_end = ALIGN(extent_end,
414 						   fs_info->sectorsize);
415 			} else if (update_refs && disk_bytenr > 0) {
416 				struct btrfs_ref ref = {
417 					.action = BTRFS_DROP_DELAYED_REF,
418 					.bytenr = disk_bytenr,
419 					.num_bytes = num_bytes,
420 					.parent = 0,
421 					.owning_root = btrfs_root_id(root),
422 					.ref_root = btrfs_root_id(root),
423 				};
424 				btrfs_init_data_ref(&ref, key.objectid,
425 						    key.offset - extent_offset,
426 						    0, false);
427 				ret = btrfs_free_extent(trans, &ref);
428 				if (unlikely(ret)) {
429 					btrfs_abort_transaction(trans, ret);
430 					break;
431 				}
432 				args->bytes_found += extent_end - key.offset;
433 			}
434 
435 			if (args->end == extent_end)
436 				break;
437 
438 			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
439 				path->slots[0]++;
440 				goto next_slot;
441 			}
442 
443 			ret = btrfs_del_items(trans, root, path, del_slot,
444 					      del_nr);
445 			if (unlikely(ret)) {
446 				btrfs_abort_transaction(trans, ret);
447 				break;
448 			}
449 
450 			del_nr = 0;
451 			del_slot = 0;
452 
453 			btrfs_release_path(path);
454 			continue;
455 		}
456 
457 		BUG();
458 	}
459 
460 	if (!ret && del_nr > 0) {
461 		/*
462 		 * Set path->slots[0] to first slot, so that after the delete
463 		 * if items are move off from our leaf to its immediate left or
464 		 * right neighbor leafs, we end up with a correct and adjusted
465 		 * path->slots[0] for our insertion (if args->replace_extent).
466 		 */
467 		path->slots[0] = del_slot;
468 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
469 		if (ret)
470 			btrfs_abort_transaction(trans, ret);
471 	}
472 
473 	leaf = path->nodes[0];
474 	/*
475 	 * If btrfs_del_items() was called, it might have deleted a leaf, in
476 	 * which case it unlocked our path, so check path->locks[0] matches a
477 	 * write lock.
478 	 */
479 	if (!ret && args->replace_extent &&
480 	    path->locks[0] == BTRFS_WRITE_LOCK &&
481 	    btrfs_leaf_free_space(leaf) >=
482 	    sizeof(struct btrfs_item) + args->extent_item_size) {
483 
484 		key.objectid = ino;
485 		key.type = BTRFS_EXTENT_DATA_KEY;
486 		key.offset = args->start;
487 		if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
488 			struct btrfs_key slot_key;
489 
490 			btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
491 			if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
492 				path->slots[0]++;
493 		}
494 		btrfs_setup_item_for_insert(trans, root, path, &key,
495 					    args->extent_item_size);
496 		args->extent_inserted = true;
497 	}
498 
499 	if (!args->path)
500 		btrfs_free_path(path);
501 	else if (!args->extent_inserted)
502 		btrfs_release_path(path);
503 out:
504 	args->drop_end = found ? min(args->end, last_end) : args->end;
505 
506 	return ret;
507 }
508 
extent_mergeable(struct extent_buffer * leaf,int slot,u64 objectid,u64 bytenr,u64 orig_offset,u64 * start,u64 * end)509 static bool extent_mergeable(struct extent_buffer *leaf, int slot, u64 objectid,
510 			     u64 bytenr, u64 orig_offset, u64 *start, u64 *end)
511 {
512 	struct btrfs_file_extent_item *fi;
513 	struct btrfs_key key;
514 	u64 extent_end;
515 
516 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
517 		return false;
518 
519 	btrfs_item_key_to_cpu(leaf, &key, slot);
520 	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
521 		return false;
522 
523 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
524 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
525 	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
526 	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
527 	    btrfs_file_extent_compression(leaf, fi) ||
528 	    btrfs_file_extent_encryption(leaf, fi) ||
529 	    btrfs_file_extent_other_encoding(leaf, fi))
530 		return false;
531 
532 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
533 	if ((*start && *start != key.offset) || (*end && *end != extent_end))
534 		return false;
535 
536 	*start = key.offset;
537 	*end = extent_end;
538 	return true;
539 }
540 
541 /*
542  * Mark extent in the range start - end as written.
543  *
544  * This changes extent type from 'pre-allocated' to 'regular'. If only
545  * part of extent is marked as written, the extent will be split into
546  * two or three.
547  */
btrfs_mark_extent_written(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,u64 start,u64 end)548 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
549 			      struct btrfs_inode *inode, u64 start, u64 end)
550 {
551 	struct btrfs_root *root = inode->root;
552 	struct extent_buffer *leaf;
553 	BTRFS_PATH_AUTO_FREE(path);
554 	struct btrfs_file_extent_item *fi;
555 	struct btrfs_ref ref = { 0 };
556 	struct btrfs_key key;
557 	struct btrfs_key new_key;
558 	u64 bytenr;
559 	u64 num_bytes;
560 	u64 extent_end;
561 	u64 orig_offset;
562 	u64 other_start;
563 	u64 other_end;
564 	u64 split;
565 	int del_nr = 0;
566 	int del_slot = 0;
567 	int recow;
568 	int ret = 0;
569 	u64 ino = btrfs_ino(inode);
570 
571 	path = btrfs_alloc_path();
572 	if (!path)
573 		return -ENOMEM;
574 again:
575 	recow = 0;
576 	split = start;
577 	key.objectid = ino;
578 	key.type = BTRFS_EXTENT_DATA_KEY;
579 	key.offset = split;
580 
581 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
582 	if (ret < 0)
583 		goto out;
584 	if (ret > 0 && path->slots[0] > 0)
585 		path->slots[0]--;
586 
587 	leaf = path->nodes[0];
588 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
589 	if (unlikely(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)) {
590 		ret = -EINVAL;
591 		btrfs_abort_transaction(trans, ret);
592 		goto out;
593 	}
594 	fi = btrfs_item_ptr(leaf, path->slots[0],
595 			    struct btrfs_file_extent_item);
596 	if (unlikely(btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC)) {
597 		ret = -EINVAL;
598 		btrfs_abort_transaction(trans, ret);
599 		goto out;
600 	}
601 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
602 	if (unlikely(key.offset > start || extent_end < end)) {
603 		ret = -EINVAL;
604 		btrfs_abort_transaction(trans, ret);
605 		goto out;
606 	}
607 
608 	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
609 	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
610 	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
611 	memcpy(&new_key, &key, sizeof(new_key));
612 
613 	if (start == key.offset && end < extent_end) {
614 		other_start = 0;
615 		other_end = start;
616 		if (extent_mergeable(leaf, path->slots[0] - 1,
617 				     ino, bytenr, orig_offset,
618 				     &other_start, &other_end)) {
619 			new_key.offset = end;
620 			btrfs_set_item_key_safe(trans, path, &new_key);
621 			fi = btrfs_item_ptr(leaf, path->slots[0],
622 					    struct btrfs_file_extent_item);
623 			btrfs_set_file_extent_generation(leaf, fi,
624 							 trans->transid);
625 			btrfs_set_file_extent_num_bytes(leaf, fi,
626 							extent_end - end);
627 			btrfs_set_file_extent_offset(leaf, fi,
628 						     end - orig_offset);
629 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
630 					    struct btrfs_file_extent_item);
631 			btrfs_set_file_extent_generation(leaf, fi,
632 							 trans->transid);
633 			btrfs_set_file_extent_num_bytes(leaf, fi,
634 							end - other_start);
635 			goto out;
636 		}
637 	}
638 
639 	if (start > key.offset && end == extent_end) {
640 		other_start = end;
641 		other_end = 0;
642 		if (extent_mergeable(leaf, path->slots[0] + 1,
643 				     ino, bytenr, orig_offset,
644 				     &other_start, &other_end)) {
645 			fi = btrfs_item_ptr(leaf, path->slots[0],
646 					    struct btrfs_file_extent_item);
647 			btrfs_set_file_extent_num_bytes(leaf, fi,
648 							start - key.offset);
649 			btrfs_set_file_extent_generation(leaf, fi,
650 							 trans->transid);
651 			path->slots[0]++;
652 			new_key.offset = start;
653 			btrfs_set_item_key_safe(trans, path, &new_key);
654 
655 			fi = btrfs_item_ptr(leaf, path->slots[0],
656 					    struct btrfs_file_extent_item);
657 			btrfs_set_file_extent_generation(leaf, fi,
658 							 trans->transid);
659 			btrfs_set_file_extent_num_bytes(leaf, fi,
660 							other_end - start);
661 			btrfs_set_file_extent_offset(leaf, fi,
662 						     start - orig_offset);
663 			goto out;
664 		}
665 	}
666 
667 	while (start > key.offset || end < extent_end) {
668 		if (key.offset == start)
669 			split = end;
670 
671 		new_key.offset = split;
672 		ret = btrfs_duplicate_item(trans, root, path, &new_key);
673 		if (ret == -EAGAIN) {
674 			btrfs_release_path(path);
675 			goto again;
676 		}
677 		if (unlikely(ret < 0)) {
678 			btrfs_abort_transaction(trans, ret);
679 			goto out;
680 		}
681 
682 		leaf = path->nodes[0];
683 		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
684 				    struct btrfs_file_extent_item);
685 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
686 		btrfs_set_file_extent_num_bytes(leaf, fi,
687 						split - key.offset);
688 
689 		fi = btrfs_item_ptr(leaf, path->slots[0],
690 				    struct btrfs_file_extent_item);
691 
692 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
693 		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
694 		btrfs_set_file_extent_num_bytes(leaf, fi,
695 						extent_end - split);
696 
697 		ref.action = BTRFS_ADD_DELAYED_REF;
698 		ref.bytenr = bytenr;
699 		ref.num_bytes = num_bytes;
700 		ref.parent = 0;
701 		ref.owning_root = btrfs_root_id(root);
702 		ref.ref_root = btrfs_root_id(root);
703 		btrfs_init_data_ref(&ref, ino, orig_offset, 0, false);
704 		ret = btrfs_inc_extent_ref(trans, &ref);
705 		if (unlikely(ret)) {
706 			btrfs_abort_transaction(trans, ret);
707 			goto out;
708 		}
709 
710 		if (split == start) {
711 			key.offset = start;
712 		} else {
713 			if (unlikely(start != key.offset)) {
714 				ret = -EINVAL;
715 				btrfs_abort_transaction(trans, ret);
716 				goto out;
717 			}
718 			path->slots[0]--;
719 			extent_end = end;
720 		}
721 		recow = 1;
722 	}
723 
724 	other_start = end;
725 	other_end = 0;
726 
727 	ref.action = BTRFS_DROP_DELAYED_REF;
728 	ref.bytenr = bytenr;
729 	ref.num_bytes = num_bytes;
730 	ref.parent = 0;
731 	ref.owning_root = btrfs_root_id(root);
732 	ref.ref_root = btrfs_root_id(root);
733 	btrfs_init_data_ref(&ref, ino, orig_offset, 0, false);
734 	if (extent_mergeable(leaf, path->slots[0] + 1,
735 			     ino, bytenr, orig_offset,
736 			     &other_start, &other_end)) {
737 		if (recow) {
738 			btrfs_release_path(path);
739 			goto again;
740 		}
741 		extent_end = other_end;
742 		del_slot = path->slots[0] + 1;
743 		del_nr++;
744 		ret = btrfs_free_extent(trans, &ref);
745 		if (unlikely(ret)) {
746 			btrfs_abort_transaction(trans, ret);
747 			goto out;
748 		}
749 	}
750 	other_start = 0;
751 	other_end = start;
752 	if (extent_mergeable(leaf, path->slots[0] - 1,
753 			     ino, bytenr, orig_offset,
754 			     &other_start, &other_end)) {
755 		if (recow) {
756 			btrfs_release_path(path);
757 			goto again;
758 		}
759 		key.offset = other_start;
760 		del_slot = path->slots[0];
761 		del_nr++;
762 		ret = btrfs_free_extent(trans, &ref);
763 		if (unlikely(ret)) {
764 			btrfs_abort_transaction(trans, ret);
765 			goto out;
766 		}
767 	}
768 	if (del_nr == 0) {
769 		fi = btrfs_item_ptr(leaf, path->slots[0],
770 			   struct btrfs_file_extent_item);
771 		btrfs_set_file_extent_type(leaf, fi,
772 					   BTRFS_FILE_EXTENT_REG);
773 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
774 	} else {
775 		fi = btrfs_item_ptr(leaf, del_slot - 1,
776 			   struct btrfs_file_extent_item);
777 		btrfs_set_file_extent_type(leaf, fi,
778 					   BTRFS_FILE_EXTENT_REG);
779 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
780 		btrfs_set_file_extent_num_bytes(leaf, fi,
781 						extent_end - key.offset);
782 
783 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
784 		if (unlikely(ret < 0)) {
785 			btrfs_abort_transaction(trans, ret);
786 			goto out;
787 		}
788 	}
789 out:
790 	return ret;
791 }
792 
793 /*
794  * On error return an unlocked folio and the error value
795  * On success return a locked folio and 0
796  */
prepare_uptodate_folio(struct inode * inode,struct folio * folio,u64 pos,u64 len)797 static int prepare_uptodate_folio(struct inode *inode, struct folio *folio, u64 pos,
798 				  u64 len)
799 {
800 	u64 clamp_start = max_t(u64, pos, folio_pos(folio));
801 	u64 clamp_end = min_t(u64, pos + len, folio_next_pos(folio));
802 	const u32 blocksize = inode_to_fs_info(inode)->sectorsize;
803 	int ret = 0;
804 
805 	if (folio_test_uptodate(folio))
806 		return 0;
807 
808 	if (IS_ALIGNED(clamp_start, blocksize) &&
809 	    IS_ALIGNED(clamp_end, blocksize))
810 		return 0;
811 
812 	ret = btrfs_read_folio(NULL, folio);
813 	if (ret)
814 		return ret;
815 	folio_lock(folio);
816 	if (unlikely(!folio_test_uptodate(folio))) {
817 		folio_unlock(folio);
818 		return -EIO;
819 	}
820 
821 	/*
822 	 * Since btrfs_read_folio() will unlock the folio before it returns,
823 	 * there is a window where btrfs_release_folio() can be called to
824 	 * release the page.  Here we check both inode mapping and page
825 	 * private to make sure the page was not released.
826 	 *
827 	 * The private flag check is essential for subpage as we need to store
828 	 * extra bitmap using folio private.
829 	 */
830 	if (folio->mapping != inode->i_mapping || !folio_test_private(folio)) {
831 		folio_unlock(folio);
832 		return -EAGAIN;
833 	}
834 	return 0;
835 }
836 
get_prepare_gfp_flags(struct inode * inode,bool nowait)837 static gfp_t get_prepare_gfp_flags(struct inode *inode, bool nowait)
838 {
839 	gfp_t gfp;
840 
841 	gfp = btrfs_alloc_write_mask(inode->i_mapping);
842 	if (nowait) {
843 		gfp &= ~__GFP_DIRECT_RECLAIM;
844 		gfp |= GFP_NOWAIT;
845 	}
846 
847 	return gfp;
848 }
849 
850 /*
851  * Get folio into the page cache and lock it.
852  */
prepare_one_folio(struct inode * inode,struct folio ** folio_ret,loff_t pos,size_t write_bytes,bool nowait)853 static noinline int prepare_one_folio(struct inode *inode, struct folio **folio_ret,
854 				      loff_t pos, size_t write_bytes,
855 				      bool nowait)
856 {
857 	const pgoff_t index = pos >> PAGE_SHIFT;
858 	gfp_t mask = get_prepare_gfp_flags(inode, nowait);
859 	fgf_t fgp_flags = (nowait ? FGP_WRITEBEGIN | FGP_NOWAIT : FGP_WRITEBEGIN) |
860 			  fgf_set_order(write_bytes);
861 	struct folio *folio;
862 	int ret = 0;
863 
864 again:
865 	folio = __filemap_get_folio(inode->i_mapping, index, fgp_flags, mask);
866 	if (IS_ERR(folio))
867 		return PTR_ERR(folio);
868 
869 	ret = set_folio_extent_mapped(folio);
870 	if (ret < 0) {
871 		folio_unlock(folio);
872 		folio_put(folio);
873 		return ret;
874 	}
875 	ret = prepare_uptodate_folio(inode, folio, pos, write_bytes);
876 	if (ret) {
877 		/* The folio is already unlocked. */
878 		folio_put(folio);
879 		if (!nowait && ret == -EAGAIN) {
880 			ret = 0;
881 			goto again;
882 		}
883 		return ret;
884 	}
885 	*folio_ret = folio;
886 	return 0;
887 }
888 
889 /*
890  * Locks the extent and properly waits for data=ordered extents to finish
891  * before allowing the folios to be modified if need.
