1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
8 #include <linux/bio.h>
9 #include <linux/blk-cgroup.h>
10 #include <linux/file.h>
11 #include <linux/fs.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/xattr.h>
21 #include <linux/posix_acl.h>
22 #include <linux/falloc.h>
23 #include <linux/slab.h>
24 #include <linux/ratelimit.h>
25 #include <linux/btrfs.h>
26 #include <linux/blkdev.h>
27 #include <linux/posix_acl_xattr.h>
28 #include <linux/uio.h>
29 #include <linux/magic.h>
30 #include <linux/iversion.h>
31 #include <linux/swap.h>
32 #include <linux/migrate.h>
33 #include <linux/sched/mm.h>
34 #include <linux/iomap.h>
35 #include <linux/unaligned.h>
36 #include <linux/fsverity.h>
37 #include "misc.h"
38 #include "ctree.h"
39 #include "disk-io.h"
40 #include "transaction.h"
41 #include "btrfs_inode.h"
42 #include "ordered-data.h"
43 #include "xattr.h"
44 #include "tree-log.h"
45 #include "bio.h"
46 #include "compression.h"
47 #include "locking.h"
48 #include "props.h"
49 #include "qgroup.h"
50 #include "delalloc-space.h"
51 #include "block-group.h"
52 #include "space-info.h"
53 #include "zoned.h"
54 #include "subpage.h"
55 #include "inode-item.h"
56 #include "fs.h"
57 #include "accessors.h"
58 #include "extent-tree.h"
59 #include "root-tree.h"
60 #include "defrag.h"
61 #include "dir-item.h"
62 #include "file-item.h"
63 #include "uuid-tree.h"
64 #include "ioctl.h"
65 #include "file.h"
66 #include "acl.h"
67 #include "relocation.h"
68 #include "verity.h"
69 #include "super.h"
70 #include "orphan.h"
71 #include "backref.h"
72 #include "raid-stripe-tree.h"
73 #include "fiemap.h"
74
75 struct btrfs_iget_args {
76 u64 ino;
77 struct btrfs_root *root;
78 };
79
80 struct btrfs_rename_ctx {
81 /* Output field. Stores the index number of the old directory entry. */
82 u64 index;
83 };
84
85 /*
86 * Used by data_reloc_print_warning_inode() to pass needed info for filename
87 * resolution and output of error message.
88 */
89 struct data_reloc_warn {
90 struct btrfs_path path;
91 struct btrfs_fs_info *fs_info;
92 u64 extent_item_size;
93 u64 logical;
94 int mirror_num;
95 };
96
97 /*
98 * For the file_extent_tree, we want to hold the inode lock when we lookup and
99 * update the disk_i_size, but lockdep will complain because our io_tree we hold
100 * the tree lock and get the inode lock when setting delalloc. These two things
101 * are unrelated, so make a class for the file_extent_tree so we don't get the
102 * two locking patterns mixed up.
103 */
104 static struct lock_class_key file_extent_tree_class;
105
106 static const struct inode_operations btrfs_dir_inode_operations;
107 static const struct inode_operations btrfs_symlink_inode_operations;
108 static const struct inode_operations btrfs_special_inode_operations;
109 static const struct inode_operations btrfs_file_inode_operations;
110 static const struct address_space_operations btrfs_aops;
111 static const struct file_operations btrfs_dir_file_operations;
112
113 static struct kmem_cache *btrfs_inode_cachep;
114
115 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
116 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback);
117
118 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
119 struct folio *locked_folio, u64 start,
120 u64 end, struct writeback_control *wbc,
121 bool pages_dirty);
122
data_reloc_print_warning_inode(u64 inum,u64 offset,u64 num_bytes,u64 root,void * warn_ctx)123 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
124 u64 root, void *warn_ctx)
125 {
126 struct data_reloc_warn *warn = warn_ctx;
127 struct btrfs_fs_info *fs_info = warn->fs_info;
128 struct extent_buffer *eb;
129 struct btrfs_inode_item *inode_item;
130 struct inode_fs_paths *ipath = NULL;
131 struct btrfs_root *local_root;
132 struct btrfs_key key;
133 unsigned int nofs_flag;
134 u32 nlink;
135 int ret;
136
137 local_root = btrfs_get_fs_root(fs_info, root, true);
138 if (IS_ERR(local_root)) {
139 ret = PTR_ERR(local_root);
140 goto err;
141 }
142
143 /* This makes the path point to (inum INODE_ITEM ioff). */
144 key.objectid = inum;
145 key.type = BTRFS_INODE_ITEM_KEY;
146 key.offset = 0;
147
148 ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0);
149 if (ret) {
150 btrfs_put_root(local_root);
151 btrfs_release_path(&warn->path);
152 goto err;
153 }
154
155 eb = warn->path.nodes[0];
156 inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item);
157 nlink = btrfs_inode_nlink(eb, inode_item);
158 btrfs_release_path(&warn->path);
159
160 nofs_flag = memalloc_nofs_save();
161 ipath = init_ipath(4096, local_root, &warn->path);
162 memalloc_nofs_restore(nofs_flag);
163 if (IS_ERR(ipath)) {
164 btrfs_put_root(local_root);
165 ret = PTR_ERR(ipath);
166 ipath = NULL;
167 /*
168 * -ENOMEM, not a critical error, just output an generic error
169 * without filename.
170 */
171 btrfs_warn(fs_info,
172 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu",
173 warn->logical, warn->mirror_num, root, inum, offset);
174 return ret;
175 }
176 ret = paths_from_inode(inum, ipath);
177 if (ret < 0)
178 goto err;
179
180 /*
181 * We deliberately ignore the bit ipath might have been too small to
182 * hold all of the paths here
183 */
184 for (int i = 0; i < ipath->fspath->elem_cnt; i++) {
185 btrfs_warn(fs_info,
186 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)",
187 warn->logical, warn->mirror_num, root, inum, offset,
188 fs_info->sectorsize, nlink,
189 (char *)(unsigned long)ipath->fspath->val[i]);
190 }
191
192 btrfs_put_root(local_root);
193 free_ipath(ipath);
194 return 0;
195
196 err:
197 btrfs_warn(fs_info,
198 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d",
199 warn->logical, warn->mirror_num, root, inum, offset, ret);
200
201 free_ipath(ipath);
202 return ret;
203 }
204
205 /*
206 * Do extra user-friendly error output (e.g. lookup all the affected files).
207 *
208 * Return true if we succeeded doing the backref lookup.
209 * Return false if such lookup failed, and has to fallback to the old error message.
210 */
print_data_reloc_error(const struct btrfs_inode * inode,u64 file_off,const u8 * csum,const u8 * csum_expected,int mirror_num)211 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off,
212 const u8 *csum, const u8 *csum_expected,
213 int mirror_num)
214 {
215 struct btrfs_fs_info *fs_info = inode->root->fs_info;
216 struct btrfs_path path = { 0 };
217 struct btrfs_key found_key = { 0 };
218 struct extent_buffer *eb;
219 struct btrfs_extent_item *ei;
220 const u32 csum_size = fs_info->csum_size;
221 u64 logical;
222 u64 flags;
223 u32 item_size;
224 int ret;
225
226 mutex_lock(&fs_info->reloc_mutex);
227 logical = btrfs_get_reloc_bg_bytenr(fs_info);
228 mutex_unlock(&fs_info->reloc_mutex);
229
230 if (logical == U64_MAX) {
231 btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation");
232 btrfs_warn_rl(fs_info,
233 "csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
234 btrfs_root_id(inode->root), btrfs_ino(inode), file_off,
235 CSUM_FMT_VALUE(csum_size, csum),
236 CSUM_FMT_VALUE(csum_size, csum_expected),
237 mirror_num);
238 return;
239 }
240
241 logical += file_off;
242 btrfs_warn_rl(fs_info,
243 "csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
244 btrfs_root_id(inode->root),
245 btrfs_ino(inode), file_off, logical,
246 CSUM_FMT_VALUE(csum_size, csum),
247 CSUM_FMT_VALUE(csum_size, csum_expected),
248 mirror_num);
249
250 ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags);
251 if (ret < 0) {
252 btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d",
253 logical, ret);
254 return;
255 }
256 eb = path.nodes[0];
257 ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item);
258 item_size = btrfs_item_size(eb, path.slots[0]);
259 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
260 unsigned long ptr = 0;
261 u64 ref_root;
262 u8 ref_level;
263
264 while (true) {
265 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
266 item_size, &ref_root,
267 &ref_level);
268 if (ret < 0) {
269 btrfs_warn_rl(fs_info,
270 "failed to resolve tree backref for logical %llu: %d",
271 logical, ret);
272 break;
273 }
274 if (ret > 0)
275 break;
276
277 btrfs_warn_rl(fs_info,
278 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu",
279 logical, mirror_num,
280 (ref_level ? "node" : "leaf"),
281 ref_level, ref_root);
282 }
283 btrfs_release_path(&path);
284 } else {
285 struct btrfs_backref_walk_ctx ctx = { 0 };
286 struct data_reloc_warn reloc_warn = { 0 };
287
288 btrfs_release_path(&path);
289
290 ctx.bytenr = found_key.objectid;
291 ctx.extent_item_pos = logical - found_key.objectid;
292 ctx.fs_info = fs_info;
293
294 reloc_warn.logical = logical;
295 reloc_warn.extent_item_size = found_key.offset;
296 reloc_warn.mirror_num = mirror_num;
297 reloc_warn.fs_info = fs_info;
298
299 iterate_extent_inodes(&ctx, true,
300 data_reloc_print_warning_inode, &reloc_warn);
301 }
302 }
303
btrfs_print_data_csum_error(struct btrfs_inode * inode,u64 logical_start,u8 * csum,u8 * csum_expected,int mirror_num)304 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode,
305 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
306 {
307 struct btrfs_root *root = inode->root;
308 const u32 csum_size = root->fs_info->csum_size;
309
310 /* For data reloc tree, it's better to do a backref lookup instead. */
311 if (btrfs_is_data_reloc_root(root))
312 return print_data_reloc_error(inode, logical_start, csum,
313 csum_expected, mirror_num);
314
315 /* Output without objectid, which is more meaningful */
316 if (btrfs_root_id(root) >= BTRFS_LAST_FREE_OBJECTID) {
317 btrfs_warn_rl(root->fs_info,
318 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
319 btrfs_root_id(root), btrfs_ino(inode),
320 logical_start,
321 CSUM_FMT_VALUE(csum_size, csum),
322 CSUM_FMT_VALUE(csum_size, csum_expected),
323 mirror_num);
324 } else {
325 btrfs_warn_rl(root->fs_info,
326 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
327 btrfs_root_id(root), btrfs_ino(inode),
328 logical_start,
329 CSUM_FMT_VALUE(csum_size, csum),
330 CSUM_FMT_VALUE(csum_size, csum_expected),
331 mirror_num);
332 }
333 }
334
335 /*
336 * Lock inode i_rwsem based on arguments passed.
337 *
338 * ilock_flags can have the following bit set:
339 *
340 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
341 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
342 * return -EAGAIN
343 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
344 */
btrfs_inode_lock(struct btrfs_inode * inode,unsigned int ilock_flags)345 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags)
346 {
347 if (ilock_flags & BTRFS_ILOCK_SHARED) {
348 if (ilock_flags & BTRFS_ILOCK_TRY) {
349 if (!inode_trylock_shared(&inode->vfs_inode))
350 return -EAGAIN;
351 else
352 return 0;
353 }
354 inode_lock_shared(&inode->vfs_inode);
355 } else {
356 if (ilock_flags & BTRFS_ILOCK_TRY) {
357 if (!inode_trylock(&inode->vfs_inode))
358 return -EAGAIN;
359 else
360 return 0;
361 }
362 inode_lock(&inode->vfs_inode);
363 }
364 if (ilock_flags & BTRFS_ILOCK_MMAP)
365 down_write(&inode->i_mmap_lock);
366 return 0;
367 }
368
369 /*
370 * Unock inode i_rwsem.
371 *
372 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
373 * to decide whether the lock acquired is shared or exclusive.
374 */
btrfs_inode_unlock(struct btrfs_inode * inode,unsigned int ilock_flags)375 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags)
376 {
377 if (ilock_flags & BTRFS_ILOCK_MMAP)
378 up_write(&inode->i_mmap_lock);
379 if (ilock_flags & BTRFS_ILOCK_SHARED)
380 inode_unlock_shared(&inode->vfs_inode);
381 else
382 inode_unlock(&inode->vfs_inode);
383 }
384
385 /*
386 * Cleanup all submitted ordered extents in specified range to handle errors
387 * from the btrfs_run_delalloc_range() callback.
388 *
389 * NOTE: caller must ensure that when an error happens, it can not call
390 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
391 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
392 * to be released, which we want to happen only when finishing the ordered
393 * extent (btrfs_finish_ordered_io()).
394 */
btrfs_cleanup_ordered_extents(struct btrfs_inode * inode,u64 offset,u64 bytes)395 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
396 u64 offset, u64 bytes)
397 {
398 pgoff_t index = offset >> PAGE_SHIFT;
399 const pgoff_t end_index = (offset + bytes - 1) >> PAGE_SHIFT;
400 struct folio *folio;
401
402 while (index <= end_index) {
403 folio = filemap_get_folio(inode->vfs_inode.i_mapping, index);
404 index++;
405 if (IS_ERR(folio))
406 continue;
407
408 /*
409 * Here we just clear all Ordered bits for every page in the
410 * range, then btrfs_mark_ordered_io_finished() will handle
411 * the ordered extent accounting for the range.
412 */
413 btrfs_folio_clamp_clear_ordered(inode->root->fs_info, folio,
414 offset, bytes);
415 folio_put(folio);
416 }
417
418 return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false);
419 }
420
421 static int btrfs_dirty_inode(struct btrfs_inode *inode);
422
btrfs_init_inode_security(struct btrfs_trans_handle * trans,struct btrfs_new_inode_args * args)423 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
424 struct btrfs_new_inode_args *args)
425 {
426 int ret;
427
428 if (args->default_acl) {
429 ret = __btrfs_set_acl(trans, args->inode, args->default_acl,
430 ACL_TYPE_DEFAULT);
431 if (ret)
432 return ret;
433 }
434 if (args->acl) {
435 ret = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS);
436 if (ret)
437 return ret;
438 }
439 if (!args->default_acl && !args->acl)
440 cache_no_acl(args->inode);
441 return btrfs_xattr_security_init(trans, args->inode, args->dir,
442 &args->dentry->d_name);
443 }
444
445 /*
446 * this does all the hard work for inserting an inline extent into
447 * the btree. The caller should have done a btrfs_drop_extents so that
448 * no overlapping inline items exist in the btree
449 */
insert_inline_extent(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_inode * inode,bool extent_inserted,size_t size,size_t compressed_size,int compress_type,struct folio * compressed_folio,bool update_i_size)450 static int insert_inline_extent(struct btrfs_trans_handle *trans,
451 struct btrfs_path *path,
452 struct btrfs_inode *inode, bool extent_inserted,
453 size_t size, size_t compressed_size,
454 int compress_type,
455 struct folio *compressed_folio,
456 bool update_i_size)
457 {
458 struct btrfs_root *root = inode->root;
459 struct extent_buffer *leaf;
460 const u32 sectorsize = trans->fs_info->sectorsize;
461 char *kaddr;
462 unsigned long ptr;
463 struct btrfs_file_extent_item *ei;
464 int ret;
465 size_t cur_size = size;
466 u64 i_size;
467
468 /*
469 * The decompressed size must still be no larger than a sector. Under
470 * heavy race, we can have size == 0 passed in, but that shouldn't be a
471 * big deal and we can continue the insertion.
472 */
473 ASSERT(size <= sectorsize);
474
475 /*
476 * The compressed size also needs to be no larger than a sector.
477 * That's also why we only need one page as the parameter.
478 */
479 if (compressed_folio)
480 ASSERT(compressed_size <= sectorsize);
481 else
482 ASSERT(compressed_size == 0);
483
484 if (compressed_size && compressed_folio)
485 cur_size = compressed_size;
486
487 if (!extent_inserted) {
488 struct btrfs_key key;
489 size_t datasize;
490
491 key.objectid = btrfs_ino(inode);
492 key.type = BTRFS_EXTENT_DATA_KEY;
493 key.offset = 0;
494
495 datasize = btrfs_file_extent_calc_inline_size(cur_size);
496 ret = btrfs_insert_empty_item(trans, root, path, &key,
497 datasize);
498 if (ret)
499 goto fail;
500 }
501 leaf = path->nodes[0];
502 ei = btrfs_item_ptr(leaf, path->slots[0],
503 struct btrfs_file_extent_item);
504 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
505 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
506 btrfs_set_file_extent_encryption(leaf, ei, 0);
507 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
508 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
509 ptr = btrfs_file_extent_inline_start(ei);
510
511 if (compress_type != BTRFS_COMPRESS_NONE) {
512 kaddr = kmap_local_folio(compressed_folio, 0);
513 write_extent_buffer(leaf, kaddr, ptr, compressed_size);
514 kunmap_local(kaddr);
515
516 btrfs_set_file_extent_compression(leaf, ei,
517 compress_type);
518 } else {
519 struct folio *folio;
520
521 folio = filemap_get_folio(inode->vfs_inode.i_mapping, 0);
522 ASSERT(!IS_ERR(folio));
523 btrfs_set_file_extent_compression(leaf, ei, 0);
524 kaddr = kmap_local_folio(folio, 0);
525 write_extent_buffer(leaf, kaddr, ptr, size);
526 kunmap_local(kaddr);
527 folio_put(folio);
528 }
529 btrfs_release_path(path);
530
531 /*
532 * We align size to sectorsize for inline extents just for simplicity
533 * sake.
534 */
535 ret = btrfs_inode_set_file_extent_range(inode, 0,
536 ALIGN(size, root->fs_info->sectorsize));
537 if (ret)
538 goto fail;
539
540 /*
541 * We're an inline extent, so nobody can extend the file past i_size
542 * without locking a page we already have locked.
543 *
544 * We must do any i_size and inode updates before we unlock the pages.
545 * Otherwise we could end up racing with unlink.
