1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/fs.h>
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
19 #include <linux/fsverity.h>
20 #include "ctree.h"
21 #include "direct-io.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "btrfs_inode.h"
25 #include "tree-log.h"
26 #include "locking.h"
27 #include "qgroup.h"
28 #include "compression.h"
29 #include "delalloc-space.h"
30 #include "reflink.h"
31 #include "subpage.h"
32 #include "fs.h"
33 #include "accessors.h"
34 #include "extent-tree.h"
35 #include "file-item.h"
36 #include "ioctl.h"
37 #include "file.h"
38 #include "super.h"
39 #include "print-tree.h"
40
41 /*
42 * Unlock folio after btrfs_file_write() is done with it.
43 */
btrfs_drop_folio(struct btrfs_fs_info * fs_info,struct folio * folio,u64 pos,u64 copied)44 static void btrfs_drop_folio(struct btrfs_fs_info *fs_info, struct folio *folio,
45 u64 pos, u64 copied)
46 {
47 u64 block_start = round_down(pos, fs_info->sectorsize);
48 u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start;
49
50 ASSERT(block_len <= U32_MAX);
51 /*
52 * Folio checked is some magic around finding folios that have been
53 * modified without going through btrfs_dirty_folio(). Clear it here.
54 * There should be no need to mark the pages accessed as
55 * prepare_one_folio() should have marked them accessed in
56 * prepare_one_folio() via find_or_create_page()
57 */
58 btrfs_folio_clamp_clear_checked(fs_info, folio, block_start, block_len);
59 folio_unlock(folio);
60 folio_put(folio);
61 }
62
63 /*
64 * After copy_folio_from_iter_atomic(), update the following things for delalloc:
65 * - Mark newly dirtied folio as DELALLOC in the io tree.
66 * Used to advise which range is to be written back.
67 * - Mark modified folio as Uptodate/Dirty and not needing COW fixup
68 * - Update inode size for past EOF write
69 */
btrfs_dirty_folio(struct btrfs_inode * inode,struct folio * folio,loff_t pos,size_t write_bytes,struct extent_state ** cached,bool noreserve)70 int btrfs_dirty_folio(struct btrfs_inode *inode, struct folio *folio, loff_t pos,
71 size_t write_bytes, struct extent_state **cached, bool noreserve)
72 {
73 struct btrfs_fs_info *fs_info = inode->root->fs_info;
74 int ret = 0;
75 u64 num_bytes;
76 u64 start_pos;
77 u64 end_of_last_block;
78 const u64 end_pos = pos + write_bytes;
79 loff_t isize = i_size_read(&inode->vfs_inode);
80 unsigned int extra_bits = 0;
81
82 if (write_bytes == 0)
83 return 0;
84
85 if (noreserve)
86 extra_bits |= EXTENT_NORESERVE;
87
88 start_pos = round_down(pos, fs_info->sectorsize);
89 num_bytes = round_up(end_pos - start_pos, fs_info->sectorsize);
90 ASSERT(num_bytes <= U32_MAX);
91 ASSERT(folio_pos(folio) <= pos && folio_next_pos(folio) >= end_pos);
92
93 end_of_last_block = start_pos + num_bytes - 1;
94
95 /*
96 * The pages may have already been dirty, clear out old accounting so
97 * we can set things up properly
98 */
99 btrfs_clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
100 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
101 cached);
102
103 ret = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
104 extra_bits, cached);
105 if (ret)
106 return ret;
107
108 btrfs_folio_clamp_set_uptodate(fs_info, folio, start_pos, num_bytes);
109 btrfs_folio_clamp_clear_checked(fs_info, folio, start_pos, num_bytes);
110 btrfs_folio_clamp_set_dirty(fs_info, folio, start_pos, num_bytes);
111
112 /*
113 * we've only changed i_size in ram, and we haven't updated
114 * the disk i_size. There is no need to log the inode
115 * at this time.
116 */
117 if (end_pos > isize)
118 i_size_write(&inode->vfs_inode, end_pos);
119 return 0;
120 }
121
122 /*
123 * this is very complex, but the basic idea is to drop all extents
124 * in the range start - end. hint_block is filled in with a block number
125 * that would be a good hint to the block allocator for this file.
126 *
127 * If an extent intersects the range but is not entirely inside the range
128 * it is either truncated or split. Anything entirely inside the range
129 * is deleted from the tree.
130 *
131 * Note: the VFS' inode number of bytes is not updated, it's up to the caller
132 * to deal with that. We set the field 'bytes_found' of the arguments structure
133 * with the number of allocated bytes found in the target range, so that the
134 * caller can update the inode's number of bytes in an atomic way when
135 * replacing extents in a range to avoid races with stat(2).
136 */
btrfs_drop_extents(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_drop_extents_args * args)137 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
138 struct btrfs_root *root, struct btrfs_inode *inode,
139 struct btrfs_drop_extents_args *args)
140 {
141 struct btrfs_fs_info *fs_info = root->fs_info;
142 struct extent_buffer *leaf;
143 struct btrfs_file_extent_item *fi;
144 struct btrfs_key key;
145 struct btrfs_key new_key;
146 u64 ino = btrfs_ino(inode);
147 u64 search_start = args->start;
148 u64 disk_bytenr = 0;
149 u64 num_bytes = 0;
150 u64 extent_offset = 0;
151 u64 extent_end = 0;
152 u64 last_end = args->start;
153 int del_nr = 0;
154 int del_slot = 0;
155 int extent_type;
156 int recow;
157 int ret;
158 int modify_tree = -1;
159 int update_refs;
160 int found = 0;
161 struct btrfs_path *path = args->path;
162
163 args->bytes_found = 0;
164 args->extent_inserted = false;
165
166 /* Must always have a path if ->replace_extent is true */
167 ASSERT(!(args->replace_extent && !args->path));
168
169 if (!path) {
170 path = btrfs_alloc_path();
171 if (!path) {
172 ret = -ENOMEM;
173 goto out;
174 }
175 }
176
177 if (args->drop_cache)
178 btrfs_drop_extent_map_range(inode, args->start, args->end - 1, false);
179
180 if (data_race(args->start >= inode->disk_i_size) && !args->replace_extent)
181 modify_tree = 0;
182
183 update_refs = (btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID);
184 while (1) {
185 recow = 0;
186 ret = btrfs_lookup_file_extent(trans, root, path, ino,
187 search_start, modify_tree);
188 if (ret < 0)
189 break;
190 if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
191 leaf = path->nodes[0];
192 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
193 if (key.objectid == ino &&
194 key.type == BTRFS_EXTENT_DATA_KEY)
195 path->slots[0]--;
196 }
197 ret = 0;
198 next_slot:
199 leaf = path->nodes[0];
200 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
201 if (WARN_ON(del_nr > 0)) {
202 btrfs_print_leaf(leaf);
203 ret = -EINVAL;
204 break;
205 }
206 ret = btrfs_next_leaf(root, path);
207 if (ret < 0)
208 break;
209 if (ret > 0) {
210 ret = 0;
211 break;
212 }
213 leaf = path->nodes[0];
214 recow = 1;
215 }
216
217 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
218
219 if (key.objectid > ino)
220 break;
221 if (WARN_ON_ONCE(key.objectid < ino) ||
222 key.type < BTRFS_EXTENT_DATA_KEY) {
223 ASSERT(del_nr == 0);
224 path->slots[0]++;
225 goto next_slot;
226 }
227 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
228 break;
229
230 fi = btrfs_item_ptr(leaf, path->slots[0],
231 struct btrfs_file_extent_item);
232 extent_type = btrfs_file_extent_type(leaf, fi);
233
234 if (extent_type == BTRFS_FILE_EXTENT_REG ||
235 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
236 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
237 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
238 extent_offset = btrfs_file_extent_offset(leaf, fi);
239 extent_end = key.offset +
240 btrfs_file_extent_num_bytes(leaf, fi);
241 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
242 extent_end = key.offset +
243 btrfs_file_extent_ram_bytes(leaf, fi);
244 } else {
245 /* can't happen */
246 BUG();
247 }
248
249 /*
250 * Don't skip extent items representing 0 byte lengths. They
251 * used to be created (bug) if while punching holes we hit
252 * -ENOSPC condition. So if we find one here, just ensure we
253 * delete it, otherwise we would insert a new file extent item
254 * with the same key (offset) as that 0 bytes length file
255 * extent item in the call to setup_items_for_insert() later
256 * in this function.
257 */
258 if (extent_end == key.offset && extent_end >= search_start) {
259 last_end = extent_end;
260 goto delete_extent_item;
261 }
262
263 if (extent_end <= search_start) {
264 path->slots[0]++;
265 goto next_slot;
266 }
267
268 found = 1;
269 search_start = max(key.offset, args->start);
270 if (recow || !modify_tree) {
271 modify_tree = -1;
272 btrfs_release_path(path);
273 continue;
274 }
275
276 /*
277 * | - range to drop - |
278 * | -------- extent -------- |
279 */
280 if (args->start > key.offset && args->end < extent_end) {
281 if (WARN_ON(del_nr > 0)) {
282 btrfs_print_leaf(leaf);
283 ret = -EINVAL;
284 break;
285 }
286 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
287 ret = -EOPNOTSUPP;
288 break;
289 }
290
291 memcpy(&new_key, &key, sizeof(new_key));
292 new_key.offset = args->start;
293 ret = btrfs_duplicate_item(trans, root, path,
294 &new_key);
295 if (ret == -EAGAIN) {
296 btrfs_release_path(path);
297 continue;
298 }
299 if (ret < 0)
300 break;
301
302 leaf = path->nodes[0];
303 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
304 struct btrfs_file_extent_item);
305 btrfs_set_file_extent_num_bytes(leaf, fi,
306 args->start - key.offset);
307
308 fi = btrfs_item_ptr(leaf, path->slots[0],
309 struct btrfs_file_extent_item);
310
311 extent_offset += args->start - key.offset;
312 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
313 btrfs_set_file_extent_num_bytes(leaf, fi,
314 extent_end - args->start);
315
316 if (update_refs && disk_bytenr > 0) {
317 struct btrfs_ref ref = {
318 .action = BTRFS_ADD_DELAYED_REF,
319 .bytenr = disk_bytenr,
320 .num_bytes = num_bytes,
321 .parent = 0,
322 .owning_root = btrfs_root_id(root),
323 .ref_root = btrfs_root_id(root),
324 };
325 btrfs_init_data_ref(&ref, new_key.objectid,
326 args->start - extent_offset,
327 0, false);
328 ret = btrfs_inc_extent_ref(trans, &ref);
329 if (unlikely(ret)) {
330 btrfs_abort_transaction(trans, ret);
331 break;
332 }
333 }
334 key.offset = args->start;
335 }
336 /*
337 * From here on out we will have actually dropped something, so
338 * last_end can be updated.
339 */
340 last_end = extent_end;
341
342 /*
343 * | ---- range to drop ----- |
344 * | -------- extent -------- |
345 */
346 if (args->start <= key.offset && args->end < extent_end) {
347 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
348 ret = -EOPNOTSUPP;
349 break;
350 }
351
352 memcpy(&new_key, &key, sizeof(new_key));
353 new_key.offset = args->end;
354 btrfs_set_item_key_safe(trans, path, &new_key);
355
356 extent_offset += args->end - key.offset;
357 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
358 btrfs_set_file_extent_num_bytes(leaf, fi,
359 extent_end - args->end);
360 if (update_refs && disk_bytenr > 0)
361 args->bytes_found += args->end - key.offset;
362 break;
363 }
364
365 search_start = extent_end;
366 /*
367 * | ---- range to drop ----- |
368 * | -------- extent -------- |
369 */
370 if (args->start > key.offset && args->end >= extent_end) {
371 if (WARN_ON(del_nr > 0)) {
372 btrfs_print_leaf(leaf);
373 ret = -EINVAL;
374 break;
375 }
376 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
377 ret = -EOPNOTSUPP;
378 break;
379 }
380
381 btrfs_set_file_extent_num_bytes(leaf, fi,
382 args->start - key.offset);
383 if (update_refs && disk_bytenr > 0)
384 args->bytes_found += extent_end - args->start;
385 if (args->end == extent_end)
386 break;
387
388 path->slots[0]++;
389 goto next_slot;
390 }
391
392 /*
393 * | ---- range to drop ----- |
394 * | ------ extent ------ |
395 */
396 if (args->start <= key.offset && args->end >= extent_end) {
397 delete_extent_item:
398 if (del_nr == 0) {
399 del_slot = path->slots[0];
400 del_nr = 1;
401 } else {
402 if (WARN_ON(del_slot + del_nr != path->slots[0])) {
403 btrfs_print_leaf(leaf);
404 ret = -EINVAL;
405 break;
406 }
407 del_nr++;
408 }
409
410 if (update_refs &&
411 extent_type == BTRFS_FILE_EXTENT_INLINE) {
412 args->bytes_found += extent_end - key.offset;
413 extent_end = ALIGN(extent_end,
414 fs_info->sectorsize);
415 } else if (update_refs && disk_bytenr > 0) {
416 struct btrfs_ref ref = {
417 .action = BTRFS_DROP_DELAYED_REF,
418 .bytenr = disk_bytenr,
419 .num_bytes = num_bytes,
420 .parent = 0,
421 .owning_root = btrfs_root_id(root),
422 .ref_root = btrfs_root_id(root),
423 };
424 btrfs_init_data_ref(&ref, key.objectid,
425 key.offset - extent_offset,
426 0, false);
427 ret = btrfs_free_extent(trans, &ref);
428 if (unlikely(ret)) {
429 btrfs_abort_transaction(trans, ret);
430 break;
431 }
432 args->bytes_found += extent_end - key.offset;
433 }
434
435 if (args->end == extent_end)
436 break;
437
438 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
439 path->slots[0]++;
440 goto next_slot;
441 }
442
443 ret = btrfs_del_items(trans, root, path, del_slot,
444 del_nr);
445 if (unlikely(ret)) {
446 btrfs_abort_transaction(trans, ret);
447 break;
448 }
449
450 del_nr = 0;
451 del_slot = 0;
452
453 btrfs_release_path(path);
454 continue;
455 }
456
457 BUG();
458 }
459
460 if (!ret && del_nr > 0) {
461 /*
462 * Set path->slots[0] to first slot, so that after the delete
463 * if items are move off from our leaf to its immediate left or
464 * right neighbor leafs, we end up with a correct and adjusted
465 * path->slots[0] for our insertion (if args->replace_extent).
466 */
467 path->slots[0] = del_slot;
468 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
469 if (ret)
470 btrfs_abort_transaction(trans, ret);
471 }
472
473 leaf = path->nodes[0];
474 /*
475 * If btrfs_del_items() was called, it might have deleted a leaf, in
476 * which case it unlocked our path, so check path->locks[0] matches a
477 * write lock.
478 */
479 if (!ret && args->replace_extent &&
480 path->locks[0] == BTRFS_WRITE_LOCK &&
481 btrfs_leaf_free_space(leaf) >=
482 sizeof(struct btrfs_item) + args->extent_item_size) {
483
484 key.objectid = ino;
485 key.type = BTRFS_EXTENT_DATA_KEY;
486 key.offset = args->start;
487 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
488 struct btrfs_key slot_key;
489
490 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
491 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
492 path->slots[0]++;
493 }
494 btrfs_setup_item_for_insert(trans, root, path, &key,
495 args->extent_item_size);
496 args->extent_inserted = true;
497 }
498
499 if (!args->path)
500 btrfs_free_path(path);
501 else if (!args->extent_inserted)
502 btrfs_release_path(path);
503 out:
504 args->drop_end = found ? min(args->end, last_end) : args->end;
505
506 return ret;
507 }
508
extent_mergeable(struct extent_buffer * leaf,int slot,u64 objectid,u64 bytenr,u64 orig_offset,u64 * start,u64 * end)509 static bool extent_mergeable(struct extent_buffer *leaf, int slot, u64 objectid,
510 u64 bytenr, u64 orig_offset, u64 *start, u64 *end)
511 {
512 struct btrfs_file_extent_item *fi;
513 struct btrfs_key key;
514 u64 extent_end;
515
516 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
517 return false;
518
519 btrfs_item_key_to_cpu(leaf, &key, slot);
520 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
521 return false;
522
523 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
524 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
525 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
526 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
527 btrfs_file_extent_compression(leaf, fi) ||
528 btrfs_file_extent_encryption(leaf, fi) ||
529 btrfs_file_extent_other_encoding(leaf, fi))
530 return false;
531
532 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
533 if ((*start && *start != key.offset) || (*end && *end != extent_end))
534 return false;
535
536 *start = key.offset;
537 *end = extent_end;
538 return true;
539 }
540
541 /*
542 * Mark extent in the range start - end as written.
543 *
544 * This changes extent type from 'pre-allocated' to 'regular'. If only
545 * part of extent is marked as written, the extent will be split into
546 * two or three.