892  *
893  * Return:
894  * 1 - the extent is locked
895  * 0 - the extent is not locked, and everything is OK
896  * -EAGAIN - need to prepare the folios again
897  */
898 static noinline int
lock_and_cleanup_extent_if_need(struct btrfs_inode * inode,struct folio * folio,loff_t pos,size_t write_bytes,u64 * lockstart,u64 * lockend,bool nowait,struct extent_state ** cached_state)899 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct folio *folio,
900 				loff_t pos, size_t write_bytes,
901 				u64 *lockstart, u64 *lockend, bool nowait,
902 				struct extent_state **cached_state)
903 {
904 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
905 	u64 start_pos;
906 	u64 last_pos;
907 	int ret = 0;
908 
909 	start_pos = round_down(pos, fs_info->sectorsize);
910 	last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
911 
912 	if (start_pos < inode->vfs_inode.i_size) {
913 		struct btrfs_ordered_extent *ordered;
914 
915 		if (nowait) {
916 			if (!btrfs_try_lock_extent(&inode->io_tree, start_pos,
917 						   last_pos, cached_state)) {
918 				folio_unlock(folio);
919 				folio_put(folio);
920 				return -EAGAIN;
921 			}
922 		} else {
923 			btrfs_lock_extent(&inode->io_tree, start_pos, last_pos,
924 					  cached_state);
925 		}
926 
927 		ordered = btrfs_lookup_ordered_range(inode, start_pos,
928 						     last_pos - start_pos + 1);
929 		if (ordered &&
930 		    ordered->file_offset + ordered->num_bytes > start_pos &&
931 		    ordered->file_offset <= last_pos) {
932 			btrfs_unlock_extent(&inode->io_tree, start_pos, last_pos,
933 					    cached_state);
934 			folio_unlock(folio);
935 			folio_put(folio);
936 			btrfs_start_ordered_extent(ordered);
937 			btrfs_put_ordered_extent(ordered);
938 			return -EAGAIN;
939 		}
940 		if (ordered)
941 			btrfs_put_ordered_extent(ordered);
942 
943 		*lockstart = start_pos;
944 		*lockend = last_pos;
945 		ret = 1;
946 	}
947 
948 	/*
949 	 * We should be called after prepare_one_folio() which should have locked
950 	 * all pages in the range.
951 	 */
952 	WARN_ON(!folio_test_locked(folio));
953 
954 	return ret;
955 }
956 
957 /*
958  * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
959  *
960  * @pos:         File offset.
961  * @write_bytes: The length to write, will be updated to the nocow writeable
962  *               range.
963  * @nowait:      Indicate if we can block or not (non-blocking IO context).
964  *
965  * This function will flush ordered extents in the range to ensure proper
966  * nocow checks.
967  *
968  * Return:
969  * > 0          If we can nocow, and updates @write_bytes.
970  *  0           If we can't do a nocow write.
971  * -EAGAIN      If we can't do a nocow write because snapshotting of the inode's
972  *              root is in progress or because we are in a non-blocking IO
973  *              context and need to block (@nowait is true).
974  * < 0          If an error happened.
975  *
976  * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0.
977  */
btrfs_check_nocow_lock(struct btrfs_inode * inode,loff_t pos,size_t * write_bytes,bool nowait)978 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
979 			   size_t *write_bytes, bool nowait)
980 {
981 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
982 	struct btrfs_root *root = inode->root;
983 	struct extent_state *cached_state = NULL;
984 	u64 lockstart, lockend;
985 	u64 cur_offset;
986 	int ret = 0;
987 
988 	if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
989 		return 0;
990 
991 	if (!btrfs_drew_try_write_lock(&root->snapshot_lock))
992 		return -EAGAIN;
993 
994 	lockstart = round_down(pos, fs_info->sectorsize);
995 	lockend = round_up(pos + *write_bytes,
996 			   fs_info->sectorsize) - 1;
997 
998 	if (nowait) {
999 		if (!btrfs_try_lock_ordered_range(inode, lockstart, lockend,
1000 						  &cached_state)) {
1001 			btrfs_drew_write_unlock(&root->snapshot_lock);
1002 			return -EAGAIN;
1003 		}
1004 	} else {
1005 		btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend,
1006 						   &cached_state);
1007 	}
1008 
1009 	cur_offset = lockstart;
1010 	while (cur_offset < lockend) {
1011 		u64 num_bytes = lockend - cur_offset + 1;
1012 
1013 		ret = can_nocow_extent(inode, cur_offset, &num_bytes, NULL, nowait);
1014 		if (ret <= 0) {
1015 			/*
1016 			 * If cur_offset == lockstart it means we haven't found
1017 			 * any extent against which we can NOCOW, so unlock the
1018 			 * snapshot lock.
1019 			 */
1020 			if (cur_offset == lockstart)
1021 				btrfs_drew_write_unlock(&root->snapshot_lock);
1022 			break;
1023 		}
1024 		cur_offset += num_bytes;
1025 	}
1026 
1027 	btrfs_unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
1028 
1029 	/*
1030 	 * cur_offset > lockstart means there's at least a partial range we can
1031 	 * NOCOW, and that range can cover one or more extents.
1032 	 */
1033 	if (cur_offset > lockstart) {
1034 		*write_bytes = min_t(size_t, *write_bytes, cur_offset - pos);
1035 		return 1;
1036 	}
1037 
1038 	return ret;
1039 }
1040 
btrfs_check_nocow_unlock(struct btrfs_inode * inode)1041 void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1042 {
1043 	btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1044 }
1045 
btrfs_write_check(struct kiocb * iocb,size_t count)1046 int btrfs_write_check(struct kiocb *iocb, size_t count)
1047 {
1048 	struct file *file = iocb->ki_filp;
1049 	struct inode *inode = file_inode(file);
1050 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1051 	loff_t pos = iocb->ki_pos;
1052 	int ret;
1053 	loff_t oldsize;
1054 
1055 	/*
1056 	 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or
1057 	 * prealloc flags, as without those flags we always have to COW. We will
1058 	 * later check if we can really COW into the target range (using
1059 	 * can_nocow_extent() at btrfs_get_blocks_direct_write()).
1060 	 */
1061 	if ((iocb->ki_flags & IOCB_NOWAIT) &&
1062 	    !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1063 		return -EAGAIN;
1064 
1065 	ret = file_remove_privs(file);
1066 	if (ret)
1067 		return ret;
1068 
1069 	/*
1070 	 * We reserve space for updating the inode when we reserve space for the
1071 	 * extent we are going to write, so we will enospc out there.  We don't
1072 	 * need to start yet another transaction to update the inode as we will
1073 	 * update the inode when we finish writing whatever data we write.
1074 	 */
1075 	if (!IS_NOCMTIME(inode)) {
1076 		inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1077 		inode_inc_iversion(inode);
1078 	}
1079 
1080 	oldsize = i_size_read(inode);
1081 	if (pos > oldsize) {
1082 		/* Expand hole size to cover write data, preventing empty gap */
1083 		loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
1084 
1085 		ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
1086 		if (ret)
1087 			return ret;
1088 	}
1089 
1090 	return 0;
1091 }
1092 
release_space(struct btrfs_inode * inode,struct extent_changeset * data_reserved,u64 start,u64 len,bool only_release_metadata)1093 static void release_space(struct btrfs_inode *inode, struct extent_changeset *data_reserved,
1094 			  u64 start, u64 len, bool only_release_metadata)
1095 {
1096 	if (len == 0)
1097 		return;
1098 
1099 	if (only_release_metadata) {
1100 		btrfs_check_nocow_unlock(inode);
1101 		btrfs_delalloc_release_metadata(inode, len, true);
1102 	} else {
1103 		const struct btrfs_fs_info *fs_info = inode->root->fs_info;
1104 
1105 		btrfs_delalloc_release_space(inode, data_reserved,
1106 					     round_down(start, fs_info->sectorsize),
1107 					     len, true);
1108 	}
1109 }
1110 
1111 /*
1112  * Reserve data and metadata space for this buffered write range.
1113  *
1114  * Return >0 for the number of bytes reserved, which is always block aligned.
1115  * Return <0 for error.
1116  */
reserve_space(struct btrfs_inode * inode,struct extent_changeset ** data_reserved,u64 start,size_t * len,bool nowait,bool * only_release_metadata)1117 static ssize_t reserve_space(struct btrfs_inode *inode,
1118 			     struct extent_changeset **data_reserved,
1119 			     u64 start, size_t *len, bool nowait,
1120 			     bool *only_release_metadata)
1121 {
1122 	const struct btrfs_fs_info *fs_info = inode->root->fs_info;
1123 	const unsigned int block_offset = (start & (fs_info->sectorsize - 1));
1124 	size_t reserve_bytes;
1125 	int ret;
1126 
1127 	ret = btrfs_check_data_free_space(inode, data_reserved, start, *len, nowait);
1128 	if (ret < 0) {
1129 		int can_nocow;
1130 
1131 		if (nowait && (ret == -ENOSPC || ret == -EAGAIN))
1132 			return -EAGAIN;
1133 
1134 		/*
1135 		 * If we don't have to COW at the offset, reserve metadata only.
1136 		 * write_bytes may get smaller than requested here.
1137 		 */
1138 		can_nocow = btrfs_check_nocow_lock(inode, start, len, nowait);
1139 		if (can_nocow < 0)
1140 			ret = can_nocow;
1141 		if (can_nocow > 0)
1142 			ret = 0;
1143 		if (ret)
1144 			return ret;
1145 		*only_release_metadata = true;
1146 	}
1147 
1148 	reserve_bytes = round_up(*len + block_offset, fs_info->sectorsize);
1149 	WARN_ON(reserve_bytes == 0);
1150 	ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes,
1151 					      reserve_bytes, nowait);
1152 	if (ret) {
1153 		if (!*only_release_metadata)
1154 			btrfs_free_reserved_data_space(inode, *data_reserved,
1155 						       start, *len);
1156 		else
1157 			btrfs_check_nocow_unlock(inode);
1158 
1159 		if (nowait && ret == -ENOSPC)
1160 			ret = -EAGAIN;
1161 		return ret;
1162 	}
1163 	return reserve_bytes;
1164 }
1165 
1166 /* Shrink the reserved data and metadata space from @reserved_len to @new_len. */
shrink_reserved_space(struct btrfs_inode * inode,struct extent_changeset * data_reserved,u64 reserved_start,u64 reserved_len,u64 new_len,bool only_release_metadata)1167 static void shrink_reserved_space(struct btrfs_inode *inode,
1168 				  struct extent_changeset *data_reserved,
1169 				  u64 reserved_start, u64 reserved_len,
1170 				  u64 new_len, bool only_release_metadata)
1171 {
1172 	const u64 diff = reserved_len - new_len;
1173 
1174 	ASSERT(new_len <= reserved_len);
1175 	btrfs_delalloc_shrink_extents(inode, reserved_len, new_len);
1176 	if (only_release_metadata)
1177 		btrfs_delalloc_release_metadata(inode, diff, true);
1178 	else
1179 		btrfs_delalloc_release_space(inode, data_reserved,
1180 					     reserved_start + new_len, diff, true);
1181 }
1182 
1183 /* Calculate the maximum amount of bytes we can write into one folio. */
calc_write_bytes(const struct btrfs_inode * inode,const struct iov_iter * iter,u64 start)1184 static size_t calc_write_bytes(const struct btrfs_inode *inode,
1185 			       const struct iov_iter *iter, u64 start)
1186 {
1187 	const size_t max_folio_size = mapping_max_folio_size(inode->vfs_inode.i_mapping);
1188 
1189 	return min(max_folio_size - (start & (max_folio_size - 1)),
1190 		   iov_iter_count(iter));
1191 }
1192 
1193 /*
1194  * Do the heavy-lifting work to copy one range into one folio of the page cache.
1195  *
1196  * Return > 0 in case we copied all bytes or just some of them.
1197  * Return 0 if no bytes were copied, in which case the caller should retry.
1198  * Return <0 on error.
1199  */
copy_one_range(struct btrfs_inode * inode,struct iov_iter * iter,struct extent_changeset ** data_reserved,u64 start,bool nowait)1200 static int copy_one_range(struct btrfs_inode *inode, struct iov_iter *iter,
1201 			  struct extent_changeset **data_reserved, u64 start,
1202 			  bool nowait)
1203 {
1204 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1205 	struct extent_state *cached_state = NULL;
1206 	size_t write_bytes = calc_write_bytes(inode, iter, start);
1207 	size_t copied;
1208 	const u64 reserved_start = round_down(start, fs_info->sectorsize);
1209 	u64 reserved_len;
1210 	struct folio *folio = NULL;
1211 	int extents_locked;
1212 	u64 lockstart;
1213 	u64 lockend;
1214 	bool only_release_metadata = false;
1215 	const unsigned int bdp_flags = (nowait ? BDP_ASYNC : 0);
1216 	int ret;
1217 
1218 	/*
1219 	 * Fault all pages before locking them in prepare_one_folio() to avoid
1220 	 * recursive lock.
1221 	 */
1222 	if (unlikely(fault_in_iov_iter_readable(iter, write_bytes)))
1223 		return -EFAULT;
1224 	extent_changeset_release(*data_reserved);
1225 	ret = reserve_space(inode, data_reserved, start, &write_bytes, nowait,
1226 			    &only_release_metadata);
1227 	if (ret < 0)
1228 		return ret;
1229 	reserved_len = ret;
1230 	/* Write range must be inside the reserved range. */
1231 	ASSERT(reserved_start <= start);
1232 	ASSERT(start + write_bytes <= reserved_start + reserved_len);
1233 
1234 again:
1235 	ret = balance_dirty_pages_ratelimited_flags(inode->vfs_inode.i_mapping,
1236 						    bdp_flags);
1237 	if (ret) {
1238 		btrfs_delalloc_release_extents(inode, reserved_len);
1239 		release_space(inode, *data_reserved, reserved_start, reserved_len,
1240 			      only_release_metadata);
1241 		return ret;
1242 	}
1243 
1244 	ret = prepare_one_folio(&inode->vfs_inode, &folio, start, write_bytes, false);
1245 	if (ret) {
1246 		btrfs_delalloc_release_extents(inode, reserved_len);
1247 		release_space(inode, *data_reserved, reserved_start, reserved_len,
1248 			      only_release_metadata);
1249 		return ret;
1250 	}
1251 
1252 	/*
1253 	 * The reserved range goes beyond the current folio, shrink the reserved
1254 	 * space to the folio boundary.
1255 	 */
1256 	if (reserved_start + reserved_len > folio_next_pos(folio)) {
1257 		const u64 last_block = folio_next_pos(folio);
1258 
1259 		shrink_reserved_space(inode, *data_reserved, reserved_start,
1260 				      reserved_len, last_block - reserved_start,
1261 				      only_release_metadata);
1262 		write_bytes = last_block - start;
1263 		reserved_len = last_block - reserved_start;
1264 	}
1265 
1266 	extents_locked = lock_and_cleanup_extent_if_need(inode, folio, start,
1267 							 write_bytes, &lockstart,
1268 							 &lockend, nowait,
1269 							 &cached_state);
1270 	if (extents_locked < 0) {
1271 		if (!nowait && extents_locked == -EAGAIN)
1272 			goto again;
1273 
1274 		btrfs_delalloc_release_extents(inode, reserved_len);
1275 		release_space(inode, *data_reserved, reserved_start, reserved_len,
1276 			      only_release_metadata);
1277 		ret = extents_locked;
1278 		return ret;
1279 	}
1280 
1281 	copied = copy_folio_from_iter_atomic(folio, offset_in_folio(folio, start),
1282 					     write_bytes, iter);
1283 	flush_dcache_folio(folio);
1284 
1285 	if (unlikely(copied < write_bytes)) {
1286 		u64 last_block;
1287 
1288 		/*
1289 		 * The original write range doesn't need an uptodate folio as
1290 		 * the range is block aligned. But now a short copy happened.
1291 		 * We cannot handle it without an uptodate folio.
1292 		 *
1293 		 * So just revert the range and we will retry.