546 */
547 i_size = i_size_read(&inode->vfs_inode);
548 if (update_i_size && size > i_size) {
549 i_size_write(&inode->vfs_inode, size);
550 i_size = size;
551 }
552 inode->disk_i_size = i_size;
553
554 fail:
555 return ret;
556 }
557
can_cow_file_range_inline(struct btrfs_inode * inode,u64 offset,u64 size,size_t compressed_size)558 static bool can_cow_file_range_inline(struct btrfs_inode *inode,
559 u64 offset, u64 size,
560 size_t compressed_size)
561 {
562 struct btrfs_fs_info *fs_info = inode->root->fs_info;
563 u64 data_len = (compressed_size ?: size);
564
565 /* Inline extents must start at offset 0. */
566 if (offset != 0)
567 return false;
568
569 /* Inline extents are limited to sectorsize. */
570 if (size > fs_info->sectorsize)
571 return false;
572
573 /* We do not allow a non-compressed extent to be as large as block size. */
574 if (data_len >= fs_info->sectorsize)
575 return false;
576
577 /* We cannot exceed the maximum inline data size. */
578 if (data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
579 return false;
580
581 /* We cannot exceed the user specified max_inline size. */
582 if (data_len > fs_info->max_inline)
583 return false;
584
585 /* Inline extents must be the entirety of the file. */
586 if (size < i_size_read(&inode->vfs_inode))
587 return false;
588
589 return true;
590 }
591
592 /*
593 * conditionally insert an inline extent into the file. This
594 * does the checks required to make sure the data is small enough
595 * to fit as an inline extent.
596 *
597 * If being used directly, you must have already checked we're allowed to cow
598 * the range by getting true from can_cow_file_range_inline().
599 */
__cow_file_range_inline(struct btrfs_inode * inode,u64 size,size_t compressed_size,int compress_type,struct folio * compressed_folio,bool update_i_size)600 static noinline int __cow_file_range_inline(struct btrfs_inode *inode,
601 u64 size, size_t compressed_size,
602 int compress_type,
603 struct folio *compressed_folio,
604 bool update_i_size)
605 {
606 struct btrfs_drop_extents_args drop_args = { 0 };
607 struct btrfs_root *root = inode->root;
608 struct btrfs_fs_info *fs_info = root->fs_info;
609 struct btrfs_trans_handle *trans;
610 u64 data_len = (compressed_size ?: size);
611 int ret;
612 struct btrfs_path *path;
613
614 path = btrfs_alloc_path();
615 if (!path)
616 return -ENOMEM;
617
618 trans = btrfs_join_transaction(root);
619 if (IS_ERR(trans)) {
620 btrfs_free_path(path);
621 return PTR_ERR(trans);
622 }
623 trans->block_rsv = &inode->block_rsv;
624
625 drop_args.path = path;
626 drop_args.start = 0;
627 drop_args.end = fs_info->sectorsize;
628 drop_args.drop_cache = true;
629 drop_args.replace_extent = true;
630 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len);
631 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
632 if (ret) {
633 btrfs_abort_transaction(trans, ret);
634 goto out;
635 }
636
637 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted,
638 size, compressed_size, compress_type,
639 compressed_folio, update_i_size);
640 if (ret && ret != -ENOSPC) {
641 btrfs_abort_transaction(trans, ret);
642 goto out;
643 } else if (ret == -ENOSPC) {
644 ret = 1;
645 goto out;
646 }
647
648 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found);
649 ret = btrfs_update_inode(trans, inode);
650 if (ret && ret != -ENOSPC) {
651 btrfs_abort_transaction(trans, ret);
652 goto out;
653 } else if (ret == -ENOSPC) {
654 ret = 1;
655 goto out;
656 }
657
658 btrfs_set_inode_full_sync(inode);
659 out:
660 /*
661 * Don't forget to free the reserved space, as for inlined extent
662 * it won't count as data extent, free them directly here.
663 * And at reserve time, it's always aligned to page size, so
664 * just free one page here.
665 */
666 btrfs_qgroup_free_data(inode, NULL, 0, fs_info->sectorsize, NULL);
667 btrfs_free_path(path);
668 btrfs_end_transaction(trans);
669 return ret;
670 }
671
cow_file_range_inline(struct btrfs_inode * inode,struct folio * locked_folio,u64 offset,u64 end,size_t compressed_size,int compress_type,struct folio * compressed_folio,bool update_i_size)672 static noinline int cow_file_range_inline(struct btrfs_inode *inode,
673 struct folio *locked_folio,
674 u64 offset, u64 end,
675 size_t compressed_size,
676 int compress_type,
677 struct folio *compressed_folio,
678 bool update_i_size)
679 {
680 struct extent_state *cached = NULL;
681 unsigned long clear_flags = EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
682 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING | EXTENT_LOCKED;
683 u64 size = min_t(u64, i_size_read(&inode->vfs_inode), end + 1);
684 int ret;
685
686 if (!can_cow_file_range_inline(inode, offset, size, compressed_size))
687 return 1;
688
689 btrfs_lock_extent(&inode->io_tree, offset, end, &cached);
690 ret = __cow_file_range_inline(inode, size, compressed_size,
691 compress_type, compressed_folio,
692 update_i_size);
693 if (ret > 0) {
694 btrfs_unlock_extent(&inode->io_tree, offset, end, &cached);
695 return ret;
696 }
697
698 /*
699 * In the successful case (ret == 0 here), cow_file_range will return 1.
700 *
701 * Quite a bit further up the callstack in extent_writepage(), ret == 1
702 * is treated as a short circuited success and does not unlock the folio,
703 * so we must do it here.
704 *
705 * In the failure case, the locked_folio does get unlocked by
706 * btrfs_folio_end_all_writers, which asserts that it is still locked
707 * at that point, so we must *not* unlock it here.
708 *
709 * The other two callsites in compress_file_range do not have a
710 * locked_folio, so they are not relevant to this logic.
711 */
712 if (ret == 0)
713 locked_folio = NULL;
714
715 extent_clear_unlock_delalloc(inode, offset, end, locked_folio, &cached,
716 clear_flags, PAGE_UNLOCK |
717 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
718 return ret;
719 }
720
721 struct async_extent {
722 u64 start;
723 u64 ram_size;
724 u64 compressed_size;
725 struct folio **folios;
726 unsigned long nr_folios;
727 int compress_type;
728 struct list_head list;
729 };
730
731 struct async_chunk {
732 struct btrfs_inode *inode;
733 struct folio *locked_folio;
734 u64 start;
735 u64 end;
736 blk_opf_t write_flags;
737 struct list_head extents;
738 struct cgroup_subsys_state *blkcg_css;
739 struct btrfs_work work;
740 struct async_cow *async_cow;
741 };
742
743 struct async_cow {
744 atomic_t num_chunks;
745 struct async_chunk chunks[];
746 };
747
add_async_extent(struct async_chunk * cow,u64 start,u64 ram_size,u64 compressed_size,struct folio ** folios,unsigned long nr_folios,int compress_type)748 static noinline int add_async_extent(struct async_chunk *cow,
749 u64 start, u64 ram_size,
750 u64 compressed_size,
751 struct folio **folios,
752 unsigned long nr_folios,
753 int compress_type)
754 {
755 struct async_extent *async_extent;
756
757 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
758 if (!async_extent)
759 return -ENOMEM;
760 async_extent->start = start;
761 async_extent->ram_size = ram_size;
762 async_extent->compressed_size = compressed_size;
763 async_extent->folios = folios;
764 async_extent->nr_folios = nr_folios;
765 async_extent->compress_type = compress_type;
766 list_add_tail(&async_extent->list, &cow->extents);
767 return 0;
768 }
769
770 /*
771 * Check if the inode needs to be submitted to compression, based on mount
772 * options, defragmentation, properties or heuristics.
773 */
inode_need_compress(struct btrfs_inode * inode,u64 start,u64 end)774 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
775 u64 end)
776 {
777 struct btrfs_fs_info *fs_info = inode->root->fs_info;
778
779 if (!btrfs_inode_can_compress(inode)) {
780 DEBUG_WARN("BTRFS: unexpected compression for ino %llu", btrfs_ino(inode));
781 return 0;
782 }
783
784 /* Defrag ioctl takes precedence over mount options and properties. */
785 if (inode->defrag_compress == BTRFS_DEFRAG_DONT_COMPRESS)
786 return 0;
787 if (BTRFS_COMPRESS_NONE < inode->defrag_compress &&
788 inode->defrag_compress < BTRFS_NR_COMPRESS_TYPES)
789 return 1;
790 /* force compress */
791 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
792 return 1;
793 /* bad compression ratios */
794 if (inode->flags & BTRFS_INODE_NOCOMPRESS)
795 return 0;
796 if (btrfs_test_opt(fs_info, COMPRESS) ||
797 inode->flags & BTRFS_INODE_COMPRESS ||
798 inode->prop_compress)
799 return btrfs_compress_heuristic(inode, start, end);
800 return 0;
801 }
802
inode_should_defrag(struct btrfs_inode * inode,u64 start,u64 end,u64 num_bytes,u32 small_write)803 static inline void inode_should_defrag(struct btrfs_inode *inode,
804 u64 start, u64 end, u64 num_bytes, u32 small_write)
805 {
806 /* If this is a small write inside eof, kick off a defrag */
807 if (num_bytes < small_write &&
808 (start > 0 || end + 1 < inode->disk_i_size))
809 btrfs_add_inode_defrag(inode, small_write);
810 }
811
extent_range_clear_dirty_for_io(struct btrfs_inode * inode,u64 start,u64 end)812 static int extent_range_clear_dirty_for_io(struct btrfs_inode *inode, u64 start, u64 end)
813 {
814 const pgoff_t end_index = end >> PAGE_SHIFT;
815 struct folio *folio;
816 int ret = 0;
817
818 for (pgoff_t index = start >> PAGE_SHIFT; index <= end_index; index++) {
819 folio = filemap_get_folio(inode->vfs_inode.i_mapping, index);
820 if (IS_ERR(folio)) {
821 if (!ret)
822 ret = PTR_ERR(folio);
823 continue;
824 }
825 btrfs_folio_clamp_clear_dirty(inode->root->fs_info, folio, start,
826 end + 1 - start);
827 folio_put(folio);
828 }
829 return ret;
830 }
831
832 /*
833 * Work queue call back to started compression on a file and pages.
834 *
835 * This is done inside an ordered work queue, and the compression is spread
836 * across many cpus. The actual IO submission is step two, and the ordered work
837 * queue takes care of making sure that happens in the same order things were
838 * put onto the queue by writepages and friends.
839 *
840 * If this code finds it can't get good compression, it puts an entry onto the
841 * work queue to write the uncompressed bytes. This makes sure that both
842 * compressed inodes and uncompressed inodes are written in the same order that
843 * the flusher thread sent them down.
844 */
compress_file_range(struct btrfs_work * work)845 static void compress_file_range(struct btrfs_work *work)
846 {
847 struct async_chunk *async_chunk =
848 container_of(work, struct async_chunk, work);
849 struct btrfs_inode *inode = async_chunk->inode;
850 struct btrfs_fs_info *fs_info = inode->root->fs_info;
851 struct address_space *mapping = inode->vfs_inode.i_mapping;
852 u64 blocksize = fs_info->sectorsize;
853 u64 start = async_chunk->start;
854 u64 end = async_chunk->end;
855 u64 actual_end;
856 u64 i_size;
857 int ret = 0;
858 struct folio **folios;
859 unsigned long nr_folios;
860 unsigned long total_compressed = 0;
861 unsigned long total_in = 0;
862 unsigned int poff;
863 int i;
864 int compress_type = fs_info->compress_type;
865 int compress_level = fs_info->compress_level;
866
867 inode_should_defrag(inode, start, end, end - start + 1, SZ_16K);
868
869 /*
870 * We need to call clear_page_dirty_for_io on each page in the range.
871 * Otherwise applications with the file mmap'd can wander in and change
872 * the page contents while we are compressing them.
873 */
874 ret = extent_range_clear_dirty_for_io(inode, start, end);
875
876 /*
877 * All the folios should have been locked thus no failure.
878 *
879 * And even if some folios are missing, btrfs_compress_folios()
880 * would handle them correctly, so here just do an ASSERT() check for
881 * early logic errors.
882 */
883 ASSERT(ret == 0);
884
885 /*
886 * We need to save i_size before now because it could change in between
887 * us evaluating the size and assigning it. This is because we lock and
888 * unlock the page in truncate and fallocate, and then modify the i_size
889 * later on.
890 *
891 * The barriers are to emulate READ_ONCE, remove that once i_size_read
892 * does that for us.
893 */
894 barrier();
895 i_size = i_size_read(&inode->vfs_inode);
896 barrier();
897 actual_end = min_t(u64, i_size, end + 1);
898 again:
899 folios = NULL;
900 nr_folios = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
901 nr_folios = min_t(unsigned long, nr_folios, BTRFS_MAX_COMPRESSED_PAGES);
902
903 /*
904 * we don't want to send crud past the end of i_size through
905 * compression, that's just a waste of CPU time. So, if the
906 * end of the file is before the start of our current
907 * requested range of bytes, we bail out to the uncompressed
908 * cleanup code that can deal with all of this.
909 *
910 * It isn't really the fastest way to fix things, but this is a
911 * very uncommon corner.
912 */
913 if (actual_end <= start)
914 goto cleanup_and_bail_uncompressed;
915
916 total_compressed = actual_end - start;
917
918 /*
919 * Skip compression for a small file range(<=blocksize) that
920 * isn't an inline extent, since it doesn't save disk space at all.
921 */
922 if (total_compressed <= blocksize &&
923 (start > 0 || end + 1 < inode->disk_i_size))
924 goto cleanup_and_bail_uncompressed;
925
926 total_compressed = min_t(unsigned long, total_compressed,
927 BTRFS_MAX_UNCOMPRESSED);
928 total_in = 0;
929 ret = 0;
930
931 /*
932 * We do compression for mount -o compress and when the inode has not
933 * been flagged as NOCOMPRESS. This flag can change at any time if we
934 * discover bad compression ratios.
935 */
936 if (!inode_need_compress(inode, start, end))
937 goto cleanup_and_bail_uncompressed;
938
939 folios = kcalloc(nr_folios, sizeof(struct folio *), GFP_NOFS);
940 if (!folios) {
941 /*
942 * Memory allocation failure is not a fatal error, we can fall
943 * back to uncompressed code.
944 */
945 goto cleanup_and_bail_uncompressed;
946 }
947
948 if (0 < inode->defrag_compress && inode->defrag_compress < BTRFS_NR_COMPRESS_TYPES) {
949 compress_type = inode->defrag_compress;
950 compress_level = inode->defrag_compress_level;
951 } else if (inode->prop_compress) {
952 compress_type = inode->prop_compress;
953 }
954
955 /* Compression level is applied here. */
956 ret = btrfs_compress_folios(compress_type, compress_level,
957 mapping, start, folios, &nr_folios, &total_in,
958 &total_compressed);
959 if (ret)
960 goto mark_incompressible;
961
962 /*
963 * Zero the tail end of the last page, as we might be sending it down
964 * to disk.
965 */
966 poff = offset_in_page(total_compressed);
967 if (poff)
968 folio_zero_range(folios[nr_folios - 1], poff, PAGE_SIZE - poff);
969
970 /*
971 * Try to create an inline extent.
972 *
973 * If we didn't compress the entire range, try to create an uncompressed
974 * inline extent, else a compressed one.
975 *
976 * Check cow_file_range() for why we don't even try to create inline
977 * extent for the subpage case.
978 */
979 if (total_in < actual_end)
980 ret = cow_file_range_inline(inode, NULL, start, end, 0,
981 BTRFS_COMPRESS_NONE, NULL, false);
982 else
983 ret = cow_file_range_inline(inode, NULL, start, end, total_compressed,
984 compress_type, folios[0], false);
985 if (ret <= 0) {
986 if (ret < 0)
987 mapping_set_error(mapping, -EIO);
988 goto free_pages;
989 }
990
991 /*
992 * We aren't doing an inline extent. Round the compressed size up to a
993 * block size boundary so the allocator does sane things.
994 */
995 total_compressed = ALIGN(total_compressed, blocksize);
996
997 /*
998 * One last check to make sure the compression is really a win, compare
999 * the page count read with the blocks on disk, compression must free at
1000 * least one sector.
1001 */
1002 total_in = round_up(total_in, fs_info->sectorsize);
1003 if (total_compressed + blocksize > total_in)
1004 goto mark_incompressible;
1005
1006 /*
1007 * The async work queues will take care of doing actual allocation on
1008 * disk for these compressed pages, and will submit the bios.
