xref: /linux/fs/btrfs/tree-log.c (revision 3f1c07fc21c68bd3bd2df9d2c9441f6485e934d9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/blkdev.h>
9 #include <linux/list_sort.h>
10 #include <linux/iversion.h>
11 #include "misc.h"
12 #include "ctree.h"
13 #include "tree-log.h"
14 #include "disk-io.h"
15 #include "locking.h"
16 #include "backref.h"
17 #include "compression.h"
18 #include "qgroup.h"
19 #include "block-group.h"
20 #include "space-info.h"
21 #include "inode-item.h"
22 #include "fs.h"
23 #include "accessors.h"
24 #include "extent-tree.h"
25 #include "root-tree.h"
26 #include "dir-item.h"
27 #include "file-item.h"
28 #include "file.h"
29 #include "orphan.h"
30 #include "print-tree.h"
31 #include "tree-checker.h"
32 #include "delayed-inode.h"
33 
34 #define MAX_CONFLICT_INODES 10
35 
36 /* magic values for the inode_only field in btrfs_log_inode:
37  *
38  * LOG_INODE_ALL means to log everything
39  * LOG_INODE_EXISTS means to log just enough to recreate the inode
40  * during log replay
41  */
42 enum {
43 	LOG_INODE_ALL,
44 	LOG_INODE_EXISTS,
45 };
46 
47 /*
48  * directory trouble cases
49  *
50  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
51  * log, we must force a full commit before doing an fsync of the directory
52  * where the unlink was done.
53  * ---> record transid of last unlink/rename per directory
54  *
55  * mkdir foo/some_dir
56  * normal commit
57  * rename foo/some_dir foo2/some_dir
58  * mkdir foo/some_dir
59  * fsync foo/some_dir/some_file
60  *
61  * The fsync above will unlink the original some_dir without recording
62  * it in its new location (foo2).  After a crash, some_dir will be gone
63  * unless the fsync of some_file forces a full commit
64  *
65  * 2) we must log any new names for any file or dir that is in the fsync
66  * log. ---> check inode while renaming/linking.
67  *
68  * 2a) we must log any new names for any file or dir during rename
69  * when the directory they are being removed from was logged.
70  * ---> check inode and old parent dir during rename
71  *
72  *  2a is actually the more important variant.  With the extra logging
73  *  a crash might unlink the old name without recreating the new one
74  *
75  * 3) after a crash, we must go through any directories with a link count
76  * of zero and redo the rm -rf
77  *
78  * mkdir f1/foo
79  * normal commit
80  * rm -rf f1/foo
81  * fsync(f1)
82  *
83  * The directory f1 was fully removed from the FS, but fsync was never
84  * called on f1, only its parent dir.  After a crash the rm -rf must
85  * be replayed.  This must be able to recurse down the entire
86  * directory tree.  The inode link count fixup code takes care of the
87  * ugly details.
88  */
89 
90 /*
91  * stages for the tree walking.  The first
92  * stage (0) is to only pin down the blocks we find
93  * the second stage (1) is to make sure that all the inodes
94  * we find in the log are created in the subvolume.
95  *
96  * The last stage is to deal with directories and links and extents
97  * and all the other fun semantics
98  */
99 enum {
100 	LOG_WALK_PIN_ONLY,
101 	LOG_WALK_REPLAY_INODES,
102 	LOG_WALK_REPLAY_DIR_INDEX,
103 	LOG_WALK_REPLAY_ALL,
104 };
105 
106 /*
107  * The walk control struct is used to pass state down the chain when processing
108  * the log tree. The stage field tells us which part of the log tree processing
109  * we are currently doing.
110  */
111 struct walk_control {
112 	/*
113 	 * Signal that we are freeing the metadata extents of a log tree.
114 	 * This is used at transaction commit time while freeing a log tree.
115 	 */
116 	bool free;
117 
118 	/*
119 	 * Signal that we are pinning the metadata extents of a log tree and the
120 	 * data extents its leaves point to (if using mixed block groups).
121 	 * This happens in the first stage of log replay to ensure that during
122 	 * replay, while we are modifying subvolume trees, we don't overwrite
123 	 * the metadata extents of log trees.
124 	 */
125 	bool pin;
126 
127 	/* What stage of the replay code we're currently in. */
128 	int stage;
129 
130 	/*
131 	 * Ignore any items from the inode currently being processed. Needs
132 	 * to be set every time we find a BTRFS_INODE_ITEM_KEY.
133 	 */
134 	bool ignore_cur_inode;
135 
136 	/*
137 	 * The root we are currently replaying to. This is NULL for the replay
138 	 * stage LOG_WALK_PIN_ONLY.
139 	 */
140 	struct btrfs_root *root;
141 
142 	/* The log tree we are currently processing (not NULL for any stage). */
143 	struct btrfs_root *log;
144 
145 	/* The transaction handle used for replaying all log trees. */
146 	struct btrfs_trans_handle *trans;
147 
148 	/*
149 	 * The function that gets used to process blocks we find in the tree.
150 	 * Note the extent_buffer might not be up to date when it is passed in,
151 	 * and it must be checked or read if you need the data inside it.
152 	 */
153 	int (*process_func)(struct extent_buffer *eb,
154 			    struct walk_control *wc, u64 gen, int level);
155 
156 	/*
157 	 * The following are used only when stage is >= LOG_WALK_REPLAY_INODES
158 	 * and by the replay_one_buffer() callback.
159 	 */
160 
161 	/* The current log leaf being processed. */
162 	struct extent_buffer *log_leaf;
163 	/* The key being processed of the current log leaf. */
164 	struct btrfs_key log_key;
165 	/* The slot being processed of the current log leaf. */
166 	int log_slot;
167 
168 	/* A path used for searches and modifications to subvolume trees. */
169 	struct btrfs_path *subvol_path;
170 };
171 
do_abort_log_replay(struct walk_control * wc,const char * function,unsigned int line,int error,const char * fmt,...)172 static void do_abort_log_replay(struct walk_control *wc, const char *function,
173 				unsigned int line, int error, const char *fmt, ...)
174 {
175 	struct btrfs_fs_info *fs_info = wc->trans->fs_info;
176 	struct va_format vaf;
177 	va_list args;
178 
179 	/*
180 	 * Do nothing if we already aborted, to avoid dumping leaves again which
181 	 * can be verbose. Further more, only the first call is useful since it
182 	 * is where we have a problem. Note that we do not use the flag
183 	 * BTRFS_FS_STATE_TRANS_ABORTED because log replay calls functions that
184 	 * are outside of tree-log.c that can abort transactions (such as
185 	 * btrfs_add_link() for example), so if that happens we still want to
186 	 * dump all log replay specific information below.
187 	 */
188 	if (test_and_set_bit(BTRFS_FS_STATE_LOG_REPLAY_ABORTED, &fs_info->fs_state))
189 		return;
190 
191 	btrfs_abort_transaction(wc->trans, error);
192 
193 	if (wc->subvol_path->nodes[0]) {
194 		btrfs_crit(fs_info,
195 			   "subvolume (root %llu) leaf currently being processed:",
196 			   btrfs_root_id(wc->root));
197 		btrfs_print_leaf(wc->subvol_path->nodes[0]);
198 	}
199 
200 	if (wc->log_leaf) {
201 		btrfs_crit(fs_info,
202 "log tree (for root %llu) leaf currently being processed (slot %d key " BTRFS_KEY_FMT "):",
203 			   btrfs_root_id(wc->root), wc->log_slot,
204 			   BTRFS_KEY_FMT_VALUE(&wc->log_key));
205 		btrfs_print_leaf(wc->log_leaf);
206 	}
207 
208 	va_start(args, fmt);
209 	vaf.fmt = fmt;
210 	vaf.va = &args;
211 
212 	btrfs_crit(fs_info,
213 	   "log replay failed in %s:%u for root %llu, stage %d, with error %d: %pV",
214 		   function, line, btrfs_root_id(wc->root), wc->stage, error, &vaf);
215 
216 	va_end(args);
217 }
218 
219 /*
220  * Use this for aborting a transaction during log replay while we are down the
221  * call chain of replay_one_buffer(), so that we get a lot more useful
222  * information for debugging issues when compared to a plain call to
223  * btrfs_abort_transaction().
224  */
225 #define btrfs_abort_log_replay(wc, error, fmt, args...) \
226 	do_abort_log_replay((wc), __func__, __LINE__, (error), fmt, ##args)
227 
228 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
229 			   struct btrfs_inode *inode,
230 			   int inode_only,
231 			   struct btrfs_log_ctx *ctx);
232 static int link_to_fixup_dir(struct walk_control *wc, u64 objectid);
233 static noinline int replay_dir_deletes(struct walk_control *wc,
234 				       u64 dirid, bool del_all);
235 static void wait_log_commit(struct btrfs_root *root, int transid);
236 
237 /*
238  * tree logging is a special write ahead log used to make sure that
239  * fsyncs and O_SYNCs can happen without doing full tree commits.
240  *
241  * Full tree commits are expensive because they require commonly
242  * modified blocks to be recowed, creating many dirty pages in the
243  * extent tree an 4x-6x higher write load than ext3.
244  *
245  * Instead of doing a tree commit on every fsync, we use the
246  * key ranges and transaction ids to find items for a given file or directory
247  * that have changed in this transaction.  Those items are copied into
248  * a special tree (one per subvolume root), that tree is written to disk
249  * and then the fsync is considered complete.
250  *
251  * After a crash, items are copied out of the log-tree back into the
252  * subvolume tree.  Any file data extents found are recorded in the extent
253  * allocation tree, and the log-tree freed.
254  *
255  * The log tree is read three times, once to pin down all the extents it is
256  * using in ram and once, once to create all the inodes logged in the tree
257  * and once to do all the other items.
258  */
259 
btrfs_iget_logging(u64 objectid,struct btrfs_root * root)260 static struct btrfs_inode *btrfs_iget_logging(u64 objectid, struct btrfs_root *root)
261 {
262 	unsigned int nofs_flag;
263 	struct btrfs_inode *inode;
264 
265 	/* Only meant to be called for subvolume roots and not for log roots. */
266 	ASSERT(btrfs_is_fstree(btrfs_root_id(root)), "root_id=%llu", btrfs_root_id(root));
267 
268 	/*
269 	 * We're holding a transaction handle whether we are logging or
270 	 * replaying a log tree, so we must make sure NOFS semantics apply
271 	 * because btrfs_alloc_inode() may be triggered and it uses GFP_KERNEL
272 	 * to allocate an inode, which can recurse back into the filesystem and
273 	 * attempt a transaction commit, resulting in a deadlock.
274 	 */
275 	nofs_flag = memalloc_nofs_save();
276 	inode = btrfs_iget(objectid, root);
277 	memalloc_nofs_restore(nofs_flag);
278 
279 	return inode;
280 }
281 
282 /*
283  * start a sub transaction and setup the log tree
284  * this increments the log tree writer count to make the people
285  * syncing the tree wait for us to finish
286  */
start_log_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_log_ctx * ctx)287 static int start_log_trans(struct btrfs_trans_handle *trans,
288 			   struct btrfs_root *root,
289 			   struct btrfs_log_ctx *ctx)
290 {
291 	struct btrfs_fs_info *fs_info = root->fs_info;
292 	struct btrfs_root *tree_root = fs_info->tree_root;
293 	const bool zoned = btrfs_is_zoned(fs_info);
294 	int ret = 0;
295 	bool created = false;
296 
297 	/*
298 	 * First check if the log root tree was already created. If not, create
299 	 * it before locking the root's log_mutex, just to keep lockdep happy.
300 	 */
301 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
302 		mutex_lock(&tree_root->log_mutex);
303 		if (!fs_info->log_root_tree) {
304 			ret = btrfs_init_log_root_tree(trans, fs_info);
305 			if (!ret) {
306 				set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
307 				created = true;
308 			}
309 		}
310 		mutex_unlock(&tree_root->log_mutex);
311 		if (ret)
312 			return ret;
313 	}
314 
315 	mutex_lock(&root->log_mutex);
316 
317 again:
318 	if (root->log_root) {
319 		int index = (root->log_transid + 1) % 2;
320 
321 		if (btrfs_need_log_full_commit(trans)) {
322 			ret = BTRFS_LOG_FORCE_COMMIT;
323 			goto out;
324 		}
325 
326 		if (zoned && atomic_read(&root->log_commit[index])) {
327 			wait_log_commit(root, root->log_transid - 1);
328 			goto again;
329 		}
330 
331 		if (!root->log_start_pid) {
332 			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
333 			root->log_start_pid = current->pid;
334 		} else if (root->log_start_pid != current->pid) {
335 			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
336 		}
337 	} else {
338 		/*
339 		 * This means fs_info->log_root_tree was already created
340 		 * for some other FS trees. Do the full commit not to mix
341 		 * nodes from multiple log transactions to do sequential
342 		 * writing.
343 		 */
344 		if (zoned && !created) {
345 			ret = BTRFS_LOG_FORCE_COMMIT;
346 			goto out;
347 		}
348 
349 		ret = btrfs_add_log_tree(trans, root);
350 		if (ret)
351 			goto out;
352 
353 		set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
354 		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
355 		root->log_start_pid = current->pid;
356 	}
357 
358 	atomic_inc(&root->log_writers);
359 	if (!ctx->logging_new_name) {
360 		int index = root->log_transid % 2;
361 		list_add_tail(&ctx->list, &root->log_ctxs[index]);
362 		ctx->log_transid = root->log_transid;
363 	}
364 
365 out:
366 	mutex_unlock(&root->log_mutex);
367 	return ret;
368 }
369 
370 /*
371  * returns 0 if there was a log transaction running and we were able
372  * to join, or returns -ENOENT if there were not transactions
373  * in progress
374  */
join_running_log_trans(struct btrfs_root * root)375 static int join_running_log_trans(struct btrfs_root *root)
376 {
377 	const bool zoned = btrfs_is_zoned(root->fs_info);
378 	int ret = -ENOENT;
379 
380 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
381 		return ret;
382 
383 	mutex_lock(&root->log_mutex);
384 again:
385 	if (root->log_root) {
386 		int index = (root->log_transid + 1) % 2;
387 
388 		ret = 0;
389 		if (zoned && atomic_read(&root->log_commit[index])) {
390 			wait_log_commit(root, root->log_transid - 1);
391 			goto again;
392 		}
393 		atomic_inc(&root->log_writers);
394 	}
395 	mutex_unlock(&root->log_mutex);
396 	return ret;
397 }
398 
399 /*
400  * This either makes the current running log transaction wait
401  * until you call btrfs_end_log_trans() or it makes any future
402  * log transactions wait until you call btrfs_end_log_trans()
403  */
btrfs_pin_log_trans(struct btrfs_root * root)404 void btrfs_pin_log_trans(struct btrfs_root *root)
405 {
406 	atomic_inc(&root->log_writers);
407 }
408 
409 /*
410  * indicate we're done making changes to the log tree
411  * and wake up anyone waiting to do a sync
412  */
btrfs_end_log_trans(struct btrfs_root * root)413 void btrfs_end_log_trans(struct btrfs_root *root)
414 {
415 	if (atomic_dec_and_test(&root->log_writers)) {
416 		/* atomic_dec_and_test implies a barrier */
417 		cond_wake_up_nomb(&root->log_writer_wait);
418 	}
419 }
420 
421 /*
422  * process_func used to pin down extents, write them or wait on them
423  */
process_one_buffer(struct extent_buffer * eb,struct walk_control * wc,u64 gen,int level)424 static int process_one_buffer(struct extent_buffer *eb,
425 			      struct walk_control *wc, u64 gen, int level)
426 {
427 	struct btrfs_root *log = wc->log;
428 	struct btrfs_trans_handle *trans = wc->trans;
429 	struct btrfs_fs_info *fs_info = log->fs_info;
430 	int ret = 0;
431 
432 	/*
433 	 * If this fs is mixed then we need to be able to process the leaves to
434 	 * pin down any logged extents, so we have to read the block.
435 	 */
436 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
437 		struct btrfs_tree_parent_check check = {
438 			.level = level,
439 			.transid = gen
440 		};
441 
442 		ret = btrfs_read_extent_buffer(eb, &check);
443 		if (unlikely(ret)) {
444 			if (trans)
445 				btrfs_abort_transaction(trans, ret);
446 			else
447 				btrfs_handle_fs_error(fs_info, ret, NULL);
448 			return ret;
449 		}
450 	}
451 
452 	if (wc->pin) {
453 		ASSERT(trans != NULL);
454 		ret = btrfs_pin_extent_for_log_replay(trans, eb);
455 		if (unlikely(ret)) {
456 			btrfs_abort_transaction(trans, ret);
457 			return ret;
458 		}
459 
460 		if (btrfs_buffer_uptodate(eb, gen, false) && level == 0) {
461 			ret = btrfs_exclude_logged_extents(eb);
462 			if (ret)
463 				btrfs_abort_transaction(trans, ret);
464 		}
465 	}
466 	return ret;
467 }
468 
469 /*
470  * Item overwrite used by log replay. The given log tree leaf, slot and key
471  * from the walk_control structure all refer to the source data we are copying
472  * out.
473  *
474  * The given root is for the tree we are copying into, and path is a scratch
475  * path for use in this function (it should be released on entry and will be
476  * released on exit).
477  *
478  * If the key is already in the destination tree the existing item is
479  * overwritten.  If the existing item isn't big enough, it is extended.
480  * If it is too large, it is truncated.
481  *
482  * If the key isn't in the destination yet, a new item is inserted.
483  */
overwrite_item(struct walk_control * wc)484 static int overwrite_item(struct walk_control *wc)
485 {
486 	struct btrfs_trans_handle *trans = wc->trans;
487 	struct btrfs_root *root = wc->root;
488 	int ret;
489 	u32 item_size;
490 	u64 saved_i_size = 0;
491 	int save_old_i_size = 0;
492 	unsigned long src_ptr;
493 	unsigned long dst_ptr;
494 	struct extent_buffer *dst_eb;
495 	int dst_slot;
496 	const bool is_inode_item = (wc->log_key.type == BTRFS_INODE_ITEM_KEY);
497 
498 	/*
499 	 * This is only used during log replay, so the root is always from a
500 	 * fs/subvolume tree. In case we ever need to support a log root, then
501 	 * we'll have to clone the leaf in the path, release the path and use
502 	 * the leaf before writing into the log tree. See the comments at
503 	 * copy_items() for more details.
504 	 */
505 	ASSERT(btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID, "root_id=%llu", btrfs_root_id(root));
506 
507 	item_size = btrfs_item_size(wc->log_leaf, wc->log_slot);
508 	src_ptr = btrfs_item_ptr_offset(wc->log_leaf, wc->log_slot);
509 
510 	/* Look for the key in the destination tree. */
511 	ret = btrfs_search_slot(NULL, root, &wc->log_key, wc->subvol_path, 0, 0);
512 	if (ret < 0) {
513 		btrfs_abort_log_replay(wc, ret,
514 		"failed to search subvolume tree for key " BTRFS_KEY_FMT " root %llu",
515 				       BTRFS_KEY_FMT_VALUE(&wc->log_key),
516 				       btrfs_root_id(root));
517 		return ret;
518 	}
519 
520 	dst_eb = wc->subvol_path->nodes[0];
521 	dst_slot = wc->subvol_path->slots[0];
522 
523 	if (ret == 0) {
524 		char *src_copy;
525 		const u32 dst_size = btrfs_item_size(dst_eb, dst_slot);
526 
527 		if (dst_size != item_size)
528 			goto insert;
529 
530 		if (item_size == 0) {
531 			btrfs_release_path(wc->subvol_path);
532 			return 0;
533 		}
534 		src_copy = kmalloc(item_size, GFP_NOFS);
535 		if (!src_copy) {
536 			btrfs_abort_log_replay(wc, -ENOMEM,
537 			       "failed to allocate memory for log leaf item");
538 			return -ENOMEM;
539 		}
540 
541 		read_extent_buffer(wc->log_leaf, src_copy, src_ptr, item_size);
542 		dst_ptr = btrfs_item_ptr_offset(dst_eb, dst_slot);
543 		ret = memcmp_extent_buffer(dst_eb, src_copy, dst_ptr, item_size);
544 
545 		kfree(src_copy);
546 		/*
547 		 * they have the same contents, just return, this saves
548 		 * us from cowing blocks in the destination tree and doing
549 		 * extra writes that may not have been done by a previous
550 		 * sync
551 		 */
552 		if (ret == 0) {
553 			btrfs_release_path(wc->subvol_path);
554 			return 0;
555 		}
556 
557 		/*
558 		 * We need to load the old nbytes into the inode so when we
559 		 * replay the extents we've logged we get the right nbytes.
560 		 */
561 		if (is_inode_item) {
562 			struct btrfs_inode_item *item;
563 			u64 nbytes;
564 			u32 mode;
565 
566 			item = btrfs_item_ptr(dst_eb, dst_slot,
567 					      struct btrfs_inode_item);
568 			nbytes = btrfs_inode_nbytes(dst_eb, item);
569 			item = btrfs_item_ptr(wc->log_leaf, wc->log_slot,
570 					      struct btrfs_inode_item);
571 			btrfs_set_inode_nbytes(wc->log_leaf, item, nbytes);
572 
573 			/*
574 			 * If this is a directory we need to reset the i_size to
575 			 * 0 so that we can set it up properly when replaying
576 			 * the rest of the items in this log.
577 			 */
578 			mode = btrfs_inode_mode(wc->log_leaf, item);
579 			if (S_ISDIR(mode))
580 				btrfs_set_inode_size(wc->log_leaf, item, 0);
581 		}
582 	} else if (is_inode_item) {
583 		struct btrfs_inode_item *item;
584 		u32 mode;
585 
586 		/*
587 		 * New inode, set nbytes to 0 so that the nbytes comes out
588 		 * properly when we replay the extents.
589 		 */
590 		item = btrfs_item_ptr(wc->log_leaf, wc->log_slot, struct btrfs_inode_item);
591 		btrfs_set_inode_nbytes(wc->log_leaf, item, 0);
592 
593 		/*
594 		 * If this is a directory we need to reset the i_size to 0 so
595 		 * that we can set it up properly when replaying the rest of
596 		 * the items in this log.
597 		 */
598 		mode = btrfs_inode_mode(wc->log_leaf, item);
599 		if (S_ISDIR(mode))
600 			btrfs_set_inode_size(wc->log_leaf, item, 0);
601 	}
602 insert:
603 	btrfs_release_path(wc->subvol_path);
604 	/* try to insert the key into the destination tree */
605 	wc->subvol_path->skip_release_on_error = true;
606 	ret = btrfs_insert_empty_item(trans, root, wc->subvol_path, &wc->log_key, item_size);
607 	wc->subvol_path->skip_release_on_error = false;
608 
609 	dst_eb = wc->subvol_path->nodes[0];
610 	dst_slot = wc->subvol_path->slots[0];
611 
612 	/* make sure any existing item is the correct size */
613 	if (ret == -EEXIST || ret == -EOVERFLOW) {
614 		const u32 found_size = btrfs_item_size(dst_eb, dst_slot);
615 
616 		if (found_size > item_size)
617 			btrfs_truncate_item(trans, wc->subvol_path, item_size, 1);
618 		else if (found_size < item_size)
619 			btrfs_extend_item(trans, wc->subvol_path, item_size - found_size);
620 	} else if (ret) {
621 		btrfs_abort_log_replay(wc, ret,
622 				       "failed to insert item for key " BTRFS_KEY_FMT,
623 				       BTRFS_KEY_FMT_VALUE(&wc->log_key));
624 		return ret;
625 	}
626 	dst_ptr = btrfs_item_ptr_offset(dst_eb, dst_slot);
627 
628 	/* don't overwrite an existing inode if the generation number
629 	 * was logged as zero.  This is done when the tree logging code
630 	 * is just logging an inode to make sure it exists after recovery.
631 	 *
632 	 * Also, don't overwrite i_size on directories during replay.
633 	 * log replay inserts and removes directory items based on the
634 	 * state of the tree found in the subvolume, and i_size is modified
635 	 * as it goes
636 	 */
637 	if (is_inode_item && ret == -EEXIST) {
638 		struct btrfs_inode_item *src_item;
639 		struct btrfs_inode_item *dst_item;
640 
641 		src_item = (struct btrfs_inode_item *)src_ptr;
642 		dst_item = (struct btrfs_inode_item *)dst_ptr;
643 
644 		if (btrfs_inode_generation(wc->log_leaf, src_item) == 0) {
645 			const u64 ino_size = btrfs_inode_size(wc->log_leaf, src_item);
646 
647 			/*
648 			 * For regular files an ino_size == 0 is used only when
649 			 * logging that an inode exists, as part of a directory
650 			 * fsync, and the inode wasn't fsynced before. In this
651 			 * case don't set the size of the inode in the fs/subvol
652 			 * tree, otherwise we would be throwing valid data away.
653 			 */
654 			if (S_ISREG(btrfs_inode_mode(wc->log_leaf, src_item)) &&
655 			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
656 			    ino_size != 0)
657 				btrfs_set_inode_size(dst_eb, dst_item, ino_size);
658 			goto no_copy;
659 		}
660 
661 		if (S_ISDIR(btrfs_inode_mode(wc->log_leaf, src_item)) &&
662 		    S_ISDIR(btrfs_inode_mode(dst_eb, dst_item))) {
663 			save_old_i_size = 1;
664 			saved_i_size = btrfs_inode_size(dst_eb, dst_item);
665 		}
666 	}
667 
668 	copy_extent_buffer(dst_eb, wc->log_leaf, dst_ptr, src_ptr, item_size);
669 
670 	if (save_old_i_size) {
671 		struct btrfs_inode_item *dst_item;
672 
673 		dst_item = (struct btrfs_inode_item *)dst_ptr;
674 		btrfs_set_inode_size(dst_eb, dst_item, saved_i_size);
675 	}
676 
677 	/* make sure the generation is filled in */
678 	if (is_inode_item) {
679 		struct btrfs_inode_item *dst_item;
680 
681 		dst_item = (struct btrfs_inode_item *)dst_ptr;
682 		if (btrfs_inode_generation(dst_eb, dst_item) == 0)
683 			btrfs_set_inode_generation(dst_eb, dst_item, trans->transid);
684 	}
685 no_copy:
686 	btrfs_release_path(wc->subvol_path);
687 	return 0;
688 }
689 
read_alloc_one_name(struct extent_buffer * eb,void * start,int len,struct fscrypt_str * name)690 static int read_alloc_one_name(struct extent_buffer *eb, void *start, int len,
691 			       struct fscrypt_str *name)
692 {
693 	char *buf;
694 
695 	buf = kmalloc(len, GFP_NOFS);
696 	if (!buf)
697 		return -ENOMEM;
698 
699 	read_extent_buffer(eb, buf, (unsigned long)start, len);
700 	name->name = buf;
701 	name->len = len;
702 	return 0;
703 }
704 
705 /* replays a single extent in 'eb' at 'slot' with 'key' into the
706  * subvolume 'root'.  path is released on entry and should be released
707  * on exit.
708  *
709  * extents in the log tree have not been allocated out of the extent
710  * tree yet.  So, this completes the allocation, taking a reference
711  * as required if the extent already exists or creating a new extent
712  * if it isn't in the extent allocation tree yet.
713  *
714  * The extent is inserted into the file, dropping any existing extents
715  * from the file that overlap the new one.
716  */
replay_one_extent(struct walk_control * wc)717 static noinline int replay_one_extent(struct walk_control *wc)
718 {
719 	struct btrfs_trans_handle *trans = wc->trans;
720 	struct btrfs_root *root = wc->root;
721 	struct btrfs_drop_extents_args drop_args = { 0 };
722 	struct btrfs_fs_info *fs_info = root->fs_info;
723 	int found_type;
724 	u64 extent_end;
725 	const u64 start = wc->log_key.offset;
726 	u64 nbytes = 0;
727 	u64 csum_start;
728 	u64 csum_end;
729 	LIST_HEAD(ordered_sums);
730 	u64 offset;
731 	unsigned long dest_offset;
732 	struct btrfs_key ins;
733 	struct btrfs_file_extent_item *item;
734 	struct btrfs_inode *inode = NULL;
735 	int ret = 0;
736 
737 	item = btrfs_item_ptr(wc->log_leaf, wc->log_slot, struct btrfs_file_extent_item);
738 	found_type = btrfs_file_extent_type(wc->log_leaf, item);
739 
740 	if (found_type == BTRFS_FILE_EXTENT_REG ||
741 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
742 		extent_end = start + btrfs_file_extent_num_bytes(wc->log_leaf, item);
743 		/* Holes don't take up space. */
744 		if (btrfs_file_extent_disk_bytenr(wc->log_leaf, item) != 0)
745 			nbytes = btrfs_file_extent_num_bytes(wc->log_leaf, item);
746 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
747 		nbytes = btrfs_file_extent_ram_bytes(wc->log_leaf, item);
748 		extent_end = ALIGN(start + nbytes, fs_info->sectorsize);
749 	} else {
750 		btrfs_abort_log_replay(wc, -EUCLEAN,
751 		       "unexpected extent type=%d root=%llu inode=%llu offset=%llu",
752 				       found_type, btrfs_root_id(root),
753 				       wc->log_key.objectid, wc->log_key.offset);
754 		return -EUCLEAN;
755 	}
756 
757 	inode = btrfs_iget_logging(wc->log_key.objectid, root);
758 	if (IS_ERR(inode)) {
759 		ret = PTR_ERR(inode);
760 		btrfs_abort_log_replay(wc, ret,
761 				       "failed to get inode %llu for root %llu",
762 				       wc->log_key.objectid, btrfs_root_id(root));
763 		return ret;
764 	}
765 
766 	/*
767 	 * first check to see if we already have this extent in the
768 	 * file.  This must be done before the btrfs_drop_extents run
769 	 * so we don't try to drop this extent.
770 	 */
771 	ret = btrfs_lookup_file_extent(trans, root, wc->subvol_path,
772 				       btrfs_ino(inode), start, 0);
773 
774 	if (ret == 0 &&
775 	    (found_type == BTRFS_FILE_EXTENT_REG ||
776 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
777 		struct extent_buffer *leaf = wc->subvol_path->nodes[0];
778 		struct btrfs_file_extent_item existing;
779 		unsigned long ptr;
780 
781 		ptr = btrfs_item_ptr_offset(leaf, wc->subvol_path->slots[0]);
782 		read_extent_buffer(leaf, &existing, ptr, sizeof(existing));
783 
784 		/*
785 		 * we already have a pointer to this exact extent,
786 		 * we don't have to do anything
787 		 */
788 		if (memcmp_extent_buffer(wc->log_leaf, &existing, (unsigned long)item,
789 					 sizeof(existing)) == 0) {
790 			btrfs_release_path(wc->subvol_path);
791 			goto out;
792 		}
793 	}
794 	btrfs_release_path(wc->subvol_path);
795 
796 	/* drop any overlapping extents */
797 	drop_args.start = start;
798 	drop_args.end = extent_end;
799 	drop_args.drop_cache = true;
800 	drop_args.path = wc->subvol_path;
801 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
802 	if (ret) {
803 		btrfs_abort_log_replay(wc, ret,
804 	       "failed to drop extents for inode %llu range [%llu, %llu) root %llu",
805 				       wc->log_key.objectid, start, extent_end,
806 				       btrfs_root_id(root));
807 		goto out;
808 	}
809 
810 	if (found_type == BTRFS_FILE_EXTENT_INLINE) {
811 		/* inline extents are easy, we just overwrite them */
812 		ret = overwrite_item(wc);
813 		if (ret)
814 			goto out;
815 		goto update_inode;
816 	}
817 
818 	/*
819 	 * If not an inline extent, it can only be a regular or prealloc one.
820 	 * We have checked that above and returned -EUCLEAN if not.
821 	 */
822 
823 	/* A hole and NO_HOLES feature enabled, nothing else to do. */
824 	if (btrfs_file_extent_disk_bytenr(wc->log_leaf, item) == 0 &&
825 	    btrfs_fs_incompat(fs_info, NO_HOLES))
826 		goto update_inode;
827 
828 	ret = btrfs_insert_empty_item(trans, root, wc->subvol_path,
829 				      &wc->log_key, sizeof(*item));
830 	if (ret) {
831 		btrfs_abort_log_replay(wc, ret,
832 		       "failed to insert item with key " BTRFS_KEY_FMT " root %llu",
833 				       BTRFS_KEY_FMT_VALUE(&wc->log_key),
834 				       btrfs_root_id(root));
835 		goto out;
836 	}
837 	dest_offset = btrfs_item_ptr_offset(wc->subvol_path->nodes[0],
838 					    wc->subvol_path->slots[0]);
839 	copy_extent_buffer(wc->subvol_path->nodes[0], wc->log_leaf, dest_offset,
840 			   (unsigned long)item, sizeof(*item));
841 
842 	/*
843 	 * We have an explicit hole and NO_HOLES is not enabled. We have added
844 	 * the hole file extent item to the subvolume tree, so we don't have
845 	 * anything else to do other than update the file extent item range and
846 	 * update the inode item.
847 	 */
848 	if (btrfs_file_extent_disk_bytenr(wc->log_leaf, item) == 0) {
849 		btrfs_release_path(wc->subvol_path);
850 		goto update_inode;
851 	}
852 
853 	ins.objectid = btrfs_file_extent_disk_bytenr(wc->log_leaf, item);
854 	ins.type = BTRFS_EXTENT_ITEM_KEY;
855 	ins.offset = btrfs_file_extent_disk_num_bytes(wc->log_leaf, item);
856 	offset = wc->log_key.offset - btrfs_file_extent_offset(wc->log_leaf, item);
857 
858 	/*
859 	 * Manually record dirty extent, as here we did a shallow file extent
860 	 * item copy and skip normal backref update, but modifying extent tree
861 	 * all by ourselves. So need to manually record dirty extent for qgroup,
862 	 * as the owner of the file extent changed from log tree (doesn't affect
863 	 * qgroup) to fs/file tree (affects qgroup).
864 	 */
865 	ret = btrfs_qgroup_trace_extent(trans, ins.objectid, ins.offset);
866 	if (ret < 0) {
867 		btrfs_abort_log_replay(wc, ret,
868 "failed to trace extent for bytenr %llu disk_num_bytes %llu inode %llu root %llu",
869 				       ins.objectid, ins.offset,
870 				       wc->log_key.objectid, btrfs_root_id(root));
871 		goto out;
872 	}
873 
874 	/*
875 	 * Is this extent already allocated in the extent tree?
876 	 * If so, just add a reference.
877 	 */
878 	ret = btrfs_lookup_data_extent(fs_info, ins.objectid, ins.offset);
879 	if (ret < 0) {
880 		btrfs_abort_log_replay(wc, ret,
881 "failed to lookup data extent for bytenr %llu disk_num_bytes %llu inode %llu root %llu",
882 				       ins.objectid, ins.offset,
883 				       wc->log_key.objectid, btrfs_root_id(root));
884 		goto out;
885 	} else if (ret == 0) {
886 		struct btrfs_ref ref = {
887 			.action = BTRFS_ADD_DELAYED_REF,
888 			.bytenr = ins.objectid,
889 			.num_bytes = ins.offset,
890 			.owning_root = btrfs_root_id(root),
891 			.ref_root = btrfs_root_id(root),
892 		};
893 
894 		btrfs_init_data_ref(&ref, wc->log_key.objectid, offset, 0, false);
895 		ret = btrfs_inc_extent_ref(trans, &ref);
896 		if (ret) {
897 			btrfs_abort_log_replay(wc, ret,
898 "failed to increment data extent for bytenr %llu disk_num_bytes %llu inode %llu root %llu",
899 					       ins.objectid, ins.offset,
900 					       wc->log_key.objectid,
901 					       btrfs_root_id(root));
902 			goto out;
903 		}
904 	} else {
905 		/* Insert the extent pointer in the extent tree. */
906 		ret = btrfs_alloc_logged_file_extent(trans, btrfs_root_id(root),
907 						     wc->log_key.objectid, offset, &ins);
908 		if (ret) {
909 			btrfs_abort_log_replay(wc, ret,
910 "failed to allocate logged data extent for bytenr %llu disk_num_bytes %llu offset %llu inode %llu root %llu",
911 					       ins.objectid, ins.offset, offset,
912 					       wc->log_key.objectid, btrfs_root_id(root));
913 			goto out;
914 		}
915 	}
916 
917 	btrfs_release_path(wc->subvol_path);
918 
919 	if (btrfs_file_extent_compression(wc->log_leaf, item)) {
920 		csum_start = ins.objectid;
921 		csum_end = csum_start + ins.offset;
922 	} else {
923 		csum_start = ins.objectid + btrfs_file_extent_offset(wc->log_leaf, item);
924 		csum_end = csum_start + btrfs_file_extent_num_bytes(wc->log_leaf, item);
925 	}
926 
927 	ret = btrfs_lookup_csums_list(root->log_root, csum_start, csum_end - 1,
928 				      &ordered_sums, false);
929 	if (ret < 0) {
930 		btrfs_abort_log_replay(wc, ret,
931 	       "failed to lookups csums for range [%llu, %llu) inode %llu root %llu",
932 				       csum_start, csum_end, wc->log_key.objectid,
933 				       btrfs_root_id(root));
934 		goto out;
935 	}
936 	ret = 0;
937 	/*
938 	 * Now delete all existing cums in the csum root that cover our range.
939 	 * We do this because we can have an extent that is completely
940 	 * referenced by one file extent item and partially referenced by
941 	 * another file extent item (like after using the clone or extent_same
942 	 * ioctls). In this case if we end up doing the replay of the one that
943 	 * partially references the extent first, and we do not do the csum
944 	 * deletion below, we can get 2 csum items in the csum tree that overlap
945 	 * each other. For example, imagine our log has the two following file
946 	 * extent items:
947 	 *
948 	 * key (257 EXTENT_DATA 409600)
949 	 *     extent data disk byte 12845056 nr 102400
950 	 *     extent data offset 20480 nr 20480 ram 102400
951 	 *
952 	 * key (257 EXTENT_DATA 819200)
953 	 *     extent data disk byte 12845056 nr 102400
954 	 *     extent data offset 0 nr 102400 ram 102400
955 	 *
956 	 * Where the second one fully references the 100K extent that starts at
957 	 * disk byte 12845056, and the log tree has a single csum item that
958 	 * covers the entire range of the extent:
959 	 *
960 	 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
961 	 *
962 	 * After the first file extent item is replayed, the csum tree gets the
963 	 * following csum item:
964 	 *
965 	 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
966 	 *
967 	 * Which covers the 20K sub-range starting at offset 20K of our extent.
968 	 * Now when we replay the second file extent item, if we do not delete
969 	 * existing csum items that cover any of its blocks, we end up getting
970 	 * two csum items in our csum tree that overlap each other:
971 	 *
972 	 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
973 	 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
974 	 *
975 	 * Which is a problem, because after this anyone trying to lookup for
976 	 * the checksum of any block of our extent starting at an offset of 40K
977 	 * or higher, will end up looking at the second csum item only, which
978 	 * does not contain the checksum for any block starting at offset 40K or
979 	 * higher of our extent.