1294 		 */
1295 		if (!folio_test_uptodate(folio)) {
1296 			iov_iter_revert(iter, copied);
1297 			copied = 0;
1298 		}
1299 
1300 		/* No copied bytes, unlock, release reserved space and exit. */
1301 		if (copied == 0) {
1302 			if (extents_locked)
1303 				btrfs_unlock_extent(&inode->io_tree, lockstart, lockend,
1304 						    &cached_state);
1305 			else
1306 				btrfs_free_extent_state(cached_state);
1307 			btrfs_delalloc_release_extents(inode, reserved_len);
1308 			release_space(inode, *data_reserved, reserved_start, reserved_len,
1309 				      only_release_metadata);
1310 			btrfs_drop_folio(fs_info, folio, start, copied);
1311 			return 0;
1312 		}
1313 
1314 		/* Release the reserved space beyond the last block. */
1315 		last_block = round_up(start + copied, fs_info->sectorsize);
1316 
1317 		shrink_reserved_space(inode, *data_reserved, reserved_start,
1318 				      reserved_len, last_block - reserved_start,
1319 				      only_release_metadata);
1320 		reserved_len = last_block - reserved_start;
1321 	}
1322 
1323 	ret = btrfs_dirty_folio(inode, folio, start, copied, &cached_state,
1324 				only_release_metadata);
1325 	/*
1326 	 * If we have not locked the extent range, because the range's start
1327 	 * offset is >= i_size, we might still have a non-NULL cached extent
1328 	 * state, acquired while marking the extent range as delalloc through
1329 	 * btrfs_dirty_page(). Therefore free any possible cached extent state
1330 	 * to avoid a memory leak.
1331 	 */
1332 	if (extents_locked)
1333 		btrfs_unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
1334 	else
1335 		btrfs_free_extent_state(cached_state);
1336 
1337 	btrfs_delalloc_release_extents(inode, reserved_len);
1338 	if (ret) {
1339 		btrfs_drop_folio(fs_info, folio, start, copied);
1340 		release_space(inode, *data_reserved, reserved_start, reserved_len,
1341 			      only_release_metadata);
1342 		return ret;
1343 	}
1344 	if (only_release_metadata)
1345 		btrfs_check_nocow_unlock(inode);
1346 
1347 	btrfs_drop_folio(fs_info, folio, start, copied);
1348 	return copied;
1349 }
1350 
btrfs_buffered_write(struct kiocb * iocb,struct iov_iter * iter)1351 ssize_t btrfs_buffered_write(struct kiocb *iocb, struct iov_iter *iter)
1352 {
1353 	struct file *file = iocb->ki_filp;
1354 	loff_t pos;
1355 	struct inode *inode = file_inode(file);
1356 	struct extent_changeset *data_reserved = NULL;
1357 	size_t num_written = 0;
1358 	ssize_t ret;
1359 	loff_t old_isize;
1360 	unsigned int ilock_flags = 0;
1361 	const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
1362 
1363 	if (nowait)
1364 		ilock_flags |= BTRFS_ILOCK_TRY;
1365 
1366 	ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
1367 	if (ret < 0)
1368 		return ret;
1369 
1370 	/*
1371 	 * We can only trust the isize with inode lock held, or it can race with
1372 	 * other buffered writes and cause incorrect call of
1373 	 * pagecache_isize_extended() to overwrite existing data.
1374 	 */
1375 	old_isize = i_size_read(inode);
1376 
1377 	ret = generic_write_checks(iocb, iter);
1378 	if (ret <= 0)
1379 		goto out;
1380 
1381 	ret = btrfs_write_check(iocb, ret);
1382 	if (ret < 0)
1383 		goto out;
1384 
1385 	pos = iocb->ki_pos;
1386 	while (iov_iter_count(iter) > 0) {
1387 		ret = copy_one_range(BTRFS_I(inode), iter, &data_reserved, pos, nowait);
1388 		if (ret < 0)
1389 			break;
1390 		pos += ret;
1391 		num_written += ret;
1392 		cond_resched();
1393 	}
1394 
1395 	extent_changeset_free(data_reserved);
1396 	if (num_written > 0) {
1397 		pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
1398 		iocb->ki_pos += num_written;
1399 	}
1400 out:
1401 	btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1402 	return num_written ? num_written : ret;
1403 }
1404 
btrfs_encoded_write(struct kiocb * iocb,struct iov_iter * from,const struct btrfs_ioctl_encoded_io_args * encoded)1405 static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from,
1406 			const struct btrfs_ioctl_encoded_io_args *encoded)
1407 {
1408 	struct file *file = iocb->ki_filp;
1409 	struct inode *inode = file_inode(file);
1410 	loff_t count;
1411 	ssize_t ret;
1412 
1413 	btrfs_inode_lock(BTRFS_I(inode), 0);
1414 	count = encoded->len;
1415 	ret = generic_write_checks_count(iocb, &count);
1416 	if (ret == 0 && count != encoded->len) {
1417 		/*
1418 		 * The write got truncated by generic_write_checks_count(). We
1419 		 * can't do a partial encoded write.
1420 		 */
1421 		ret = -EFBIG;
1422 	}
1423 	if (ret || encoded->len == 0)
1424 		goto out;
1425 
1426 	ret = btrfs_write_check(iocb, encoded->len);
1427 	if (ret < 0)
1428 		goto out;
1429 
1430 	ret = btrfs_do_encoded_write(iocb, from, encoded);
1431 out:
1432 	btrfs_inode_unlock(BTRFS_I(inode), 0);
1433 	return ret;
1434 }
1435 
btrfs_do_write_iter(struct kiocb * iocb,struct iov_iter * from,const struct btrfs_ioctl_encoded_io_args * encoded)1436 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from,
1437 			    const struct btrfs_ioctl_encoded_io_args *encoded)
1438 {
1439 	struct file *file = iocb->ki_filp;
1440 	struct btrfs_inode *inode = BTRFS_I(file_inode(file));
1441 	ssize_t num_written, num_sync;
1442 
1443 	if (unlikely(btrfs_is_shutdown(inode->root->fs_info)))
1444 		return -EIO;
1445 	/*
1446 	 * If the fs flips readonly due to some impossible error, although we
1447 	 * have opened a file as writable, we have to stop this write operation
1448 	 * to ensure consistency.
1449 	 */
1450 	if (BTRFS_FS_ERROR(inode->root->fs_info))
1451 		return -EROFS;
1452 
1453 	if (encoded && (iocb->ki_flags & IOCB_NOWAIT))
1454 		return -EOPNOTSUPP;
1455 
1456 	if (encoded) {
1457 		num_written = btrfs_encoded_write(iocb, from, encoded);
1458 		num_sync = encoded->len;
1459 	} else if (iocb->ki_flags & IOCB_DIRECT) {
1460 		num_written = btrfs_direct_write(iocb, from);
1461 		num_sync = num_written;
1462 	} else {
1463 		num_written = btrfs_buffered_write(iocb, from);
1464 		num_sync = num_written;
1465 	}
1466 
1467 	btrfs_set_inode_last_sub_trans(inode);
1468 
1469 	if (num_sync > 0) {
1470 		num_sync = generic_write_sync(iocb, num_sync);
1471 		if (num_sync < 0)
1472 			num_written = num_sync;
1473 	}
1474 
1475 	return num_written;
1476 }
1477 
btrfs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)1478 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1479 {
1480 	return btrfs_do_write_iter(iocb, from, NULL);
1481 }
1482 
btrfs_release_file(struct inode * inode,struct file * filp)1483 int btrfs_release_file(struct inode *inode, struct file *filp)
1484 {
1485 	struct btrfs_file_private *private = filp->private_data;
1486 
1487 	if (private) {
1488 		kfree(private->filldir_buf);
1489 		btrfs_free_extent_state(private->llseek_cached_state);
1490 		kfree(private);
1491 		filp->private_data = NULL;
1492 	}
1493 
1494 	/*
1495 	 * Set by setattr when we are about to truncate a file from a non-zero
1496 	 * size to a zero size.  This tries to flush down new bytes that may
1497 	 * have been written if the application were using truncate to replace
1498 	 * a file in place.
1499 	 */
1500 	if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
1501 			       &BTRFS_I(inode)->runtime_flags))
1502 			filemap_flush(inode->i_mapping);
1503 	return 0;
1504 }
1505 
start_ordered_ops(struct btrfs_inode * inode,loff_t start,loff_t end)1506 static int start_ordered_ops(struct btrfs_inode *inode, loff_t start, loff_t end)
1507 {
1508 	int ret;
1509 	struct blk_plug plug;
1510 
1511 	/*
1512 	 * This is only called in fsync, which would do synchronous writes, so
1513 	 * a plug can merge adjacent IOs as much as possible.  Esp. in case of
1514 	 * multiple disks using raid profile, a large IO can be split to
1515 	 * several segments of stripe length (currently 64K).
1516 	 */
1517 	blk_start_plug(&plug);
1518 	ret = btrfs_fdatawrite_range(inode, start, end);
1519 	blk_finish_plug(&plug);
1520 
1521 	return ret;
1522 }
1523 
skip_inode_logging(const struct btrfs_log_ctx * ctx)1524 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx)
1525 {
1526 	struct btrfs_inode *inode = ctx->inode;
1527 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1528 
1529 	if (btrfs_inode_in_log(inode, btrfs_get_fs_generation(fs_info)) &&
1530 	    list_empty(&ctx->ordered_extents))
1531 		return true;
1532 
1533 	/*
1534 	 * If we are doing a fast fsync we can not bail out if the inode's
1535 	 * last_trans is <= then the last committed transaction, because we only
1536 	 * update the last_trans of the inode during ordered extent completion,
1537 	 * and for a fast fsync we don't wait for that, we only wait for the
1538 	 * writeback to complete.
1539 	 */
1540 	if (inode->last_trans <= btrfs_get_last_trans_committed(fs_info) &&
1541 	    (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) ||
1542 	     list_empty(&ctx->ordered_extents)))
1543 		return true;
1544 
1545 	return false;
1546 }
1547 
1548 /*
1549  * fsync call for both files and directories.  This logs the inode into
1550  * the tree log instead of forcing full commits whenever possible.
1551  *
1552  * It needs to call filemap_fdatawait so that all ordered extent updates are
1553  * in the metadata btree are up to date for copying to the log.
1554  *
1555  * It drops the inode mutex before doing the tree log commit.  This is an
1556  * important optimization for directories because holding the mutex prevents
1557  * new operations on the dir while we write to disk.
1558  */
btrfs_sync_file(struct file * file,loff_t start,loff_t end,int datasync)1559 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1560 {
1561 	struct dentry *dentry = file_dentry(file);
1562 	struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
1563 	struct btrfs_root *root = inode->root;
1564 	struct btrfs_fs_info *fs_info = root->fs_info;
1565 	struct btrfs_trans_handle *trans;
1566 	struct btrfs_log_ctx ctx;
1567 	int ret = 0, err;
1568 	u64 len;
1569 	bool full_sync;
1570 	bool skip_ilock = false;
1571 
1572 	if (current->journal_info == BTRFS_TRANS_DIO_WRITE_STUB) {
1573 		skip_ilock = true;
1574 		current->journal_info = NULL;
1575 		btrfs_assert_inode_locked(inode);
1576 	}
1577 
1578 	trace_btrfs_sync_file(file, datasync);
1579 
1580 	btrfs_init_log_ctx(&ctx, inode);
1581 
1582 	/*
1583 	 * Always set the range to a full range, otherwise we can get into
1584 	 * several problems, from missing file extent items to represent holes
1585 	 * when not using the NO_HOLES feature, to log tree corruption due to
1586 	 * races between hole detection during logging and completion of ordered
1587 	 * extents outside the range, to missing checksums due to ordered extents
1588 	 * for which we flushed only a subset of their pages.
1589 	 */
1590 	start = 0;
1591 	end = LLONG_MAX;
1592 	len = (u64)LLONG_MAX + 1;
1593 
1594 	/*
1595 	 * We write the dirty pages in the range and wait until they complete
1596 	 * out of the ->i_mutex. If so, we can flush the dirty pages by
1597 	 * multi-task, and make the performance up.  See
1598 	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1599 	 */
1600 	ret = start_ordered_ops(inode, start, end);
1601 	if (ret)
1602 		goto out;
1603 
1604 	if (skip_ilock)
1605 		down_write(&inode->i_mmap_lock);
1606 	else
1607 		btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
1608 
1609 	atomic_inc(&root->log_batch);
1610 
1611 	/*
1612 	 * Before we acquired the inode's lock and the mmap lock, someone may
1613 	 * have dirtied more pages in the target range. We need to make sure
1614 	 * that writeback for any such pages does not start while we are logging
1615 	 * the inode, because if it does, any of the following might happen when
1616 	 * we are not doing a full inode sync:
1617 	 *
1618 	 * 1) We log an extent after its writeback finishes but before its
1619 	 *    checksums are added to the csum tree, leading to -EIO errors
1620 	 *    when attempting to read the extent after a log replay.
1621 	 *
1622 	 * 2) We can end up logging an extent before its writeback finishes.
1623 	 *    Therefore after the log replay we will have a file extent item
1624 	 *    pointing to an unwritten extent (and no data checksums as well).
1625 	 *
1626 	 * So trigger writeback for any eventual new dirty pages and then we
1627 	 * wait for all ordered extents to complete below.
1628 	 */
1629 	ret = start_ordered_ops(inode, start, end);
1630 	if (ret) {
1631 		if (skip_ilock)
1632 			up_write(&inode->i_mmap_lock);
1633 		else
1634 			btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
1635 		goto out;
1636 	}
1637 
1638 	/*
1639 	 * Always check for the full sync flag while holding the inode's lock,
1640 	 * to avoid races with other tasks. The flag must be either set all the
1641 	 * time during logging or always off all the time while logging.
1642 	 * We check the flag here after starting delalloc above, because when
1643 	 * running delalloc the full sync flag may be set if we need to drop
1644 	 * extra extent map ranges due to temporary memory allocation failures.
1645 	 */
1646 	full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
1647 
1648 	/*
1649 	 * We have to do this here to avoid the priority inversion of waiting on
1650 	 * IO of a lower priority task while holding a transaction open.
1651 	 *
1652 	 * For a full fsync we wait for the ordered extents to complete while
1653 	 * for a fast fsync we wait just for writeback to complete, and then
1654 	 * attach the ordered extents to the transaction so that a transaction
1655 	 * commit waits for their completion, to avoid data loss if we fsync,
1656 	 * the current transaction commits before the ordered extents complete
1657 	 * and a power failure happens right after that.
1658 	 *
1659 	 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the
1660 	 * logical address recorded in the ordered extent may change. We need
1661 	 * to wait for the IO to stabilize the logical address.
1662 	 */
1663 	if (full_sync || btrfs_is_zoned(fs_info)) {
1664 		ret = btrfs_wait_ordered_range(inode, start, len);
1665 		clear_bit(BTRFS_INODE_COW_WRITE_ERROR, &inode->runtime_flags);
1666 	} else {
1667 		/*
1668 		 * Get our ordered extents as soon as possible to avoid doing
1669 		 * checksum lookups in the csum tree, and use instead the
1670 		 * checksums attached to the ordered extents.
1671 		 */
1672 		btrfs_get_ordered_extents_for_logging(inode, &ctx.ordered_extents);
1673 		ret = filemap_fdatawait_range(inode->vfs_inode.i_mapping, start, end);
1674 		if (ret)
1675 			goto out_release_extents;
1676 
1677 		/*
1678 		 * Check and clear the BTRFS_INODE_COW_WRITE_ERROR now after
1679 		 * starting and waiting for writeback, because for buffered IO
1680 		 * it may have been set during the end IO callback
1681 		 * (end_bbio_data_write() -> btrfs_finish_ordered_extent()) in
1682 		 * case an error happened and we need to wait for ordered
1683 		 * extents to complete so that any extent maps that point to
1684 		 * unwritten locations are dropped and we don't log them.
1685 		 */
1686 		if (test_and_clear_bit(BTRFS_INODE_COW_WRITE_ERROR, &inode->runtime_flags))
1687 			ret = btrfs_wait_ordered_range(inode, start, len);
1688 	}
1689 
1690 	if (ret)
1691 		goto out_release_extents;
1692 
1693 	atomic_inc(&root->log_batch);
1694 
1695 	if (skip_inode_logging(&ctx)) {
1696 		/*
1697 		 * We've had everything committed since the last time we were
1698 		 * modified so clear this flag in case it was set for whatever
1699 		 * reason, it's no longer relevant.
1700 		 */
1701 		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
1702 		/*
1703 		 * An ordered extent might have started before and completed
1704 		 * already with io errors, in which case the inode was not
1705 		 * updated and we end up here. So check the inode's mapping
1706 		 * for any errors that might have happened since we last
1707 		 * checked called fsync.
1708 		 */
1709 		ret = filemap_check_wb_err(inode->vfs_inode.i_mapping, file->f_wb_err);
1710 		goto out_release_extents;
1711 	}
1712 
1713 	btrfs_init_log_ctx_scratch_eb(&ctx);
1714 
1715 	/*
1716 	 * We use start here because we will need to wait on the IO to complete
1717 	 * in btrfs_sync_log, which could require joining a transaction (for
1718 	 * example checking cross references in the nocow path).  If we use join
1719 	 * here we could get into a situation where we're waiting on IO to
1720 	 * happen that is blocked on a transaction trying to commit.  With start
1721 	 * we inc the extwriter counter, so we wait for all extwriters to exit
1722 	 * before we start blocking joiners.  This comment is to keep somebody
1723 	 * from thinking they are super smart and changing this to
1724 	 * btrfs_join_transaction *cough*Josef*cough*.