1009 */
1010 ret = add_async_extent(async_chunk, start, total_in, total_compressed, folios,
1011 nr_folios, compress_type);
1012 BUG_ON(ret);
1013 if (start + total_in < end) {
1014 start += total_in;
1015 cond_resched();
1016 goto again;
1017 }
1018 return;
1019
1020 mark_incompressible:
1021 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress)
1022 inode->flags |= BTRFS_INODE_NOCOMPRESS;
1023 cleanup_and_bail_uncompressed:
1024 ret = add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
1025 BTRFS_COMPRESS_NONE);
1026 BUG_ON(ret);
1027 free_pages:
1028 if (folios) {
1029 for (i = 0; i < nr_folios; i++) {
1030 WARN_ON(folios[i]->mapping);
1031 btrfs_free_compr_folio(folios[i]);
1032 }
1033 kfree(folios);
1034 }
1035 }
1036
free_async_extent_pages(struct async_extent * async_extent)1037 static void free_async_extent_pages(struct async_extent *async_extent)
1038 {
1039 int i;
1040
1041 if (!async_extent->folios)
1042 return;
1043
1044 for (i = 0; i < async_extent->nr_folios; i++) {
1045 WARN_ON(async_extent->folios[i]->mapping);
1046 btrfs_free_compr_folio(async_extent->folios[i]);
1047 }
1048 kfree(async_extent->folios);
1049 async_extent->nr_folios = 0;
1050 async_extent->folios = NULL;
1051 }
1052
submit_uncompressed_range(struct btrfs_inode * inode,struct async_extent * async_extent,struct folio * locked_folio)1053 static void submit_uncompressed_range(struct btrfs_inode *inode,
1054 struct async_extent *async_extent,
1055 struct folio *locked_folio)
1056 {
1057 u64 start = async_extent->start;
1058 u64 end = async_extent->start + async_extent->ram_size - 1;
1059 int ret;
1060 struct writeback_control wbc = {
1061 .sync_mode = WB_SYNC_ALL,
1062 .range_start = start,
1063 .range_end = end,
1064 .no_cgroup_owner = 1,
1065 };
1066
1067 wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode);
1068 ret = run_delalloc_cow(inode, locked_folio, start, end,
1069 &wbc, false);
1070 wbc_detach_inode(&wbc);
1071 if (ret < 0) {
1072 if (locked_folio)
1073 btrfs_folio_end_lock(inode->root->fs_info, locked_folio,
1074 start, async_extent->ram_size);
1075 btrfs_err_rl(inode->root->fs_info,
1076 "%s failed, root=%llu inode=%llu start=%llu len=%llu: %d",
1077 __func__, btrfs_root_id(inode->root),
1078 btrfs_ino(inode), start, async_extent->ram_size, ret);
1079 }
1080 }
1081
submit_one_async_extent(struct async_chunk * async_chunk,struct async_extent * async_extent,u64 * alloc_hint)1082 static void submit_one_async_extent(struct async_chunk *async_chunk,
1083 struct async_extent *async_extent,
1084 u64 *alloc_hint)
1085 {
1086 struct btrfs_inode *inode = async_chunk->inode;
1087 struct extent_io_tree *io_tree = &inode->io_tree;
1088 struct btrfs_root *root = inode->root;
1089 struct btrfs_fs_info *fs_info = root->fs_info;
1090 struct btrfs_ordered_extent *ordered;
1091 struct btrfs_file_extent file_extent;
1092 struct btrfs_key ins;
1093 struct folio *locked_folio = NULL;
1094 struct extent_state *cached = NULL;
1095 struct extent_map *em;
1096 int ret = 0;
1097 bool free_pages = false;
1098 u64 start = async_extent->start;
1099 u64 end = async_extent->start + async_extent->ram_size - 1;
1100
1101 if (async_chunk->blkcg_css)
1102 kthread_associate_blkcg(async_chunk->blkcg_css);
1103
1104 /*
1105 * If async_chunk->locked_folio is in the async_extent range, we need to
1106 * handle it.
1107 */
1108 if (async_chunk->locked_folio) {
1109 u64 locked_folio_start = folio_pos(async_chunk->locked_folio);
1110 u64 locked_folio_end = locked_folio_start +
1111 folio_size(async_chunk->locked_folio) - 1;
1112
1113 if (!(start >= locked_folio_end || end <= locked_folio_start))
1114 locked_folio = async_chunk->locked_folio;
1115 }
1116
1117 if (async_extent->compress_type == BTRFS_COMPRESS_NONE) {
1118 ASSERT(!async_extent->folios);
1119 ASSERT(async_extent->nr_folios == 0);
1120 submit_uncompressed_range(inode, async_extent, locked_folio);
1121 free_pages = true;
1122 goto done;
1123 }
1124
1125 ret = btrfs_reserve_extent(root, async_extent->ram_size,
1126 async_extent->compressed_size,
1127 async_extent->compressed_size,
1128 0, *alloc_hint, &ins, 1, 1);
1129 if (ret) {
1130 /*
1131 * We can't reserve contiguous space for the compressed size.
1132 * Unlikely, but it's possible that we could have enough
1133 * non-contiguous space for the uncompressed size instead. So
1134 * fall back to uncompressed.
1135 */
1136 submit_uncompressed_range(inode, async_extent, locked_folio);
1137 free_pages = true;
1138 goto done;
1139 }
1140
1141 btrfs_lock_extent(io_tree, start, end, &cached);
1142
1143 /* Here we're doing allocation and writeback of the compressed pages */
1144 file_extent.disk_bytenr = ins.objectid;
1145 file_extent.disk_num_bytes = ins.offset;
1146 file_extent.ram_bytes = async_extent->ram_size;
1147 file_extent.num_bytes = async_extent->ram_size;
1148 file_extent.offset = 0;
1149 file_extent.compression = async_extent->compress_type;
1150
1151 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED);
1152 if (IS_ERR(em)) {
1153 ret = PTR_ERR(em);
1154 goto out_free_reserve;
1155 }
1156 btrfs_free_extent_map(em);
1157
1158 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent,
1159 1U << BTRFS_ORDERED_COMPRESSED);
1160 if (IS_ERR(ordered)) {
1161 btrfs_drop_extent_map_range(inode, start, end, false);
1162 ret = PTR_ERR(ordered);
1163 goto out_free_reserve;
1164 }
1165 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1166
1167 /* Clear dirty, set writeback and unlock the pages. */
1168 extent_clear_unlock_delalloc(inode, start, end,
1169 NULL, &cached, EXTENT_LOCKED | EXTENT_DELALLOC,
1170 PAGE_UNLOCK | PAGE_START_WRITEBACK);
1171 btrfs_submit_compressed_write(ordered,
1172 async_extent->folios, /* compressed_folios */
1173 async_extent->nr_folios,
1174 async_chunk->write_flags, true);
1175 *alloc_hint = ins.objectid + ins.offset;
1176 done:
1177 if (async_chunk->blkcg_css)
1178 kthread_associate_blkcg(NULL);
1179 if (free_pages)
1180 free_async_extent_pages(async_extent);
1181 kfree(async_extent);
1182 return;
1183
1184 out_free_reserve:
1185 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1186 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, true);
1187 mapping_set_error(inode->vfs_inode.i_mapping, -EIO);
1188 extent_clear_unlock_delalloc(inode, start, end,
1189 NULL, &cached,
1190 EXTENT_LOCKED | EXTENT_DELALLOC |
1191 EXTENT_DELALLOC_NEW |
1192 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
1193 PAGE_UNLOCK | PAGE_START_WRITEBACK |
1194 PAGE_END_WRITEBACK);
1195 free_async_extent_pages(async_extent);
1196 if (async_chunk->blkcg_css)
1197 kthread_associate_blkcg(NULL);
1198 btrfs_debug(fs_info,
1199 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d",
1200 btrfs_root_id(root), btrfs_ino(inode), start,
1201 async_extent->ram_size, ret);
1202 kfree(async_extent);
1203 }
1204
btrfs_get_extent_allocation_hint(struct btrfs_inode * inode,u64 start,u64 num_bytes)1205 u64 btrfs_get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
1206 u64 num_bytes)
1207 {
1208 struct extent_map_tree *em_tree = &inode->extent_tree;
1209 struct extent_map *em;
1210 u64 alloc_hint = 0;
1211
1212 read_lock(&em_tree->lock);
1213 em = btrfs_search_extent_mapping(em_tree, start, num_bytes);
1214 if (em) {
1215 /*
1216 * if block start isn't an actual block number then find the
1217 * first block in this inode and use that as a hint. If that
1218 * block is also bogus then just don't worry about it.
1219 */
1220 if (em->disk_bytenr >= EXTENT_MAP_LAST_BYTE) {
1221 btrfs_free_extent_map(em);
1222 em = btrfs_search_extent_mapping(em_tree, 0, 0);
1223 if (em && em->disk_bytenr < EXTENT_MAP_LAST_BYTE)
1224 alloc_hint = btrfs_extent_map_block_start(em);
1225 if (em)
1226 btrfs_free_extent_map(em);
1227 } else {
1228 alloc_hint = btrfs_extent_map_block_start(em);
1229 btrfs_free_extent_map(em);
1230 }
1231 }
1232 read_unlock(&em_tree->lock);
1233
1234 return alloc_hint;
1235 }
1236
1237 /*
1238 * when extent_io.c finds a delayed allocation range in the file,
1239 * the call backs end up in this code. The basic idea is to
1240 * allocate extents on disk for the range, and create ordered data structs
1241 * in ram to track those extents.
1242 *
1243 * locked_folio is the folio that writepage had locked already. We use
1244 * it to make sure we don't do extra locks or unlocks.
1245 *
1246 * When this function fails, it unlocks all pages except @locked_folio.
1247 *
1248 * When this function successfully creates an inline extent, it returns 1 and
1249 * unlocks all pages including locked_folio and starts I/O on them.
1250 * (In reality inline extents are limited to a single page, so locked_folio is
1251 * the only page handled anyway).
1252 *
1253 * When this function succeed and creates a normal extent, the page locking
1254 * status depends on the passed in flags:
1255 *
1256 * - If @keep_locked is set, all pages are kept locked.
1257 * - Else all pages except for @locked_folio are unlocked.
1258 *
1259 * When a failure happens in the second or later iteration of the
1260 * while-loop, the ordered extents created in previous iterations are cleaned up.
1261 */
cow_file_range(struct btrfs_inode * inode,struct folio * locked_folio,u64 start,u64 end,u64 * done_offset,bool keep_locked,bool no_inline)1262 static noinline int cow_file_range(struct btrfs_inode *inode,
1263 struct folio *locked_folio, u64 start,
1264 u64 end, u64 *done_offset,
1265 bool keep_locked, bool no_inline)
1266 {
1267 struct btrfs_root *root = inode->root;
1268 struct btrfs_fs_info *fs_info = root->fs_info;
1269 struct extent_state *cached = NULL;
1270 u64 alloc_hint = 0;
1271 u64 orig_start = start;
1272 u64 num_bytes;
1273 u64 cur_alloc_size = 0;
1274 u64 min_alloc_size;
1275 u64 blocksize = fs_info->sectorsize;
1276 struct btrfs_key ins;
1277 struct extent_map *em;
1278 unsigned clear_bits;
1279 unsigned long page_ops;
1280 int ret = 0;
1281
1282 if (btrfs_is_free_space_inode(inode)) {
1283 ret = -EINVAL;
1284 goto out_unlock;
1285 }
1286
1287 num_bytes = ALIGN(end - start + 1, blocksize);
1288 num_bytes = max(blocksize, num_bytes);
1289 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1290
1291 inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1292
1293 if (!no_inline) {
1294 /* lets try to make an inline extent */
1295 ret = cow_file_range_inline(inode, locked_folio, start, end, 0,
1296 BTRFS_COMPRESS_NONE, NULL, false);
1297 if (ret <= 0) {
1298 /*
1299 * We succeeded, return 1 so the caller knows we're done
1300 * with this page and already handled the IO.
1301 *
1302 * If there was an error then cow_file_range_inline() has
1303 * already done the cleanup.
1304 */
1305 if (ret == 0)
1306 ret = 1;
1307 goto done;
1308 }
1309 }
1310
1311 alloc_hint = btrfs_get_extent_allocation_hint(inode, start, num_bytes);
1312
1313 /*
1314 * We're not doing compressed IO, don't unlock the first page (which
1315 * the caller expects to stay locked), don't clear any dirty bits and
1316 * don't set any writeback bits.
1317 *
1318 * Do set the Ordered (Private2) bit so we know this page was properly
1319 * setup for writepage.
1320 */
1321 page_ops = (keep_locked ? 0 : PAGE_UNLOCK);
1322 page_ops |= PAGE_SET_ORDERED;
1323
1324 /*
1325 * Relocation relies on the relocated extents to have exactly the same
1326 * size as the original extents. Normally writeback for relocation data
1327 * extents follows a NOCOW path because relocation preallocates the
1328 * extents. However, due to an operation such as scrub turning a block
1329 * group to RO mode, it may fallback to COW mode, so we must make sure
1330 * an extent allocated during COW has exactly the requested size and can
1331 * not be split into smaller extents, otherwise relocation breaks and
1332 * fails during the stage where it updates the bytenr of file extent
1333 * items.
1334 */
1335 if (btrfs_is_data_reloc_root(root))
1336 min_alloc_size = num_bytes;
1337 else
1338 min_alloc_size = fs_info->sectorsize;
1339
1340 while (num_bytes > 0) {
1341 struct btrfs_ordered_extent *ordered;
1342 struct btrfs_file_extent file_extent;
1343
1344 ret = btrfs_reserve_extent(root, num_bytes, num_bytes,
1345 min_alloc_size, 0, alloc_hint,
1346 &ins, 1, 1);
1347 if (ret == -EAGAIN) {
1348 /*
1349 * btrfs_reserve_extent only returns -EAGAIN for zoned
1350 * file systems, which is an indication that there are
1351 * no active zones to allocate from at the moment.
1352 *
1353 * If this is the first loop iteration, wait for at
1354 * least one zone to finish before retrying the
1355 * allocation. Otherwise ask the caller to write out
1356 * the already allocated blocks before coming back to
1357 * us, or return -ENOSPC if it can't handle retries.
1358 */
1359 ASSERT(btrfs_is_zoned(fs_info));
1360 if (start == orig_start) {
1361 wait_on_bit_io(&inode->root->fs_info->flags,
1362 BTRFS_FS_NEED_ZONE_FINISH,
1363 TASK_UNINTERRUPTIBLE);
1364 continue;
1365 }
1366 if (done_offset) {
1367 /*
1368 * Move @end to the end of the processed range,
1369 * and exit the loop to unlock the processed extents.
1370 */
1371 end = start - 1;
1372 ret = 0;
1373 break;
1374 }
1375 ret = -ENOSPC;
1376 }
1377 if (ret < 0)
1378 goto out_unlock;
1379 cur_alloc_size = ins.offset;
1380
1381 file_extent.disk_bytenr = ins.objectid;
1382 file_extent.disk_num_bytes = ins.offset;
1383 file_extent.num_bytes = ins.offset;
1384 file_extent.ram_bytes = ins.offset;
1385 file_extent.offset = 0;
1386 file_extent.compression = BTRFS_COMPRESS_NONE;
1387
1388 /*
1389 * Locked range will be released either during error clean up or
1390 * after the whole range is finished.
1391 */
1392 btrfs_lock_extent(&inode->io_tree, start, start + cur_alloc_size - 1,
1393 &cached);
1394
1395 em = btrfs_create_io_em(inode, start, &file_extent,
1396 BTRFS_ORDERED_REGULAR);
1397 if (IS_ERR(em)) {
1398 btrfs_unlock_extent(&inode->io_tree, start,
1399 start + cur_alloc_size - 1, &cached);
1400 ret = PTR_ERR(em);
1401 goto out_reserve;
1402 }
1403 btrfs_free_extent_map(em);
1404
1405 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent,
1406 1U << BTRFS_ORDERED_REGULAR);
1407 if (IS_ERR(ordered)) {
1408 btrfs_unlock_extent(&inode->io_tree, start,
1409 start + cur_alloc_size - 1, &cached);
1410 ret = PTR_ERR(ordered);
1411 goto out_drop_extent_cache;
1412 }
1413
1414 if (btrfs_is_data_reloc_root(root)) {
1415 ret = btrfs_reloc_clone_csums(ordered);
1416
1417 /*
1418 * Only drop cache here, and process as normal.
1419 *
1420 * We must not allow extent_clear_unlock_delalloc()
1421 * at out_unlock label to free meta of this ordered
1422 * extent, as its meta should be freed by
1423 * btrfs_finish_ordered_io().
1424 *
1425 * So we must continue until @start is increased to
1426 * skip current ordered extent.
1427 */
1428 if (ret)
1429 btrfs_drop_extent_map_range(inode, start,
1430 start + cur_alloc_size - 1,
1431 false);
1432 }
1433 btrfs_put_ordered_extent(ordered);
1434
1435 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1436
1437 if (num_bytes < cur_alloc_size)
1438 num_bytes = 0;
1439 else
1440 num_bytes -= cur_alloc_size;
1441 alloc_hint = ins.objectid + ins.offset;
1442 start += cur_alloc_size;
1443 cur_alloc_size = 0;
1444
1445 /*
1446 * btrfs_reloc_clone_csums() error, since start is increased
1447 * extent_clear_unlock_delalloc() at out_unlock label won't
1448 * free metadata of current ordered extent, we're OK to exit.
1449 */
1450 if (ret)
1451 goto out_unlock;
1452 }
1453 extent_clear_unlock_delalloc(inode, orig_start, end, locked_folio, &cached,
1454 EXTENT_LOCKED | EXTENT_DELALLOC, page_ops);
1455 done:
1456 if (done_offset)
1457 *done_offset = end;
1458 return ret;
1459
1460 out_drop_extent_cache:
1461 btrfs_drop_extent_map_range(inode, start, start + cur_alloc_size - 1, false);
1462 out_reserve:
1463 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1464 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, true);
1465 out_unlock:
1466 /*
1467 * Now, we have three regions to clean up:
1468 *
1469 * |-------(1)----|---(2)---|-------------(3)----------|
1470 * `- orig_start `- start `- start + cur_alloc_size `- end
1471 *
1472 * We process each region below.
1473 */
1474
1475 /*
1476 * For the range (1). We have already instantiated the ordered extents
1477 * for this region, thus we need to cleanup those ordered extents.
1478 * EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV
1479 * are also handled by the ordered extents cleanup.
1480 *
1481 * So here we only clear EXTENT_LOCKED and EXTENT_DELALLOC flag, and
1482 * finish the writeback of the involved folios, which will be never submitted.
1483 */
1484 if (orig_start < start) {
1485 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC;
1486 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1487
1488 if (!locked_folio)
1489 mapping_set_error(inode->vfs_inode.i_mapping, ret);
1490
1491 btrfs_cleanup_ordered_extents(inode, orig_start, start - orig_start);
1492 extent_clear_unlock_delalloc(inode, orig_start, start - 1,
1493 locked_folio, NULL, clear_bits, page_ops);
1494 }
1495
1496 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1497 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1498 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1499
1500 /*
1501 * For the range (2). If we reserved an extent for our delalloc range
1502 * (or a subrange) and failed to create the respective ordered extent,
1503 * then it means that when we reserved the extent we decremented the
1504 * extent's size from the data space_info's bytes_may_use counter and
1505 * incremented the space_info's bytes_reserved counter by the same
1506 * amount. We must make sure extent_clear_unlock_delalloc() does not try
1507 * to decrement again the data space_info's bytes_may_use counter,
1508 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV.
1509 */
1510 if (cur_alloc_size) {
1511 extent_clear_unlock_delalloc(inode, start,
1512 start + cur_alloc_size - 1,
1513 locked_folio, &cached, clear_bits,
1514 page_ops);
1515 btrfs_qgroup_free_data(inode, NULL, start, cur_alloc_size, NULL);
1516 }
1517
1518 /*
1519 * For the range (3). We never touched the region. In addition to the
1520 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data
1521 * space_info's bytes_may_use counter, reserved in
1522 * btrfs_check_data_free_space().