547 */
btrfs_mark_extent_written(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,u64 start,u64 end)548 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
549 struct btrfs_inode *inode, u64 start, u64 end)
550 {
551 struct btrfs_root *root = inode->root;
552 struct extent_buffer *leaf;
553 BTRFS_PATH_AUTO_FREE(path);
554 struct btrfs_file_extent_item *fi;
555 struct btrfs_ref ref = { 0 };
556 struct btrfs_key key;
557 struct btrfs_key new_key;
558 u64 bytenr;
559 u64 num_bytes;
560 u64 extent_end;
561 u64 orig_offset;
562 u64 other_start;
563 u64 other_end;
564 u64 split;
565 int del_nr = 0;
566 int del_slot = 0;
567 int recow;
568 int ret = 0;
569 u64 ino = btrfs_ino(inode);
570
571 path = btrfs_alloc_path();
572 if (!path)
573 return -ENOMEM;
574 again:
575 recow = 0;
576 split = start;
577 key.objectid = ino;
578 key.type = BTRFS_EXTENT_DATA_KEY;
579 key.offset = split;
580
581 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
582 if (ret < 0)
583 goto out;
584 if (ret > 0 && path->slots[0] > 0)
585 path->slots[0]--;
586
587 leaf = path->nodes[0];
588 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
589 if (unlikely(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)) {
590 ret = -EINVAL;
591 btrfs_abort_transaction(trans, ret);
592 goto out;
593 }
594 fi = btrfs_item_ptr(leaf, path->slots[0],
595 struct btrfs_file_extent_item);
596 if (unlikely(btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC)) {
597 ret = -EINVAL;
598 btrfs_abort_transaction(trans, ret);
599 goto out;
600 }
601 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
602 if (unlikely(key.offset > start || extent_end < end)) {
603 ret = -EINVAL;
604 btrfs_abort_transaction(trans, ret);
605 goto out;
606 }
607
608 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
609 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
610 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
611 memcpy(&new_key, &key, sizeof(new_key));
612
613 if (start == key.offset && end < extent_end) {
614 other_start = 0;
615 other_end = start;
616 if (extent_mergeable(leaf, path->slots[0] - 1,
617 ino, bytenr, orig_offset,
618 &other_start, &other_end)) {
619 new_key.offset = end;
620 btrfs_set_item_key_safe(trans, path, &new_key);
621 fi = btrfs_item_ptr(leaf, path->slots[0],
622 struct btrfs_file_extent_item);
623 btrfs_set_file_extent_generation(leaf, fi,
624 trans->transid);
625 btrfs_set_file_extent_num_bytes(leaf, fi,
626 extent_end - end);
627 btrfs_set_file_extent_offset(leaf, fi,
628 end - orig_offset);
629 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
630 struct btrfs_file_extent_item);
631 btrfs_set_file_extent_generation(leaf, fi,
632 trans->transid);
633 btrfs_set_file_extent_num_bytes(leaf, fi,
634 end - other_start);
635 goto out;
636 }
637 }
638
639 if (start > key.offset && end == extent_end) {
640 other_start = end;
641 other_end = 0;
642 if (extent_mergeable(leaf, path->slots[0] + 1,
643 ino, bytenr, orig_offset,
644 &other_start, &other_end)) {
645 fi = btrfs_item_ptr(leaf, path->slots[0],
646 struct btrfs_file_extent_item);
647 btrfs_set_file_extent_num_bytes(leaf, fi,
648 start - key.offset);
649 btrfs_set_file_extent_generation(leaf, fi,
650 trans->transid);
651 path->slots[0]++;
652 new_key.offset = start;
653 btrfs_set_item_key_safe(trans, path, &new_key);
654
655 fi = btrfs_item_ptr(leaf, path->slots[0],
656 struct btrfs_file_extent_item);
657 btrfs_set_file_extent_generation(leaf, fi,
658 trans->transid);
659 btrfs_set_file_extent_num_bytes(leaf, fi,
660 other_end - start);
661 btrfs_set_file_extent_offset(leaf, fi,
662 start - orig_offset);
663 goto out;
664 }
665 }
666
667 while (start > key.offset || end < extent_end) {
668 if (key.offset == start)
669 split = end;
670
671 new_key.offset = split;
672 ret = btrfs_duplicate_item(trans, root, path, &new_key);
673 if (ret == -EAGAIN) {
674 btrfs_release_path(path);
675 goto again;
676 }
677 if (unlikely(ret < 0)) {
678 btrfs_abort_transaction(trans, ret);
679 goto out;
680 }
681
682 leaf = path->nodes[0];
683 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
684 struct btrfs_file_extent_item);
685 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
686 btrfs_set_file_extent_num_bytes(leaf, fi,
687 split - key.offset);
688
689 fi = btrfs_item_ptr(leaf, path->slots[0],
690 struct btrfs_file_extent_item);
691
692 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
693 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
694 btrfs_set_file_extent_num_bytes(leaf, fi,
695 extent_end - split);
696
697 ref.action = BTRFS_ADD_DELAYED_REF;
698 ref.bytenr = bytenr;
699 ref.num_bytes = num_bytes;
700 ref.parent = 0;
701 ref.owning_root = btrfs_root_id(root);
702 ref.ref_root = btrfs_root_id(root);
703 btrfs_init_data_ref(&ref, ino, orig_offset, 0, false);
704 ret = btrfs_inc_extent_ref(trans, &ref);
705 if (unlikely(ret)) {
706 btrfs_abort_transaction(trans, ret);
707 goto out;
708 }
709
710 if (split == start) {
711 key.offset = start;
712 } else {
713 if (unlikely(start != key.offset)) {
714 ret = -EINVAL;
715 btrfs_abort_transaction(trans, ret);
716 goto out;
717 }
718 path->slots[0]--;
719 extent_end = end;
720 }
721 recow = 1;
722 }
723
724 other_start = end;
725 other_end = 0;
726
727 ref.action = BTRFS_DROP_DELAYED_REF;
728 ref.bytenr = bytenr;
729 ref.num_bytes = num_bytes;
730 ref.parent = 0;
731 ref.owning_root = btrfs_root_id(root);
732 ref.ref_root = btrfs_root_id(root);
733 btrfs_init_data_ref(&ref, ino, orig_offset, 0, false);
734 if (extent_mergeable(leaf, path->slots[0] + 1,
735 ino, bytenr, orig_offset,
736 &other_start, &other_end)) {
737 if (recow) {
738 btrfs_release_path(path);
739 goto again;
740 }
741 extent_end = other_end;
742 del_slot = path->slots[0] + 1;
743 del_nr++;
744 ret = btrfs_free_extent(trans, &ref);
745 if (unlikely(ret)) {
746 btrfs_abort_transaction(trans, ret);
747 goto out;
748 }
749 }
750 other_start = 0;
751 other_end = start;
752 if (extent_mergeable(leaf, path->slots[0] - 1,
753 ino, bytenr, orig_offset,
754 &other_start, &other_end)) {
755 if (recow) {
756 btrfs_release_path(path);
757 goto again;
758 }
759 key.offset = other_start;
760 del_slot = path->slots[0];
761 del_nr++;
762 ret = btrfs_free_extent(trans, &ref);
763 if (unlikely(ret)) {
764 btrfs_abort_transaction(trans, ret);
765 goto out;
766 }
767 }
768 if (del_nr == 0) {
769 fi = btrfs_item_ptr(leaf, path->slots[0],
770 struct btrfs_file_extent_item);
771 btrfs_set_file_extent_type(leaf, fi,
772 BTRFS_FILE_EXTENT_REG);
773 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
774 } else {
775 fi = btrfs_item_ptr(leaf, del_slot - 1,
776 struct btrfs_file_extent_item);
777 btrfs_set_file_extent_type(leaf, fi,
778 BTRFS_FILE_EXTENT_REG);
779 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
780 btrfs_set_file_extent_num_bytes(leaf, fi,
781 extent_end - key.offset);
782
783 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
784 if (unlikely(ret < 0)) {
785 btrfs_abort_transaction(trans, ret);
786 goto out;
787 }
788 }
789 out:
790 return ret;
791 }
792
793 /*
794 * On error return an unlocked folio and the error value
795 * On success return a locked folio and 0
796 */
prepare_uptodate_folio(struct inode * inode,struct folio * folio,u64 pos,u64 len)797 static int prepare_uptodate_folio(struct inode *inode, struct folio *folio, u64 pos,
798 u64 len)
799 {
800 u64 clamp_start = max_t(u64, pos, folio_pos(folio));
801 u64 clamp_end = min_t(u64, pos + len, folio_next_pos(folio));
802 const u32 blocksize = inode_to_fs_info(inode)->sectorsize;
803 int ret = 0;
804
805 if (folio_test_uptodate(folio))
806 return 0;
807
808 if (IS_ALIGNED(clamp_start, blocksize) &&
809 IS_ALIGNED(clamp_end, blocksize))
810 return 0;
811
812 ret = btrfs_read_folio(NULL, folio);
813 if (ret)
814 return ret;
815 folio_lock(folio);
816 if (unlikely(!folio_test_uptodate(folio))) {
817 folio_unlock(folio);
818 return -EIO;
819 }
820
821 /*
822 * Since btrfs_read_folio() will unlock the folio before it returns,
823 * there is a window where btrfs_release_folio() can be called to
824 * release the page. Here we check both inode mapping and page
825 * private to make sure the page was not released.
826 *
827 * The private flag check is essential for subpage as we need to store
828 * extra bitmap using folio private.
829 */
830 if (folio->mapping != inode->i_mapping || !folio_test_private(folio)) {
831 folio_unlock(folio);
832 return -EAGAIN;
833 }
834 return 0;
835 }
836
get_prepare_gfp_flags(struct inode * inode,bool nowait)837 static gfp_t get_prepare_gfp_flags(struct inode *inode, bool nowait)
838 {
839 gfp_t gfp;
840
841 gfp = btrfs_alloc_write_mask(inode->i_mapping);
842 if (nowait) {
843 gfp &= ~__GFP_DIRECT_RECLAIM;
844 gfp |= GFP_NOWAIT;
845 }
846
847 return gfp;
848 }
849
850 /*
851 * Get folio into the page cache and lock it.
852 */
prepare_one_folio(struct inode * inode,struct folio ** folio_ret,loff_t pos,size_t write_bytes,bool nowait)853 static noinline int prepare_one_folio(struct inode *inode, struct folio **folio_ret,
854 loff_t pos, size_t write_bytes,
855 bool nowait)
856 {
857 const pgoff_t index = pos >> PAGE_SHIFT;
858 gfp_t mask = get_prepare_gfp_flags(inode, nowait);
859 fgf_t fgp_flags = (nowait ? FGP_WRITEBEGIN | FGP_NOWAIT : FGP_WRITEBEGIN) |
860 fgf_set_order(write_bytes);
861 struct folio *folio;
862 int ret = 0;
863
864 again:
865 folio = __filemap_get_folio(inode->i_mapping, index, fgp_flags, mask);
866 if (IS_ERR(folio))
867 return PTR_ERR(folio);
868
869 ret = set_folio_extent_mapped(folio);
870 if (ret < 0) {
871 folio_unlock(folio);
872 folio_put(folio);
873 return ret;
874 }
875 ret = prepare_uptodate_folio(inode, folio, pos, write_bytes);
876 if (ret) {
877 /* The folio is already unlocked. */
878 folio_put(folio);
879 if (!nowait && ret == -EAGAIN) {
880 ret = 0;
881 goto again;
882 }
883 return ret;
884 }
885 *folio_ret = folio;
886 return 0;
887 }
888
889 /*
890 * Locks the extent and properly waits for data=ordered extents to finish
891 * before allowing the folios to be modified if need.
892 *
893 * Return:
894 * 1 - the extent is locked
895 * 0 - the extent is not locked, and everything is OK
896 * -EAGAIN - need to prepare the folios again
897 */
898 static noinline int
lock_and_cleanup_extent_if_need(struct btrfs_inode * inode,struct folio * folio,loff_t pos,size_t write_bytes,u64 * lockstart,u64 * lockend,bool nowait,struct extent_state ** cached_state)899 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct folio *folio,
900 loff_t pos, size_t write_bytes,
901 u64 *lockstart, u64 *lockend, bool nowait,
902 struct extent_state **cached_state)
903 {
904 struct btrfs_fs_info *fs_info = inode->root->fs_info;
905 u64 start_pos;
906 u64 last_pos;
907 int ret = 0;
908
909 start_pos = round_down(pos, fs_info->sectorsize);
910 last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
911
912 if (start_pos < inode->vfs_inode.i_size) {
913 struct btrfs_ordered_extent *ordered;
914
915 if (nowait) {
916 if (!btrfs_try_lock_extent(&inode->io_tree, start_pos,
917 last_pos, cached_state)) {
918 folio_unlock(folio);
919 folio_put(folio);
920 return -EAGAIN;
921 }
922 } else {
923 btrfs_lock_extent(&inode->io_tree, start_pos, last_pos,
924 cached_state);
925 }
926
927 ordered = btrfs_lookup_ordered_range(inode, start_pos,
928 last_pos - start_pos + 1);
929 if (ordered &&
930 ordered->file_offset + ordered->num_bytes > start_pos &&
931 ordered->file_offset <= last_pos) {
932 btrfs_unlock_extent(&inode->io_tree, start_pos, last_pos,
933 cached_state);
934 folio_unlock(folio);
935 folio_put(folio);
936 btrfs_start_ordered_extent(ordered);
937 btrfs_put_ordered_extent(ordered);
938 return -EAGAIN;
939 }
940 if (ordered)
941 btrfs_put_ordered_extent(ordered);
942
943 *lockstart = start_pos;
944 *lockend = last_pos;
945 ret = 1;
946 }
947
948 /*
949 * We should be called after prepare_one_folio() which should have locked
950 * all pages in the range.
951 */
952 WARN_ON(!folio_test_locked(folio));
953
954 return ret;
955 }
956
957 /*
958 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
959 *
960 * @pos: File offset.
961 * @write_bytes: The length to write, will be updated to the nocow writeable
962 * range.
963 * @nowait: Indicate if we can block or not (non-blocking IO context).
964 *
965 * This function will flush ordered extents in the range to ensure proper
966 * nocow checks.
967 *
968 * Return:
969 * > 0 If we can nocow, and updates @write_bytes.
970 * 0 If we can't do a nocow write.
971 * -EAGAIN If we can't do a nocow write because snapshotting of the inode's
972 * root is in progress or because we are in a non-blocking IO
973 * context and need to block (@nowait is true).
974 * < 0 If an error happened.
975 *
976 * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0.
977 */
btrfs_check_nocow_lock(struct btrfs_inode * inode,loff_t pos,size_t * write_bytes,bool nowait)978 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
979 size_t *write_bytes, bool nowait)
980 {
981 struct btrfs_fs_info *fs_info = inode->root->fs_info;
982 struct btrfs_root *root = inode->root;
983 struct extent_state *cached_state = NULL;
984 u64 lockstart, lockend;
985 u64 cur_offset;
986 int ret = 0;
987
988 if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
989 return 0;
990
991 if (!btrfs_drew_try_write_lock(&root->snapshot_lock))
992 return -EAGAIN;
993
994 lockstart = round_down(pos, fs_info->sectorsize);
995 lockend = round_up(pos + *write_bytes,
996 fs_info->sectorsize) - 1;
997
998 if (nowait) {
999 if (!btrfs_try_lock_ordered_range(inode, lockstart, lockend,
1000 &cached_state)) {
1001 btrfs_drew_write_unlock(&root->snapshot_lock);
1002 return -EAGAIN;
1003 }
1004 } else {
1005 btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend,
1006 &cached_state);
1007 }
1008
1009 cur_offset = lockstart;
1010 while (cur_offset < lockend) {
1011 u64 num_bytes = lockend - cur_offset + 1;
1012
1013 ret = can_nocow_extent(inode, cur_offset, &num_bytes, NULL, nowait);
1014 if (ret <= 0) {
1015 /*
1016 * If cur_offset == lockstart it means we haven't found
1017 * any extent against which we can NOCOW, so unlock the
1018 * snapshot lock.
1019 */
1020 if (cur_offset == lockstart)
1021 btrfs_drew_write_unlock(&root->snapshot_lock);
1022 break;
1023 }
1024 cur_offset += num_bytes;
1025 }
1026
1027 btrfs_unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
1028
1029 /*
1030 * cur_offset > lockstart means there's at least a partial range we can
1031 * NOCOW, and that range can cover one or more extents.
1032 */
1033 if (cur_offset > lockstart) {
1034 *write_bytes = min_t(size_t, *write_bytes, cur_offset - pos);
1035 return 1;
1036 }
1037
1038 return ret;
1039 }
1040
btrfs_check_nocow_unlock(struct btrfs_inode * inode)1041 void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1042 {
1043 btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1044 }
1045
btrfs_write_check(struct kiocb * iocb,size_t count)1046 int btrfs_write_check(struct kiocb *iocb, size_t count)
1047 {
1048 struct file *file = iocb->ki_filp;
1049 struct inode *inode = file_inode(file);
1050 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1051 loff_t pos = iocb->ki_pos;
1052 int ret;
1053 loff_t oldsize;
1054
1055 /*
1056 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or
1057 * prealloc flags, as without those flags we always have to COW. We will
1058 * later check if we can really COW into the target range (using
1059 * can_nocow_extent() at btrfs_get_blocks_direct_write()).