980 	 */
981 	while (!list_empty(&ordered_sums)) {
982 		struct btrfs_ordered_sum *sums;
983 		struct btrfs_root *csum_root;
984 
985 		sums = list_first_entry(&ordered_sums, struct btrfs_ordered_sum, list);
986 		csum_root = btrfs_csum_root(fs_info, sums->logical);
987 		if (!ret) {
988 			ret = btrfs_del_csums(trans, csum_root, sums->logical,
989 					      sums->len);
990 			if (ret)
991 				btrfs_abort_log_replay(wc, ret,
992 	       "failed to delete csums for range [%llu, %llu) inode %llu root %llu",
993 						       sums->logical,
994 						       sums->logical + sums->len,
995 						       wc->log_key.objectid,
996 						       btrfs_root_id(root));
997 		}
998 		if (!ret) {
999 			ret = btrfs_csum_file_blocks(trans, csum_root, sums);
1000 			if (ret)
1001 				btrfs_abort_log_replay(wc, ret,
1002 	       "failed to add csums for range [%llu, %llu) inode %llu root %llu",
1003 						       sums->logical,
1004 						       sums->logical + sums->len,
1005 						       wc->log_key.objectid,
1006 						       btrfs_root_id(root));
1007 		}
1008 		list_del(&sums->list);
1009 		kfree(sums);
1010 	}
1011 	if (ret)
1012 		goto out;
1013 
1014 update_inode:
1015 	ret = btrfs_inode_set_file_extent_range(inode, start, extent_end - start);
1016 	if (ret) {
1017 		btrfs_abort_log_replay(wc, ret,
1018 	       "failed to set file extent range [%llu, %llu) inode %llu root %llu",
1019 				       start, extent_end, wc->log_key.objectid,
1020 				       btrfs_root_id(root));
1021 		goto out;
1022 	}
1023 
1024 	btrfs_update_inode_bytes(inode, nbytes, drop_args.bytes_found);
1025 	ret = btrfs_update_inode(trans, inode);
1026 	if (ret)
1027 		btrfs_abort_log_replay(wc, ret,
1028 				       "failed to update inode %llu root %llu",
1029 				       wc->log_key.objectid, btrfs_root_id(root));
1030 out:
1031 	iput(&inode->vfs_inode);
1032 	return ret;
1033 }
1034 
unlink_inode_for_log_replay(struct walk_control * wc,struct btrfs_inode * dir,struct btrfs_inode * inode,const struct fscrypt_str * name)1035 static int unlink_inode_for_log_replay(struct walk_control *wc,
1036 				       struct btrfs_inode *dir,
1037 				       struct btrfs_inode *inode,
1038 				       const struct fscrypt_str *name)
1039 {
1040 	struct btrfs_trans_handle *trans = wc->trans;
1041 	int ret;
1042 
1043 	ret = btrfs_unlink_inode(trans, dir, inode, name);
1044 	if (ret) {
1045 		btrfs_abort_log_replay(wc, ret,
1046 	       "failed to unlink inode %llu parent dir %llu name %.*s root %llu",
1047 				       btrfs_ino(inode), btrfs_ino(dir), name->len,
1048 				       name->name, btrfs_root_id(inode->root));
1049 		return ret;
1050 	}
1051 	/*
1052 	 * Whenever we need to check if a name exists or not, we check the
1053 	 * fs/subvolume tree. So after an unlink we must run delayed items, so
1054 	 * that future checks for a name during log replay see that the name
1055 	 * does not exists anymore.
1056 	 */
1057 	ret = btrfs_run_delayed_items(trans);
1058 	if (ret)
1059 		btrfs_abort_log_replay(wc, ret,
1060 "failed to run delayed items current inode %llu parent dir %llu name %.*s root %llu",
1061 				       btrfs_ino(inode), btrfs_ino(dir), name->len,
1062 				       name->name, btrfs_root_id(inode->root));
1063 
1064 	return ret;
1065 }
1066 
1067 /*
1068  * when cleaning up conflicts between the directory names in the
1069  * subvolume, directory names in the log and directory names in the
1070  * inode back references, we may have to unlink inodes from directories.
1071  *
1072  * This is a helper function to do the unlink of a specific directory
1073  * item
1074  */
drop_one_dir_item(struct walk_control * wc,struct btrfs_inode * dir,struct btrfs_dir_item * di)1075 static noinline int drop_one_dir_item(struct walk_control *wc,
1076 				      struct btrfs_inode *dir,
1077 				      struct btrfs_dir_item *di)
1078 {
1079 	struct btrfs_root *root = dir->root;
1080 	struct btrfs_inode *inode;
1081 	struct fscrypt_str name;
1082 	struct extent_buffer *leaf = wc->subvol_path->nodes[0];
1083 	struct btrfs_key location;
1084 	int ret;
1085 
1086 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
1087 	ret = read_alloc_one_name(leaf, di + 1, btrfs_dir_name_len(leaf, di), &name);
1088 	if (ret) {
1089 		btrfs_abort_log_replay(wc, ret,
1090 				       "failed to allocate name for dir %llu root %llu",
1091 				       btrfs_ino(dir), btrfs_root_id(root));
1092 		return ret;
1093 	}
1094 
1095 	btrfs_release_path(wc->subvol_path);
1096 
1097 	inode = btrfs_iget_logging(location.objectid, root);
1098 	if (IS_ERR(inode)) {
1099 		ret = PTR_ERR(inode);
1100 		btrfs_abort_log_replay(wc, ret,
1101 		       "failed to open inode %llu parent dir %llu name %.*s root %llu",
1102 				       location.objectid, btrfs_ino(dir),
1103 				       name.len, name.name, btrfs_root_id(root));
1104 		inode = NULL;
1105 		goto out;
1106 	}
1107 
1108 	ret = link_to_fixup_dir(wc, location.objectid);
1109 	if (ret)
1110 		goto out;
1111 
1112 	ret = unlink_inode_for_log_replay(wc, dir, inode, &name);
1113 out:
1114 	kfree(name.name);
1115 	if (inode)
1116 		iput(&inode->vfs_inode);
1117 	return ret;
1118 }
1119 
1120 /*
1121  * See if a given name and sequence number found in an inode back reference are
1122  * already in a directory and correctly point to this inode.
1123  *
1124  * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
1125  * exists.
1126  */
inode_in_dir(struct btrfs_root * root,struct btrfs_path * path,u64 dirid,u64 objectid,u64 index,struct fscrypt_str * name)1127 static noinline int inode_in_dir(struct btrfs_root *root,
1128 				 struct btrfs_path *path,
1129 				 u64 dirid, u64 objectid, u64 index,
1130 				 struct fscrypt_str *name)
1131 {
1132 	struct btrfs_dir_item *di;
1133 	struct btrfs_key location;
1134 	int ret = 0;
1135 
1136 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
1137 					 index, name, 0);
1138 	if (IS_ERR(di)) {
1139 		ret = PTR_ERR(di);
1140 		goto out;
1141 	} else if (di) {
1142 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1143 		if (location.objectid != objectid)
1144 			goto out;
1145 	} else {
1146 		goto out;
1147 	}
1148 
1149 	btrfs_release_path(path);
1150 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, 0);
1151 	if (IS_ERR(di)) {
1152 		ret = PTR_ERR(di);
1153 		goto out;
1154 	} else if (di) {
1155 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1156 		if (location.objectid == objectid)
1157 			ret = 1;
1158 	}
1159 out:
1160 	btrfs_release_path(path);
1161 	return ret;
1162 }
1163 
1164 /*
1165  * helper function to check a log tree for a named back reference in
1166  * an inode.  This is used to decide if a back reference that is
1167  * found in the subvolume conflicts with what we find in the log.
1168  *
1169  * inode backreferences may have multiple refs in a single item,
1170  * during replay we process one reference at a time, and we don't
1171  * want to delete valid links to a file from the subvolume if that
1172  * link is also in the log.
1173  */
backref_in_log(struct btrfs_root * log,struct btrfs_key * key,u64 ref_objectid,const struct fscrypt_str * name)1174 static noinline int backref_in_log(struct btrfs_root *log,
1175 				   struct btrfs_key *key,
1176 				   u64 ref_objectid,
1177 				   const struct fscrypt_str *name)
1178 {
1179 	BTRFS_PATH_AUTO_FREE(path);
1180 	int ret;
1181 
1182 	path = btrfs_alloc_path();
1183 	if (!path)
1184 		return -ENOMEM;
1185 
1186 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
1187 	if (ret < 0)
1188 		return ret;
1189 	if (ret == 1)
1190 		return 0;
1191 
1192 	if (key->type == BTRFS_INODE_EXTREF_KEY)
1193 		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1194 						       path->slots[0],
1195 						       ref_objectid, name);
1196 	else
1197 		ret = !!btrfs_find_name_in_backref(path->nodes[0],
1198 						   path->slots[0], name);
1199 	return ret;
1200 }
1201 
unlink_refs_not_in_log(struct walk_control * wc,struct btrfs_key * search_key,struct btrfs_inode * dir,struct btrfs_inode * inode)1202 static int unlink_refs_not_in_log(struct walk_control *wc,
1203 				  struct btrfs_key *search_key,
1204 				  struct btrfs_inode *dir,
1205 				  struct btrfs_inode *inode)
1206 {
1207 	struct extent_buffer *leaf = wc->subvol_path->nodes[0];
1208 	unsigned long ptr;
1209 	unsigned long ptr_end;
1210 
1211 	/*
1212 	 * Check all the names in this back reference to see if they are in the
1213 	 * log. If so, we allow them to stay otherwise they must be unlinked as
1214 	 * a conflict.
1215 	 */
1216 	ptr = btrfs_item_ptr_offset(leaf, wc->subvol_path->slots[0]);
1217 	ptr_end = ptr + btrfs_item_size(leaf, wc->subvol_path->slots[0]);
1218 	while (ptr < ptr_end) {
1219 		struct fscrypt_str victim_name;
1220 		struct btrfs_inode_ref *victim_ref;
1221 		int ret;
1222 
1223 		victim_ref = (struct btrfs_inode_ref *)ptr;
1224 		ret = read_alloc_one_name(leaf, (victim_ref + 1),
1225 					  btrfs_inode_ref_name_len(leaf, victim_ref),
1226 					  &victim_name);
1227 		if (ret) {
1228 			btrfs_abort_log_replay(wc, ret,
1229 	       "failed to allocate name for inode %llu parent dir %llu root %llu",
1230 					       btrfs_ino(inode), btrfs_ino(dir),
1231 					       btrfs_root_id(inode->root));
1232 			return ret;
1233 		}
1234 
1235 		ret = backref_in_log(wc->log, search_key, btrfs_ino(dir), &victim_name);
1236 		if (ret) {
1237 			if (ret < 0) {
1238 				btrfs_abort_log_replay(wc, ret,
1239 "failed to check if backref is in log tree for inode %llu parent dir %llu name %.*s root %llu",
1240 						       btrfs_ino(inode), btrfs_ino(dir),
1241 						       victim_name.len, victim_name.name,
1242 						       btrfs_root_id(inode->root));
1243 				kfree(victim_name.name);
1244 				return ret;
1245 			}
1246 			kfree(victim_name.name);
1247 			ptr = (unsigned long)(victim_ref + 1) + victim_name.len;
1248 			continue;
1249 		}
1250 
1251 		inc_nlink(&inode->vfs_inode);
1252 		btrfs_release_path(wc->subvol_path);
1253 
1254 		ret = unlink_inode_for_log_replay(wc, dir, inode, &victim_name);
1255 		kfree(victim_name.name);
1256 		if (ret)
1257 			return ret;
1258 		return -EAGAIN;
1259 	}
1260 
1261 	return 0;
1262 }
1263 
unlink_extrefs_not_in_log(struct walk_control * wc,struct btrfs_key * search_key,struct btrfs_inode * dir,struct btrfs_inode * inode)1264 static int unlink_extrefs_not_in_log(struct walk_control *wc,
1265 				     struct btrfs_key *search_key,
1266 				     struct btrfs_inode *dir,
1267 				     struct btrfs_inode *inode)
1268 {
1269 	struct extent_buffer *leaf = wc->subvol_path->nodes[0];
1270 	const unsigned long base = btrfs_item_ptr_offset(leaf, wc->subvol_path->slots[0]);
1271 	const u32 item_size = btrfs_item_size(leaf, wc->subvol_path->slots[0]);
1272 	u32 cur_offset = 0;
1273 
1274 	while (cur_offset < item_size) {
1275 		struct btrfs_root *log_root = wc->log;
1276 		struct btrfs_inode_extref *extref;
1277 		struct fscrypt_str victim_name;
1278 		int ret;
1279 
1280 		extref = (struct btrfs_inode_extref *)(base + cur_offset);
1281 		victim_name.len = btrfs_inode_extref_name_len(leaf, extref);
1282 
1283 		if (btrfs_inode_extref_parent(leaf, extref) != btrfs_ino(dir))
1284 			goto next;
1285 
1286 		ret = read_alloc_one_name(leaf, &extref->name, victim_name.len,
1287 					  &victim_name);
1288 		if (ret) {
1289 			btrfs_abort_log_replay(wc, ret,
1290 	       "failed to allocate name for inode %llu parent dir %llu root %llu",
1291 					       btrfs_ino(inode), btrfs_ino(dir),
1292 					       btrfs_root_id(inode->root));
1293 			return ret;
1294 		}
1295 
1296 		search_key->objectid = btrfs_ino(inode);
1297 		search_key->type = BTRFS_INODE_EXTREF_KEY;
1298 		search_key->offset = btrfs_extref_hash(btrfs_ino(dir),
1299 						       victim_name.name,
1300 						       victim_name.len);
1301 		ret = backref_in_log(log_root, search_key, btrfs_ino(dir), &victim_name);
1302 		if (ret) {
1303 			if (ret < 0) {
1304 				btrfs_abort_log_replay(wc, ret,
1305 "failed to check if backref is in log tree for inode %llu parent dir %llu name %.*s root %llu",
1306 						       btrfs_ino(inode), btrfs_ino(dir),
1307 						       victim_name.len, victim_name.name,
1308 						       btrfs_root_id(inode->root));
1309 				kfree(victim_name.name);
1310 				return ret;
1311 			}
1312 			kfree(victim_name.name);
1313 next:
1314 			cur_offset += victim_name.len + sizeof(*extref);
1315 			continue;
1316 		}
1317 
1318 		inc_nlink(&inode->vfs_inode);
1319 		btrfs_release_path(wc->subvol_path);
1320 
1321 		ret = unlink_inode_for_log_replay(wc, dir, inode, &victim_name);
1322 		kfree(victim_name.name);
1323 		if (ret)
1324 			return ret;
1325 		return -EAGAIN;
1326 	}
1327 
1328 	return 0;
1329 }
1330 
__add_inode_ref(struct walk_control * wc,struct btrfs_inode * dir,struct btrfs_inode * inode,u64 ref_index,struct fscrypt_str * name)1331 static inline int __add_inode_ref(struct walk_control *wc,
1332 				  struct btrfs_inode *dir,
1333 				  struct btrfs_inode *inode,
1334 				  u64 ref_index, struct fscrypt_str *name)
1335 {
1336 	int ret;
1337 	struct btrfs_trans_handle *trans = wc->trans;
1338 	struct btrfs_root *root = wc->root;
1339 	struct btrfs_dir_item *di;
1340 	struct btrfs_key search_key;
1341 	struct btrfs_inode_extref *extref;
1342 
1343 again:
1344 	/* Search old style refs */
1345 	search_key.objectid = btrfs_ino(inode);
1346 	search_key.type = BTRFS_INODE_REF_KEY;
1347 	search_key.offset = btrfs_ino(dir);
1348 	ret = btrfs_search_slot(NULL, root, &search_key, wc->subvol_path, 0, 0);
1349 	if (ret < 0) {
1350 		btrfs_abort_log_replay(wc, ret,
1351 	       "failed to search subvolume tree for key " BTRFS_KEY_FMT " root %llu",
1352 				       BTRFS_KEY_FMT_VALUE(&search_key),
1353 				       btrfs_root_id(root));
1354 		return ret;
1355 	} else if (ret == 0) {
1356 		/*
1357 		 * Are we trying to overwrite a back ref for the root directory?
1358 		 * If so, we're done.
1359 		 */
1360 		if (search_key.objectid == search_key.offset)
1361 			return 1;
1362 
1363 		ret = unlink_refs_not_in_log(wc, &search_key, dir, inode);
1364 		if (ret == -EAGAIN)
1365 			goto again;
1366 		else if (ret)
1367 			return ret;
1368 	}
1369 	btrfs_release_path(wc->subvol_path);
1370 
1371 	/* Same search but for extended refs */
1372 	extref = btrfs_lookup_inode_extref(root, wc->subvol_path, name,
1373 					   btrfs_ino(inode), btrfs_ino(dir));
1374 	if (IS_ERR(extref)) {
1375 		return PTR_ERR(extref);
1376 	} else if (extref) {
1377 		ret = unlink_extrefs_not_in_log(wc, &search_key, dir, inode);
1378 		if (ret == -EAGAIN)
1379 			goto again;
1380 		else if (ret)
1381 			return ret;
1382 	}
1383 	btrfs_release_path(wc->subvol_path);
1384 
1385 	/* look for a conflicting sequence number */
1386 	di = btrfs_lookup_dir_index_item(trans, root, wc->subvol_path, btrfs_ino(dir),
1387 					 ref_index, name, 0);
1388 	if (IS_ERR(di)) {
1389 		ret = PTR_ERR(di);
1390 		btrfs_abort_log_replay(wc, ret,
1391 "failed to lookup dir index item for dir %llu ref_index %llu name %.*s root %llu",
1392 				       btrfs_ino(dir), ref_index, name->len,
1393 				       name->name, btrfs_root_id(root));
1394 		return ret;
1395 	} else if (di) {
1396 		ret = drop_one_dir_item(wc, dir, di);
1397 		if (ret)
1398 			return ret;
1399 	}
1400 	btrfs_release_path(wc->subvol_path);
1401 
1402 	/* look for a conflicting name */
1403 	di = btrfs_lookup_dir_item(trans, root, wc->subvol_path, btrfs_ino(dir), name, 0);
1404 	if (IS_ERR(di)) {
1405 		ret = PTR_ERR(di);
1406 		btrfs_abort_log_replay(wc, ret,
1407 	"failed to lookup dir item for dir %llu name %.*s root %llu",
1408 				       btrfs_ino(dir), name->len, name->name,
1409 				       btrfs_root_id(root));
1410 		return ret;
1411 	} else if (di) {
1412 		ret = drop_one_dir_item(wc, dir, di);
1413 		if (ret)
1414 			return ret;
1415 	}
1416 	btrfs_release_path(wc->subvol_path);
1417 
1418 	return 0;
1419 }
1420 
extref_get_fields(struct extent_buffer * eb,unsigned long ref_ptr,struct fscrypt_str * name,u64 * index,u64 * parent_objectid)1421 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1422 			     struct fscrypt_str *name, u64 *index,
1423 			     u64 *parent_objectid)
1424 {
1425 	struct btrfs_inode_extref *extref;
1426 	int ret;
1427 
1428 	extref = (struct btrfs_inode_extref *)ref_ptr;
1429 
1430 	ret = read_alloc_one_name(eb, &extref->name,
1431 				  btrfs_inode_extref_name_len(eb, extref), name);
1432 	if (ret)
1433 		return ret;
1434 
1435 	if (index)
1436 		*index = btrfs_inode_extref_index(eb, extref);
1437 	if (parent_objectid)
1438 		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1439 
1440 	return 0;
1441 }
1442 
ref_get_fields(struct extent_buffer * eb,unsigned long ref_ptr,struct fscrypt_str * name,u64 * index)1443 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1444 			  struct fscrypt_str *name, u64 *index)
1445 {
1446 	struct btrfs_inode_ref *ref;
1447 	int ret;
1448 
1449 	ref = (struct btrfs_inode_ref *)ref_ptr;
1450 
1451 	ret = read_alloc_one_name(eb, ref + 1, btrfs_inode_ref_name_len(eb, ref),
1452 				  name);
1453 	if (ret)
1454 		return ret;
1455 
1456 	if (index)
1457 		*index = btrfs_inode_ref_index(eb, ref);
1458 
1459 	return 0;
1460 }
1461 
1462 /*
1463  * Take an inode reference item from the log tree and iterate all names from the
1464  * inode reference item in the subvolume tree with the same key (if it exists).
1465  * For any name that is not in the inode reference item from the log tree, do a
1466  * proper unlink of that name (that is, remove its entry from the inode
1467  * reference item and both dir index keys).
1468  */
unlink_old_inode_refs(struct walk_control * wc,struct btrfs_inode * inode)1469 static int unlink_old_inode_refs(struct walk_control *wc, struct btrfs_inode *inode)
1470 {
1471 	struct btrfs_root *root = wc->root;
1472 	int ret;
1473 	unsigned long ref_ptr;
1474 	unsigned long ref_end;
1475 	struct extent_buffer *eb;
1476 
1477 again:
1478 	btrfs_release_path(wc->subvol_path);
1479 	ret = btrfs_search_slot(NULL, root, &wc->log_key, wc->subvol_path, 0, 0);
1480 	if (ret > 0) {
1481 		ret = 0;
1482 		goto out;
1483 	}
1484 	if (ret < 0) {
1485 		btrfs_abort_log_replay(wc, ret,
1486 	       "failed to search subvolume tree for key " BTRFS_KEY_FMT " root %llu",
1487 				       BTRFS_KEY_FMT_VALUE(&wc->log_key),
1488 				       btrfs_root_id(root));
1489 		goto out;
1490 	}
1491 
1492 	eb = wc->subvol_path->nodes[0];
1493 	ref_ptr = btrfs_item_ptr_offset(eb, wc->subvol_path->slots[0]);
1494 	ref_end = ref_ptr + btrfs_item_size(eb, wc->subvol_path->slots[0]);
1495 	while (ref_ptr < ref_end) {
1496 		struct fscrypt_str name;
1497 		u64 parent_id;
1498 
1499 		if (wc->log_key.type == BTRFS_INODE_EXTREF_KEY) {
1500 			ret = extref_get_fields(eb, ref_ptr, &name,
1501 						NULL, &parent_id);
1502 			if (ret) {
1503 				btrfs_abort_log_replay(wc, ret,
1504 			       "failed to get extref details for inode %llu root %llu",
1505 						       btrfs_ino(inode),
1506 						       btrfs_root_id(root));
1507 				goto out;
1508 			}
1509 		} else {
1510 			parent_id = wc->log_key.offset;
1511 			ret = ref_get_fields(eb, ref_ptr, &name, NULL);
1512 			if (ret) {
1513 				btrfs_abort_log_replay(wc, ret,
1514 	       "failed to get ref details for inode %llu parent_id %llu root %llu",
1515 						       btrfs_ino(inode), parent_id,
1516 						       btrfs_root_id(root));
1517 				goto out;
1518 			}
1519 		}
1520 
1521 		if (wc->log_key.type == BTRFS_INODE_EXTREF_KEY)
1522 			ret = !!btrfs_find_name_in_ext_backref(wc->log_leaf, wc->log_slot,
1523 							       parent_id, &name);
1524 		else
1525 			ret = !!btrfs_find_name_in_backref(wc->log_leaf, wc->log_slot,
1526 							   &name);
1527 
1528 		if (!ret) {
1529 			struct btrfs_inode *dir;
1530 
1531 			btrfs_release_path(wc->subvol_path);
1532 			dir = btrfs_iget_logging(parent_id, root);
1533 			if (IS_ERR(dir)) {
1534 				ret = PTR_ERR(dir);
1535 				kfree(name.name);
1536 				btrfs_abort_log_replay(wc, ret,
1537 				       "failed to lookup dir inode %llu root %llu",
1538 						       parent_id, btrfs_root_id(root));
1539 				goto out;
1540 			}
1541 			ret = unlink_inode_for_log_replay(wc, dir, inode, &name);
1542 			kfree(name.name);
1543 			iput(&dir->vfs_inode);
1544 			if (ret)
1545 				goto out;
1546 			goto again;
1547 		}
1548 
1549 		kfree(name.name);
1550 		ref_ptr += name.len;
1551 		if (wc->log_key.type == BTRFS_INODE_EXTREF_KEY)
1552 			ref_ptr += sizeof(struct btrfs_inode_extref);
1553 		else
1554 			ref_ptr += sizeof(struct btrfs_inode_ref);
1555 	}
1556 	ret = 0;
1557  out:
1558 	btrfs_release_path(wc->subvol_path);
1559 	return ret;
1560 }
1561 
1562 /*
1563  * Replay one inode back reference item found in the log tree.
1564  * Path is for temporary use by this function (it should be released on return).
1565  */
add_inode_ref(struct walk_control * wc)1566 static noinline int add_inode_ref(struct walk_control *wc)
1567 {
1568 	struct btrfs_trans_handle *trans = wc->trans;
1569 	struct btrfs_root *root = wc->root;
1570 	struct btrfs_inode *dir = NULL;
1571 	struct btrfs_inode *inode = NULL;
1572 	unsigned long ref_ptr;
1573 	unsigned long ref_end;
1574 	struct fscrypt_str name = { 0 };
1575 	int ret;
1576 	const bool is_extref_item = (wc->log_key.type == BTRFS_INODE_EXTREF_KEY);
1577 	u64 parent_objectid;
1578 	u64 inode_objectid;
1579 	u64 ref_index = 0;
1580 	int ref_struct_size;
1581 
1582 	ref_ptr = btrfs_item_ptr_offset(wc->log_leaf, wc->log_slot);
1583 	ref_end = ref_ptr + btrfs_item_size(wc->log_leaf, wc->log_slot);
1584 
1585 	if (is_extref_item) {
1586 		struct btrfs_inode_extref *r;
1587 
1588 		ref_struct_size = sizeof(struct btrfs_inode_extref);
1589 		r = (struct btrfs_inode_extref *)ref_ptr;
1590 		parent_objectid = btrfs_inode_extref_parent(wc->log_leaf, r);
1591 	} else {
1592 		ref_struct_size = sizeof(struct btrfs_inode_ref);
1593 		parent_objectid = wc->log_key.offset;
1594 	}
1595 	inode_objectid = wc->log_key.objectid;
1596 
1597 	/*
1598 	 * it is possible that we didn't log all the parent directories
1599 	 * for a given inode.  If we don't find the dir, just don't
1600 	 * copy the back ref in.  The link count fixup code will take
1601 	 * care of the rest
1602 	 */
1603 	dir = btrfs_iget_logging(parent_objectid, root);
1604 	if (IS_ERR(dir)) {
1605 		ret = PTR_ERR(dir);
1606 		if (ret == -ENOENT)
1607 			ret = 0;
1608 		else
1609 			btrfs_abort_log_replay(wc, ret,
1610 			       "failed to lookup dir inode %llu root %llu",
1611 					       parent_objectid, btrfs_root_id(root));
1612 		dir = NULL;
1613 		goto out;
1614 	}
1615 
1616 	inode = btrfs_iget_logging(inode_objectid, root);
1617 	if (IS_ERR(inode)) {
1618 		ret = PTR_ERR(inode);
1619 		btrfs_abort_log_replay(wc, ret,
1620 				       "failed to lookup inode %llu root %llu",
1621 				       inode_objectid, btrfs_root_id(root));
1622 		inode = NULL;
1623 		goto out;
1624 	}
1625 
1626 	while (ref_ptr < ref_end) {
1627 		if (is_extref_item) {
1628 			ret = extref_get_fields(wc->log_leaf, ref_ptr, &name,
1629 						&ref_index, &parent_objectid);
1630 			if (ret) {
1631 				btrfs_abort_log_replay(wc, ret,
1632 			       "failed to get extref details for inode %llu root %llu",
1633 						       btrfs_ino(inode),
1634 						       btrfs_root_id(root));
1635 				goto out;
1636 			}
1637 			/*
1638 			 * parent object can change from one array
1639 			 * item to another.
1640 			 */
1641 			if (!dir) {
1642 				dir = btrfs_iget_logging(parent_objectid, root);
1643 				if (IS_ERR(dir)) {
1644 					ret = PTR_ERR(dir);
1645 					dir = NULL;
1646 					/*
1647 					 * A new parent dir may have not been
1648 					 * logged and not exist in the subvolume
1649 					 * tree, see the comment above before
1650 					 * the loop when getting the first
1651 					 * parent dir.
1652 					 */
1653 					if (ret == -ENOENT) {
1654 						/*
1655 						 * The next extref may refer to
1656 						 * another parent dir that
1657 						 * exists, so continue.
1658 						 */
1659 						ret = 0;
1660 						goto next;
1661 					} else {
1662 						btrfs_abort_log_replay(wc, ret,
1663 				       "failed to lookup dir inode %llu root %llu",
1664 								       parent_objectid,
1665 								       btrfs_root_id(root));
1666 					}
1667 					goto out;
1668 				}
1669 			}
1670 		} else {
1671 			ret = ref_get_fields(wc->log_leaf, ref_ptr, &name, &ref_index);
1672 			if (ret) {
1673 				btrfs_abort_log_replay(wc, ret,
1674 	"failed to get ref details for inode %llu parent_objectid %llu root %llu",
1675 						       btrfs_ino(inode),
1676 						       parent_objectid,
1677 						       btrfs_root_id(root));
1678 				goto out;
1679 			}
1680 		}
1681 
1682 		ret = inode_in_dir(root, wc->subvol_path, btrfs_ino(dir),
1683 				   btrfs_ino(inode), ref_index, &name);
1684 		if (ret < 0) {
1685 			btrfs_abort_log_replay(wc, ret,
1686 "failed to check if inode %llu is in dir %llu ref_index %llu name %.*s root %llu",
1687 					       btrfs_ino(inode), btrfs_ino(dir),
1688 					       ref_index, name.len, name.name,
1689 					       btrfs_root_id(root));
1690 			goto out;
1691 		} else if (ret == 0) {
1692 			/*
1693 			 * look for a conflicting back reference in the
1694 			 * metadata. if we find one we have to unlink that name
1695 			 * of the file before we add our new link.  Later on, we
1696 			 * overwrite any existing back reference, and we don't
1697 			 * want to create dangling pointers in the directory.
1698 			 */
1699 			ret = __add_inode_ref(wc, dir, inode, ref_index, &name);
1700 			if (ret) {
1701 				if (ret == 1)
1702 					ret = 0;
1703 				goto out;
1704 			}
1705 
1706 			/* insert our name */
1707 			ret = btrfs_add_link(trans, dir, inode, &name, 0, ref_index);
1708 			if (ret) {
1709 				btrfs_abort_log_replay(wc, ret,
1710 "failed to add link for inode %llu in dir %llu ref_index %llu name %.*s root %llu",
1711 						       btrfs_ino(inode),
1712 						       btrfs_ino(dir), ref_index,
1713 						       name.len, name.name,
1714 						       btrfs_root_id(root));
1715 				goto out;
1716 			}
1717 
1718 			ret = btrfs_update_inode(trans, inode);
1719 			if (ret) {
1720 				btrfs_abort_log_replay(wc, ret,
1721 				       "failed to update inode %llu root %llu",
1722 						       btrfs_ino(inode),
1723 						       btrfs_root_id(root));
1724 				goto out;
1725 			}
1726 		}
1727 		/* Else, ret == 1, we already have a perfect match, we're done. */
1728 
1729 next:
1730 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + name.len;
1731 		kfree(name.name);
1732 		name.name = NULL;
1733 		if (is_extref_item && dir) {
1734 			iput(&dir->vfs_inode);
1735 			dir = NULL;
1736 		}
1737 	}
1738 
1739 	/*
1740 	 * Before we overwrite the inode reference item in the subvolume tree
1741 	 * with the item from the log tree, we must unlink all names from the
1742 	 * parent directory that are in the subvolume's tree inode reference
1743 	 * item, otherwise we end up with an inconsistent subvolume tree where
1744 	 * dir index entries exist for a name but there is no inode reference
1745 	 * item with the same name.
1746 	 */
1747 	ret = unlink_old_inode_refs(wc, inode);
1748 	if (ret)
1749 		goto out;
1750 
1751 	/* finally write the back reference in the inode */
1752 	ret = overwrite_item(wc);
1753 out:
1754 	btrfs_release_path(wc->subvol_path);
1755 	kfree(name.name);
1756 	if (dir)
1757 		iput(&dir->vfs_inode);
1758 	if (inode)
1759 		iput(&inode->vfs_inode);
1760 	return ret;
1761 }
1762 
count_inode_extrefs(struct btrfs_inode * inode,struct btrfs_path * path)1763 static int count_inode_extrefs(struct btrfs_inode *inode, struct btrfs_path *path)
1764 {
1765 	int ret = 0;
1766 	int name_len;
1767 	unsigned int nlink = 0;
1768 	u32 item_size;
1769 	u32 cur_offset = 0;
1770 	u64 inode_objectid = btrfs_ino(inode);
1771 	u64 offset = 0;
1772 	unsigned long ptr;
1773 	struct btrfs_inode_extref *extref;
1774 	struct extent_buffer *leaf;
1775 
1776 	while (1) {
1777 		ret = btrfs_find_one_extref(inode->root, inode_objectid, offset,
1778 					    path, &extref, &offset);
1779 		if (ret)
1780 			break;
1781 
1782 		leaf = path->nodes[0];
1783 		item_size = btrfs_item_size(leaf, path->slots[0]);
1784 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1785 		cur_offset = 0;
1786 
1787 		while (cur_offset < item_size) {
1788 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1789 			name_len = btrfs_inode_extref_name_len(leaf, extref);
1790 
1791 			nlink++;
1792 
1793 			cur_offset += name_len + sizeof(*extref);
1794 		}
1795 
1796 		offset++;
1797 		btrfs_release_path(path);
1798 	}
1799 	btrfs_release_path(path);
1800 
1801 	if (ret < 0 && ret != -ENOENT)
1802 		return ret;
1803 	return nlink;
1804 }
1805 
count_inode_refs(struct btrfs_inode * inode,struct btrfs_path * path)1806 static int count_inode_refs(struct btrfs_inode *inode, struct btrfs_path *path)
1807 {
1808 	int ret;
1809 	struct btrfs_key key;
1810 	unsigned int nlink = 0;
1811 	unsigned long ptr;
1812 	unsigned long ptr_end;
1813 	int name_len;
1814 	u64 ino = btrfs_ino(inode);
1815 
1816 	key.objectid = ino;
1817 	key.type = BTRFS_INODE_REF_KEY;
1818 	key.offset = (u64)-1;
1819 
1820 	while (1) {
1821 		ret = btrfs_search_slot(NULL, inode->root, &key, path, 0, 0);
1822 		if (ret < 0)
1823 			break;
1824 		if (ret > 0) {
1825 			if (path->slots[0] == 0)
1826 				break;
1827 			path->slots[0]--;
1828 		}
1829 process_slot:
1830 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1831 				      path->slots[0]);
1832 		if (key.objectid != ino ||
1833 		    key.type != BTRFS_INODE_REF_KEY)
1834 			break;
1835 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1836 		ptr_end = ptr + btrfs_item_size(path->nodes[0],
1837 						   path->slots[0]);
1838 		while (ptr < ptr_end) {
1839 			struct btrfs_inode_ref *ref;
1840 
1841 			ref = (struct btrfs_inode_ref *)ptr;
1842 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1843 							    ref);
1844 			ptr = (unsigned long)(ref + 1) + name_len;
1845 			nlink++;
1846 		}
1847 
1848 		if (key.offset == 0)
1849 			break;
1850 		if (path->slots[0] > 0) {
1851 			path->slots[0]--;
1852 			goto process_slot;
1853 		}
1854 		key.offset--;
1855 		btrfs_release_path(path);
1856 	}
1857 	btrfs_release_path(path);
1858 
1859 	return nlink;
1860 }
1861 
1862 /*
1863  * There are a few corners where the link count of the file can't
1864  * be properly maintained during replay.  So, instead of adding
1865  * lots of complexity to the log code, we just scan the backrefs
1866  * for any file that has been through replay.
1867  *
1868  * The scan will update the link count on the inode to reflect the
1869  * number of back refs found.  If it goes down to zero, the iput
1870  * will free the inode.
1871  */
fixup_inode_link_count(struct walk_control * wc,struct btrfs_inode * inode)1872 static noinline int fixup_inode_link_count(struct walk_control *wc,
1873 					   struct btrfs_inode *inode)
1874 {
1875 	struct btrfs_trans_handle *trans = wc->trans;
1876 	struct btrfs_root *root = inode->root;
1877 	int ret;
1878 	u64 nlink = 0;
1879 	const u64 ino = btrfs_ino(inode);
1880 
1881 	ret = count_inode_refs(inode, wc->subvol_path);
1882 	if (ret < 0)
1883 		goto out;
1884 
1885 	nlink = ret;
1886 
1887 	ret = count_inode_extrefs(inode, wc->subvol_path);
1888 	if (ret < 0)
1889 		goto out;
1890 
1891 	nlink += ret;
1892 
1893 	ret = 0;
1894 
1895 	if (nlink != inode->vfs_inode.i_nlink) {
1896 		set_nlink(&inode->vfs_inode, nlink);
1897 		ret = btrfs_update_inode(trans, inode);
1898 		if (ret)
1899 			goto out;
1900 	}
1901 	if (S_ISDIR(inode->vfs_inode.i_mode))
1902 		inode->index_cnt = (u64)-1;
1903 
1904 	if (inode->vfs_inode.i_nlink == 0) {
1905 		if (S_ISDIR(inode->vfs_inode.i_mode)) {
1906 			ret = replay_dir_deletes(wc, ino, true);
1907 			if (ret)
1908 				goto out;
1909 		}
1910 		ret = btrfs_insert_orphan_item(trans, root, ino);
1911 		if (ret == -EEXIST)
1912 			ret = 0;
1913 	}
1914 
1915 out:
1916 	btrfs_release_path(wc->subvol_path);
1917 	return ret;
1918 }
1919 
fixup_inode_link_counts(struct walk_control * wc)1920 static noinline int fixup_inode_link_counts(struct walk_control *wc)
1921 {
1922 	int ret;
1923 	struct btrfs_key key;
1924 
1925 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1926 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1927 	key.offset = (u64)-1;
1928 	while (1) {
1929 		struct btrfs_trans_handle *trans = wc->trans;
1930 		struct btrfs_root *root = wc->root;
1931 		struct btrfs_inode *inode;
1932 
1933 		ret = btrfs_search_slot(trans, root, &key, wc->subvol_path, -1, 1);
1934 		if (ret < 0)
1935 			break;
1936 
1937 		if (ret == 1) {
1938 			ret = 0;
1939 			if (wc->subvol_path->slots[0] == 0)
1940 				break;
1941 			wc->subvol_path->slots[0]--;
1942 		}
1943 
1944 		btrfs_item_key_to_cpu(wc->subvol_path->nodes[0], &key, wc->subvol_path->slots[0]);
1945 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1946 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1947 			break;
1948 
1949 		ret = btrfs_del_item(trans, root, wc->subvol_path);
1950 		if (ret)
1951 			break;
1952 
1953 		btrfs_release_path(wc->subvol_path);
1954 		inode = btrfs_iget_logging(key.offset, root);
1955 		if (IS_ERR(inode)) {
1956 			ret = PTR_ERR(inode);
1957 			break;
1958 		}
1959 
1960 		ret = fixup_inode_link_count(wc, inode);
1961 		iput(&inode->vfs_inode);
1962 		if (ret)
1963 			break;
1964 
1965 		/*
1966 		 * fixup on a directory may create new entries,
1967 		 * make sure we always look for the highest possible
1968 		 * offset
1969 		 */
1970 		key.offset = (u64)-1;
1971 	}
1972 	btrfs_release_path(wc->subvol_path);
1973 	return ret;
1974 }
1975 
1976 
1977 /*
1978  * record a given inode in the fixup dir so we can check its link
1979  * count when replay is done.  The link count is incremented here
1980  * so the inode won't go away until we check it
1981  */
link_to_fixup_dir(struct walk_control * wc,u64 objectid)1982 static noinline int link_to_fixup_dir(struct walk_control *wc, u64 objectid)
1983 {
1984 	struct btrfs_trans_handle *trans = wc->trans;
1985 	struct btrfs_root *root = wc->root;
1986 	struct btrfs_key key;
1987 	int ret = 0;
1988 	struct btrfs_inode *inode;
1989 	struct inode *vfs_inode;
1990 
1991 	inode = btrfs_iget_logging(objectid, root);
1992 	if (IS_ERR(inode)) {
1993 		ret = PTR_ERR(inode);
1994 		btrfs_abort_log_replay(wc, ret,
1995 				       "failed to lookup inode %llu root %llu",
1996 				       objectid, btrfs_root_id(root));
1997 		return ret;
1998 	}
1999 
2000 	vfs_inode = &inode->vfs_inode;
2001 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
2002 	key.type = BTRFS_ORPHAN_ITEM_KEY;
2003 	key.offset = objectid;
2004 
2005 	ret = btrfs_insert_empty_item(trans, root, wc->subvol_path, &key, 0);
2006 
2007 	btrfs_release_path(wc->subvol_path);
2008 	if (ret == 0) {
2009 		if (!vfs_inode->i_nlink)
2010 			set_nlink(vfs_inode, 1);
2011 		else
2012 			inc_nlink(vfs_inode);
2013 		ret = btrfs_update_inode(trans, inode);
2014 		if (ret)
2015 			btrfs_abort_log_replay(wc, ret,
2016 				       "failed to update inode %llu root %llu",
2017 					       objectid, btrfs_root_id(root));
2018 	} else if (ret == -EEXIST) {
2019 		ret = 0;
2020 	} else {
2021 		btrfs_abort_log_replay(wc, ret,
2022 		       "failed to insert fixup item for inode %llu root %llu",
2023 				       objectid, btrfs_root_id(root));
2024 	}
2025 	iput(vfs_inode);
2026 
2027 	return ret;
2028 }
2029 
2030 /*
2031  * when replaying the log for a directory, we only insert names
2032  * for inodes that actually exist.  This means an fsync on a directory
2033  * does not implicitly fsync all the new files in it
2034  */
insert_one_name(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 dirid,u64 index,const struct fscrypt_str * name,struct btrfs_key * location)2035 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
2036 				    struct btrfs_root *root,
2037 				    u64 dirid, u64 index,
2038 				    const struct fscrypt_str *name,
2039 				    struct btrfs_key *location)
2040 {
2041 	struct btrfs_inode *inode;
2042 	struct btrfs_inode *dir;
2043 	int ret;
2044 
2045 	inode = btrfs_iget_logging(location->objectid, root);
2046 	if (IS_ERR(inode))
2047 		return PTR_ERR(inode);
2048 
2049 	dir = btrfs_iget_logging(dirid, root);
2050 	if (IS_ERR(dir)) {
2051 		iput(&inode->vfs_inode);
2052 		return PTR_ERR(dir);
2053 	}
2054 
2055 	ret = btrfs_add_link(trans, dir, inode, name, 1, index);
2056 
2057 	/* FIXME, put inode into FIXUP list */
2058 
2059 	iput(&inode->vfs_inode);
2060 	iput(&dir->vfs_inode);
2061 	return ret;
2062 }
2063 
delete_conflicting_dir_entry(struct walk_control * wc,struct btrfs_inode * dir,struct btrfs_dir_item * dst_di,const struct btrfs_key * log_key,u8 log_flags,bool exists)2064 static int delete_conflicting_dir_entry(struct walk_control *wc,
2065 					struct btrfs_inode *dir,
2066 					struct btrfs_dir_item *dst_di,
2067 					const struct btrfs_key *log_key,
2068 					u8 log_flags,
2069 					bool exists)
2070 {
2071 	struct btrfs_key found_key;
2072 
2073 	btrfs_dir_item_key_to_cpu(wc->subvol_path->nodes[0], dst_di, &found_key);
2074 	/* The existing dentry points to the same inode, don't delete it. */
2075 	if (found_key.objectid == log_key->objectid &&
2076 	    found_key.type == log_key->type &&
2077 	    found_key.offset == log_key->offset &&
2078 	    btrfs_dir_flags(wc->subvol_path->nodes[0], dst_di) == log_flags)
2079 		return 1;
2080 
2081 	/*
2082 	 * Don't drop the conflicting directory entry if the inode for the new
2083 	 * entry doesn't exist.