1523 */
1524 if (start + cur_alloc_size < end) {
1525 clear_bits |= EXTENT_CLEAR_DATA_RESV;
1526 extent_clear_unlock_delalloc(inode, start + cur_alloc_size,
1527 end, locked_folio,
1528 &cached, clear_bits, page_ops);
1529 btrfs_qgroup_free_data(inode, NULL, start + cur_alloc_size,
1530 end - start - cur_alloc_size + 1, NULL);
1531 }
1532 btrfs_err_rl(fs_info,
1533 "%s failed, root=%llu inode=%llu start=%llu len=%llu: %d",
1534 __func__, btrfs_root_id(inode->root),
1535 btrfs_ino(inode), orig_start, end + 1 - orig_start, ret);
1536 return ret;
1537 }
1538
1539 /*
1540 * Phase two of compressed writeback. This is the ordered portion of the code,
1541 * which only gets called in the order the work was queued. We walk all the
1542 * async extents created by compress_file_range and send them down to the disk.
1543 *
1544 * If called with @do_free == true then it'll try to finish the work and free
1545 * the work struct eventually.
1546 */
submit_compressed_extents(struct btrfs_work * work,bool do_free)1547 static noinline void submit_compressed_extents(struct btrfs_work *work, bool do_free)
1548 {
1549 struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1550 work);
1551 struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1552 struct async_extent *async_extent;
1553 unsigned long nr_pages;
1554 u64 alloc_hint = 0;
1555
1556 if (do_free) {
1557 struct async_cow *async_cow;
1558
1559 btrfs_add_delayed_iput(async_chunk->inode);
1560 if (async_chunk->blkcg_css)
1561 css_put(async_chunk->blkcg_css);
1562
1563 async_cow = async_chunk->async_cow;
1564 if (atomic_dec_and_test(&async_cow->num_chunks))
1565 kvfree(async_cow);
1566 return;
1567 }
1568
1569 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1570 PAGE_SHIFT;
1571
1572 while (!list_empty(&async_chunk->extents)) {
1573 async_extent = list_first_entry(&async_chunk->extents,
1574 struct async_extent, list);
1575 list_del(&async_extent->list);
1576 submit_one_async_extent(async_chunk, async_extent, &alloc_hint);
1577 }
1578
1579 /* atomic_sub_return implies a barrier */
1580 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1581 5 * SZ_1M)
1582 cond_wake_up_nomb(&fs_info->async_submit_wait);
1583 }
1584
run_delalloc_compressed(struct btrfs_inode * inode,struct folio * locked_folio,u64 start,u64 end,struct writeback_control * wbc)1585 static bool run_delalloc_compressed(struct btrfs_inode *inode,
1586 struct folio *locked_folio, u64 start,
1587 u64 end, struct writeback_control *wbc)
1588 {
1589 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1590 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1591 struct async_cow *ctx;
1592 struct async_chunk *async_chunk;
1593 unsigned long nr_pages;
1594 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1595 int i;
1596 unsigned nofs_flag;
1597 const blk_opf_t write_flags = wbc_to_write_flags(wbc);
1598
1599 nofs_flag = memalloc_nofs_save();
1600 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1601 memalloc_nofs_restore(nofs_flag);
1602 if (!ctx)
1603 return false;
1604
1605 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1606
1607 async_chunk = ctx->chunks;
1608 atomic_set(&ctx->num_chunks, num_chunks);
1609
1610 for (i = 0; i < num_chunks; i++) {
1611 u64 cur_end = min(end, start + SZ_512K - 1);
1612
1613 /*
1614 * igrab is called higher up in the call chain, take only the
1615 * lightweight reference for the callback lifetime
1616 */
1617 ihold(&inode->vfs_inode);
1618 async_chunk[i].async_cow = ctx;
1619 async_chunk[i].inode = inode;
1620 async_chunk[i].start = start;
1621 async_chunk[i].end = cur_end;
1622 async_chunk[i].write_flags = write_flags;
1623 INIT_LIST_HEAD(&async_chunk[i].extents);
1624
1625 /*
1626 * The locked_folio comes all the way from writepage and its
1627 * the original folio we were actually given. As we spread
1628 * this large delalloc region across multiple async_chunk
1629 * structs, only the first struct needs a pointer to
1630 * locked_folio.
1631 *
1632 * This way we don't need racey decisions about who is supposed
1633 * to unlock it.
1634 */
1635 if (locked_folio) {
1636 /*
1637 * Depending on the compressibility, the pages might or
1638 * might not go through async. We want all of them to
1639 * be accounted against wbc once. Let's do it here
1640 * before the paths diverge. wbc accounting is used
1641 * only for foreign writeback detection and doesn't
1642 * need full accuracy. Just account the whole thing
1643 * against the first page.
1644 */
1645 wbc_account_cgroup_owner(wbc, locked_folio,
1646 cur_end - start);
1647 async_chunk[i].locked_folio = locked_folio;
1648 locked_folio = NULL;
1649 } else {
1650 async_chunk[i].locked_folio = NULL;
1651 }
1652
1653 if (blkcg_css != blkcg_root_css) {
1654 css_get(blkcg_css);
1655 async_chunk[i].blkcg_css = blkcg_css;
1656 async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT;
1657 } else {
1658 async_chunk[i].blkcg_css = NULL;
1659 }
1660
1661 btrfs_init_work(&async_chunk[i].work, compress_file_range,
1662 submit_compressed_extents);
1663
1664 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1665 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1666
1667 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1668
1669 start = cur_end + 1;
1670 }
1671 return true;
1672 }
1673
1674 /*
1675 * Run the delalloc range from start to end, and write back any dirty pages
1676 * covered by the range.
1677 */
run_delalloc_cow(struct btrfs_inode * inode,struct folio * locked_folio,u64 start,u64 end,struct writeback_control * wbc,bool pages_dirty)1678 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
1679 struct folio *locked_folio, u64 start,
1680 u64 end, struct writeback_control *wbc,
1681 bool pages_dirty)
1682 {
1683 u64 done_offset = end;
1684 int ret;
1685
1686 while (start <= end) {
1687 ret = cow_file_range(inode, locked_folio, start, end,
1688 &done_offset, true, false);
1689 if (ret)
1690 return ret;
1691 extent_write_locked_range(&inode->vfs_inode, locked_folio,
1692 start, done_offset, wbc, pages_dirty);
1693 start = done_offset + 1;
1694 }
1695
1696 return 1;
1697 }
1698
fallback_to_cow(struct btrfs_inode * inode,struct folio * locked_folio,const u64 start,const u64 end)1699 static int fallback_to_cow(struct btrfs_inode *inode,
1700 struct folio *locked_folio, const u64 start,
1701 const u64 end)
1702 {
1703 const bool is_space_ino = btrfs_is_free_space_inode(inode);
1704 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root);
1705 const u64 range_bytes = end + 1 - start;
1706 struct extent_io_tree *io_tree = &inode->io_tree;
1707 struct extent_state *cached_state = NULL;
1708 u64 range_start = start;
1709 u64 count;
1710 int ret;
1711
1712 /*
1713 * If EXTENT_NORESERVE is set it means that when the buffered write was
1714 * made we had not enough available data space and therefore we did not
1715 * reserve data space for it, since we though we could do NOCOW for the
1716 * respective file range (either there is prealloc extent or the inode
1717 * has the NOCOW bit set).
1718 *
1719 * However when we need to fallback to COW mode (because for example the
1720 * block group for the corresponding extent was turned to RO mode by a
1721 * scrub or relocation) we need to do the following:
1722 *
1723 * 1) We increment the bytes_may_use counter of the data space info.
1724 * If COW succeeds, it allocates a new data extent and after doing
1725 * that it decrements the space info's bytes_may_use counter and
1726 * increments its bytes_reserved counter by the same amount (we do
1727 * this at btrfs_add_reserved_bytes()). So we need to increment the
1728 * bytes_may_use counter to compensate (when space is reserved at
1729 * buffered write time, the bytes_may_use counter is incremented);
1730 *
1731 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1732 * that if the COW path fails for any reason, it decrements (through
1733 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1734 * data space info, which we incremented in the step above.
1735 *
1736 * If we need to fallback to cow and the inode corresponds to a free
1737 * space cache inode or an inode of the data relocation tree, we must
1738 * also increment bytes_may_use of the data space_info for the same
1739 * reason. Space caches and relocated data extents always get a prealloc
1740 * extent for them, however scrub or balance may have set the block
1741 * group that contains that extent to RO mode and therefore force COW
1742 * when starting writeback.
1743 */
1744 btrfs_lock_extent(io_tree, start, end, &cached_state);
1745 count = btrfs_count_range_bits(io_tree, &range_start, end, range_bytes,
1746 EXTENT_NORESERVE, 0, NULL);
1747 if (count > 0 || is_space_ino || is_reloc_ino) {
1748 u64 bytes = count;
1749 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1750 struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1751
1752 if (is_space_ino || is_reloc_ino)
1753 bytes = range_bytes;
1754
1755 spin_lock(&sinfo->lock);
1756 btrfs_space_info_update_bytes_may_use(sinfo, bytes);
1757 spin_unlock(&sinfo->lock);
1758
1759 if (count > 0)
1760 btrfs_clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1761 &cached_state);
1762 }
1763 btrfs_unlock_extent(io_tree, start, end, &cached_state);
1764
1765 /*
1766 * Don't try to create inline extents, as a mix of inline extent that
1767 * is written out and unlocked directly and a normal NOCOW extent
1768 * doesn't work.
1769 */
1770 ret = cow_file_range(inode, locked_folio, start, end, NULL, false,
1771 true);
1772 ASSERT(ret != 1);
1773 return ret;
1774 }
1775
1776 struct can_nocow_file_extent_args {
1777 /* Input fields. */
1778
1779 /* Start file offset of the range we want to NOCOW. */
1780 u64 start;
1781 /* End file offset (inclusive) of the range we want to NOCOW. */
1782 u64 end;
1783 bool writeback_path;
1784 /*
1785 * Free the path passed to can_nocow_file_extent() once it's not needed
1786 * anymore.
1787 */
1788 bool free_path;
1789
1790 /*
1791 * Output fields. Only set when can_nocow_file_extent() returns 1.
1792 * The expected file extent for the NOCOW write.
1793 */
1794 struct btrfs_file_extent file_extent;
1795 };
1796
1797 /*
1798 * Check if we can NOCOW the file extent that the path points to.
1799 * This function may return with the path released, so the caller should check
1800 * if path->nodes[0] is NULL or not if it needs to use the path afterwards.
1801 *
1802 * Returns: < 0 on error
1803 * 0 if we can not NOCOW
1804 * 1 if we can NOCOW
1805 */
can_nocow_file_extent(struct btrfs_path * path,struct btrfs_key * key,struct btrfs_inode * inode,struct can_nocow_file_extent_args * args)1806 static int can_nocow_file_extent(struct btrfs_path *path,
1807 struct btrfs_key *key,
1808 struct btrfs_inode *inode,
1809 struct can_nocow_file_extent_args *args)
1810 {
1811 const bool is_freespace_inode = btrfs_is_free_space_inode(inode);
1812 struct extent_buffer *leaf = path->nodes[0];
1813 struct btrfs_root *root = inode->root;
1814 struct btrfs_file_extent_item *fi;
1815 struct btrfs_root *csum_root;
1816 u64 io_start;
1817 u64 extent_end;
1818 u8 extent_type;
1819 int can_nocow = 0;
1820 int ret = 0;
1821 bool nowait = path->nowait;
1822
1823 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
1824 extent_type = btrfs_file_extent_type(leaf, fi);
1825
1826 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1827 goto out;
1828
1829 if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1830 extent_type == BTRFS_FILE_EXTENT_REG)
1831 goto out;
1832
1833 /*
1834 * If the extent was created before the generation where the last snapshot
1835 * for its subvolume was created, then this implies the extent is shared,
1836 * hence we must COW.
1837 */
1838 if (btrfs_file_extent_generation(leaf, fi) <=
1839 btrfs_root_last_snapshot(&root->root_item))
1840 goto out;
1841
1842 /* An explicit hole, must COW. */
1843 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0)
1844 goto out;
1845
1846 /* Compressed/encrypted/encoded extents must be COWed. */
1847 if (btrfs_file_extent_compression(leaf, fi) ||
1848 btrfs_file_extent_encryption(leaf, fi) ||
1849 btrfs_file_extent_other_encoding(leaf, fi))
1850 goto out;
1851
1852 extent_end = btrfs_file_extent_end(path);
1853
1854 args->file_extent.disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1855 args->file_extent.disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1856 args->file_extent.ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1857 args->file_extent.offset = btrfs_file_extent_offset(leaf, fi);
1858 args->file_extent.compression = btrfs_file_extent_compression(leaf, fi);
1859
1860 /*
1861 * The following checks can be expensive, as they need to take other
1862 * locks and do btree or rbtree searches, so release the path to avoid
1863 * blocking other tasks for too long.
1864 */
1865 btrfs_release_path(path);
1866
1867 ret = btrfs_cross_ref_exist(inode, key->offset - args->file_extent.offset,
1868 args->file_extent.disk_bytenr, path);
1869 WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1870 if (ret != 0)
1871 goto out;
1872
1873 if (args->free_path) {
1874 /*
1875 * We don't need the path anymore, plus through the
1876 * btrfs_lookup_csums_list() call below we will end up allocating
1877 * another path. So free the path to avoid unnecessary extra
1878 * memory usage.
1879 */
1880 btrfs_free_path(path);
1881 path = NULL;
1882 }
1883
1884 /* If there are pending snapshots for this root, we must COW. */
1885 if (args->writeback_path && !is_freespace_inode &&
1886 atomic_read(&root->snapshot_force_cow))
1887 goto out;
1888
1889 args->file_extent.num_bytes = min(args->end + 1, extent_end) - args->start;
1890 args->file_extent.offset += args->start - key->offset;
1891 io_start = args->file_extent.disk_bytenr + args->file_extent.offset;
1892
1893 /*
1894 * Force COW if csums exist in the range. This ensures that csums for a
1895 * given extent are either valid or do not exist.
1896 */
1897
1898 csum_root = btrfs_csum_root(root->fs_info, io_start);
1899 ret = btrfs_lookup_csums_list(csum_root, io_start,
1900 io_start + args->file_extent.num_bytes - 1,
1901 NULL, nowait);
1902 WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1903 if (ret != 0)
1904 goto out;
1905
1906 can_nocow = 1;
1907 out:
1908 if (args->free_path && path)
1909 btrfs_free_path(path);
1910
1911 return ret < 0 ? ret : can_nocow;
1912 }
1913
1914 /*
1915 * Cleanup the dirty folios which will never be submitted due to error.
1916 *
1917 * When running a delalloc range, we may need to split the ranges (due to
1918 * fragmentation or NOCOW). If we hit an error in the later part, we will error
1919 * out and previously successfully executed range will never be submitted, thus
1920 * we have to cleanup those folios by clearing their dirty flag, starting and
1921 * finishing the writeback.
1922 */
cleanup_dirty_folios(struct btrfs_inode * inode,struct folio * locked_folio,u64 start,u64 end,int error)1923 static void cleanup_dirty_folios(struct btrfs_inode *inode,
1924 struct folio *locked_folio,
1925 u64 start, u64 end, int error)
1926 {
1927 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1928 struct address_space *mapping = inode->vfs_inode.i_mapping;
1929 pgoff_t start_index = start >> PAGE_SHIFT;
1930 pgoff_t end_index = end >> PAGE_SHIFT;
1931 u32 len;
1932
1933 ASSERT(end + 1 - start < U32_MAX);
1934 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
1935 IS_ALIGNED(end + 1, fs_info->sectorsize));
1936 len = end + 1 - start;
1937
1938 /*
1939 * Handle the locked folio first.
1940 * The btrfs_folio_clamp_*() helpers can handle range out of the folio case.
1941 */
1942 btrfs_folio_clamp_finish_io(fs_info, locked_folio, start, len);
1943
1944 for (pgoff_t index = start_index; index <= end_index; index++) {
1945 struct folio *folio;
1946
1947 /* Already handled at the beginning. */
1948 if (index == locked_folio->index)
1949 continue;
1950 folio = __filemap_get_folio(mapping, index, FGP_LOCK, GFP_NOFS);
1951 /* Cache already dropped, no need to do any cleanup. */
1952 if (IS_ERR(folio))
1953 continue;
1954 btrfs_folio_clamp_finish_io(fs_info, locked_folio, start, len);
1955 folio_unlock(folio);
1956 folio_put(folio);
1957 }
1958 mapping_set_error(mapping, error);
1959 }
1960
nocow_one_range(struct btrfs_inode * inode,struct folio * locked_folio,struct extent_state ** cached,struct can_nocow_file_extent_args * nocow_args,u64 file_pos,bool is_prealloc)1961 static int nocow_one_range(struct btrfs_inode *inode, struct folio *locked_folio,
1962 struct extent_state **cached,
1963 struct can_nocow_file_extent_args *nocow_args,
1964 u64 file_pos, bool is_prealloc)
1965 {
1966 struct btrfs_ordered_extent *ordered;
1967 u64 len = nocow_args->file_extent.num_bytes;
1968 u64 end = file_pos + len - 1;
1969 int ret = 0;
1970
1971 btrfs_lock_extent(&inode->io_tree, file_pos, end, cached);
1972
1973 if (is_prealloc) {
1974 struct extent_map *em;
1975
1976 em = btrfs_create_io_em(inode, file_pos, &nocow_args->file_extent,
1977 BTRFS_ORDERED_PREALLOC);
1978 if (IS_ERR(em)) {
1979 btrfs_unlock_extent(&inode->io_tree, file_pos, end, cached);
1980 return PTR_ERR(em);
1981 }
1982 btrfs_free_extent_map(em);
1983 }
1984
1985 ordered = btrfs_alloc_ordered_extent(inode, file_pos, &nocow_args->file_extent,
1986 is_prealloc
1987 ? (1U << BTRFS_ORDERED_PREALLOC)
1988 : (1U << BTRFS_ORDERED_NOCOW));
1989 if (IS_ERR(ordered)) {
1990 if (is_prealloc)
1991 btrfs_drop_extent_map_range(inode, file_pos, end, false);
1992 btrfs_unlock_extent(&inode->io_tree, file_pos, end, cached);
1993 return PTR_ERR(ordered);
1994 }
1995
1996 if (btrfs_is_data_reloc_root(inode->root))
1997 /*
1998 * Errors are handled later, as we must prevent
1999 * extent_clear_unlock_delalloc() in error handler from freeing
2000 * metadata of the created ordered extent.