1725 	 */
1726 	trans = btrfs_start_transaction(root, 0);
1727 	if (IS_ERR(trans)) {
1728 		ret = PTR_ERR(trans);
1729 		goto out_release_extents;
1730 	}
1731 	trans->in_fsync = true;
1732 
1733 	ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
1734 	/*
1735 	 * Scratch eb no longer needed, release before syncing log or commit
1736 	 * transaction, to avoid holding unnecessary memory during such long
1737 	 * operations.
1738 	 */
1739 	if (ctx.scratch_eb) {
1740 		free_extent_buffer(ctx.scratch_eb);
1741 		ctx.scratch_eb = NULL;
1742 	}
1743 	btrfs_release_log_ctx_extents(&ctx);
1744 	if (ret < 0) {
1745 		/* Fallthrough and commit/free transaction. */
1746 		ret = BTRFS_LOG_FORCE_COMMIT;
1747 	}
1748 
1749 	/* we've logged all the items and now have a consistent
1750 	 * version of the file in the log.  It is possible that
1751 	 * someone will come in and modify the file, but that's
1752 	 * fine because the log is consistent on disk, and we
1753 	 * have references to all of the file's extents
1754 	 *
1755 	 * It is possible that someone will come in and log the
1756 	 * file again, but that will end up using the synchronization
1757 	 * inside btrfs_sync_log to keep things safe.
1758 	 */
1759 	if (skip_ilock)
1760 		up_write(&inode->i_mmap_lock);
1761 	else
1762 		btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
1763 
1764 	if (ret == BTRFS_NO_LOG_SYNC) {
1765 		ret = btrfs_end_transaction(trans);
1766 		goto out;
1767 	}
1768 
1769 	/* We successfully logged the inode, attempt to sync the log. */
1770 	if (!ret) {
1771 		ret = btrfs_sync_log(trans, root, &ctx);
1772 		if (!ret) {
1773 			ret = btrfs_end_transaction(trans);
1774 			goto out;
1775 		}
1776 	}
1777 
1778 	/*
1779 	 * At this point we need to commit the transaction because we had
1780 	 * btrfs_need_log_full_commit() or some other error.
1781 	 *
1782 	 * If we didn't do a full sync we have to stop the trans handle, wait on
1783 	 * the ordered extents, start it again and commit the transaction.  If
1784 	 * we attempt to wait on the ordered extents here we could deadlock with
1785 	 * something like fallocate() that is holding the extent lock trying to
1786 	 * start a transaction while some other thread is trying to commit the
1787 	 * transaction while we (fsync) are currently holding the transaction
1788 	 * open.
1789 	 */
1790 	if (!full_sync) {
1791 		ret = btrfs_end_transaction(trans);
1792 		if (ret)
1793 			goto out;
1794 		ret = btrfs_wait_ordered_range(inode, start, len);
1795 		if (ret)
1796 			goto out;
1797 
1798 		/*
1799 		 * This is safe to use here because we're only interested in
1800 		 * making sure the transaction that had the ordered extents is
1801 		 * committed.  We aren't waiting on anything past this point,
1802 		 * we're purely getting the transaction and committing it.
1803 		 */
1804 		trans = btrfs_attach_transaction_barrier(root);
1805 		if (IS_ERR(trans)) {
1806 			ret = PTR_ERR(trans);
1807 
1808 			/*
1809 			 * We committed the transaction and there's no currently
1810 			 * running transaction, this means everything we care
1811 			 * about made it to disk and we are done.
1812 			 */
1813 			if (ret == -ENOENT)
1814 				ret = 0;
1815 			goto out;
1816 		}
1817 	}
1818 
1819 	ret = btrfs_commit_transaction(trans);
1820 out:
1821 	free_extent_buffer(ctx.scratch_eb);
1822 	ASSERT(list_empty(&ctx.list));
1823 	ASSERT(list_empty(&ctx.conflict_inodes));
1824 	err = file_check_and_advance_wb_err(file);
1825 	if (!ret)
1826 		ret = err;
1827 	return ret > 0 ? -EIO : ret;
1828 
1829 out_release_extents:
1830 	btrfs_release_log_ctx_extents(&ctx);
1831 	if (skip_ilock)
1832 		up_write(&inode->i_mmap_lock);
1833 	else
1834 		btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
1835 	goto out;
1836 }
1837 
1838 /*
1839  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
1840  * called from a page fault handler when a page is first dirtied. Hence we must
1841  * be careful to check for EOF conditions here. We set the page up correctly
1842  * for a written page which means we get ENOSPC checking when writing into
1843  * holes and correct delalloc and unwritten extent mapping on filesystems that
1844  * support these features.
1845  *
1846  * We are not allowed to take the i_mutex here so we have to play games to
1847  * protect against truncate races as the page could now be beyond EOF.  Because
1848  * truncate_setsize() writes the inode size before removing pages, once we have
1849  * the page lock we can determine safely if the page is beyond EOF. If it is not
1850  * beyond EOF, then the page is guaranteed safe against truncation until we
1851  * unlock the page.
1852  */
btrfs_page_mkwrite(struct vm_fault * vmf)1853 static vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
1854 {
1855 	struct page *page = vmf->page;
1856 	struct folio *folio = page_folio(page);
1857 	struct btrfs_inode *inode = BTRFS_I(file_inode(vmf->vma->vm_file));
1858 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1859 	struct extent_io_tree *io_tree = &inode->io_tree;
1860 	struct btrfs_ordered_extent *ordered;
1861 	struct extent_state *cached_state = NULL;
1862 	struct extent_changeset *data_reserved = NULL;
1863 	unsigned long zero_start;
1864 	loff_t size;
1865 	size_t fsize = folio_size(folio);
1866 	int ret;
1867 	bool only_release_metadata = false;
1868 	u64 reserved_space;
1869 	u64 page_start;
1870 	u64 page_end;
1871 	u64 end;
1872 
1873 	reserved_space = fsize;
1874 
1875 	sb_start_pagefault(inode->vfs_inode.i_sb);
1876 	page_start = folio_pos(folio);
1877 	page_end = page_start + folio_size(folio) - 1;
1878 	end = page_end;
1879 
1880 	/*
1881 	 * Reserving delalloc space after obtaining the page lock can lead to
1882 	 * deadlock. For example, if a dirty page is locked by this function
1883 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
1884 	 * dirty page write out, then the btrfs_writepages() function could
1885 	 * end up waiting indefinitely to get a lock on the page currently
1886 	 * being processed by btrfs_page_mkwrite() function.
1887 	 */
1888 	ret = btrfs_check_data_free_space(inode, &data_reserved, page_start,
1889 					  reserved_space, false);
1890 	if (ret < 0) {
1891 		size_t write_bytes = reserved_space;
1892 
1893 		if (btrfs_check_nocow_lock(inode, page_start, &write_bytes, false) <= 0)
1894 			goto out_noreserve;
1895 
1896 		only_release_metadata = true;
1897 
1898 		/*
1899 		 * Can't write the whole range, there may be shared extents or
1900 		 * holes in the range, bail out with @only_release_metadata set
1901 		 * to true so that we unlock the nocow lock before returning the
1902 		 * error.
1903 		 */
1904 		if (write_bytes < reserved_space)
1905 			goto out_noreserve;
1906 	}
1907 	ret = btrfs_delalloc_reserve_metadata(inode, reserved_space,
1908 					      reserved_space, false);
1909 	if (ret < 0) {
1910 		if (!only_release_metadata)
1911 			btrfs_free_reserved_data_space(inode, data_reserved,
1912 						       page_start, reserved_space);
1913 		goto out_noreserve;
1914 	}
1915 
1916 	ret = file_update_time(vmf->vma->vm_file);
1917 	if (ret < 0)
1918 		goto out;
1919 again:
1920 	down_read(&inode->i_mmap_lock);
1921 	folio_lock(folio);
1922 	size = i_size_read(&inode->vfs_inode);
1923 
1924 	if ((folio->mapping != inode->vfs_inode.i_mapping) ||
1925 	    (page_start >= size)) {
1926 		/* Page got truncated out from underneath us. */
1927 		goto out_unlock;
1928 	}
1929 	folio_wait_writeback(folio);
1930 
1931 	btrfs_lock_extent(io_tree, page_start, page_end, &cached_state);
1932 	ret = set_folio_extent_mapped(folio);
1933 	if (ret < 0) {
1934 		btrfs_unlock_extent(io_tree, page_start, page_end, &cached_state);
1935 		goto out_unlock;
1936 	}
1937 
1938 	/*
1939 	 * We can't set the delalloc bits if there are pending ordered
1940 	 * extents.  Drop our locks and wait for them to finish.
1941 	 */
1942 	ordered = btrfs_lookup_ordered_range(inode, page_start, fsize);
1943 	if (ordered) {
1944 		btrfs_unlock_extent(io_tree, page_start, page_end, &cached_state);
1945 		folio_unlock(folio);
1946 		up_read(&inode->i_mmap_lock);
1947 		btrfs_start_ordered_extent(ordered);
1948 		btrfs_put_ordered_extent(ordered);
1949 		goto again;
1950 	}
1951 
1952 	if (folio_contains(folio, (size - 1) >> PAGE_SHIFT)) {
1953 		reserved_space = round_up(size - page_start, fs_info->sectorsize);
1954 		if (reserved_space < fsize) {
1955 			const u64 to_free = fsize - reserved_space;
1956 
1957 			end = page_start + reserved_space - 1;
1958 			if (only_release_metadata)
1959 				btrfs_delalloc_release_metadata(inode, to_free, true);
1960 			else
1961 				btrfs_delalloc_release_space(inode, data_reserved,
1962 							     end + 1, to_free, true);
1963 		}
1964 	}
1965 
1966 	/*
1967 	 * page_mkwrite gets called when the page is firstly dirtied after it's
1968 	 * faulted in, but write(2) could also dirty a page and set delalloc
1969 	 * bits, thus in this case for space account reason, we still need to
1970 	 * clear any delalloc bits within this page range since we have to
1971 	 * reserve data&meta space before lock_page() (see above comments).
1972 	 */
1973 	btrfs_clear_extent_bit(io_tree, page_start, end,
1974 			       EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1975 			       EXTENT_DEFRAG, &cached_state);
1976 
1977 	ret = btrfs_set_extent_delalloc(inode, page_start, end, 0, &cached_state);
1978 	if (ret < 0) {
1979 		btrfs_unlock_extent(io_tree, page_start, page_end, &cached_state);
1980 		goto out_unlock;
1981 	}
1982 
1983 	/* Page is wholly or partially inside EOF. */
1984 	if (page_start + folio_size(folio) > size)
1985 		zero_start = offset_in_folio(folio, size);
1986 	else
1987 		zero_start = fsize;
1988 
1989 	if (zero_start != fsize)
1990 		folio_zero_range(folio, zero_start, folio_size(folio) - zero_start);
1991 
1992 	btrfs_folio_clear_checked(fs_info, folio, page_start, fsize);
1993 	btrfs_folio_set_dirty(fs_info, folio, page_start, end + 1 - page_start);
1994 	btrfs_folio_set_uptodate(fs_info, folio, page_start, end + 1 - page_start);
1995 
1996 	btrfs_set_inode_last_sub_trans(inode);
1997 
1998 	if (only_release_metadata)
1999 		btrfs_set_extent_bit(io_tree, page_start, end, EXTENT_NORESERVE,
2000 				     &cached_state);
2001 
2002 	btrfs_unlock_extent(io_tree, page_start, page_end, &cached_state);
2003 	up_read(&inode->i_mmap_lock);
2004 
2005 	btrfs_delalloc_release_extents(inode, fsize);
2006 	if (only_release_metadata)
2007 		btrfs_check_nocow_unlock(inode);
2008 	sb_end_pagefault(inode->vfs_inode.i_sb);
2009 	extent_changeset_free(data_reserved);
2010 	return VM_FAULT_LOCKED;
2011 
2012 out_unlock:
2013 	folio_unlock(folio);
2014 	up_read(&inode->i_mmap_lock);
2015 out:
2016 	btrfs_delalloc_release_extents(inode, fsize);
2017 	if (only_release_metadata)
2018 		btrfs_delalloc_release_metadata(inode, reserved_space, true);
2019 	else
2020 		btrfs_delalloc_release_space(inode, data_reserved, page_start,
2021 					     reserved_space, true);
2022 	extent_changeset_free(data_reserved);
2023 out_noreserve:
2024 	if (only_release_metadata)
2025 		btrfs_check_nocow_unlock(inode);
2026 
2027 	sb_end_pagefault(inode->vfs_inode.i_sb);
2028 
2029 	if (ret < 0)
2030 		return vmf_error(ret);
2031 
2032 	/* Make the VM retry the fault. */
2033 	return VM_FAULT_NOPAGE;
2034 }
2035 
2036 static const struct vm_operations_struct btrfs_file_vm_ops = {
2037 	.fault		= filemap_fault,
2038 	.map_pages	= filemap_map_pages,
2039 	.page_mkwrite	= btrfs_page_mkwrite,
2040 };
2041 
btrfs_file_mmap_prepare(struct vm_area_desc * desc)2042 static int btrfs_file_mmap_prepare(struct vm_area_desc *desc)
2043 {
2044 	struct file *filp = desc->file;
2045 	struct address_space *mapping = filp->f_mapping;
2046 
2047 	if (unlikely(btrfs_is_shutdown(inode_to_fs_info(file_inode(filp)))))
2048 		return -EIO;
2049 	if (!mapping->a_ops->read_folio)
2050 		return -ENOEXEC;
2051 
2052 	file_accessed(filp);
2053 	desc->vm_ops = &btrfs_file_vm_ops;
2054 
2055 	return 0;
2056 }
2057 
hole_mergeable(struct btrfs_inode * inode,struct extent_buffer * leaf,int slot,u64 start,u64 end)2058 static bool hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2059 			   int slot, u64 start, u64 end)
2060 {
2061 	struct btrfs_file_extent_item *fi;
2062 	struct btrfs_key key;
2063 
2064 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2065 		return false;
2066 
2067 	btrfs_item_key_to_cpu(leaf, &key, slot);
2068 	if (key.objectid != btrfs_ino(inode) ||
2069 	    key.type != BTRFS_EXTENT_DATA_KEY)
2070 		return false;
2071 
2072 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2073 
2074 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2075 		return false;
2076 
2077 	if (btrfs_file_extent_disk_bytenr(leaf, fi))
2078 		return false;
2079 
2080 	if (key.offset == end)
2081 		return true;
2082 	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2083 		return true;
2084 	return false;
2085 }
2086 
fill_holes(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,u64 offset,u64 end)2087 static int fill_holes(struct btrfs_trans_handle *trans,
2088 		struct btrfs_inode *inode,
2089 		struct btrfs_path *path, u64 offset, u64 end)
2090 {
2091 	struct btrfs_fs_info *fs_info = trans->fs_info;
2092 	struct btrfs_root *root = inode->root;
2093 	struct extent_buffer *leaf;
2094 	struct btrfs_file_extent_item *fi;
2095 	struct extent_map *hole_em;
2096 	struct btrfs_key key;
2097 	int ret;
2098 
2099 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
2100 		goto out;
2101 
2102 	key.objectid = btrfs_ino(inode);
2103 	key.type = BTRFS_EXTENT_DATA_KEY;
2104 	key.offset = offset;
2105 
2106 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2107 	if (ret <= 0) {
2108 		/*
2109 		 * We should have dropped this offset, so if we find it then
2110 		 * something has gone horribly wrong.