2084 	 */
2085 	if (!exists)
2086 		return 0;
2087 
2088 	return drop_one_dir_item(wc, dir, dst_di);
2089 }
2090 
2091 /*
2092  * take a single entry in a log directory item and replay it into
2093  * the subvolume.
2094  *
2095  * if a conflicting item exists in the subdirectory already,
2096  * the inode it points to is unlinked and put into the link count
2097  * fix up tree.
2098  *
2099  * If a name from the log points to a file or directory that does
2100  * not exist in the FS, it is skipped.  fsyncs on directories
2101  * do not force down inodes inside that directory, just changes to the
2102  * names or unlinks in a directory.
2103  *
2104  * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
2105  * non-existing inode) and 1 if the name was replayed.
2106  */
replay_one_name(struct walk_control * wc,struct btrfs_dir_item * di)2107 static noinline int replay_one_name(struct walk_control *wc, struct btrfs_dir_item *di)
2108 {
2109 	struct btrfs_trans_handle *trans = wc->trans;
2110 	struct btrfs_root *root = wc->root;
2111 	struct fscrypt_str name = { 0 };
2112 	struct btrfs_dir_item *dir_dst_di;
2113 	struct btrfs_dir_item *index_dst_di;
2114 	bool dir_dst_matches = false;
2115 	bool index_dst_matches = false;
2116 	struct btrfs_key log_key;
2117 	struct btrfs_key search_key;
2118 	struct btrfs_inode *dir;
2119 	u8 log_flags;
2120 	bool exists;
2121 	int ret;
2122 	bool update_size = true;
2123 	bool name_added = false;
2124 
2125 	dir = btrfs_iget_logging(wc->log_key.objectid, root);
2126 	if (IS_ERR(dir)) {
2127 		ret = PTR_ERR(dir);
2128 		btrfs_abort_log_replay(wc, ret,
2129 				       "failed to lookup dir inode %llu root %llu",
2130 				       wc->log_key.objectid, btrfs_root_id(root));
2131 		return ret;
2132 	}
2133 
2134 	ret = read_alloc_one_name(wc->log_leaf, di + 1,
2135 				  btrfs_dir_name_len(wc->log_leaf, di), &name);
2136 	if (ret) {
2137 		btrfs_abort_log_replay(wc, ret,
2138 			       "failed to allocate name for dir %llu root %llu",
2139 				       btrfs_ino(dir), btrfs_root_id(root));
2140 		goto out;
2141 	}
2142 
2143 	log_flags = btrfs_dir_flags(wc->log_leaf, di);
2144 	btrfs_dir_item_key_to_cpu(wc->log_leaf, di, &log_key);
2145 	ret = btrfs_lookup_inode(trans, root, wc->subvol_path, &log_key, 0);
2146 	btrfs_release_path(wc->subvol_path);
2147 	if (ret < 0) {
2148 		btrfs_abort_log_replay(wc, ret,
2149 				       "failed to lookup inode %llu root %llu",
2150 				       log_key.objectid, btrfs_root_id(root));
2151 		goto out;
2152 	}
2153 	exists = (ret == 0);
2154 	ret = 0;
2155 
2156 	dir_dst_di = btrfs_lookup_dir_item(trans, root, wc->subvol_path,
2157 					   wc->log_key.objectid, &name, 1);
2158 	if (IS_ERR(dir_dst_di)) {
2159 		ret = PTR_ERR(dir_dst_di);
2160 		btrfs_abort_log_replay(wc, ret,
2161 		       "failed to lookup dir item for dir %llu name %.*s root %llu",
2162 				       wc->log_key.objectid, name.len, name.name,
2163 				       btrfs_root_id(root));
2164 		goto out;
2165 	} else if (dir_dst_di) {
2166 		ret = delete_conflicting_dir_entry(wc, dir, dir_dst_di,
2167 						   &log_key, log_flags, exists);
2168 		if (ret < 0) {
2169 			btrfs_abort_log_replay(wc, ret,
2170 	       "failed to delete conflicting entry for dir %llu name %.*s root %llu",
2171 					       btrfs_ino(dir), name.len, name.name,
2172 					       btrfs_root_id(root));
2173 			goto out;
2174 		}
2175 		dir_dst_matches = (ret == 1);
2176 	}
2177 
2178 	btrfs_release_path(wc->subvol_path);
2179 
2180 	index_dst_di = btrfs_lookup_dir_index_item(trans, root, wc->subvol_path,
2181 						   wc->log_key.objectid,
2182 						   wc->log_key.offset, &name, 1);
2183 	if (IS_ERR(index_dst_di)) {
2184 		ret = PTR_ERR(index_dst_di);
2185 		btrfs_abort_log_replay(wc, ret,
2186 	       "failed to lookup dir index item for dir %llu name %.*s root %llu",
2187 				       wc->log_key.objectid, name.len, name.name,
2188 				       btrfs_root_id(root));
2189 		goto out;
2190 	} else if (index_dst_di) {
2191 		ret = delete_conflicting_dir_entry(wc, dir, index_dst_di,
2192 						   &log_key, log_flags, exists);
2193 		if (ret < 0) {
2194 			btrfs_abort_log_replay(wc, ret,
2195 	       "failed to delete conflicting entry for dir %llu name %.*s root %llu",
2196 					       btrfs_ino(dir), name.len, name.name,
2197 					       btrfs_root_id(root));
2198 			goto out;
2199 		}
2200 		index_dst_matches = (ret == 1);
2201 	}
2202 
2203 	btrfs_release_path(wc->subvol_path);
2204 
2205 	if (dir_dst_matches && index_dst_matches) {
2206 		ret = 0;
2207 		update_size = false;
2208 		goto out;
2209 	}
2210 
2211 	/*
2212 	 * Check if the inode reference exists in the log for the given name,
2213 	 * inode and parent inode
2214 	 */
2215 	search_key.objectid = log_key.objectid;
2216 	search_key.type = BTRFS_INODE_REF_KEY;
2217 	search_key.offset = wc->log_key.objectid;
2218 	ret = backref_in_log(root->log_root, &search_key, 0, &name);
2219 	if (ret < 0) {
2220 		btrfs_abort_log_replay(wc, ret,
2221 "failed to check if ref item is logged for inode %llu dir %llu name %.*s root %llu",
2222 				       search_key.objectid, btrfs_ino(dir),
2223 				       name.len, name.name, btrfs_root_id(root));
2224 	        goto out;
2225 	} else if (ret) {
2226 	        /* The dentry will be added later. */
2227 	        ret = 0;
2228 	        update_size = false;
2229 	        goto out;
2230 	}
2231 
2232 	search_key.objectid = log_key.objectid;
2233 	search_key.type = BTRFS_INODE_EXTREF_KEY;
2234 	search_key.offset = btrfs_extref_hash(wc->log_key.objectid, name.name, name.len);
2235 	ret = backref_in_log(root->log_root, &search_key, wc->log_key.objectid, &name);
2236 	if (ret < 0) {
2237 		btrfs_abort_log_replay(wc, ret,
2238 "failed to check if extref item is logged for inode %llu dir %llu name %.*s root %llu",
2239 				       search_key.objectid, btrfs_ino(dir),
2240 				       name.len, name.name, btrfs_root_id(root));
2241 		goto out;
2242 	} else if (ret) {
2243 		/* The dentry will be added later. */
2244 		ret = 0;
2245 		update_size = false;
2246 		goto out;
2247 	}
2248 	ret = insert_one_name(trans, root, wc->log_key.objectid, wc->log_key.offset,
2249 			      &name, &log_key);
2250 	if (ret && ret != -ENOENT && ret != -EEXIST) {
2251 		btrfs_abort_log_replay(wc, ret,
2252 		       "failed to insert name %.*s for inode %llu dir %llu root %llu",
2253 				       name.len, name.name, log_key.objectid,
2254 				       btrfs_ino(dir), btrfs_root_id(root));
2255 		goto out;
2256 	}
2257 	if (!ret)
2258 		name_added = true;
2259 	update_size = false;
2260 	ret = 0;
2261 
2262 out:
2263 	if (!ret && update_size) {
2264 		btrfs_i_size_write(dir, dir->vfs_inode.i_size + name.len * 2);
2265 		ret = btrfs_update_inode(trans, dir);
2266 		if (ret)
2267 			btrfs_abort_log_replay(wc, ret,
2268 				       "failed to update dir inode %llu root %llu",
2269 					       btrfs_ino(dir), btrfs_root_id(root));
2270 	}
2271 	kfree(name.name);
2272 	iput(&dir->vfs_inode);
2273 	if (!ret && name_added)
2274 		ret = 1;
2275 	return ret;
2276 }
2277 
2278 /* Replay one dir item from a BTRFS_DIR_INDEX_KEY key. */
replay_one_dir_item(struct walk_control * wc)2279 static noinline int replay_one_dir_item(struct walk_control *wc)
2280 {
2281 	int ret;
2282 	struct btrfs_dir_item *di;
2283 
2284 	/* We only log dir index keys, which only contain a single dir item. */
2285 	ASSERT(wc->log_key.type == BTRFS_DIR_INDEX_KEY,
2286 	       "wc->log_key.type=%u", wc->log_key.type);
2287 
2288 	di = btrfs_item_ptr(wc->log_leaf, wc->log_slot, struct btrfs_dir_item);
2289 	ret = replay_one_name(wc, di);
2290 	if (ret < 0)
2291 		return ret;
2292 
2293 	/*
2294 	 * If this entry refers to a non-directory (directories can not have a
2295 	 * link count > 1) and it was added in the transaction that was not
2296 	 * committed, make sure we fixup the link count of the inode the entry
2297 	 * points to. Otherwise something like the following would result in a
2298 	 * directory pointing to an inode with a wrong link that does not account
2299 	 * for this dir entry:
2300 	 *
2301 	 * mkdir testdir
2302 	 * touch testdir/foo
2303 	 * touch testdir/bar
2304 	 * sync
2305 	 *
2306 	 * ln testdir/bar testdir/bar_link
2307 	 * ln testdir/foo testdir/foo_link
2308 	 * xfs_io -c "fsync" testdir/bar
2309 	 *
2310 	 * <power failure>
2311 	 *
2312 	 * mount fs, log replay happens
2313 	 *
2314 	 * File foo would remain with a link count of 1 when it has two entries
2315 	 * pointing to it in the directory testdir. This would make it impossible
2316 	 * to ever delete the parent directory has it would result in stale
2317 	 * dentries that can never be deleted.
2318 	 */
2319 	if (ret == 1 && btrfs_dir_ftype(wc->log_leaf, di) != BTRFS_FT_DIR) {
2320 		struct btrfs_key di_key;
2321 
2322 		btrfs_dir_item_key_to_cpu(wc->log_leaf, di, &di_key);
2323 		ret = link_to_fixup_dir(wc, di_key.objectid);
2324 	}
2325 
2326 	return ret;
2327 }
2328 
2329 /*
2330  * directory replay has two parts.  There are the standard directory
2331  * items in the log copied from the subvolume, and range items
2332  * created in the log while the subvolume was logged.
2333  *
2334  * The range items tell us which parts of the key space the log
2335  * is authoritative for.  During replay, if a key in the subvolume
2336  * directory is in a logged range item, but not actually in the log
2337  * that means it was deleted from the directory before the fsync
2338  * and should be removed.
2339  */
find_dir_range(struct btrfs_root * root,struct btrfs_path * path,u64 dirid,u64 * start_ret,u64 * end_ret)2340 static noinline int find_dir_range(struct btrfs_root *root,
2341 				   struct btrfs_path *path,
2342 				   u64 dirid,
2343 				   u64 *start_ret, u64 *end_ret)
2344 {
2345 	struct btrfs_key key;
2346 	u64 found_end;
2347 	struct btrfs_dir_log_item *item;
2348 	int ret;
2349 	int nritems;
2350 
2351 	if (*start_ret == (u64)-1)
2352 		return 1;
2353 
2354 	key.objectid = dirid;
2355 	key.type = BTRFS_DIR_LOG_INDEX_KEY;
2356 	key.offset = *start_ret;
2357 
2358 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2359 	if (ret < 0)
2360 		goto out;
2361 	if (ret > 0) {
2362 		if (path->slots[0] == 0)
2363 			goto out;
2364 		path->slots[0]--;
2365 	}
2366 	if (ret != 0)
2367 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2368 
2369 	if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2370 		ret = 1;
2371 		goto next;
2372 	}
2373 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2374 			      struct btrfs_dir_log_item);
2375 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2376 
2377 	if (*start_ret >= key.offset && *start_ret <= found_end) {
2378 		ret = 0;
2379 		*start_ret = key.offset;
2380 		*end_ret = found_end;
2381 		goto out;
2382 	}
2383 	ret = 1;
2384 next:
2385 	/* check the next slot in the tree to see if it is a valid item */
2386 	nritems = btrfs_header_nritems(path->nodes[0]);
2387 	path->slots[0]++;
2388 	if (path->slots[0] >= nritems) {
2389 		ret = btrfs_next_leaf(root, path);
2390 		if (ret)
2391 			goto out;
2392 	}
2393 
2394 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2395 
2396 	if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2397 		ret = 1;
2398 		goto out;
2399 	}
2400 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2401 			      struct btrfs_dir_log_item);
2402 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2403 	*start_ret = key.offset;
2404 	*end_ret = found_end;
2405 	ret = 0;
2406 out:
2407 	btrfs_release_path(path);
2408 	return ret;
2409 }
2410 
2411 /*
2412  * this looks for a given directory item in the log.  If the directory
2413  * item is not in the log, the item is removed and the inode it points
2414  * to is unlinked
2415  */
check_item_in_log(struct walk_control * wc,struct btrfs_path * log_path,struct btrfs_inode * dir,struct btrfs_key * dir_key,bool force_remove)2416 static noinline int check_item_in_log(struct walk_control *wc,
2417 				      struct btrfs_path *log_path,
2418 				      struct btrfs_inode *dir,
2419 				      struct btrfs_key *dir_key,
2420 				      bool force_remove)
2421 {
2422 	struct btrfs_trans_handle *trans = wc->trans;
2423 	struct btrfs_root *root = dir->root;
2424 	int ret;
2425 	struct extent_buffer *eb;
2426 	int slot;
2427 	struct btrfs_dir_item *di;
2428 	struct fscrypt_str name = { 0 };
2429 	struct btrfs_inode *inode = NULL;
2430 	struct btrfs_key location;
2431 
2432 	/*
2433 	 * Currently we only log dir index keys. Even if we replay a log created
2434 	 * by an older kernel that logged both dir index and dir item keys, all
2435 	 * we need to do is process the dir index keys, we (and our caller) can
2436 	 * safely ignore dir item keys (key type BTRFS_DIR_ITEM_KEY).
2437 	 */
2438 	ASSERT(dir_key->type == BTRFS_DIR_INDEX_KEY, "dir_key->type=%u", dir_key->type);
2439 
2440 	eb = wc->subvol_path->nodes[0];
2441 	slot = wc->subvol_path->slots[0];
2442 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2443 	ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
2444 	if (ret) {
2445 		btrfs_abort_log_replay(wc, ret,
2446 		       "failed to allocate name for dir %llu index %llu root %llu",
2447 				       btrfs_ino(dir), dir_key->offset,
2448 				       btrfs_root_id(root));
2449 		goto out;
2450 	}
2451 
2452 	if (!force_remove) {
2453 		struct btrfs_dir_item *log_di;
2454 
2455 		log_di = btrfs_lookup_dir_index_item(trans, wc->log, log_path,
2456 						     dir_key->objectid,
2457 						     dir_key->offset, &name, 0);
2458 		if (IS_ERR(log_di)) {
2459 			ret = PTR_ERR(log_di);
2460 			btrfs_abort_log_replay(wc, ret,
2461 	"failed to lookup dir index item for dir %llu index %llu name %.*s root %llu",
2462 					       btrfs_ino(dir), dir_key->offset,
2463 					       name.len, name.name,
2464 					       btrfs_root_id(root));
2465 			goto out;
2466 		} else if (log_di) {
2467 			/* The dentry exists in the log, we have nothing to do. */
2468 			ret = 0;
2469 			goto out;
2470 		}
2471 	}
2472 
2473 	btrfs_dir_item_key_to_cpu(eb, di, &location);
2474 	btrfs_release_path(wc->subvol_path);
2475 	btrfs_release_path(log_path);
2476 	inode = btrfs_iget_logging(location.objectid, root);
2477 	if (IS_ERR(inode)) {
2478 		ret = PTR_ERR(inode);
2479 		inode = NULL;
2480 		btrfs_abort_log_replay(wc, ret,
2481 				       "failed to lookup inode %llu root %llu",
2482 				       location.objectid, btrfs_root_id(root));
2483 		goto out;
2484 	}
2485 
2486 	ret = link_to_fixup_dir(wc, location.objectid);
2487 	if (ret)
2488 		goto out;
2489 
2490 	inc_nlink(&inode->vfs_inode);
2491 	ret = unlink_inode_for_log_replay(wc, dir, inode, &name);
2492 	/*
2493 	 * Unlike dir item keys, dir index keys can only have one name (entry) in
2494 	 * them, as there are no key collisions since each key has a unique offset
2495 	 * (an index number), so we're done.
2496 	 */
2497 out:
2498 	btrfs_release_path(wc->subvol_path);
2499 	btrfs_release_path(log_path);
2500 	kfree(name.name);
2501 	if (inode)
2502 		iput(&inode->vfs_inode);
2503 	return ret;
2504 }
2505 
replay_xattr_deletes(struct walk_control * wc)2506 static int replay_xattr_deletes(struct walk_control *wc)
2507 {
2508 	struct btrfs_trans_handle *trans = wc->trans;
2509 	struct btrfs_root *root = wc->root;
2510 	struct btrfs_root *log = wc->log;
2511 	struct btrfs_key search_key;
2512 	BTRFS_PATH_AUTO_FREE(log_path);
2513 	const u64 ino = wc->log_key.objectid;
2514 	int nritems;
2515 	int ret;
2516 
2517 	log_path = btrfs_alloc_path();
2518 	if (!log_path) {
2519 		btrfs_abort_log_replay(wc, -ENOMEM, "failed to allocate path");
2520 		return -ENOMEM;
2521 	}
2522 
2523 	search_key.objectid = ino;
2524 	search_key.type = BTRFS_XATTR_ITEM_KEY;
2525 	search_key.offset = 0;
2526 again:
2527 	ret = btrfs_search_slot(NULL, root, &search_key, wc->subvol_path, 0, 0);
2528 	if (ret < 0) {
2529 		btrfs_abort_log_replay(wc, ret,
2530 			       "failed to search xattrs for inode %llu root %llu",
2531 				       ino, btrfs_root_id(root));
2532 		goto out;
2533 	}
2534 process_leaf:
2535 	nritems = btrfs_header_nritems(wc->subvol_path->nodes[0]);
2536 	for (int i = wc->subvol_path->slots[0]; i < nritems; i++) {
2537 		struct btrfs_key key;
2538 		struct btrfs_dir_item *di;
2539 		struct btrfs_dir_item *log_di;
2540 		u32 total_size;
2541 		u32 cur;
2542 
2543 		btrfs_item_key_to_cpu(wc->subvol_path->nodes[0], &key, i);
2544 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2545 			ret = 0;
2546 			goto out;
2547 		}
2548 
2549 		di = btrfs_item_ptr(wc->subvol_path->nodes[0], i, struct btrfs_dir_item);
2550 		total_size = btrfs_item_size(wc->subvol_path->nodes[0], i);
2551 		cur = 0;
2552 		while (cur < total_size) {
2553 			u16 name_len = btrfs_dir_name_len(wc->subvol_path->nodes[0], di);
2554 			u16 data_len = btrfs_dir_data_len(wc->subvol_path->nodes[0], di);
2555 			u32 this_len = sizeof(*di) + name_len + data_len;
2556 			char *name;
2557 
2558 			name = kmalloc(name_len, GFP_NOFS);
2559 			if (!name) {
2560 				ret = -ENOMEM;
2561 				btrfs_abort_log_replay(wc, ret,
2562 				       "failed to allocate memory for name of length %u",
2563 						       name_len);
2564 				goto out;
2565 			}
2566 			read_extent_buffer(wc->subvol_path->nodes[0], name,
2567 					   (unsigned long)(di + 1), name_len);
2568 
2569 			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2570 						    name, name_len, 0);
2571 			btrfs_release_path(log_path);
2572 			if (!log_di) {
2573 				/* Doesn't exist in log tree, so delete it. */
2574 				btrfs_release_path(wc->subvol_path);
2575 				di = btrfs_lookup_xattr(trans, root, wc->subvol_path, ino,
2576 							name, name_len, -1);
2577 				if (IS_ERR(di)) {
2578 					ret = PTR_ERR(di);
2579 					btrfs_abort_log_replay(wc, ret,
2580 		       "failed to lookup xattr with name %.*s for inode %llu root %llu",
2581 							       name_len, name, ino,
2582 							       btrfs_root_id(root));
2583 					kfree(name);
2584 					goto out;
2585 				}
2586 				ASSERT(di);
2587 				ret = btrfs_delete_one_dir_name(trans, root,
2588 								wc->subvol_path, di);
2589 				if (ret) {
2590 					btrfs_abort_log_replay(wc, ret,
2591 		       "failed to delete xattr with name %.*s for inode %llu root %llu",
2592 							       name_len, name, ino,
2593 							       btrfs_root_id(root));
2594 					kfree(name);
2595 					goto out;
2596 				}
2597 				btrfs_release_path(wc->subvol_path);
2598 				kfree(name);
2599 				search_key = key;
2600 				goto again;
2601 			}
2602 			if (IS_ERR(log_di)) {
2603 				ret = PTR_ERR(log_di);
2604 				btrfs_abort_log_replay(wc, ret,
2605 	"failed to lookup xattr in log tree with name %.*s for inode %llu root %llu",
2606 						       name_len, name, ino,
2607 						       btrfs_root_id(root));
2608 				kfree(name);
2609 				goto out;
2610 			}
2611 			kfree(name);
2612 			cur += this_len;
2613 			di = (struct btrfs_dir_item *)((char *)di + this_len);
2614 		}
2615 	}
2616 	ret = btrfs_next_leaf(root, wc->subvol_path);
2617 	if (ret > 0)
2618 		ret = 0;
2619 	else if (ret == 0)
2620 		goto process_leaf;
2621 	else
2622 		btrfs_abort_log_replay(wc, ret,
2623 			       "failed to get next leaf in subvolume root %llu",
2624 				       btrfs_root_id(root));
2625 out:
2626 	btrfs_release_path(wc->subvol_path);
2627 	return ret;
2628 }
2629 
2630 
2631 /*
2632  * deletion replay happens before we copy any new directory items
2633  * out of the log or out of backreferences from inodes.  It
2634  * scans the log to find ranges of keys that log is authoritative for,
2635  * and then scans the directory to find items in those ranges that are
2636  * not present in the log.
2637  *
2638  * Anything we don't find in the log is unlinked and removed from the
2639  * directory.
2640  */
replay_dir_deletes(struct walk_control * wc,u64 dirid,bool del_all)2641 static noinline int replay_dir_deletes(struct walk_control *wc,
2642 				       u64 dirid, bool del_all)
2643 {
2644 	struct btrfs_root *root = wc->root;
2645 	struct btrfs_root *log = (del_all ? NULL : wc->log);
2646 	u64 range_start;
2647 	u64 range_end;
2648 	int ret = 0;
2649 	struct btrfs_key dir_key;
2650 	struct btrfs_key found_key;
2651 	BTRFS_PATH_AUTO_FREE(log_path);
2652 	struct btrfs_inode *dir;
2653 
2654 	dir_key.objectid = dirid;
2655 	dir_key.type = BTRFS_DIR_INDEX_KEY;
2656 	log_path = btrfs_alloc_path();
2657 	if (!log_path) {
2658 		btrfs_abort_log_replay(wc, -ENOMEM, "failed to allocate path");
2659 		return -ENOMEM;
2660 	}
2661 
2662 	dir = btrfs_iget_logging(dirid, root);
2663 	/*
2664 	 * It isn't an error if the inode isn't there, that can happen because
2665 	 * we replay the deletes before we copy in the inode item from the log.
2666 	 */
2667 	if (IS_ERR(dir)) {
2668 		ret = PTR_ERR(dir);
2669 		if (ret == -ENOENT)
2670 			ret = 0;
2671 		else
2672 			btrfs_abort_log_replay(wc, ret,
2673 			       "failed to lookup dir inode %llu root %llu",
2674 					       dirid, btrfs_root_id(root));
2675 		return ret;
2676 	}
2677 
2678 	range_start = 0;
2679 	range_end = 0;
2680 	while (1) {
2681 		if (del_all)
2682 			range_end = (u64)-1;
2683 		else {
2684 			ret = find_dir_range(log, wc->subvol_path, dirid,
2685 					     &range_start, &range_end);
2686 			if (ret < 0) {
2687 				btrfs_abort_log_replay(wc, ret,
2688 			       "failed to find range for dir %llu in log tree root %llu",
2689 						       dirid, btrfs_root_id(root));
2690 				goto out;
2691 			} else if (ret > 0) {
2692 				break;
2693 			}
2694 		}
2695 
2696 		dir_key.offset = range_start;
2697 		while (1) {
2698 			int nritems;
2699 			ret = btrfs_search_slot(NULL, root, &dir_key,
2700 						wc->subvol_path, 0, 0);
2701 			if (ret < 0) {
2702 				btrfs_abort_log_replay(wc, ret,
2703 			       "failed to search root %llu for key " BTRFS_KEY_FMT,
2704 						       btrfs_root_id(root),
2705 						       BTRFS_KEY_FMT_VALUE(&dir_key));
2706 				goto out;
2707 			}
2708 
2709 			nritems = btrfs_header_nritems(wc->subvol_path->nodes[0]);
2710 			if (wc->subvol_path->slots[0] >= nritems) {
2711 				ret = btrfs_next_leaf(root, wc->subvol_path);
2712 				if (ret == 1) {
2713 					break;
2714 				} else if (ret < 0) {
2715 					btrfs_abort_log_replay(wc, ret,
2716 				       "failed to get next leaf in subvolume root %llu",
2717 							       btrfs_root_id(root));
2718 					goto out;
2719 				}
2720 			}
2721 			btrfs_item_key_to_cpu(wc->subvol_path->nodes[0], &found_key,
2722 					      wc->subvol_path->slots[0]);
2723 			if (found_key.objectid != dirid ||
2724 			    found_key.type != dir_key.type) {
2725 				ret = 0;
2726 				goto out;
2727 			}
2728 
2729 			if (found_key.offset > range_end)
2730 				break;
2731 
2732 			ret = check_item_in_log(wc, log_path, dir, &found_key, del_all);
2733 			if (ret)
2734 				goto out;
2735 			if (found_key.offset == (u64)-1)
2736 				break;
2737 			dir_key.offset = found_key.offset + 1;
2738 		}
2739 		btrfs_release_path(wc->subvol_path);
2740 		if (range_end == (u64)-1)
2741 			break;
2742 		range_start = range_end + 1;
2743 	}
2744 	ret = 0;
2745 out:
2746 	btrfs_release_path(wc->subvol_path);
2747 	iput(&dir->vfs_inode);
2748 	return ret;
2749 }
2750 
2751 /*
2752  * the process_func used to replay items from the log tree.  This
2753  * gets called in two different stages.  The first stage just looks
2754  * for inodes and makes sure they are all copied into the subvolume.
2755  *
2756  * The second stage copies all the other item types from the log into
2757  * the subvolume.  The two stage approach is slower, but gets rid of
2758  * lots of complexity around inodes referencing other inodes that exist
2759  * only in the log (references come from either directory items or inode
2760  * back refs).
2761  */
replay_one_buffer(struct extent_buffer * eb,struct walk_control * wc,u64 gen,int level)2762 static int replay_one_buffer(struct extent_buffer *eb,
2763 			     struct walk_control *wc, u64 gen, int level)
2764 {
2765 	int nritems;
2766 	struct btrfs_tree_parent_check check = {
2767 		.transid = gen,
2768 		.level = level
2769 	};
2770 	struct btrfs_root *root = wc->root;
2771 	struct btrfs_trans_handle *trans = wc->trans;
2772 	int ret;
2773 
2774 	if (level != 0)
2775 		return 0;
2776 
2777 	/*
2778 	 * Set to NULL since it was not yet read and in case we abort log replay
2779 	 * on error, we have no valid log tree leaf to dump.
2780 	 */
2781 	wc->log_leaf = NULL;
2782 	ret = btrfs_read_extent_buffer(eb, &check);
2783 	if (ret) {
2784 		btrfs_abort_log_replay(wc, ret,
2785 		       "failed to read log tree leaf %llu for root %llu",
2786 				       eb->start, btrfs_root_id(root));
2787 		return ret;
2788 	}
2789 
2790 	ASSERT(wc->subvol_path == NULL);
2791 	wc->subvol_path = btrfs_alloc_path();
2792 	if (!wc->subvol_path) {
2793 		btrfs_abort_log_replay(wc, -ENOMEM, "failed to allocate path");
2794 		return -ENOMEM;
2795 	}
2796 
2797 	wc->log_leaf = eb;
2798 
2799 	nritems = btrfs_header_nritems(eb);
2800 	for (wc->log_slot = 0; wc->log_slot < nritems; wc->log_slot++) {
2801 		struct btrfs_inode_item *inode_item;
2802 
2803 		btrfs_item_key_to_cpu(eb, &wc->log_key, wc->log_slot);
2804 
2805 		if (wc->log_key.type == BTRFS_INODE_ITEM_KEY) {
2806 			inode_item = btrfs_item_ptr(eb, wc->log_slot,
2807 						    struct btrfs_inode_item);
2808 			/*
2809 			 * An inode with no links is either:
2810 			 *
2811 			 * 1) A tmpfile (O_TMPFILE) that got fsync'ed and never
2812 			 *    got linked before the fsync, skip it, as replaying
2813 			 *    it is pointless since it would be deleted later.
2814 			 *    We skip logging tmpfiles, but it's always possible
2815 			 *    we are replaying a log created with a kernel that
2816 			 *    used to log tmpfiles;
2817 			 *
2818 			 * 2) A non-tmpfile which got its last link deleted
2819 			 *    while holding an open fd on it and later got
2820 			 *    fsynced through that fd. We always log the
2821 			 *    parent inodes when inode->last_unlink_trans is
2822 			 *    set to the current transaction, so ignore all the
2823 			 *    inode items for this inode. We will delete the
2824 			 *    inode when processing the parent directory with
2825 			 *    replay_dir_deletes().
2826 			 */
2827 			if (btrfs_inode_nlink(eb, inode_item) == 0) {
2828 				wc->ignore_cur_inode = true;
2829 				continue;
2830 			} else {
2831 				wc->ignore_cur_inode = false;
2832 			}
2833 		}
2834 
2835 		/* Inode keys are done during the first stage. */
2836 		if (wc->log_key.type == BTRFS_INODE_ITEM_KEY &&
2837 		    wc->stage == LOG_WALK_REPLAY_INODES) {
2838 			u32 mode;
2839 
2840 			ret = replay_xattr_deletes(wc);
2841 			if (ret)
2842 				break;
2843 			mode = btrfs_inode_mode(eb, inode_item);
2844 			if (S_ISDIR(mode)) {
2845 				ret = replay_dir_deletes(wc, wc->log_key.objectid, false);
2846 				if (ret)
2847 					break;
2848 			}
2849 			ret = overwrite_item(wc);
2850 			if (ret)
2851 				break;
2852 
2853 			/*
2854 			 * Before replaying extents, truncate the inode to its
2855 			 * size. We need to do it now and not after log replay
2856 			 * because before an fsync we can have prealloc extents
2857 			 * added beyond the inode's i_size. If we did it after,
2858 			 * through orphan cleanup for example, we would drop
2859 			 * those prealloc extents just after replaying them.
2860 			 */
2861 			if (S_ISREG(mode)) {
2862 				struct btrfs_drop_extents_args drop_args = { 0 };
2863 				struct btrfs_inode *inode;
2864 				u64 from;
2865 
2866 				inode = btrfs_iget_logging(wc->log_key.objectid, root);
2867 				if (IS_ERR(inode)) {
2868 					ret = PTR_ERR(inode);
2869 					btrfs_abort_log_replay(wc, ret,
2870 					       "failed to lookup inode %llu root %llu",
2871 							       wc->log_key.objectid,
2872 							       btrfs_root_id(root));
2873 					break;
2874 				}
2875 				from = ALIGN(i_size_read(&inode->vfs_inode),
2876 					     root->fs_info->sectorsize);
2877 				drop_args.start = from;
2878 				drop_args.end = (u64)-1;
2879 				drop_args.drop_cache = true;
2880 				drop_args.path = wc->subvol_path;
2881 				ret = btrfs_drop_extents(trans, root, inode,  &drop_args);
2882 				if (ret) {
2883 					btrfs_abort_log_replay(wc, ret,
2884 		       "failed to drop extents for inode %llu root %llu offset %llu",
2885 							       btrfs_ino(inode),
2886 							       btrfs_root_id(root),
2887 							       from);
2888 				} else {
2889 					inode_sub_bytes(&inode->vfs_inode,
2890 							drop_args.bytes_found);
2891 					/* Update the inode's nbytes. */
2892 					ret = btrfs_update_inode(trans, inode);
2893 					if (ret)
2894 						btrfs_abort_log_replay(wc, ret,
2895 					       "failed to update inode %llu root %llu",
2896 								       btrfs_ino(inode),
2897 								       btrfs_root_id(root));
2898 				}
2899 				iput(&inode->vfs_inode);
2900 				if (ret)
2901 					break;
2902 			}
2903 
2904 			ret = link_to_fixup_dir(wc, wc->log_key.objectid);
2905 			if (ret)
2906 				break;
2907 		}
2908 
2909 		if (wc->ignore_cur_inode)
2910 			continue;
2911 
2912 		if (wc->log_key.type == BTRFS_DIR_INDEX_KEY &&
2913 		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2914 			ret = replay_one_dir_item(wc);
2915 			if (ret)
2916 				break;
2917 		}
2918 
2919 		if (wc->stage < LOG_WALK_REPLAY_ALL)
2920 			continue;
2921 
2922 		/* these keys are simply copied */
2923 		if (wc->log_key.type == BTRFS_XATTR_ITEM_KEY) {
2924 			ret = overwrite_item(wc);
2925 			if (ret)
2926 				break;
2927 		} else if (wc->log_key.type == BTRFS_INODE_REF_KEY ||
2928 			   wc->log_key.type == BTRFS_INODE_EXTREF_KEY) {
2929 			ret = add_inode_ref(wc);
2930 			if (ret)
2931 				break;
2932 		} else if (wc->log_key.type == BTRFS_EXTENT_DATA_KEY) {
2933 			ret = replay_one_extent(wc);
2934 			if (ret)
2935 				break;
2936 		}
2937 		/*
2938 		 * We don't log BTRFS_DIR_ITEM_KEY keys anymore, only the
2939 		 * BTRFS_DIR_INDEX_KEY items which we use to derive the
2940 		 * BTRFS_DIR_ITEM_KEY items. If we are replaying a log from an
2941 		 * older kernel with such keys, ignore them.