2001 */
2002 ret = btrfs_reloc_clone_csums(ordered);
2003 btrfs_put_ordered_extent(ordered);
2004
2005 extent_clear_unlock_delalloc(inode, file_pos, end, locked_folio, cached,
2006 EXTENT_LOCKED | EXTENT_DELALLOC |
2007 EXTENT_CLEAR_DATA_RESV,
2008 PAGE_UNLOCK | PAGE_SET_ORDERED);
2009 /*
2010 * On error, we need to cleanup the ordered extents we created.
2011 *
2012 * We do not clear the folio Dirty flags because they are set and
2013 * cleaered by the caller.
2014 */
2015 if (ret < 0)
2016 btrfs_cleanup_ordered_extents(inode, file_pos, end);
2017 return ret;
2018 }
2019
2020 /*
2021 * when nowcow writeback call back. This checks for snapshots or COW copies
2022 * of the extents that exist in the file, and COWs the file as required.
2023 *
2024 * If no cow copies or snapshots exist, we write directly to the existing
2025 * blocks on disk
2026 */
run_delalloc_nocow(struct btrfs_inode * inode,struct folio * locked_folio,const u64 start,const u64 end)2027 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
2028 struct folio *locked_folio,
2029 const u64 start, const u64 end)
2030 {
2031 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2032 struct btrfs_root *root = inode->root;
2033 struct btrfs_path *path;
2034 u64 cow_start = (u64)-1;
2035 /*
2036 * If not 0, represents the inclusive end of the last fallback_to_cow()
2037 * range. Only for error handling.
2038 */
2039 u64 cow_end = 0;
2040 u64 cur_offset = start;
2041 int ret;
2042 bool check_prev = true;
2043 u64 ino = btrfs_ino(inode);
2044 struct can_nocow_file_extent_args nocow_args = { 0 };
2045
2046 /*
2047 * Normally on a zoned device we're only doing COW writes, but in case
2048 * of relocation on a zoned filesystem serializes I/O so that we're only
2049 * writing sequentially and can end up here as well.
2050 */
2051 ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root));
2052
2053 path = btrfs_alloc_path();
2054 if (!path) {
2055 ret = -ENOMEM;
2056 goto error;
2057 }
2058
2059 nocow_args.end = end;
2060 nocow_args.writeback_path = true;
2061
2062 while (cur_offset <= end) {
2063 struct btrfs_block_group *nocow_bg = NULL;
2064 struct btrfs_key found_key;
2065 struct btrfs_file_extent_item *fi;
2066 struct extent_buffer *leaf;
2067 struct extent_state *cached_state = NULL;
2068 u64 extent_end;
2069 int extent_type;
2070
2071 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
2072 cur_offset, 0);
2073 if (ret < 0)
2074 goto error;
2075
2076 /*
2077 * If there is no extent for our range when doing the initial
2078 * search, then go back to the previous slot as it will be the
2079 * one containing the search offset
2080 */
2081 if (ret > 0 && path->slots[0] > 0 && check_prev) {
2082 leaf = path->nodes[0];
2083 btrfs_item_key_to_cpu(leaf, &found_key,
2084 path->slots[0] - 1);
2085 if (found_key.objectid == ino &&
2086 found_key.type == BTRFS_EXTENT_DATA_KEY)
2087 path->slots[0]--;
2088 }
2089 check_prev = false;
2090 next_slot:
2091 /* Go to next leaf if we have exhausted the current one */
2092 leaf = path->nodes[0];
2093 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2094 ret = btrfs_next_leaf(root, path);
2095 if (ret < 0)
2096 goto error;
2097 if (ret > 0)
2098 break;
2099 leaf = path->nodes[0];
2100 }
2101
2102 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2103
2104 /* Didn't find anything for our INO */
2105 if (found_key.objectid > ino)
2106 break;
2107 /*
2108 * Keep searching until we find an EXTENT_ITEM or there are no
2109 * more extents for this inode
2110 */
2111 if (WARN_ON_ONCE(found_key.objectid < ino) ||
2112 found_key.type < BTRFS_EXTENT_DATA_KEY) {
2113 path->slots[0]++;
2114 goto next_slot;
2115 }
2116
2117 /* Found key is not EXTENT_DATA_KEY or starts after req range */
2118 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
2119 found_key.offset > end)
2120 break;
2121
2122 /*
2123 * If the found extent starts after requested offset, then
2124 * adjust cur_offset to be right before this extent begins.
2125 */
2126 if (found_key.offset > cur_offset) {
2127 if (cow_start == (u64)-1)
2128 cow_start = cur_offset;
2129 cur_offset = found_key.offset;
2130 goto next_slot;
2131 }
2132
2133 /*
2134 * Found extent which begins before our range and potentially
2135 * intersect it
2136 */
2137 fi = btrfs_item_ptr(leaf, path->slots[0],
2138 struct btrfs_file_extent_item);
2139 extent_type = btrfs_file_extent_type(leaf, fi);
2140 /* If this is triggered then we have a memory corruption. */
2141 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES);
2142 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) {
2143 ret = -EUCLEAN;
2144 goto error;
2145 }
2146 extent_end = btrfs_file_extent_end(path);
2147
2148 /*
2149 * If the extent we got ends before our current offset, skip to
2150 * the next extent.
2151 */
2152 if (extent_end <= cur_offset) {
2153 path->slots[0]++;
2154 goto next_slot;
2155 }
2156
2157 nocow_args.start = cur_offset;
2158 ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args);
2159 if (ret < 0)
2160 goto error;
2161 if (ret == 0)
2162 goto must_cow;
2163
2164 ret = 0;
2165 nocow_bg = btrfs_inc_nocow_writers(fs_info,
2166 nocow_args.file_extent.disk_bytenr +
2167 nocow_args.file_extent.offset);
2168 if (!nocow_bg) {
2169 must_cow:
2170 /*
2171 * If we can't perform NOCOW writeback for the range,
2172 * then record the beginning of the range that needs to
2173 * be COWed. It will be written out before the next
2174 * NOCOW range if we find one, or when exiting this
2175 * loop.
2176 */
2177 if (cow_start == (u64)-1)
2178 cow_start = cur_offset;
2179 cur_offset = extent_end;
2180 if (cur_offset > end)
2181 break;
2182 if (!path->nodes[0])
2183 continue;
2184 path->slots[0]++;
2185 goto next_slot;
2186 }
2187
2188 /*
2189 * COW range from cow_start to found_key.offset - 1. As the key
2190 * will contain the beginning of the first extent that can be
2191 * NOCOW, following one which needs to be COW'ed
2192 */
2193 if (cow_start != (u64)-1) {
2194 ret = fallback_to_cow(inode, locked_folio, cow_start,
2195 found_key.offset - 1);
2196 if (ret) {
2197 cow_end = found_key.offset - 1;
2198 btrfs_dec_nocow_writers(nocow_bg);
2199 goto error;
2200 }
2201 cow_start = (u64)-1;
2202 }
2203
2204 ret = nocow_one_range(inode, locked_folio, &cached_state,
2205 &nocow_args, cur_offset,
2206 extent_type == BTRFS_FILE_EXTENT_PREALLOC);
2207 btrfs_dec_nocow_writers(nocow_bg);
2208 if (ret < 0)
2209 goto error;
2210 cur_offset = extent_end;
2211 }
2212 btrfs_release_path(path);
2213
2214 if (cur_offset <= end && cow_start == (u64)-1)
2215 cow_start = cur_offset;
2216
2217 if (cow_start != (u64)-1) {
2218 ret = fallback_to_cow(inode, locked_folio, cow_start, end);
2219 if (ret) {
2220 cow_end = end;
2221 goto error;
2222 }
2223 cow_start = (u64)-1;
2224 }
2225
2226 btrfs_free_path(path);
2227 return 0;
2228
2229 error:
2230 /*
2231 * There are several error cases:
2232 *
2233 * 1) Failed without falling back to COW
2234 * start cur_offset end
2235 * |/////////////| |
2236 *
2237 * In this case, cow_start should be (u64)-1.
2238 *
2239 * For range [start, cur_offset) the folios are already unlocked (except
2240 * @locked_folio), EXTENT_DELALLOC already removed.
2241 * Need to clear the dirty flags and finish the ordered extents.
2242 *
2243 * 2) Failed with error before calling fallback_to_cow()
2244 *
2245 * start cow_start end
2246 * |/////////////| |
2247 *
2248 * In this case, only @cow_start is set, @cur_offset is between
2249 * [cow_start, end)
2250 *
2251 * It's mostly the same as case 1), just replace @cur_offset with
2252 * @cow_start.
2253 *
2254 * 3) Failed with error from fallback_to_cow()
2255 *
2256 * start cow_start cow_end end
2257 * |/////////////|-----------| |
2258 *
2259 * In this case, both @cow_start and @cow_end is set.
2260 *
2261 * For range [start, cow_start) it's the same as case 1).
2262 * But for range [cow_start, cow_end), all the cleanup is handled by
2263 * cow_file_range(), we should not touch anything in that range.
2264 *
2265 * So for all above cases, if @cow_start is set, cleanup ordered extents
2266 * for range [start, @cow_start), other wise cleanup range [start, @cur_offset).
2267 */
2268 if (cow_start != (u64)-1)
2269 cur_offset = cow_start;
2270
2271 if (cur_offset > start) {
2272 btrfs_cleanup_ordered_extents(inode, start, cur_offset - start);
2273 cleanup_dirty_folios(inode, locked_folio, start, cur_offset - 1, ret);
2274 }
2275
2276 /*
2277 * If an error happened while a COW region is outstanding, cur_offset
2278 * needs to be reset to @cow_end + 1 to skip the COW range, as
2279 * cow_file_range() will do the proper cleanup at error.
2280 */
2281 if (cow_end)
2282 cur_offset = cow_end + 1;
2283
2284 /*
2285 * We need to lock the extent here because we're clearing DELALLOC and
2286 * we're not locked at this point.
2287 */
2288 if (cur_offset < end) {
2289 struct extent_state *cached = NULL;
2290
2291 btrfs_lock_extent(&inode->io_tree, cur_offset, end, &cached);
2292 extent_clear_unlock_delalloc(inode, cur_offset, end,
2293 locked_folio, &cached,
2294 EXTENT_LOCKED | EXTENT_DELALLOC |
2295 EXTENT_DEFRAG |
2296 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
2297 PAGE_START_WRITEBACK |
2298 PAGE_END_WRITEBACK);
2299 btrfs_qgroup_free_data(inode, NULL, cur_offset, end - cur_offset + 1, NULL);
2300 }
2301 btrfs_free_path(path);
2302 btrfs_err_rl(fs_info,
2303 "%s failed, root=%llu inode=%llu start=%llu len=%llu: %d",
2304 __func__, btrfs_root_id(inode->root),
2305 btrfs_ino(inode), start, end + 1 - start, ret);
2306 return ret;
2307 }
2308
should_nocow(struct btrfs_inode * inode,u64 start,u64 end)2309 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
2310 {
2311 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
2312 if (inode->defrag_bytes &&
2313 btrfs_test_range_bit_exists(&inode->io_tree, start, end, EXTENT_DEFRAG))
2314 return false;
2315 return true;
2316 }
2317 return false;
2318 }
2319
2320 /*
2321 * Function to process delayed allocation (create CoW) for ranges which are
2322 * being touched for the first time.
2323 */
btrfs_run_delalloc_range(struct btrfs_inode * inode,struct folio * locked_folio,u64 start,u64 end,struct writeback_control * wbc)2324 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct folio *locked_folio,
2325 u64 start, u64 end, struct writeback_control *wbc)
2326 {
2327 const bool zoned = btrfs_is_zoned(inode->root->fs_info);
2328 int ret;
2329
2330 /*
2331 * The range must cover part of the @locked_folio, or a return of 1
2332 * can confuse the caller.
2333 */
2334 ASSERT(!(end <= folio_pos(locked_folio) || start >= folio_end(locked_folio)));
2335
2336 if (should_nocow(inode, start, end)) {
2337 ret = run_delalloc_nocow(inode, locked_folio, start, end);
2338 return ret;
2339 }
2340
2341 if (btrfs_inode_can_compress(inode) &&
2342 inode_need_compress(inode, start, end) &&
2343 run_delalloc_compressed(inode, locked_folio, start, end, wbc))
2344 return 1;
2345
2346 if (zoned)
2347 ret = run_delalloc_cow(inode, locked_folio, start, end, wbc,
2348 true);
2349 else
2350 ret = cow_file_range(inode, locked_folio, start, end, NULL,
2351 false, false);
2352 return ret;
2353 }
2354
btrfs_split_delalloc_extent(struct btrfs_inode * inode,struct extent_state * orig,u64 split)2355 void btrfs_split_delalloc_extent(struct btrfs_inode *inode,
2356 struct extent_state *orig, u64 split)
2357 {
2358 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2359 u64 size;
2360
2361 lockdep_assert_held(&inode->io_tree.lock);
2362
2363 /* not delalloc, ignore it */
2364 if (!(orig->state & EXTENT_DELALLOC))
2365 return;
2366
2367 size = orig->end - orig->start + 1;
2368 if (size > fs_info->max_extent_size) {
2369 u32 num_extents;
2370 u64 new_size;
2371
2372 /*
2373 * See the explanation in btrfs_merge_delalloc_extent, the same
2374 * applies here, just in reverse.
2375 */
2376 new_size = orig->end - split + 1;
2377 num_extents = count_max_extents(fs_info, new_size);
2378 new_size = split - orig->start;
2379 num_extents += count_max_extents(fs_info, new_size);
2380 if (count_max_extents(fs_info, size) >= num_extents)
2381 return;
2382 }
2383
2384 spin_lock(&inode->lock);
2385 btrfs_mod_outstanding_extents(inode, 1);
2386 spin_unlock(&inode->lock);
2387 }
2388
2389 /*
2390 * Handle merged delayed allocation extents so we can keep track of new extents
2391 * that are just merged onto old extents, such as when we are doing sequential
2392 * writes, so we can properly account for the metadata space we'll need.
2393 */
btrfs_merge_delalloc_extent(struct btrfs_inode * inode,struct extent_state * new,struct extent_state * other)2394 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new,
2395 struct extent_state *other)
2396 {
2397 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2398 u64 new_size, old_size;
2399 u32 num_extents;
2400
2401 lockdep_assert_held(&inode->io_tree.lock);
2402
2403 /* not delalloc, ignore it */
2404 if (!(other->state & EXTENT_DELALLOC))
2405 return;
2406
2407 if (new->start > other->start)
2408 new_size = new->end - other->start + 1;
2409 else
2410 new_size = other->end - new->start + 1;
2411
2412 /* we're not bigger than the max, unreserve the space and go */
2413 if (new_size <= fs_info->max_extent_size) {
2414 spin_lock(&inode->lock);
2415 btrfs_mod_outstanding_extents(inode, -1);
2416 spin_unlock(&inode->lock);
2417 return;
2418 }
2419
2420 /*
2421 * We have to add up either side to figure out how many extents were
2422 * accounted for before we merged into one big extent. If the number of
2423 * extents we accounted for is <= the amount we need for the new range
2424 * then we can return, otherwise drop. Think of it like this
2425 *
2426 * [ 4k][MAX_SIZE]
2427 *
2428 * So we've grown the extent by a MAX_SIZE extent, this would mean we
2429 * need 2 outstanding extents, on one side we have 1 and the other side
2430 * we have 1 so they are == and we can return. But in this case
2431 *
2432 * [MAX_SIZE+4k][MAX_SIZE+4k]
2433 *
2434 * Each range on their own accounts for 2 extents, but merged together
2435 * they are only 3 extents worth of accounting, so we need to drop in
2436 * this case.
2437 */
2438 old_size = other->end - other->start + 1;
2439 num_extents = count_max_extents(fs_info, old_size);
2440 old_size = new->end - new->start + 1;
2441 num_extents += count_max_extents(fs_info, old_size);
2442 if (count_max_extents(fs_info, new_size) >= num_extents)
2443 return;
2444
2445 spin_lock(&inode->lock);
2446 btrfs_mod_outstanding_extents(inode, -1);
2447 spin_unlock(&inode->lock);
2448 }
2449
btrfs_add_delalloc_inode(struct btrfs_inode * inode)2450 static void btrfs_add_delalloc_inode(struct btrfs_inode *inode)
2451 {
2452 struct btrfs_root *root = inode->root;
2453 struct btrfs_fs_info *fs_info = root->fs_info;
2454
2455 spin_lock(&root->delalloc_lock);
2456 ASSERT(list_empty(&inode->delalloc_inodes));
2457 list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes);
2458 root->nr_delalloc_inodes++;
2459 if (root->nr_delalloc_inodes == 1) {
2460 spin_lock(&fs_info->delalloc_root_lock);
2461 ASSERT(list_empty(&root->delalloc_root));
2462 list_add_tail(&root->delalloc_root, &fs_info->delalloc_roots);
2463 spin_unlock(&fs_info->delalloc_root_lock);
2464 }
2465 spin_unlock(&root->delalloc_lock);
2466 }
2467
btrfs_del_delalloc_inode(struct btrfs_inode * inode)2468 void btrfs_del_delalloc_inode(struct btrfs_inode *inode)
2469 {
2470 struct btrfs_root *root = inode->root;
2471 struct btrfs_fs_info *fs_info = root->fs_info;
2472
2473 lockdep_assert_held(&root->delalloc_lock);
2474
2475 /*
2476 * We may be called after the inode was already deleted from the list,
2477 * namely in the transaction abort path btrfs_destroy_delalloc_inodes(),
2478 * and then later through btrfs_clear_delalloc_extent() while the inode
2479 * still has ->delalloc_bytes > 0.
2480 */
2481 if (!list_empty(&inode->delalloc_inodes)) {
2482 list_del_init(&inode->delalloc_inodes);
2483 root->nr_delalloc_inodes--;
2484 if (!root->nr_delalloc_inodes) {
2485 ASSERT(list_empty(&root->delalloc_inodes));
2486 spin_lock(&fs_info->delalloc_root_lock);
2487 ASSERT(!list_empty(&root->delalloc_root));
2488 list_del_init(&root->delalloc_root);
2489 spin_unlock(&fs_info->delalloc_root_lock);
2490 }
2491 }
2492 }
2493
2494 /*
2495 * Properly track delayed allocation bytes in the inode and to maintain the
2496 * list of inodes that have pending delalloc work to be done.