2111 		 */
2112 		if (ret == 0)
2113 			ret = -EINVAL;
2114 		return ret;
2115 	}
2116 
2117 	leaf = path->nodes[0];
2118 	if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2119 		u64 num_bytes;
2120 
2121 		path->slots[0]--;
2122 		fi = btrfs_item_ptr(leaf, path->slots[0],
2123 				    struct btrfs_file_extent_item);
2124 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2125 			end - offset;
2126 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2127 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2128 		btrfs_set_file_extent_offset(leaf, fi, 0);
2129 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2130 		goto out;
2131 	}
2132 
2133 	if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2134 		u64 num_bytes;
2135 
2136 		key.offset = offset;
2137 		btrfs_set_item_key_safe(trans, path, &key);
2138 		fi = btrfs_item_ptr(leaf, path->slots[0],
2139 				    struct btrfs_file_extent_item);
2140 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2141 			offset;
2142 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2143 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2144 		btrfs_set_file_extent_offset(leaf, fi, 0);
2145 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2146 		goto out;
2147 	}
2148 	btrfs_release_path(path);
2149 
2150 	ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset,
2151 				       end - offset);
2152 	if (ret)
2153 		return ret;
2154 
2155 out:
2156 	btrfs_release_path(path);
2157 
2158 	hole_em = btrfs_alloc_extent_map();
2159 	if (!hole_em) {
2160 		btrfs_drop_extent_map_range(inode, offset, end - 1, false);
2161 		btrfs_set_inode_full_sync(inode);
2162 	} else {
2163 		hole_em->start = offset;
2164 		hole_em->len = end - offset;
2165 		hole_em->ram_bytes = hole_em->len;
2166 
2167 		hole_em->disk_bytenr = EXTENT_MAP_HOLE;
2168 		hole_em->disk_num_bytes = 0;
2169 		hole_em->generation = trans->transid;
2170 
2171 		ret = btrfs_replace_extent_map_range(inode, hole_em, true);
2172 		btrfs_free_extent_map(hole_em);
2173 		if (ret)
2174 			btrfs_set_inode_full_sync(inode);
2175 	}
2176 
2177 	return 0;
2178 }
2179 
2180 /*
2181  * Find a hole extent on given inode and change start/len to the end of hole
2182  * extent.(hole/vacuum extent whose em->start <= start &&
2183  *	   em->start + em->len > start)
2184  * When a hole extent is found, return 1 and modify start/len.
2185  */
find_first_non_hole(struct btrfs_inode * inode,u64 * start,u64 * len)2186 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
2187 {
2188 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2189 	struct extent_map *em;
2190 	int ret = 0;
2191 
2192 	em = btrfs_get_extent(inode, NULL,
2193 			      round_down(*start, fs_info->sectorsize),
2194 			      round_up(*len, fs_info->sectorsize));
2195 	if (IS_ERR(em))
2196 		return PTR_ERR(em);
2197 
2198 	/* Hole or vacuum extent(only exists in no-hole mode) */
2199 	if (em->disk_bytenr == EXTENT_MAP_HOLE) {
2200 		ret = 1;
2201 		*len = em->start + em->len > *start + *len ?
2202 		       0 : *start + *len - em->start - em->len;
2203 		*start = em->start + em->len;
2204 	}
2205 	btrfs_free_extent_map(em);
2206 	return ret;
2207 }
2208 
2209 /*
2210  * Check if there is no folio in the range.
2211  *
2212  * We cannot utilize filemap_range_has_page() in a filemap with large folios
2213  * as we can hit the following false positive:
2214  *
2215  *        start                            end
2216  *        |                                |
2217  *  |//|//|//|//|  |  |  |  |  |  |  |  |//|//|
2218  *   \         /                         \   /
2219  *    Folio A                            Folio B
2220  *
2221  * That large folio A and B cover the start and end indexes.
2222  * In that case filemap_range_has_page() will always return true, but the above
2223  * case is fine for btrfs_punch_hole_lock_range() usage.
2224  *
2225  * So here we only ensure that no other folios is in the range, excluding the
2226  * head/tail large folio.
2227  */
check_range_has_page(struct inode * inode,u64 start,u64 end)2228 static bool check_range_has_page(struct inode *inode, u64 start, u64 end)
2229 {
2230 	struct folio_batch fbatch;
2231 	bool ret = false;
2232 	/*
2233 	 * For subpage case, if the range is not at page boundary, we could
2234 	 * have pages at the leading/tailing part of the range.
2235 	 * This could lead to dead loop since filemap_range_has_page()
2236 	 * will always return true.
2237 	 * So here we need to do extra page alignment for
2238 	 * filemap_range_has_page().
2239 	 *
2240 	 * And do not decrease page_lockend right now, as it can be 0.
2241 	 */
2242 	const u64 page_lockstart = round_up(start, PAGE_SIZE);
2243 	const u64 page_lockend = round_down(end + 1, PAGE_SIZE);
2244 	const pgoff_t start_index = page_lockstart >> PAGE_SHIFT;
2245 	const pgoff_t end_index = (page_lockend - 1) >> PAGE_SHIFT;
2246 	pgoff_t tmp = start_index;
2247 	int found_folios;
2248 
2249 	/* The same page or adjacent pages. */
2250 	if (page_lockend <= page_lockstart)
2251 		return false;
2252 
2253 	folio_batch_init(&fbatch);
2254 	found_folios = filemap_get_folios(inode->i_mapping, &tmp, end_index, &fbatch);
2255 	for (int i = 0; i < found_folios; i++) {
2256 		struct folio *folio = fbatch.folios[i];
2257 
2258 		/* A large folio begins before the start. Not a target. */
2259 		if (folio->index < start_index)
2260 			continue;
2261 		/* A large folio extends beyond the end. Not a target. */
2262 		if (folio_next_index(folio) > end_index)
2263 			continue;
2264 		/* A folio doesn't cover the head/tail index. Found a target. */
2265 		ret = true;
2266 		break;
2267 	}
2268 	folio_batch_release(&fbatch);
2269 	return ret;
2270 }
2271 
btrfs_punch_hole_lock_range(struct inode * inode,const u64 lockstart,const u64 lockend,struct extent_state ** cached_state)2272 static void btrfs_punch_hole_lock_range(struct inode *inode,
2273 					const u64 lockstart, const u64 lockend,
2274 					struct extent_state **cached_state)
2275 {
2276 	while (1) {
2277 		truncate_pagecache_range(inode, lockstart, lockend);
2278 
2279 		btrfs_lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2280 				  cached_state);
2281 		/*
2282 		 * We can't have ordered extents in the range, nor dirty/writeback
2283 		 * pages, because we have locked the inode's VFS lock in exclusive
2284 		 * mode, we have locked the inode's i_mmap_lock in exclusive mode,
2285 		 * we have flushed all delalloc in the range and we have waited
2286 		 * for any ordered extents in the range to complete.
2287 		 * We can race with anyone reading pages from this range, so after
2288 		 * locking the range check if we have pages in the range, and if
2289 		 * we do, unlock the range and retry.
2290 		 */
2291 		if (!check_range_has_page(inode, lockstart, lockend))
2292 			break;
2293 
2294 		btrfs_unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2295 				    cached_state);
2296 	}
2297 
2298 	btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend);
2299 }
2300 
btrfs_insert_replace_extent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_replace_extent_info * extent_info,const u64 replace_len,const u64 bytes_to_drop)2301 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
2302 				     struct btrfs_inode *inode,
2303 				     struct btrfs_path *path,
2304 				     struct btrfs_replace_extent_info *extent_info,
2305 				     const u64 replace_len,
2306 				     const u64 bytes_to_drop)
2307 {
2308 	struct btrfs_fs_info *fs_info = trans->fs_info;
2309 	struct btrfs_root *root = inode->root;
2310 	struct btrfs_file_extent_item *extent;
2311 	struct extent_buffer *leaf;
2312 	struct btrfs_key key;
2313 	int slot;
2314 	int ret;
2315 
2316 	if (replace_len == 0)
2317 		return 0;
2318 
2319 	if (extent_info->disk_offset == 0 &&
2320 	    btrfs_fs_incompat(fs_info, NO_HOLES)) {
2321 		btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2322 		return 0;
2323 	}
2324 
2325 	key.objectid = btrfs_ino(inode);
2326 	key.type = BTRFS_EXTENT_DATA_KEY;
2327 	key.offset = extent_info->file_offset;
2328 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2329 				      sizeof(struct btrfs_file_extent_item));
2330 	if (ret)
2331 		return ret;
2332 	leaf = path->nodes[0];
2333 	slot = path->slots[0];
2334 	write_extent_buffer(leaf, extent_info->extent_buf,
2335 			    btrfs_item_ptr_offset(leaf, slot),
2336 			    sizeof(struct btrfs_file_extent_item));
2337 	extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2338 	ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
2339 	btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2340 	btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2341 	if (extent_info->is_new_extent)
2342 		btrfs_set_file_extent_generation(leaf, extent, trans->transid);
2343 	btrfs_release_path(path);
2344 
2345 	ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
2346 						replace_len);
2347 	if (ret)
2348 		return ret;
2349 
2350 	/* If it's a hole, nothing more needs to be done. */
2351 	if (extent_info->disk_offset == 0) {
2352 		btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2353 		return 0;
2354 	}
2355 
2356 	btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
2357 
2358 	if (extent_info->is_new_extent && extent_info->insertions == 0) {
2359 		key.objectid = extent_info->disk_offset;
2360 		key.type = BTRFS_EXTENT_ITEM_KEY;
2361 		key.offset = extent_info->disk_len;
2362 		ret = btrfs_alloc_reserved_file_extent(trans, root,
2363 						       btrfs_ino(inode),
2364 						       extent_info->file_offset,
2365 						       extent_info->qgroup_reserved,
2366 						       &key);
2367 	} else {
2368 		struct btrfs_ref ref = {
2369 			.action = BTRFS_ADD_DELAYED_REF,
2370 			.bytenr = extent_info->disk_offset,
2371 			.num_bytes = extent_info->disk_len,
2372 			.owning_root = btrfs_root_id(root),
2373 			.ref_root = btrfs_root_id(root),
2374 		};
2375 		u64 ref_offset;
2376 
2377 		ref_offset = extent_info->file_offset - extent_info->data_offset;
2378 		btrfs_init_data_ref(&ref, btrfs_ino(inode), ref_offset, 0, false);
2379 		ret = btrfs_inc_extent_ref(trans, &ref);
2380 	}
2381 
2382 	extent_info->insertions++;
2383 
2384 	return ret;
2385 }
2386 
2387 /*
2388  * The respective range must have been previously locked, as well as the inode.
2389  * The end offset is inclusive (last byte of the range).
2390  * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2391  * the file range with an extent.
2392  * When not punching a hole, we don't want to end up in a state where we dropped
2393  * extents without inserting a new one, so we must abort the transaction to avoid
2394  * a corruption.
2395  */
btrfs_replace_file_extents(struct btrfs_inode * inode,struct btrfs_path * path,const u64 start,const u64 end,struct btrfs_replace_extent_info * extent_info,struct btrfs_trans_handle ** trans_out)2396 int btrfs_replace_file_extents(struct btrfs_inode *inode,
2397 			       struct btrfs_path *path, const u64 start,
2398 			       const u64 end,
2399 			       struct btrfs_replace_extent_info *extent_info,
2400 			       struct btrfs_trans_handle **trans_out)
2401 {
2402 	struct btrfs_drop_extents_args drop_args = { 0 };
2403 	struct btrfs_root *root = inode->root;
2404 	struct btrfs_fs_info *fs_info = root->fs_info;
2405 	u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2406 	u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
2407 	struct btrfs_trans_handle *trans = NULL;
2408 	struct btrfs_block_rsv rsv;
2409 	unsigned int rsv_count;
2410 	u64 cur_offset;
2411 	u64 len = end - start;
2412 	int ret = 0;
2413 
2414 	if (end <= start)
2415 		return -EINVAL;
2416 
2417 	btrfs_init_metadata_block_rsv(fs_info, &rsv, BTRFS_BLOCK_RSV_TEMP);
2418 	rsv.size = btrfs_calc_insert_metadata_size(fs_info, 1);
2419 	rsv.failfast = true;
2420 
2421 	/*
2422 	 * 1 - update the inode
2423 	 * 1 - removing the extents in the range
2424 	 * 1 - adding the hole extent if no_holes isn't set or if we are
2425 	 *     replacing the range with a new extent
2426 	 */
2427 	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
2428 		rsv_count = 3;
2429 	else
2430 		rsv_count = 2;
2431 
2432 	trans = btrfs_start_transaction(root, rsv_count);
2433 	if (IS_ERR(trans)) {
2434 		ret = PTR_ERR(trans);
2435 		trans = NULL;
2436 		goto out_release;
2437 	}
2438 
2439 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, &rsv,
2440 				      min_size, false);
2441 	if (WARN_ON(ret))
2442 		goto out_trans;
2443 	trans->block_rsv = &rsv;
2444 
2445 	cur_offset = start;
2446 	drop_args.path = path;
2447 	drop_args.end = end + 1;
2448 	drop_args.drop_cache = true;
2449 	while (cur_offset < end) {
2450 		drop_args.start = cur_offset;
2451 		ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2452 		/* If we are punching a hole decrement the inode's byte count */
2453 		if (!extent_info)
2454 			btrfs_update_inode_bytes(inode, 0,
2455 						 drop_args.bytes_found);
2456 		if (ret != -ENOSPC) {
2457 			/*
2458 			 * The only time we don't want to abort is if we are
2459 			 * attempting to clone a partial inline extent, in which
2460 			 * case we'll get EOPNOTSUPP.  However if we aren't
2461 			 * clone we need to abort no matter what, because if we
2462 			 * got EOPNOTSUPP via prealloc then we messed up and
2463 			 * need to abort.
2464 			 */
2465 			if (unlikely(ret &&
2466 				     (ret != -EOPNOTSUPP ||
2467 				      (extent_info && extent_info->is_new_extent))))
2468 				btrfs_abort_transaction(trans, ret);
2469 			break;
2470 		}
2471 
2472 		trans->block_rsv = &fs_info->trans_block_rsv;
2473 
2474 		if (!extent_info && cur_offset < drop_args.drop_end &&
2475 		    cur_offset < ino_size) {
2476 			ret = fill_holes(trans, inode, path, cur_offset,
2477 					 drop_args.drop_end);
2478 			if (unlikely(ret)) {
2479 				/*
2480 				 * If we failed then we didn't insert our hole
2481 				 * entries for the area we dropped, so now the
2482 				 * fs is corrupted, so we must abort the
2483 				 * transaction.
2484 				 */
2485 				btrfs_abort_transaction(trans, ret);
2486 				break;
2487 			}
2488 		} else if (!extent_info && cur_offset < drop_args.drop_end) {
2489 			/*
2490 			 * We are past the i_size here, but since we didn't
2491 			 * insert holes we need to clear the mapped area so we
2492 			 * know to not set disk_i_size in this area until a new
2493 			 * file extent is inserted here.
2494 			 */
2495 			ret = btrfs_inode_clear_file_extent_range(inode,
2496 					cur_offset,
2497 					drop_args.drop_end - cur_offset);
2498 			if (unlikely(ret)) {
2499 				/*
2500 				 * We couldn't clear our area, so we could
2501 				 * presumably adjust up and corrupt the fs, so
2502 				 * we need to abort.
2503 				 */
2504 				btrfs_abort_transaction(trans, ret);
2505 				break;
2506 			}
2507 		}
2508 
2509 		if (extent_info &&
2510 		    drop_args.drop_end > extent_info->file_offset) {
2511 			u64 replace_len = drop_args.drop_end -
2512 					  extent_info->file_offset;
2513 
2514 			ret = btrfs_insert_replace_extent(trans, inode,	path,
2515 					extent_info, replace_len,
2516 					drop_args.bytes_found);
2517 			if (unlikely(ret)) {
2518 				btrfs_abort_transaction(trans, ret);
2519 				break;
2520 			}
2521 			extent_info->data_len -= replace_len;
2522 			extent_info->data_offset += replace_len;
2523 			extent_info->file_offset += replace_len;
2524 		}
2525 
2526 		/*
2527 		 * We are releasing our handle on the transaction, balance the
2528 		 * dirty pages of the btree inode and flush delayed items, and
2529 		 * then get a new transaction handle, which may now point to a
2530 		 * new transaction in case someone else may have committed the
2531 		 * transaction we used to replace/drop file extent items. So
2532 		 * bump the inode's iversion and update mtime and ctime except
2533 		 * if we are called from a dedupe context. This is because a
2534 		 * power failure/crash may happen after the transaction is
2535 		 * committed and before we finish replacing/dropping all the
2536 		 * file extent items we need.
2537 		 */
2538 		inode_inc_iversion(&inode->vfs_inode);
2539 
2540 		if (!extent_info || extent_info->update_times)
2541 			inode_set_mtime_to_ts(&inode->vfs_inode,
2542 					      inode_set_ctime_current(&inode->vfs_inode));
2543 
2544 		ret = btrfs_update_inode(trans, inode);
2545 		if (ret)
2546 			break;
2547 
2548 		btrfs_end_transaction(trans);
2549 		btrfs_btree_balance_dirty(fs_info);
2550 
2551 		trans = btrfs_start_transaction(root, rsv_count);
2552 		if (IS_ERR(trans)) {
2553 			ret = PTR_ERR(trans);
2554 			trans = NULL;
2555 			break;
2556 		}
2557 
2558 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2559 					      &rsv, min_size, false);
2560 		if (WARN_ON(ret))
2561 			break;
2562 		trans->block_rsv = &rsv;
2563 
2564 		cur_offset = drop_args.drop_end;
2565 		len = end - cur_offset;
2566 		if (!extent_info && len) {
2567 			ret = find_first_non_hole(inode, &cur_offset, &len);
2568 			if (unlikely(ret < 0))
2569 				break;
2570 			if (ret && !len) {
2571 				ret = 0;
2572 				break;
2573 			}
2574 		}
2575 	}
2576 
2577 	/*
2578 	 * If we were cloning, force the next fsync to be a full one since we
2579 	 * we replaced (or just dropped in the case of cloning holes when
2580 	 * NO_HOLES is enabled) file extent items and did not setup new extent
2581 	 * maps for the replacement extents (or holes).