2942 		 */
2943 	}
2944 	btrfs_free_path(wc->subvol_path);
2945 	wc->subvol_path = NULL;
2946 	return ret;
2947 }
2948 
clean_log_buffer(struct btrfs_trans_handle * trans,struct extent_buffer * eb)2949 static int clean_log_buffer(struct btrfs_trans_handle *trans,
2950 			    struct extent_buffer *eb)
2951 {
2952 	struct btrfs_fs_info *fs_info = eb->fs_info;
2953 	struct btrfs_block_group *bg;
2954 
2955 	btrfs_tree_lock(eb);
2956 	btrfs_clear_buffer_dirty(trans, eb);
2957 	wait_on_extent_buffer_writeback(eb);
2958 	btrfs_tree_unlock(eb);
2959 
2960 	if (trans) {
2961 		int ret;
2962 
2963 		ret = btrfs_pin_reserved_extent(trans, eb);
2964 		if (ret)
2965 			btrfs_abort_transaction(trans, ret);
2966 		return ret;
2967 	}
2968 
2969 	bg = btrfs_lookup_block_group(fs_info, eb->start);
2970 	if (!bg) {
2971 		btrfs_err(fs_info, "unable to find block group for %llu", eb->start);
2972 		btrfs_handle_fs_error(fs_info, -ENOENT, NULL);
2973 		return -ENOENT;
2974 	}
2975 
2976 	spin_lock(&bg->space_info->lock);
2977 	spin_lock(&bg->lock);
2978 	bg->reserved -= fs_info->nodesize;
2979 	bg->space_info->bytes_reserved -= fs_info->nodesize;
2980 	spin_unlock(&bg->lock);
2981 	spin_unlock(&bg->space_info->lock);
2982 
2983 	btrfs_put_block_group(bg);
2984 
2985 	return 0;
2986 }
2987 
walk_down_log_tree(struct btrfs_path * path,int * level,struct walk_control * wc)2988 static noinline int walk_down_log_tree(struct btrfs_path *path, int *level,
2989 				       struct walk_control *wc)
2990 {
2991 	struct btrfs_trans_handle *trans = wc->trans;
2992 	struct btrfs_fs_info *fs_info = wc->log->fs_info;
2993 	u64 bytenr;
2994 	u64 ptr_gen;
2995 	struct extent_buffer *next;
2996 	struct extent_buffer *cur;
2997 	int ret = 0;
2998 
2999 	while (*level > 0) {
3000 		struct btrfs_tree_parent_check check = { 0 };
3001 
3002 		cur = path->nodes[*level];
3003 
3004 		WARN_ON(btrfs_header_level(cur) != *level);
3005 
3006 		if (path->slots[*level] >=
3007 		    btrfs_header_nritems(cur))
3008 			break;
3009 
3010 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
3011 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
3012 		check.transid = ptr_gen;
3013 		check.level = *level - 1;
3014 		check.has_first_key = true;
3015 		btrfs_node_key_to_cpu(cur, &check.first_key, path->slots[*level]);
3016 
3017 		next = btrfs_find_create_tree_block(fs_info, bytenr,
3018 						    btrfs_header_owner(cur),
3019 						    *level - 1);
3020 		if (IS_ERR(next)) {
3021 			ret = PTR_ERR(next);
3022 			if (trans)
3023 				btrfs_abort_transaction(trans, ret);
3024 			else
3025 				btrfs_handle_fs_error(fs_info, ret, NULL);
3026 			return ret;
3027 		}
3028 
3029 		if (*level == 1) {
3030 			ret = wc->process_func(next, wc, ptr_gen, *level - 1);
3031 			if (ret) {
3032 				free_extent_buffer(next);
3033 				return ret;
3034 			}
3035 
3036 			path->slots[*level]++;
3037 			if (wc->free) {
3038 				ret = btrfs_read_extent_buffer(next, &check);
3039 				if (ret) {
3040 					free_extent_buffer(next);
3041 					if (trans)
3042 						btrfs_abort_transaction(trans, ret);
3043 					else
3044 						btrfs_handle_fs_error(fs_info, ret, NULL);
3045 					return ret;
3046 				}
3047 
3048 				ret = clean_log_buffer(trans, next);
3049 				if (ret) {
3050 					free_extent_buffer(next);
3051 					return ret;
3052 				}
3053 			}
3054 			free_extent_buffer(next);
3055 			continue;
3056 		}
3057 		ret = btrfs_read_extent_buffer(next, &check);
3058 		if (ret) {
3059 			free_extent_buffer(next);
3060 			if (trans)
3061 				btrfs_abort_transaction(trans, ret);
3062 			else
3063 				btrfs_handle_fs_error(fs_info, ret, NULL);
3064 			return ret;
3065 		}
3066 
3067 		if (path->nodes[*level-1])
3068 			free_extent_buffer(path->nodes[*level-1]);
3069 		path->nodes[*level-1] = next;
3070 		*level = btrfs_header_level(next);
3071 		path->slots[*level] = 0;
3072 		cond_resched();
3073 	}
3074 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
3075 
3076 	cond_resched();
3077 	return 0;
3078 }
3079 
walk_up_log_tree(struct btrfs_path * path,int * level,struct walk_control * wc)3080 static noinline int walk_up_log_tree(struct btrfs_path *path, int *level,
3081 				     struct walk_control *wc)
3082 {
3083 	int i;
3084 	int slot;
3085 	int ret;
3086 
3087 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
3088 		slot = path->slots[i];
3089 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
3090 			path->slots[i]++;
3091 			*level = i;
3092 			WARN_ON(*level == 0);
3093 			return 0;
3094 		} else {
3095 			ret = wc->process_func(path->nodes[*level], wc,
3096 				 btrfs_header_generation(path->nodes[*level]),
3097 				 *level);
3098 			if (ret)
3099 				return ret;
3100 
3101 			if (wc->free) {
3102 				ret = clean_log_buffer(wc->trans, path->nodes[*level]);
3103 				if (ret)
3104 					return ret;
3105 			}
3106 			free_extent_buffer(path->nodes[*level]);
3107 			path->nodes[*level] = NULL;
3108 			*level = i + 1;
3109 		}
3110 	}
3111 	return 1;
3112 }
3113 
3114 /*
3115  * drop the reference count on the tree rooted at 'snap'.  This traverses
3116  * the tree freeing any blocks that have a ref count of zero after being
3117  * decremented.
3118  */
walk_log_tree(struct walk_control * wc)3119 static int walk_log_tree(struct walk_control *wc)
3120 {
3121 	struct btrfs_root *log = wc->log;
3122 	int ret = 0;
3123 	int wret;
3124 	int level;
3125 	BTRFS_PATH_AUTO_FREE(path);
3126 	int orig_level;
3127 
3128 	path = btrfs_alloc_path();
3129 	if (!path)
3130 		return -ENOMEM;
3131 
3132 	level = btrfs_header_level(log->node);
3133 	orig_level = level;
3134 	path->nodes[level] = log->node;
3135 	refcount_inc(&log->node->refs);
3136 	path->slots[level] = 0;
3137 
3138 	while (1) {
3139 		wret = walk_down_log_tree(path, &level, wc);
3140 		if (wret > 0)
3141 			break;
3142 		if (wret < 0)
3143 			return wret;
3144 
3145 		wret = walk_up_log_tree(path, &level, wc);
3146 		if (wret > 0)
3147 			break;
3148 		if (wret < 0)
3149 			return wret;
3150 	}
3151 
3152 	/* was the root node processed? if not, catch it here */
3153 	if (path->nodes[orig_level]) {
3154 		ret = wc->process_func(path->nodes[orig_level], wc,
3155 			 btrfs_header_generation(path->nodes[orig_level]),
3156 			 orig_level);
3157 		if (ret)
3158 			return ret;
3159 		if (wc->free)
3160 			ret = clean_log_buffer(wc->trans, path->nodes[orig_level]);
3161 	}
3162 
3163 	return ret;
3164 }
3165 
3166 /*
3167  * helper function to update the item for a given subvolumes log root
3168  * in the tree of log roots
3169  */
update_log_root(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_root_item * root_item)3170 static int update_log_root(struct btrfs_trans_handle *trans,
3171 			   struct btrfs_root *log,
3172 			   struct btrfs_root_item *root_item)
3173 {
3174 	struct btrfs_fs_info *fs_info = log->fs_info;
3175 	int ret;
3176 
3177 	if (log->log_transid == 1) {
3178 		/* insert root item on the first sync */
3179 		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
3180 				&log->root_key, root_item);
3181 	} else {
3182 		ret = btrfs_update_root(trans, fs_info->log_root_tree,
3183 				&log->root_key, root_item);
3184 	}
3185 	return ret;
3186 }
3187 
wait_log_commit(struct btrfs_root * root,int transid)3188 static void wait_log_commit(struct btrfs_root *root, int transid)
3189 {
3190 	DEFINE_WAIT(wait);
3191 	int index = transid % 2;
3192 
3193 	/*
3194 	 * we only allow two pending log transactions at a time,
3195 	 * so we know that if ours is more than 2 older than the
3196 	 * current transaction, we're done
3197 	 */
3198 	for (;;) {
3199 		prepare_to_wait(&root->log_commit_wait[index],
3200 				&wait, TASK_UNINTERRUPTIBLE);
3201 
3202 		if (!(root->log_transid_committed < transid &&
3203 		      atomic_read(&root->log_commit[index])))
3204 			break;
3205 
3206 		mutex_unlock(&root->log_mutex);
3207 		schedule();
3208 		mutex_lock(&root->log_mutex);
3209 	}
3210 	finish_wait(&root->log_commit_wait[index], &wait);
3211 }
3212 
wait_for_writer(struct btrfs_root * root)3213 static void wait_for_writer(struct btrfs_root *root)
3214 {
3215 	DEFINE_WAIT(wait);
3216 
3217 	for (;;) {
3218 		prepare_to_wait(&root->log_writer_wait, &wait,
3219 				TASK_UNINTERRUPTIBLE);
3220 		if (!atomic_read(&root->log_writers))
3221 			break;
3222 
3223 		mutex_unlock(&root->log_mutex);
3224 		schedule();
3225 		mutex_lock(&root->log_mutex);
3226 	}
3227 	finish_wait(&root->log_writer_wait, &wait);
3228 }
3229 
btrfs_init_log_ctx(struct btrfs_log_ctx * ctx,struct btrfs_inode * inode)3230 void btrfs_init_log_ctx(struct btrfs_log_ctx *ctx, struct btrfs_inode *inode)
3231 {
3232 	ctx->log_ret = 0;
3233 	ctx->log_transid = 0;
3234 	ctx->log_new_dentries = false;
3235 	ctx->logging_new_name = false;
3236 	ctx->logging_new_delayed_dentries = false;
3237 	ctx->logged_before = false;
3238 	ctx->inode = inode;
3239 	INIT_LIST_HEAD(&ctx->list);
3240 	INIT_LIST_HEAD(&ctx->ordered_extents);
3241 	INIT_LIST_HEAD(&ctx->conflict_inodes);
3242 	ctx->num_conflict_inodes = 0;
3243 	ctx->logging_conflict_inodes = false;
3244 	ctx->scratch_eb = NULL;
3245 }
3246 
btrfs_init_log_ctx_scratch_eb(struct btrfs_log_ctx * ctx)3247 void btrfs_init_log_ctx_scratch_eb(struct btrfs_log_ctx *ctx)
3248 {
3249 	struct btrfs_inode *inode = ctx->inode;
3250 
3251 	if (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
3252 	    !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
3253 		return;
3254 
3255 	/*
3256 	 * Don't care about allocation failure. This is just for optimization,
3257 	 * if we fail to allocate here, we will try again later if needed.
3258 	 */
3259 	ctx->scratch_eb = alloc_dummy_extent_buffer(inode->root->fs_info, 0);
3260 }
3261 
btrfs_release_log_ctx_extents(struct btrfs_log_ctx * ctx)3262 void btrfs_release_log_ctx_extents(struct btrfs_log_ctx *ctx)
3263 {
3264 	struct btrfs_ordered_extent *ordered;
3265 	struct btrfs_ordered_extent *tmp;
3266 
3267 	btrfs_assert_inode_locked(ctx->inode);
3268 
3269 	list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
3270 		list_del_init(&ordered->log_list);
3271 		btrfs_put_ordered_extent(ordered);
3272 	}
3273 }
3274 
3275 
btrfs_remove_log_ctx(struct btrfs_root * root,struct btrfs_log_ctx * ctx)3276 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
3277 					struct btrfs_log_ctx *ctx)
3278 {
3279 	mutex_lock(&root->log_mutex);
3280 	list_del_init(&ctx->list);
3281 	mutex_unlock(&root->log_mutex);
3282 }
3283 
3284 /*
3285  * Invoked in log mutex context, or be sure there is no other task which
3286  * can access the list.
3287  */
btrfs_remove_all_log_ctxs(struct btrfs_root * root,int index,int error)3288 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
3289 					     int index, int error)
3290 {
3291 	struct btrfs_log_ctx *ctx;
3292 	struct btrfs_log_ctx *safe;
3293 
3294 	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
3295 		list_del_init(&ctx->list);
3296 		ctx->log_ret = error;
3297 	}
3298 }
3299 
3300 /*
3301  * Sends a given tree log down to the disk and updates the super blocks to
3302  * record it.  When this call is done, you know that any inodes previously
3303  * logged are safely on disk only if it returns 0.
3304  *
3305  * Any other return value means you need to call btrfs_commit_transaction.
3306  * Some of the edge cases for fsyncing directories that have had unlinks
3307  * or renames done in the past mean that sometimes the only safe
3308  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
3309  * that has happened.
3310  */
btrfs_sync_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_log_ctx * ctx)3311 int btrfs_sync_log(struct btrfs_trans_handle *trans,
3312 		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
3313 {
3314 	int index1;
3315 	int index2;
3316 	int mark;
3317 	int ret;
3318 	struct btrfs_fs_info *fs_info = root->fs_info;
3319 	struct btrfs_root *log = root->log_root;
3320 	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
3321 	struct btrfs_root_item new_root_item;
3322 	int log_transid = 0;
3323 	struct btrfs_log_ctx root_log_ctx;
3324 	struct blk_plug plug;
3325 	u64 log_root_start;
3326 	u64 log_root_level;
3327 
3328 	mutex_lock(&root->log_mutex);
3329 	log_transid = ctx->log_transid;
3330 	if (root->log_transid_committed >= log_transid) {
3331 		mutex_unlock(&root->log_mutex);
3332 		return ctx->log_ret;
3333 	}
3334 
3335 	index1 = log_transid % 2;
3336 	if (atomic_read(&root->log_commit[index1])) {
3337 		wait_log_commit(root, log_transid);
3338 		mutex_unlock(&root->log_mutex);
3339 		return ctx->log_ret;
3340 	}
3341 	ASSERT(log_transid == root->log_transid,
3342 	       "log_transid=%d root->log_transid=%d", log_transid, root->log_transid);
3343 	atomic_set(&root->log_commit[index1], 1);
3344 
3345 	/* wait for previous tree log sync to complete */
3346 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
3347 		wait_log_commit(root, log_transid - 1);
3348 
3349 	while (1) {
3350 		int batch = atomic_read(&root->log_batch);
3351 		/* when we're on an ssd, just kick the log commit out */
3352 		if (!btrfs_test_opt(fs_info, SSD) &&
3353 		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
3354 			mutex_unlock(&root->log_mutex);
3355 			schedule_timeout_uninterruptible(1);
3356 			mutex_lock(&root->log_mutex);
3357 		}
3358 		wait_for_writer(root);
3359 		if (batch == atomic_read(&root->log_batch))
3360 			break;
3361 	}
3362 
3363 	/* bail out if we need to do a full commit */
3364 	if (btrfs_need_log_full_commit(trans)) {
3365 		ret = BTRFS_LOG_FORCE_COMMIT;
3366 		mutex_unlock(&root->log_mutex);
3367 		goto out;
3368 	}
3369 
3370 	if (log_transid % 2 == 0)
3371 		mark = EXTENT_DIRTY_LOG1;
3372 	else
3373 		mark = EXTENT_DIRTY_LOG2;
3374 
3375 	/* we start IO on  all the marked extents here, but we don't actually
3376 	 * wait for them until later.
3377 	 */
3378 	blk_start_plug(&plug);
3379 	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
3380 	/*
3381 	 * -EAGAIN happens when someone, e.g., a concurrent transaction
3382 	 *  commit, writes a dirty extent in this tree-log commit. This
3383 	 *  concurrent write will create a hole writing out the extents,
3384 	 *  and we cannot proceed on a zoned filesystem, requiring
3385 	 *  sequential writing. While we can bail out to a full commit
3386 	 *  here, but we can continue hoping the concurrent writing fills
3387 	 *  the hole.
3388 	 */
3389 	if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
3390 		ret = 0;
3391 	if (ret) {
3392 		blk_finish_plug(&plug);
3393 		btrfs_set_log_full_commit(trans);
3394 		mutex_unlock(&root->log_mutex);
3395 		goto out;
3396 	}
3397 
3398 	/*
3399 	 * We _must_ update under the root->log_mutex in order to make sure we
3400 	 * have a consistent view of the log root we are trying to commit at
3401 	 * this moment.
3402 	 *
3403 	 * We _must_ copy this into a local copy, because we are not holding the
3404 	 * log_root_tree->log_mutex yet.  This is important because when we
3405 	 * commit the log_root_tree we must have a consistent view of the
3406 	 * log_root_tree when we update the super block to point at the
3407 	 * log_root_tree bytenr.  If we update the log_root_tree here we'll race
3408 	 * with the commit and possibly point at the new block which we may not
3409 	 * have written out.
3410 	 */
3411 	btrfs_set_root_node(&log->root_item, log->node);
3412 	memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3413 
3414 	btrfs_set_root_log_transid(root, root->log_transid + 1);
3415 	log->log_transid = root->log_transid;
3416 	root->log_start_pid = 0;
3417 	/*
3418 	 * IO has been started, blocks of the log tree have WRITTEN flag set
3419 	 * in their headers. new modifications of the log will be written to
3420 	 * new positions. so it's safe to allow log writers to go in.
3421 	 */
3422 	mutex_unlock(&root->log_mutex);
3423 
3424 	if (btrfs_is_zoned(fs_info)) {
3425 		mutex_lock(&fs_info->tree_root->log_mutex);
3426 		if (!log_root_tree->node) {
3427 			ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
3428 			if (ret) {
3429 				mutex_unlock(&fs_info->tree_root->log_mutex);
3430 				blk_finish_plug(&plug);
3431 				goto out;
3432 			}
3433 		}
3434 		mutex_unlock(&fs_info->tree_root->log_mutex);
3435 	}
3436 
3437 	btrfs_init_log_ctx(&root_log_ctx, NULL);
3438 
3439 	mutex_lock(&log_root_tree->log_mutex);
3440 
3441 	index2 = log_root_tree->log_transid % 2;
3442 	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3443 	root_log_ctx.log_transid = log_root_tree->log_transid;
3444 
3445 	/*
3446 	 * Now we are safe to update the log_root_tree because we're under the
3447 	 * log_mutex, and we're a current writer so we're holding the commit
3448 	 * open until we drop the log_mutex.
3449 	 */
3450 	ret = update_log_root(trans, log, &new_root_item);
3451 	if (ret) {
3452 		list_del_init(&root_log_ctx.list);
3453 		blk_finish_plug(&plug);
3454 		btrfs_set_log_full_commit(trans);
3455 		if (ret != -ENOSPC)
3456 			btrfs_err(fs_info,
3457 				  "failed to update log for root %llu ret %d",
3458 				  btrfs_root_id(root), ret);
3459 		btrfs_wait_tree_log_extents(log, mark);
3460 		mutex_unlock(&log_root_tree->log_mutex);
3461 		goto out;
3462 	}
3463 
3464 	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3465 		blk_finish_plug(&plug);
3466 		list_del_init(&root_log_ctx.list);
3467 		mutex_unlock(&log_root_tree->log_mutex);
3468 		ret = root_log_ctx.log_ret;
3469 		goto out;
3470 	}
3471 
3472 	if (atomic_read(&log_root_tree->log_commit[index2])) {
3473 		blk_finish_plug(&plug);
3474 		ret = btrfs_wait_tree_log_extents(log, mark);
3475 		wait_log_commit(log_root_tree,
3476 				root_log_ctx.log_transid);
3477 		mutex_unlock(&log_root_tree->log_mutex);
3478 		if (!ret)
3479 			ret = root_log_ctx.log_ret;
3480 		goto out;
3481 	}
3482 	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid,
3483 	       "root_log_ctx.log_transid=%d log_root_tree->log_transid=%d",
3484 		root_log_ctx.log_transid, log_root_tree->log_transid);
3485 	atomic_set(&log_root_tree->log_commit[index2], 1);
3486 
3487 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3488 		wait_log_commit(log_root_tree,
3489 				root_log_ctx.log_transid - 1);
3490 	}
3491 
3492 	/*
3493 	 * now that we've moved on to the tree of log tree roots,
3494 	 * check the full commit flag again
3495 	 */
3496 	if (btrfs_need_log_full_commit(trans)) {
3497 		blk_finish_plug(&plug);
3498 		btrfs_wait_tree_log_extents(log, mark);
3499 		mutex_unlock(&log_root_tree->log_mutex);
3500 		ret = BTRFS_LOG_FORCE_COMMIT;
3501 		goto out_wake_log_root;
3502 	}
3503 
3504 	ret = btrfs_write_marked_extents(fs_info,
3505 					 &log_root_tree->dirty_log_pages,
3506 					 EXTENT_DIRTY_LOG1 | EXTENT_DIRTY_LOG2);
3507 	blk_finish_plug(&plug);
3508 	/*
3509 	 * As described above, -EAGAIN indicates a hole in the extents. We
3510 	 * cannot wait for these write outs since the waiting cause a
3511 	 * deadlock. Bail out to the full commit instead.
3512 	 */
3513 	if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3514 		btrfs_set_log_full_commit(trans);
3515 		btrfs_wait_tree_log_extents(log, mark);
3516 		mutex_unlock(&log_root_tree->log_mutex);
3517 		goto out_wake_log_root;
3518 	} else if (ret) {
3519 		btrfs_set_log_full_commit(trans);
3520 		mutex_unlock(&log_root_tree->log_mutex);
3521 		goto out_wake_log_root;
3522 	}
3523 	ret = btrfs_wait_tree_log_extents(log, mark);
3524 	if (!ret)
3525 		ret = btrfs_wait_tree_log_extents(log_root_tree,
3526 						  EXTENT_DIRTY_LOG1 | EXTENT_DIRTY_LOG2);
3527 	if (ret) {
3528 		btrfs_set_log_full_commit(trans);
3529 		mutex_unlock(&log_root_tree->log_mutex);
3530 		goto out_wake_log_root;
3531 	}
3532 
3533 	log_root_start = log_root_tree->node->start;
3534 	log_root_level = btrfs_header_level(log_root_tree->node);
3535 	log_root_tree->log_transid++;
3536 	mutex_unlock(&log_root_tree->log_mutex);
3537 
3538 	/*
3539 	 * Here we are guaranteed that nobody is going to write the superblock
3540 	 * for the current transaction before us and that neither we do write
3541 	 * our superblock before the previous transaction finishes its commit
3542 	 * and writes its superblock, because:
3543 	 *
3544 	 * 1) We are holding a handle on the current transaction, so no body
3545 	 *    can commit it until we release the handle;
3546 	 *
3547 	 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3548 	 *    if the previous transaction is still committing, and hasn't yet
3549 	 *    written its superblock, we wait for it to do it, because a
3550 	 *    transaction commit acquires the tree_log_mutex when the commit
3551 	 *    begins and releases it only after writing its superblock.
3552 	 */
3553 	mutex_lock(&fs_info->tree_log_mutex);
3554 
3555 	/*
3556 	 * The previous transaction writeout phase could have failed, and thus
3557 	 * marked the fs in an error state.  We must not commit here, as we
3558 	 * could have updated our generation in the super_for_commit and
3559 	 * writing the super here would result in transid mismatches.  If there
3560 	 * is an error here just bail.
3561 	 */
3562 	if (BTRFS_FS_ERROR(fs_info)) {
3563 		ret = -EIO;
3564 		btrfs_set_log_full_commit(trans);
3565 		btrfs_abort_transaction(trans, ret);
3566 		mutex_unlock(&fs_info->tree_log_mutex);
3567 		goto out_wake_log_root;
3568 	}
3569 
3570 	btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3571 	btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
3572 	ret = write_all_supers(fs_info, 1);
3573 	mutex_unlock(&fs_info->tree_log_mutex);
3574 	if (unlikely(ret)) {
3575 		btrfs_set_log_full_commit(trans);
3576 		btrfs_abort_transaction(trans, ret);
3577 		goto out_wake_log_root;
3578 	}
3579 
3580 	/*
3581 	 * We know there can only be one task here, since we have not yet set
3582 	 * root->log_commit[index1] to 0 and any task attempting to sync the
3583 	 * log must wait for the previous log transaction to commit if it's
3584 	 * still in progress or wait for the current log transaction commit if
3585 	 * someone else already started it. We use <= and not < because the
3586 	 * first log transaction has an ID of 0.
3587 	 */
3588 	ASSERT(btrfs_get_root_last_log_commit(root) <= log_transid,
3589 	       "last_log_commit(root)=%d log_transid=%d",
3590 	       btrfs_get_root_last_log_commit(root), log_transid);
3591 	btrfs_set_root_last_log_commit(root, log_transid);
3592 
3593 out_wake_log_root:
3594 	mutex_lock(&log_root_tree->log_mutex);
3595 	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3596 
3597 	log_root_tree->log_transid_committed++;
3598 	atomic_set(&log_root_tree->log_commit[index2], 0);
3599 	mutex_unlock(&log_root_tree->log_mutex);
3600 
3601 	/*
3602 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3603 	 * all the updates above are seen by the woken threads. It might not be
3604 	 * necessary, but proving that seems to be hard.
3605 	 */
3606 	cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3607 out:
3608 	mutex_lock(&root->log_mutex);
3609 	btrfs_remove_all_log_ctxs(root, index1, ret);
3610 	root->log_transid_committed++;
3611 	atomic_set(&root->log_commit[index1], 0);
3612 	mutex_unlock(&root->log_mutex);
3613 
3614 	/*
3615 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3616 	 * all the updates above are seen by the woken threads. It might not be
3617 	 * necessary, but proving that seems to be hard.
3618 	 */
3619 	cond_wake_up(&root->log_commit_wait[index1]);
3620 	return ret;
3621 }
3622 
free_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * log)3623 static void free_log_tree(struct btrfs_trans_handle *trans,
3624 			  struct btrfs_root *log)
3625 {
3626 	int ret;
3627 	struct walk_control wc = {
3628 		.free = true,
3629 		.process_func = process_one_buffer,
3630 		.log = log,
3631 		.trans = trans,
3632 	};
3633 
3634 	if (log->node) {
3635 		ret = walk_log_tree(&wc);
3636 		if (ret) {
3637 			/*
3638 			 * We weren't able to traverse the entire log tree, the
3639 			 * typical scenario is getting an -EIO when reading an
3640 			 * extent buffer of the tree, due to a previous writeback
3641 			 * failure of it.
3642 			 */
3643 			set_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
3644 				&log->fs_info->fs_state);
3645 
3646 			/*
3647 			 * Some extent buffers of the log tree may still be dirty
3648 			 * and not yet written back to storage, because we may
3649 			 * have updates to a log tree without syncing a log tree,
3650 			 * such as during rename and link operations. So flush
3651 			 * them out and wait for their writeback to complete, so
3652 			 * that we properly cleanup their state and pages.
3653 			 */
3654 			btrfs_write_marked_extents(log->fs_info,
3655 						   &log->dirty_log_pages,
3656 						   EXTENT_DIRTY_LOG1 | EXTENT_DIRTY_LOG2);
3657 			btrfs_wait_tree_log_extents(log,
3658 						    EXTENT_DIRTY_LOG1 | EXTENT_DIRTY_LOG2);
3659 
3660 			if (trans)
3661 				btrfs_abort_transaction(trans, ret);
3662 			else
3663 				btrfs_handle_fs_error(log->fs_info, ret, NULL);
3664 		}
3665 	}
3666 
3667 	btrfs_extent_io_tree_release(&log->dirty_log_pages);
3668 	btrfs_extent_io_tree_release(&log->log_csum_range);
3669 
3670 	btrfs_put_root(log);
3671 }
3672 
3673 /*
3674  * free all the extents used by the tree log.  This should be called
3675  * at commit time of the full transaction
3676  */
btrfs_free_log(struct btrfs_trans_handle * trans,struct btrfs_root * root)3677 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3678 {
3679 	if (root->log_root) {
3680 		free_log_tree(trans, root->log_root);
3681 		root->log_root = NULL;
3682 		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3683 	}
3684 	return 0;
3685 }
3686 
btrfs_free_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)3687 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3688 			     struct btrfs_fs_info *fs_info)
3689 {
3690 	if (fs_info->log_root_tree) {
3691 		free_log_tree(trans, fs_info->log_root_tree);
3692 		fs_info->log_root_tree = NULL;
3693 		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
3694 	}
3695 	return 0;
3696 }
3697 
mark_inode_as_not_logged(const struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3698 static bool mark_inode_as_not_logged(const struct btrfs_trans_handle *trans,
3699 				     struct btrfs_inode *inode)
3700 {
3701 	bool ret = false;
3702 
3703 	/*
3704 	 * Do this only if ->logged_trans is still 0 to prevent races with
3705 	 * concurrent logging as we may see the inode not logged when
3706 	 * inode_logged() is called but it gets logged after inode_logged() did
3707 	 * not find it in the log tree and we end up setting ->logged_trans to a
3708 	 * value less than trans->transid after the concurrent logging task has
3709 	 * set it to trans->transid. As a consequence, subsequent rename, unlink
3710 	 * and link operations may end up not logging new names and removing old
3711 	 * names from the log.
3712 	 */
3713 	spin_lock(&inode->lock);
3714 	if (inode->logged_trans == 0)
3715 		inode->logged_trans = trans->transid - 1;
3716 	else if (inode->logged_trans == trans->transid)
3717 		ret = true;
3718 	spin_unlock(&inode->lock);
3719 
3720 	return ret;
3721 }
3722 
3723 /*
3724  * Check if an inode was logged in the current transaction. This correctly deals
3725  * with the case where the inode was logged but has a logged_trans of 0, which
3726  * happens if the inode is evicted and loaded again, as logged_trans is an in
3727  * memory only field (not persisted).
3728  *
3729  * Returns 1 if the inode was logged before in the transaction, 0 if it was not,
3730  * and < 0 on error.
3731  */
inode_logged(const struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path_in)3732 static int inode_logged(const struct btrfs_trans_handle *trans,
3733 			struct btrfs_inode *inode,
3734 			struct btrfs_path *path_in)
3735 {
3736 	struct btrfs_path *path = path_in;
3737 	struct btrfs_key key;
3738 	int ret;
3739 
3740 	/*
3741 	 * Quick lockless call, since once ->logged_trans is set to the current
3742 	 * transaction, we never set it to a lower value anywhere else.
3743 	 */
3744 	if (data_race(inode->logged_trans) == trans->transid)
3745 		return 1;
3746 
3747 	/*
3748 	 * If logged_trans is not 0 and not trans->transid, then we know the
3749 	 * inode was not logged in this transaction, so we can return false
3750 	 * right away. We take the lock to avoid a race caused by load/store
3751 	 * tearing with a concurrent btrfs_log_inode() call or a concurrent task
3752 	 * in this function further below - an update to trans->transid can be
3753 	 * teared into two 32 bits updates for example, in which case we could
3754 	 * see a positive value that is not trans->transid and assume the inode
3755 	 * was not logged when it was.
3756 	 */
3757 	spin_lock(&inode->lock);
3758 	if (inode->logged_trans == trans->transid) {
3759 		spin_unlock(&inode->lock);
3760 		return 1;
3761 	} else if (inode->logged_trans > 0) {
3762 		spin_unlock(&inode->lock);
3763 		return 0;
3764 	}
3765 	spin_unlock(&inode->lock);
3766 
3767 	/*
3768 	 * If no log tree was created for this root in this transaction, then
3769 	 * the inode can not have been logged in this transaction. In that case
3770 	 * set logged_trans to anything greater than 0 and less than the current
3771 	 * transaction's ID, to avoid the search below in a future call in case
3772 	 * a log tree gets created after this.
3773 	 */
3774 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state))
3775 		return mark_inode_as_not_logged(trans, inode);
3776 
3777 	/*
3778 	 * We have a log tree and the inode's logged_trans is 0. We can't tell
3779 	 * for sure if the inode was logged before in this transaction by looking
3780 	 * only at logged_trans. We could be pessimistic and assume it was, but
3781 	 * that can lead to unnecessarily logging an inode during rename and link
3782 	 * operations, and then further updating the log in followup rename and
3783 	 * link operations, specially if it's a directory, which adds latency
3784 	 * visible to applications doing a series of rename or link operations.
3785 	 *
3786 	 * A logged_trans of 0 here can mean several things:
3787 	 *
3788 	 * 1) The inode was never logged since the filesystem was mounted, and may
3789 	 *    or may have not been evicted and loaded again;
3790 	 *
3791 	 * 2) The inode was logged in a previous transaction, then evicted and
3792 	 *    then loaded again;
3793 	 *
3794 	 * 3) The inode was logged in the current transaction, then evicted and
3795 	 *    then loaded again.
3796 	 *
3797 	 * For cases 1) and 2) we don't want to return true, but we need to detect
3798 	 * case 3) and return true. So we do a search in the log root for the inode
3799 	 * item.
3800 	 */
3801 	key.objectid = btrfs_ino(inode);
3802 	key.type = BTRFS_INODE_ITEM_KEY;
3803 	key.offset = 0;
3804 
3805 	if (!path) {
3806 		path = btrfs_alloc_path();
3807 		if (!path)
3808 			return -ENOMEM;
3809 	}
3810 
3811 	ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
3812 
3813 	if (path_in)
3814 		btrfs_release_path(path);
3815 	else
3816 		btrfs_free_path(path);
3817 
3818 	/*
3819 	 * Logging an inode always results in logging its inode item. So if we
3820 	 * did not find the item we know the inode was not logged for sure.
3821 	 */
3822 	if (ret < 0) {
3823 		return ret;
3824 	} else if (ret > 0) {
3825 		/*
3826 		 * Set logged_trans to a value greater than 0 and less then the
3827 		 * current transaction to avoid doing the search in future calls.
3828 		 */
3829 		return mark_inode_as_not_logged(trans, inode);
3830 	}
3831 
3832 	/*
3833 	 * The inode was previously logged and then evicted, set logged_trans to
3834 	 * the current transaction's ID, to avoid future tree searches as long as
3835 	 * the inode is not evicted again.
3836 	 */
3837 	spin_lock(&inode->lock);
3838 	inode->logged_trans = trans->transid;
3839 	spin_unlock(&inode->lock);
3840 
3841 	return 1;
3842 }
3843 
3844 /*
3845  * Delete a directory entry from the log if it exists.
3846  *
3847  * Returns < 0 on error
3848  *           1 if the entry does not exists
3849  *           0 if the entry existed and was successfully deleted
3850  */
del_logged_dentry(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,u64 dir_ino,const struct fscrypt_str * name,u64 index)3851 static int del_logged_dentry(struct btrfs_trans_handle *trans,
3852 			     struct btrfs_root *log,
3853 			     struct btrfs_path *path,
3854 			     u64 dir_ino,
3855 			     const struct fscrypt_str *name,
3856 			     u64 index)
3857 {
3858 	struct btrfs_dir_item *di;
3859 
3860 	/*
3861 	 * We only log dir index items of a directory, so we don't need to look
3862 	 * for dir item keys.
3863 	 */
3864 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3865 					 index, name, -1);
3866 	if (IS_ERR(di))
3867 		return PTR_ERR(di);
3868 	else if (!di)
3869 		return 1;
3870 
3871 	/*
3872 	 * We do not need to update the size field of the directory's
3873 	 * inode item because on log replay we update the field to reflect
3874 	 * all existing entries in the directory (see overwrite_item()).
3875 	 */
3876 	return btrfs_del_item(trans, log, path);
3877 }
3878 
3879 /*
3880  * If both a file and directory are logged, and unlinks or renames are
3881  * mixed in, we have a few interesting corners:
3882  *
3883  * create file X in dir Y
3884  * link file X to X.link in dir Y
3885  * fsync file X
3886  * unlink file X but leave X.link
3887  * fsync dir Y
3888  *
3889  * After a crash we would expect only X.link to exist.  But file X
3890  * didn't get fsync'd again so the log has back refs for X and X.link.
3891  *
3892  * We solve this by removing directory entries and inode backrefs from the
3893  * log when a file that was logged in the current transaction is
3894  * unlinked.  Any later fsync will include the updated log entries, and
3895  * we'll be able to reconstruct the proper directory items from backrefs.
3896  *
3897  * This optimizations allows us to avoid relogging the entire inode
3898  * or the entire directory.
3899  */
btrfs_del_dir_entries_in_log(struct btrfs_trans_handle * trans,const struct fscrypt_str * name,struct btrfs_inode * dir,u64 index)3900 void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3901 				  const struct fscrypt_str *name,
3902 				  struct btrfs_inode *dir, u64 index)
3903 {
3904 	struct btrfs_root *root = dir->root;
3905 	BTRFS_PATH_AUTO_FREE(path);
3906 	int ret;
3907 
3908 	ret = inode_logged(trans, dir, NULL);
3909 	if (ret == 0)
3910 		return;
3911 	if (ret < 0) {
3912 		btrfs_set_log_full_commit(trans);
3913 		return;
3914 	}
3915 
3916 	path = btrfs_alloc_path();
3917 	if (!path) {
3918 		btrfs_set_log_full_commit(trans);
3919 		return;
3920 	}
3921 
3922 	ret = join_running_log_trans(root);
3923 	ASSERT(ret == 0, "join_running_log_trans() ret=%d", ret);
3924 	if (WARN_ON(ret))
3925 		return;
3926 
3927 	mutex_lock(&dir->log_mutex);
3928 
3929 	ret = del_logged_dentry(trans, root->log_root, path, btrfs_ino(dir),
3930 				name, index);
3931 	mutex_unlock(&dir->log_mutex);
3932 	if (ret < 0)
3933 		btrfs_set_log_full_commit(trans);
3934 	btrfs_end_log_trans(root);
3935 }
3936 
3937 /* see comments for btrfs_del_dir_entries_in_log */
btrfs_del_inode_ref_in_log(struct btrfs_trans_handle * trans,const struct fscrypt_str * name,struct btrfs_inode * inode,struct btrfs_inode * dir)3938 void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3939 				const struct fscrypt_str *name,
3940 				struct btrfs_inode *inode,
3941 				struct btrfs_inode *dir)
3942 {
3943 	struct btrfs_root *root = dir->root;
3944 	int ret;
3945 
3946 	ret = inode_logged(trans, inode, NULL);
3947 	if (ret == 0)
3948 		return;
3949 	else if (ret < 0) {
3950 		btrfs_set_log_full_commit(trans);
3951 		return;
3952 	}
3953 
3954 	ret = join_running_log_trans(root);
3955 	ASSERT(ret == 0, "join_running_log_trans() ret=%d", ret);
3956 	if (WARN_ON(ret))
3957 		return;
3958 	mutex_lock(&inode->log_mutex);
3959 
3960 	ret = btrfs_del_inode_ref(trans, root->log_root, name, btrfs_ino(inode),
3961 				  btrfs_ino(dir), NULL);
3962 	mutex_unlock(&inode->log_mutex);
3963 	if (ret < 0 && ret != -ENOENT)
3964 		btrfs_set_log_full_commit(trans);
3965 	btrfs_end_log_trans(root);
3966 }
3967 
3968 /*
3969  * creates a range item in the log for 'dirid'.  first_offset and
3970  * last_offset tell us which parts of the key space the log should
3971  * be considered authoritative for.