2497 */
btrfs_set_delalloc_extent(struct btrfs_inode * inode,struct extent_state * state,u32 bits)2498 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state,
2499 u32 bits)
2500 {
2501 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2502
2503 lockdep_assert_held(&inode->io_tree.lock);
2504
2505 if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC))
2506 WARN_ON(1);
2507 /*
2508 * set_bit and clear bit hooks normally require _irqsave/restore
2509 * but in this case, we are only testing for the DELALLOC
2510 * bit, which is only set or cleared with irqs on
2511 */
2512 if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2513 u64 len = state->end + 1 - state->start;
2514 u64 prev_delalloc_bytes;
2515 u32 num_extents = count_max_extents(fs_info, len);
2516
2517 spin_lock(&inode->lock);
2518 btrfs_mod_outstanding_extents(inode, num_extents);
2519 spin_unlock(&inode->lock);
2520
2521 /* For sanity tests */
2522 if (btrfs_is_testing(fs_info))
2523 return;
2524
2525 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2526 fs_info->delalloc_batch);
2527 spin_lock(&inode->lock);
2528 prev_delalloc_bytes = inode->delalloc_bytes;
2529 inode->delalloc_bytes += len;
2530 if (bits & EXTENT_DEFRAG)
2531 inode->defrag_bytes += len;
2532 spin_unlock(&inode->lock);
2533
2534 /*
2535 * We don't need to be under the protection of the inode's lock,
2536 * because we are called while holding the inode's io_tree lock
2537 * and are therefore protected against concurrent calls of this
2538 * function and btrfs_clear_delalloc_extent().
2539 */
2540 if (!btrfs_is_free_space_inode(inode) && prev_delalloc_bytes == 0)
2541 btrfs_add_delalloc_inode(inode);
2542 }
2543
2544 if (!(state->state & EXTENT_DELALLOC_NEW) &&
2545 (bits & EXTENT_DELALLOC_NEW)) {
2546 spin_lock(&inode->lock);
2547 inode->new_delalloc_bytes += state->end + 1 - state->start;
2548 spin_unlock(&inode->lock);
2549 }
2550 }
2551
2552 /*
2553 * Once a range is no longer delalloc this function ensures that proper
2554 * accounting happens.
2555 */
btrfs_clear_delalloc_extent(struct btrfs_inode * inode,struct extent_state * state,u32 bits)2556 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode,
2557 struct extent_state *state, u32 bits)
2558 {
2559 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2560 u64 len = state->end + 1 - state->start;
2561 u32 num_extents = count_max_extents(fs_info, len);
2562
2563 lockdep_assert_held(&inode->io_tree.lock);
2564
2565 if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) {
2566 spin_lock(&inode->lock);
2567 inode->defrag_bytes -= len;
2568 spin_unlock(&inode->lock);
2569 }
2570
2571 /*
2572 * set_bit and clear bit hooks normally require _irqsave/restore
2573 * but in this case, we are only testing for the DELALLOC
2574 * bit, which is only set or cleared with irqs on
2575 */
2576 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2577 struct btrfs_root *root = inode->root;
2578 u64 new_delalloc_bytes;
2579
2580 spin_lock(&inode->lock);
2581 btrfs_mod_outstanding_extents(inode, -num_extents);
2582 spin_unlock(&inode->lock);
2583
2584 /*
2585 * We don't reserve metadata space for space cache inodes so we
2586 * don't need to call delalloc_release_metadata if there is an
2587 * error.
2588 */
2589 if (bits & EXTENT_CLEAR_META_RESV &&
2590 root != fs_info->tree_root)
2591 btrfs_delalloc_release_metadata(inode, len, true);
2592
2593 /* For sanity tests. */
2594 if (btrfs_is_testing(fs_info))
2595 return;
2596
2597 if (!btrfs_is_data_reloc_root(root) &&
2598 !btrfs_is_free_space_inode(inode) &&
2599 !(state->state & EXTENT_NORESERVE) &&
2600 (bits & EXTENT_CLEAR_DATA_RESV))
2601 btrfs_free_reserved_data_space_noquota(inode, len);
2602
2603 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2604 fs_info->delalloc_batch);
2605 spin_lock(&inode->lock);
2606 inode->delalloc_bytes -= len;
2607 new_delalloc_bytes = inode->delalloc_bytes;
2608 spin_unlock(&inode->lock);
2609
2610 /*
2611 * We don't need to be under the protection of the inode's lock,
2612 * because we are called while holding the inode's io_tree lock
2613 * and are therefore protected against concurrent calls of this
2614 * function and btrfs_set_delalloc_extent().
2615 */
2616 if (!btrfs_is_free_space_inode(inode) && new_delalloc_bytes == 0) {
2617 spin_lock(&root->delalloc_lock);
2618 btrfs_del_delalloc_inode(inode);
2619 spin_unlock(&root->delalloc_lock);
2620 }
2621 }
2622
2623 if ((state->state & EXTENT_DELALLOC_NEW) &&
2624 (bits & EXTENT_DELALLOC_NEW)) {
2625 spin_lock(&inode->lock);
2626 ASSERT(inode->new_delalloc_bytes >= len);
2627 inode->new_delalloc_bytes -= len;
2628 if (bits & EXTENT_ADD_INODE_BYTES)
2629 inode_add_bytes(&inode->vfs_inode, len);
2630 spin_unlock(&inode->lock);
2631 }
2632 }
2633
2634 /*
2635 * given a list of ordered sums record them in the inode. This happens
2636 * at IO completion time based on sums calculated at bio submission time.
2637 */
add_pending_csums(struct btrfs_trans_handle * trans,struct list_head * list)2638 static int add_pending_csums(struct btrfs_trans_handle *trans,
2639 struct list_head *list)
2640 {
2641 struct btrfs_ordered_sum *sum;
2642 struct btrfs_root *csum_root = NULL;
2643 int ret;
2644
2645 list_for_each_entry(sum, list, list) {
2646 trans->adding_csums = true;
2647 if (!csum_root)
2648 csum_root = btrfs_csum_root(trans->fs_info,
2649 sum->logical);
2650 ret = btrfs_csum_file_blocks(trans, csum_root, sum);
2651 trans->adding_csums = false;
2652 if (ret)
2653 return ret;
2654 }
2655 return 0;
2656 }
2657
btrfs_find_new_delalloc_bytes(struct btrfs_inode * inode,const u64 start,const u64 len,struct extent_state ** cached_state)2658 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2659 const u64 start,
2660 const u64 len,
2661 struct extent_state **cached_state)
2662 {
2663 u64 search_start = start;
2664 const u64 end = start + len - 1;
2665
2666 while (search_start < end) {
2667 const u64 search_len = end - search_start + 1;
2668 struct extent_map *em;
2669 u64 em_len;
2670 int ret = 0;
2671
2672 em = btrfs_get_extent(inode, NULL, search_start, search_len);
2673 if (IS_ERR(em))
2674 return PTR_ERR(em);
2675
2676 if (em->disk_bytenr != EXTENT_MAP_HOLE)
2677 goto next;
2678
2679 em_len = em->len;
2680 if (em->start < search_start)
2681 em_len -= search_start - em->start;
2682 if (em_len > search_len)
2683 em_len = search_len;
2684
2685 ret = btrfs_set_extent_bit(&inode->io_tree, search_start,
2686 search_start + em_len - 1,
2687 EXTENT_DELALLOC_NEW, cached_state);
2688 next:
2689 search_start = btrfs_extent_map_end(em);
2690 btrfs_free_extent_map(em);
2691 if (ret)
2692 return ret;
2693 }
2694 return 0;
2695 }
2696
btrfs_set_extent_delalloc(struct btrfs_inode * inode,u64 start,u64 end,unsigned int extra_bits,struct extent_state ** cached_state)2697 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2698 unsigned int extra_bits,
2699 struct extent_state **cached_state)
2700 {
2701 WARN_ON(PAGE_ALIGNED(end));
2702
2703 if (start >= i_size_read(&inode->vfs_inode) &&
2704 !(inode->flags & BTRFS_INODE_PREALLOC)) {
2705 /*
2706 * There can't be any extents following eof in this case so just
2707 * set the delalloc new bit for the range directly.
2708 */
2709 extra_bits |= EXTENT_DELALLOC_NEW;
2710 } else {
2711 int ret;
2712
2713 ret = btrfs_find_new_delalloc_bytes(inode, start,
2714 end + 1 - start,
2715 cached_state);
2716 if (ret)
2717 return ret;
2718 }
2719
2720 return btrfs_set_extent_bit(&inode->io_tree, start, end,
2721 EXTENT_DELALLOC | extra_bits, cached_state);
2722 }
2723
2724 /* see btrfs_writepage_start_hook for details on why this is required */
2725 struct btrfs_writepage_fixup {
2726 struct folio *folio;
2727 struct btrfs_inode *inode;
2728 struct btrfs_work work;
2729 };
2730
btrfs_writepage_fixup_worker(struct btrfs_work * work)2731 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2732 {
2733 struct btrfs_writepage_fixup *fixup =
2734 container_of(work, struct btrfs_writepage_fixup, work);
2735 struct btrfs_ordered_extent *ordered;
2736 struct extent_state *cached_state = NULL;
2737 struct extent_changeset *data_reserved = NULL;
2738 struct folio *folio = fixup->folio;
2739 struct btrfs_inode *inode = fixup->inode;
2740 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2741 u64 page_start = folio_pos(folio);
2742 u64 page_end = folio_end(folio) - 1;
2743 int ret = 0;
2744 bool free_delalloc_space = true;
2745
2746 /*
2747 * This is similar to page_mkwrite, we need to reserve the space before
2748 * we take the folio lock.
2749 */
2750 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2751 folio_size(folio));
2752 again:
2753 folio_lock(folio);
2754
2755 /*
2756 * Before we queued this fixup, we took a reference on the folio.
2757 * folio->mapping may go NULL, but it shouldn't be moved to a different
2758 * address space.
2759 */
2760 if (!folio->mapping || !folio_test_dirty(folio) ||
2761 !folio_test_checked(folio)) {
2762 /*
2763 * Unfortunately this is a little tricky, either
2764 *
2765 * 1) We got here and our folio had already been dealt with and
2766 * we reserved our space, thus ret == 0, so we need to just
2767 * drop our space reservation and bail. This can happen the
2768 * first time we come into the fixup worker, or could happen
2769 * while waiting for the ordered extent.
2770 * 2) Our folio was already dealt with, but we happened to get an
2771 * ENOSPC above from the btrfs_delalloc_reserve_space. In
2772 * this case we obviously don't have anything to release, but
2773 * because the folio was already dealt with we don't want to
2774 * mark the folio with an error, so make sure we're resetting
2775 * ret to 0. This is why we have this check _before_ the ret
2776 * check, because we do not want to have a surprise ENOSPC
2777 * when the folio was already properly dealt with.
2778 */
2779 if (!ret) {
2780 btrfs_delalloc_release_extents(inode, folio_size(folio));
2781 btrfs_delalloc_release_space(inode, data_reserved,
2782 page_start, folio_size(folio),
2783 true);
2784 }
2785 ret = 0;
2786 goto out_page;
2787 }
2788
2789 /*
2790 * We can't mess with the folio state unless it is locked, so now that
2791 * it is locked bail if we failed to make our space reservation.
2792 */
2793 if (ret)
2794 goto out_page;
2795
2796 btrfs_lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2797
2798 /* already ordered? We're done */
2799 if (folio_test_ordered(folio))
2800 goto out_reserved;
2801
2802 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2803 if (ordered) {
2804 btrfs_unlock_extent(&inode->io_tree, page_start, page_end,
2805 &cached_state);
2806 folio_unlock(folio);
2807 btrfs_start_ordered_extent(ordered);
2808 btrfs_put_ordered_extent(ordered);
2809 goto again;
2810 }
2811
2812 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2813 &cached_state);
2814 if (ret)
2815 goto out_reserved;
2816
2817 /*
2818 * Everything went as planned, we're now the owner of a dirty page with
2819 * delayed allocation bits set and space reserved for our COW
2820 * destination.
2821 *
2822 * The page was dirty when we started, nothing should have cleaned it.
2823 */
2824 BUG_ON(!folio_test_dirty(folio));
2825 free_delalloc_space = false;
2826 out_reserved:
2827 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2828 if (free_delalloc_space)
2829 btrfs_delalloc_release_space(inode, data_reserved, page_start,
2830 PAGE_SIZE, true);
2831 btrfs_unlock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2832 out_page:
2833 if (ret) {
2834 /*
2835 * We hit ENOSPC or other errors. Update the mapping and page
2836 * to reflect the errors and clean the page.
2837 */
2838 mapping_set_error(folio->mapping, ret);
2839 btrfs_mark_ordered_io_finished(inode, folio, page_start,
2840 folio_size(folio), !ret);
2841 folio_clear_dirty_for_io(folio);
2842 }
2843 btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE);
2844 folio_unlock(folio);
2845 folio_put(folio);
2846 kfree(fixup);
2847 extent_changeset_free(data_reserved);
2848 /*
2849 * As a precaution, do a delayed iput in case it would be the last iput
2850 * that could need flushing space. Recursing back to fixup worker would
2851 * deadlock.
2852 */
2853 btrfs_add_delayed_iput(inode);
2854 }
2855
2856 /*
2857 * There are a few paths in the higher layers of the kernel that directly
2858 * set the folio dirty bit without asking the filesystem if it is a
2859 * good idea. This causes problems because we want to make sure COW
2860 * properly happens and the data=ordered rules are followed.
2861 *
2862 * In our case any range that doesn't have the ORDERED bit set
2863 * hasn't been properly setup for IO. We kick off an async process
2864 * to fix it up. The async helper will wait for ordered extents, set
2865 * the delalloc bit and make it safe to write the folio.
2866 */
btrfs_writepage_cow_fixup(struct folio * folio)2867 int btrfs_writepage_cow_fixup(struct folio *folio)
2868 {
2869 struct inode *inode = folio->mapping->host;
2870 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2871 struct btrfs_writepage_fixup *fixup;
2872
2873 /* This folio has ordered extent covering it already */
2874 if (folio_test_ordered(folio))
2875 return 0;
2876
2877 /*
2878 * For experimental build, we error out instead of EAGAIN.
2879 *
2880 * We should not hit such out-of-band dirty folios anymore.
2881 */
2882 if (IS_ENABLED(CONFIG_BTRFS_EXPERIMENTAL)) {
2883 DEBUG_WARN();
2884 btrfs_err_rl(fs_info,
2885 "root %lld ino %llu folio %llu is marked dirty without notifying the fs",
2886 btrfs_root_id(BTRFS_I(inode)->root),
2887 btrfs_ino(BTRFS_I(inode)),
2888 folio_pos(folio));
2889 return -EUCLEAN;
2890 }
2891
2892 /*
2893 * folio_checked is set below when we create a fixup worker for this
2894 * folio, don't try to create another one if we're already
2895 * folio_test_checked.
2896 *
2897 * The extent_io writepage code will redirty the foio if we send back
2898 * EAGAIN.
2899 */
2900 if (folio_test_checked(folio))
2901 return -EAGAIN;
2902
2903 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2904 if (!fixup)
2905 return -EAGAIN;
2906
2907 /*
2908 * We are already holding a reference to this inode from
2909 * write_cache_pages. We need to hold it because the space reservation
2910 * takes place outside of the folio lock, and we can't trust
2911 * folio->mapping outside of the folio lock.
2912 */
2913 ihold(inode);
2914 btrfs_folio_set_checked(fs_info, folio, folio_pos(folio), folio_size(folio));
2915 folio_get(folio);
2916 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL);
2917 fixup->folio = folio;
2918 fixup->inode = BTRFS_I(inode);
2919 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2920
2921 return -EAGAIN;
2922 }
2923
insert_reserved_file_extent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,u64 file_pos,struct btrfs_file_extent_item * stack_fi,const bool update_inode_bytes,u64 qgroup_reserved)2924 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2925 struct btrfs_inode *inode, u64 file_pos,
2926 struct btrfs_file_extent_item *stack_fi,
2927 const bool update_inode_bytes,
2928 u64 qgroup_reserved)
2929 {
2930 struct btrfs_root *root = inode->root;
2931 const u64 sectorsize = root->fs_info->sectorsize;
2932 BTRFS_PATH_AUTO_FREE(path);
2933 struct extent_buffer *leaf;
2934 struct btrfs_key ins;
2935 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2936 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2937 u64 offset = btrfs_stack_file_extent_offset(stack_fi);
2938 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2939 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
2940 struct btrfs_drop_extents_args drop_args = { 0 };
2941 int ret;
2942
2943 path = btrfs_alloc_path();
2944 if (!path)
2945 return -ENOMEM;
2946
2947 /*
2948 * we may be replacing one extent in the tree with another.
2949 * The new extent is pinned in the extent map, and we don't want
2950 * to drop it from the cache until it is completely in the btree.
2951 *
2952 * So, tell btrfs_drop_extents to leave this extent in the cache.
2953 * the caller is expected to unpin it and allow it to be merged
2954 * with the others.
2955 */
2956 drop_args.path = path;
2957 drop_args.start = file_pos;
2958 drop_args.end = file_pos + num_bytes;
2959 drop_args.replace_extent = true;
2960 drop_args.extent_item_size = sizeof(*stack_fi);
2961 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2962 if (ret)
2963 goto out;
2964
2965 if (!drop_args.extent_inserted) {
2966 ins.objectid = btrfs_ino(inode);
2967 ins.type = BTRFS_EXTENT_DATA_KEY;
2968 ins.offset = file_pos;
2969
2970 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2971 sizeof(*stack_fi));
2972 if (ret)
2973 goto out;
2974 }
2975 leaf = path->nodes[0];
2976 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2977 write_extent_buffer(leaf, stack_fi,
2978 btrfs_item_ptr_offset(leaf, path->slots[0]),
2979 sizeof(struct btrfs_file_extent_item));
2980
2981 btrfs_release_path(path);
2982
2983 /*
2984 * If we dropped an inline extent here, we know the range where it is
2985 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
2986 * number of bytes only for that range containing the inline extent.