2582 	 */
2583 	if (extent_info && !extent_info->is_new_extent)
2584 		btrfs_set_inode_full_sync(inode);
2585 
2586 	if (ret)
2587 		goto out_trans;
2588 
2589 	trans->block_rsv = &fs_info->trans_block_rsv;
2590 	/*
2591 	 * If we are using the NO_HOLES feature we might have had already an
2592 	 * hole that overlaps a part of the region [lockstart, lockend] and
2593 	 * ends at (or beyond) lockend. Since we have no file extent items to
2594 	 * represent holes, drop_end can be less than lockend and so we must
2595 	 * make sure we have an extent map representing the existing hole (the
2596 	 * call to __btrfs_drop_extents() might have dropped the existing extent
2597 	 * map representing the existing hole), otherwise the fast fsync path
2598 	 * will not record the existence of the hole region
2599 	 * [existing_hole_start, lockend].
2600 	 */
2601 	if (drop_args.drop_end <= end)
2602 		drop_args.drop_end = end + 1;
2603 	/*
2604 	 * Don't insert file hole extent item if it's for a range beyond eof
2605 	 * (because it's useless) or if it represents a 0 bytes range (when
2606 	 * cur_offset == drop_end).
2607 	 */
2608 	if (!extent_info && cur_offset < ino_size &&
2609 	    cur_offset < drop_args.drop_end) {
2610 		ret = fill_holes(trans, inode, path, cur_offset,
2611 				 drop_args.drop_end);
2612 		if (unlikely(ret)) {
2613 			/* Same comment as above. */
2614 			btrfs_abort_transaction(trans, ret);
2615 			goto out_trans;
2616 		}
2617 	} else if (!extent_info && cur_offset < drop_args.drop_end) {
2618 		/* See the comment in the loop above for the reasoning here. */
2619 		ret = btrfs_inode_clear_file_extent_range(inode, cur_offset,
2620 					drop_args.drop_end - cur_offset);
2621 		if (unlikely(ret)) {
2622 			btrfs_abort_transaction(trans, ret);
2623 			goto out_trans;
2624 		}
2625 
2626 	}
2627 	if (extent_info) {
2628 		ret = btrfs_insert_replace_extent(trans, inode, path,
2629 				extent_info, extent_info->data_len,
2630 				drop_args.bytes_found);
2631 		if (unlikely(ret)) {
2632 			btrfs_abort_transaction(trans, ret);
2633 			goto out_trans;
2634 		}
2635 	}
2636 
2637 out_trans:
2638 	if (!trans)
2639 		goto out_release;
2640 
2641 	trans->block_rsv = &fs_info->trans_block_rsv;
2642 	if (ret)
2643 		btrfs_end_transaction(trans);
2644 	else
2645 		*trans_out = trans;
2646 out_release:
2647 	btrfs_block_rsv_release(fs_info, &rsv, (u64)-1, NULL);
2648 	return ret;
2649 }
2650 
btrfs_punch_hole(struct file * file,loff_t offset,loff_t len)2651 static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len)
2652 {
2653 	struct inode *inode = file_inode(file);
2654 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2655 	struct btrfs_root *root = BTRFS_I(inode)->root;
2656 	struct extent_state *cached_state = NULL;
2657 	struct btrfs_path *path;
2658 	struct btrfs_trans_handle *trans = NULL;
2659 	u64 lockstart;
2660 	u64 lockend;
2661 	u64 tail_start;
2662 	u64 tail_len;
2663 	const u64 orig_start = offset;
2664 	const u64 orig_end = offset + len - 1;
2665 	int ret = 0;
2666 	bool same_block;
2667 	u64 ino_size;
2668 	bool truncated_block = false;
2669 	bool updated_inode = false;
2670 
2671 	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2672 
2673 	ret = btrfs_wait_ordered_range(BTRFS_I(inode), offset, len);
2674 	if (ret)
2675 		goto out_only_mutex;
2676 
2677 	ino_size = round_up(inode->i_size, fs_info->sectorsize);
2678 	ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2679 	if (ret < 0)
2680 		goto out_only_mutex;
2681 	if (ret && !len) {
2682 		/* Already in a large hole */
2683 		ret = 0;
2684 		goto out_only_mutex;
2685 	}
2686 
2687 	ret = file_modified(file);
2688 	if (ret)
2689 		goto out_only_mutex;
2690 
2691 	lockstart = round_up(offset, fs_info->sectorsize);
2692 	lockend = round_down(offset + len, fs_info->sectorsize) - 1;
2693 	same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2694 		== (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2695 	/*
2696 	 * Only do this if we are in the same block and we aren't doing the
2697 	 * entire block.
2698 	 */
2699 	if (same_block && len < fs_info->sectorsize) {
2700 		if (offset < ino_size) {
2701 			truncated_block = true;
2702 			ret = btrfs_truncate_block(BTRFS_I(inode), offset + len - 1,
2703 						   orig_start, orig_end);
2704 		} else {
2705 			ret = 0;
2706 		}
2707 		goto out_only_mutex;
2708 	}
2709 
2710 	/* zero back part of the first block */
2711 	if (offset < ino_size) {
2712 		truncated_block = true;
2713 		ret = btrfs_truncate_block(BTRFS_I(inode), offset, orig_start, orig_end);
2714 		if (ret) {
2715 			btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2716 			return ret;
2717 		}
2718 	}
2719 
2720 	/* Check the aligned pages after the first unaligned page,
2721 	 * if offset != orig_start, which means the first unaligned page
2722 	 * including several following pages are already in holes,
2723 	 * the extra check can be skipped */
2724 	if (offset == orig_start) {
2725 		/* after truncate page, check hole again */
2726 		len = offset + len - lockstart;
2727 		offset = lockstart;
2728 		ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2729 		if (ret < 0)
2730 			goto out_only_mutex;
2731 		if (ret && !len) {
2732 			ret = 0;
2733 			goto out_only_mutex;
2734 		}
2735 		lockstart = offset;
2736 	}
2737 
2738 	/* Check the tail unaligned part is in a hole */
2739 	tail_start = lockend + 1;
2740 	tail_len = offset + len - tail_start;
2741 	if (tail_len) {
2742 		ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
2743 		if (unlikely(ret < 0))
2744 			goto out_only_mutex;
2745 		if (!ret) {
2746 			/* zero the front end of the last page */
2747 			if (tail_start + tail_len < ino_size) {
2748 				truncated_block = true;
2749 				ret = btrfs_truncate_block(BTRFS_I(inode),
2750 							tail_start + tail_len - 1,
2751 							orig_start, orig_end);
2752 				if (ret)
2753 					goto out_only_mutex;
2754 			}
2755 		}
2756 	}
2757 
2758 	if (lockend < lockstart) {
2759 		ret = 0;
2760 		goto out_only_mutex;
2761 	}
2762 
2763 	btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state);
2764 
2765 	path = btrfs_alloc_path();
2766 	if (!path) {
2767 		ret = -ENOMEM;
2768 		goto out;
2769 	}
2770 
2771 	ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart,
2772 					 lockend, NULL, &trans);
2773 	btrfs_free_path(path);
2774 	if (ret)
2775 		goto out;
2776 
2777 	ASSERT(trans != NULL);
2778 	inode_inc_iversion(inode);
2779 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
2780 	ret = btrfs_update_inode(trans, BTRFS_I(inode));
2781 	updated_inode = true;
2782 	btrfs_end_transaction(trans);
2783 	btrfs_btree_balance_dirty(fs_info);
2784 out:
2785 	btrfs_unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2786 			    &cached_state);
2787 out_only_mutex:
2788 	if (!updated_inode && truncated_block && !ret) {
2789 		/*
2790 		 * If we only end up zeroing part of a page, we still need to
2791 		 * update the inode item, so that all the time fields are
2792 		 * updated as well as the necessary btrfs inode in memory fields
2793 		 * for detecting, at fsync time, if the inode isn't yet in the
2794 		 * log tree or it's there but not up to date.
2795 		 */
2796 		struct timespec64 now = inode_set_ctime_current(inode);
2797 
2798 		inode_inc_iversion(inode);
2799 		inode_set_mtime_to_ts(inode, now);
2800 		trans = btrfs_start_transaction(root, 1);
2801 		if (IS_ERR(trans)) {
2802 			ret = PTR_ERR(trans);
2803 		} else {
2804 			int ret2;
2805 
2806 			ret = btrfs_update_inode(trans, BTRFS_I(inode));
2807 			ret2 = btrfs_end_transaction(trans);
2808 			if (!ret)
2809 				ret = ret2;
2810 		}
2811 	}
2812 	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2813 	return ret;
2814 }
2815 
2816 /* Helper structure to record which range is already reserved */
2817 struct falloc_range {
2818 	struct list_head list;
2819 	u64 start;
2820 	u64 len;
2821 };
2822 
2823 /*
2824  * Helper function to add falloc range
2825  *
2826  * Caller should have locked the larger range of extent containing
2827  * [start, len)
2828  */
add_falloc_range(struct list_head * head,u64 start,u64 len)2829 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2830 {
2831 	struct falloc_range *range = NULL;
2832 
2833 	if (!list_empty(head)) {
2834 		/*
2835 		 * As fallocate iterates by bytenr order, we only need to check
2836 		 * the last range.
2837 		 */
2838 		range = list_last_entry(head, struct falloc_range, list);
2839 		if (range->start + range->len == start) {
2840 			range->len += len;
2841 			return 0;
2842 		}
2843 	}
2844 
2845 	range = kmalloc(sizeof(*range), GFP_KERNEL);
2846 	if (!range)
2847 		return -ENOMEM;
2848 	range->start = start;
2849 	range->len = len;
2850 	list_add_tail(&range->list, head);
2851 	return 0;
2852 }
2853 
btrfs_fallocate_update_isize(struct inode * inode,const u64 end,const int mode)2854 static int btrfs_fallocate_update_isize(struct inode *inode,
2855 					const u64 end,
2856 					const int mode)
2857 {
2858 	struct btrfs_trans_handle *trans;
2859 	struct btrfs_root *root = BTRFS_I(inode)->root;
2860 	u64 range_start;
2861 	u64 range_end;
2862 	int ret;
2863 	int ret2;
2864 
2865 	if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
2866 		return 0;
2867 
2868 	range_start = round_down(i_size_read(inode), root->fs_info->sectorsize);
2869 	range_end = round_up(end, root->fs_info->sectorsize);
2870 
2871 	ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), range_start,
2872 						range_end - range_start);
2873 	if (ret)
2874 		return ret;
2875 
2876 	trans = btrfs_start_transaction(root, 1);
2877 	if (IS_ERR(trans))
2878 		return PTR_ERR(trans);
2879 
2880 	inode_set_ctime_current(inode);
2881 	i_size_write(inode, end);
2882 	btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
2883 	ret = btrfs_update_inode(trans, BTRFS_I(inode));
2884 	ret2 = btrfs_end_transaction(trans);
2885 
2886 	return ret ? ret : ret2;
2887 }
2888 
2889 enum {
2890 	RANGE_BOUNDARY_WRITTEN_EXTENT,
2891 	RANGE_BOUNDARY_PREALLOC_EXTENT,
2892 	RANGE_BOUNDARY_HOLE,
2893 };
2894 
btrfs_zero_range_check_range_boundary(struct btrfs_inode * inode,u64 offset)2895 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
2896 						 u64 offset)
2897 {
2898 	const u64 sectorsize = inode->root->fs_info->sectorsize;
2899 	struct extent_map *em;
2900 	int ret;
2901 
2902 	offset = round_down(offset, sectorsize);
2903 	em = btrfs_get_extent(inode, NULL, offset, sectorsize);
2904 	if (IS_ERR(em))
2905 		return PTR_ERR(em);
2906 
2907 	if (em->disk_bytenr == EXTENT_MAP_HOLE)
2908 		ret = RANGE_BOUNDARY_HOLE;
2909 	else if (em->flags & EXTENT_FLAG_PREALLOC)
2910 		ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
2911 	else
2912 		ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
2913 
2914 	btrfs_free_extent_map(em);
2915 	return ret;
2916 }
2917 
btrfs_zero_range(struct inode * inode,loff_t offset,loff_t len,const int mode)2918 static int btrfs_zero_range(struct inode *inode,
2919 			    loff_t offset,
2920 			    loff_t len,
2921 			    const int mode)
2922 {
2923 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2924 	struct extent_map *em;
2925 	struct extent_changeset *data_reserved = NULL;
2926 	int ret;
2927 	u64 alloc_hint = 0;
2928 	const u64 sectorsize = fs_info->sectorsize;
2929 	const u64 orig_start = offset;
2930 	const u64 orig_end = offset + len - 1;
2931 	u64 alloc_start = round_down(offset, sectorsize);
2932 	u64 alloc_end = round_up(offset + len, sectorsize);
2933 	u64 bytes_to_reserve = 0;
2934 	bool space_reserved = false;
2935 
2936 	em = btrfs_get_extent(BTRFS_I(inode), NULL, alloc_start,
2937 			      alloc_end - alloc_start);
2938 	if (IS_ERR(em)) {
2939 		ret = PTR_ERR(em);
2940 		goto out;
2941 	}
2942 
2943 	/*
2944 	 * Avoid hole punching and extent allocation for some cases. More cases
2945 	 * could be considered, but these are unlikely common and we keep things
2946 	 * as simple as possible for now. Also, intentionally, if the target
2947 	 * range contains one or more prealloc extents together with regular
2948 	 * extents and holes, we drop all the existing extents and allocate a
2949 	 * new prealloc extent, so that we get a larger contiguous disk extent.
2950 	 */
2951 	if (em->start <= alloc_start && (em->flags & EXTENT_FLAG_PREALLOC)) {
2952 		const u64 em_end = em->start + em->len;
2953 
2954 		if (em_end >= offset + len) {
2955 			/*
2956 			 * The whole range is already a prealloc extent,
2957 			 * do nothing except updating the inode's i_size if
2958 			 * needed.
2959 			 */
2960 			btrfs_free_extent_map(em);
2961 			ret = btrfs_fallocate_update_isize(inode, offset + len,
2962 							   mode);
2963 			goto out;
2964 		}
2965 		/*
2966 		 * Part of the range is already a prealloc extent, so operate
2967 		 * only on the remaining part of the range.
2968 		 */
2969 		alloc_start = em_end;
2970 		ASSERT(IS_ALIGNED(alloc_start, sectorsize));
2971 		len = offset + len - alloc_start;
2972 		offset = alloc_start;
2973 		alloc_hint = btrfs_extent_map_block_start(em) + em->len;
2974 	}
2975 	btrfs_free_extent_map(em);
2976 
2977 	if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
2978 	    BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
2979 		em = btrfs_get_extent(BTRFS_I(inode), NULL, alloc_start, sectorsize);
2980 		if (IS_ERR(em)) {
2981 			ret = PTR_ERR(em);
2982 			goto out;
2983 		}
2984 
2985 		if (em->flags & EXTENT_FLAG_PREALLOC) {
2986 			btrfs_free_extent_map(em);
2987 			ret = btrfs_fallocate_update_isize(inode, offset + len,
2988 							   mode);
2989 			goto out;
2990 		}
2991 		if (len < sectorsize && em->disk_bytenr != EXTENT_MAP_HOLE) {
2992 			btrfs_free_extent_map(em);
2993 			ret = btrfs_truncate_block(BTRFS_I(inode), offset + len - 1,
2994 						   orig_start, orig_end);
2995 			if (!ret)
2996 				ret = btrfs_fallocate_update_isize(inode,
2997 								   offset + len,
2998 								   mode);
2999 			return ret;
3000 		}
3001 		btrfs_free_extent_map(em);
3002 		alloc_start = round_down(offset, sectorsize);
3003 		alloc_end = alloc_start + sectorsize;
3004 		goto reserve_space;
3005 	}
3006 
3007 	alloc_start = round_up(offset, sectorsize);
3008 	alloc_end = round_down(offset + len, sectorsize);
3009 
3010 	/*
3011 	 * For unaligned ranges, check the pages at the boundaries, they might
3012 	 * map to an extent, in which case we need to partially zero them, or
3013 	 * they might map to a hole, in which case we need our allocation range
3014 	 * to cover them.