3972  */
insert_dir_log_key(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,u64 dirid,u64 first_offset,u64 last_offset)3973 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3974 				       struct btrfs_root *log,
3975 				       struct btrfs_path *path,
3976 				       u64 dirid,
3977 				       u64 first_offset, u64 last_offset)
3978 {
3979 	int ret;
3980 	struct btrfs_key key;
3981 	struct btrfs_dir_log_item *item;
3982 
3983 	key.objectid = dirid;
3984 	key.type = BTRFS_DIR_LOG_INDEX_KEY;
3985 	key.offset = first_offset;
3986 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3987 	/*
3988 	 * -EEXIST is fine and can happen sporadically when we are logging a
3989 	 * directory and have concurrent insertions in the subvolume's tree for
3990 	 * items from other inodes and that result in pushing off some dir items
3991 	 * from one leaf to another in order to accommodate for the new items.
3992 	 * This results in logging the same dir index range key.
3993 	 */
3994 	if (ret && ret != -EEXIST)
3995 		return ret;
3996 
3997 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3998 			      struct btrfs_dir_log_item);
3999 	if (ret == -EEXIST) {
4000 		const u64 curr_end = btrfs_dir_log_end(path->nodes[0], item);
4001 
4002 		/*
4003 		 * btrfs_del_dir_entries_in_log() might have been called during
4004 		 * an unlink between the initial insertion of this key and the
4005 		 * current update, or we might be logging a single entry deletion
4006 		 * during a rename, so set the new last_offset to the max value.
4007 		 */
4008 		last_offset = max(last_offset, curr_end);
4009 	}
4010 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
4011 	btrfs_release_path(path);
4012 	return 0;
4013 }
4014 
flush_dir_items_batch(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct extent_buffer * src,struct btrfs_path * dst_path,int start_slot,int count)4015 static int flush_dir_items_batch(struct btrfs_trans_handle *trans,
4016 				 struct btrfs_inode *inode,
4017 				 struct extent_buffer *src,
4018 				 struct btrfs_path *dst_path,
4019 				 int start_slot,
4020 				 int count)
4021 {
4022 	struct btrfs_root *log = inode->root->log_root;
4023 	char AUTO_KFREE(ins_data);
4024 	struct btrfs_item_batch batch;
4025 	struct extent_buffer *dst;
4026 	unsigned long src_offset;
4027 	unsigned long dst_offset;
4028 	u64 last_index;
4029 	struct btrfs_key key;
4030 	u32 item_size;
4031 	int ret;
4032 	int i;
4033 
4034 	ASSERT(count > 0, "count=%d", count);
4035 	batch.nr = count;
4036 
4037 	if (count == 1) {
4038 		btrfs_item_key_to_cpu(src, &key, start_slot);
4039 		item_size = btrfs_item_size(src, start_slot);
4040 		batch.keys = &key;
4041 		batch.data_sizes = &item_size;
4042 		batch.total_data_size = item_size;
4043 	} else {
4044 		struct btrfs_key *ins_keys;
4045 		u32 *ins_sizes;
4046 
4047 		ins_data = kmalloc_array(count, sizeof(u32) + sizeof(struct btrfs_key), GFP_NOFS);
4048 		if (!ins_data)
4049 			return -ENOMEM;
4050 
4051 		ins_sizes = (u32 *)ins_data;
4052 		ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32));
4053 		batch.keys = ins_keys;
4054 		batch.data_sizes = ins_sizes;
4055 		batch.total_data_size = 0;
4056 
4057 		for (i = 0; i < count; i++) {
4058 			const int slot = start_slot + i;
4059 
4060 			btrfs_item_key_to_cpu(src, &ins_keys[i], slot);
4061 			ins_sizes[i] = btrfs_item_size(src, slot);
4062 			batch.total_data_size += ins_sizes[i];
4063 		}
4064 	}
4065 
4066 	ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
4067 	if (ret)
4068 		return ret;
4069 
4070 	dst = dst_path->nodes[0];
4071 	/*
4072 	 * Copy all the items in bulk, in a single copy operation. Item data is
4073 	 * organized such that it's placed at the end of a leaf and from right
4074 	 * to left. For example, the data for the second item ends at an offset
4075 	 * that matches the offset where the data for the first item starts, the
4076 	 * data for the third item ends at an offset that matches the offset
4077 	 * where the data of the second items starts, and so on.
4078 	 * Therefore our source and destination start offsets for copy match the
4079 	 * offsets of the last items (highest slots).
4080 	 */
4081 	dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1);
4082 	src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1);
4083 	copy_extent_buffer(dst, src, dst_offset, src_offset, batch.total_data_size);
4084 	btrfs_release_path(dst_path);
4085 
4086 	last_index = batch.keys[count - 1].offset;
4087 	ASSERT(last_index > inode->last_dir_index_offset,
4088 	       "last_index=%llu inode->last_dir_index_offset=%llu",
4089 	       last_index, inode->last_dir_index_offset);
4090 
4091 	/*
4092 	 * If for some unexpected reason the last item's index is not greater
4093 	 * than the last index we logged, warn and force a transaction commit.
4094 	 */
4095 	if (WARN_ON(last_index <= inode->last_dir_index_offset))
4096 		ret = BTRFS_LOG_FORCE_COMMIT;
4097 	else
4098 		inode->last_dir_index_offset = last_index;
4099 
4100 	if (btrfs_get_first_dir_index_to_log(inode) == 0)
4101 		btrfs_set_first_dir_index_to_log(inode, batch.keys[0].offset);
4102 
4103 	return ret;
4104 }
4105 
clone_leaf(struct btrfs_path * path,struct btrfs_log_ctx * ctx)4106 static int clone_leaf(struct btrfs_path *path, struct btrfs_log_ctx *ctx)
4107 {
4108 	const int slot = path->slots[0];
4109 
4110 	if (ctx->scratch_eb) {
4111 		copy_extent_buffer_full(ctx->scratch_eb, path->nodes[0]);
4112 	} else {
4113 		ctx->scratch_eb = btrfs_clone_extent_buffer(path->nodes[0]);
4114 		if (!ctx->scratch_eb)
4115 			return -ENOMEM;
4116 	}
4117 
4118 	btrfs_release_path(path);
4119 	path->nodes[0] = ctx->scratch_eb;
4120 	path->slots[0] = slot;
4121 	/*
4122 	 * Add extra ref to scratch eb so that it is not freed when callers
4123 	 * release the path, so we can reuse it later if needed.
4124 	 */
4125 	refcount_inc(&ctx->scratch_eb->refs);
4126 
4127 	return 0;
4128 }
4129 
process_dir_items_leaf(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,struct btrfs_log_ctx * ctx,u64 * last_old_dentry_offset)4130 static int process_dir_items_leaf(struct btrfs_trans_handle *trans,
4131 				  struct btrfs_inode *inode,
4132 				  struct btrfs_path *path,
4133 				  struct btrfs_path *dst_path,
4134 				  struct btrfs_log_ctx *ctx,
4135 				  u64 *last_old_dentry_offset)
4136 {
4137 	struct btrfs_root *log = inode->root->log_root;
4138 	struct extent_buffer *src;
4139 	const int nritems = btrfs_header_nritems(path->nodes[0]);
4140 	const u64 ino = btrfs_ino(inode);
4141 	bool last_found = false;
4142 	int batch_start = 0;
4143 	int batch_size = 0;
4144 	int ret;
4145 
4146 	/*
4147 	 * We need to clone the leaf, release the read lock on it, and use the
4148 	 * clone before modifying the log tree. See the comment at copy_items()
4149 	 * about why we need to do this.
4150 	 */
4151 	ret = clone_leaf(path, ctx);
4152 	if (ret < 0)
4153 		return ret;
4154 
4155 	src = path->nodes[0];
4156 
4157 	for (int i = path->slots[0]; i < nritems; i++) {
4158 		struct btrfs_dir_item *di;
4159 		struct btrfs_key key;
4160 
4161 		btrfs_item_key_to_cpu(src, &key, i);
4162 
4163 		if (key.objectid != ino || key.type != BTRFS_DIR_INDEX_KEY) {
4164 			last_found = true;
4165 			break;
4166 		}
4167 
4168 		di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
4169 
4170 		/*
4171 		 * Skip ranges of items that consist only of dir item keys created
4172 		 * in past transactions. However if we find a gap, we must log a
4173 		 * dir index range item for that gap, so that index keys in that
4174 		 * gap are deleted during log replay.
4175 		 */
4176 		if (btrfs_dir_transid(src, di) < trans->transid) {
4177 			if (key.offset > *last_old_dentry_offset + 1) {
4178 				ret = insert_dir_log_key(trans, log, dst_path,
4179 						 ino, *last_old_dentry_offset + 1,
4180 						 key.offset - 1);
4181 				if (ret < 0)
4182 					return ret;
4183 			}
4184 
4185 			*last_old_dentry_offset = key.offset;
4186 			continue;
4187 		}
4188 
4189 		/* If we logged this dir index item before, we can skip it. */
4190 		if (key.offset <= inode->last_dir_index_offset)
4191 			continue;
4192 
4193 		/*
4194 		 * We must make sure that when we log a directory entry, the
4195 		 * corresponding inode, after log replay, has a matching link
4196 		 * count. For example:
4197 		 *
4198 		 * touch foo
4199 		 * mkdir mydir
4200 		 * sync
4201 		 * ln foo mydir/bar
4202 		 * xfs_io -c "fsync" mydir
4203 		 * <crash>
4204 		 * <mount fs and log replay>
4205 		 *
4206 		 * Would result in a fsync log that when replayed, our file inode
4207 		 * would have a link count of 1, but we get two directory entries
4208 		 * pointing to the same inode. After removing one of the names,
4209 		 * it would not be possible to remove the other name, which
4210 		 * resulted always in stale file handle errors, and would not be
4211 		 * possible to rmdir the parent directory, since its i_size could
4212 		 * never be decremented to the value BTRFS_EMPTY_DIR_SIZE,
4213 		 * resulting in -ENOTEMPTY errors.
4214 		 */
4215 		if (!ctx->log_new_dentries) {
4216 			struct btrfs_key di_key;
4217 
4218 			btrfs_dir_item_key_to_cpu(src, di, &di_key);
4219 			if (di_key.type != BTRFS_ROOT_ITEM_KEY)
4220 				ctx->log_new_dentries = true;
4221 		}
4222 
4223 		if (batch_size == 0)
4224 			batch_start = i;
4225 		batch_size++;
4226 	}
4227 
4228 	if (batch_size > 0) {
4229 		ret = flush_dir_items_batch(trans, inode, src, dst_path,
4230 					    batch_start, batch_size);
4231 		if (ret < 0)
4232 			return ret;
4233 	}
4234 
4235 	return last_found ? 1 : 0;
4236 }
4237 
4238 /*
4239  * log all the items included in the current transaction for a given
4240  * directory.  This also creates the range items in the log tree required
4241  * to replay anything deleted before the fsync
4242  */
log_dir_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,struct btrfs_log_ctx * ctx,u64 min_offset,u64 * last_offset_ret)4243 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
4244 			  struct btrfs_inode *inode,
4245 			  struct btrfs_path *path,
4246 			  struct btrfs_path *dst_path,
4247 			  struct btrfs_log_ctx *ctx,
4248 			  u64 min_offset, u64 *last_offset_ret)
4249 {
4250 	struct btrfs_key min_key;
4251 	struct btrfs_root *root = inode->root;
4252 	struct btrfs_root *log = root->log_root;
4253 	int ret;
4254 	u64 last_old_dentry_offset = min_offset - 1;
4255 	u64 last_offset = (u64)-1;
4256 	u64 ino = btrfs_ino(inode);
4257 
4258 	min_key.objectid = ino;
4259 	min_key.type = BTRFS_DIR_INDEX_KEY;
4260 	min_key.offset = min_offset;
4261 
4262 	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
4263 
4264 	/*
4265 	 * we didn't find anything from this transaction, see if there
4266 	 * is anything at all
4267 	 */
4268 	if (ret != 0 || min_key.objectid != ino ||
4269 	    min_key.type != BTRFS_DIR_INDEX_KEY) {
4270 		min_key.objectid = ino;
4271 		min_key.type = BTRFS_DIR_INDEX_KEY;
4272 		min_key.offset = (u64)-1;
4273 		btrfs_release_path(path);
4274 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
4275 		if (ret < 0) {
4276 			btrfs_release_path(path);
4277 			return ret;
4278 		}
4279 		ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
4280 
4281 		/* if ret == 0 there are items for this type,
4282 		 * create a range to tell us the last key of this type.
4283 		 * otherwise, there are no items in this directory after
4284 		 * *min_offset, and we create a range to indicate that.
4285 		 */
4286 		if (ret == 0) {
4287 			struct btrfs_key tmp;
4288 
4289 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
4290 					      path->slots[0]);
4291 			if (tmp.type == BTRFS_DIR_INDEX_KEY)
4292 				last_old_dentry_offset = tmp.offset;
4293 		} else if (ret > 0) {
4294 			ret = 0;
4295 		}
4296 
4297 		goto done;
4298 	}
4299 
4300 	/* go backward to find any previous key */
4301 	ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
4302 	if (ret == 0) {
4303 		struct btrfs_key tmp;
4304 
4305 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
4306 		/*
4307 		 * The dir index key before the first one we found that needs to
4308 		 * be logged might be in a previous leaf, and there might be a
4309 		 * gap between these keys, meaning that we had deletions that
4310 		 * happened. So the key range item we log (key type
4311 		 * BTRFS_DIR_LOG_INDEX_KEY) must cover a range that starts at the
4312 		 * previous key's offset plus 1, so that those deletes are replayed.
4313 		 */
4314 		if (tmp.type == BTRFS_DIR_INDEX_KEY)
4315 			last_old_dentry_offset = tmp.offset;
4316 	} else if (ret < 0) {
4317 		goto done;
4318 	}
4319 
4320 	btrfs_release_path(path);
4321 
4322 	/*
4323 	 * Find the first key from this transaction again or the one we were at
4324 	 * in the loop below in case we had to reschedule. We may be logging the
4325 	 * directory without holding its VFS lock, which happen when logging new
4326 	 * dentries (through log_new_dir_dentries()) or in some cases when we
4327 	 * need to log the parent directory of an inode. This means a dir index
4328 	 * key might be deleted from the inode's root, and therefore we may not
4329 	 * find it anymore. If we can't find it, just move to the next key. We
4330 	 * can not bail out and ignore, because if we do that we will simply
4331 	 * not log dir index keys that come after the one that was just deleted
4332 	 * and we can end up logging a dir index range that ends at (u64)-1
4333 	 * (@last_offset is initialized to that), resulting in removing dir
4334 	 * entries we should not remove at log replay time.
4335 	 */
4336 search:
4337 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
4338 	if (ret > 0) {
4339 		ret = btrfs_next_item(root, path);
4340 		if (ret > 0) {
4341 			/* There are no more keys in the inode's root. */
4342 			ret = 0;
4343 			goto done;
4344 		}
4345 	}
4346 	if (ret < 0)
4347 		goto done;
4348 
4349 	/*
4350 	 * we have a block from this transaction, log every item in it
4351 	 * from our directory
4352 	 */
4353 	while (1) {
4354 		ret = process_dir_items_leaf(trans, inode, path, dst_path, ctx,
4355 					     &last_old_dentry_offset);
4356 		if (ret != 0) {
4357 			if (ret > 0)
4358 				ret = 0;
4359 			goto done;
4360 		}
4361 		path->slots[0] = btrfs_header_nritems(path->nodes[0]);
4362 
4363 		/*
4364 		 * look ahead to the next item and see if it is also
4365 		 * from this directory and from this transaction
4366 		 */
4367 		ret = btrfs_next_leaf(root, path);
4368 		if (ret) {
4369 			if (ret == 1) {
4370 				last_offset = (u64)-1;
4371 				ret = 0;
4372 			}
4373 			goto done;
4374 		}
4375 		btrfs_item_key_to_cpu(path->nodes[0], &min_key, path->slots[0]);
4376 		if (min_key.objectid != ino || min_key.type != BTRFS_DIR_INDEX_KEY) {
4377 			last_offset = (u64)-1;
4378 			goto done;
4379 		}
4380 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
4381 			/*
4382 			 * The next leaf was not changed in the current transaction
4383 			 * and has at least one dir index key.
4384 			 * We check for the next key because there might have been
4385 			 * one or more deletions between the last key we logged and
4386 			 * that next key. So the key range item we log (key type
4387 			 * BTRFS_DIR_LOG_INDEX_KEY) must end at the next key's
4388 			 * offset minus 1, so that those deletes are replayed.
4389 			 */
4390 			last_offset = min_key.offset - 1;
4391 			goto done;
4392 		}
4393 		if (need_resched()) {
4394 			btrfs_release_path(path);
4395 			cond_resched();
4396 			goto search;
4397 		}
4398 	}
4399 done:
4400 	btrfs_release_path(path);
4401 	btrfs_release_path(dst_path);
4402 
4403 	if (ret == 0) {
4404 		*last_offset_ret = last_offset;
4405 		/*
4406 		 * In case the leaf was changed in the current transaction but
4407 		 * all its dir items are from a past transaction, the last item
4408 		 * in the leaf is a dir item and there's no gap between that last
4409 		 * dir item and the first one on the next leaf (which did not
4410 		 * change in the current transaction), then we don't need to log
4411 		 * a range, last_old_dentry_offset is == to last_offset.
4412 		 */
4413 		ASSERT(last_old_dentry_offset <= last_offset,
4414 		       "last_old_dentry_offset=%llu last_offset=%llu",
4415 		       last_old_dentry_offset, last_offset);
4416 		if (last_old_dentry_offset < last_offset)
4417 			ret = insert_dir_log_key(trans, log, path, ino,
4418 						 last_old_dentry_offset + 1,
4419 						 last_offset);
4420 	}
4421 
4422 	return ret;
4423 }
4424 
4425 /*
4426  * If the inode was logged before and it was evicted, then its
4427  * last_dir_index_offset is 0, so we don't know the value of the last index
4428  * key offset. If that's the case, search for it and update the inode. This
4429  * is to avoid lookups in the log tree every time we try to insert a dir index
4430  * key from a leaf changed in the current transaction, and to allow us to always
4431  * do batch insertions of dir index keys.
4432  */
update_last_dir_index_offset(struct btrfs_inode * inode,struct btrfs_path * path,const struct btrfs_log_ctx * ctx)4433 static int update_last_dir_index_offset(struct btrfs_inode *inode,
4434 					struct btrfs_path *path,
4435 					const struct btrfs_log_ctx *ctx)
4436 {
4437 	const u64 ino = btrfs_ino(inode);
4438 	struct btrfs_key key;
4439 	int ret;
4440 
4441 	lockdep_assert_held(&inode->log_mutex);
4442 
4443 	if (inode->last_dir_index_offset != 0)
4444 		return 0;
4445 
4446 	if (!ctx->logged_before) {
4447 		inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
4448 		return 0;
4449 	}
4450 
4451 	key.objectid = ino;
4452 	key.type = BTRFS_DIR_INDEX_KEY;
4453 	key.offset = (u64)-1;
4454 
4455 	ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
4456 	/*
4457 	 * An error happened or we actually have an index key with an offset
4458 	 * value of (u64)-1. Bail out, we're done.
4459 	 */
4460 	if (ret <= 0)
4461 		goto out;
4462 
4463 	ret = 0;
4464 	inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
4465 
4466 	/*
4467 	 * No dir index items, bail out and leave last_dir_index_offset with
4468 	 * the value right before the first valid index value.
4469 	 */
4470 	if (path->slots[0] == 0)
4471 		goto out;
4472 
4473 	/*
4474 	 * btrfs_search_slot() left us at one slot beyond the slot with the last
4475 	 * index key, or beyond the last key of the directory that is not an
4476 	 * index key. If we have an index key before, set last_dir_index_offset
4477 	 * to its offset value, otherwise leave it with a value right before the
4478 	 * first valid index value, as it means we have an empty directory.
4479 	 */
4480 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
4481 	if (key.objectid == ino && key.type == BTRFS_DIR_INDEX_KEY)
4482 		inode->last_dir_index_offset = key.offset;
4483 
4484 out:
4485 	btrfs_release_path(path);
4486 
4487 	return ret;
4488 }
4489 
4490 /*
4491  * logging directories is very similar to logging inodes, We find all the items
4492  * from the current transaction and write them to the log.
4493  *
4494  * The recovery code scans the directory in the subvolume, and if it finds a
4495  * key in the range logged that is not present in the log tree, then it means
4496  * that dir entry was unlinked during the transaction.
4497  *
4498  * In order for that scan to work, we must include one key smaller than
4499  * the smallest logged by this transaction and one key larger than the largest
4500  * key logged by this transaction.
4501  */
log_directory_changes(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,struct btrfs_log_ctx * ctx)4502 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
4503 			  struct btrfs_inode *inode,
4504 			  struct btrfs_path *path,
4505 			  struct btrfs_path *dst_path,
4506 			  struct btrfs_log_ctx *ctx)
4507 {
4508 	u64 min_key;
4509 	u64 max_key;
4510 	int ret;
4511 
4512 	ret = update_last_dir_index_offset(inode, path, ctx);
4513 	if (ret)
4514 		return ret;
4515 
4516 	min_key = BTRFS_DIR_START_INDEX;
4517 	max_key = 0;
4518 
4519 	while (1) {
4520 		ret = log_dir_items(trans, inode, path, dst_path,
4521 				ctx, min_key, &max_key);
4522 		if (ret)
4523 			return ret;
4524 		if (max_key == (u64)-1)
4525 			break;
4526 		min_key = max_key + 1;
4527 	}
4528 
4529 	return 0;
4530 }
4531 
4532 /*
4533  * a helper function to drop items from the log before we relog an
4534  * inode.  max_key_type indicates the highest item type to remove.
4535  * This cannot be run for file data extents because it does not
4536  * free the extents they point to.
4537  */
drop_inode_items(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,struct btrfs_inode * inode,int max_key_type)4538 static int drop_inode_items(struct btrfs_trans_handle *trans,
4539 				  struct btrfs_root *log,
4540 				  struct btrfs_path *path,
4541 				  struct btrfs_inode *inode,
4542 				  int max_key_type)
4543 {
4544 	int ret;
4545 	struct btrfs_key key;
4546 	struct btrfs_key found_key;
4547 	int start_slot;
4548 
4549 	key.objectid = btrfs_ino(inode);
4550 	key.type = max_key_type;
4551 	key.offset = (u64)-1;
4552 
4553 	while (1) {
4554 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
4555 		if (ret < 0) {
4556 			break;
4557 		} else if (ret > 0) {
4558 			if (path->slots[0] == 0)
4559 				break;
4560 			path->slots[0]--;
4561 		}
4562 
4563 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4564 				      path->slots[0]);
4565 
4566 		if (found_key.objectid != key.objectid)
4567 			break;
4568 
4569 		found_key.offset = 0;
4570 		found_key.type = 0;
4571 		ret = btrfs_bin_search(path->nodes[0], 0, &found_key, &start_slot);
4572 		if (ret < 0)
4573 			break;
4574 
4575 		ret = btrfs_del_items(trans, log, path, start_slot,
4576 				      path->slots[0] - start_slot + 1);
4577 		/*
4578 		 * If start slot isn't 0 then we don't need to re-search, we've
4579 		 * found the last guy with the objectid in this tree.
4580 		 */
4581 		if (ret || start_slot != 0)
4582 			break;
4583 		btrfs_release_path(path);
4584 	}
4585 	btrfs_release_path(path);
4586 	if (ret > 0)
4587 		ret = 0;
4588 	return ret;
4589 }
4590 
truncate_inode_items(struct btrfs_trans_handle * trans,struct btrfs_root * log_root,struct btrfs_inode * inode,u64 new_size,u32 min_type)4591 static int truncate_inode_items(struct btrfs_trans_handle *trans,
4592 				struct btrfs_root *log_root,
4593 				struct btrfs_inode *inode,
4594 				u64 new_size, u32 min_type)
4595 {
4596 	struct btrfs_truncate_control control = {
4597 		.new_size = new_size,
4598 		.ino = btrfs_ino(inode),
4599 		.min_type = min_type,
4600 		.skip_ref_updates = true,
4601 	};
4602 
4603 	return btrfs_truncate_inode_items(trans, log_root, &control);
4604 }
4605 
fill_inode_item(struct btrfs_trans_handle * trans,struct extent_buffer * leaf,struct btrfs_inode_item * item,struct inode * inode,bool log_inode_only,u64 logged_isize)4606 static void fill_inode_item(struct btrfs_trans_handle *trans,
4607 			    struct extent_buffer *leaf,
4608 			    struct btrfs_inode_item *item,
4609 			    struct inode *inode, bool log_inode_only,
4610 			    u64 logged_isize)
4611 {
4612 	u64 flags;
4613 
4614 	if (log_inode_only) {
4615 		/* set the generation to zero so the recover code
4616 		 * can tell the difference between an logging
4617 		 * just to say 'this inode exists' and a logging
4618 		 * to say 'update this inode with these values'
4619 		 */
4620 		btrfs_set_inode_generation(leaf, item, 0);
4621 		btrfs_set_inode_size(leaf, item, logged_isize);
4622 	} else {
4623 		btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
4624 		btrfs_set_inode_size(leaf, item, inode->i_size);
4625 	}
4626 
4627 	btrfs_set_inode_uid(leaf, item, i_uid_read(inode));
4628 	btrfs_set_inode_gid(leaf, item, i_gid_read(inode));
4629 	btrfs_set_inode_mode(leaf, item, inode->i_mode);
4630 	btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
4631 
4632 	btrfs_set_timespec_sec(leaf, &item->atime, inode_get_atime_sec(inode));
4633 	btrfs_set_timespec_nsec(leaf, &item->atime, inode_get_atime_nsec(inode));
4634 
4635 	btrfs_set_timespec_sec(leaf, &item->mtime, inode_get_mtime_sec(inode));
4636 	btrfs_set_timespec_nsec(leaf, &item->mtime, inode_get_mtime_nsec(inode));
4637 
4638 	btrfs_set_timespec_sec(leaf, &item->ctime, inode_get_ctime_sec(inode));
4639 	btrfs_set_timespec_nsec(leaf, &item->ctime, inode_get_ctime_nsec(inode));
4640 
4641 	btrfs_set_timespec_sec(leaf, &item->otime, BTRFS_I(inode)->i_otime_sec);
4642 	btrfs_set_timespec_nsec(leaf, &item->otime, BTRFS_I(inode)->i_otime_nsec);
4643 
4644 	/*
4645 	 * We do not need to set the nbytes field, in fact during a fast fsync
4646 	 * its value may not even be correct, since a fast fsync does not wait
4647 	 * for ordered extent completion, which is where we update nbytes, it
4648 	 * only waits for writeback to complete. During log replay as we find
4649 	 * file extent items and replay them, we adjust the nbytes field of the
4650 	 * inode item in subvolume tree as needed (see overwrite_item()).
4651 	 */
4652 
4653 	btrfs_set_inode_sequence(leaf, item, inode_peek_iversion(inode));
4654 	btrfs_set_inode_transid(leaf, item, trans->transid);
4655 	btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
4656 	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4657 					  BTRFS_I(inode)->ro_flags);
4658 	btrfs_set_inode_flags(leaf, item, flags);
4659 	btrfs_set_inode_block_group(leaf, item, 0);
4660 }
4661 
log_inode_item(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,struct btrfs_inode * inode,bool inode_item_dropped)4662 static int log_inode_item(struct btrfs_trans_handle *trans,
4663 			  struct btrfs_root *log, struct btrfs_path *path,
4664 			  struct btrfs_inode *inode, bool inode_item_dropped)
4665 {
4666 	struct btrfs_inode_item *inode_item;
4667 	struct btrfs_key key;
4668 	int ret;
4669 
4670 	btrfs_get_inode_key(inode, &key);
4671 	/*
4672 	 * If we are doing a fast fsync and the inode was logged before in the
4673 	 * current transaction, then we know the inode was previously logged and
4674 	 * it exists in the log tree. For performance reasons, in this case use
4675 	 * btrfs_search_slot() directly with ins_len set to 0 so that we never
4676 	 * attempt a write lock on the leaf's parent, which adds unnecessary lock
4677 	 * contention in case there are concurrent fsyncs for other inodes of the
4678 	 * same subvolume. Using btrfs_insert_empty_item() when the inode item
4679 	 * already exists can also result in unnecessarily splitting a leaf.
4680 	 */
4681 	if (!inode_item_dropped && inode->logged_trans == trans->transid) {
4682 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
4683 		ASSERT(ret <= 0);
4684 		if (ret > 0)
4685 			ret = -ENOENT;
4686 	} else {
4687 		/*
4688 		 * This means it is the first fsync in the current transaction,
4689 		 * so the inode item is not in the log and we need to insert it.
4690 		 * We can never get -EEXIST because we are only called for a fast
4691 		 * fsync and in case an inode eviction happens after the inode was
4692 		 * logged before in the current transaction, when we load again
4693 		 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime
4694 		 * flags and set ->logged_trans to 0.
4695 		 */
4696 		ret = btrfs_insert_empty_item(trans, log, path, &key,
4697 					      sizeof(*inode_item));
4698 		ASSERT(ret != -EEXIST);
4699 	}
4700 	if (ret)
4701 		return ret;
4702 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4703 				    struct btrfs_inode_item);
4704 	fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
4705 			false, 0);
4706 	btrfs_release_path(path);
4707 	return 0;
4708 }
4709 
log_csums(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_root * log_root,struct btrfs_ordered_sum * sums)4710 static int log_csums(struct btrfs_trans_handle *trans,
4711 		     struct btrfs_inode *inode,
4712 		     struct btrfs_root *log_root,
4713 		     struct btrfs_ordered_sum *sums)
4714 {
4715 	const u64 lock_end = sums->logical + sums->len - 1;
4716 	struct extent_state *cached_state = NULL;
4717 	int ret;
4718 
4719 	/*
4720 	 * If this inode was not used for reflink operations in the current
4721 	 * transaction with new extents, then do the fast path, no need to
4722 	 * worry about logging checksum items with overlapping ranges.
4723 	 */
4724 	if (inode->last_reflink_trans < trans->transid)
4725 		return btrfs_csum_file_blocks(trans, log_root, sums);
4726 
4727 	/*
4728 	 * Serialize logging for checksums. This is to avoid racing with the
4729 	 * same checksum being logged by another task that is logging another
4730 	 * file which happens to refer to the same extent as well. Such races
4731 	 * can leave checksum items in the log with overlapping ranges.
4732 	 */
4733 	ret = btrfs_lock_extent(&log_root->log_csum_range, sums->logical, lock_end,
4734 				&cached_state);
4735 	if (ret)
4736 		return ret;
4737 	/*
4738 	 * Due to extent cloning, we might have logged a csum item that covers a
4739 	 * subrange of a cloned extent, and later we can end up logging a csum
4740 	 * item for a larger subrange of the same extent or the entire range.
4741 	 * This would leave csum items in the log tree that cover the same range
4742 	 * and break the searches for checksums in the log tree, resulting in
4743 	 * some checksums missing in the fs/subvolume tree. So just delete (or
4744 	 * trim and adjust) any existing csum items in the log for this range.
4745 	 */
4746 	ret = btrfs_del_csums(trans, log_root, sums->logical, sums->len);
4747 	if (!ret)
4748 		ret = btrfs_csum_file_blocks(trans, log_root, sums);
4749 
4750 	btrfs_unlock_extent(&log_root->log_csum_range, sums->logical, lock_end,
4751 			    &cached_state);
4752 
4753 	return ret;
4754 }
4755 
copy_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * dst_path,struct btrfs_path * src_path,int start_slot,int nr,int inode_only,u64 logged_isize,struct btrfs_log_ctx * ctx)4756 static noinline int copy_items(struct btrfs_trans_handle *trans,
4757 			       struct btrfs_inode *inode,
4758 			       struct btrfs_path *dst_path,
4759 			       struct btrfs_path *src_path,
4760 			       int start_slot, int nr, int inode_only,
4761 			       u64 logged_isize, struct btrfs_log_ctx *ctx)
4762 {
4763 	struct btrfs_root *log = inode->root->log_root;
4764 	struct btrfs_file_extent_item *extent;
4765 	struct extent_buffer *src;
4766 	int ret;
4767 	struct btrfs_key *ins_keys;
4768 	u32 *ins_sizes;
4769 	struct btrfs_item_batch batch;
4770 	char AUTO_KFREE(ins_data);
4771 	int dst_index;
4772 	const bool skip_csum = (inode->flags & BTRFS_INODE_NODATASUM);
4773 	const u64 i_size = i_size_read(&inode->vfs_inode);
4774 
4775 	/*
4776 	 * To keep lockdep happy and avoid deadlocks, clone the source leaf and
4777 	 * use the clone. This is because otherwise we would be changing the log
4778 	 * tree, to insert items from the subvolume tree or insert csum items,
4779 	 * while holding a read lock on a leaf from the subvolume tree, which
4780 	 * creates a nasty lock dependency when COWing log tree nodes/leaves:
4781 	 *
4782 	 * 1) Modifying the log tree triggers an extent buffer allocation while
4783 	 *    holding a write lock on a parent extent buffer from the log tree.
4784 	 *    Allocating the pages for an extent buffer, or the extent buffer
4785 	 *    struct, can trigger inode eviction and finally the inode eviction
4786 	 *    will trigger a release/remove of a delayed node, which requires
4787 	 *    taking the delayed node's mutex;
4788 	 *
4789 	 * 2) Allocating a metadata extent for a log tree can trigger the async
4790 	 *    reclaim thread and make us wait for it to release enough space and
4791 	 *    unblock our reservation ticket. The reclaim thread can start
4792 	 *    flushing delayed items, and that in turn results in the need to
4793 	 *    lock delayed node mutexes and in the need to write lock extent
4794 	 *    buffers of a subvolume tree - all this while holding a write lock
4795 	 *    on the parent extent buffer in the log tree.
4796 	 *
4797 	 * So one task in scenario 1) running in parallel with another task in
4798 	 * scenario 2) could lead to a deadlock, one wanting to lock a delayed
4799 	 * node mutex while having a read lock on a leaf from the subvolume,
4800 	 * while the other is holding the delayed node's mutex and wants to
4801 	 * write lock the same subvolume leaf for flushing delayed items.
4802 	 */
4803 	ret = clone_leaf(src_path, ctx);
4804 	if (ret < 0)
4805 		return ret;
4806 
4807 	src = src_path->nodes[0];
4808 
4809 	ins_data = kmalloc_array(nr, sizeof(struct btrfs_key) + sizeof(u32), GFP_NOFS);
4810 	if (!ins_data)
4811 		return -ENOMEM;
4812 
4813 	ins_sizes = (u32 *)ins_data;
4814 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
4815 	batch.keys = ins_keys;
4816 	batch.data_sizes = ins_sizes;
4817 	batch.total_data_size = 0;
4818 	batch.nr = 0;
4819 
4820 	dst_index = 0;
4821 	for (int i = 0; i < nr; i++) {
4822 		const int src_slot = start_slot + i;
4823 		struct btrfs_root *csum_root;
4824 		struct btrfs_ordered_sum *sums;
4825 		struct btrfs_ordered_sum *sums_next;
4826 		LIST_HEAD(ordered_sums);
4827 		u64 disk_bytenr;
4828 		u64 disk_num_bytes;
4829 		u64 extent_offset;
4830 		u64 extent_num_bytes;
4831 		bool is_old_extent;
4832 
4833 		btrfs_item_key_to_cpu(src, &ins_keys[dst_index], src_slot);
4834 
4835 		if (ins_keys[dst_index].type != BTRFS_EXTENT_DATA_KEY)
4836 			goto add_to_batch;
4837 
4838 		extent = btrfs_item_ptr(src, src_slot,
4839 					struct btrfs_file_extent_item);
4840 
4841 		is_old_extent = (btrfs_file_extent_generation(src, extent) <
4842 				 trans->transid);
4843 
4844 		/*
4845 		 * Don't copy extents from past generations. That would make us
4846 		 * log a lot more metadata for common cases like doing only a
4847 		 * few random writes into a file and then fsync it for the first
4848 		 * time or after the full sync flag is set on the inode. We can
4849 		 * get leaves full of extent items, most of which are from past
4850 		 * generations, so we can skip them - as long as the inode has
4851 		 * not been the target of a reflink operation in this transaction,
4852 		 * as in that case it might have had file extent items with old
4853 		 * generations copied into it. We also must always log prealloc
4854 		 * extents that start at or beyond eof, otherwise we would lose
4855 		 * them on log replay.
4856 		 */
4857 		if (is_old_extent &&
4858 		    ins_keys[dst_index].offset < i_size &&
4859 		    inode->last_reflink_trans < trans->transid)
4860 			continue;
4861 
4862 		if (skip_csum)
4863 			goto add_to_batch;
4864 
4865 		/* Only regular extents have checksums. */
4866 		if (btrfs_file_extent_type(src, extent) != BTRFS_FILE_EXTENT_REG)
4867 			goto add_to_batch;
4868 
4869 		/*
4870 		 * If it's an extent created in a past transaction, then its
4871 		 * checksums are already accessible from the committed csum tree,
4872 		 * no need to log them.
4873 		 */
4874 		if (is_old_extent)
4875 			goto add_to_batch;
4876 
4877 		disk_bytenr = btrfs_file_extent_disk_bytenr(src, extent);
4878 		/* If it's an explicit hole, there are no checksums. */
4879 		if (disk_bytenr == 0)
4880 			goto add_to_batch;
4881 
4882 		disk_num_bytes = btrfs_file_extent_disk_num_bytes(src, extent);
4883 
4884 		if (btrfs_file_extent_compression(src, extent)) {
4885 			extent_offset = 0;
4886 			extent_num_bytes = disk_num_bytes;
4887 		} else {
4888 			extent_offset = btrfs_file_extent_offset(src, extent);
4889 			extent_num_bytes = btrfs_file_extent_num_bytes(src, extent);
4890 		}
4891 
4892 		csum_root = btrfs_csum_root(trans->fs_info, disk_bytenr);
4893 		disk_bytenr += extent_offset;
4894 		ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4895 					      disk_bytenr + extent_num_bytes - 1,
4896 					      &ordered_sums, false);
4897 		if (ret < 0)
4898 			return ret;
4899 		ret = 0;
4900 
4901 		list_for_each_entry_safe(sums, sums_next, &ordered_sums, list) {
4902 			if (!ret)
4903 				ret = log_csums(trans, inode, log, sums);
4904 			list_del(&sums->list);
4905 			kfree(sums);
4906 		}
4907 		if (ret)
4908 			return ret;
4909 
4910 add_to_batch:
4911 		ins_sizes[dst_index] = btrfs_item_size(src, src_slot);
4912 		batch.total_data_size += ins_sizes[dst_index];
4913 		batch.nr++;
4914 		dst_index++;
4915 	}
4916 
4917 	/*
4918 	 * We have a leaf full of old extent items that don't need to be logged,
4919 	 * so we don't need to do anything.
4920 	 */
4921 	if (batch.nr == 0)
4922 		return 0;
4923 
4924 	ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
4925 	if (ret)
4926 		return ret;
4927 
4928 	dst_index = 0;
4929 	for (int i = 0; i < nr; i++) {
4930 		const int src_slot = start_slot + i;
4931 		const int dst_slot = dst_path->slots[0] + dst_index;
4932 		struct btrfs_key key;
4933 		unsigned long src_offset;
4934 		unsigned long dst_offset;
4935 
4936 		/*
4937 		 * We're done, all the remaining items in the source leaf
4938 		 * correspond to old file extent items.