2987 * The remaining of the range will be processed when clearning the
2988 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
2989 */
2990 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
2991 u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
2992
2993 inline_size = drop_args.bytes_found - inline_size;
2994 btrfs_update_inode_bytes(inode, sectorsize, inline_size);
2995 drop_args.bytes_found -= inline_size;
2996 num_bytes -= sectorsize;
2997 }
2998
2999 if (update_inode_bytes)
3000 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
3001
3002 ins.objectid = disk_bytenr;
3003 ins.type = BTRFS_EXTENT_ITEM_KEY;
3004 ins.offset = disk_num_bytes;
3005
3006 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
3007 if (ret)
3008 goto out;
3009
3010 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
3011 file_pos - offset,
3012 qgroup_reserved, &ins);
3013 out:
3014 return ret;
3015 }
3016
btrfs_release_delalloc_bytes(struct btrfs_fs_info * fs_info,u64 start,u64 len)3017 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
3018 u64 start, u64 len)
3019 {
3020 struct btrfs_block_group *cache;
3021
3022 cache = btrfs_lookup_block_group(fs_info, start);
3023 ASSERT(cache);
3024
3025 spin_lock(&cache->lock);
3026 cache->delalloc_bytes -= len;
3027 spin_unlock(&cache->lock);
3028
3029 btrfs_put_block_group(cache);
3030 }
3031
insert_ordered_extent_file_extent(struct btrfs_trans_handle * trans,struct btrfs_ordered_extent * oe)3032 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
3033 struct btrfs_ordered_extent *oe)
3034 {
3035 struct btrfs_file_extent_item stack_fi;
3036 bool update_inode_bytes;
3037 u64 num_bytes = oe->num_bytes;
3038 u64 ram_bytes = oe->ram_bytes;
3039
3040 memset(&stack_fi, 0, sizeof(stack_fi));
3041 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
3042 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
3043 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
3044 oe->disk_num_bytes);
3045 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset);
3046 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags))
3047 num_bytes = oe->truncated_len;
3048 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes);
3049 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes);
3050 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
3051 /* Encryption and other encoding is reserved and all 0 */
3052
3053 /*
3054 * For delalloc, when completing an ordered extent we update the inode's
3055 * bytes when clearing the range in the inode's io tree, so pass false
3056 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
3057 * except if the ordered extent was truncated.
3058 */
3059 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
3060 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) ||
3061 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
3062
3063 return insert_reserved_file_extent(trans, oe->inode,
3064 oe->file_offset, &stack_fi,
3065 update_inode_bytes, oe->qgroup_rsv);
3066 }
3067
3068 /*
3069 * As ordered data IO finishes, this gets called so we can finish
3070 * an ordered extent if the range of bytes in the file it covers are
3071 * fully written.
3072 */
btrfs_finish_one_ordered(struct btrfs_ordered_extent * ordered_extent)3073 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent)
3074 {
3075 struct btrfs_inode *inode = ordered_extent->inode;
3076 struct btrfs_root *root = inode->root;
3077 struct btrfs_fs_info *fs_info = root->fs_info;
3078 struct btrfs_trans_handle *trans = NULL;
3079 struct extent_io_tree *io_tree = &inode->io_tree;
3080 struct extent_state *cached_state = NULL;
3081 u64 start, end;
3082 int compress_type = 0;
3083 int ret = 0;
3084 u64 logical_len = ordered_extent->num_bytes;
3085 bool freespace_inode;
3086 bool truncated = false;
3087 bool clear_reserved_extent = true;
3088 unsigned int clear_bits = EXTENT_DEFRAG;
3089
3090 start = ordered_extent->file_offset;
3091 end = start + ordered_extent->num_bytes - 1;
3092
3093 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3094 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3095 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) &&
3096 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags))
3097 clear_bits |= EXTENT_DELALLOC_NEW;
3098
3099 freespace_inode = btrfs_is_free_space_inode(inode);
3100 if (!freespace_inode)
3101 btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent);
3102
3103 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3104 ret = -EIO;
3105 goto out;
3106 }
3107
3108 if (btrfs_is_zoned(fs_info))
3109 btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr,
3110 ordered_extent->disk_num_bytes);
3111
3112 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3113 truncated = true;
3114 logical_len = ordered_extent->truncated_len;
3115 /* Truncated the entire extent, don't bother adding */
3116 if (!logical_len)
3117 goto out;
3118 }
3119
3120 /*
3121 * If it's a COW write we need to lock the extent range as we will be
3122 * inserting/replacing file extent items and unpinning an extent map.
3123 * This must be taken before joining a transaction, as it's a higher
3124 * level lock (like the inode's VFS lock), otherwise we can run into an
3125 * ABBA deadlock with other tasks (transactions work like a lock,
3126 * depending on their current state).
3127 */
3128 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3129 clear_bits |= EXTENT_LOCKED | EXTENT_FINISHING_ORDERED;
3130 btrfs_lock_extent_bits(io_tree, start, end,
3131 EXTENT_LOCKED | EXTENT_FINISHING_ORDERED,
3132 &cached_state);
3133 }
3134
3135 if (freespace_inode)
3136 trans = btrfs_join_transaction_spacecache(root);
3137 else
3138 trans = btrfs_join_transaction(root);
3139 if (IS_ERR(trans)) {
3140 ret = PTR_ERR(trans);
3141 trans = NULL;
3142 goto out;
3143 }
3144
3145 trans->block_rsv = &inode->block_rsv;
3146
3147 ret = btrfs_insert_raid_extent(trans, ordered_extent);
3148 if (ret) {
3149 btrfs_abort_transaction(trans, ret);
3150 goto out;
3151 }
3152
3153 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3154 /* Logic error */
3155 ASSERT(list_empty(&ordered_extent->list));
3156 if (!list_empty(&ordered_extent->list)) {
3157 ret = -EINVAL;
3158 btrfs_abort_transaction(trans, ret);
3159 goto out;
3160 }
3161
3162 btrfs_inode_safe_disk_i_size_write(inode, 0);
3163 ret = btrfs_update_inode_fallback(trans, inode);
3164 if (ret) {
3165 /* -ENOMEM or corruption */
3166 btrfs_abort_transaction(trans, ret);
3167 }
3168 goto out;
3169 }
3170
3171 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3172 compress_type = ordered_extent->compress_type;
3173 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3174 BUG_ON(compress_type);
3175 ret = btrfs_mark_extent_written(trans, inode,
3176 ordered_extent->file_offset,
3177 ordered_extent->file_offset +
3178 logical_len);
3179 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr,
3180 ordered_extent->disk_num_bytes);
3181 } else {
3182 BUG_ON(root == fs_info->tree_root);
3183 ret = insert_ordered_extent_file_extent(trans, ordered_extent);
3184 if (!ret) {
3185 clear_reserved_extent = false;
3186 btrfs_release_delalloc_bytes(fs_info,
3187 ordered_extent->disk_bytenr,
3188 ordered_extent->disk_num_bytes);
3189 }
3190 }
3191 if (ret < 0) {
3192 btrfs_abort_transaction(trans, ret);
3193 goto out;
3194 }
3195
3196 ret = btrfs_unpin_extent_cache(inode, ordered_extent->file_offset,
3197 ordered_extent->num_bytes, trans->transid);
3198 if (ret < 0) {
3199 btrfs_abort_transaction(trans, ret);
3200 goto out;
3201 }
3202
3203 ret = add_pending_csums(trans, &ordered_extent->list);
3204 if (ret) {
3205 btrfs_abort_transaction(trans, ret);
3206 goto out;
3207 }
3208
3209 /*
3210 * If this is a new delalloc range, clear its new delalloc flag to
3211 * update the inode's number of bytes. This needs to be done first
3212 * before updating the inode item.
3213 */
3214 if ((clear_bits & EXTENT_DELALLOC_NEW) &&
3215 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
3216 btrfs_clear_extent_bit(&inode->io_tree, start, end,
3217 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
3218 &cached_state);
3219
3220 btrfs_inode_safe_disk_i_size_write(inode, 0);
3221 ret = btrfs_update_inode_fallback(trans, inode);
3222 if (ret) { /* -ENOMEM or corruption */
3223 btrfs_abort_transaction(trans, ret);
3224 goto out;
3225 }
3226 out:
3227 btrfs_clear_extent_bit(&inode->io_tree, start, end, clear_bits,
3228 &cached_state);
3229
3230 if (trans)
3231 btrfs_end_transaction(trans);
3232
3233 if (ret || truncated) {
3234 /*
3235 * If we failed to finish this ordered extent for any reason we
3236 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3237 * extent, and mark the inode with the error if it wasn't
3238 * already set. Any error during writeback would have already
3239 * set the mapping error, so we need to set it if we're the ones
3240 * marking this ordered extent as failed.
3241 */
3242 if (ret)
3243 btrfs_mark_ordered_extent_error(ordered_extent);
3244
3245 /*
3246 * Drop extent maps for the part of the extent we didn't write.
3247 *
3248 * We have an exception here for the free_space_inode, this is
3249 * because when we do btrfs_get_extent() on the free space inode
3250 * we will search the commit root. If this is a new block group
3251 * we won't find anything, and we will trip over the assert in
3252 * writepage where we do ASSERT(em->block_start !=
3253 * EXTENT_MAP_HOLE).
3254 *
3255 * Theoretically we could also skip this for any NOCOW extent as
3256 * we don't mess with the extent map tree in the NOCOW case, but
3257 * for now simply skip this if we are the free space inode.
3258 */
3259 if (!btrfs_is_free_space_inode(inode)) {
3260 u64 unwritten_start = start;
3261
3262 if (truncated)
3263 unwritten_start += logical_len;
3264
3265 btrfs_drop_extent_map_range(inode, unwritten_start,
3266 end, false);
3267 }
3268
3269 /*
3270 * If the ordered extent had an IOERR or something else went
3271 * wrong we need to return the space for this ordered extent
3272 * back to the allocator. We only free the extent in the
3273 * truncated case if we didn't write out the extent at all.
3274 *
3275 * If we made it past insert_reserved_file_extent before we
3276 * errored out then we don't need to do this as the accounting
3277 * has already been done.
3278 */
3279 if ((ret || !logical_len) &&
3280 clear_reserved_extent &&
3281 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3282 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3283 /*
3284 * Discard the range before returning it back to the
3285 * free space pool
3286 */
3287 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3288 btrfs_discard_extent(fs_info,
3289 ordered_extent->disk_bytenr,
3290 ordered_extent->disk_num_bytes,
3291 NULL);
3292 btrfs_free_reserved_extent(fs_info,
3293 ordered_extent->disk_bytenr,
3294 ordered_extent->disk_num_bytes, true);
3295 /*
3296 * Actually free the qgroup rsv which was released when
3297 * the ordered extent was created.
3298 */
3299 btrfs_qgroup_free_refroot(fs_info, btrfs_root_id(inode->root),
3300 ordered_extent->qgroup_rsv,
3301 BTRFS_QGROUP_RSV_DATA);
3302 }
3303 }
3304
3305 /*
3306 * This needs to be done to make sure anybody waiting knows we are done
3307 * updating everything for this ordered extent.
3308 */
3309 btrfs_remove_ordered_extent(inode, ordered_extent);
3310
3311 /* once for us */
3312 btrfs_put_ordered_extent(ordered_extent);
3313 /* once for the tree */
3314 btrfs_put_ordered_extent(ordered_extent);
3315
3316 return ret;
3317 }
3318
btrfs_finish_ordered_io(struct btrfs_ordered_extent * ordered)3319 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered)
3320 {
3321 if (btrfs_is_zoned(ordered->inode->root->fs_info) &&
3322 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3323 list_empty(&ordered->bioc_list))
3324 btrfs_finish_ordered_zoned(ordered);
3325 return btrfs_finish_one_ordered(ordered);
3326 }
3327
3328 /*
3329 * Verify the checksum for a single sector without any extra action that depend
3330 * on the type of I/O.
3331 *
3332 * @kaddr must be a properly kmapped address.
3333 */
btrfs_check_sector_csum(struct btrfs_fs_info * fs_info,void * kaddr,u8 * csum,const u8 * const csum_expected)3334 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, void *kaddr, u8 *csum,
3335 const u8 * const csum_expected)
3336 {
3337 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3338
3339 shash->tfm = fs_info->csum_shash;
3340 crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
3341
3342 if (memcmp(csum, csum_expected, fs_info->csum_size))
3343 return -EIO;
3344 return 0;
3345 }
3346
3347 /*
3348 * Verify the checksum of a single data sector.
3349 *
3350 * @bbio: btrfs_io_bio which contains the csum
3351 * @dev: device the sector is on
3352 * @bio_offset: offset to the beginning of the bio (in bytes)
3353 * @bv: bio_vec to check
3354 *
3355 * Check if the checksum on a data block is valid. When a checksum mismatch is
3356 * detected, report the error and fill the corrupted range with zero.
3357 *
3358 * Return %true if the sector is ok or had no checksum to start with, else %false.
3359 */
btrfs_data_csum_ok(struct btrfs_bio * bbio,struct btrfs_device * dev,u32 bio_offset,struct bio_vec * bv)3360 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev,
3361 u32 bio_offset, struct bio_vec *bv)
3362 {
3363 struct btrfs_inode *inode = bbio->inode;
3364 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3365 u64 file_offset = bbio->file_offset + bio_offset;
3366 u64 end = file_offset + bv->bv_len - 1;
3367 u8 *csum_expected;
3368 u8 csum[BTRFS_CSUM_SIZE];
3369 void *kaddr;
3370
3371 ASSERT(bv->bv_len == fs_info->sectorsize);
3372
3373 if (!bbio->csum)
3374 return true;
3375
3376 if (btrfs_is_data_reloc_root(inode->root) &&
3377 btrfs_test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM,
3378 NULL)) {
3379 /* Skip the range without csum for data reloc inode */
3380 btrfs_clear_extent_bit(&inode->io_tree, file_offset, end,
3381 EXTENT_NODATASUM, NULL);
3382 return true;
3383 }
3384
3385 csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) *
3386 fs_info->csum_size;
3387 kaddr = bvec_kmap_local(bv);
3388 if (btrfs_check_sector_csum(fs_info, kaddr, csum, csum_expected)) {
3389 kunmap_local(kaddr);
3390 goto zeroit;
3391 }
3392 kunmap_local(kaddr);
3393 return true;
3394
3395 zeroit:
3396 btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected,
3397 bbio->mirror_num);
3398 if (dev)
3399 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
3400 memzero_bvec(bv);
3401 return false;
3402 }
3403
3404 /*
3405 * Perform a delayed iput on @inode.
3406 *
3407 * @inode: The inode we want to perform iput on
3408 *
3409 * This function uses the generic vfs_inode::i_count to track whether we should
3410 * just decrement it (in case it's > 1) or if this is the last iput then link
3411 * the inode to the delayed iput machinery. Delayed iputs are processed at
3412 * transaction commit time/superblock commit/cleaner kthread.
3413 */
btrfs_add_delayed_iput(struct btrfs_inode * inode)3414 void btrfs_add_delayed_iput(struct btrfs_inode *inode)
3415 {
3416 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3417 unsigned long flags;
3418
3419 if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1))
3420 return;
3421
3422 WARN_ON_ONCE(test_bit(BTRFS_FS_STATE_NO_DELAYED_IPUT, &fs_info->fs_state));
3423 atomic_inc(&fs_info->nr_delayed_iputs);
3424 /*
3425 * Need to be irq safe here because we can be called from either an irq
3426 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq
3427 * context.
3428 */
3429 spin_lock_irqsave(&fs_info->delayed_iput_lock, flags);
3430 ASSERT(list_empty(&inode->delayed_iput));
3431 list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs);
3432 spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags);
3433 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3434 wake_up_process(fs_info->cleaner_kthread);
3435 }
3436
run_delayed_iput_locked(struct btrfs_fs_info * fs_info,struct btrfs_inode * inode)3437 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3438 struct btrfs_inode *inode)
3439 {
3440 list_del_init(&inode->delayed_iput);
3441 spin_unlock_irq(&fs_info->delayed_iput_lock);
3442 iput(&inode->vfs_inode);
3443 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3444 wake_up(&fs_info->delayed_iputs_wait);
3445 spin_lock_irq(&fs_info->delayed_iput_lock);
3446 }
3447
btrfs_run_delayed_iput(struct btrfs_fs_info * fs_info,struct btrfs_inode * inode)3448 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3449 struct btrfs_inode *inode)
3450 {
3451 if (!list_empty(&inode->delayed_iput)) {
3452 spin_lock_irq(&fs_info->delayed_iput_lock);
3453 if (!list_empty(&inode->delayed_iput))
3454 run_delayed_iput_locked(fs_info, inode);
3455 spin_unlock_irq(&fs_info->delayed_iput_lock);
3456 }
3457 }
3458
btrfs_run_delayed_iputs(struct btrfs_fs_info * fs_info)3459 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3460 {
3461 /*
3462 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which
3463 * calls btrfs_add_delayed_iput() and that needs to lock
3464 * fs_info->delayed_iput_lock. So we need to disable irqs here to
3465 * prevent a deadlock.
3466 */
3467 spin_lock_irq(&fs_info->delayed_iput_lock);
3468 while (!list_empty(&fs_info->delayed_iputs)) {
3469 struct btrfs_inode *inode;
3470
3471 inode = list_first_entry(&fs_info->delayed_iputs,
3472 struct btrfs_inode, delayed_iput);
3473 run_delayed_iput_locked(fs_info, inode);
3474 if (need_resched()) {
3475 spin_unlock_irq(&fs_info->delayed_iput_lock);
3476 cond_resched();
3477 spin_lock_irq(&fs_info->delayed_iput_lock);
3478 }
3479 }
3480 spin_unlock_irq(&fs_info->delayed_iput_lock);
3481 }
3482
3483 /*
3484 * Wait for flushing all delayed iputs
3485 *
3486 * @fs_info: the filesystem
3487 *
3488 * This will wait on any delayed iputs that are currently running with KILLABLE
3489 * set. Once they are all done running we will return, unless we are killed in
3490 * which case we return EINTR. This helps in user operations like fallocate etc
3491 * that might get blocked on the iputs.