1060 */
1061 if ((iocb->ki_flags & IOCB_NOWAIT) &&
1062 !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1063 return -EAGAIN;
1064
1065 ret = file_remove_privs(file);
1066 if (ret)
1067 return ret;
1068
1069 /*
1070 * We reserve space for updating the inode when we reserve space for the
1071 * extent we are going to write, so we will enospc out there. We don't
1072 * need to start yet another transaction to update the inode as we will
1073 * update the inode when we finish writing whatever data we write.
1074 */
1075 if (!IS_NOCMTIME(inode)) {
1076 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1077 inode_inc_iversion(inode);
1078 }
1079
1080 oldsize = i_size_read(inode);
1081 if (pos > oldsize) {
1082 /* Expand hole size to cover write data, preventing empty gap */
1083 loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
1084
1085 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
1086 if (ret)
1087 return ret;
1088 }
1089
1090 return 0;
1091 }
1092
release_space(struct btrfs_inode * inode,struct extent_changeset * data_reserved,u64 start,u64 len,bool only_release_metadata)1093 static void release_space(struct btrfs_inode *inode, struct extent_changeset *data_reserved,
1094 u64 start, u64 len, bool only_release_metadata)
1095 {
1096 if (len == 0)
1097 return;
1098
1099 if (only_release_metadata) {
1100 btrfs_check_nocow_unlock(inode);
1101 btrfs_delalloc_release_metadata(inode, len, true);
1102 } else {
1103 const struct btrfs_fs_info *fs_info = inode->root->fs_info;
1104
1105 btrfs_delalloc_release_space(inode, data_reserved,
1106 round_down(start, fs_info->sectorsize),
1107 len, true);
1108 }
1109 }
1110
1111 /*
1112 * Reserve data and metadata space for this buffered write range.
1113 *
1114 * Return >0 for the number of bytes reserved, which is always block aligned.
1115 * Return <0 for error.
1116 */
reserve_space(struct btrfs_inode * inode,struct extent_changeset ** data_reserved,u64 start,size_t * len,bool nowait,bool * only_release_metadata)1117 static ssize_t reserve_space(struct btrfs_inode *inode,
1118 struct extent_changeset **data_reserved,
1119 u64 start, size_t *len, bool nowait,
1120 bool *only_release_metadata)
1121 {
1122 const struct btrfs_fs_info *fs_info = inode->root->fs_info;
1123 const unsigned int block_offset = (start & (fs_info->sectorsize - 1));
1124 size_t reserve_bytes;
1125 int ret;
1126
1127 ret = btrfs_check_data_free_space(inode, data_reserved, start, *len, nowait);
1128 if (ret < 0) {
1129 int can_nocow;
1130
1131 if (nowait && (ret == -ENOSPC || ret == -EAGAIN))
1132 return -EAGAIN;
1133
1134 /*
1135 * If we don't have to COW at the offset, reserve metadata only.
1136 * write_bytes may get smaller than requested here.
1137 */
1138 can_nocow = btrfs_check_nocow_lock(inode, start, len, nowait);
1139 if (can_nocow < 0)
1140 ret = can_nocow;
1141 if (can_nocow > 0)
1142 ret = 0;
1143 if (ret)
1144 return ret;
1145 *only_release_metadata = true;
1146 }
1147
1148 reserve_bytes = round_up(*len + block_offset, fs_info->sectorsize);
1149 WARN_ON(reserve_bytes == 0);
1150 ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes,
1151 reserve_bytes, nowait);
1152 if (ret) {
1153 if (!*only_release_metadata)
1154 btrfs_free_reserved_data_space(inode, *data_reserved,
1155 start, *len);
1156 else
1157 btrfs_check_nocow_unlock(inode);
1158
1159 if (nowait && ret == -ENOSPC)
1160 ret = -EAGAIN;
1161 return ret;
1162 }
1163 return reserve_bytes;
1164 }
1165
1166 /* Shrink the reserved data and metadata space from @reserved_len to @new_len. */
shrink_reserved_space(struct btrfs_inode * inode,struct extent_changeset * data_reserved,u64 reserved_start,u64 reserved_len,u64 new_len,bool only_release_metadata)1167 static void shrink_reserved_space(struct btrfs_inode *inode,
1168 struct extent_changeset *data_reserved,
1169 u64 reserved_start, u64 reserved_len,
1170 u64 new_len, bool only_release_metadata)
1171 {
1172 const u64 diff = reserved_len - new_len;
1173
1174 ASSERT(new_len <= reserved_len);
1175 btrfs_delalloc_shrink_extents(inode, reserved_len, new_len);
1176 if (only_release_metadata)
1177 btrfs_delalloc_release_metadata(inode, diff, true);
1178 else
1179 btrfs_delalloc_release_space(inode, data_reserved,
1180 reserved_start + new_len, diff, true);
1181 }
1182
1183 /* Calculate the maximum amount of bytes we can write into one folio. */
calc_write_bytes(const struct btrfs_inode * inode,const struct iov_iter * iter,u64 start)1184 static size_t calc_write_bytes(const struct btrfs_inode *inode,
1185 const struct iov_iter *iter, u64 start)
1186 {
1187 const size_t max_folio_size = mapping_max_folio_size(inode->vfs_inode.i_mapping);
1188
1189 return min(max_folio_size - (start & (max_folio_size - 1)),
1190 iov_iter_count(iter));
1191 }
1192
1193 /*
1194 * Do the heavy-lifting work to copy one range into one folio of the page cache.
1195 *
1196 * Return > 0 in case we copied all bytes or just some of them.
1197 * Return 0 if no bytes were copied, in which case the caller should retry.
1198 * Return <0 on error.
1199 */
copy_one_range(struct btrfs_inode * inode,struct iov_iter * iter,struct extent_changeset ** data_reserved,u64 start,bool nowait)1200 static int copy_one_range(struct btrfs_inode *inode, struct iov_iter *iter,
1201 struct extent_changeset **data_reserved, u64 start,
1202 bool nowait)
1203 {
1204 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1205 struct extent_state *cached_state = NULL;
1206 size_t write_bytes = calc_write_bytes(inode, iter, start);
1207 size_t copied;
1208 const u64 reserved_start = round_down(start, fs_info->sectorsize);
1209 u64 reserved_len;
1210 struct folio *folio = NULL;
1211 int extents_locked;
1212 u64 lockstart;
1213 u64 lockend;
1214 bool only_release_metadata = false;
1215 const unsigned int bdp_flags = (nowait ? BDP_ASYNC : 0);
1216 int ret;
1217
1218 /*
1219 * Fault all pages before locking them in prepare_one_folio() to avoid
1220 * recursive lock.
1221 */
1222 if (unlikely(fault_in_iov_iter_readable(iter, write_bytes)))
1223 return -EFAULT;
1224 extent_changeset_release(*data_reserved);
1225 ret = reserve_space(inode, data_reserved, start, &write_bytes, nowait,
1226 &only_release_metadata);
1227 if (ret < 0)
1228 return ret;
1229 reserved_len = ret;
1230 /* Write range must be inside the reserved range. */
1231 ASSERT(reserved_start <= start);
1232 ASSERT(start + write_bytes <= reserved_start + reserved_len);
1233
1234 again:
1235 ret = balance_dirty_pages_ratelimited_flags(inode->vfs_inode.i_mapping,
1236 bdp_flags);
1237 if (ret) {
1238 btrfs_delalloc_release_extents(inode, reserved_len);
1239 release_space(inode, *data_reserved, reserved_start, reserved_len,
1240 only_release_metadata);
1241 return ret;
1242 }
1243
1244 ret = prepare_one_folio(&inode->vfs_inode, &folio, start, write_bytes, false);
1245 if (ret) {
1246 btrfs_delalloc_release_extents(inode, reserved_len);
1247 release_space(inode, *data_reserved, reserved_start, reserved_len,
1248 only_release_metadata);
1249 return ret;
1250 }
1251
1252 /*
1253 * The reserved range goes beyond the current folio, shrink the reserved
1254 * space to the folio boundary.
1255 */
1256 if (reserved_start + reserved_len > folio_next_pos(folio)) {
1257 const u64 last_block = folio_next_pos(folio);
1258
1259 shrink_reserved_space(inode, *data_reserved, reserved_start,
1260 reserved_len, last_block - reserved_start,
1261 only_release_metadata);
1262 write_bytes = last_block - start;
1263 reserved_len = last_block - reserved_start;
1264 }
1265
1266 extents_locked = lock_and_cleanup_extent_if_need(inode, folio, start,
1267 write_bytes, &lockstart,
1268 &lockend, nowait,
1269 &cached_state);
1270 if (extents_locked < 0) {
1271 if (!nowait && extents_locked == -EAGAIN)
1272 goto again;
1273
1274 btrfs_delalloc_release_extents(inode, reserved_len);
1275 release_space(inode, *data_reserved, reserved_start, reserved_len,
1276 only_release_metadata);
1277 ret = extents_locked;
1278 return ret;
1279 }
1280
1281 copied = copy_folio_from_iter_atomic(folio, offset_in_folio(folio, start),
1282 write_bytes, iter);
1283 flush_dcache_folio(folio);
1284
1285 if (unlikely(copied < write_bytes)) {
1286 u64 last_block;
1287
1288 /*
1289 * The original write range doesn't need an uptodate folio as
1290 * the range is block aligned. But now a short copy happened.
1291 * We cannot handle it without an uptodate folio.
1292 *
1293 * So just revert the range and we will retry.
1294 */
1295 if (!folio_test_uptodate(folio)) {
1296 iov_iter_revert(iter, copied);
1297 copied = 0;
1298 }
1299
1300 /* No copied bytes, unlock, release reserved space and exit. */
1301 if (copied == 0) {
1302 if (extents_locked)
1303 btrfs_unlock_extent(&inode->io_tree, lockstart, lockend,
1304 &cached_state);
1305 else
1306 btrfs_free_extent_state(cached_state);
1307 btrfs_delalloc_release_extents(inode, reserved_len);
1308 release_space(inode, *data_reserved, reserved_start, reserved_len,
1309 only_release_metadata);
1310 btrfs_drop_folio(fs_info, folio, start, copied);
1311 return 0;
1312 }
1313
1314 /* Release the reserved space beyond the last block. */
1315 last_block = round_up(start + copied, fs_info->sectorsize);
1316
1317 shrink_reserved_space(inode, *data_reserved, reserved_start,
1318 reserved_len, last_block - reserved_start,
1319 only_release_metadata);
1320 reserved_len = last_block - reserved_start;
1321 }
1322
1323 ret = btrfs_dirty_folio(inode, folio, start, copied, &cached_state,
1324 only_release_metadata);
1325 /*
1326 * If we have not locked the extent range, because the range's start
1327 * offset is >= i_size, we might still have a non-NULL cached extent
1328 * state, acquired while marking the extent range as delalloc through
1329 * btrfs_dirty_page(). Therefore free any possible cached extent state
1330 * to avoid a memory leak.
1331 */
1332 if (extents_locked)
1333 btrfs_unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
1334 else
1335 btrfs_free_extent_state(cached_state);
1336
1337 btrfs_delalloc_release_extents(inode, reserved_len);
1338 if (ret) {
1339 btrfs_drop_folio(fs_info, folio, start, copied);
1340 release_space(inode, *data_reserved, reserved_start, reserved_len,
1341 only_release_metadata);
1342 return ret;
1343 }
1344 if (only_release_metadata)
1345 btrfs_check_nocow_unlock(inode);
1346
1347 btrfs_drop_folio(fs_info, folio, start, copied);
1348 return copied;
1349 }
1350
btrfs_buffered_write(struct kiocb * iocb,struct iov_iter * iter)1351 ssize_t btrfs_buffered_write(struct kiocb *iocb, struct iov_iter *iter)
1352 {
1353 struct file *file = iocb->ki_filp;
1354 loff_t pos;
1355 struct inode *inode = file_inode(file);
1356 struct extent_changeset *data_reserved = NULL;
1357 size_t num_written = 0;
1358 ssize_t ret;
1359 loff_t old_isize;
1360 unsigned int ilock_flags = 0;
1361 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
1362
1363 if (nowait)
1364 ilock_flags |= BTRFS_ILOCK_TRY;
1365
1366 ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
1367 if (ret < 0)
1368 return ret;
1369
1370 /*
1371 * We can only trust the isize with inode lock held, or it can race with
1372 * other buffered writes and cause incorrect call of
1373 * pagecache_isize_extended() to overwrite existing data.
1374 */
1375 old_isize = i_size_read(inode);
1376
1377 ret = generic_write_checks(iocb, iter);
1378 if (ret <= 0)
1379 goto out;
1380
1381 ret = btrfs_write_check(iocb, ret);
1382 if (ret < 0)
1383 goto out;
1384
1385 pos = iocb->ki_pos;
1386 while (iov_iter_count(iter) > 0) {
1387 ret = copy_one_range(BTRFS_I(inode), iter, &data_reserved, pos, nowait);
1388 if (ret < 0)
1389 break;
1390 pos += ret;
1391 num_written += ret;
1392 cond_resched();
1393 }
1394
1395 extent_changeset_free(data_reserved);
1396 if (num_written > 0) {
1397 pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
1398 iocb->ki_pos += num_written;
1399 }
1400 out:
1401 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1402 return num_written ? num_written : ret;
1403 }
1404
btrfs_encoded_write(struct kiocb * iocb,struct iov_iter * from,const struct btrfs_ioctl_encoded_io_args * encoded)1405 static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from,
1406 const struct btrfs_ioctl_encoded_io_args *encoded)
1407 {
1408 struct file *file = iocb->ki_filp;
1409 struct inode *inode = file_inode(file);
1410 loff_t count;
1411 ssize_t ret;
1412
1413 btrfs_inode_lock(BTRFS_I(inode), 0);
1414 count = encoded->len;
1415 ret = generic_write_checks_count(iocb, &count);
1416 if (ret == 0 && count != encoded->len) {
1417 /*
1418 * The write got truncated by generic_write_checks_count(). We
1419 * can't do a partial encoded write.
1420 */
1421 ret = -EFBIG;
1422 }
1423 if (ret || encoded->len == 0)
1424 goto out;
1425
1426 ret = btrfs_write_check(iocb, encoded->len);
1427 if (ret < 0)
1428 goto out;
1429
1430 ret = btrfs_do_encoded_write(iocb, from, encoded);
1431 out:
1432 btrfs_inode_unlock(BTRFS_I(inode), 0);
1433 return ret;
1434 }
1435
btrfs_do_write_iter(struct kiocb * iocb,struct iov_iter * from,const struct btrfs_ioctl_encoded_io_args * encoded)1436 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from,
1437 const struct btrfs_ioctl_encoded_io_args *encoded)
1438 {
1439 struct file *file = iocb->ki_filp;
1440 struct btrfs_inode *inode = BTRFS_I(file_inode(file));
1441 ssize_t num_written, num_sync;
1442
1443 if (unlikely(btrfs_is_shutdown(inode->root->fs_info)))
1444 return -EIO;
1445 /*
1446 * If the fs flips readonly due to some impossible error, although we
1447 * have opened a file as writable, we have to stop this write operation
1448 * to ensure consistency.
1449 */
1450 if (BTRFS_FS_ERROR(inode->root->fs_info))
1451 return -EROFS;
1452
1453 if (encoded && (iocb->ki_flags & IOCB_NOWAIT))
1454 return -EOPNOTSUPP;
1455
1456 if (encoded) {
1457 num_written = btrfs_encoded_write(iocb, from, encoded);
1458 num_sync = encoded->len;
1459 } else if (iocb->ki_flags & IOCB_DIRECT) {
1460 num_written = btrfs_direct_write(iocb, from);
1461 num_sync = num_written;
1462 } else {
1463 num_written = btrfs_buffered_write(iocb, from);
1464 num_sync = num_written;
1465 }
1466
1467 btrfs_set_inode_last_sub_trans(inode);
1468
1469 if (num_sync > 0) {
1470 num_sync = generic_write_sync(iocb, num_sync);
1471 if (num_sync < 0)
1472 num_written = num_sync;
1473 }
1474
1475 return num_written;
1476 }
1477
btrfs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)1478 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1479 {
1480 return btrfs_do_write_iter(iocb, from, NULL);
1481 }
1482
btrfs_release_file(struct inode * inode,struct file * filp)1483 int btrfs_release_file(struct inode *inode, struct file *filp)
1484 {
1485 struct btrfs_file_private *private = filp->private_data;
1486
1487 if (private) {
1488 kfree(private->filldir_buf);
1489 btrfs_free_extent_state(private->llseek_cached_state);
1490 kfree(private);
1491 filp->private_data = NULL;
1492 }
1493
1494 /*
1495 * Set by setattr when we are about to truncate a file from a non-zero
1496 * size to a zero size. This tries to flush down new bytes that may
1497 * have been written if the application were using truncate to replace
1498 * a file in place.