4939 		 */
4940 		if (dst_index >= batch.nr)
4941 			break;
4942 
4943 		btrfs_item_key_to_cpu(src, &key, src_slot);
4944 
4945 		if (key.type != BTRFS_EXTENT_DATA_KEY)
4946 			goto copy_item;
4947 
4948 		extent = btrfs_item_ptr(src, src_slot,
4949 					struct btrfs_file_extent_item);
4950 
4951 		/* See the comment in the previous loop, same logic. */
4952 		if (btrfs_file_extent_generation(src, extent) < trans->transid &&
4953 		    key.offset < i_size &&
4954 		    inode->last_reflink_trans < trans->transid)
4955 			continue;
4956 
4957 copy_item:
4958 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], dst_slot);
4959 		src_offset = btrfs_item_ptr_offset(src, src_slot);
4960 
4961 		if (key.type == BTRFS_INODE_ITEM_KEY) {
4962 			struct btrfs_inode_item *inode_item;
4963 
4964 			inode_item = btrfs_item_ptr(dst_path->nodes[0], dst_slot,
4965 						    struct btrfs_inode_item);
4966 			fill_inode_item(trans, dst_path->nodes[0], inode_item,
4967 					&inode->vfs_inode,
4968 					inode_only == LOG_INODE_EXISTS,
4969 					logged_isize);
4970 		} else {
4971 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4972 					   src_offset, ins_sizes[dst_index]);
4973 		}
4974 
4975 		dst_index++;
4976 	}
4977 
4978 	btrfs_release_path(dst_path);
4979 
4980 	return ret;
4981 }
4982 
extent_cmp(void * priv,const struct list_head * a,const struct list_head * b)4983 static int extent_cmp(void *priv, const struct list_head *a,
4984 		      const struct list_head *b)
4985 {
4986 	const struct extent_map *em1, *em2;
4987 
4988 	em1 = list_entry(a, struct extent_map, list);
4989 	em2 = list_entry(b, struct extent_map, list);
4990 
4991 	if (em1->start < em2->start)
4992 		return -1;
4993 	else if (em1->start > em2->start)
4994 		return 1;
4995 	return 0;
4996 }
4997 
log_extent_csums(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_root * log_root,const struct extent_map * em,struct btrfs_log_ctx * ctx)4998 static int log_extent_csums(struct btrfs_trans_handle *trans,
4999 			    struct btrfs_inode *inode,
5000 			    struct btrfs_root *log_root,
5001 			    const struct extent_map *em,
5002 			    struct btrfs_log_ctx *ctx)
5003 {
5004 	struct btrfs_ordered_extent *ordered;
5005 	struct btrfs_root *csum_root;
5006 	u64 block_start;
5007 	u64 csum_offset;
5008 	u64 csum_len;
5009 	u64 mod_start = em->start;
5010 	u64 mod_len = em->len;
5011 	LIST_HEAD(ordered_sums);
5012 	int ret = 0;
5013 
5014 	if (inode->flags & BTRFS_INODE_NODATASUM ||
5015 	    (em->flags & EXTENT_FLAG_PREALLOC) ||
5016 	    em->disk_bytenr == EXTENT_MAP_HOLE)
5017 		return 0;
5018 
5019 	list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
5020 		const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
5021 		const u64 mod_end = mod_start + mod_len;
5022 		struct btrfs_ordered_sum *sums;
5023 
5024 		if (mod_len == 0)
5025 			break;
5026 
5027 		if (ordered_end <= mod_start)
5028 			continue;
5029 		if (mod_end <= ordered->file_offset)
5030 			break;
5031 
5032 		/*
5033 		 * We are going to copy all the csums on this ordered extent, so
5034 		 * go ahead and adjust mod_start and mod_len in case this ordered
5035 		 * extent has already been logged.
5036 		 */
5037 		if (ordered->file_offset > mod_start) {
5038 			if (ordered_end >= mod_end)
5039 				mod_len = ordered->file_offset - mod_start;
5040 			/*
5041 			 * If we have this case
5042 			 *
5043 			 * |--------- logged extent ---------|
5044 			 *       |----- ordered extent ----|
5045 			 *
5046 			 * Just don't mess with mod_start and mod_len, we'll
5047 			 * just end up logging more csums than we need and it
5048 			 * will be ok.
5049 			 */
5050 		} else {
5051 			if (ordered_end < mod_end) {
5052 				mod_len = mod_end - ordered_end;
5053 				mod_start = ordered_end;
5054 			} else {
5055 				mod_len = 0;
5056 			}
5057 		}
5058 
5059 		/*
5060 		 * To keep us from looping for the above case of an ordered
5061 		 * extent that falls inside of the logged extent.
5062 		 */
5063 		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
5064 			continue;
5065 
5066 		list_for_each_entry(sums, &ordered->list, list) {
5067 			ret = log_csums(trans, inode, log_root, sums);
5068 			if (ret)
5069 				return ret;
5070 		}
5071 	}
5072 
5073 	/* We're done, found all csums in the ordered extents. */
5074 	if (mod_len == 0)
5075 		return 0;
5076 
5077 	/* If we're compressed we have to save the entire range of csums. */
5078 	if (btrfs_extent_map_is_compressed(em)) {
5079 		csum_offset = 0;
5080 		csum_len = em->disk_num_bytes;
5081 	} else {
5082 		csum_offset = mod_start - em->start;
5083 		csum_len = mod_len;
5084 	}
5085 
5086 	/* block start is already adjusted for the file extent offset. */
5087 	block_start = btrfs_extent_map_block_start(em);
5088 	csum_root = btrfs_csum_root(trans->fs_info, block_start);
5089 	ret = btrfs_lookup_csums_list(csum_root, block_start + csum_offset,
5090 				      block_start + csum_offset + csum_len - 1,
5091 				      &ordered_sums, false);
5092 	if (ret < 0)
5093 		return ret;
5094 	ret = 0;
5095 
5096 	while (!list_empty(&ordered_sums)) {
5097 		struct btrfs_ordered_sum *sums = list_first_entry(&ordered_sums,
5098 								  struct btrfs_ordered_sum,
5099 								  list);
5100 		if (!ret)
5101 			ret = log_csums(trans, inode, log_root, sums);
5102 		list_del(&sums->list);
5103 		kfree(sums);
5104 	}
5105 
5106 	return ret;
5107 }
5108 
log_one_extent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,const struct extent_map * em,struct btrfs_path * path,struct btrfs_log_ctx * ctx)5109 static int log_one_extent(struct btrfs_trans_handle *trans,
5110 			  struct btrfs_inode *inode,
5111 			  const struct extent_map *em,
5112 			  struct btrfs_path *path,
5113 			  struct btrfs_log_ctx *ctx)
5114 {
5115 	struct btrfs_drop_extents_args drop_args = { 0 };
5116 	struct btrfs_root *log = inode->root->log_root;
5117 	struct btrfs_file_extent_item fi = { 0 };
5118 	struct extent_buffer *leaf;
5119 	struct btrfs_key key;
5120 	enum btrfs_compression_type compress_type;
5121 	u64 extent_offset = em->offset;
5122 	u64 block_start = btrfs_extent_map_block_start(em);
5123 	u64 block_len;
5124 	int ret;
5125 
5126 	btrfs_set_stack_file_extent_generation(&fi, trans->transid);
5127 	if (em->flags & EXTENT_FLAG_PREALLOC)
5128 		btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_PREALLOC);
5129 	else
5130 		btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_REG);
5131 
5132 	block_len = em->disk_num_bytes;
5133 	compress_type = btrfs_extent_map_compression(em);
5134 	if (compress_type != BTRFS_COMPRESS_NONE) {
5135 		btrfs_set_stack_file_extent_disk_bytenr(&fi, block_start);
5136 		btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
5137 	} else if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE) {
5138 		btrfs_set_stack_file_extent_disk_bytenr(&fi, block_start - extent_offset);
5139 		btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
5140 	}
5141 
5142 	btrfs_set_stack_file_extent_offset(&fi, extent_offset);
5143 	btrfs_set_stack_file_extent_num_bytes(&fi, em->len);
5144 	btrfs_set_stack_file_extent_ram_bytes(&fi, em->ram_bytes);
5145 	btrfs_set_stack_file_extent_compression(&fi, compress_type);
5146 
5147 	ret = log_extent_csums(trans, inode, log, em, ctx);
5148 	if (ret)
5149 		return ret;
5150 
5151 	/*
5152 	 * If this is the first time we are logging the inode in the current
5153 	 * transaction, we can avoid btrfs_drop_extents(), which is expensive
5154 	 * because it does a deletion search, which always acquires write locks
5155 	 * for extent buffers at levels 2, 1 and 0. This not only wastes time
5156 	 * but also adds significant contention in a log tree, since log trees
5157 	 * are small, with a root at level 2 or 3 at most, due to their short
5158 	 * life span.
5159 	 */
5160 	if (ctx->logged_before) {
5161 		drop_args.path = path;
5162 		drop_args.start = em->start;
5163 		drop_args.end = em->start + em->len;
5164 		drop_args.replace_extent = true;
5165 		drop_args.extent_item_size = sizeof(fi);
5166 		ret = btrfs_drop_extents(trans, log, inode, &drop_args);
5167 		if (ret)
5168 			return ret;
5169 	}
5170 
5171 	if (!drop_args.extent_inserted) {
5172 		key.objectid = btrfs_ino(inode);
5173 		key.type = BTRFS_EXTENT_DATA_KEY;
5174 		key.offset = em->start;
5175 
5176 		ret = btrfs_insert_empty_item(trans, log, path, &key,
5177 					      sizeof(fi));
5178 		if (ret)
5179 			return ret;
5180 	}
5181 	leaf = path->nodes[0];
5182 	write_extent_buffer(leaf, &fi,
5183 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
5184 			    sizeof(fi));
5185 
5186 	btrfs_release_path(path);
5187 
5188 	return ret;
5189 }
5190 
5191 /*
5192  * Log all prealloc extents beyond the inode's i_size to make sure we do not
5193  * lose them after doing a full/fast fsync and replaying the log. We scan the
5194  * subvolume's root instead of iterating the inode's extent map tree because
5195  * otherwise we can log incorrect extent items based on extent map conversion.
5196  * That can happen due to the fact that extent maps are merged when they
5197  * are not in the extent map tree's list of modified extents.
5198  */
btrfs_log_prealloc_extents(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_log_ctx * ctx)5199 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
5200 				      struct btrfs_inode *inode,
5201 				      struct btrfs_path *path,
5202 				      struct btrfs_log_ctx *ctx)
5203 {
5204 	struct btrfs_root *root = inode->root;
5205 	struct btrfs_key key;
5206 	const u64 i_size = i_size_read(&inode->vfs_inode);
5207 	const u64 ino = btrfs_ino(inode);
5208 	BTRFS_PATH_AUTO_FREE(dst_path);
5209 	bool dropped_extents = false;
5210 	u64 truncate_offset = i_size;
5211 	struct extent_buffer *leaf;
5212 	int slot;
5213 	int ins_nr = 0;
5214 	int start_slot = 0;
5215 	int ret;
5216 
5217 	if (!(inode->flags & BTRFS_INODE_PREALLOC))
5218 		return 0;
5219 
5220 	key.objectid = ino;
5221 	key.type = BTRFS_EXTENT_DATA_KEY;
5222 	key.offset = i_size;
5223 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5224 	if (ret < 0)
5225 		goto out;
5226 
5227 	/*
5228 	 * We must check if there is a prealloc extent that starts before the
5229 	 * i_size and crosses the i_size boundary. This is to ensure later we
5230 	 * truncate down to the end of that extent and not to the i_size, as
5231 	 * otherwise we end up losing part of the prealloc extent after a log
5232 	 * replay and with an implicit hole if there is another prealloc extent
5233 	 * that starts at an offset beyond i_size.
5234 	 */
5235 	ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
5236 	if (ret < 0)
5237 		goto out;
5238 
5239 	if (ret == 0) {
5240 		struct btrfs_file_extent_item *ei;
5241 
5242 		leaf = path->nodes[0];
5243 		slot = path->slots[0];
5244 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5245 
5246 		if (btrfs_file_extent_type(leaf, ei) ==
5247 		    BTRFS_FILE_EXTENT_PREALLOC) {
5248 			u64 extent_end;
5249 
5250 			btrfs_item_key_to_cpu(leaf, &key, slot);
5251 			extent_end = key.offset +
5252 				btrfs_file_extent_num_bytes(leaf, ei);
5253 
5254 			if (extent_end > i_size)
5255 				truncate_offset = extent_end;
5256 		}
5257 	} else {
5258 		ret = 0;
5259 	}
5260 
5261 	while (true) {
5262 		leaf = path->nodes[0];
5263 		slot = path->slots[0];
5264 
5265 		if (slot >= btrfs_header_nritems(leaf)) {
5266 			if (ins_nr > 0) {
5267 				ret = copy_items(trans, inode, dst_path, path,
5268 						 start_slot, ins_nr, 1, 0, ctx);
5269 				if (ret < 0)
5270 					goto out;
5271 				ins_nr = 0;
5272 			}
5273 			ret = btrfs_next_leaf(root, path);
5274 			if (ret < 0)
5275 				goto out;
5276 			if (ret > 0) {
5277 				ret = 0;
5278 				break;
5279 			}
5280 			continue;
5281 		}
5282 
5283 		btrfs_item_key_to_cpu(leaf, &key, slot);
5284 		if (key.objectid > ino)
5285 			break;
5286 		if (WARN_ON_ONCE(key.objectid < ino) ||
5287 		    key.type < BTRFS_EXTENT_DATA_KEY ||
5288 		    key.offset < i_size) {
5289 			path->slots[0]++;
5290 			continue;
5291 		}
5292 		/*
5293 		 * Avoid overlapping items in the log tree. The first time we
5294 		 * get here, get rid of everything from a past fsync. After
5295 		 * that, if the current extent starts before the end of the last
5296 		 * extent we copied, truncate the last one. This can happen if
5297 		 * an ordered extent completion modifies the subvolume tree
5298 		 * while btrfs_next_leaf() has the tree unlocked.
5299 		 */
5300 		if (!dropped_extents || key.offset < truncate_offset) {
5301 			ret = truncate_inode_items(trans, root->log_root, inode,
5302 						   min(key.offset, truncate_offset),
5303 						   BTRFS_EXTENT_DATA_KEY);
5304 			if (ret)
5305 				goto out;
5306 			dropped_extents = true;
5307 		}
5308 		truncate_offset = btrfs_file_extent_end(path);
5309 		if (ins_nr == 0)
5310 			start_slot = slot;
5311 		ins_nr++;
5312 		path->slots[0]++;
5313 		if (!dst_path) {
5314 			dst_path = btrfs_alloc_path();
5315 			if (!dst_path) {
5316 				ret = -ENOMEM;
5317 				goto out;
5318 			}
5319 		}
5320 	}
5321 	if (ins_nr > 0)
5322 		ret = copy_items(trans, inode, dst_path, path,
5323 				 start_slot, ins_nr, 1, 0, ctx);
5324 out:
5325 	btrfs_release_path(path);
5326 	return ret;
5327 }
5328 
btrfs_log_changed_extents(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_log_ctx * ctx)5329 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
5330 				     struct btrfs_inode *inode,
5331 				     struct btrfs_path *path,
5332 				     struct btrfs_log_ctx *ctx)
5333 {
5334 	struct btrfs_ordered_extent *ordered;
5335 	struct btrfs_ordered_extent *tmp;
5336 	struct extent_map *em, *n;
5337 	LIST_HEAD(extents);
5338 	struct extent_map_tree *tree = &inode->extent_tree;
5339 	int ret = 0;
5340 	int num = 0;
5341 
5342 	write_lock(&tree->lock);
5343 
5344 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
5345 		list_del_init(&em->list);
5346 		/*
5347 		 * Just an arbitrary number, this can be really CPU intensive
5348 		 * once we start getting a lot of extents, and really once we
5349 		 * have a bunch of extents we just want to commit since it will
5350 		 * be faster.
5351 		 */
5352 		if (++num > 32768) {
5353 			list_del_init(&tree->modified_extents);
5354 			ret = -EFBIG;
5355 			goto process;
5356 		}
5357 
5358 		if (em->generation < trans->transid)
5359 			continue;
5360 
5361 		/* We log prealloc extents beyond eof later. */
5362 		if ((em->flags & EXTENT_FLAG_PREALLOC) &&
5363 		    em->start >= i_size_read(&inode->vfs_inode))
5364 			continue;
5365 
5366 		/* Need a ref to keep it from getting evicted from cache */
5367 		refcount_inc(&em->refs);
5368 		em->flags |= EXTENT_FLAG_LOGGING;
5369 		list_add_tail(&em->list, &extents);
5370 		num++;
5371 	}
5372 
5373 	list_sort(NULL, &extents, extent_cmp);
5374 process:
5375 	while (!list_empty(&extents)) {
5376 		em = list_first_entry(&extents, struct extent_map, list);
5377 
5378 		list_del_init(&em->list);
5379 
5380 		/*
5381 		 * If we had an error we just need to delete everybody from our
5382 		 * private list.
5383 		 */
5384 		if (ret) {
5385 			btrfs_clear_em_logging(inode, em);
5386 			btrfs_free_extent_map(em);
5387 			continue;
5388 		}
5389 
5390 		write_unlock(&tree->lock);
5391 
5392 		ret = log_one_extent(trans, inode, em, path, ctx);
5393 		write_lock(&tree->lock);
5394 		btrfs_clear_em_logging(inode, em);
5395 		btrfs_free_extent_map(em);
5396 	}
5397 	WARN_ON(!list_empty(&extents));
5398 	write_unlock(&tree->lock);
5399 
5400 	if (!ret)
5401 		ret = btrfs_log_prealloc_extents(trans, inode, path, ctx);
5402 	if (ret)
5403 		return ret;
5404 
5405 	/*
5406 	 * We have logged all extents successfully, now make sure the commit of
5407 	 * the current transaction waits for the ordered extents to complete
5408 	 * before it commits and wipes out the log trees, otherwise we would
5409 	 * lose data if an ordered extents completes after the transaction
5410 	 * commits and a power failure happens after the transaction commit.
5411 	 */
5412 	list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
5413 		list_del_init(&ordered->log_list);
5414 		set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
5415 
5416 		if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
5417 			spin_lock(&inode->ordered_tree_lock);
5418 			if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
5419 				set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
5420 				atomic_inc(&trans->transaction->pending_ordered);
5421 			}
5422 			spin_unlock(&inode->ordered_tree_lock);
5423 		}
5424 		btrfs_put_ordered_extent(ordered);
5425 	}
5426 
5427 	return 0;
5428 }
5429 
logged_inode_size(struct btrfs_root * log,struct btrfs_inode * inode,struct btrfs_path * path,u64 * size_ret)5430 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
5431 			     struct btrfs_path *path, u64 *size_ret)
5432 {
5433 	struct btrfs_key key;
5434 	int ret;
5435 
5436 	key.objectid = btrfs_ino(inode);
5437 	key.type = BTRFS_INODE_ITEM_KEY;
5438 	key.offset = 0;
5439 
5440 	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
5441 	if (ret < 0) {
5442 		return ret;
5443 	} else if (ret > 0) {
5444 		*size_ret = 0;
5445 	} else {
5446 		struct btrfs_inode_item *item;
5447 
5448 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5449 				      struct btrfs_inode_item);
5450 		*size_ret = btrfs_inode_size(path->nodes[0], item);
5451 		/*
5452 		 * If the in-memory inode's i_size is smaller then the inode
5453 		 * size stored in the btree, return the inode's i_size, so
5454 		 * that we get a correct inode size after replaying the log
5455 		 * when before a power failure we had a shrinking truncate
5456 		 * followed by addition of a new name (rename / new hard link).
5457 		 * Otherwise return the inode size from the btree, to avoid
5458 		 * data loss when replaying a log due to previously doing a
5459 		 * write that expands the inode's size and logging a new name
5460 		 * immediately after.
5461 		 */
5462 		if (*size_ret > inode->vfs_inode.i_size)
5463 			*size_ret = inode->vfs_inode.i_size;
5464 	}
5465 
5466 	btrfs_release_path(path);
5467 	return 0;
5468 }
5469 
5470 /*
5471  * At the moment we always log all xattrs. This is to figure out at log replay
5472  * time which xattrs must have their deletion replayed. If a xattr is missing
5473  * in the log tree and exists in the fs/subvol tree, we delete it. This is
5474  * because if a xattr is deleted, the inode is fsynced and a power failure
5475  * happens, causing the log to be replayed the next time the fs is mounted,
5476  * we want the xattr to not exist anymore (same behaviour as other filesystems
5477  * with a journal, ext3/4, xfs, f2fs, etc).
5478  */
btrfs_log_all_xattrs(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,struct btrfs_log_ctx * ctx)5479 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
5480 				struct btrfs_inode *inode,
5481 				struct btrfs_path *path,
5482 				struct btrfs_path *dst_path,
5483 				struct btrfs_log_ctx *ctx)
5484 {
5485 	struct btrfs_root *root = inode->root;
5486 	int ret;
5487 	struct btrfs_key key;
5488 	const u64 ino = btrfs_ino(inode);
5489 	int ins_nr = 0;
5490 	int start_slot = 0;
5491 	bool found_xattrs = false;
5492 
5493 	if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
5494 		return 0;
5495 
5496 	key.objectid = ino;
5497 	key.type = BTRFS_XATTR_ITEM_KEY;
5498 	key.offset = 0;
5499 
5500 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5501 	if (ret < 0)
5502 		return ret;
5503 
5504 	while (true) {
5505 		int slot = path->slots[0];
5506 		struct extent_buffer *leaf = path->nodes[0];
5507 		int nritems = btrfs_header_nritems(leaf);
5508 
5509 		if (slot >= nritems) {
5510 			if (ins_nr > 0) {
5511 				ret = copy_items(trans, inode, dst_path, path,
5512 						 start_slot, ins_nr, 1, 0, ctx);
5513 				if (ret < 0)
5514 					return ret;
5515 				ins_nr = 0;
5516 			}
5517 			ret = btrfs_next_leaf(root, path);
5518 			if (ret < 0)
5519 				return ret;
5520 			else if (ret > 0)
5521 				break;
5522 			continue;
5523 		}
5524 
5525 		btrfs_item_key_to_cpu(leaf, &key, slot);
5526 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
5527 			break;
5528 
5529 		if (ins_nr == 0)
5530 			start_slot = slot;
5531 		ins_nr++;
5532 		path->slots[0]++;
5533 		found_xattrs = true;
5534 		cond_resched();
5535 	}
5536 	if (ins_nr > 0) {
5537 		ret = copy_items(trans, inode, dst_path, path,
5538 				 start_slot, ins_nr, 1, 0, ctx);
5539 		if (ret < 0)
5540 			return ret;
5541 	}
5542 
5543 	if (!found_xattrs)
5544 		set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
5545 
5546 	return 0;
5547 }
5548 
5549 /*
5550  * When using the NO_HOLES feature if we punched a hole that causes the
5551  * deletion of entire leafs or all the extent items of the first leaf (the one
5552  * that contains the inode item and references) we may end up not processing
5553  * any extents, because there are no leafs with a generation matching the
5554  * current transaction that have extent items for our inode. So we need to find
5555  * if any holes exist and then log them. We also need to log holes after any
5556  * truncate operation that changes the inode's size.
5557  */
btrfs_log_holes(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path)5558 static int btrfs_log_holes(struct btrfs_trans_handle *trans,
5559 			   struct btrfs_inode *inode,
5560 			   struct btrfs_path *path)
5561 {
5562 	struct btrfs_root *root = inode->root;
5563 	struct btrfs_fs_info *fs_info = root->fs_info;
5564 	struct btrfs_key key;
5565 	const u64 ino = btrfs_ino(inode);
5566 	const u64 i_size = i_size_read(&inode->vfs_inode);
5567 	u64 prev_extent_end = 0;
5568 	int ret;
5569 
5570 	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
5571 		return 0;
5572 
5573 	key.objectid = ino;
5574 	key.type = BTRFS_EXTENT_DATA_KEY;
5575 	key.offset = 0;
5576 
5577 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5578 	if (ret < 0)
5579 		return ret;
5580 
5581 	while (true) {
5582 		struct extent_buffer *leaf = path->nodes[0];
5583 
5584 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
5585 			ret = btrfs_next_leaf(root, path);
5586 			if (ret < 0)
5587 				return ret;
5588 			if (ret > 0) {
5589 				ret = 0;
5590 				break;
5591 			}
5592 			leaf = path->nodes[0];
5593 		}
5594 
5595 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5596 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
5597 			break;
5598 
5599 		/* We have a hole, log it. */
5600 		if (prev_extent_end < key.offset) {
5601 			const u64 hole_len = key.offset - prev_extent_end;
5602 
5603 			/*
5604 			 * Release the path to avoid deadlocks with other code
5605 			 * paths that search the root while holding locks on
5606 			 * leafs from the log root.
5607 			 */
5608 			btrfs_release_path(path);
5609 			ret = btrfs_insert_hole_extent(trans, root->log_root,
5610 						       ino, prev_extent_end,
5611 						       hole_len);
5612 			if (ret < 0)
5613 				return ret;
5614 
5615 			/*
5616 			 * Search for the same key again in the root. Since it's
5617 			 * an extent item and we are holding the inode lock, the
5618 			 * key must still exist. If it doesn't just emit warning
5619 			 * and return an error to fall back to a transaction
5620 			 * commit.
5621 			 */
5622 			ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5623 			if (ret < 0)
5624 				return ret;
5625 			if (WARN_ON(ret > 0))
5626 				return -ENOENT;
5627 			leaf = path->nodes[0];
5628 		}
5629 
5630 		prev_extent_end = btrfs_file_extent_end(path);
5631 		path->slots[0]++;
5632 		cond_resched();
5633 	}
5634 
5635 	if (prev_extent_end < i_size) {
5636 		u64 hole_len;
5637 
5638 		btrfs_release_path(path);
5639 		hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
5640 		ret = btrfs_insert_hole_extent(trans, root->log_root, ino,
5641 					       prev_extent_end, hole_len);
5642 		if (ret < 0)
5643 			return ret;
5644 	}
5645 
5646 	return 0;
5647 }
5648 
5649 /*
5650  * When we are logging a new inode X, check if it doesn't have a reference that
5651  * matches the reference from some other inode Y created in a past transaction
5652  * and that was renamed in the current transaction. If we don't do this, then at
5653  * log replay time we can lose inode Y (and all its files if it's a directory):
5654  *
5655  * mkdir /mnt/x
5656  * echo "hello world" > /mnt/x/foobar
5657  * sync
5658  * mv /mnt/x /mnt/y
5659  * mkdir /mnt/x                 # or touch /mnt/x
5660  * xfs_io -c fsync /mnt/x
5661  * <power fail>
5662  * mount fs, trigger log replay
5663  *
5664  * After the log replay procedure, we would lose the first directory and all its
5665  * files (file foobar).
5666  * For the case where inode Y is not a directory we simply end up losing it:
5667  *
5668  * echo "123" > /mnt/foo
5669  * sync
5670  * mv /mnt/foo /mnt/bar
5671  * echo "abc" > /mnt/foo
5672  * xfs_io -c fsync /mnt/foo
5673  * <power fail>
5674  *
5675  * We also need this for cases where a snapshot entry is replaced by some other
5676  * entry (file or directory) otherwise we end up with an unreplayable log due to
5677  * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
5678  * if it were a regular entry:
5679  *
5680  * mkdir /mnt/x
5681  * btrfs subvolume snapshot /mnt /mnt/x/snap
5682  * btrfs subvolume delete /mnt/x/snap
5683  * rmdir /mnt/x
5684  * mkdir /mnt/x
5685  * fsync /mnt/x or fsync some new file inside it
5686  * <power fail>
5687  *
5688  * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
5689  * the same transaction.
5690  */
btrfs_check_ref_name_override(struct extent_buffer * eb,const int slot,const struct btrfs_key * key,struct btrfs_inode * inode,u64 * other_ino,u64 * other_parent)5691 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
5692 					 const int slot,
5693 					 const struct btrfs_key *key,
5694 					 struct btrfs_inode *inode,
5695 					 u64 *other_ino, u64 *other_parent)
5696 {
5697 	BTRFS_PATH_AUTO_FREE(search_path);
5698 	char AUTO_KFREE(name);
5699 	u32 name_len = 0;
5700 	u32 item_size = btrfs_item_size(eb, slot);
5701 	u32 cur_offset = 0;
5702 	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
5703 
5704 	search_path = btrfs_alloc_path();
5705 	if (!search_path)
5706 		return -ENOMEM;
5707 	search_path->search_commit_root = true;
5708 	search_path->skip_locking = true;
5709 
5710 	while (cur_offset < item_size) {
5711 		u64 parent;
5712 		u32 this_name_len;
5713 		u32 this_len;
5714 		unsigned long name_ptr;
5715 		struct btrfs_dir_item *di;
5716 		struct fscrypt_str name_str;
5717 
5718 		if (key->type == BTRFS_INODE_REF_KEY) {
5719 			struct btrfs_inode_ref *iref;
5720 
5721 			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
5722 			parent = key->offset;
5723 			this_name_len = btrfs_inode_ref_name_len(eb, iref);
5724 			name_ptr = (unsigned long)(iref + 1);
5725 			this_len = sizeof(*iref) + this_name_len;
5726 		} else {
5727 			struct btrfs_inode_extref *extref;
5728 
5729 			extref = (struct btrfs_inode_extref *)(ptr +
5730 							       cur_offset);
5731 			parent = btrfs_inode_extref_parent(eb, extref);
5732 			this_name_len = btrfs_inode_extref_name_len(eb, extref);
5733 			name_ptr = (unsigned long)&extref->name;
5734 			this_len = sizeof(*extref) + this_name_len;
5735 		}
5736 
5737 		if (this_name_len > name_len) {
5738 			char *new_name;
5739 
5740 			new_name = krealloc(name, this_name_len, GFP_NOFS);
5741 			if (!new_name)
5742 				return -ENOMEM;
5743 			name_len = this_name_len;
5744 			name = new_name;
5745 		}
5746 
5747 		read_extent_buffer(eb, name, name_ptr, this_name_len);
5748 
5749 		name_str.name = name;
5750 		name_str.len = this_name_len;
5751 		di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
5752 				parent, &name_str, 0);
5753 		if (di && !IS_ERR(di)) {
5754 			struct btrfs_key di_key;
5755 
5756 			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
5757 						  di, &di_key);
5758 			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
5759 				if (di_key.objectid != key->objectid) {
5760 					*other_ino = di_key.objectid;
5761 					*other_parent = parent;
5762 					return 1;
5763 				} else {
5764 					return 0;
5765 				}
5766 			} else {
5767 				return -EAGAIN;
5768 			}
5769 		} else if (IS_ERR(di)) {
5770 			return PTR_ERR(di);
5771 		}
5772 		btrfs_release_path(search_path);
5773 
5774 		cur_offset += this_len;
5775 	}
5776 
5777 	return 0;
5778 }
5779 
5780 /*
5781  * Check if we need to log an inode. This is used in contexts where while
5782  * logging an inode we need to log another inode (either that it exists or in
5783  * full mode). This is used instead of btrfs_inode_in_log() because the later
5784  * requires the inode to be in the log and have the log transaction committed,
5785  * while here we do not care if the log transaction was already committed - our
5786  * caller will commit the log later - and we want to avoid logging an inode
5787  * multiple times when multiple tasks have joined the same log transaction.
5788  */
need_log_inode(const struct btrfs_trans_handle * trans,struct btrfs_inode * inode)5789 static bool need_log_inode(const struct btrfs_trans_handle *trans,
5790 			   struct btrfs_inode *inode)
5791 {
5792 	/*
5793 	 * If a directory was not modified, no dentries added or removed, we can
5794 	 * and should avoid logging it.
5795 	 */
5796 	if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid)
5797 		return false;
5798 
5799 	/*
5800 	 * If this inode does not have new/updated/deleted xattrs since the last
5801 	 * time it was logged and is flagged as logged in the current transaction,
5802 	 * we can skip logging it. As for new/deleted names, those are updated in
5803 	 * the log by link/unlink/rename operations.
5804 	 * In case the inode was logged and then evicted and reloaded, its
5805 	 * logged_trans will be 0, in which case we have to fully log it since
5806 	 * logged_trans is a transient field, not persisted.
5807 	 */
5808 	if (inode_logged(trans, inode, NULL) == 1 &&
5809 	    !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
5810 		return false;
5811 
5812 	return true;
5813 }
5814 
5815 struct btrfs_dir_list {
5816 	u64 ino;
5817 	struct list_head list;
5818 };
5819 
5820 /*
5821  * Log the inodes of the new dentries of a directory.
5822  * See process_dir_items_leaf() for details about why it is needed.
5823  * This is a recursive operation - if an existing dentry corresponds to a
5824  * directory, that directory's new entries are logged too (same behaviour as
5825  * ext3/4, xfs, f2fs, nilfs2). Note that when logging the inodes
5826  * the dentries point to we do not acquire their VFS lock, otherwise lockdep
5827  * complains about the following circular lock dependency / possible deadlock:
5828  *
5829  *        CPU0                                        CPU1
5830  *        ----                                        ----
5831  * lock(&type->i_mutex_dir_key#3/2);
5832  *                                            lock(sb_internal#2);
5833  *                                            lock(&type->i_mutex_dir_key#3/2);
5834  * lock(&sb->s_type->i_mutex_key#14);
5835  *
5836  * Where sb_internal is the lock (a counter that works as a lock) acquired by
5837  * sb_start_intwrite() in btrfs_start_transaction().
5838  * Not acquiring the VFS lock of the inodes is still safe because:
5839  *
5840  * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5841  *    that while logging the inode new references (names) are added or removed
5842  *    from the inode, leaving the logged inode item with a link count that does
5843  *    not match the number of logged inode reference items. This is fine because
5844  *    at log replay time we compute the real number of links and correct the
5845  *    link count in the inode item (see replay_one_buffer() and
5846  *    link_to_fixup_dir());
5847  *
5848  * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5849  *    while logging the inode's items new index items (key type
5850  *    BTRFS_DIR_INDEX_KEY) are added to fs/subvol tree and the logged inode item
5851  *    has a size that doesn't match the sum of the lengths of all the logged
5852  *    names - this is ok, not a problem, because at log replay time we set the
5853  *    directory's i_size to the correct value (see replay_one_name() and
5854  *    overwrite_item()).
5855  */
log_new_dir_dentries(struct btrfs_trans_handle * trans,struct btrfs_inode * start_inode,struct btrfs_log_ctx * ctx)5856 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5857 				struct btrfs_inode *start_inode,
5858 				struct btrfs_log_ctx *ctx)
5859 {
5860 	struct btrfs_root *root = start_inode->root;
5861 	struct btrfs_path *path;
5862 	LIST_HEAD(dir_list);
5863 	struct btrfs_dir_list *dir_elem;
5864 	u64 ino = btrfs_ino(start_inode);
5865 	struct btrfs_inode *curr_inode = start_inode;
5866 	int ret = 0;
5867 
5868 	/*
5869 	 * If we are logging a new name, as part of a link or rename operation,
5870 	 * don't bother logging new dentries, as we just want to log the names
5871 	 * of an inode and that any new parents exist.
5872 	 */
5873 	if (ctx->logging_new_name)
5874 		return 0;
5875 
5876 	path = btrfs_alloc_path();
5877 	if (!path)
5878 		return -ENOMEM;
5879 
5880 	/* Pairs with btrfs_add_delayed_iput below. */
5881 	ihold(&curr_inode->vfs_inode);
5882 
5883 	while (true) {
5884 		struct btrfs_key key;
5885 		struct btrfs_key found_key;
5886 		u64 next_index;
5887 		bool continue_curr_inode = true;
5888 		int iter_ret;
5889 
5890 		key.objectid = ino;
5891 		key.type = BTRFS_DIR_INDEX_KEY;
5892 		key.offset = btrfs_get_first_dir_index_to_log(curr_inode);
5893 		next_index = key.offset;
5894 again:
5895 		btrfs_for_each_slot(root->log_root, &key, &found_key, path, iter_ret) {
5896 			struct extent_buffer *leaf = path->nodes[0];
5897 			struct btrfs_dir_item *di;
5898 			struct btrfs_key di_key;
5899 			struct btrfs_inode *di_inode;
5900 			int log_mode = LOG_INODE_EXISTS;
5901 			int type;
5902 
5903 			if (found_key.objectid != ino ||
5904 			    found_key.type != BTRFS_DIR_INDEX_KEY) {
5905 				continue_curr_inode = false;
5906 				break;
5907 			}
5908 
5909 			next_index = found_key.offset + 1;
5910 
5911 			di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
5912 			type = btrfs_dir_ftype(leaf, di);
5913 			if (btrfs_dir_transid(leaf, di) < trans->transid)
5914 				continue;
5915 			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5916 			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5917 				continue;
5918 
5919 			btrfs_release_path(path);
5920 			di_inode = btrfs_iget_logging(di_key.objectid, root);
5921 			if (IS_ERR(di_inode)) {
5922 				ret = PTR_ERR(di_inode);
5923 				goto out;
5924 			}
5925 
5926 			if (!need_log_inode(trans, di_inode)) {
5927 				btrfs_add_delayed_iput(di_inode);
5928 				break;
5929 			}
5930 
5931 			ctx->log_new_dentries = false;
5932 			if (type == BTRFS_FT_DIR)
5933 				log_mode = LOG_INODE_ALL;
5934 			ret = btrfs_log_inode(trans, di_inode, log_mode, ctx);
5935 			btrfs_add_delayed_iput(di_inode);
5936 			if (ret)
5937 				goto out;
5938 			if (ctx->log_new_dentries) {
5939 				dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5940 				if (!dir_elem) {
5941 					ret = -ENOMEM;
5942 					goto out;
5943 				}
5944 				dir_elem->ino = di_key.objectid;
5945 				list_add_tail(&dir_elem->list, &dir_list);
5946 			}
5947 			break;
5948 		}
5949 
5950 		btrfs_release_path(path);
5951 
5952 		if (iter_ret < 0) {
5953 			ret = iter_ret;
5954 			goto out;
5955 		} else if (iter_ret > 0) {
5956 			continue_curr_inode = false;
5957 		} else {
5958 			key = found_key;
5959 		}
5960 
5961 		if (continue_curr_inode && key.offset < (u64)-1) {
5962 			key.offset++;
5963 			goto again;
5964 		}
5965 
5966 		btrfs_set_first_dir_index_to_log(curr_inode, next_index);
5967 
5968 		if (list_empty(&dir_list))
5969 			break;
5970 
5971 		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, list);
5972 		ino = dir_elem->ino;
5973 		list_del(&dir_elem->list);
5974 		kfree(dir_elem);
5975 
5976 		btrfs_add_delayed_iput(curr_inode);
5977 
5978 		curr_inode = btrfs_iget_logging(ino, root);
5979 		if (IS_ERR(curr_inode)) {
5980 			ret = PTR_ERR(curr_inode);
5981 			curr_inode = NULL;
5982 			break;
5983 		}
5984 	}
5985 out:
5986 	btrfs_free_path(path);
5987 	if (curr_inode)
5988 		btrfs_add_delayed_iput(curr_inode);
5989 
5990 	if (ret) {
5991 		struct btrfs_dir_list *next;
5992 
5993 		list_for_each_entry_safe(dir_elem, next, &dir_list, list)
5994 			kfree(dir_elem);
5995 	}
5996 
5997 	return ret;
5998 }
5999 
6000 struct btrfs_ino_list {
6001 	u64 ino;
6002 	u64 parent;
6003 	struct list_head list;
6004 };
6005 
free_conflicting_inodes(struct btrfs_log_ctx * ctx)6006 static void free_conflicting_inodes(struct btrfs_log_ctx *ctx)
6007 {
6008 	struct btrfs_ino_list *curr;
6009 	struct btrfs_ino_list *next;
6010 
6011 	list_for_each_entry_safe(curr, next, &ctx->conflict_inodes, list) {
6012 		list_del(&curr->list);
6013 		kfree(curr);
6014 	}
6015 }
6016 
conflicting_inode_is_dir(struct btrfs_root * root,u64 ino,struct btrfs_path * path)6017 static int conflicting_inode_is_dir(struct btrfs_root *root, u64 ino,
6018 				    struct btrfs_path *path)
6019 {
6020 	struct btrfs_key key;
6021 	int ret;
6022 
6023 	key.objectid = ino;
6024 	key.type = BTRFS_INODE_ITEM_KEY;
6025 	key.offset = 0;
6026 
6027 	path->search_commit_root = true;
6028 	path->skip_locking = true;
6029 
6030 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6031 	if (WARN_ON_ONCE(ret > 0)) {
6032 		/*
6033 		 * We have previously found the inode through the commit root
6034 		 * so this should not happen. If it does, just error out and
6035 		 * fallback to a transaction commit.