3015 	 */
3016 	if (!IS_ALIGNED(offset, sectorsize)) {
3017 		ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3018 							    offset);
3019 		if (ret < 0)
3020 			goto out;
3021 		if (ret == RANGE_BOUNDARY_HOLE) {
3022 			alloc_start = round_down(offset, sectorsize);
3023 			ret = 0;
3024 		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3025 			ret = btrfs_truncate_block(BTRFS_I(inode), offset,
3026 						   orig_start, orig_end);
3027 			if (ret)
3028 				goto out;
3029 		} else {
3030 			ret = 0;
3031 		}
3032 	}
3033 
3034 	if (!IS_ALIGNED(offset + len, sectorsize)) {
3035 		ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3036 							    offset + len);
3037 		if (ret < 0)
3038 			goto out;
3039 		if (ret == RANGE_BOUNDARY_HOLE) {
3040 			alloc_end = round_up(offset + len, sectorsize);
3041 			ret = 0;
3042 		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3043 			ret = btrfs_truncate_block(BTRFS_I(inode), offset + len - 1,
3044 						   orig_start, orig_end);
3045 			if (ret)
3046 				goto out;
3047 		} else {
3048 			ret = 0;
3049 		}
3050 	}
3051 
3052 reserve_space:
3053 	if (alloc_start < alloc_end) {
3054 		struct extent_state *cached_state = NULL;
3055 		const u64 lockstart = alloc_start;
3056 		const u64 lockend = alloc_end - 1;
3057 
3058 		bytes_to_reserve = alloc_end - alloc_start;
3059 		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3060 						      bytes_to_reserve);
3061 		if (ret < 0)
3062 			goto out;
3063 		space_reserved = true;
3064 		btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3065 					    &cached_state);
3066 		ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
3067 						alloc_start, bytes_to_reserve);
3068 		if (ret) {
3069 			btrfs_unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
3070 					    lockend, &cached_state);
3071 			goto out;
3072 		}
3073 		ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3074 						alloc_end - alloc_start,
3075 						fs_info->sectorsize,
3076 						offset + len, &alloc_hint);
3077 		btrfs_unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3078 				    &cached_state);
3079 		/* btrfs_prealloc_file_range releases reserved space on error */
3080 		if (ret) {
3081 			space_reserved = false;
3082 			goto out;
3083 		}
3084 	}
3085 	ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3086  out:
3087 	if (ret && space_reserved)
3088 		btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3089 					       alloc_start, bytes_to_reserve);
3090 	extent_changeset_free(data_reserved);
3091 
3092 	return ret;
3093 }
3094 
btrfs_fallocate(struct file * file,int mode,loff_t offset,loff_t len)3095 static long btrfs_fallocate(struct file *file, int mode,
3096 			    loff_t offset, loff_t len)
3097 {
3098 	struct inode *inode = file_inode(file);
3099 	struct extent_state *cached_state = NULL;
3100 	struct extent_changeset *data_reserved = NULL;
3101 	struct falloc_range *range;
3102 	struct falloc_range *tmp;
3103 	LIST_HEAD(reserve_list);
3104 	u64 cur_offset;
3105 	u64 last_byte;
3106 	u64 alloc_start;
3107 	u64 alloc_end;
3108 	u64 alloc_hint = 0;
3109 	u64 locked_end;
3110 	u64 actual_end = 0;
3111 	u64 data_space_needed = 0;
3112 	u64 data_space_reserved = 0;
3113 	u64 qgroup_reserved = 0;
3114 	struct extent_map *em;
3115 	int blocksize = BTRFS_I(inode)->root->fs_info->sectorsize;
3116 	int ret;
3117 
3118 	if (unlikely(btrfs_is_shutdown(inode_to_fs_info(inode))))
3119 		return -EIO;
3120 
3121 	/* Do not allow fallocate in ZONED mode */
3122 	if (btrfs_is_zoned(inode_to_fs_info(inode)))
3123 		return -EOPNOTSUPP;
3124 
3125 	alloc_start = round_down(offset, blocksize);
3126 	alloc_end = round_up(offset + len, blocksize);
3127 	cur_offset = alloc_start;
3128 
3129 	/* Make sure we aren't being give some crap mode */
3130 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3131 		     FALLOC_FL_ZERO_RANGE))
3132 		return -EOPNOTSUPP;
3133 
3134 	if (mode & FALLOC_FL_PUNCH_HOLE)
3135 		return btrfs_punch_hole(file, offset, len);
3136 
3137 	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3138 
3139 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3140 		ret = inode_newsize_ok(inode, offset + len);
3141 		if (ret)
3142 			goto out;
3143 	}
3144 
3145 	ret = file_modified(file);
3146 	if (ret)
3147 		goto out;
3148 
3149 	/*
3150 	 * TODO: Move these two operations after we have checked
3151 	 * accurate reserved space, or fallocate can still fail but
3152 	 * with page truncated or size expanded.
3153 	 *
3154 	 * But that's a minor problem and won't do much harm BTW.
3155 	 */
3156 	if (alloc_start > inode->i_size) {
3157 		ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
3158 					alloc_start);
3159 		if (ret)
3160 			goto out;
3161 	} else if (offset + len > inode->i_size) {
3162 		/*
3163 		 * If we are fallocating from the end of the file onward we
3164 		 * need to zero out the end of the block if i_size lands in the
3165 		 * middle of a block.
3166 		 */
3167 		ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size,
3168 					   inode->i_size, (u64)-1);
3169 		if (ret)
3170 			goto out;
3171 	}
3172 
3173 	/*
3174 	 * We have locked the inode at the VFS level (in exclusive mode) and we
3175 	 * have locked the i_mmap_lock lock (in exclusive mode). Now before
3176 	 * locking the file range, flush all dealloc in the range and wait for
3177 	 * all ordered extents in the range to complete. After this we can lock
3178 	 * the file range and, due to the previous locking we did, we know there
3179 	 * can't be more delalloc or ordered extents in the range.
3180 	 */
3181 	ret = btrfs_wait_ordered_range(BTRFS_I(inode), alloc_start,
3182 				       alloc_end - alloc_start);
3183 	if (ret)
3184 		goto out;
3185 
3186 	if (mode & FALLOC_FL_ZERO_RANGE) {
3187 		ret = btrfs_zero_range(inode, offset, len, mode);
3188 		btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3189 		return ret;
3190 	}
3191 
3192 	locked_end = alloc_end - 1;
3193 	btrfs_lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3194 			  &cached_state);
3195 
3196 	btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end);
3197 
3198 	/* First, check if we exceed the qgroup limit */
3199 	while (cur_offset < alloc_end) {
3200 		em = btrfs_get_extent(BTRFS_I(inode), NULL, cur_offset,
3201 				      alloc_end - cur_offset);
3202 		if (IS_ERR(em)) {
3203 			ret = PTR_ERR(em);
3204 			break;
3205 		}
3206 		last_byte = min(btrfs_extent_map_end(em), alloc_end);
3207 		actual_end = min_t(u64, btrfs_extent_map_end(em), offset + len);
3208 		last_byte = ALIGN(last_byte, blocksize);
3209 		if (em->disk_bytenr == EXTENT_MAP_HOLE ||
3210 		    (cur_offset >= inode->i_size &&
3211 		     !(em->flags & EXTENT_FLAG_PREALLOC))) {
3212 			const u64 range_len = last_byte - cur_offset;
3213 
3214 			ret = add_falloc_range(&reserve_list, cur_offset, range_len);
3215 			if (ret < 0) {
3216 				btrfs_free_extent_map(em);
3217 				break;
3218 			}
3219 			ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3220 					&data_reserved, cur_offset, range_len);
3221 			if (ret < 0) {
3222 				btrfs_free_extent_map(em);
3223 				break;
3224 			}
3225 			qgroup_reserved += range_len;
3226 			data_space_needed += range_len;
3227 		}
3228 		btrfs_free_extent_map(em);
3229 		cur_offset = last_byte;
3230 	}
3231 
3232 	if (!ret && data_space_needed > 0) {
3233 		/*
3234 		 * We are safe to reserve space here as we can't have delalloc
3235 		 * in the range, see above.
3236 		 */
3237 		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3238 						      data_space_needed);
3239 		if (!ret)
3240 			data_space_reserved = data_space_needed;
3241 	}
3242 
3243 	/*
3244 	 * If ret is still 0, means we're OK to fallocate.
3245 	 * Or just cleanup the list and exit.
3246 	 */
3247 	list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3248 		if (!ret) {
3249 			ret = btrfs_prealloc_file_range(inode, mode,
3250 					range->start,
3251 					range->len, blocksize,
3252 					offset + len, &alloc_hint);
3253 			/*
3254 			 * btrfs_prealloc_file_range() releases space even
3255 			 * if it returns an error.
3256 			 */
3257 			data_space_reserved -= range->len;
3258 			qgroup_reserved -= range->len;
3259 		} else if (data_space_reserved > 0) {
3260 			btrfs_free_reserved_data_space(BTRFS_I(inode),
3261 					       data_reserved, range->start,
3262 					       range->len);
3263 			data_space_reserved -= range->len;
3264 			qgroup_reserved -= range->len;
3265 		} else if (qgroup_reserved > 0) {
3266 			btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved,
3267 					       range->start, range->len, NULL);
3268 			qgroup_reserved -= range->len;
3269 		}
3270 		list_del(&range->list);
3271 		kfree(range);
3272 	}
3273 	if (ret < 0)
3274 		goto out_unlock;
3275 
3276 	/*
3277 	 * We didn't need to allocate any more space, but we still extended the
3278 	 * size of the file so we need to update i_size and the inode item.
3279 	 */
3280 	ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3281 out_unlock:
3282 	btrfs_unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3283 			    &cached_state);
3284 out:
3285 	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3286 	extent_changeset_free(data_reserved);
3287 	return ret;
3288 }
3289 
3290 /*
3291  * Helper for btrfs_find_delalloc_in_range(). Find a subrange in a given range
3292  * that has unflushed and/or flushing delalloc. There might be other adjacent
3293  * subranges after the one it found, so btrfs_find_delalloc_in_range() keeps
3294  * looping while it gets adjacent subranges, and merging them together.
3295  */
find_delalloc_subrange(struct btrfs_inode * inode,u64 start,u64 end,struct extent_state ** cached_state,bool * search_io_tree,u64 * delalloc_start_ret,u64 * delalloc_end_ret)3296 static bool find_delalloc_subrange(struct btrfs_inode *inode, u64 start, u64 end,
3297 				   struct extent_state **cached_state,
3298 				   bool *search_io_tree,
3299 				   u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3300 {
3301 	u64 len = end + 1 - start;
3302 	u64 delalloc_len = 0;
3303 	struct btrfs_ordered_extent *oe;
3304 	u64 oe_start;
3305 	u64 oe_end;
3306 
3307 	/*
3308 	 * Search the io tree first for EXTENT_DELALLOC. If we find any, it
3309 	 * means we have delalloc (dirty pages) for which writeback has not
3310 	 * started yet.
3311 	 */
3312 	if (*search_io_tree) {
3313 		spin_lock(&inode->lock);
3314 		if (inode->delalloc_bytes > 0) {
3315 			spin_unlock(&inode->lock);
3316 			*delalloc_start_ret = start;
3317 			delalloc_len = btrfs_count_range_bits(&inode->io_tree,
3318 							      delalloc_start_ret, end,
3319 							      len, EXTENT_DELALLOC, 1,
3320 							      cached_state);
3321 		} else {
3322 			spin_unlock(&inode->lock);
3323 		}
3324 	}
3325 
3326 	if (delalloc_len > 0) {
3327 		/*
3328 		 * If delalloc was found then *delalloc_start_ret has a sector size
3329 		 * aligned value (rounded down).
3330 		 */
3331 		*delalloc_end_ret = *delalloc_start_ret + delalloc_len - 1;
3332 
3333 		if (*delalloc_start_ret == start) {
3334 			/* Delalloc for the whole range, nothing more to do. */
3335 			if (*delalloc_end_ret == end)
3336 				return true;
3337 			/* Else trim our search range for ordered extents. */
3338 			start = *delalloc_end_ret + 1;
3339 			len = end + 1 - start;
3340 		}
3341 	} else {
3342 		/* No delalloc, future calls don't need to search again. */
3343 		*search_io_tree = false;
3344 	}
3345 
3346 	/*
3347 	 * Now also check if there's any ordered extent in the range.
3348 	 * We do this because:
3349 	 *
3350 	 * 1) When delalloc is flushed, the file range is locked, we clear the
3351 	 *    EXTENT_DELALLOC bit from the io tree and create an extent map and
3352 	 *    an ordered extent for the write. So we might just have been called
3353 	 *    after delalloc is flushed and before the ordered extent completes
3354 	 *    and inserts the new file extent item in the subvolume's btree;
3355 	 *
3356 	 * 2) We may have an ordered extent created by flushing delalloc for a
3357 	 *    subrange that starts before the subrange we found marked with
3358 	 *    EXTENT_DELALLOC in the io tree.
3359 	 *
3360 	 * We could also use the extent map tree to find such delalloc that is
3361 	 * being flushed, but using the ordered extents tree is more efficient
3362 	 * because it's usually much smaller as ordered extents are removed from
3363 	 * the tree once they complete. With the extent maps, we may have them
3364 	 * in the extent map tree for a very long time, and they were either
3365 	 * created by previous writes or loaded by read operations.
3366 	 */
3367 	oe = btrfs_lookup_first_ordered_range(inode, start, len);
3368 	if (!oe)
3369 		return (delalloc_len > 0);
3370 
3371 	/* The ordered extent may span beyond our search range. */
3372 	oe_start = max(oe->file_offset, start);
3373 	oe_end = min(oe->file_offset + oe->num_bytes - 1, end);
3374 
3375 	btrfs_put_ordered_extent(oe);
3376 
3377 	/* Don't have unflushed delalloc, return the ordered extent range. */
3378 	if (delalloc_len == 0) {
3379 		*delalloc_start_ret = oe_start;
3380 		*delalloc_end_ret = oe_end;
3381 		return true;
3382 	}
3383 
3384 	/*
3385 	 * We have both unflushed delalloc (io_tree) and an ordered extent.
3386 	 * If the ranges are adjacent returned a combined range, otherwise
3387 	 * return the leftmost range.
3388 	 */
3389 	if (oe_start < *delalloc_start_ret) {
3390 		if (oe_end < *delalloc_start_ret)
3391 			*delalloc_end_ret = oe_end;
3392 		*delalloc_start_ret = oe_start;
3393 	} else if (*delalloc_end_ret + 1 == oe_start) {
3394 		*delalloc_end_ret = oe_end;
3395 	}
3396 
3397 	return true;
3398 }
3399 
3400 /*
3401  * Check if there's delalloc in a given range.
3402  *
3403  * @inode:               The inode.
3404  * @start:               The start offset of the range. It does not need to be
3405  *                       sector size aligned.
3406  * @end:                 The end offset (inclusive value) of the search range.
3407  *                       It does not need to be sector size aligned.
3408  * @cached_state:        Extent state record used for speeding up delalloc
3409  *                       searches in the inode's io_tree. Can be NULL.
3410  * @delalloc_start_ret:  Output argument, set to the start offset of the
3411  *                       subrange found with delalloc (may not be sector size
3412  *                       aligned).
3413  * @delalloc_end_ret:    Output argument, set to he end offset (inclusive value)
3414  *                       of the subrange found with delalloc.
3415  *
3416  * Returns true if a subrange with delalloc is found within the given range, and
3417  * if so it sets @delalloc_start_ret and @delalloc_end_ret with the start and
3418  * end offsets of the subrange.