1499 */
1500 if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
1501 &BTRFS_I(inode)->runtime_flags))
1502 filemap_flush(inode->i_mapping);
1503 return 0;
1504 }
1505
start_ordered_ops(struct btrfs_inode * inode,loff_t start,loff_t end)1506 static int start_ordered_ops(struct btrfs_inode *inode, loff_t start, loff_t end)
1507 {
1508 int ret;
1509 struct blk_plug plug;
1510
1511 /*
1512 * This is only called in fsync, which would do synchronous writes, so
1513 * a plug can merge adjacent IOs as much as possible. Esp. in case of
1514 * multiple disks using raid profile, a large IO can be split to
1515 * several segments of stripe length (currently 64K).
1516 */
1517 blk_start_plug(&plug);
1518 ret = btrfs_fdatawrite_range(inode, start, end);
1519 blk_finish_plug(&plug);
1520
1521 return ret;
1522 }
1523
skip_inode_logging(const struct btrfs_log_ctx * ctx)1524 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx)
1525 {
1526 struct btrfs_inode *inode = ctx->inode;
1527 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1528
1529 if (btrfs_inode_in_log(inode, btrfs_get_fs_generation(fs_info)) &&
1530 list_empty(&ctx->ordered_extents))
1531 return true;
1532
1533 /*
1534 * If we are doing a fast fsync we can not bail out if the inode's
1535 * last_trans is <= then the last committed transaction, because we only
1536 * update the last_trans of the inode during ordered extent completion,
1537 * and for a fast fsync we don't wait for that, we only wait for the
1538 * writeback to complete.
1539 */
1540 if (inode->last_trans <= btrfs_get_last_trans_committed(fs_info) &&
1541 (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) ||
1542 list_empty(&ctx->ordered_extents)))
1543 return true;
1544
1545 return false;
1546 }
1547
1548 /*
1549 * fsync call for both files and directories. This logs the inode into
1550 * the tree log instead of forcing full commits whenever possible.
1551 *
1552 * It needs to call filemap_fdatawait so that all ordered extent updates are
1553 * in the metadata btree are up to date for copying to the log.
1554 *
1555 * It drops the inode mutex before doing the tree log commit. This is an
1556 * important optimization for directories because holding the mutex prevents
1557 * new operations on the dir while we write to disk.
1558 */
btrfs_sync_file(struct file * file,loff_t start,loff_t end,int datasync)1559 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1560 {
1561 struct dentry *dentry = file_dentry(file);
1562 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
1563 struct btrfs_root *root = inode->root;
1564 struct btrfs_fs_info *fs_info = root->fs_info;
1565 struct btrfs_trans_handle *trans;
1566 struct btrfs_log_ctx ctx;
1567 int ret = 0, err;
1568 u64 len;
1569 bool full_sync;
1570 bool skip_ilock = false;
1571
1572 if (current->journal_info == BTRFS_TRANS_DIO_WRITE_STUB) {
1573 skip_ilock = true;
1574 current->journal_info = NULL;
1575 btrfs_assert_inode_locked(inode);
1576 }
1577
1578 trace_btrfs_sync_file(file, datasync);
1579
1580 btrfs_init_log_ctx(&ctx, inode);
1581
1582 /*
1583 * Always set the range to a full range, otherwise we can get into
1584 * several problems, from missing file extent items to represent holes
1585 * when not using the NO_HOLES feature, to log tree corruption due to
1586 * races between hole detection during logging and completion of ordered
1587 * extents outside the range, to missing checksums due to ordered extents
1588 * for which we flushed only a subset of their pages.
1589 */
1590 start = 0;
1591 end = LLONG_MAX;
1592 len = (u64)LLONG_MAX + 1;
1593
1594 /*
1595 * We write the dirty pages in the range and wait until they complete
1596 * out of the ->i_mutex. If so, we can flush the dirty pages by
1597 * multi-task, and make the performance up. See
1598 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1599 */
1600 ret = start_ordered_ops(inode, start, end);
1601 if (ret)
1602 goto out;
1603
1604 if (skip_ilock)
1605 down_write(&inode->i_mmap_lock);
1606 else
1607 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
1608
1609 atomic_inc(&root->log_batch);
1610
1611 /*
1612 * Before we acquired the inode's lock and the mmap lock, someone may
1613 * have dirtied more pages in the target range. We need to make sure
1614 * that writeback for any such pages does not start while we are logging
1615 * the inode, because if it does, any of the following might happen when
1616 * we are not doing a full inode sync:
1617 *
1618 * 1) We log an extent after its writeback finishes but before its
1619 * checksums are added to the csum tree, leading to -EIO errors
1620 * when attempting to read the extent after a log replay.
1621 *
1622 * 2) We can end up logging an extent before its writeback finishes.
1623 * Therefore after the log replay we will have a file extent item
1624 * pointing to an unwritten extent (and no data checksums as well).
1625 *
1626 * So trigger writeback for any eventual new dirty pages and then we
1627 * wait for all ordered extents to complete below.
1628 */
1629 ret = start_ordered_ops(inode, start, end);
1630 if (ret) {
1631 if (skip_ilock)
1632 up_write(&inode->i_mmap_lock);
1633 else
1634 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
1635 goto out;
1636 }
1637
1638 /*
1639 * Always check for the full sync flag while holding the inode's lock,
1640 * to avoid races with other tasks. The flag must be either set all the
1641 * time during logging or always off all the time while logging.
1642 * We check the flag here after starting delalloc above, because when
1643 * running delalloc the full sync flag may be set if we need to drop
1644 * extra extent map ranges due to temporary memory allocation failures.
1645 */
1646 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
1647
1648 /*
1649 * We have to do this here to avoid the priority inversion of waiting on
1650 * IO of a lower priority task while holding a transaction open.
1651 *
1652 * For a full fsync we wait for the ordered extents to complete while
1653 * for a fast fsync we wait just for writeback to complete, and then
1654 * attach the ordered extents to the transaction so that a transaction
1655 * commit waits for their completion, to avoid data loss if we fsync,
1656 * the current transaction commits before the ordered extents complete
1657 * and a power failure happens right after that.
1658 *
1659 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the
1660 * logical address recorded in the ordered extent may change. We need
1661 * to wait for the IO to stabilize the logical address.
1662 */
1663 if (full_sync || btrfs_is_zoned(fs_info)) {
1664 ret = btrfs_wait_ordered_range(inode, start, len);
1665 clear_bit(BTRFS_INODE_COW_WRITE_ERROR, &inode->runtime_flags);
1666 } else {
1667 /*
1668 * Get our ordered extents as soon as possible to avoid doing
1669 * checksum lookups in the csum tree, and use instead the
1670 * checksums attached to the ordered extents.
1671 */
1672 btrfs_get_ordered_extents_for_logging(inode, &ctx.ordered_extents);
1673 ret = filemap_fdatawait_range(inode->vfs_inode.i_mapping, start, end);
1674 if (ret)
1675 goto out_release_extents;
1676
1677 /*
1678 * Check and clear the BTRFS_INODE_COW_WRITE_ERROR now after
1679 * starting and waiting for writeback, because for buffered IO
1680 * it may have been set during the end IO callback
1681 * (end_bbio_data_write() -> btrfs_finish_ordered_extent()) in
1682 * case an error happened and we need to wait for ordered
1683 * extents to complete so that any extent maps that point to
1684 * unwritten locations are dropped and we don't log them.
1685 */
1686 if (test_and_clear_bit(BTRFS_INODE_COW_WRITE_ERROR, &inode->runtime_flags))
1687 ret = btrfs_wait_ordered_range(inode, start, len);
1688 }
1689
1690 if (ret)
1691 goto out_release_extents;
1692
1693 atomic_inc(&root->log_batch);
1694
1695 if (skip_inode_logging(&ctx)) {
1696 /*
1697 * We've had everything committed since the last time we were
1698 * modified so clear this flag in case it was set for whatever
1699 * reason, it's no longer relevant.
1700 */
1701 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
1702 /*
1703 * An ordered extent might have started before and completed
1704 * already with io errors, in which case the inode was not
1705 * updated and we end up here. So check the inode's mapping
1706 * for any errors that might have happened since we last
1707 * checked called fsync.
1708 */
1709 ret = filemap_check_wb_err(inode->vfs_inode.i_mapping, file->f_wb_err);
1710 goto out_release_extents;
1711 }
1712
1713 btrfs_init_log_ctx_scratch_eb(&ctx);
1714
1715 /*
1716 * We use start here because we will need to wait on the IO to complete
1717 * in btrfs_sync_log, which could require joining a transaction (for
1718 * example checking cross references in the nocow path). If we use join
1719 * here we could get into a situation where we're waiting on IO to
1720 * happen that is blocked on a transaction trying to commit. With start
1721 * we inc the extwriter counter, so we wait for all extwriters to exit
1722 * before we start blocking joiners. This comment is to keep somebody
1723 * from thinking they are super smart and changing this to
1724 * btrfs_join_transaction *cough*Josef*cough*.
1725 */
1726 trans = btrfs_start_transaction(root, 0);
1727 if (IS_ERR(trans)) {
1728 ret = PTR_ERR(trans);
1729 goto out_release_extents;
1730 }
1731 trans->in_fsync = true;
1732
1733 ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
1734 /*
1735 * Scratch eb no longer needed, release before syncing log or commit
1736 * transaction, to avoid holding unnecessary memory during such long
1737 * operations.
1738 */
1739 if (ctx.scratch_eb) {
1740 free_extent_buffer(ctx.scratch_eb);
1741 ctx.scratch_eb = NULL;
1742 }
1743 btrfs_release_log_ctx_extents(&ctx);
1744 if (ret < 0) {
1745 /* Fallthrough and commit/free transaction. */
1746 ret = BTRFS_LOG_FORCE_COMMIT;
1747 }
1748
1749 /* we've logged all the items and now have a consistent
1750 * version of the file in the log. It is possible that
1751 * someone will come in and modify the file, but that's
1752 * fine because the log is consistent on disk, and we
1753 * have references to all of the file's extents
1754 *
1755 * It is possible that someone will come in and log the
1756 * file again, but that will end up using the synchronization
1757 * inside btrfs_sync_log to keep things safe.
1758 */
1759 if (skip_ilock)
1760 up_write(&inode->i_mmap_lock);
1761 else
1762 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
1763
1764 if (ret == BTRFS_NO_LOG_SYNC) {
1765 ret = btrfs_end_transaction(trans);
1766 goto out;
1767 }
1768
1769 /* We successfully logged the inode, attempt to sync the log. */
1770 if (!ret) {
1771 ret = btrfs_sync_log(trans, root, &ctx);
1772 if (!ret) {
1773 ret = btrfs_end_transaction(trans);
1774 goto out;
1775 }
1776 }
1777
1778 /*
1779 * At this point we need to commit the transaction because we had
1780 * btrfs_need_log_full_commit() or some other error.
1781 *
1782 * If we didn't do a full sync we have to stop the trans handle, wait on
1783 * the ordered extents, start it again and commit the transaction. If
1784 * we attempt to wait on the ordered extents here we could deadlock with
1785 * something like fallocate() that is holding the extent lock trying to
1786 * start a transaction while some other thread is trying to commit the
1787 * transaction while we (fsync) are currently holding the transaction
1788 * open.
1789 */
1790 if (!full_sync) {
1791 ret = btrfs_end_transaction(trans);
1792 if (ret)
1793 goto out;
1794 ret = btrfs_wait_ordered_range(inode, start, len);
1795 if (ret)
1796 goto out;
1797
1798 /*
1799 * This is safe to use here because we're only interested in
1800 * making sure the transaction that had the ordered extents is
1801 * committed. We aren't waiting on anything past this point,
1802 * we're purely getting the transaction and committing it.
1803 */
1804 trans = btrfs_attach_transaction_barrier(root);
1805 if (IS_ERR(trans)) {
1806 ret = PTR_ERR(trans);
1807
1808 /*
1809 * We committed the transaction and there's no currently
1810 * running transaction, this means everything we care
1811 * about made it to disk and we are done.
1812 */
1813 if (ret == -ENOENT)
1814 ret = 0;
1815 goto out;
1816 }
1817 }
1818
1819 ret = btrfs_commit_transaction(trans);
1820 out:
1821 free_extent_buffer(ctx.scratch_eb);
1822 ASSERT(list_empty(&ctx.list));
1823 ASSERT(list_empty(&ctx.conflict_inodes));
1824 err = file_check_and_advance_wb_err(file);
1825 if (!ret)
1826 ret = err;
1827 return ret > 0 ? -EIO : ret;
1828
1829 out_release_extents:
1830 btrfs_release_log_ctx_extents(&ctx);
1831 if (skip_ilock)
1832 up_write(&inode->i_mmap_lock);
1833 else
1834 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
1835 goto out;
1836 }
1837
1838 /*
1839 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
1840 * called from a page fault handler when a page is first dirtied. Hence we must
1841 * be careful to check for EOF conditions here. We set the page up correctly
1842 * for a written page which means we get ENOSPC checking when writing into
1843 * holes and correct delalloc and unwritten extent mapping on filesystems that
1844 * support these features.
1845 *
1846 * We are not allowed to take the i_mutex here so we have to play games to
1847 * protect against truncate races as the page could now be beyond EOF. Because
1848 * truncate_setsize() writes the inode size before removing pages, once we have
1849 * the page lock we can determine safely if the page is beyond EOF. If it is not
1850 * beyond EOF, then the page is guaranteed safe against truncation until we
1851 * unlock the page.
1852 */
btrfs_page_mkwrite(struct vm_fault * vmf)1853 static vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
1854 {
1855 struct page *page = vmf->page;
1856 struct folio *folio = page_folio(page);
1857 struct btrfs_inode *inode = BTRFS_I(file_inode(vmf->vma->vm_file));
1858 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1859 struct extent_io_tree *io_tree = &inode->io_tree;
1860 struct btrfs_ordered_extent *ordered;
1861 struct extent_state *cached_state = NULL;
1862 struct extent_changeset *data_reserved = NULL;
1863 unsigned long zero_start;
1864 loff_t size;
1865 size_t fsize = folio_size(folio);
1866 int ret;
1867 bool only_release_metadata = false;
1868 u64 reserved_space;
1869 u64 page_start;
1870 u64 page_end;
1871 u64 end;
1872
1873 reserved_space = fsize;
1874
1875 sb_start_pagefault(inode->vfs_inode.i_sb);
1876 page_start = folio_pos(folio);
1877 page_end = page_start + folio_size(folio) - 1;
1878 end = page_end;
1879
1880 /*
1881 * Reserving delalloc space after obtaining the page lock can lead to
1882 * deadlock. For example, if a dirty page is locked by this function
1883 * and the call to btrfs_delalloc_reserve_space() ends up triggering
1884 * dirty page write out, then the btrfs_writepages() function could
1885 * end up waiting indefinitely to get a lock on the page currently
1886 * being processed by btrfs_page_mkwrite() function.
1887 */
1888 ret = btrfs_check_data_free_space(inode, &data_reserved, page_start,
1889 reserved_space, false);
1890 if (ret < 0) {
1891 size_t write_bytes = reserved_space;
1892
1893 if (btrfs_check_nocow_lock(inode, page_start, &write_bytes, false) <= 0)
1894 goto out_noreserve;
1895
1896 only_release_metadata = true;
1897
1898 /*
1899 * Can't write the whole range, there may be shared extents or
1900 * holes in the range, bail out with @only_release_metadata set
1901 * to true so that we unlock the nocow lock before returning the
1902 * error.
1903 */
1904 if (write_bytes < reserved_space)
1905 goto out_noreserve;
1906 }
1907 ret = btrfs_delalloc_reserve_metadata(inode, reserved_space,
1908 reserved_space, false);
1909 if (ret < 0) {
1910 if (!only_release_metadata)
1911 btrfs_free_reserved_data_space(inode, data_reserved,
1912 page_start, reserved_space);
1913 goto out_noreserve;
1914 }
1915
1916 ret = file_update_time(vmf->vma->vm_file);
1917 if (ret < 0)
1918 goto out;
1919 again:
1920 down_read(&inode->i_mmap_lock);
1921 folio_lock(folio);
1922 size = i_size_read(&inode->vfs_inode);
1923
1924 if ((folio->mapping != inode->vfs_inode.i_mapping) ||
1925 (page_start >= size)) {
1926 /* Page got truncated out from underneath us. */
1927 goto out_unlock;
1928 }
1929 folio_wait_writeback(folio);
1930
1931 btrfs_lock_extent(io_tree, page_start, page_end, &cached_state);
1932 ret = set_folio_extent_mapped(folio);
1933 if (ret < 0) {
1934 btrfs_unlock_extent(io_tree, page_start, page_end, &cached_state);
1935 goto out_unlock;
1936 }
1937
1938 /*
1939 * We can't set the delalloc bits if there are pending ordered
1940 * extents. Drop our locks and wait for them to finish.