6036 		 */
6037 		ret = -ENOENT;
6038 	} else if (ret == 0) {
6039 		struct btrfs_inode_item *item;
6040 
6041 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6042 				      struct btrfs_inode_item);
6043 		if (S_ISDIR(btrfs_inode_mode(path->nodes[0], item)))
6044 			ret = 1;
6045 	}
6046 
6047 	btrfs_release_path(path);
6048 	path->search_commit_root = false;
6049 	path->skip_locking = false;
6050 
6051 	return ret;
6052 }
6053 
add_conflicting_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 ino,u64 parent,struct btrfs_log_ctx * ctx)6054 static int add_conflicting_inode(struct btrfs_trans_handle *trans,
6055 				 struct btrfs_root *root,
6056 				 struct btrfs_path *path,
6057 				 u64 ino, u64 parent,
6058 				 struct btrfs_log_ctx *ctx)
6059 {
6060 	struct btrfs_ino_list *ino_elem;
6061 	struct btrfs_inode *inode;
6062 
6063 	/*
6064 	 * It's rare to have a lot of conflicting inodes, in practice it is not
6065 	 * common to have more than 1 or 2. We don't want to collect too many,
6066 	 * as we could end up logging too many inodes (even if only in
6067 	 * LOG_INODE_EXISTS mode) and slow down other fsyncs or transaction
6068 	 * commits.
6069 	 */
6070 	if (ctx->num_conflict_inodes >= MAX_CONFLICT_INODES)
6071 		return BTRFS_LOG_FORCE_COMMIT;
6072 
6073 	inode = btrfs_iget_logging(ino, root);
6074 	/*
6075 	 * If the other inode that had a conflicting dir entry was deleted in
6076 	 * the current transaction then we either:
6077 	 *
6078 	 * 1) Log the parent directory (later after adding it to the list) if
6079 	 *    the inode is a directory. This is because it may be a deleted
6080 	 *    subvolume/snapshot or it may be a regular directory that had
6081 	 *    deleted subvolumes/snapshots (or subdirectories that had them),
6082 	 *    and at the moment we can't deal with dropping subvolumes/snapshots
6083 	 *    during log replay. So we just log the parent, which will result in
6084 	 *    a fallback to a transaction commit if we are dealing with those
6085 	 *    cases (last_unlink_trans will match the current transaction);
6086 	 *
6087 	 * 2) Do nothing if it's not a directory. During log replay we simply
6088 	 *    unlink the conflicting dentry from the parent directory and then
6089 	 *    add the dentry for our inode. Like this we can avoid logging the
6090 	 *    parent directory (and maybe fallback to a transaction commit in
6091 	 *    case it has a last_unlink_trans == trans->transid, due to moving
6092 	 *    some inode from it to some other directory).
6093 	 */
6094 	if (IS_ERR(inode)) {
6095 		int ret = PTR_ERR(inode);
6096 
6097 		if (ret != -ENOENT)
6098 			return ret;
6099 
6100 		ret = conflicting_inode_is_dir(root, ino, path);
6101 		/* Not a directory or we got an error. */
6102 		if (ret <= 0)
6103 			return ret;
6104 
6105 		/* Conflicting inode is a directory, so we'll log its parent. */
6106 		ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
6107 		if (!ino_elem)
6108 			return -ENOMEM;
6109 		ino_elem->ino = ino;
6110 		ino_elem->parent = parent;
6111 		list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
6112 		ctx->num_conflict_inodes++;
6113 
6114 		return 0;
6115 	}
6116 
6117 	/*
6118 	 * If the inode was already logged skip it - otherwise we can hit an
6119 	 * infinite loop. Example:
6120 	 *
6121 	 * From the commit root (previous transaction) we have the following
6122 	 * inodes:
6123 	 *
6124 	 * inode 257 a directory
6125 	 * inode 258 with references "zz" and "zz_link" on inode 257
6126 	 * inode 259 with reference "a" on inode 257
6127 	 *
6128 	 * And in the current (uncommitted) transaction we have:
6129 	 *
6130 	 * inode 257 a directory, unchanged
6131 	 * inode 258 with references "a" and "a2" on inode 257
6132 	 * inode 259 with reference "zz_link" on inode 257
6133 	 * inode 261 with reference "zz" on inode 257
6134 	 *
6135 	 * When logging inode 261 the following infinite loop could
6136 	 * happen if we don't skip already logged inodes:
6137 	 *
6138 	 * - we detect inode 258 as a conflicting inode, with inode 261
6139 	 *   on reference "zz", and log it;
6140 	 *
6141 	 * - we detect inode 259 as a conflicting inode, with inode 258
6142 	 *   on reference "a", and log it;
6143 	 *
6144 	 * - we detect inode 258 as a conflicting inode, with inode 259
6145 	 *   on reference "zz_link", and log it - again! After this we
6146 	 *   repeat the above steps forever.
6147 	 *
6148 	 * Here we can use need_log_inode() because we only need to log the
6149 	 * inode in LOG_INODE_EXISTS mode and rename operations update the log,
6150 	 * so that the log ends up with the new name and without the old name.
6151 	 */
6152 	if (!need_log_inode(trans, inode)) {
6153 		btrfs_add_delayed_iput(inode);
6154 		return 0;
6155 	}
6156 
6157 	btrfs_add_delayed_iput(inode);
6158 
6159 	ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
6160 	if (!ino_elem)
6161 		return -ENOMEM;
6162 	ino_elem->ino = ino;
6163 	ino_elem->parent = parent;
6164 	list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
6165 	ctx->num_conflict_inodes++;
6166 
6167 	return 0;
6168 }
6169 
log_conflicting_inodes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_log_ctx * ctx)6170 static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
6171 				  struct btrfs_root *root,
6172 				  struct btrfs_log_ctx *ctx)
6173 {
6174 	int ret = 0;
6175 
6176 	/*
6177 	 * Conflicting inodes are logged by the first call to btrfs_log_inode(),
6178 	 * otherwise we could have unbounded recursion of btrfs_log_inode()
6179 	 * calls. This check guarantees we can have only 1 level of recursion.
6180 	 */
6181 	if (ctx->logging_conflict_inodes)
6182 		return 0;
6183 
6184 	ctx->logging_conflict_inodes = true;
6185 
6186 	/*
6187 	 * New conflicting inodes may be found and added to the list while we
6188 	 * are logging a conflicting inode, so keep iterating while the list is
6189 	 * not empty.
6190 	 */
6191 	while (!list_empty(&ctx->conflict_inodes)) {
6192 		struct btrfs_ino_list *curr;
6193 		struct btrfs_inode *inode;
6194 		u64 ino;
6195 		u64 parent;
6196 
6197 		curr = list_first_entry(&ctx->conflict_inodes,
6198 					struct btrfs_ino_list, list);
6199 		ino = curr->ino;
6200 		parent = curr->parent;
6201 		list_del(&curr->list);
6202 		kfree(curr);
6203 
6204 		inode = btrfs_iget_logging(ino, root);
6205 		/*
6206 		 * If the other inode that had a conflicting dir entry was
6207 		 * deleted in the current transaction, we need to log its parent
6208 		 * directory. See the comment at add_conflicting_inode().
6209 		 */
6210 		if (IS_ERR(inode)) {
6211 			ret = PTR_ERR(inode);
6212 			if (ret != -ENOENT)
6213 				break;
6214 
6215 			inode = btrfs_iget_logging(parent, root);
6216 			if (IS_ERR(inode)) {
6217 				ret = PTR_ERR(inode);
6218 				break;
6219 			}
6220 
6221 			/*
6222 			 * Always log the directory, we cannot make this
6223 			 * conditional on need_log_inode() because the directory
6224 			 * might have been logged in LOG_INODE_EXISTS mode or
6225 			 * the dir index of the conflicting inode is not in a
6226 			 * dir index key range logged for the directory. So we
6227 			 * must make sure the deletion is recorded.
6228 			 */
6229 			ret = btrfs_log_inode(trans, inode, LOG_INODE_ALL, ctx);
6230 			btrfs_add_delayed_iput(inode);
6231 			if (ret)
6232 				break;
6233 			continue;
6234 		}
6235 
6236 		/*
6237 		 * Here we can use need_log_inode() because we only need to log
6238 		 * the inode in LOG_INODE_EXISTS mode and rename operations
6239 		 * update the log, so that the log ends up with the new name and
6240 		 * without the old name.
6241 		 *
6242 		 * We did this check at add_conflicting_inode(), but here we do
6243 		 * it again because if some other task logged the inode after
6244 		 * that, we can avoid doing it again.
6245 		 */
6246 		if (!need_log_inode(trans, inode)) {
6247 			btrfs_add_delayed_iput(inode);
6248 			continue;
6249 		}
6250 
6251 		/*
6252 		 * We are safe logging the other inode without acquiring its
6253 		 * lock as long as we log with the LOG_INODE_EXISTS mode. We
6254 		 * are safe against concurrent renames of the other inode as
6255 		 * well because during a rename we pin the log and update the
6256 		 * log with the new name before we unpin it.
6257 		 */
6258 		ret = btrfs_log_inode(trans, inode, LOG_INODE_EXISTS, ctx);
6259 		btrfs_add_delayed_iput(inode);
6260 		if (ret)
6261 			break;
6262 	}
6263 
6264 	ctx->logging_conflict_inodes = false;
6265 	if (ret)
6266 		free_conflicting_inodes(ctx);
6267 
6268 	return ret;
6269 }
6270 
copy_inode_items_to_log(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_key * min_key,const struct btrfs_key * max_key,struct btrfs_path * path,struct btrfs_path * dst_path,const u64 logged_isize,const int inode_only,struct btrfs_log_ctx * ctx,bool * need_log_inode_item)6271 static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
6272 				   struct btrfs_inode *inode,
6273 				   struct btrfs_key *min_key,
6274 				   const struct btrfs_key *max_key,
6275 				   struct btrfs_path *path,
6276 				   struct btrfs_path *dst_path,
6277 				   const u64 logged_isize,
6278 				   const int inode_only,
6279 				   struct btrfs_log_ctx *ctx,
6280 				   bool *need_log_inode_item)
6281 {
6282 	const u64 i_size = i_size_read(&inode->vfs_inode);
6283 	struct btrfs_root *root = inode->root;
6284 	int ins_start_slot = 0;
6285 	int ins_nr = 0;
6286 	int ret;
6287 
6288 	while (1) {
6289 		ret = btrfs_search_forward(root, min_key, path, trans->transid);
6290 		if (ret < 0)
6291 			return ret;
6292 		if (ret > 0) {
6293 			ret = 0;
6294 			break;
6295 		}
6296 again:
6297 		/* Note, ins_nr might be > 0 here, cleanup outside the loop */
6298 		if (min_key->objectid != max_key->objectid)
6299 			break;
6300 		if (min_key->type > max_key->type)
6301 			break;
6302 
6303 		if (min_key->type == BTRFS_INODE_ITEM_KEY) {
6304 			*need_log_inode_item = false;
6305 		} else if (min_key->type == BTRFS_EXTENT_DATA_KEY &&
6306 			   min_key->offset >= i_size) {
6307 			/*
6308 			 * Extents at and beyond eof are logged with
6309 			 * btrfs_log_prealloc_extents().
6310 			 * Only regular files have BTRFS_EXTENT_DATA_KEY keys,
6311 			 * and no keys greater than that, so bail out.
6312 			 */
6313 			break;
6314 		} else if ((min_key->type == BTRFS_INODE_REF_KEY ||
6315 			    min_key->type == BTRFS_INODE_EXTREF_KEY) &&
6316 			   (inode->generation == trans->transid ||
6317 			    ctx->logging_conflict_inodes)) {
6318 			u64 other_ino = 0;
6319 			u64 other_parent = 0;
6320 
6321 			ret = btrfs_check_ref_name_override(path->nodes[0],
6322 					path->slots[0], min_key, inode,
6323 					&other_ino, &other_parent);
6324 			if (ret < 0) {
6325 				return ret;
6326 			} else if (ret > 0 &&
6327 				   other_ino != btrfs_ino(ctx->inode)) {
6328 				if (ins_nr > 0) {
6329 					ins_nr++;
6330 				} else {
6331 					ins_nr = 1;
6332 					ins_start_slot = path->slots[0];
6333 				}
6334 				ret = copy_items(trans, inode, dst_path, path,
6335 						 ins_start_slot, ins_nr,
6336 						 inode_only, logged_isize, ctx);
6337 				if (ret < 0)
6338 					return ret;
6339 				ins_nr = 0;
6340 
6341 				btrfs_release_path(path);
6342 				ret = add_conflicting_inode(trans, root, path,
6343 							    other_ino,
6344 							    other_parent, ctx);
6345 				if (ret)
6346 					return ret;
6347 				goto next_key;
6348 			}
6349 		} else if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
6350 			/* Skip xattrs, logged later with btrfs_log_all_xattrs() */
6351 			if (ins_nr == 0)
6352 				goto next_slot;
6353 			ret = copy_items(trans, inode, dst_path, path,
6354 					 ins_start_slot,
6355 					 ins_nr, inode_only, logged_isize, ctx);
6356 			if (ret < 0)
6357 				return ret;
6358 			ins_nr = 0;
6359 			goto next_slot;
6360 		}
6361 
6362 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
6363 			ins_nr++;
6364 			goto next_slot;
6365 		} else if (!ins_nr) {
6366 			ins_start_slot = path->slots[0];
6367 			ins_nr = 1;
6368 			goto next_slot;
6369 		}
6370 
6371 		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
6372 				 ins_nr, inode_only, logged_isize, ctx);
6373 		if (ret < 0)
6374 			return ret;
6375 		ins_nr = 1;
6376 		ins_start_slot = path->slots[0];
6377 next_slot:
6378 		path->slots[0]++;
6379 		if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
6380 			btrfs_item_key_to_cpu(path->nodes[0], min_key,
6381 					      path->slots[0]);
6382 			goto again;
6383 		}
6384 		if (ins_nr) {
6385 			ret = copy_items(trans, inode, dst_path, path,
6386 					 ins_start_slot, ins_nr, inode_only,
6387 					 logged_isize, ctx);
6388 			if (ret < 0)
6389 				return ret;
6390 			ins_nr = 0;
6391 		}
6392 		btrfs_release_path(path);
6393 next_key:
6394 		if (min_key->offset < (u64)-1) {
6395 			min_key->offset++;
6396 		} else if (min_key->type < max_key->type) {
6397 			min_key->type++;
6398 			min_key->offset = 0;
6399 		} else {
6400 			break;
6401 		}
6402 
6403 		/*
6404 		 * We may process many leaves full of items for our inode, so
6405 		 * avoid monopolizing a cpu for too long by rescheduling while
6406 		 * not holding locks on any tree.
6407 		 */
6408 		cond_resched();
6409 	}
6410 	if (ins_nr) {
6411 		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
6412 				 ins_nr, inode_only, logged_isize, ctx);
6413 		if (ret)
6414 			return ret;
6415 	}
6416 
6417 	if (inode_only == LOG_INODE_ALL && S_ISREG(inode->vfs_inode.i_mode)) {
6418 		/*
6419 		 * Release the path because otherwise we might attempt to double
6420 		 * lock the same leaf with btrfs_log_prealloc_extents() below.
6421 		 */
6422 		btrfs_release_path(path);
6423 		ret = btrfs_log_prealloc_extents(trans, inode, dst_path, ctx);
6424 	}
6425 
6426 	return ret;
6427 }
6428 
insert_delayed_items_batch(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,const struct btrfs_item_batch * batch,const struct btrfs_delayed_item * first_item)6429 static int insert_delayed_items_batch(struct btrfs_trans_handle *trans,
6430 				      struct btrfs_root *log,
6431 				      struct btrfs_path *path,
6432 				      const struct btrfs_item_batch *batch,
6433 				      const struct btrfs_delayed_item *first_item)
6434 {
6435 	const struct btrfs_delayed_item *curr = first_item;
6436 	int ret;
6437 
6438 	ret = btrfs_insert_empty_items(trans, log, path, batch);
6439 	if (ret)
6440 		return ret;
6441 
6442 	for (int i = 0; i < batch->nr; i++) {
6443 		char *data_ptr;
6444 
6445 		data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
6446 		write_extent_buffer(path->nodes[0], &curr->data,
6447 				    (unsigned long)data_ptr, curr->data_len);
6448 		curr = list_next_entry(curr, log_list);
6449 		path->slots[0]++;
6450 	}
6451 
6452 	btrfs_release_path(path);
6453 
6454 	return 0;
6455 }
6456 
log_delayed_insertion_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,const struct list_head * delayed_ins_list,struct btrfs_log_ctx * ctx)6457 static int log_delayed_insertion_items(struct btrfs_trans_handle *trans,
6458 				       struct btrfs_inode *inode,
6459 				       struct btrfs_path *path,
6460 				       const struct list_head *delayed_ins_list,
6461 				       struct btrfs_log_ctx *ctx)
6462 {
6463 	/* 195 (4095 bytes of keys and sizes) fits in a single 4K page. */
6464 	const int max_batch_size = 195;
6465 	const int leaf_data_size = BTRFS_LEAF_DATA_SIZE(trans->fs_info);
6466 	const u64 ino = btrfs_ino(inode);
6467 	struct btrfs_root *log = inode->root->log_root;
6468 	struct btrfs_item_batch batch = {
6469 		.nr = 0,
6470 		.total_data_size = 0,
6471 	};
6472 	const struct btrfs_delayed_item *first = NULL;
6473 	const struct btrfs_delayed_item *curr;
6474 	char *ins_data;
6475 	struct btrfs_key *ins_keys;
6476 	u32 *ins_sizes;
6477 	u64 curr_batch_size = 0;
6478 	int batch_idx = 0;
6479 	int ret;
6480 
6481 	/* We are adding dir index items to the log tree. */
6482 	lockdep_assert_held(&inode->log_mutex);
6483 
6484 	/*
6485 	 * We collect delayed items before copying index keys from the subvolume
6486 	 * to the log tree. However just after we collected them, they may have
6487 	 * been flushed (all of them or just some of them), and therefore we
6488 	 * could have copied them from the subvolume tree to the log tree.
6489 	 * So find the first delayed item that was not yet logged (they are
6490 	 * sorted by index number).
6491 	 */
6492 	list_for_each_entry(curr, delayed_ins_list, log_list) {
6493 		if (curr->index > inode->last_dir_index_offset) {
6494 			first = curr;
6495 			break;
6496 		}
6497 	}
6498 
6499 	/* Empty list or all delayed items were already logged. */
6500 	if (!first)
6501 		return 0;
6502 
6503 	ins_data = kmalloc_array(max_batch_size, sizeof(u32) + sizeof(struct btrfs_key), GFP_NOFS);
6504 	if (!ins_data)
6505 		return -ENOMEM;
6506 	ins_sizes = (u32 *)ins_data;
6507 	batch.data_sizes = ins_sizes;
6508 	ins_keys = (struct btrfs_key *)(ins_data + max_batch_size * sizeof(u32));
6509 	batch.keys = ins_keys;
6510 
6511 	curr = first;
6512 	while (!list_entry_is_head(curr, delayed_ins_list, log_list)) {
6513 		const u32 curr_size = curr->data_len + sizeof(struct btrfs_item);
6514 
6515 		if (curr_batch_size + curr_size > leaf_data_size ||
6516 		    batch.nr == max_batch_size) {
6517 			ret = insert_delayed_items_batch(trans, log, path,
6518 							 &batch, first);
6519 			if (ret)
6520 				goto out;
6521 			batch_idx = 0;
6522 			batch.nr = 0;
6523 			batch.total_data_size = 0;
6524 			curr_batch_size = 0;
6525 			first = curr;
6526 		}
6527 
6528 		ins_sizes[batch_idx] = curr->data_len;
6529 		ins_keys[batch_idx].objectid = ino;
6530 		ins_keys[batch_idx].type = BTRFS_DIR_INDEX_KEY;
6531 		ins_keys[batch_idx].offset = curr->index;
6532 		curr_batch_size += curr_size;
6533 		batch.total_data_size += curr->data_len;
6534 		batch.nr++;
6535 		batch_idx++;
6536 		curr = list_next_entry(curr, log_list);
6537 	}
6538 
6539 	ASSERT(batch.nr >= 1, "batch.nr=%d", batch.nr);
6540 	ret = insert_delayed_items_batch(trans, log, path, &batch, first);
6541 
6542 	curr = list_last_entry(delayed_ins_list, struct btrfs_delayed_item,
6543 			       log_list);
6544 	inode->last_dir_index_offset = curr->index;
6545 out:
6546 	kfree(ins_data);
6547 
6548 	return ret;
6549 }
6550 
log_delayed_deletions_full(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,const struct list_head * delayed_del_list,struct btrfs_log_ctx * ctx)6551 static int log_delayed_deletions_full(struct btrfs_trans_handle *trans,
6552 				      struct btrfs_inode *inode,
6553 				      struct btrfs_path *path,
6554 				      const struct list_head *delayed_del_list,
6555 				      struct btrfs_log_ctx *ctx)
6556 {
6557 	const u64 ino = btrfs_ino(inode);
6558 	const struct btrfs_delayed_item *curr;
6559 
6560 	curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6561 				log_list);
6562 
6563 	while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6564 		u64 first_dir_index = curr->index;
6565 		u64 last_dir_index;
6566 		const struct btrfs_delayed_item *next;
6567 		int ret;
6568 
6569 		/*
6570 		 * Find a range of consecutive dir index items to delete. Like
6571 		 * this we log a single dir range item spanning several contiguous
6572 		 * dir items instead of logging one range item per dir index item.
6573 		 */
6574 		next = list_next_entry(curr, log_list);
6575 		while (!list_entry_is_head(next, delayed_del_list, log_list)) {
6576 			if (next->index != curr->index + 1)
6577 				break;
6578 			curr = next;
6579 			next = list_next_entry(next, log_list);
6580 		}
6581 
6582 		last_dir_index = curr->index;
6583 		ASSERT(last_dir_index >= first_dir_index,
6584 		       "last_dir_index=%llu first_dir_index=%llu",
6585 		       last_dir_index, first_dir_index);
6586 
6587 		ret = insert_dir_log_key(trans, inode->root->log_root, path,
6588 					 ino, first_dir_index, last_dir_index);
6589 		if (ret)
6590 			return ret;
6591 		curr = list_next_entry(curr, log_list);
6592 	}
6593 
6594 	return 0;
6595 }
6596 
batch_delete_dir_index_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,const struct list_head * delayed_del_list,const struct btrfs_delayed_item * first,const struct btrfs_delayed_item ** last_ret)6597 static int batch_delete_dir_index_items(struct btrfs_trans_handle *trans,
6598 					struct btrfs_inode *inode,
6599 					struct btrfs_path *path,
6600 					const struct list_head *delayed_del_list,
6601 					const struct btrfs_delayed_item *first,
6602 					const struct btrfs_delayed_item **last_ret)
6603 {
6604 	const struct btrfs_delayed_item *next;
6605 	struct extent_buffer *leaf = path->nodes[0];
6606 	const int last_slot = btrfs_header_nritems(leaf) - 1;
6607 	int slot = path->slots[0] + 1;
6608 	const u64 ino = btrfs_ino(inode);
6609 
6610 	next = list_next_entry(first, log_list);
6611 
6612 	while (slot < last_slot &&
6613 	       !list_entry_is_head(next, delayed_del_list, log_list)) {
6614 		struct btrfs_key key;
6615 
6616 		btrfs_item_key_to_cpu(leaf, &key, slot);
6617 		if (key.objectid != ino ||
6618 		    key.type != BTRFS_DIR_INDEX_KEY ||
6619 		    key.offset != next->index)
6620 			break;
6621 
6622 		slot++;
6623 		*last_ret = next;
6624 		next = list_next_entry(next, log_list);
6625 	}
6626 
6627 	return btrfs_del_items(trans, inode->root->log_root, path,
6628 			       path->slots[0], slot - path->slots[0]);
6629 }
6630 
log_delayed_deletions_incremental(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,const struct list_head * delayed_del_list,struct btrfs_log_ctx * ctx)6631 static int log_delayed_deletions_incremental(struct btrfs_trans_handle *trans,
6632 					     struct btrfs_inode *inode,
6633 					     struct btrfs_path *path,
6634 					     const struct list_head *delayed_del_list,
6635 					     struct btrfs_log_ctx *ctx)
6636 {
6637 	struct btrfs_root *log = inode->root->log_root;
6638 	const struct btrfs_delayed_item *curr;
6639 	u64 last_range_start = 0;
6640 	u64 last_range_end = 0;
6641 	struct btrfs_key key;
6642 
6643 	key.objectid = btrfs_ino(inode);
6644 	key.type = BTRFS_DIR_INDEX_KEY;
6645 	curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6646 				log_list);
6647 
6648 	while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6649 		const struct btrfs_delayed_item *last = curr;
6650 		u64 first_dir_index = curr->index;
6651 		u64 last_dir_index;
6652 		bool deleted_items = false;
6653 		int ret;
6654 
6655 		key.offset = curr->index;
6656 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
6657 		if (ret < 0) {
6658 			return ret;
6659 		} else if (ret == 0) {
6660 			ret = batch_delete_dir_index_items(trans, inode, path,
6661 							   delayed_del_list, curr,
6662 							   &last);
6663 			if (ret)
6664 				return ret;
6665 			deleted_items = true;
6666 		}
6667 
6668 		btrfs_release_path(path);
6669 
6670 		/*
6671 		 * If we deleted items from the leaf, it means we have a range
6672 		 * item logging their range, so no need to add one or update an
6673 		 * existing one. Otherwise we have to log a dir range item.
6674 		 */
6675 		if (deleted_items)
6676 			goto next_batch;
6677 
6678 		last_dir_index = last->index;
6679 		ASSERT(last_dir_index >= first_dir_index,
6680 		       "last_dir_index=%llu first_dir_index=%llu",
6681 		       last_dir_index, first_dir_index);
6682 		/*
6683 		 * If this range starts right after where the previous one ends,
6684 		 * then we want to reuse the previous range item and change its
6685 		 * end offset to the end of this range. This is just to minimize
6686 		 * leaf space usage, by avoiding adding a new range item.
6687 		 */
6688 		if (last_range_end != 0 && first_dir_index == last_range_end + 1)
6689 			first_dir_index = last_range_start;
6690 
6691 		ret = insert_dir_log_key(trans, log, path, key.objectid,
6692 					 first_dir_index, last_dir_index);
6693 		if (ret)
6694 			return ret;
6695 
6696 		last_range_start = first_dir_index;
6697 		last_range_end = last_dir_index;
6698 next_batch:
6699 		curr = list_next_entry(last, log_list);
6700 	}
6701 
6702 	return 0;
6703 }
6704 
log_delayed_deletion_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,const struct list_head * delayed_del_list,struct btrfs_log_ctx * ctx)6705 static int log_delayed_deletion_items(struct btrfs_trans_handle *trans,
6706 				      struct btrfs_inode *inode,
6707 				      struct btrfs_path *path,
6708 				      const struct list_head *delayed_del_list,
6709 				      struct btrfs_log_ctx *ctx)
6710 {
6711 	/*
6712 	 * We are deleting dir index items from the log tree or adding range
6713 	 * items to it.
6714 	 */
6715 	lockdep_assert_held(&inode->log_mutex);
6716 
6717 	if (list_empty(delayed_del_list))
6718 		return 0;
6719 
6720 	if (ctx->logged_before)
6721 		return log_delayed_deletions_incremental(trans, inode, path,
6722 							 delayed_del_list, ctx);
6723 
6724 	return log_delayed_deletions_full(trans, inode, path, delayed_del_list,
6725 					  ctx);
6726 }
6727 
6728 /*
6729  * Similar logic as for log_new_dir_dentries(), but it iterates over the delayed
6730  * items instead of the subvolume tree.
6731  */
log_new_delayed_dentries(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,const struct list_head * delayed_ins_list,struct btrfs_log_ctx * ctx)6732 static int log_new_delayed_dentries(struct btrfs_trans_handle *trans,
6733 				    struct btrfs_inode *inode,
6734 				    const struct list_head *delayed_ins_list,
6735 				    struct btrfs_log_ctx *ctx)
6736 {
6737 	const bool orig_log_new_dentries = ctx->log_new_dentries;
6738 	struct btrfs_delayed_item *item;
6739 	int ret = 0;
6740 
6741 	/*
6742 	 * No need for the log mutex, plus to avoid potential deadlocks or
6743 	 * lockdep annotations due to nesting of delayed inode mutexes and log
6744 	 * mutexes.
6745 	 */
6746 	lockdep_assert_not_held(&inode->log_mutex);
6747 
6748 	ASSERT(!ctx->logging_new_delayed_dentries,
6749 	       "ctx->logging_new_delayed_dentries=%d", ctx->logging_new_delayed_dentries);
6750 	ctx->logging_new_delayed_dentries = true;
6751 
6752 	list_for_each_entry(item, delayed_ins_list, log_list) {
6753 		struct btrfs_dir_item *dir_item;
6754 		struct btrfs_inode *di_inode;
6755 		struct btrfs_key key;
6756 		int log_mode = LOG_INODE_EXISTS;
6757 
6758 		dir_item = (struct btrfs_dir_item *)item->data;
6759 		btrfs_disk_key_to_cpu(&key, &dir_item->location);
6760 
6761 		if (key.type == BTRFS_ROOT_ITEM_KEY)
6762 			continue;
6763 
6764 		di_inode = btrfs_iget_logging(key.objectid, inode->root);
6765 		if (IS_ERR(di_inode)) {
6766 			ret = PTR_ERR(di_inode);
6767 			break;
6768 		}
6769 
6770 		if (!need_log_inode(trans, di_inode)) {
6771 			btrfs_add_delayed_iput(di_inode);
6772 			continue;
6773 		}
6774 
6775 		if (btrfs_stack_dir_ftype(dir_item) == BTRFS_FT_DIR)
6776 			log_mode = LOG_INODE_ALL;
6777 
6778 		ctx->log_new_dentries = false;
6779 		ret = btrfs_log_inode(trans, di_inode, log_mode, ctx);
6780 
6781 		if (!ret && ctx->log_new_dentries)
6782 			ret = log_new_dir_dentries(trans, di_inode, ctx);
6783 
6784 		btrfs_add_delayed_iput(di_inode);
6785 
6786 		if (ret)
6787 			break;
6788 	}
6789 
6790 	ctx->log_new_dentries = orig_log_new_dentries;
6791 	ctx->logging_new_delayed_dentries = false;
6792 
6793 	return ret;
6794 }
6795 
6796 /* log a single inode in the tree log.
6797  * At least one parent directory for this inode must exist in the tree
6798  * or be logged already.
6799  *
6800  * Any items from this inode changed by the current transaction are copied
6801  * to the log tree.  An extra reference is taken on any extents in this
6802  * file, allowing us to avoid a whole pile of corner cases around logging
6803  * blocks that have been removed from the tree.
6804  *
6805  * See LOG_INODE_ALL and related defines for a description of what inode_only
6806  * does.
6807  *
6808  * This handles both files and directories.
6809  */
btrfs_log_inode(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,int inode_only,struct btrfs_log_ctx * ctx)6810 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
6811 			   struct btrfs_inode *inode,
6812 			   int inode_only,
6813 			   struct btrfs_log_ctx *ctx)
6814 {
6815 	struct btrfs_path *path;
6816 	struct btrfs_path *dst_path;
6817 	struct btrfs_key min_key;
6818 	struct btrfs_key max_key;
6819 	struct btrfs_root *log = inode->root->log_root;
6820 	int ret;
6821 	bool fast_search = false;
6822 	u64 ino = btrfs_ino(inode);
6823 	struct extent_map_tree *em_tree = &inode->extent_tree;
6824 	u64 logged_isize = 0;
6825 	bool need_log_inode_item = true;
6826 	bool xattrs_logged = false;
6827 	bool inode_item_dropped = true;
6828 	bool full_dir_logging = false;
6829 	LIST_HEAD(delayed_ins_list);
6830 	LIST_HEAD(delayed_del_list);
6831 
6832 	path = btrfs_alloc_path();
6833 	if (!path)
6834 		return -ENOMEM;
6835 	dst_path = btrfs_alloc_path();
6836 	if (!dst_path) {
6837 		btrfs_free_path(path);
6838 		return -ENOMEM;
6839 	}
6840 
6841 	min_key.objectid = ino;
6842 	min_key.type = BTRFS_INODE_ITEM_KEY;
6843 	min_key.offset = 0;
6844 
6845 	max_key.objectid = ino;
6846 
6847 
6848 	/* today the code can only do partial logging of directories */
6849 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
6850 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6851 		       &inode->runtime_flags) &&
6852 	     inode_only >= LOG_INODE_EXISTS))
6853 		max_key.type = BTRFS_XATTR_ITEM_KEY;
6854 	else
6855 		max_key.type = (u8)-1;
6856 	max_key.offset = (u64)-1;
6857 
6858 	if (S_ISDIR(inode->vfs_inode.i_mode) && inode_only == LOG_INODE_ALL)
6859 		full_dir_logging = true;
6860 
6861 	/*
6862 	 * If we are logging a directory while we are logging dentries of the
6863 	 * delayed items of some other inode, then we need to flush the delayed
6864 	 * items of this directory and not log the delayed items directly. This
6865 	 * is to prevent more than one level of recursion into btrfs_log_inode()
6866 	 * by having something like this:
6867 	 *
6868 	 *     $ mkdir -p a/b/c/d/e/f/g/h/...
6869 	 *     $ xfs_io -c "fsync" a
6870 	 *
6871 	 * Where all directories in the path did not exist before and are
6872 	 * created in the current transaction.
6873 	 * So in such a case we directly log the delayed items of the main
6874 	 * directory ("a") without flushing them first, while for each of its
6875 	 * subdirectories we flush their delayed items before logging them.
6876 	 * This prevents a potential unbounded recursion like this:
6877 	 *
6878 	 * btrfs_log_inode()
6879 	 *   log_new_delayed_dentries()
6880 	 *      btrfs_log_inode()
6881 	 *        log_new_delayed_dentries()
6882 	 *          btrfs_log_inode()
6883 	 *            log_new_delayed_dentries()
6884 	 *              (...)
6885 	 *
6886 	 * We have thresholds for the maximum number of delayed items to have in
6887 	 * memory, and once they are hit, the items are flushed asynchronously.
6888 	 * However the limit is quite high, so lets prevent deep levels of
6889 	 * recursion to happen by limiting the maximum depth to be 1.
6890 	 */
6891 	if (full_dir_logging && ctx->logging_new_delayed_dentries) {
6892 		ret = btrfs_commit_inode_delayed_items(trans, inode);
6893 		if (ret)
6894 			goto out;
6895 	}
6896 
6897 	mutex_lock(&inode->log_mutex);
6898 
6899 	/*
6900 	 * For symlinks, we must always log their content, which is stored in an
6901 	 * inline extent, otherwise we could end up with an empty symlink after
6902 	 * log replay, which is invalid on linux (symlink(2) returns -ENOENT if
6903 	 * one attempts to create an empty symlink).
6904 	 * We don't need to worry about flushing delalloc, because when we create
6905 	 * the inline extent when the symlink is created (we never have delalloc
6906 	 * for symlinks).
6907 	 */
6908 	if (S_ISLNK(inode->vfs_inode.i_mode))
6909 		inode_only = LOG_INODE_ALL;
6910 
6911 	/*
6912 	 * Before logging the inode item, cache the value returned by
6913 	 * inode_logged(), because after that we have the need to figure out if
6914 	 * the inode was previously logged in this transaction.
6915 	 */
6916 	ret = inode_logged(trans, inode, path);
6917 	if (ret < 0)
6918 		goto out_unlock;
6919 	ctx->logged_before = (ret == 1);
6920 	ret = 0;
6921 
6922 	/*
6923 	 * This is for cases where logging a directory could result in losing a
6924 	 * a file after replaying the log. For example, if we move a file from a
6925 	 * directory A to a directory B, then fsync directory A, we have no way
6926 	 * to known the file was moved from A to B, so logging just A would
6927 	 * result in losing the file after a log replay.
6928 	 */
6929 	if (full_dir_logging && inode->last_unlink_trans >= trans->transid) {
6930 		ret = BTRFS_LOG_FORCE_COMMIT;
6931 		goto out_unlock;
6932 	}
6933 
6934 	/*
6935 	 * a brute force approach to making sure we get the most uptodate
6936 	 * copies of everything.
6937 	 */
6938 	if (S_ISDIR(inode->vfs_inode.i_mode)) {
6939 		clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
6940 		if (ctx->logged_before)
6941 			ret = drop_inode_items(trans, log, path, inode,
6942 					       BTRFS_XATTR_ITEM_KEY);
6943 	} else {
6944 		if (inode_only == LOG_INODE_EXISTS && ctx->logged_before) {
6945 			/*
6946 			 * Make sure the new inode item we write to the log has
6947 			 * the same isize as the current one (if it exists).
6948 			 * This is necessary to prevent data loss after log
6949 			 * replay, and also to prevent doing a wrong expanding
6950 			 * truncate - for e.g. create file, write 4K into offset
6951 			 * 0, fsync, write 4K into offset 4096, add hard link,
6952 			 * fsync some other file (to sync log), power fail - if
6953 			 * we use the inode's current i_size, after log replay
6954 			 * we get a 8Kb file, with the last 4Kb extent as a hole
6955 			 * (zeroes), as if an expanding truncate happened,
6956 			 * instead of getting a file of 4Kb only.
6957 			 */
6958 			ret = logged_inode_size(log, inode, path, &logged_isize);
6959 			if (ret)
6960 				goto out_unlock;
6961 		}
6962 		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6963 			     &inode->runtime_flags)) {
6964 			if (inode_only == LOG_INODE_EXISTS) {
6965 				max_key.type = BTRFS_XATTR_ITEM_KEY;
6966 				if (ctx->logged_before)
6967 					ret = drop_inode_items(trans, log, path,
6968 							       inode, max_key.type);
6969 			} else {
6970 				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6971 					  &inode->runtime_flags);
6972 				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6973 					  &inode->runtime_flags);
6974 				if (ctx->logged_before)
6975 					ret = truncate_inode_items(trans, log,
6976 								   inode, 0, 0);
6977 			}
6978 		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6979 					      &inode->runtime_flags) ||
6980 			   inode_only == LOG_INODE_EXISTS) {
6981 			if (inode_only == LOG_INODE_ALL)
6982 				fast_search = true;
6983 			max_key.type = BTRFS_XATTR_ITEM_KEY;
6984 			if (ctx->logged_before)
6985 				ret = drop_inode_items(trans, log, path, inode,
6986 						       max_key.type);
6987 		} else {
6988 			if (inode_only == LOG_INODE_ALL)
6989 				fast_search = true;
6990 			inode_item_dropped = false;
6991 			goto log_extents;
6992 		}
6993 
6994 	}
6995 	if (ret)
6996 		goto out_unlock;
6997 
6998 	/*
6999 	 * If we are logging a directory in full mode, collect the delayed items
7000 	 * before iterating the subvolume tree, so that we don't miss any new
7001 	 * dir index items in case they get flushed while or right after we are
7002 	 * iterating the subvolume tree.