3419  */
btrfs_find_delalloc_in_range(struct btrfs_inode * inode,u64 start,u64 end,struct extent_state ** cached_state,u64 * delalloc_start_ret,u64 * delalloc_end_ret)3420 bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end,
3421 				  struct extent_state **cached_state,
3422 				  u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3423 {
3424 	u64 cur_offset = round_down(start, inode->root->fs_info->sectorsize);
3425 	u64 prev_delalloc_end = 0;
3426 	bool search_io_tree = true;
3427 	bool ret = false;
3428 
3429 	while (cur_offset <= end) {
3430 		u64 delalloc_start;
3431 		u64 delalloc_end;
3432 		bool delalloc;
3433 
3434 		delalloc = find_delalloc_subrange(inode, cur_offset, end,
3435 						  cached_state, &search_io_tree,
3436 						  &delalloc_start,
3437 						  &delalloc_end);
3438 		if (!delalloc)
3439 			break;
3440 
3441 		if (prev_delalloc_end == 0) {
3442 			/* First subrange found. */
3443 			*delalloc_start_ret = max(delalloc_start, start);
3444 			*delalloc_end_ret = delalloc_end;
3445 			ret = true;
3446 		} else if (delalloc_start == prev_delalloc_end + 1) {
3447 			/* Subrange adjacent to the previous one, merge them. */
3448 			*delalloc_end_ret = delalloc_end;
3449 		} else {
3450 			/* Subrange not adjacent to the previous one, exit. */
3451 			break;
3452 		}
3453 
3454 		prev_delalloc_end = delalloc_end;
3455 		cur_offset = delalloc_end + 1;
3456 		cond_resched();
3457 	}
3458 
3459 	return ret;
3460 }
3461 
3462 /*
3463  * Check if there's a hole or delalloc range in a range representing a hole (or
3464  * prealloc extent) found in the inode's subvolume btree.
3465  *
3466  * @inode:      The inode.
3467  * @whence:     Seek mode (SEEK_DATA or SEEK_HOLE).
3468  * @start:      Start offset of the hole region. It does not need to be sector
3469  *              size aligned.
3470  * @end:        End offset (inclusive value) of the hole region. It does not
3471  *              need to be sector size aligned.
3472  * @start_ret:  Return parameter, used to set the start of the subrange in the
3473  *              hole that matches the search criteria (seek mode), if such
3474  *              subrange is found (return value of the function is true).
3475  *              The value returned here may not be sector size aligned.
3476  *
3477  * Returns true if a subrange matching the given seek mode is found, and if one
3478  * is found, it updates @start_ret with the start of the subrange.
3479  */
find_desired_extent_in_hole(struct btrfs_inode * inode,int whence,struct extent_state ** cached_state,u64 start,u64 end,u64 * start_ret)3480 static bool find_desired_extent_in_hole(struct btrfs_inode *inode, int whence,
3481 					struct extent_state **cached_state,
3482 					u64 start, u64 end, u64 *start_ret)
3483 {
3484 	u64 delalloc_start;
3485 	u64 delalloc_end;
3486 	bool delalloc;
3487 
3488 	delalloc = btrfs_find_delalloc_in_range(inode, start, end, cached_state,
3489 						&delalloc_start, &delalloc_end);
3490 	if (delalloc && whence == SEEK_DATA) {
3491 		*start_ret = delalloc_start;
3492 		return true;
3493 	}
3494 
3495 	if (delalloc && whence == SEEK_HOLE) {
3496 		/*
3497 		 * We found delalloc but it starts after out start offset. So we
3498 		 * have a hole between our start offset and the delalloc start.
3499 		 */
3500 		if (start < delalloc_start) {
3501 			*start_ret = start;
3502 			return true;
3503 		}
3504 		/*
3505 		 * Delalloc range starts at our start offset.
3506 		 * If the delalloc range's length is smaller than our range,
3507 		 * then it means we have a hole that starts where the delalloc
3508 		 * subrange ends.
3509 		 */
3510 		if (delalloc_end < end) {
3511 			*start_ret = delalloc_end + 1;
3512 			return true;
3513 		}
3514 
3515 		/* There's delalloc for the whole range. */
3516 		return false;
3517 	}
3518 
3519 	if (!delalloc && whence == SEEK_HOLE) {
3520 		*start_ret = start;
3521 		return true;
3522 	}
3523 
3524 	/*
3525 	 * No delalloc in the range and we are seeking for data. The caller has
3526 	 * to iterate to the next extent item in the subvolume btree.
3527 	 */
3528 	return false;
3529 }
3530 
find_desired_extent(struct file * file,loff_t offset,int whence)3531 static loff_t find_desired_extent(struct file *file, loff_t offset, int whence)
3532 {
3533 	struct btrfs_inode *inode = BTRFS_I(file->f_mapping->host);
3534 	struct btrfs_file_private *private;
3535 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3536 	struct extent_state *cached_state = NULL;
3537 	struct extent_state **delalloc_cached_state;
3538 	const loff_t i_size = i_size_read(&inode->vfs_inode);
3539 	const u64 ino = btrfs_ino(inode);
3540 	struct btrfs_root *root = inode->root;
3541 	struct btrfs_path *path;
3542 	struct btrfs_key key;
3543 	u64 last_extent_end;
3544 	u64 lockstart;
3545 	u64 lockend;
3546 	u64 start;
3547 	int ret;
3548 	bool found = false;
3549 
3550 	if (i_size == 0 || offset >= i_size)
3551 		return -ENXIO;
3552 
3553 	/*
3554 	 * Quick path. If the inode has no prealloc extents and its number of
3555 	 * bytes used matches its i_size, then it can not have holes.
3556 	 */
3557 	if (whence == SEEK_HOLE &&
3558 	    !(inode->flags & BTRFS_INODE_PREALLOC) &&
3559 	    inode_get_bytes(&inode->vfs_inode) == i_size)
3560 		return i_size;
3561 
3562 	spin_lock(&inode->lock);
3563 	private = file->private_data;
3564 	spin_unlock(&inode->lock);
3565 
3566 	if (private && private->owner_task != current) {
3567 		/*
3568 		 * Not allocated by us, don't use it as its cached state is used
3569 		 * by the task that allocated it and we don't want neither to
3570 		 * mess with it nor get incorrect results because it reflects an
3571 		 * invalid state for the current task.
3572 		 */
3573 		private = NULL;
3574 	} else if (!private) {
3575 		private = kzalloc(sizeof(*private), GFP_KERNEL);
3576 		/*
3577 		 * No worries if memory allocation failed.
3578 		 * The private structure is used only for speeding up multiple
3579 		 * lseek SEEK_HOLE/DATA calls to a file when there's delalloc,
3580 		 * so everything will still be correct.
3581 		 */
3582 		if (private) {
3583 			bool free = false;
3584 
3585 			private->owner_task = current;
3586 
3587 			spin_lock(&inode->lock);
3588 			if (file->private_data)
3589 				free = true;
3590 			else
3591 				file->private_data = private;
3592 			spin_unlock(&inode->lock);
3593 
3594 			if (free) {
3595 				kfree(private);
3596 				private = NULL;
3597 			}
3598 		}
3599 	}
3600 
3601 	if (private)
3602 		delalloc_cached_state = &private->llseek_cached_state;
3603 	else
3604 		delalloc_cached_state = NULL;
3605 
3606 	/*
3607 	 * offset can be negative, in this case we start finding DATA/HOLE from
3608 	 * the very start of the file.
3609 	 */
3610 	start = max_t(loff_t, 0, offset);
3611 
3612 	lockstart = round_down(start, fs_info->sectorsize);
3613 	lockend = round_up(i_size, fs_info->sectorsize);
3614 	if (lockend <= lockstart)
3615 		lockend = lockstart + fs_info->sectorsize;
3616 	lockend--;
3617 
3618 	path = btrfs_alloc_path();
3619 	if (!path)
3620 		return -ENOMEM;
3621 	path->reada = READA_FORWARD;
3622 
3623 	key.objectid = ino;
3624 	key.type = BTRFS_EXTENT_DATA_KEY;
3625 	key.offset = start;
3626 
3627 	last_extent_end = lockstart;
3628 
3629 	btrfs_lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3630 
3631 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3632 	if (ret < 0) {
3633 		goto out;
3634 	} else if (ret > 0 && path->slots[0] > 0) {
3635 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
3636 		if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
3637 			path->slots[0]--;
3638 	}
3639 
3640 	while (start < i_size) {
3641 		struct extent_buffer *leaf = path->nodes[0];
3642 		struct btrfs_file_extent_item *extent;
3643 		u64 extent_end;
3644 		u8 type;
3645 
3646 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3647 			ret = btrfs_next_leaf(root, path);
3648 			if (ret < 0)
3649 				goto out;
3650 			else if (ret > 0)
3651 				break;
3652 
3653 			leaf = path->nodes[0];
3654 		}
3655 
3656 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3657 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3658 			break;
3659 
3660 		extent_end = btrfs_file_extent_end(path);
3661 
3662 		/*
3663 		 * In the first iteration we may have a slot that points to an
3664 		 * extent that ends before our start offset, so skip it.
3665 		 */
3666 		if (extent_end <= start) {
3667 			path->slots[0]++;
3668 			continue;
3669 		}
3670 
3671 		/* We have an implicit hole, NO_HOLES feature is likely set. */
3672 		if (last_extent_end < key.offset) {
3673 			u64 search_start = last_extent_end;
3674 			u64 found_start;
3675 
3676 			/*
3677 			 * First iteration, @start matches @offset and it's
3678 			 * within the hole.
3679 			 */
3680 			if (start == offset)
3681 				search_start = offset;
3682 
3683 			found = find_desired_extent_in_hole(inode, whence,
3684 							    delalloc_cached_state,
3685 							    search_start,
3686 							    key.offset - 1,
3687 							    &found_start);
3688 			if (found) {
3689 				start = found_start;
3690 				break;
3691 			}
3692 			/*
3693 			 * Didn't find data or a hole (due to delalloc) in the
3694 			 * implicit hole range, so need to analyze the extent.
3695 			 */
3696 		}
3697 
3698 		extent = btrfs_item_ptr(leaf, path->slots[0],
3699 					struct btrfs_file_extent_item);
3700 		type = btrfs_file_extent_type(leaf, extent);
3701 
3702 		/*
3703 		 * Can't access the extent's disk_bytenr field if this is an
3704 		 * inline extent, since at that offset, it's where the extent
3705 		 * data starts.
3706 		 */
3707 		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
3708 		    (type == BTRFS_FILE_EXTENT_REG &&
3709 		     btrfs_file_extent_disk_bytenr(leaf, extent) == 0)) {
3710 			/*
3711 			 * Explicit hole or prealloc extent, search for delalloc.
3712 			 * A prealloc extent is treated like a hole.
3713 			 */
3714 			u64 search_start = key.offset;
3715 			u64 found_start;
3716 
3717 			/*
3718 			 * First iteration, @start matches @offset and it's
3719 			 * within the hole.
3720 			 */
3721 			if (start == offset)
3722 				search_start = offset;
3723 
3724 			found = find_desired_extent_in_hole(inode, whence,
3725 							    delalloc_cached_state,
3726 							    search_start,
3727 							    extent_end - 1,
3728 							    &found_start);
3729 			if (found) {
3730 				start = found_start;
3731 				break;
3732 			}
3733 			/*
3734 			 * Didn't find data or a hole (due to delalloc) in the
3735 			 * implicit hole range, so need to analyze the next
3736 			 * extent item.
3737 			 */
3738 		} else {
3739 			/*
3740 			 * Found a regular or inline extent.
3741 			 * If we are seeking for data, adjust the start offset
3742 			 * and stop, we're done.
3743 			 */
3744 			if (whence == SEEK_DATA) {
3745 				start = max_t(u64, key.offset, offset);
3746 				found = true;
3747 				break;
3748 			}
3749 			/*
3750 			 * Else, we are seeking for a hole, check the next file
3751 			 * extent item.
3752 			 */
3753 		}
3754 
3755 		start = extent_end;
3756 		last_extent_end = extent_end;
3757 		path->slots[0]++;
3758 		if (fatal_signal_pending(current)) {
3759 			ret = -EINTR;
3760 			goto out;
3761 		}
3762 		cond_resched();
3763 	}
3764 
3765 	/* We have an implicit hole from the last extent found up to i_size. */
3766 	if (!found && start < i_size) {
3767 		found = find_desired_extent_in_hole(inode, whence,
3768 						    delalloc_cached_state, start,
3769 						    i_size - 1, &start);
3770 		if (!found)
3771 			start = i_size;
3772 	}
3773 
3774 out:
3775 	btrfs_unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3776 	btrfs_free_path(path);
3777 
3778 	if (ret < 0)
3779 		return ret;
3780 
3781 	if (whence == SEEK_DATA && start >= i_size)
3782 		return -ENXIO;
3783 
3784 	return min_t(loff_t, start, i_size);
3785 }
3786 
btrfs_file_llseek(struct file * file,loff_t offset,int whence)3787 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3788 {
3789 	struct inode *inode = file->f_mapping->host;
3790 
3791 	switch (whence) {
3792 	default:
3793 		return generic_file_llseek(file, offset, whence);
3794 	case SEEK_DATA:
3795 	case SEEK_HOLE:
3796 		btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3797 		offset = find_desired_extent(file, offset, whence);
3798 		btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3799 		break;
3800 	}
3801 
3802 	if (offset < 0)
3803 		return offset;
3804 
3805 	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3806 }
3807 
btrfs_file_open(struct inode * inode,struct file * filp)3808 static int btrfs_file_open(struct inode *inode, struct file *filp)
3809 {
3810 	int ret;
3811 
3812 	if (unlikely(btrfs_is_shutdown(inode_to_fs_info(inode))))
3813 		return -EIO;
3814 
3815 	filp->f_mode |= FMODE_NOWAIT | FMODE_CAN_ODIRECT;
3816 
3817 	ret = fsverity_file_open(inode, filp);
3818 	if (ret)
3819 		return ret;
3820 	return generic_file_open(inode, filp);
3821 }
3822 
btrfs_file_read_iter(struct kiocb * iocb,struct iov_iter * to)3823 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3824 {
3825 	ssize_t ret = 0;
3826 
3827 	if (unlikely(btrfs_is_shutdown(inode_to_fs_info(file_inode(iocb->ki_filp)))))
3828 		return -EIO;
3829 
3830 	if (iocb->ki_flags & IOCB_DIRECT) {
3831 		ret = btrfs_direct_read(iocb, to);
3832 		if (ret < 0 || !iov_iter_count(to) ||
3833 		    iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
3834 			return ret;
3835 	}
3836 
3837 	return filemap_read(iocb, to, ret);
3838 }
3839 
btrfs_file_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)3840 static ssize_t btrfs_file_splice_read(struct file *in, loff_t *ppos,
3841 				      struct pipe_inode_info *pipe,
3842 				      size_t len, unsigned int flags)
3843 {
3844 	if (unlikely(btrfs_is_shutdown(inode_to_fs_info(file_inode(in)))))
3845 		return -EIO;
3846 
3847 	return filemap_splice_read(in, ppos, pipe, len, flags);
3848 }
3849 
3850 const struct file_operations btrfs_file_operations = {
3851 	.llseek		= btrfs_file_llseek,
3852 	.read_iter      = btrfs_file_read_iter,
3853 	.splice_read	= btrfs_file_splice_read,
3854 	.write_iter	= btrfs_file_write_iter,
3855 	.splice_write	= iter_file_splice_write,
3856 	.mmap_prepare	= btrfs_file_mmap_prepare,
3857 	.open		= btrfs_file_open,
3858 	.release	= btrfs_release_file,
3859 	.get_unmapped_area = thp_get_unmapped_area,
3860 	.fsync		= btrfs_sync_file,
3861 	.fallocate	= btrfs_fallocate,
3862 	.unlocked_ioctl	= btrfs_ioctl,
3863 #ifdef CONFIG_COMPAT
3864 	.compat_ioctl	= btrfs_compat_ioctl,
3865 #endif
3866 	.remap_file_range = btrfs_remap_file_range,
3867 	.uring_cmd	= btrfs_uring_cmd,
3868 	.fop_flags	= FOP_BUFFER_RASYNC | FOP_BUFFER_WASYNC,
3869 };
3870 
btrfs_fdatawrite_range(struct btrfs_inode * inode,loff_t start,loff_t end)3871 int btrfs_fdatawrite_range(struct btrfs_inode *inode, loff_t start, loff_t end)
3872 {
3873 	struct address_space *mapping = inode->vfs_inode.i_mapping;
3874 	int ret;
3875 
3876 	/*
3877 	 * So with compression we will find and lock a dirty page and clear the
3878 	 * first one as dirty, setup an async extent, and immediately return
3879 	 * with the entire range locked but with nobody actually marked with
3880 	 * writeback.  So we can't just filemap_write_and_wait_range() and
3881 	 * expect it to work since it will just kick off a thread to do the
3882 	 * actual work.  So we need to call filemap_fdatawrite_range _again_
3883 	 * since it will wait on the page lock, which won't be unlocked until
3884 	 * after the pages have been marked as writeback and so we're good to go
3885 	 * from there.  We have to do this otherwise we'll miss the ordered
3886 	 * extents and that results in badness.  Please Josef, do not think you
3887 	 * know better and pull this out at some point in the future, it is
3888 	 * right and you are wrong.
3889 	 */
3890 	ret = filemap_fdatawrite_range(mapping, start, end);
3891 	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags))
3892 		ret = filemap_fdatawrite_range(mapping, start, end);
3893 
3894 	return ret;
3895 }
3896