1941 */
1942 ordered = btrfs_lookup_ordered_range(inode, page_start, fsize);
1943 if (ordered) {
1944 btrfs_unlock_extent(io_tree, page_start, page_end, &cached_state);
1945 folio_unlock(folio);
1946 up_read(&inode->i_mmap_lock);
1947 btrfs_start_ordered_extent(ordered);
1948 btrfs_put_ordered_extent(ordered);
1949 goto again;
1950 }
1951
1952 if (folio_contains(folio, (size - 1) >> PAGE_SHIFT)) {
1953 reserved_space = round_up(size - page_start, fs_info->sectorsize);
1954 if (reserved_space < fsize) {
1955 const u64 to_free = fsize - reserved_space;
1956
1957 end = page_start + reserved_space - 1;
1958 if (only_release_metadata)
1959 btrfs_delalloc_release_metadata(inode, to_free, true);
1960 else
1961 btrfs_delalloc_release_space(inode, data_reserved,
1962 end + 1, to_free, true);
1963 }
1964 }
1965
1966 /*
1967 * page_mkwrite gets called when the page is firstly dirtied after it's
1968 * faulted in, but write(2) could also dirty a page and set delalloc
1969 * bits, thus in this case for space account reason, we still need to
1970 * clear any delalloc bits within this page range since we have to
1971 * reserve data&meta space before lock_page() (see above comments).
1972 */
1973 btrfs_clear_extent_bit(io_tree, page_start, end,
1974 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1975 EXTENT_DEFRAG, &cached_state);
1976
1977 ret = btrfs_set_extent_delalloc(inode, page_start, end, 0, &cached_state);
1978 if (ret < 0) {
1979 btrfs_unlock_extent(io_tree, page_start, page_end, &cached_state);
1980 goto out_unlock;
1981 }
1982
1983 /* Page is wholly or partially inside EOF. */
1984 if (page_start + folio_size(folio) > size)
1985 zero_start = offset_in_folio(folio, size);
1986 else
1987 zero_start = fsize;
1988
1989 if (zero_start != fsize)
1990 folio_zero_range(folio, zero_start, folio_size(folio) - zero_start);
1991
1992 btrfs_folio_clear_checked(fs_info, folio, page_start, fsize);
1993 btrfs_folio_set_dirty(fs_info, folio, page_start, end + 1 - page_start);
1994 btrfs_folio_set_uptodate(fs_info, folio, page_start, end + 1 - page_start);
1995
1996 btrfs_set_inode_last_sub_trans(inode);
1997
1998 if (only_release_metadata)
1999 btrfs_set_extent_bit(io_tree, page_start, end, EXTENT_NORESERVE,
2000 &cached_state);
2001
2002 btrfs_unlock_extent(io_tree, page_start, page_end, &cached_state);
2003 up_read(&inode->i_mmap_lock);
2004
2005 btrfs_delalloc_release_extents(inode, fsize);
2006 if (only_release_metadata)
2007 btrfs_check_nocow_unlock(inode);
2008 sb_end_pagefault(inode->vfs_inode.i_sb);
2009 extent_changeset_free(data_reserved);
2010 return VM_FAULT_LOCKED;
2011
2012 out_unlock:
2013 folio_unlock(folio);
2014 up_read(&inode->i_mmap_lock);
2015 out:
2016 btrfs_delalloc_release_extents(inode, fsize);
2017 if (only_release_metadata)
2018 btrfs_delalloc_release_metadata(inode, reserved_space, true);
2019 else
2020 btrfs_delalloc_release_space(inode, data_reserved, page_start,
2021 reserved_space, true);
2022 extent_changeset_free(data_reserved);
2023 out_noreserve:
2024 if (only_release_metadata)
2025 btrfs_check_nocow_unlock(inode);
2026
2027 sb_end_pagefault(inode->vfs_inode.i_sb);
2028
2029 if (ret < 0)
2030 return vmf_error(ret);
2031
2032 /* Make the VM retry the fault. */
2033 return VM_FAULT_NOPAGE;
2034 }
2035
2036 static const struct vm_operations_struct btrfs_file_vm_ops = {
2037 .fault = filemap_fault,
2038 .map_pages = filemap_map_pages,
2039 .page_mkwrite = btrfs_page_mkwrite,
2040 };
2041
btrfs_file_mmap_prepare(struct vm_area_desc * desc)2042 static int btrfs_file_mmap_prepare(struct vm_area_desc *desc)
2043 {
2044 struct file *filp = desc->file;
2045 struct address_space *mapping = filp->f_mapping;
2046
2047 if (unlikely(btrfs_is_shutdown(inode_to_fs_info(file_inode(filp)))))
2048 return -EIO;
2049 if (!mapping->a_ops->read_folio)
2050 return -ENOEXEC;
2051
2052 file_accessed(filp);
2053 desc->vm_ops = &btrfs_file_vm_ops;
2054
2055 return 0;
2056 }
2057
hole_mergeable(struct btrfs_inode * inode,struct extent_buffer * leaf,int slot,u64 start,u64 end)2058 static bool hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2059 int slot, u64 start, u64 end)
2060 {
2061 struct btrfs_file_extent_item *fi;
2062 struct btrfs_key key;
2063
2064 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2065 return false;
2066
2067 btrfs_item_key_to_cpu(leaf, &key, slot);
2068 if (key.objectid != btrfs_ino(inode) ||
2069 key.type != BTRFS_EXTENT_DATA_KEY)
2070 return false;
2071
2072 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2073
2074 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2075 return false;
2076
2077 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2078 return false;
2079
2080 if (key.offset == end)
2081 return true;
2082 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2083 return true;
2084 return false;
2085 }
2086
fill_holes(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,u64 offset,u64 end)2087 static int fill_holes(struct btrfs_trans_handle *trans,
2088 struct btrfs_inode *inode,
2089 struct btrfs_path *path, u64 offset, u64 end)
2090 {
2091 struct btrfs_fs_info *fs_info = trans->fs_info;
2092 struct btrfs_root *root = inode->root;
2093 struct extent_buffer *leaf;
2094 struct btrfs_file_extent_item *fi;
2095 struct extent_map *hole_em;
2096 struct btrfs_key key;
2097 int ret;
2098
2099 if (btrfs_fs_incompat(fs_info, NO_HOLES))
2100 goto out;
2101
2102 key.objectid = btrfs_ino(inode);
2103 key.type = BTRFS_EXTENT_DATA_KEY;
2104 key.offset = offset;
2105
2106 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2107 if (ret <= 0) {
2108 /*
2109 * We should have dropped this offset, so if we find it then
2110 * something has gone horribly wrong.
2111 */
2112 if (ret == 0)
2113 ret = -EINVAL;
2114 return ret;
2115 }
2116
2117 leaf = path->nodes[0];
2118 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2119 u64 num_bytes;
2120
2121 path->slots[0]--;
2122 fi = btrfs_item_ptr(leaf, path->slots[0],
2123 struct btrfs_file_extent_item);
2124 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2125 end - offset;
2126 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2127 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2128 btrfs_set_file_extent_offset(leaf, fi, 0);
2129 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2130 goto out;
2131 }
2132
2133 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2134 u64 num_bytes;
2135
2136 key.offset = offset;
2137 btrfs_set_item_key_safe(trans, path, &key);
2138 fi = btrfs_item_ptr(leaf, path->slots[0],
2139 struct btrfs_file_extent_item);
2140 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2141 offset;
2142 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2143 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2144 btrfs_set_file_extent_offset(leaf, fi, 0);
2145 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2146 goto out;
2147 }
2148 btrfs_release_path(path);
2149
2150 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset,
2151 end - offset);
2152 if (ret)
2153 return ret;
2154
2155 out:
2156 btrfs_release_path(path);
2157
2158 hole_em = btrfs_alloc_extent_map();
2159 if (!hole_em) {
2160 btrfs_drop_extent_map_range(inode, offset, end - 1, false);
2161 btrfs_set_inode_full_sync(inode);
2162 } else {
2163 hole_em->start = offset;
2164 hole_em->len = end - offset;
2165 hole_em->ram_bytes = hole_em->len;
2166
2167 hole_em->disk_bytenr = EXTENT_MAP_HOLE;
2168 hole_em->disk_num_bytes = 0;
2169 hole_em->generation = trans->transid;
2170
2171 ret = btrfs_replace_extent_map_range(inode, hole_em, true);
2172 btrfs_free_extent_map(hole_em);
2173 if (ret)
2174 btrfs_set_inode_full_sync(inode);
2175 }
2176
2177 return 0;
2178 }
2179
2180 /*
2181 * Find a hole extent on given inode and change start/len to the end of hole
2182 * extent.(hole/vacuum extent whose em->start <= start &&
2183 * em->start + em->len > start)
2184 * When a hole extent is found, return 1 and modify start/len.
2185 */
find_first_non_hole(struct btrfs_inode * inode,u64 * start,u64 * len)2186 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
2187 {
2188 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2189 struct extent_map *em;
2190 int ret = 0;
2191
2192 em = btrfs_get_extent(inode, NULL,
2193 round_down(*start, fs_info->sectorsize),
2194 round_up(*len, fs_info->sectorsize));
2195 if (IS_ERR(em))
2196 return PTR_ERR(em);
2197
2198 /* Hole or vacuum extent(only exists in no-hole mode) */
2199 if (em->disk_bytenr == EXTENT_MAP_HOLE) {
2200 ret = 1;
2201 *len = em->start + em->len > *start + *len ?
2202 0 : *start + *len - em->start - em->len;
2203 *start = em->start + em->len;
2204 }
2205 btrfs_free_extent_map(em);
2206 return ret;
2207 }
2208
2209 /*
2210 * Check if there is no folio in the range.
2211 *
2212 * We cannot utilize filemap_range_has_page() in a filemap with large folios
2213 * as we can hit the following false positive:
2214 *
2215 * start end
2216 * | |
2217 * |//|//|//|//| | | | | | | | |//|//|
2218 * \ / \ /
2219 * Folio A Folio B
2220 *
2221 * That large folio A and B cover the start and end indexes.
2222 * In that case filemap_range_has_page() will always return true, but the above
2223 * case is fine for btrfs_punch_hole_lock_range() usage.
2224 *
2225 * So here we only ensure that no other folios is in the range, excluding the
2226 * head/tail large folio.
2227 */
check_range_has_page(struct inode * inode,u64 start,u64 end)2228 static bool check_range_has_page(struct inode *inode, u64 start, u64 end)
2229 {
2230 struct folio_batch fbatch;
2231 bool ret = false;
2232 /*
2233 * For subpage case, if the range is not at page boundary, we could
2234 * have pages at the leading/tailing part of the range.
2235 * This could lead to dead loop since filemap_range_has_page()
2236 * will always return true.
2237 * So here we need to do extra page alignment for
2238 * filemap_range_has_page().
2239 *
2240 * And do not decrease page_lockend right now, as it can be 0.
2241 */
2242 const u64 page_lockstart = round_up(start, PAGE_SIZE);
2243 const u64 page_lockend = round_down(end + 1, PAGE_SIZE);
2244 const pgoff_t start_index = page_lockstart >> PAGE_SHIFT;
2245 const pgoff_t end_index = (page_lockend - 1) >> PAGE_SHIFT;
2246 pgoff_t tmp = start_index;
2247 int found_folios;
2248
2249 /* The same page or adjacent pages. */
2250 if (page_lockend <= page_lockstart)
2251 return false;
2252
2253 folio_batch_init(&fbatch);
2254 found_folios = filemap_get_folios(inode->i_mapping, &tmp, end_index, &fbatch);
2255 for (int i = 0; i < found_folios; i++) {
2256 struct folio *folio = fbatch.folios[i];
2257
2258 /* A large folio begins before the start. Not a target. */
2259 if (folio->index < start_index)
2260 continue;
2261 /* A large folio extends beyond the end. Not a target. */
2262 if (folio_next_index(folio) > end_index)
2263 continue;
2264 /* A folio doesn't cover the head/tail index. Found a target. */
2265 ret = true;
2266 break;
2267 }
2268 folio_batch_release(&fbatch);
2269 return ret;
2270 }
2271
btrfs_punch_hole_lock_range(struct inode * inode,const u64 lockstart,const u64 lockend,struct extent_state ** cached_state)2272 static void btrfs_punch_hole_lock_range(struct inode *inode,
2273 const u64 lockstart, const u64 lockend,
2274 struct extent_state **cached_state)
2275 {
2276 while (1) {
2277 truncate_pagecache_range(inode, lockstart, lockend);
2278
2279 btrfs_lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2280 cached_state);
2281 /*
2282 * We can't have ordered extents in the range, nor dirty/writeback
2283 * pages, because we have locked the inode's VFS lock in exclusive
2284 * mode, we have locked the inode's i_mmap_lock in exclusive mode,
2285 * we have flushed all delalloc in the range and we have waited
2286 * for any ordered extents in the range to complete.
2287 * We can race with anyone reading pages from this range, so after
2288 * locking the range check if we have pages in the range, and if
2289 * we do, unlock the range and retry.
2290 */
2291 if (!check_range_has_page(inode, lockstart, lockend))
2292 break;
2293
2294 btrfs_unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2295 cached_state);
2296 }
2297
2298 btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend);
2299 }
2300
btrfs_insert_replace_extent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_replace_extent_info * extent_info,const u64 replace_len,const u64 bytes_to_drop)2301 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
2302 struct btrfs_inode *inode,
2303 struct btrfs_path *path,
2304 struct btrfs_replace_extent_info *extent_info,
2305 const u64 replace_len,
2306 const u64 bytes_to_drop)
2307 {
2308 struct btrfs_fs_info *fs_info = trans->fs_info;
2309 struct btrfs_root *root = inode->root;
2310 struct btrfs_file_extent_item *extent;
2311 struct extent_buffer *leaf;
2312 struct btrfs_key key;
2313 int slot;
2314 int ret;
2315
2316 if (replace_len == 0)
2317 return 0;
2318
2319 if (extent_info->disk_offset == 0 &&
2320 btrfs_fs_incompat(fs_info, NO_HOLES)) {
2321 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2322 return 0;
2323 }
2324
2325 key.objectid = btrfs_ino(inode);
2326 key.type = BTRFS_EXTENT_DATA_KEY;
2327 key.offset = extent_info->file_offset;
2328 ret = btrfs_insert_empty_item(trans, root, path, &key,
2329 sizeof(struct btrfs_file_extent_item));
2330 if (ret)
2331 return ret;
2332 leaf = path->nodes[0];
2333 slot = path->slots[0];
2334 write_extent_buffer(leaf, extent_info->extent_buf,
2335 btrfs_item_ptr_offset(leaf, slot),
2336 sizeof(struct btrfs_file_extent_item));
2337 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2338 ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
2339 btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2340 btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2341 if (extent_info->is_new_extent)
2342 btrfs_set_file_extent_generation(leaf, extent, trans->transid);
2343 btrfs_release_path(path);
2344
2345 ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
2346 replace_len);
2347 if (ret)
2348 return ret;
2349
2350 /* If it's a hole, nothing more needs to be done. */
2351 if (extent_info->disk_offset == 0) {
2352 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2353 return 0;
2354 }
2355
2356 btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
2357
2358 if (extent_info->is_new_extent && extent_info->insertions == 0) {
2359 key.objectid = extent_info->disk_offset;
2360 key.type = BTRFS_EXTENT_ITEM_KEY;
2361 key.offset = extent_info->disk_len;
2362 ret = btrfs_alloc_reserved_file_extent(trans, root,
2363 btrfs_ino(inode),
2364 extent_info->file_offset,
2365 extent_info->qgroup_reserved,
2366 &key);
2367 } else {
2368 struct btrfs_ref ref = {
2369 .action = BTRFS_ADD_DELAYED_REF,
2370 .bytenr = extent_info->disk_offset,
2371 .num_bytes = extent_info->disk_len,
2372 .owning_root = btrfs_root_id(root),
2373 .ref_root = btrfs_root_id(root),
2374 };
2375 u64 ref_offset;
2376
2377 ref_offset = extent_info->file_offset - extent_info->data_offset;
2378 btrfs_init_data_ref(&ref, btrfs_ino(inode), ref_offset, 0, false);
2379 ret = btrfs_inc_extent_ref(trans, &ref);
2380 }
2381
2382 extent_info->insertions++;
2383
2384 return ret;
2385 }
2386
2387 /*
2388 * The respective range must have been previously locked, as well as the inode.
2389 * The end offset is inclusive (last byte of the range).
2390 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2391 * the file range with an extent.
2392 * When not punching a hole, we don't want to end up in a state where we dropped
2393 * extents without inserting a new one, so we must abort the transaction to avoid
2394 * a corruption.