7003 	 */
7004 	if (full_dir_logging && !ctx->logging_new_delayed_dentries)
7005 		btrfs_log_get_delayed_items(inode, &delayed_ins_list,
7006 					    &delayed_del_list);
7007 
7008 	/*
7009 	 * If we are fsyncing a file with 0 hard links, then commit the delayed
7010 	 * inode because the last inode ref (or extref) item may still be in the
7011 	 * subvolume tree and if we log it the file will still exist after a log
7012 	 * replay. So commit the delayed inode to delete that last ref and we
7013 	 * skip logging it.
7014 	 */
7015 	if (inode->vfs_inode.i_nlink == 0) {
7016 		ret = btrfs_commit_inode_delayed_inode(inode);
7017 		if (ret)
7018 			goto out_unlock;
7019 	}
7020 
7021 	ret = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
7022 				      path, dst_path, logged_isize,
7023 				      inode_only, ctx,
7024 				      &need_log_inode_item);
7025 	if (ret)
7026 		goto out_unlock;
7027 
7028 	btrfs_release_path(path);
7029 	btrfs_release_path(dst_path);
7030 	ret = btrfs_log_all_xattrs(trans, inode, path, dst_path, ctx);
7031 	if (ret)
7032 		goto out_unlock;
7033 	xattrs_logged = true;
7034 	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
7035 		btrfs_release_path(path);
7036 		btrfs_release_path(dst_path);
7037 		ret = btrfs_log_holes(trans, inode, path);
7038 		if (ret)
7039 			goto out_unlock;
7040 	}
7041 log_extents:
7042 	btrfs_release_path(path);
7043 	btrfs_release_path(dst_path);
7044 	if (need_log_inode_item) {
7045 		ret = log_inode_item(trans, log, dst_path, inode, inode_item_dropped);
7046 		if (ret)
7047 			goto out_unlock;
7048 		/*
7049 		 * If we are doing a fast fsync and the inode was logged before
7050 		 * in this transaction, we don't need to log the xattrs because
7051 		 * they were logged before. If xattrs were added, changed or
7052 		 * deleted since the last time we logged the inode, then we have
7053 		 * already logged them because the inode had the runtime flag
7054 		 * BTRFS_INODE_COPY_EVERYTHING set.
7055 		 */
7056 		if (!xattrs_logged && inode->logged_trans < trans->transid) {
7057 			ret = btrfs_log_all_xattrs(trans, inode, path, dst_path, ctx);
7058 			if (ret)
7059 				goto out_unlock;
7060 			btrfs_release_path(path);
7061 		}
7062 	}
7063 	if (fast_search) {
7064 		ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx);
7065 		if (ret)
7066 			goto out_unlock;
7067 	} else if (inode_only == LOG_INODE_ALL) {
7068 		struct extent_map *em, *n;
7069 
7070 		write_lock(&em_tree->lock);
7071 		list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
7072 			list_del_init(&em->list);
7073 		write_unlock(&em_tree->lock);
7074 	}
7075 
7076 	if (full_dir_logging) {
7077 		ret = log_directory_changes(trans, inode, path, dst_path, ctx);
7078 		if (ret)
7079 			goto out_unlock;
7080 		ret = log_delayed_insertion_items(trans, inode, path,
7081 						  &delayed_ins_list, ctx);
7082 		if (ret)
7083 			goto out_unlock;
7084 		ret = log_delayed_deletion_items(trans, inode, path,
7085 						 &delayed_del_list, ctx);
7086 		if (ret)
7087 			goto out_unlock;
7088 	}
7089 
7090 	spin_lock(&inode->lock);
7091 	inode->logged_trans = trans->transid;
7092 	/*
7093 	 * Don't update last_log_commit if we logged that an inode exists.
7094 	 * We do this for three reasons:
7095 	 *
7096 	 * 1) We might have had buffered writes to this inode that were
7097 	 *    flushed and had their ordered extents completed in this
7098 	 *    transaction, but we did not previously log the inode with
7099 	 *    LOG_INODE_ALL. Later the inode was evicted and after that
7100 	 *    it was loaded again and this LOG_INODE_EXISTS log operation
7101 	 *    happened. We must make sure that if an explicit fsync against
7102 	 *    the inode is performed later, it logs the new extents, an
7103 	 *    updated inode item, etc, and syncs the log. The same logic
7104 	 *    applies to direct IO writes instead of buffered writes.
7105 	 *
7106 	 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
7107 	 *    is logged with an i_size of 0 or whatever value was logged
7108 	 *    before. If later the i_size of the inode is increased by a
7109 	 *    truncate operation, the log is synced through an fsync of
7110 	 *    some other inode and then finally an explicit fsync against
7111 	 *    this inode is made, we must make sure this fsync logs the
7112 	 *    inode with the new i_size, the hole between old i_size and
7113 	 *    the new i_size, and syncs the log.
7114 	 *
7115 	 * 3) If we are logging that an ancestor inode exists as part of
7116 	 *    logging a new name from a link or rename operation, don't update
7117 	 *    its last_log_commit - otherwise if an explicit fsync is made
7118 	 *    against an ancestor, the fsync considers the inode in the log
7119 	 *    and doesn't sync the log, resulting in the ancestor missing after
7120 	 *    a power failure unless the log was synced as part of an fsync
7121 	 *    against any other unrelated inode.
7122 	 */
7123 	if (!ctx->logging_new_name && inode_only != LOG_INODE_EXISTS)
7124 		inode->last_log_commit = inode->last_sub_trans;
7125 	spin_unlock(&inode->lock);
7126 
7127 	/*
7128 	 * Reset the last_reflink_trans so that the next fsync does not need to
7129 	 * go through the slower path when logging extents and their checksums.
7130 	 */
7131 	if (inode_only == LOG_INODE_ALL)
7132 		inode->last_reflink_trans = 0;
7133 
7134 out_unlock:
7135 	mutex_unlock(&inode->log_mutex);
7136 out:
7137 	btrfs_free_path(path);
7138 	btrfs_free_path(dst_path);
7139 
7140 	if (ret)
7141 		free_conflicting_inodes(ctx);
7142 	else
7143 		ret = log_conflicting_inodes(trans, inode->root, ctx);
7144 
7145 	if (full_dir_logging && !ctx->logging_new_delayed_dentries) {
7146 		if (!ret)
7147 			ret = log_new_delayed_dentries(trans, inode,
7148 						       &delayed_ins_list, ctx);
7149 
7150 		btrfs_log_put_delayed_items(inode, &delayed_ins_list,
7151 					    &delayed_del_list);
7152 	}
7153 
7154 	return ret;
7155 }
7156 
btrfs_log_all_parents(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_log_ctx * ctx)7157 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
7158 				 struct btrfs_inode *inode,
7159 				 struct btrfs_log_ctx *ctx)
7160 {
7161 	int ret;
7162 	BTRFS_PATH_AUTO_FREE(path);
7163 	struct btrfs_key key;
7164 	struct btrfs_root *root = inode->root;
7165 	const u64 ino = btrfs_ino(inode);
7166 
7167 	path = btrfs_alloc_path();
7168 	if (!path)
7169 		return -ENOMEM;
7170 	path->skip_locking = true;
7171 	path->search_commit_root = true;
7172 
7173 	key.objectid = ino;
7174 	key.type = BTRFS_INODE_REF_KEY;
7175 	key.offset = 0;
7176 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7177 	if (ret < 0)
7178 		return ret;
7179 
7180 	while (true) {
7181 		struct extent_buffer *leaf = path->nodes[0];
7182 		int slot = path->slots[0];
7183 		u32 cur_offset = 0;
7184 		u32 item_size;
7185 		unsigned long ptr;
7186 
7187 		if (slot >= btrfs_header_nritems(leaf)) {
7188 			ret = btrfs_next_leaf(root, path);
7189 			if (ret < 0)
7190 				return ret;
7191 			if (ret > 0)
7192 				break;
7193 			continue;
7194 		}
7195 
7196 		btrfs_item_key_to_cpu(leaf, &key, slot);
7197 		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
7198 		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
7199 			break;
7200 
7201 		item_size = btrfs_item_size(leaf, slot);
7202 		ptr = btrfs_item_ptr_offset(leaf, slot);
7203 		while (cur_offset < item_size) {
7204 			u64 dir_id;
7205 			struct btrfs_inode *dir_inode;
7206 
7207 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
7208 				struct btrfs_inode_extref *extref;
7209 
7210 				extref = (struct btrfs_inode_extref *)
7211 					(ptr + cur_offset);
7212 				dir_id = btrfs_inode_extref_parent(leaf, extref);
7213 				cur_offset += sizeof(*extref);
7214 				cur_offset += btrfs_inode_extref_name_len(leaf,
7215 					extref);
7216 			} else {
7217 				dir_id = key.offset;
7218 				cur_offset = item_size;
7219 			}
7220 
7221 			dir_inode = btrfs_iget_logging(dir_id, root);
7222 			/*
7223 			 * If the parent inode was deleted, return an error to
7224 			 * fallback to a transaction commit. This is to prevent
7225 			 * getting an inode that was moved from one parent A to
7226 			 * a parent B, got its former parent A deleted and then
7227 			 * it got fsync'ed, from existing at both parents after
7228 			 * a log replay (and the old parent still existing).
7229 			 * Example:
7230 			 *
7231 			 * mkdir /mnt/A
7232 			 * mkdir /mnt/B
7233 			 * touch /mnt/B/bar
7234 			 * sync
7235 			 * mv /mnt/B/bar /mnt/A/bar
7236 			 * mv -T /mnt/A /mnt/B
7237 			 * fsync /mnt/B/bar
7238 			 * <power fail>
7239 			 *
7240 			 * If we ignore the old parent B which got deleted,
7241 			 * after a log replay we would have file bar linked
7242 			 * at both parents and the old parent B would still
7243 			 * exist.
7244 			 */
7245 			if (IS_ERR(dir_inode))
7246 				return PTR_ERR(dir_inode);
7247 
7248 			if (!need_log_inode(trans, dir_inode)) {
7249 				btrfs_add_delayed_iput(dir_inode);
7250 				continue;
7251 			}
7252 
7253 			ctx->log_new_dentries = false;
7254 			ret = btrfs_log_inode(trans, dir_inode, LOG_INODE_ALL, ctx);
7255 			if (!ret && ctx->log_new_dentries)
7256 				ret = log_new_dir_dentries(trans, dir_inode, ctx);
7257 			btrfs_add_delayed_iput(dir_inode);
7258 			if (ret)
7259 				return ret;
7260 		}
7261 		path->slots[0]++;
7262 	}
7263 	return 0;
7264 }
7265 
log_new_ancestors(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_log_ctx * ctx)7266 static int log_new_ancestors(struct btrfs_trans_handle *trans,
7267 			     struct btrfs_root *root,
7268 			     struct btrfs_path *path,
7269 			     struct btrfs_log_ctx *ctx)
7270 {
7271 	struct btrfs_key found_key;
7272 
7273 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
7274 
7275 	while (true) {
7276 		struct extent_buffer *leaf;
7277 		int slot;
7278 		struct btrfs_key search_key;
7279 		struct btrfs_inode *inode;
7280 		u64 ino;
7281 		int ret = 0;
7282 
7283 		btrfs_release_path(path);
7284 
7285 		ino = found_key.offset;
7286 
7287 		search_key.objectid = found_key.offset;
7288 		search_key.type = BTRFS_INODE_ITEM_KEY;
7289 		search_key.offset = 0;
7290 		inode = btrfs_iget_logging(ino, root);
7291 		if (IS_ERR(inode))
7292 			return PTR_ERR(inode);
7293 
7294 		if (inode->generation >= trans->transid &&
7295 		    need_log_inode(trans, inode))
7296 			ret = btrfs_log_inode(trans, inode, LOG_INODE_EXISTS, ctx);
7297 		btrfs_add_delayed_iput(inode);
7298 		if (ret)
7299 			return ret;
7300 
7301 		if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
7302 			break;
7303 
7304 		search_key.type = BTRFS_INODE_REF_KEY;
7305 		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
7306 		if (ret < 0)
7307 			return ret;
7308 
7309 		leaf = path->nodes[0];
7310 		slot = path->slots[0];
7311 		if (slot >= btrfs_header_nritems(leaf)) {
7312 			ret = btrfs_next_leaf(root, path);
7313 			if (ret < 0)
7314 				return ret;
7315 			else if (ret > 0)
7316 				return -ENOENT;
7317 			leaf = path->nodes[0];
7318 			slot = path->slots[0];
7319 		}
7320 
7321 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
7322 		if (found_key.objectid != search_key.objectid ||
7323 		    found_key.type != BTRFS_INODE_REF_KEY)
7324 			return -ENOENT;
7325 	}
7326 	return 0;
7327 }
7328 
log_new_ancestors_fast(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,struct btrfs_log_ctx * ctx)7329 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
7330 				  struct btrfs_inode *inode,
7331 				  struct dentry *parent,
7332 				  struct btrfs_log_ctx *ctx)
7333 {
7334 	struct btrfs_root *root = inode->root;
7335 	struct dentry *old_parent = NULL;
7336 	struct super_block *sb = inode->vfs_inode.i_sb;
7337 	int ret = 0;
7338 
7339 	while (true) {
7340 		if (!parent || d_really_is_negative(parent) ||
7341 		    sb != parent->d_sb)
7342 			break;
7343 
7344 		inode = BTRFS_I(d_inode(parent));
7345 		if (root != inode->root)
7346 			break;
7347 
7348 		if (inode->generation >= trans->transid &&
7349 		    need_log_inode(trans, inode)) {
7350 			ret = btrfs_log_inode(trans, inode,
7351 					      LOG_INODE_EXISTS, ctx);
7352 			if (ret)
7353 				break;
7354 		}
7355 		if (IS_ROOT(parent))
7356 			break;
7357 
7358 		parent = dget_parent(parent);
7359 		dput(old_parent);
7360 		old_parent = parent;
7361 	}
7362 	dput(old_parent);
7363 
7364 	return ret;
7365 }
7366 
log_all_new_ancestors(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,struct btrfs_log_ctx * ctx)7367 static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
7368 				 struct btrfs_inode *inode,
7369 				 struct dentry *parent,
7370 				 struct btrfs_log_ctx *ctx)
7371 {
7372 	struct btrfs_root *root = inode->root;
7373 	const u64 ino = btrfs_ino(inode);
7374 	BTRFS_PATH_AUTO_FREE(path);
7375 	struct btrfs_key search_key;
7376 	int ret;
7377 
7378 	/*
7379 	 * For a single hard link case, go through a fast path that does not
7380 	 * need to iterate the fs/subvolume tree.
7381 	 */
7382 	if (inode->vfs_inode.i_nlink < 2)
7383 		return log_new_ancestors_fast(trans, inode, parent, ctx);
7384 
7385 	path = btrfs_alloc_path();
7386 	if (!path)
7387 		return -ENOMEM;
7388 
7389 	search_key.objectid = ino;
7390 	search_key.type = BTRFS_INODE_REF_KEY;
7391 	search_key.offset = 0;
7392 again:
7393 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
7394 	if (ret < 0)
7395 		return ret;
7396 	if (ret == 0)
7397 		path->slots[0]++;
7398 
7399 	while (true) {
7400 		struct extent_buffer *leaf = path->nodes[0];
7401 		int slot = path->slots[0];
7402 		struct btrfs_key found_key;
7403 
7404 		if (slot >= btrfs_header_nritems(leaf)) {
7405 			ret = btrfs_next_leaf(root, path);
7406 			if (ret < 0)
7407 				return ret;
7408 			if (ret > 0)
7409 				break;
7410 			continue;
7411 		}
7412 
7413 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
7414 		if (found_key.objectid != ino ||
7415 		    found_key.type > BTRFS_INODE_EXTREF_KEY)
7416 			break;
7417 
7418 		/*
7419 		 * Don't deal with extended references because they are rare
7420 		 * cases and too complex to deal with (we would need to keep
7421 		 * track of which subitem we are processing for each item in
7422 		 * this loop, etc). So just return some error to fallback to
7423 		 * a transaction commit.
7424 		 */
7425 		if (found_key.type == BTRFS_INODE_EXTREF_KEY)
7426 			return -EMLINK;
7427 
7428 		/*
7429 		 * Logging ancestors needs to do more searches on the fs/subvol
7430 		 * tree, so it releases the path as needed to avoid deadlocks.
7431 		 * Keep track of the last inode ref key and resume from that key
7432 		 * after logging all new ancestors for the current hard link.
7433 		 */
7434 		memcpy(&search_key, &found_key, sizeof(search_key));
7435 
7436 		ret = log_new_ancestors(trans, root, path, ctx);
7437 		if (ret)
7438 			return ret;
7439 		btrfs_release_path(path);
7440 		goto again;
7441 	}
7442 	return 0;
7443 }
7444 
7445 /*
7446  * helper function around btrfs_log_inode to make sure newly created
7447  * parent directories also end up in the log.  A minimal inode and backref
7448  * only logging is done of any parent directories that are older than
7449  * the last committed transaction
7450  */
btrfs_log_inode_parent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,int inode_only,struct btrfs_log_ctx * ctx)7451 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
7452 				  struct btrfs_inode *inode,
7453 				  struct dentry *parent,
7454 				  int inode_only,
7455 				  struct btrfs_log_ctx *ctx)
7456 {
7457 	struct btrfs_root *root = inode->root;
7458 	struct btrfs_fs_info *fs_info = root->fs_info;
7459 	int ret = 0;
7460 	bool log_dentries;
7461 
7462 	if (btrfs_test_opt(fs_info, NOTREELOG))
7463 		return BTRFS_LOG_FORCE_COMMIT;
7464 
7465 	if (btrfs_root_refs(&root->root_item) == 0)
7466 		return BTRFS_LOG_FORCE_COMMIT;
7467 
7468 	/*
7469 	 * If we're logging an inode from a subvolume created in the current
7470 	 * transaction we must force a commit since the root is not persisted.
7471 	 */
7472 	if (btrfs_root_generation(&root->root_item) == trans->transid)
7473 		return BTRFS_LOG_FORCE_COMMIT;
7474 
7475 	/* Skip already logged inodes and without new extents. */
7476 	if (btrfs_inode_in_log(inode, trans->transid) &&
7477 	    list_empty(&ctx->ordered_extents))
7478 		return BTRFS_NO_LOG_SYNC;
7479 
7480 	ret = start_log_trans(trans, root, ctx);
7481 	if (ret)
7482 		return ret;
7483 
7484 	ret = btrfs_log_inode(trans, inode, inode_only, ctx);
7485 	if (ret)
7486 		goto end_trans;
7487 
7488 	/*
7489 	 * for regular files, if its inode is already on disk, we don't
7490 	 * have to worry about the parents at all.  This is because
7491 	 * we can use the last_unlink_trans field to record renames
7492 	 * and other fun in this file.
7493 	 */
7494 	if (S_ISREG(inode->vfs_inode.i_mode) &&
7495 	    inode->generation < trans->transid &&
7496 	    inode->last_unlink_trans < trans->transid) {
7497 		ret = 0;
7498 		goto end_trans;
7499 	}
7500 
7501 	/*
7502 	 * Track if we need to log dentries because ctx->log_new_dentries can
7503 	 * be modified in the call chains below.
7504 	 */
7505 	log_dentries = ctx->log_new_dentries;
7506 
7507 	/*
7508 	 * On unlink we must make sure all our current and old parent directory
7509 	 * inodes are fully logged. This is to prevent leaving dangling
7510 	 * directory index entries in directories that were our parents but are
7511 	 * not anymore. Not doing this results in old parent directory being
7512 	 * impossible to delete after log replay (rmdir will always fail with
7513 	 * error -ENOTEMPTY).
7514 	 *
7515 	 * Example 1:
7516 	 *
7517 	 * mkdir testdir
7518 	 * touch testdir/foo
7519 	 * ln testdir/foo testdir/bar
7520 	 * sync
7521 	 * unlink testdir/bar
7522 	 * xfs_io -c fsync testdir/foo
7523 	 * <power failure>
7524 	 * mount fs, triggers log replay
7525 	 *
7526 	 * If we don't log the parent directory (testdir), after log replay the
7527 	 * directory still has an entry pointing to the file inode using the bar
7528 	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
7529 	 * the file inode has a link count of 1.
7530 	 *
7531 	 * Example 2:
7532 	 *
7533 	 * mkdir testdir
7534 	 * touch foo
7535 	 * ln foo testdir/foo2
7536 	 * ln foo testdir/foo3
7537 	 * sync
7538 	 * unlink testdir/foo3
7539 	 * xfs_io -c fsync foo
7540 	 * <power failure>
7541 	 * mount fs, triggers log replay
7542 	 *
7543 	 * Similar as the first example, after log replay the parent directory
7544 	 * testdir still has an entry pointing to the inode file with name foo3
7545 	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
7546 	 * and has a link count of 2.
7547 	 */
7548 	if (inode->last_unlink_trans >= trans->transid) {
7549 		ret = btrfs_log_all_parents(trans, inode, ctx);
7550 		if (ret)
7551 			goto end_trans;
7552 	}
7553 
7554 	ret = log_all_new_ancestors(trans, inode, parent, ctx);
7555 	if (ret)
7556 		goto end_trans;
7557 
7558 	if (log_dentries)
7559 		ret = log_new_dir_dentries(trans, inode, ctx);
7560 end_trans:
7561 	if (ret < 0) {
7562 		btrfs_set_log_full_commit(trans);
7563 		ret = BTRFS_LOG_FORCE_COMMIT;
7564 	}
7565 
7566 	if (ret)
7567 		btrfs_remove_log_ctx(root, ctx);
7568 	btrfs_end_log_trans(root);
7569 
7570 	return ret;
7571 }
7572 
7573 /*
7574  * it is not safe to log dentry if the chunk root has added new
7575  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
7576  * If this returns 1, you must commit the transaction to safely get your
7577  * data on disk.
7578  */
btrfs_log_dentry_safe(struct btrfs_trans_handle * trans,struct dentry * dentry,struct btrfs_log_ctx * ctx)7579 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
7580 			  struct dentry *dentry,
7581 			  struct btrfs_log_ctx *ctx)
7582 {
7583 	struct dentry *parent = dget_parent(dentry);
7584 	int ret;
7585 
7586 	ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
7587 				     LOG_INODE_ALL, ctx);
7588 	dput(parent);
7589 
7590 	return ret;
7591 }
7592 
7593 /*
7594  * should be called during mount to recover any replay any log trees
7595  * from the FS
7596  */
btrfs_recover_log_trees(struct btrfs_root * log_root_tree)7597 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
7598 {
7599 	int ret;
7600 	struct btrfs_path *path;
7601 	struct btrfs_trans_handle *trans;
7602 	struct btrfs_key key;
7603 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
7604 	struct walk_control wc = {
7605 		.process_func = process_one_buffer,
7606 		.stage = LOG_WALK_PIN_ONLY,
7607 	};
7608 
7609 	path = btrfs_alloc_path();
7610 	if (!path)
7611 		return -ENOMEM;
7612 
7613 	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7614 
7615 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
7616 	if (IS_ERR(trans)) {
7617 		ret = PTR_ERR(trans);
7618 		goto error;
7619 	}
7620 
7621 	wc.trans = trans;
7622 	wc.pin = true;
7623 	wc.log = log_root_tree;
7624 
7625 	ret = walk_log_tree(&wc);
7626 	wc.log = NULL;
7627 	if (unlikely(ret)) {
7628 		btrfs_abort_transaction(trans, ret);
7629 		goto error;
7630 	}
7631 
7632 again:
7633 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
7634 	key.type = BTRFS_ROOT_ITEM_KEY;
7635 	key.offset = (u64)-1;
7636 
7637 	while (1) {
7638 		struct btrfs_key found_key;
7639 
7640 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
7641 
7642 		if (unlikely(ret < 0)) {
7643 			btrfs_abort_transaction(trans, ret);
7644 			goto error;
7645 		}
7646 		if (ret > 0) {
7647 			if (path->slots[0] == 0)
7648 				break;
7649 			path->slots[0]--;
7650 		}
7651 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
7652 				      path->slots[0]);
7653 		btrfs_release_path(path);
7654 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7655 			break;
7656 
7657 		wc.log = btrfs_read_tree_root(log_root_tree, &found_key);
7658 		if (IS_ERR(wc.log)) {
7659 			ret = PTR_ERR(wc.log);
7660 			wc.log = NULL;
7661 			btrfs_abort_transaction(trans, ret);
7662 			goto error;
7663 		}
7664 
7665 		wc.root = btrfs_get_fs_root(fs_info, found_key.offset, true);
7666 		if (IS_ERR(wc.root)) {
7667 			ret = PTR_ERR(wc.root);
7668 			wc.root = NULL;
7669 			if (unlikely(ret != -ENOENT)) {
7670 				btrfs_abort_transaction(trans, ret);
7671 				goto error;
7672 			}
7673 
7674 			/*
7675 			 * We didn't find the subvol, likely because it was
7676 			 * deleted.  This is ok, simply skip this log and go to
7677 			 * the next one.
7678 			 *
7679 			 * We need to exclude the root because we can't have
7680 			 * other log replays overwriting this log as we'll read
7681 			 * it back in a few more times.  This will keep our
7682 			 * block from being modified, and we'll just bail for
7683 			 * each subsequent pass.
7684 			 */
7685 			ret = btrfs_pin_extent_for_log_replay(trans, wc.log->node);
7686 			if (unlikely(ret)) {
7687 				btrfs_abort_transaction(trans, ret);
7688 				goto error;
7689 			}
7690 			goto next;
7691 		}
7692 
7693 		wc.root->log_root = wc.log;
7694 		ret = btrfs_record_root_in_trans(trans, wc.root);
7695 		if (unlikely(ret)) {
7696 			btrfs_abort_transaction(trans, ret);
7697 			goto next;
7698 		}
7699 
7700 		ret = walk_log_tree(&wc);
7701 		if (unlikely(ret)) {
7702 			btrfs_abort_transaction(trans, ret);
7703 			goto next;
7704 		}
7705 
7706 		if (wc.stage == LOG_WALK_REPLAY_ALL) {
7707 			struct btrfs_root *root = wc.root;
7708 
7709 			wc.subvol_path = path;
7710 			ret = fixup_inode_link_counts(&wc);
7711 			wc.subvol_path = NULL;
7712 			if (unlikely(ret)) {
7713 				btrfs_abort_transaction(trans, ret);
7714 				goto next;
7715 			}
7716 			/*
7717 			 * We have just replayed everything, and the highest
7718 			 * objectid of fs roots probably has changed in case
7719 			 * some inode_item's got replayed.
7720 			 *
7721 			 * root->objectid_mutex is not acquired as log replay
7722 			 * could only happen during mount.
7723 			 */
7724 			ret = btrfs_init_root_free_objectid(root);
7725 			if (unlikely(ret)) {
7726 				btrfs_abort_transaction(trans, ret);
7727 				goto next;
7728 			}
7729 		}
7730 next:
7731 		if (wc.root) {
7732 			wc.root->log_root = NULL;
7733 			btrfs_put_root(wc.root);
7734 		}
7735 		btrfs_put_root(wc.log);
7736 		wc.log = NULL;
7737 
7738 		if (ret)
7739 			goto error;
7740 		if (found_key.offset == 0)
7741 			break;
7742 		key.offset = found_key.offset - 1;
7743 	}
7744 	btrfs_release_path(path);
7745 
7746 	/* step one is to pin it all, step two is to replay just inodes */
7747 	if (wc.pin) {
7748 		wc.pin = false;
7749 		wc.process_func = replay_one_buffer;
7750 		wc.stage = LOG_WALK_REPLAY_INODES;
7751 		goto again;
7752 	}
7753 	/* step three is to replay everything */
7754 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
7755 		wc.stage++;
7756 		goto again;
7757 	}
7758 
7759 	btrfs_free_path(path);
7760 
7761 	/* step 4: commit the transaction, which also unpins the blocks */
7762 	ret = btrfs_commit_transaction(trans);
7763 	if (ret)
7764 		return ret;
7765 
7766 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7767 
7768 	return 0;
7769 error:
7770 	if (wc.trans)
7771 		btrfs_end_transaction(wc.trans);
7772 	btrfs_put_root(wc.log);
7773 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7774 	btrfs_free_path(path);
7775 	return ret;
7776 }
7777 
7778 /*
7779  * there are some corner cases where we want to force a full
7780  * commit instead of allowing a directory to be logged.
7781  *
7782  * They revolve around files there were unlinked from the directory, and
7783  * this function updates the parent directory so that a full commit is
7784  * properly done if it is fsync'd later after the unlinks are done.
7785  *
7786  * Must be called before the unlink operations (updates to the subvolume tree,
7787  * inodes, etc) are done.
7788  */
btrfs_record_unlink_dir(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_inode * inode,bool for_rename)7789 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
7790 			     struct btrfs_inode *dir, struct btrfs_inode *inode,
7791 			     bool for_rename)
7792 {
7793 	/*
7794 	 * when we're logging a file, if it hasn't been renamed
7795 	 * or unlinked, and its inode is fully committed on disk,
7796 	 * we don't have to worry about walking up the directory chain
7797 	 * to log its parents.
7798 	 *
7799 	 * So, we use the last_unlink_trans field to put this transid
7800 	 * into the file.  When the file is logged we check it and
7801 	 * don't log the parents if the file is fully on disk.
7802 	 */
7803 	mutex_lock(&inode->log_mutex);
7804 	inode->last_unlink_trans = trans->transid;
7805 	mutex_unlock(&inode->log_mutex);
7806 
7807 	if (!for_rename)
7808 		return;
7809 
7810 	/*
7811 	 * If this directory was already logged, any new names will be logged
7812 	 * with btrfs_log_new_name() and old names will be deleted from the log
7813 	 * tree with btrfs_del_dir_entries_in_log() or with
7814 	 * btrfs_del_inode_ref_in_log().
7815 	 */
7816 	if (inode_logged(trans, dir, NULL) == 1)
7817 		return;
7818 
7819 	/*
7820 	 * If the inode we're about to unlink was logged before, the log will be
7821 	 * properly updated with the new name with btrfs_log_new_name() and the
7822 	 * old name removed with btrfs_del_dir_entries_in_log() or with
7823 	 * btrfs_del_inode_ref_in_log().
7824 	 */
7825 	if (inode_logged(trans, inode, NULL) == 1)
7826 		return;
7827 
7828 	/*
7829 	 * when renaming files across directories, if the directory
7830 	 * there we're unlinking from gets fsync'd later on, there's
7831 	 * no way to find the destination directory later and fsync it
7832 	 * properly.  So, we have to be conservative and force commits
7833 	 * so the new name gets discovered.
7834 	 */
7835 	mutex_lock(&dir->log_mutex);
7836 	dir->last_unlink_trans = trans->transid;
7837 	mutex_unlock(&dir->log_mutex);
7838 }
7839 
7840 /*
7841  * Make sure that if someone attempts to fsync the parent directory of a deleted
7842  * snapshot, it ends up triggering a transaction commit. This is to guarantee
7843  * that after replaying the log tree of the parent directory's root we will not
7844  * see the snapshot anymore and at log replay time we will not see any log tree
7845  * corresponding to the deleted snapshot's root, which could lead to replaying
7846  * it after replaying the log tree of the parent directory (which would replay
7847  * the snapshot delete operation).
7848  *
7849  * Must be called before the actual snapshot destroy operation (updates to the
7850  * parent root and tree of tree roots trees, etc) are done.
7851  */
btrfs_record_snapshot_destroy(struct btrfs_trans_handle * trans,struct btrfs_inode * dir)7852 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
7853 				   struct btrfs_inode *dir)
7854 {
7855 	mutex_lock(&dir->log_mutex);
7856 	dir->last_unlink_trans = trans->transid;
7857 	mutex_unlock(&dir->log_mutex);
7858 }
7859 
7860 /*
7861  * Call this when creating a subvolume in a directory.
7862  * Because we don't commit a transaction when creating a subvolume, we can't
7863  * allow the directory pointing to the subvolume to be logged with an entry that
7864  * points to an unpersisted root if we are still in the transaction used to
7865  * create the subvolume, so make any attempt to log the directory to result in a
7866  * full log sync.
7867  * Also we don't need to worry with renames, since btrfs_rename() marks the log
7868  * for full commit when renaming a subvolume.
7869  *
7870  * Must be called before creating the subvolume entry in its parent directory.
7871  */
btrfs_record_new_subvolume(const struct btrfs_trans_handle * trans,struct btrfs_inode * dir)7872 void btrfs_record_new_subvolume(const struct btrfs_trans_handle *trans,
7873 				struct btrfs_inode *dir)
7874 {
7875 	mutex_lock(&dir->log_mutex);
7876 	dir->last_unlink_trans = trans->transid;
7877 	mutex_unlock(&dir->log_mutex);
7878 }
7879 
7880 /*
7881  * Update the log after adding a new name for an inode.
7882  *
7883  * @trans:              Transaction handle.
7884  * @old_dentry:         The dentry associated with the old name and the old
7885  *                      parent directory.
7886  * @old_dir:            The inode of the previous parent directory for the case
7887  *                      of a rename. For a link operation, it must be NULL.
7888  * @old_dir_index:      The index number associated with the old name, meaningful
7889  *                      only for rename operations (when @old_dir is not NULL).
7890  *                      Ignored for link operations.
7891  * @parent:             The dentry associated with the directory under which the
7892  *                      new name is located.
7893  *
7894  * Call this after adding a new name for an inode, as a result of a link or
7895  * rename operation, and it will properly update the log to reflect the new name.
7896  */
btrfs_log_new_name(struct btrfs_trans_handle * trans,struct dentry * old_dentry,struct btrfs_inode * old_dir,u64 old_dir_index,struct dentry * parent)7897 void btrfs_log_new_name(struct btrfs_trans_handle *trans,
7898 			struct dentry *old_dentry, struct btrfs_inode *old_dir,
7899 			u64 old_dir_index, struct dentry *parent)
7900 {
7901 	struct btrfs_inode *inode = BTRFS_I(d_inode(old_dentry));
7902 	struct btrfs_root *root = inode->root;
7903 	struct btrfs_log_ctx ctx;
7904 	bool log_pinned = false;
7905 	int ret;
7906 
7907 	/* The inode has a new name (ref/extref), so make sure we log it. */
7908 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
7909 
7910 	btrfs_init_log_ctx(&ctx, inode);
7911 	ctx.logging_new_name = true;
7912 
7913 	/*
7914 	 * this will force the logging code to walk the dentry chain
7915 	 * up for the file
7916 	 */
7917 	if (!S_ISDIR(inode->vfs_inode.i_mode))
7918 		inode->last_unlink_trans = trans->transid;
7919 
7920 	/*
7921 	 * if this inode hasn't been logged and directory we're renaming it
7922 	 * from hasn't been logged, we don't need to log it
7923 	 */
7924 	ret = inode_logged(trans, inode, NULL);
7925 	if (ret < 0) {
7926 		goto out;
7927 	} else if (ret == 0) {
7928 		if (!old_dir)
7929 			return;
7930 		/*
7931 		 * If the inode was not logged and we are doing a rename (old_dir is not
7932 		 * NULL), check if old_dir was logged - if it was not we can return and
7933 		 * do nothing.
7934 		 */
7935 		ret = inode_logged(trans, old_dir, NULL);
7936 		if (ret < 0)
7937 			goto out;
7938 		else if (ret == 0)
7939 			return;
7940 	}
7941 	ret = 0;
7942 
7943 	/*
7944 	 * Now that we know we need to update the log, allocate the scratch eb
7945 	 * for the context before joining a log transaction below, as this can
7946 	 * take time and therefore we could delay log commits from other tasks.
7947 	 */
7948 	btrfs_init_log_ctx_scratch_eb(&ctx);
7949 
7950 	/*
7951 	 * If we are doing a rename (old_dir is not NULL) from a directory that
7952 	 * was previously logged, make sure that on log replay we get the old
7953 	 * dir entry deleted. This is needed because we will also log the new
7954 	 * name of the renamed inode, so we need to make sure that after log
7955 	 * replay we don't end up with both the new and old dir entries existing.
7956 	 */
7957 	if (old_dir && old_dir->logged_trans == trans->transid) {
7958 		struct btrfs_root *log = old_dir->root->log_root;
7959 		struct btrfs_path *path;
7960 		struct fscrypt_name fname;
7961 
7962 		ASSERT(old_dir_index >= BTRFS_DIR_START_INDEX,
7963 		       "old_dir_index=%llu", old_dir_index);
7964 
7965 		ret = fscrypt_setup_filename(&old_dir->vfs_inode,
7966 					     &old_dentry->d_name, 0, &fname);
7967 		if (ret)
7968 			goto out;
7969 
7970 		path = btrfs_alloc_path();
7971 		if (!path) {
7972 			ret = -ENOMEM;
7973 			fscrypt_free_filename(&fname);
7974 			goto out;
7975 		}
7976 
7977 		/*
7978 		 * We have two inodes to update in the log, the old directory and
7979 		 * the inode that got renamed, so we must pin the log to prevent
7980 		 * anyone from syncing the log until we have updated both inodes
7981 		 * in the log.
7982 		 */
7983 		ret = join_running_log_trans(root);
7984 		/*
7985 		 * At least one of the inodes was logged before, so this should
7986 		 * not fail, but if it does, it's not serious, just bail out and
7987 		 * mark the log for a full commit.
7988 		 */
7989 		if (WARN_ON_ONCE(ret < 0)) {
7990 			btrfs_free_path(path);
7991 			fscrypt_free_filename(&fname);
7992 			goto out;
7993 		}
7994 
7995 		log_pinned = true;
7996 
7997 		/*
7998 		 * Other concurrent task might be logging the old directory,
7999 		 * as it can be triggered when logging other inode that had or
8000 		 * still has a dentry in the old directory. We lock the old
8001 		 * directory's log_mutex to ensure the deletion of the old
8002 		 * name is persisted, because during directory logging we
8003 		 * delete all BTRFS_DIR_LOG_INDEX_KEY keys and the deletion of
8004 		 * the old name's dir index item is in the delayed items, so
8005 		 * it could be missed by an in progress directory logging.
8006 		 */
8007 		mutex_lock(&old_dir->log_mutex);
8008 		ret = del_logged_dentry(trans, log, path, btrfs_ino(old_dir),
8009 					&fname.disk_name, old_dir_index);
8010 		if (ret > 0) {
8011 			/*
8012 			 * The dentry does not exist in the log, so record its
8013 			 * deletion.
8014 			 */
8015 			btrfs_release_path(path);
8016 			ret = insert_dir_log_key(trans, log, path,
8017 						 btrfs_ino(old_dir),
8018 						 old_dir_index, old_dir_index);
8019 		}
8020 		mutex_unlock(&old_dir->log_mutex);
8021 
8022 		btrfs_free_path(path);
8023 		fscrypt_free_filename(&fname);
8024 		if (ret < 0)
8025 			goto out;
8026 	}
8027 
8028 	/*
8029 	 * We don't care about the return value. If we fail to log the new name
8030 	 * then we know the next attempt to sync the log will fallback to a full
8031 	 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
8032 	 * we don't need to worry about getting a log committed that has an
8033 	 * inconsistent state after a rename operation.
8034 	 */
8035 	btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
8036 	ASSERT(list_empty(&ctx.conflict_inodes));
8037 out:
8038 	/*
8039 	 * If an error happened mark the log for a full commit because it's not
8040 	 * consistent and up to date or we couldn't find out if one of the
8041 	 * inodes was logged before in this transaction. Do it before unpinning
8042 	 * the log, to avoid any races with someone else trying to commit it.
8043 	 */
8044 	if (ret < 0)
8045 		btrfs_set_log_full_commit(trans);
8046 	if (log_pinned)
8047 		btrfs_end_log_trans(root);
8048 	free_extent_buffer(ctx.scratch_eb);
8049 }
8050 
8051