2395 */
btrfs_replace_file_extents(struct btrfs_inode * inode,struct btrfs_path * path,const u64 start,const u64 end,struct btrfs_replace_extent_info * extent_info,struct btrfs_trans_handle ** trans_out)2396 int btrfs_replace_file_extents(struct btrfs_inode *inode,
2397 struct btrfs_path *path, const u64 start,
2398 const u64 end,
2399 struct btrfs_replace_extent_info *extent_info,
2400 struct btrfs_trans_handle **trans_out)
2401 {
2402 struct btrfs_drop_extents_args drop_args = { 0 };
2403 struct btrfs_root *root = inode->root;
2404 struct btrfs_fs_info *fs_info = root->fs_info;
2405 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2406 u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
2407 struct btrfs_trans_handle *trans = NULL;
2408 struct btrfs_block_rsv rsv;
2409 unsigned int rsv_count;
2410 u64 cur_offset;
2411 u64 len = end - start;
2412 int ret = 0;
2413
2414 if (end <= start)
2415 return -EINVAL;
2416
2417 btrfs_init_metadata_block_rsv(fs_info, &rsv, BTRFS_BLOCK_RSV_TEMP);
2418 rsv.size = btrfs_calc_insert_metadata_size(fs_info, 1);
2419 rsv.failfast = true;
2420
2421 /*
2422 * 1 - update the inode
2423 * 1 - removing the extents in the range
2424 * 1 - adding the hole extent if no_holes isn't set or if we are
2425 * replacing the range with a new extent
2426 */
2427 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
2428 rsv_count = 3;
2429 else
2430 rsv_count = 2;
2431
2432 trans = btrfs_start_transaction(root, rsv_count);
2433 if (IS_ERR(trans)) {
2434 ret = PTR_ERR(trans);
2435 trans = NULL;
2436 goto out_release;
2437 }
2438
2439 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, &rsv,
2440 min_size, false);
2441 if (WARN_ON(ret))
2442 goto out_trans;
2443 trans->block_rsv = &rsv;
2444
2445 cur_offset = start;
2446 drop_args.path = path;
2447 drop_args.end = end + 1;
2448 drop_args.drop_cache = true;
2449 while (cur_offset < end) {
2450 drop_args.start = cur_offset;
2451 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2452 /* If we are punching a hole decrement the inode's byte count */
2453 if (!extent_info)
2454 btrfs_update_inode_bytes(inode, 0,
2455 drop_args.bytes_found);
2456 if (ret != -ENOSPC) {
2457 /*
2458 * The only time we don't want to abort is if we are
2459 * attempting to clone a partial inline extent, in which
2460 * case we'll get EOPNOTSUPP. However if we aren't
2461 * clone we need to abort no matter what, because if we
2462 * got EOPNOTSUPP via prealloc then we messed up and
2463 * need to abort.
2464 */
2465 if (unlikely(ret &&
2466 (ret != -EOPNOTSUPP ||
2467 (extent_info && extent_info->is_new_extent))))
2468 btrfs_abort_transaction(trans, ret);
2469 break;
2470 }
2471
2472 trans->block_rsv = &fs_info->trans_block_rsv;
2473
2474 if (!extent_info && cur_offset < drop_args.drop_end &&
2475 cur_offset < ino_size) {
2476 ret = fill_holes(trans, inode, path, cur_offset,
2477 drop_args.drop_end);
2478 if (unlikely(ret)) {
2479 /*
2480 * If we failed then we didn't insert our hole
2481 * entries for the area we dropped, so now the
2482 * fs is corrupted, so we must abort the
2483 * transaction.
2484 */
2485 btrfs_abort_transaction(trans, ret);
2486 break;
2487 }
2488 } else if (!extent_info && cur_offset < drop_args.drop_end) {
2489 /*
2490 * We are past the i_size here, but since we didn't
2491 * insert holes we need to clear the mapped area so we
2492 * know to not set disk_i_size in this area until a new
2493 * file extent is inserted here.
2494 */
2495 ret = btrfs_inode_clear_file_extent_range(inode,
2496 cur_offset,
2497 drop_args.drop_end - cur_offset);
2498 if (unlikely(ret)) {
2499 /*
2500 * We couldn't clear our area, so we could
2501 * presumably adjust up and corrupt the fs, so
2502 * we need to abort.
2503 */
2504 btrfs_abort_transaction(trans, ret);
2505 break;
2506 }
2507 }
2508
2509 if (extent_info &&
2510 drop_args.drop_end > extent_info->file_offset) {
2511 u64 replace_len = drop_args.drop_end -
2512 extent_info->file_offset;
2513
2514 ret = btrfs_insert_replace_extent(trans, inode, path,
2515 extent_info, replace_len,
2516 drop_args.bytes_found);
2517 if (unlikely(ret)) {
2518 btrfs_abort_transaction(trans, ret);
2519 break;
2520 }
2521 extent_info->data_len -= replace_len;
2522 extent_info->data_offset += replace_len;
2523 extent_info->file_offset += replace_len;
2524 }
2525
2526 /*
2527 * We are releasing our handle on the transaction, balance the
2528 * dirty pages of the btree inode and flush delayed items, and
2529 * then get a new transaction handle, which may now point to a
2530 * new transaction in case someone else may have committed the
2531 * transaction we used to replace/drop file extent items. So
2532 * bump the inode's iversion and update mtime and ctime except
2533 * if we are called from a dedupe context. This is because a
2534 * power failure/crash may happen after the transaction is
2535 * committed and before we finish replacing/dropping all the
2536 * file extent items we need.
2537 */
2538 inode_inc_iversion(&inode->vfs_inode);
2539
2540 if (!extent_info || extent_info->update_times)
2541 inode_set_mtime_to_ts(&inode->vfs_inode,
2542 inode_set_ctime_current(&inode->vfs_inode));
2543
2544 ret = btrfs_update_inode(trans, inode);
2545 if (ret)
2546 break;
2547
2548 btrfs_end_transaction(trans);
2549 btrfs_btree_balance_dirty(fs_info);
2550
2551 trans = btrfs_start_transaction(root, rsv_count);
2552 if (IS_ERR(trans)) {
2553 ret = PTR_ERR(trans);
2554 trans = NULL;
2555 break;
2556 }
2557
2558 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2559 &rsv, min_size, false);
2560 if (WARN_ON(ret))
2561 break;
2562 trans->block_rsv = &rsv;
2563
2564 cur_offset = drop_args.drop_end;
2565 len = end - cur_offset;
2566 if (!extent_info && len) {
2567 ret = find_first_non_hole(inode, &cur_offset, &len);
2568 if (unlikely(ret < 0))
2569 break;
2570 if (ret && !len) {
2571 ret = 0;
2572 break;
2573 }
2574 }
2575 }
2576
2577 /*
2578 * If we were cloning, force the next fsync to be a full one since we
2579 * we replaced (or just dropped in the case of cloning holes when
2580 * NO_HOLES is enabled) file extent items and did not setup new extent
2581 * maps for the replacement extents (or holes).
2582 */
2583 if (extent_info && !extent_info->is_new_extent)
2584 btrfs_set_inode_full_sync(inode);
2585
2586 if (ret)
2587 goto out_trans;
2588
2589 trans->block_rsv = &fs_info->trans_block_rsv;
2590 /*
2591 * If we are using the NO_HOLES feature we might have had already an
2592 * hole that overlaps a part of the region [lockstart, lockend] and
2593 * ends at (or beyond) lockend. Since we have no file extent items to
2594 * represent holes, drop_end can be less than lockend and so we must
2595 * make sure we have an extent map representing the existing hole (the
2596 * call to __btrfs_drop_extents() might have dropped the existing extent
2597 * map representing the existing hole), otherwise the fast fsync path
2598 * will not record the existence of the hole region
2599 * [existing_hole_start, lockend].
2600 */
2601 if (drop_args.drop_end <= end)
2602 drop_args.drop_end = end + 1;
2603 /*
2604 * Don't insert file hole extent item if it's for a range beyond eof
2605 * (because it's useless) or if it represents a 0 bytes range (when
2606 * cur_offset == drop_end).
2607 */
2608 if (!extent_info && cur_offset < ino_size &&
2609 cur_offset < drop_args.drop_end) {
2610 ret = fill_holes(trans, inode, path, cur_offset,
2611 drop_args.drop_end);
2612 if (unlikely(ret)) {
2613 /* Same comment as above. */
2614 btrfs_abort_transaction(trans, ret);
2615 goto out_trans;
2616 }
2617 } else if (!extent_info && cur_offset < drop_args.drop_end) {
2618 /* See the comment in the loop above for the reasoning here. */
2619 ret = btrfs_inode_clear_file_extent_range(inode, cur_offset,
2620 drop_args.drop_end - cur_offset);
2621 if (unlikely(ret)) {
2622 btrfs_abort_transaction(trans, ret);
2623 goto out_trans;
2624 }
2625
2626 }
2627 if (extent_info) {
2628 ret = btrfs_insert_replace_extent(trans, inode, path,
2629 extent_info, extent_info->data_len,
2630 drop_args.bytes_found);
2631 if (unlikely(ret)) {
2632 btrfs_abort_transaction(trans, ret);
2633 goto out_trans;
2634 }
2635 }
2636
2637 out_trans:
2638 if (!trans)
2639 goto out_release;
2640
2641 trans->block_rsv = &fs_info->trans_block_rsv;
2642 if (ret)
2643 btrfs_end_transaction(trans);
2644 else
2645 *trans_out = trans;
2646 out_release:
2647 btrfs_block_rsv_release(fs_info, &rsv, (u64)-1, NULL);
2648 return ret;
2649 }
2650
btrfs_punch_hole(struct file * file,loff_t offset,loff_t len)2651 static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len)
2652 {
2653 struct inode *inode = file_inode(file);
2654 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2655 struct btrfs_root *root = BTRFS_I(inode)->root;
2656 struct extent_state *cached_state = NULL;
2657 struct btrfs_path *path;
2658 struct btrfs_trans_handle *trans = NULL;
2659 u64 lockstart;
2660 u64 lockend;
2661 u64 tail_start;
2662 u64 tail_len;
2663 const u64 orig_start = offset;
2664 const u64 orig_end = offset + len - 1;
2665 int ret = 0;
2666 bool same_block;
2667 u64 ino_size;
2668 bool truncated_block = false;
2669 bool updated_inode = false;
2670
2671 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2672
2673 ret = btrfs_wait_ordered_range(BTRFS_I(inode), offset, len);
2674 if (ret)
2675 goto out_only_mutex;
2676
2677 ino_size = round_up(inode->i_size, fs_info->sectorsize);
2678 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2679 if (ret < 0)
2680 goto out_only_mutex;
2681 if (ret && !len) {
2682 /* Already in a large hole */
2683 ret = 0;
2684 goto out_only_mutex;
2685 }
2686
2687 ret = file_modified(file);
2688 if (ret)
2689 goto out_only_mutex;
2690
2691 lockstart = round_up(offset, fs_info->sectorsize);
2692 lockend = round_down(offset + len, fs_info->sectorsize) - 1;
2693 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2694 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2695 /*
2696 * Only do this if we are in the same block and we aren't doing the
2697 * entire block.
2698 */
2699 if (same_block && len < fs_info->sectorsize) {
2700 if (offset < ino_size) {
2701 truncated_block = true;
2702 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len - 1,
2703 orig_start, orig_end);
2704 } else {
2705 ret = 0;
2706 }
2707 goto out_only_mutex;
2708 }
2709
2710 /* zero back part of the first block */
2711 if (offset < ino_size) {
2712 truncated_block = true;
2713 ret = btrfs_truncate_block(BTRFS_I(inode), offset, orig_start, orig_end);
2714 if (ret) {
2715 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2716 return ret;
2717 }
2718 }
2719
2720 /* Check the aligned pages after the first unaligned page,
2721 * if offset != orig_start, which means the first unaligned page
2722 * including several following pages are already in holes,
2723 * the extra check can be skipped */
2724 if (offset == orig_start) {
2725 /* after truncate page, check hole again */
2726 len = offset + len - lockstart;
2727 offset = lockstart;
2728 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2729 if (ret < 0)
2730 goto out_only_mutex;
2731 if (ret && !len) {
2732 ret = 0;
2733 goto out_only_mutex;
2734 }
2735 lockstart = offset;
2736 }
2737
2738 /* Check the tail unaligned part is in a hole */
2739 tail_start = lockend + 1;
2740 tail_len = offset + len - tail_start;
2741 if (tail_len) {
2742 ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
2743 if (unlikely(ret < 0))
2744 goto out_only_mutex;
2745 if (!ret) {
2746 /* zero the front end of the last page */
2747 if (tail_start + tail_len < ino_size) {
2748 truncated_block = true;
2749 ret = btrfs_truncate_block(BTRFS_I(inode),
2750 tail_start + tail_len - 1,
2751 orig_start, orig_end);
2752 if (ret)
2753 goto out_only_mutex;
2754 }
2755 }
2756 }
2757
2758 if (lockend < lockstart) {
2759 ret = 0;
2760 goto out_only_mutex;
2761 }
2762
2763 btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state);
2764
2765 path = btrfs_alloc_path();
2766 if (!path) {
2767 ret = -ENOMEM;
2768 goto out;
2769 }
2770
2771 ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart,
2772 lockend, NULL, &trans);
2773 btrfs_free_path(path);
2774 if (ret)
2775 goto out;
2776
2777 ASSERT(trans != NULL);
2778 inode_inc_iversion(inode);
2779 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
2780 ret = btrfs_update_inode(trans, BTRFS_I(inode));
2781 updated_inode = true;
2782 btrfs_end_transaction(trans);
2783 btrfs_btree_balance_dirty(fs_info);
2784 out:
2785 btrfs_unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2786 &cached_state);
2787 out_only_mutex:
2788 if (!updated_inode && truncated_block && !ret) {
2789 /*
2790 * If we only end up zeroing part of a page, we still need to
2791 * update the inode item, so that all the time fields are
2792 * updated as well as the necessary btrfs inode in memory fields
2793 * for detecting, at fsync time, if the inode isn't yet in the
2794 * log tree or it's there but not up to date.
2795 */
2796 struct timespec64 now = inode_set_ctime_current(inode);
2797
2798 inode_inc_iversion(inode);
2799 inode_set_mtime_to_ts(inode, now);
2800 trans = btrfs_start_transaction(root, 1);
2801 if (IS_ERR(trans)) {
2802 ret = PTR_ERR(trans);
2803 } else {
2804 int ret2;
2805
2806 ret = btrfs_update_inode(trans, BTRFS_I(inode));
2807 ret2 = btrfs_end_transaction(trans);
2808 if (!ret)
2809 ret = ret2;
2810 }
2811 }
2812 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2813 return ret;
2814 }
2815
2816 /* Helper structure to record which range is already reserved */
2817 struct falloc_range {
2818 struct list_head list;
2819 u64 start;
2820 u64 len;
2821 };
2822
2823 /*
2824 * Helper function to add falloc range
2825 *
2826 * Caller should have locked the larger range of extent containing
2827 * [start, len)
2828 */
add_falloc_range(struct list_head * head,u64 start,u64 len)2829 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2830 {
2831 struct falloc_range *range = NULL;
2832
2833 if (!list_empty(head)) {
2834 /*
2835 * As fallocate iterates by bytenr order, we only need to check
2836 * the last range.
2837 */
2838 range = list_last_entry(head, struct falloc_range, list);
2839 if (range->start + range->len == start) {
2840 range->len += len;
2841 return 0;
2842 }
2843 }
2844
2845 range = kmalloc(sizeof(*range), GFP_KERNEL);
2846 if (!range)
2847 return -ENOMEM;
2848 range->start = start;
2849 range->len = len;
2850 list_add_tail(&range->list, head);
2851 return 0;
2852 }
2853
btrfs_fallocate_update_isize(struct inode * inode,const u64 end,const int mode)2854 static int btrfs_fallocate_update_isize(struct inode *inode,
2855 const u64 end,
2856 const int mode)
2857 {
2858 struct btrfs_trans_handle *trans;
2859 struct btrfs_root *root = BTRFS_I(inode)->root;
2860 u64 range_start;
2861 u64 range_end;
2862 int ret;
2863 int ret2;
2864
2865 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
2866 return 0;
2867
2868 range_start = round_down(i_size_read(inode), root->fs_info->sectorsize);
2869 range_end = round_up(end, root->fs_info->sectorsize);
2870
2871 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), range_start,
2872 range_end - range_start);
2873 if (ret)
2874 return ret;
2875
2876 trans = btrfs_start_transaction(root, 1);
2877 if (IS_ERR(trans))
2878 return PTR_ERR(trans);
2879
2880 inode_set_ctime_current(inode);
2881 i_size_write(inode, end);
2882 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
2883 ret = btrfs_update_inode(trans, BTRFS_I(inode));
2884 ret2 = btrfs_end_transaction(trans);
2885
2886 return ret ? ret : ret2;
2887 }
2888
2889 enum {
2890 RANGE_BOUNDARY_WRITTEN_EXTENT,
2891 RANGE_BOUNDARY_PREALLOC_EXTENT,
2892 RANGE_BOUNDARY_HOLE,
2893 };
2894
btrfs_zero_range_check_range_boundary(struct btrfs_inode * inode,u64 offset)2895 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
2896 u64 offset)
2897 {
2898 const u64 sectorsize = inode->root->fs_info->sectorsize;
2899 struct extent_map *em;
2900 int ret;
2901
2902 offset = round_down(offset, sectorsize);
2903 em = btrfs_get_extent(inode, NULL, offset, sectorsize);
2904 if (IS_ERR(em))
2905 return PTR_ERR(em);
2906
2907 if (em->disk_bytenr == EXTENT_MAP_HOLE)
2908 ret = RANGE_BOUNDARY_HOLE;
2909 else if (em->flags & EXTENT_FLAG_PREALLOC)
2910 ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
2911 else
2912 ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
2913
2914 btrfs_free_extent_map(em);
2915 return ret;
2916 }
2917
btrfs_zero_range(struct inode * inode,loff_t offset,loff_t len,const int mode)2918 static int btrfs_zero_range(struct inode *inode,
2919 loff_t offset,
2920 loff_t len,
2921 const int mode)
2922 {
2923 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2924 struct extent_map *em;
2925 struct extent_changeset *data_reserved = NULL;
2926 int ret;
2927 u64 alloc_hint = 0;
2928 const u64 sectorsize = fs_info->sectorsize;
2929 const u64 orig_start = offset;
2930 const u64 orig_end = offset + len - 1;
2931 u64 alloc_start = round_down(offset, sectorsize);
2932 u64 alloc_end = round_up(offset + len, sectorsize);
2933 u64 bytes_to_reserve = 0;
2934 bool space_reserved = false;
2935
2936 em = btrfs_get_extent(BTRFS_I(inode), NULL, alloc_start,
2937 alloc_end - alloc_start);
2938 if (IS_ERR(em)) {
2939 ret = PTR_ERR(em);
2940 goto out;
2941 }
2942
2943 /*
2944 * Avoid hole punching and extent allocation for some cases. More cases
2945 * could be considered, but these are unlikely common and we keep things
2946 * as simple as possible for now. Also, intentionally, if the target
2947 * range contains one or more prealloc extents together with regular
2948 * extents and holes, we drop all the existing extents and allocate a
2949 * new prealloc extent, so that we get a larger contiguous disk extent.
2950 */
2951 if (em->start <= alloc_start && (em->flags & EXTENT_FLAG_PREALLOC)) {
2952 const u64 em_end = em->start + em->len;
2953
2954 if (em_end >= offset + len) {
2955 /*
2956 * The whole range is already a prealloc extent,
2957 * do nothing except updating the inode's i_size if
2958 * needed.
2959 */
2960 btrfs_free_extent_map(em);
2961 ret = btrfs_fallocate_update_isize(inode, offset + len,
2962 mode);
2963 goto out;
2964 }
2965 /*
2966 * Part of the range is already a prealloc extent, so operate
2967 * only on the remaining part of the range.
2968 */
2969 alloc_start = em_end;
2970 ASSERT(IS_ALIGNED(alloc_start, sectorsize));
2971 len = offset + len - alloc_start;
2972 offset = alloc_start;
2973 alloc_hint = btrfs_extent_map_block_start(em) + em->len;
2974 }
2975 btrfs_free_extent_map(em);
2976
2977 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
2978 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
2979 em = btrfs_get_extent(BTRFS_I(inode), NULL, alloc_start, sectorsize);
2980 if (IS_ERR(em)) {
2981 ret = PTR_ERR(em);
2982 goto out;
2983 }
2984
2985 if (em->flags & EXTENT_FLAG_PREALLOC) {
2986 btrfs_free_extent_map(em);
2987 ret = btrfs_fallocate_update_isize(inode, offset + len,
2988 mode);
2989 goto out;
2990 }
2991 if (len < sectorsize && em->disk_bytenr != EXTENT_MAP_HOLE) {
2992 btrfs_free_extent_map(em);
2993 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len - 1,
2994 orig_start, orig_end);
2995 if (!ret)
2996 ret = btrfs_fallocate_update_isize(inode,
2997 offset + len,
2998 mode);
2999 return ret;
3000 }
3001 btrfs_free_extent_map(em);
3002 alloc_start = round_down(offset, sectorsize);
3003 alloc_end = alloc_start + sectorsize;
3004 goto reserve_space;
3005 }
3006
3007 alloc_start = round_up(offset, sectorsize);
3008 alloc_end = round_down(offset + len, sectorsize);
3009
3010 /*
3011 * For unaligned ranges, check the pages at the boundaries, they might
3012 * map to an extent, in which case we need to partially zero them, or
3013 * they might map to a hole, in which case we need our allocation range
3014 * to cover them.
3015 */
3016 if (!IS_ALIGNED(offset, sectorsize)) {
3017 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3018 offset);
3019 if (ret < 0)
3020 goto out;
3021 if (ret == RANGE_BOUNDARY_HOLE) {
3022 alloc_start = round_down(offset, sectorsize);
3023 ret = 0;
3024 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3025 ret = btrfs_truncate_block(BTRFS_I(inode), offset,
3026 orig_start, orig_end);
3027 if (ret)
3028 goto out;
3029 } else {
3030 ret = 0;
3031 }
3032 }
3033
3034 if (!IS_ALIGNED(offset + len, sectorsize)) {
3035 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3036 offset + len);
3037 if (ret < 0)
3038 goto out;
3039 if (ret == RANGE_BOUNDARY_HOLE) {
3040 alloc_end = round_up(offset + len, sectorsize);
3041 ret = 0;
3042 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3043 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len - 1,
3044 orig_start, orig_end);
3045 if (ret)
3046 goto out;
3047 } else {
3048 ret = 0;
3049 }
3050 }
3051
3052 reserve_space:
3053 if (alloc_start < alloc_end) {
3054 struct extent_state *cached_state = NULL;
3055 const u64 lockstart = alloc_start;
3056 const u64 lockend = alloc_end - 1;
3057
3058 bytes_to_reserve = alloc_end - alloc_start;
3059 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3060 bytes_to_reserve);
3061 if (ret < 0)
3062 goto out;
3063 space_reserved = true;
3064 btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3065 &cached_state);
3066 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
3067 alloc_start, bytes_to_reserve);
3068 if (ret) {
3069 btrfs_unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
3070 lockend, &cached_state);
3071 goto out;
3072 }
3073 ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3074 alloc_end - alloc_start,
3075 fs_info->sectorsize,
3076 offset + len, &alloc_hint);
3077 btrfs_unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3078 &cached_state);
3079 /* btrfs_prealloc_file_range releases reserved space on error */
3080 if (ret) {
3081 space_reserved = false;
3082 goto out;
3083 }
3084 }
3085 ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3086 out:
3087 if (ret && space_reserved)
3088 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3089 alloc_start, bytes_to_reserve);
3090 extent_changeset_free(data_reserved);
3091
3092 return ret;
3093 }
3094
btrfs_fallocate(struct file * file,int mode,loff_t offset,loff_t len)3095 static long btrfs_fallocate(struct file *file, int mode,
3096 loff_t offset, loff_t len)
3097 {
3098 struct inode *inode = file_inode(file);
3099 struct extent_state *cached_state = NULL;
3100 struct extent_changeset *data_reserved = NULL;
3101 struct falloc_range *range;
3102 struct falloc_range *tmp;
3103 LIST_HEAD(reserve_list);
3104 u64 cur_offset;
3105 u64 last_byte;
3106 u64 alloc_start;
3107 u64 alloc_end;
3108 u64 alloc_hint = 0;
3109 u64 locked_end;
3110 u64 actual_end = 0;
3111 u64 data_space_needed = 0;
3112 u64 data_space_reserved = 0;
3113 u64 qgroup_reserved = 0;
3114 struct extent_map *em;
3115 int blocksize = BTRFS_I(inode)->root->fs_info->sectorsize;
3116 int ret;
3117
3118 if (unlikely(btrfs_is_shutdown(inode_to_fs_info(inode))))
3119 return -EIO;
3120
3121 /* Do not allow fallocate in ZONED mode */
3122 if (btrfs_is_zoned(inode_to_fs_info(inode)))
3123 return -EOPNOTSUPP;
3124
3125 alloc_start = round_down(offset, blocksize);
3126 alloc_end = round_up(offset + len, blocksize);
3127 cur_offset = alloc_start;
3128
3129 /* Make sure we aren't being give some crap mode */
3130 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3131 FALLOC_FL_ZERO_RANGE))
3132 return -EOPNOTSUPP;
3133
3134 if (mode & FALLOC_FL_PUNCH_HOLE)
3135 return btrfs_punch_hole(file, offset, len);
3136
3137 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3138
3139 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3140 ret = inode_newsize_ok(inode, offset + len);
3141 if (ret)
3142 goto out;
3143 }
3144
3145 ret = file_modified(file);
3146 if (ret)
3147 goto out;
3148
3149 /*
3150 * TODO: Move these two operations after we have checked
3151 * accurate reserved space, or fallocate can still fail but
3152 * with page truncated or size expanded.
3153 *
3154 * But that's a minor problem and won't do much harm BTW.
3155 */
3156 if (alloc_start > inode->i_size) {
3157 ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
3158 alloc_start);
3159 if (ret)
3160 goto out;
3161 } else if (offset + len > inode->i_size) {
3162 /*
3163 * If we are fallocating from the end of the file onward we
3164 * need to zero out the end of the block if i_size lands in the
3165 * middle of a block.
3166 */
3167 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size,
3168 inode->i_size, (u64)-1);
3169 if (ret)
3170 goto out;
3171 }
3172
3173 /*
3174 * We have locked the inode at the VFS level (in exclusive mode) and we
3175 * have locked the i_mmap_lock lock (in exclusive mode). Now before
3176 * locking the file range, flush all dealloc in the range and wait for
3177 * all ordered extents in the range to complete. After this we can lock
3178 * the file range and, due to the previous locking we did, we know there
3179 * can't be more delalloc or ordered extents in the range.
3180 */
3181 ret = btrfs_wait_ordered_range(BTRFS_I(inode), alloc_start,
3182 alloc_end - alloc_start);
3183 if (ret)
3184 goto out;
3185
3186 if (mode & FALLOC_FL_ZERO_RANGE) {
3187 ret = btrfs_zero_range(inode, offset, len, mode);
3188 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3189 return ret;
3190 }
3191
3192 locked_end = alloc_end - 1;
3193 btrfs_lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3194 &cached_state);
3195
3196 btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end);
3197
3198 /* First, check if we exceed the qgroup limit */
3199 while (cur_offset < alloc_end) {
3200 em = btrfs_get_extent(BTRFS_I(inode), NULL, cur_offset,
3201 alloc_end - cur_offset);
3202 if (IS_ERR(em)) {
3203 ret = PTR_ERR(em);
3204 break;
3205 }
3206 last_byte = min(btrfs_extent_map_end(em), alloc_end);
3207 actual_end = min_t(u64, btrfs_extent_map_end(em), offset + len);
3208 last_byte = ALIGN(last_byte, blocksize);
3209 if (em->disk_bytenr == EXTENT_MAP_HOLE ||
3210 (cur_offset >= inode->i_size &&
3211 !(em->flags & EXTENT_FLAG_PREALLOC))) {
3212 const u64 range_len = last_byte - cur_offset;
3213
3214 ret = add_falloc_range(&reserve_list, cur_offset, range_len);
3215 if (ret < 0) {
3216 btrfs_free_extent_map(em);
3217 break;
3218 }
3219 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3220 &data_reserved, cur_offset, range_len);
3221 if (ret < 0) {
3222 btrfs_free_extent_map(em);
3223 break;
3224 }
3225 qgroup_reserved += range_len;
3226 data_space_needed += range_len;
3227 }
3228 btrfs_free_extent_map(em);
3229 cur_offset = last_byte;
3230 }
3231
3232 if (!ret && data_space_needed > 0) {
3233 /*
3234 * We are safe to reserve space here as we can't have delalloc
3235 * in the range, see above.
3236 */
3237 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3238 data_space_needed);
3239 if (!ret)
3240 data_space_reserved = data_space_needed;
3241 }
3242
3243 /*
3244 * If ret is still 0, means we're OK to fallocate.
3245 * Or just cleanup the list and exit.
3246 */
3247 list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3248 if (!ret) {
3249 ret = btrfs_prealloc_file_range(inode, mode,
3250 range->start,
3251 range->len, blocksize,
3252 offset + len, &alloc_hint);
3253 /*
3254 * btrfs_prealloc_file_range() releases space even
3255 * if it returns an error.
3256 */
3257 data_space_reserved -= range->len;
3258 qgroup_reserved -= range->len;
3259 } else if (data_space_reserved > 0) {
3260 btrfs_free_reserved_data_space(BTRFS_I(inode),
3261 data_reserved, range->start,
3262 range->len);
3263 data_space_reserved -= range->len;
3264 qgroup_reserved -= range->len;
3265 } else if (qgroup_reserved > 0) {
3266 btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved,
3267 range->start, range->len, NULL);
3268 qgroup_reserved -= range->len;
3269 }
3270 list_del(&range->list);
3271 kfree(range);
3272 }
3273 if (ret < 0)
3274 goto out_unlock;
3275
3276 /*
3277 * We didn't need to allocate any more space, but we still extended the
3278 * size of the file so we need to update i_size and the inode item.
3279 */
3280 ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3281 out_unlock:
3282 btrfs_unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3283 &cached_state);
3284 out:
3285 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3286 extent_changeset_free(data_reserved);
3287 return ret;
3288 }
3289
3290 /*
3291 * Helper for btrfs_find_delalloc_in_range(). Find a subrange in a given range
3292 * that has unflushed and/or flushing delalloc. There might be other adjacent
3293 * subranges after the one it found, so btrfs_find_delalloc_in_range() keeps
3294 * looping while it gets adjacent subranges, and merging them together.
3295 */
find_delalloc_subrange(struct btrfs_inode * inode,u64 start,u64 end,struct extent_state ** cached_state,bool * search_io_tree,u64 * delalloc_start_ret,u64 * delalloc_end_ret)3296 static bool find_delalloc_subrange(struct btrfs_inode *inode, u64 start, u64 end,
3297 struct extent_state **cached_state,
3298 bool *search_io_tree,
3299 u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3300 {
3301 u64 len = end + 1 - start;
3302 u64 delalloc_len = 0;
3303 struct btrfs_ordered_extent *oe;
3304 u64 oe_start;
3305 u64 oe_end;
3306
3307 /*
3308 * Search the io tree first for EXTENT_DELALLOC. If we find any, it
3309 * means we have delalloc (dirty pages) for which writeback has not
3310 * started yet.
3311 */
3312 if (*search_io_tree) {
3313 spin_lock(&inode->lock);
3314 if (inode->delalloc_bytes > 0) {
3315 spin_unlock(&inode->lock);
3316 *delalloc_start_ret = start;
3317 delalloc_len = btrfs_count_range_bits(&inode->io_tree,
3318 delalloc_start_ret, end,
3319 len, EXTENT_DELALLOC, 1,
3320 cached_state);
3321 } else {
3322 spin_unlock(&inode->lock);
3323 }
3324 }
3325
3326 if (delalloc_len > 0) {
3327 /*
3328 * If delalloc was found then *delalloc_start_ret has a sector size
3329 * aligned value (rounded down).
3330 */
3331 *delalloc_end_ret = *delalloc_start_ret + delalloc_len - 1;
3332
3333 if (*delalloc_start_ret == start) {
3334 /* Delalloc for the whole range, nothing more to do. */
3335 if (*delalloc_end_ret == end)
3336 return true;
3337 /* Else trim our search range for ordered extents. */
3338 start = *delalloc_end_ret + 1;
3339 len = end + 1 - start;
3340 }
3341 } else {
3342 /* No delalloc, future calls don't need to search again. */
3343 *search_io_tree = false;
3344 }
3345
3346 /*
3347 * Now also check if there's any ordered extent in the range.
3348 * We do this because:
3349 *
3350 * 1) When delalloc is flushed, the file range is locked, we clear the
3351 * EXTENT_DELALLOC bit from the io tree and create an extent map and
3352 * an ordered extent for the write. So we might just have been called
3353 * after delalloc is flushed and before the ordered extent completes
3354 * and inserts the new file extent item in the subvolume's btree;
3355 *
3356 * 2) We may have an ordered extent created by flushing delalloc for a
3357 * subrange that starts before the subrange we found marked with
3358 * EXTENT_DELALLOC in the io tree.
3359 *
3360 * We could also use the extent map tree to find such delalloc that is
3361 * being flushed, but using the ordered extents tree is more efficient
3362 * because it's usually much smaller as ordered extents are removed from
3363 * the tree once they complete. With the extent maps, we may have them
3364 * in the extent map tree for a very long time, and they were either
3365 * created by previous writes or loaded by read operations.
3366 */
3367 oe = btrfs_lookup_first_ordered_range(inode, start, len);
3368 if (!oe)
3369 return (delalloc_len > 0);
3370
3371 /* The ordered extent may span beyond our search range. */
3372 oe_start = max(oe->file_offset, start);
3373 oe_end = min(oe->file_offset + oe->num_bytes - 1, end);
3374
3375 btrfs_put_ordered_extent(oe);
3376
3377 /* Don't have unflushed delalloc, return the ordered extent range. */
3378 if (delalloc_len == 0) {
3379 *delalloc_start_ret = oe_start;
3380 *delalloc_end_ret = oe_end;
3381 return true;
3382 }
3383
3384 /*
3385 * We have both unflushed delalloc (io_tree) and an ordered extent.
3386 * If the ranges are adjacent returned a combined range, otherwise
3387 * return the leftmost range.
3388 */
3389 if (oe_start < *delalloc_start_ret) {
3390 if (oe_end < *delalloc_start_ret)
3391 *delalloc_end_ret = oe_end;
3392 *delalloc_start_ret = oe_start;
3393 } else if (*delalloc_end_ret + 1 == oe_start) {
3394 *delalloc_end_ret = oe_end;
3395 }
3396
3397 return true;
3398 }
3399
3400 /*
3401 * Check if there's delalloc in a given range.
3402 *
3403 * @inode: The inode.
3404 * @start: The start offset of the range. It does not need to be
3405 * sector size aligned.
3406 * @end: The end offset (inclusive value) of the search range.
3407 * It does not need to be sector size aligned.
3408 * @cached_state: Extent state record used for speeding up delalloc
3409 * searches in the inode's io_tree. Can be NULL.
3410 * @delalloc_start_ret: Output argument, set to the start offset of the
3411 * subrange found with delalloc (may not be sector size
3412 * aligned).
3413 * @delalloc_end_ret: Output argument, set to he end offset (inclusive value)
3414 * of the subrange found with delalloc.
3415 *
3416 * Returns true if a subrange with delalloc is found within the given range, and
3417 * if so it sets @delalloc_start_ret and @delalloc_end_ret with the start and
3418 * end offsets of the subrange.
3419 */
btrfs_find_delalloc_in_range(struct btrfs_inode * inode,u64 start,u64 end,struct extent_state ** cached_state,u64 * delalloc_start_ret,u64 * delalloc_end_ret)3420 bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end,
3421 struct extent_state **cached_state,
3422 u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3423 {
3424 u64 cur_offset = round_down(start, inode->root->fs_info->sectorsize);
3425 u64 prev_delalloc_end = 0;
3426 bool search_io_tree = true;
3427 bool ret = false;
3428
3429 while (cur_offset <= end) {
3430 u64 delalloc_start;
3431 u64 delalloc_end;
3432 bool delalloc;
3433
3434 delalloc = find_delalloc_subrange(inode, cur_offset, end,
3435 cached_state, &search_io_tree,
3436 &delalloc_start,
3437 &delalloc_end);
3438 if (!delalloc)
3439 break;
3440
3441 if (prev_delalloc_end == 0) {
3442 /* First subrange found. */
3443 *delalloc_start_ret = max(delalloc_start, start);
3444 *delalloc_end_ret = delalloc_end;
3445 ret = true;
3446 } else if (delalloc_start == prev_delalloc_end + 1) {
3447 /* Subrange adjacent to the previous one, merge them. */
3448 *delalloc_end_ret = delalloc_end;
3449 } else {
3450 /* Subrange not adjacent to the previous one, exit. */
3451 break;
3452 }
3453
3454 prev_delalloc_end = delalloc_end;
3455 cur_offset = delalloc_end + 1;
3456 cond_resched();
3457 }
3458
3459 return ret;
3460 }
3461
3462 /*
3463 * Check if there's a hole or delalloc range in a range representing a hole (or
3464 * prealloc extent) found in the inode's subvolume btree.
3465 *
3466 * @inode: The inode.
3467 * @whence: Seek mode (SEEK_DATA or SEEK_HOLE).
3468 * @start: Start offset of the hole region. It does not need to be sector
3469 * size aligned.
3470 * @end: End offset (inclusive value) of the hole region. It does not
3471 * need to be sector size aligned.
3472 * @start_ret: Return parameter, used to set the start of the subrange in the
3473 * hole that matches the search criteria (seek mode), if such
3474 * subrange is found (return value of the function is true).
3475 * The value returned here may not be sector size aligned.
3476 *
3477 * Returns true if a subrange matching the given seek mode is found, and if one
3478 * is found, it updates @start_ret with the start of the subrange.
3479 */
find_desired_extent_in_hole(struct btrfs_inode * inode,int whence,struct extent_state ** cached_state,u64 start,u64 end,u64 * start_ret)3480 static bool find_desired_extent_in_hole(struct btrfs_inode *inode, int whence,
3481 struct extent_state **cached_state,
3482 u64 start, u64 end, u64 *start_ret)
3483 {
3484 u64 delalloc_start;
3485 u64 delalloc_end;
3486 bool delalloc;
3487
3488 delalloc = btrfs_find_delalloc_in_range(inode, start, end, cached_state,
3489 &delalloc_start, &delalloc_end);
3490 if (delalloc && whence == SEEK_DATA) {
3491 *start_ret = delalloc_start;
3492 return true;
3493 }
3494
3495 if (delalloc && whence == SEEK_HOLE) {
3496 /*
3497 * We found delalloc but it starts after out start offset. So we
3498 * have a hole between our start offset and the delalloc start.
3499 */
3500 if (start < delalloc_start) {
3501 *start_ret = start;
3502 return true;
3503 }
3504 /*
3505 * Delalloc range starts at our start offset.
3506 * If the delalloc range's length is smaller than our range,
3507 * then it means we have a hole that starts where the delalloc
3508 * subrange ends.
3509 */
3510 if (delalloc_end < end) {
3511 *start_ret = delalloc_end + 1;
3512 return true;
3513 }
3514
3515 /* There's delalloc for the whole range. */
3516 return false;
3517 }
3518
3519 if (!delalloc && whence == SEEK_HOLE) {
3520 *start_ret = start;
3521 return true;
3522 }
3523
3524 /*
3525 * No delalloc in the range and we are seeking for data. The caller has
3526 * to iterate to the next extent item in the subvolume btree.
3527 */
3528 return false;
3529 }
3530
find_desired_extent(struct file * file,loff_t offset,int whence)3531 static loff_t find_desired_extent(struct file *file, loff_t offset, int whence)
3532 {
3533 struct btrfs_inode *inode = BTRFS_I(file->f_mapping->host);
3534 struct btrfs_file_private *private;
3535 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3536 struct extent_state *cached_state = NULL;
3537 struct extent_state **delalloc_cached_state;
3538 const loff_t i_size = i_size_read(&inode->vfs_inode);
3539 const u64 ino = btrfs_ino(inode);
3540 struct btrfs_root *root = inode->root;
3541 struct btrfs_path *path;
3542 struct btrfs_key key;
3543 u64 last_extent_end;
3544 u64 lockstart;
3545 u64 lockend;
3546 u64 start;
3547 int ret;
3548 bool found = false;
3549
3550 if (i_size == 0 || offset >= i_size)
3551 return -ENXIO;
3552
3553 /*
3554 * Quick path. If the inode has no prealloc extents and its number of
3555 * bytes used matches its i_size, then it can not have holes.
3556 */
3557 if (whence == SEEK_HOLE &&
3558 !(inode->flags & BTRFS_INODE_PREALLOC) &&
3559 inode_get_bytes(&inode->vfs_inode) == i_size)
3560 return i_size;
3561
3562 spin_lock(&inode->lock);
3563 private = file->private_data;
3564 spin_unlock(&inode->lock);
3565
3566 if (private && private->owner_task != current) {
3567 /*
3568 * Not allocated by us, don't use it as its cached state is used
3569 * by the task that allocated it and we don't want neither to
3570 * mess with it nor get incorrect results because it reflects an
3571 * invalid state for the current task.
3572 */
3573 private = NULL;
3574 } else if (!private) {
3575 private = kzalloc(sizeof(*private), GFP_KERNEL);
3576 /*
3577 * No worries if memory allocation failed.
3578 * The private structure is used only for speeding up multiple
3579 * lseek SEEK_HOLE/DATA calls to a file when there's delalloc,
3580 * so everything will still be correct.
3581 */
3582 if (private) {
3583 bool free = false;
3584
3585 private->owner_task = current;
3586
3587 spin_lock(&inode->lock);
3588 if (file->private_data)
3589 free = true;
3590 else
3591 file->private_data = private;
3592 spin_unlock(&inode->lock);
3593
3594 if (free) {
3595 kfree(private);
3596 private = NULL;
3597 }
3598 }
3599 }
3600
3601 if (private)
3602 delalloc_cached_state = &private->llseek_cached_state;
3603 else
3604 delalloc_cached_state = NULL;
3605
3606 /*
3607 * offset can be negative, in this case we start finding DATA/HOLE from
3608 * the very start of the file.
3609 */
3610 start = max_t(loff_t, 0, offset);
3611
3612 lockstart = round_down(start, fs_info->sectorsize);
3613 lockend = round_up(i_size, fs_info->sectorsize);
3614 if (lockend <= lockstart)
3615 lockend = lockstart + fs_info->sectorsize;
3616 lockend--;
3617
3618 path = btrfs_alloc_path();
3619 if (!path)
3620 return -ENOMEM;
3621 path->reada = READA_FORWARD;
3622
3623 key.objectid = ino;
3624 key.type = BTRFS_EXTENT_DATA_KEY;
3625 key.offset = start;
3626
3627 last_extent_end = lockstart;
3628
3629 btrfs_lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3630
3631 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3632 if (ret < 0) {
3633 goto out;
3634 } else if (ret > 0 && path->slots[0] > 0) {
3635 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
3636 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
3637 path->slots[0]--;
3638 }
3639
3640 while (start < i_size) {
3641 struct extent_buffer *leaf = path->nodes[0];
3642 struct btrfs_file_extent_item *extent;
3643 u64 extent_end;
3644 u8 type;
3645
3646 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3647 ret = btrfs_next_leaf(root, path);
3648 if (ret < 0)
3649 goto out;
3650 else if (ret > 0)
3651 break;
3652
3653 leaf = path->nodes[0];
3654 }
3655
3656 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3657 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3658 break;
3659
3660 extent_end = btrfs_file_extent_end(path);
3661
3662 /*
3663 * In the first iteration we may have a slot that points to an
3664 * extent that ends before our start offset, so skip it.
3665 */
3666 if (extent_end <= start) {
3667 path->slots[0]++;
3668 continue;
3669 }
3670
3671 /* We have an implicit hole, NO_HOLES feature is likely set. */
3672 if (last_extent_end < key.offset) {
3673 u64 search_start = last_extent_end;
3674 u64 found_start;
3675
3676 /*
3677 * First iteration, @start matches @offset and it's
3678 * within the hole.
3679 */
3680 if (start == offset)
3681 search_start = offset;
3682
3683 found = find_desired_extent_in_hole(inode, whence,
3684 delalloc_cached_state,
3685 search_start,
3686 key.offset - 1,
3687 &found_start);
3688 if (found) {
3689 start = found_start;
3690 break;
3691 }
3692 /*
3693 * Didn't find data or a hole (due to delalloc) in the
3694 * implicit hole range, so need to analyze the extent.
3695 */
3696 }
3697
3698 extent = btrfs_item_ptr(leaf, path->slots[0],
3699 struct btrfs_file_extent_item);
3700 type = btrfs_file_extent_type(leaf, extent);
3701
3702 /*
3703 * Can't access the extent's disk_bytenr field if this is an
3704 * inline extent, since at that offset, it's where the extent
3705 * data starts.
3706 */
3707 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
3708 (type == BTRFS_FILE_EXTENT_REG &&
3709 btrfs_file_extent_disk_bytenr(leaf, extent) == 0)) {
3710 /*
3711 * Explicit hole or prealloc extent, search for delalloc.
3712 * A prealloc extent is treated like a hole.
3713 */
3714 u64 search_start = key.offset;
3715 u64 found_start;
3716
3717 /*
3718 * First iteration, @start matches @offset and it's
3719 * within the hole.
3720 */
3721 if (start == offset)
3722 search_start = offset;
3723
3724 found = find_desired_extent_in_hole(inode, whence,
3725 delalloc_cached_state,
3726 search_start,
3727 extent_end - 1,
3728 &found_start);
3729 if (found) {
3730 start = found_start;
3731 break;
3732 }
3733 /*
3734 * Didn't find data or a hole (due to delalloc) in the
3735 * implicit hole range, so need to analyze the next
3736 * extent item.
3737 */
3738 } else {
3739 /*
3740 * Found a regular or inline extent.
3741 * If we are seeking for data, adjust the start offset
3742 * and stop, we're done.
3743 */
3744 if (whence == SEEK_DATA) {
3745 start = max_t(u64, key.offset, offset);
3746 found = true;
3747 break;
3748 }
3749 /*
3750 * Else, we are seeking for a hole, check the next file
3751 * extent item.
3752 */
3753 }
3754
3755 start = extent_end;
3756 last_extent_end = extent_end;
3757 path->slots[0]++;
3758 if (fatal_signal_pending(current)) {
3759 ret = -EINTR;
3760 goto out;
3761 }
3762 cond_resched();
3763 }
3764
3765 /* We have an implicit hole from the last extent found up to i_size. */
3766 if (!found && start < i_size) {
3767 found = find_desired_extent_in_hole(inode, whence,
3768 delalloc_cached_state, start,
3769 i_size - 1, &start);
3770 if (!found)
3771 start = i_size;
3772 }
3773
3774 out:
3775 btrfs_unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3776 btrfs_free_path(path);
3777
3778 if (ret < 0)
3779 return ret;
3780
3781 if (whence == SEEK_DATA && start >= i_size)
3782 return -ENXIO;
3783
3784 return min_t(loff_t, start, i_size);
3785 }
3786
btrfs_file_llseek(struct file * file,loff_t offset,int whence)3787 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3788 {
3789 struct inode *inode = file->f_mapping->host;
3790
3791 switch (whence) {
3792 default:
3793 return generic_file_llseek(file, offset, whence);
3794 case SEEK_DATA:
3795 case SEEK_HOLE:
3796 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3797 offset = find_desired_extent(file, offset, whence);
3798 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3799 break;
3800 }
3801
3802 if (offset < 0)
3803 return offset;
3804
3805 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3806 }
3807
btrfs_file_open(struct inode * inode,struct file * filp)3808 static int btrfs_file_open(struct inode *inode, struct file *filp)
3809 {
3810 int ret;
3811
3812 if (unlikely(btrfs_is_shutdown(inode_to_fs_info(inode))))
3813 return -EIO;
3814
3815 filp->f_mode |= FMODE_NOWAIT | FMODE_CAN_ODIRECT;
3816
3817 ret = fsverity_file_open(inode, filp);
3818 if (ret)
3819 return ret;
3820 return generic_file_open(inode, filp);
3821 }
3822
btrfs_file_read_iter(struct kiocb * iocb,struct iov_iter * to)3823 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3824 {
3825 ssize_t ret = 0;
3826
3827 if (unlikely(btrfs_is_shutdown(inode_to_fs_info(file_inode(iocb->ki_filp)))))
3828 return -EIO;
3829
3830 if (iocb->ki_flags & IOCB_DIRECT) {
3831 ret = btrfs_direct_read(iocb, to);
3832 if (ret < 0 || !iov_iter_count(to) ||
3833 iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
3834 return ret;
3835 }
3836
3837 return filemap_read(iocb, to, ret);
3838 }
3839
btrfs_file_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)3840 static ssize_t btrfs_file_splice_read(struct file *in, loff_t *ppos,
3841 struct pipe_inode_info *pipe,
3842 size_t len, unsigned int flags)
3843 {
3844 if (unlikely(btrfs_is_shutdown(inode_to_fs_info(file_inode(in)))))
3845 return -EIO;
3846
3847 return filemap_splice_read(in, ppos, pipe, len, flags);
3848 }
3849
3850 const struct file_operations btrfs_file_operations = {
3851 .llseek = btrfs_file_llseek,
3852 .read_iter = btrfs_file_read_iter,
3853 .splice_read = btrfs_file_splice_read,
3854 .write_iter = btrfs_file_write_iter,
3855 .splice_write = iter_file_splice_write,
3856 .mmap_prepare = btrfs_file_mmap_prepare,
3857 .open = btrfs_file_open,
3858 .release = btrfs_release_file,
3859 .get_unmapped_area = thp_get_unmapped_area,
3860 .fsync = btrfs_sync_file,
3861 .fallocate = btrfs_fallocate,
3862 .unlocked_ioctl = btrfs_ioctl,
3863 #ifdef CONFIG_COMPAT
3864 .compat_ioctl = btrfs_compat_ioctl,
3865 #endif
3866 .remap_file_range = btrfs_remap_file_range,
3867 .uring_cmd = btrfs_uring_cmd,
3868 .fop_flags = FOP_BUFFER_RASYNC | FOP_BUFFER_WASYNC,
3869 };
3870
btrfs_fdatawrite_range(struct btrfs_inode * inode,loff_t start,loff_t end)3871 int btrfs_fdatawrite_range(struct btrfs_inode *inode, loff_t start, loff_t end)
3872 {
3873 struct address_space *mapping = inode->vfs_inode.i_mapping;
3874 int ret;
3875
3876 /*
3877 * So with compression we will find and lock a dirty page and clear the
3878 * first one as dirty, setup an async extent, and immediately return
3879 * with the entire range locked but with nobody actually marked with
3880 * writeback. So we can't just filemap_write_and_wait_range() and
3881 * expect it to work since it will just kick off a thread to do the
3882 * actual work. So we need to call filemap_fdatawrite_range _again_
3883 * since it will wait on the page lock, which won't be unlocked until
3884 * after the pages have been marked as writeback and so we're good to go
3885 * from there. We have to do this otherwise we'll miss the ordered
3886 * extents and that results in badness. Please Josef, do not think you
3887 * know better and pull this out at some point in the future, it is
3888 * right and you are wrong.
3889 */
3890 ret = filemap_fdatawrite_range(mapping, start, end);
3891 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags))
3892 ret = filemap_fdatawrite_range(mapping, start, end);
3893
3894 return ret;
3895 }
3896