3492 *
3493 * Return EINTR if we were killed, 0 if nothing's pending
3494 */
btrfs_wait_on_delayed_iputs(struct btrfs_fs_info * fs_info)3495 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3496 {
3497 int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3498 atomic_read(&fs_info->nr_delayed_iputs) == 0);
3499 if (ret)
3500 return -EINTR;
3501 return 0;
3502 }
3503
3504 /*
3505 * This creates an orphan entry for the given inode in case something goes wrong
3506 * in the middle of an unlink.
3507 */
btrfs_orphan_add(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3508 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3509 struct btrfs_inode *inode)
3510 {
3511 int ret;
3512
3513 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3514 if (ret && ret != -EEXIST) {
3515 btrfs_abort_transaction(trans, ret);
3516 return ret;
3517 }
3518
3519 return 0;
3520 }
3521
3522 /*
3523 * We have done the delete so we can go ahead and remove the orphan item for
3524 * this particular inode.
3525 */
btrfs_orphan_del(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3526 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3527 struct btrfs_inode *inode)
3528 {
3529 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3530 }
3531
3532 /*
3533 * this cleans up any orphans that may be left on the list from the last use
3534 * of this root.
3535 */
btrfs_orphan_cleanup(struct btrfs_root * root)3536 int btrfs_orphan_cleanup(struct btrfs_root *root)
3537 {
3538 struct btrfs_fs_info *fs_info = root->fs_info;
3539 BTRFS_PATH_AUTO_FREE(path);
3540 struct extent_buffer *leaf;
3541 struct btrfs_key key, found_key;
3542 struct btrfs_trans_handle *trans;
3543 u64 last_objectid = 0;
3544 int ret = 0, nr_unlink = 0;
3545
3546 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state))
3547 return 0;
3548
3549 path = btrfs_alloc_path();
3550 if (!path) {
3551 ret = -ENOMEM;
3552 goto out;
3553 }
3554 path->reada = READA_BACK;
3555
3556 key.objectid = BTRFS_ORPHAN_OBJECTID;
3557 key.type = BTRFS_ORPHAN_ITEM_KEY;
3558 key.offset = (u64)-1;
3559
3560 while (1) {
3561 struct btrfs_inode *inode;
3562
3563 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3564 if (ret < 0)
3565 goto out;
3566
3567 /*
3568 * if ret == 0 means we found what we were searching for, which
3569 * is weird, but possible, so only screw with path if we didn't
3570 * find the key and see if we have stuff that matches
3571 */
3572 if (ret > 0) {
3573 ret = 0;
3574 if (path->slots[0] == 0)
3575 break;
3576 path->slots[0]--;
3577 }
3578
3579 /* pull out the item */
3580 leaf = path->nodes[0];
3581 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3582
3583 /* make sure the item matches what we want */
3584 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3585 break;
3586 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3587 break;
3588
3589 /* release the path since we're done with it */
3590 btrfs_release_path(path);
3591
3592 /*
3593 * this is where we are basically btrfs_lookup, without the
3594 * crossing root thing. we store the inode number in the
3595 * offset of the orphan item.
3596 */
3597
3598 if (found_key.offset == last_objectid) {
3599 /*
3600 * We found the same inode as before. This means we were
3601 * not able to remove its items via eviction triggered
3602 * by an iput(). A transaction abort may have happened,
3603 * due to -ENOSPC for example, so try to grab the error
3604 * that lead to a transaction abort, if any.
3605 */
3606 btrfs_err(fs_info,
3607 "Error removing orphan entry, stopping orphan cleanup");
3608 ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL;
3609 goto out;
3610 }
3611
3612 last_objectid = found_key.offset;
3613
3614 found_key.objectid = found_key.offset;
3615 found_key.type = BTRFS_INODE_ITEM_KEY;
3616 found_key.offset = 0;
3617 inode = btrfs_iget(last_objectid, root);
3618 if (IS_ERR(inode)) {
3619 ret = PTR_ERR(inode);
3620 inode = NULL;
3621 if (ret != -ENOENT)
3622 goto out;
3623 }
3624
3625 if (!inode && root == fs_info->tree_root) {
3626 struct btrfs_root *dead_root;
3627 int is_dead_root = 0;
3628
3629 /*
3630 * This is an orphan in the tree root. Currently these
3631 * could come from 2 sources:
3632 * a) a root (snapshot/subvolume) deletion in progress
3633 * b) a free space cache inode
3634 * We need to distinguish those two, as the orphan item
3635 * for a root must not get deleted before the deletion
3636 * of the snapshot/subvolume's tree completes.
3637 *
3638 * btrfs_find_orphan_roots() ran before us, which has
3639 * found all deleted roots and loaded them into
3640 * fs_info->fs_roots_radix. So here we can find if an
3641 * orphan item corresponds to a deleted root by looking
3642 * up the root from that radix tree.
3643 */
3644
3645 spin_lock(&fs_info->fs_roots_radix_lock);
3646 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3647 (unsigned long)found_key.objectid);
3648 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3649 is_dead_root = 1;
3650 spin_unlock(&fs_info->fs_roots_radix_lock);
3651
3652 if (is_dead_root) {
3653 /* prevent this orphan from being found again */
3654 key.offset = found_key.objectid - 1;
3655 continue;
3656 }
3657
3658 }
3659
3660 /*
3661 * If we have an inode with links, there are a couple of
3662 * possibilities:
3663 *
3664 * 1. We were halfway through creating fsverity metadata for the
3665 * file. In that case, the orphan item represents incomplete
3666 * fsverity metadata which must be cleaned up with
3667 * btrfs_drop_verity_items and deleting the orphan item.
3668
3669 * 2. Old kernels (before v3.12) used to create an
3670 * orphan item for truncate indicating that there were possibly
3671 * extent items past i_size that needed to be deleted. In v3.12,
3672 * truncate was changed to update i_size in sync with the extent
3673 * items, but the (useless) orphan item was still created. Since
3674 * v4.18, we don't create the orphan item for truncate at all.
3675 *
3676 * So, this item could mean that we need to do a truncate, but
3677 * only if this filesystem was last used on a pre-v3.12 kernel
3678 * and was not cleanly unmounted. The odds of that are quite
3679 * slim, and it's a pain to do the truncate now, so just delete
3680 * the orphan item.
3681 *
3682 * It's also possible that this orphan item was supposed to be
3683 * deleted but wasn't. The inode number may have been reused,
3684 * but either way, we can delete the orphan item.
3685 */
3686 if (!inode || inode->vfs_inode.i_nlink) {
3687 if (inode) {
3688 ret = btrfs_drop_verity_items(inode);
3689 iput(&inode->vfs_inode);
3690 inode = NULL;
3691 if (ret)
3692 goto out;
3693 }
3694 trans = btrfs_start_transaction(root, 1);
3695 if (IS_ERR(trans)) {
3696 ret = PTR_ERR(trans);
3697 goto out;
3698 }
3699 btrfs_debug(fs_info, "auto deleting %Lu",
3700 found_key.objectid);
3701 ret = btrfs_del_orphan_item(trans, root,
3702 found_key.objectid);
3703 btrfs_end_transaction(trans);
3704 if (ret)
3705 goto out;
3706 continue;
3707 }
3708
3709 nr_unlink++;
3710
3711 /* this will do delete_inode and everything for us */
3712 iput(&inode->vfs_inode);
3713 }
3714 /* release the path since we're done with it */
3715 btrfs_release_path(path);
3716
3717 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3718 trans = btrfs_join_transaction(root);
3719 if (!IS_ERR(trans))
3720 btrfs_end_transaction(trans);
3721 }
3722
3723 if (nr_unlink)
3724 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3725
3726 out:
3727 if (ret)
3728 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3729 return ret;
3730 }
3731
3732 /*
3733 * Look ahead in the leaf for xattrs. If we don't find any then we know there
3734 * can't be any ACLs.
3735 *
3736 * @leaf: the eb leaf where to search
3737 * @slot: the slot the inode is in
3738 * @objectid: the objectid of the inode
3739 *
3740 * Return true if there is xattr/ACL, false otherwise.
3741 */
acls_after_inode_item(struct extent_buffer * leaf,int slot,u64 objectid,int * first_xattr_slot)3742 static noinline bool acls_after_inode_item(struct extent_buffer *leaf,
3743 int slot, u64 objectid,
3744 int *first_xattr_slot)
3745 {
3746 u32 nritems = btrfs_header_nritems(leaf);
3747 struct btrfs_key found_key;
3748 static u64 xattr_access = 0;
3749 static u64 xattr_default = 0;
3750 int scanned = 0;
3751
3752 if (!xattr_access) {
3753 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3754 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3755 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3756 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3757 }
3758
3759 slot++;
3760 *first_xattr_slot = -1;
3761 while (slot < nritems) {
3762 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3763
3764 /* We found a different objectid, there must be no ACLs. */
3765 if (found_key.objectid != objectid)
3766 return false;
3767
3768 /* We found an xattr, assume we've got an ACL. */
3769 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3770 if (*first_xattr_slot == -1)
3771 *first_xattr_slot = slot;
3772 if (found_key.offset == xattr_access ||
3773 found_key.offset == xattr_default)
3774 return true;
3775 }
3776
3777 /*
3778 * We found a key greater than an xattr key, there can't be any
3779 * ACLs later on.
3780 */
3781 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3782 return false;
3783
3784 slot++;
3785 scanned++;
3786
3787 /*
3788 * The item order goes like:
3789 * - inode
3790 * - inode backrefs
3791 * - xattrs
3792 * - extents,
3793 *
3794 * so if there are lots of hard links to an inode there can be
3795 * a lot of backrefs. Don't waste time searching too hard,
3796 * this is just an optimization.
3797 */
3798 if (scanned >= 8)
3799 break;
3800 }
3801 /*
3802 * We hit the end of the leaf before we found an xattr or something
3803 * larger than an xattr. We have to assume the inode has ACLs.
3804 */
3805 if (*first_xattr_slot == -1)
3806 *first_xattr_slot = slot;
3807 return true;
3808 }
3809
btrfs_init_file_extent_tree(struct btrfs_inode * inode)3810 static int btrfs_init_file_extent_tree(struct btrfs_inode *inode)
3811 {
3812 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3813
3814 if (WARN_ON_ONCE(inode->file_extent_tree))
3815 return 0;
3816 if (btrfs_fs_incompat(fs_info, NO_HOLES))
3817 return 0;
3818 if (!S_ISREG(inode->vfs_inode.i_mode))
3819 return 0;
3820 if (btrfs_is_free_space_inode(inode))
3821 return 0;
3822
3823 inode->file_extent_tree = kmalloc(sizeof(struct extent_io_tree), GFP_KERNEL);
3824 if (!inode->file_extent_tree)
3825 return -ENOMEM;
3826
3827 btrfs_extent_io_tree_init(fs_info, inode->file_extent_tree,
3828 IO_TREE_INODE_FILE_EXTENT);
3829 /* Lockdep class is set only for the file extent tree. */
3830 lockdep_set_class(&inode->file_extent_tree->lock, &file_extent_tree_class);
3831
3832 return 0;
3833 }
3834
btrfs_add_inode_to_root(struct btrfs_inode * inode,bool prealloc)3835 static int btrfs_add_inode_to_root(struct btrfs_inode *inode, bool prealloc)
3836 {
3837 struct btrfs_root *root = inode->root;
3838 struct btrfs_inode *existing;
3839 const u64 ino = btrfs_ino(inode);
3840 int ret;
3841
3842 if (inode_unhashed(&inode->vfs_inode))
3843 return 0;
3844
3845 if (prealloc) {
3846 ret = xa_reserve(&root->inodes, ino, GFP_NOFS);
3847 if (ret)
3848 return ret;
3849 }
3850
3851 existing = xa_store(&root->inodes, ino, inode, GFP_ATOMIC);
3852
3853 if (xa_is_err(existing)) {
3854 ret = xa_err(existing);
3855 ASSERT(ret != -EINVAL);
3856 ASSERT(ret != -ENOMEM);
3857 return ret;
3858 } else if (existing) {
3859 WARN_ON(!(existing->vfs_inode.i_state & (I_WILL_FREE | I_FREEING)));
3860 }
3861
3862 return 0;
3863 }
3864
3865 /*
3866 * Read a locked inode from the btree into the in-memory inode and add it to
3867 * its root list/tree.
3868 *
3869 * On failure clean up the inode.
3870 */
btrfs_read_locked_inode(struct btrfs_inode * inode,struct btrfs_path * path)3871 static int btrfs_read_locked_inode(struct btrfs_inode *inode, struct btrfs_path *path)
3872 {
3873 struct btrfs_root *root = inode->root;
3874 struct btrfs_fs_info *fs_info = root->fs_info;
3875 struct extent_buffer *leaf;
3876 struct btrfs_inode_item *inode_item;
3877 struct inode *vfs_inode = &inode->vfs_inode;
3878 struct btrfs_key location;
3879 unsigned long ptr;
3880 int maybe_acls;
3881 u32 rdev;
3882 int ret;
3883 bool filled = false;
3884 int first_xattr_slot;
3885
3886 ret = btrfs_init_file_extent_tree(inode);
3887 if (ret)
3888 goto out;
3889
3890 ret = btrfs_fill_inode(inode, &rdev);
3891 if (!ret)
3892 filled = true;
3893
3894 ASSERT(path);
3895
3896 btrfs_get_inode_key(inode, &location);
3897
3898 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3899 if (ret) {
3900 /*
3901 * ret > 0 can come from btrfs_search_slot called by
3902 * btrfs_lookup_inode(), this means the inode was not found.
3903 */
3904 if (ret > 0)
3905 ret = -ENOENT;
3906 goto out;
3907 }
3908
3909 leaf = path->nodes[0];
3910
3911 if (filled)
3912 goto cache_index;
3913
3914 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3915 struct btrfs_inode_item);
3916 vfs_inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3917 set_nlink(vfs_inode, btrfs_inode_nlink(leaf, inode_item));
3918 i_uid_write(vfs_inode, btrfs_inode_uid(leaf, inode_item));
3919 i_gid_write(vfs_inode, btrfs_inode_gid(leaf, inode_item));
3920 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3921 btrfs_inode_set_file_extent_range(inode, 0,
3922 round_up(i_size_read(vfs_inode), fs_info->sectorsize));
3923
3924 inode_set_atime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->atime),
3925 btrfs_timespec_nsec(leaf, &inode_item->atime));
3926
3927 inode_set_mtime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->mtime),
3928 btrfs_timespec_nsec(leaf, &inode_item->mtime));
3929
3930 inode_set_ctime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->ctime),
3931 btrfs_timespec_nsec(leaf, &inode_item->ctime));
3932
3933 inode->i_otime_sec = btrfs_timespec_sec(leaf, &inode_item->otime);
3934 inode->i_otime_nsec = btrfs_timespec_nsec(leaf, &inode_item->otime);
3935
3936 inode_set_bytes(vfs_inode, btrfs_inode_nbytes(leaf, inode_item));
3937 inode->generation = btrfs_inode_generation(leaf, inode_item);
3938 inode->last_trans = btrfs_inode_transid(leaf, inode_item);
3939
3940 inode_set_iversion_queried(vfs_inode, btrfs_inode_sequence(leaf, inode_item));
3941 vfs_inode->i_generation = inode->generation;
3942 vfs_inode->i_rdev = 0;
3943 rdev = btrfs_inode_rdev(leaf, inode_item);
3944
3945 if (S_ISDIR(vfs_inode->i_mode))
3946 inode->index_cnt = (u64)-1;
3947
3948 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item),
3949 &inode->flags, &inode->ro_flags);
3950 btrfs_update_inode_mapping_flags(inode);
3951 btrfs_set_inode_mapping_order(inode);
3952
3953 cache_index:
3954 /*
3955 * If we were modified in the current generation and evicted from memory
3956 * and then re-read we need to do a full sync since we don't have any
3957 * idea about which extents were modified before we were evicted from
3958 * cache.
3959 *
3960 * This is required for both inode re-read from disk and delayed inode
3961 * in the delayed_nodes xarray.
3962 */
3963 if (inode->last_trans == btrfs_get_fs_generation(fs_info))
3964 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
3965
3966 /*
3967 * We don't persist the id of the transaction where an unlink operation
3968 * against the inode was last made. So here we assume the inode might
3969 * have been evicted, and therefore the exact value of last_unlink_trans
3970 * lost, and set it to last_trans to avoid metadata inconsistencies
3971 * between the inode and its parent if the inode is fsync'ed and the log
3972 * replayed. For example, in the scenario:
3973 *
3974 * touch mydir/foo
3975 * ln mydir/foo mydir/bar
3976 * sync
3977 * unlink mydir/bar
3978 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3979 * xfs_io -c fsync mydir/foo
3980 * <power failure>
3981 * mount fs, triggers fsync log replay
3982 *
3983 * We must make sure that when we fsync our inode foo we also log its
3984 * parent inode, otherwise after log replay the parent still has the
3985 * dentry with the "bar" name but our inode foo has a link count of 1
3986 * and doesn't have an inode ref with the name "bar" anymore.
3987 *
3988 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3989 * but it guarantees correctness at the expense of occasional full
3990 * transaction commits on fsync if our inode is a directory, or if our
3991 * inode is not a directory, logging its parent unnecessarily.
3992 */
3993 inode->last_unlink_trans = inode->last_trans;
3994
3995 /*
3996 * Same logic as for last_unlink_trans. We don't persist the generation
3997 * of the last transaction where this inode was used for a reflink
3998 * operation, so after eviction and reloading the inode we must be
3999 * pessimistic and assume the last transaction that modified the inode.
4000 */
4001 inode->last_reflink_trans = inode->last_trans;
4002
4003 path->slots[0]++;
4004 if (vfs_inode->i_nlink != 1 ||
4005 path->slots[0] >= btrfs_header_nritems(leaf))
4006 goto cache_acl;
4007
4008 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
4009 if (location.objectid != btrfs_ino(inode))
4010 goto cache_acl;
4011
4012 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4013 if (location.type == BTRFS_INODE_REF_KEY) {
4014 struct btrfs_inode_ref *ref;
4015
4016 ref = (struct btrfs_inode_ref *)ptr;
4017 inode->dir_index = btrfs_inode_ref_index(leaf, ref);
4018 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
4019 struct btrfs_inode_extref *extref;
4020
4021 extref = (struct btrfs_inode_extref *)ptr;
4022 inode->dir_index = btrfs_inode_extref_index(leaf, extref);
4023 }
4024 cache_acl:
4025 /*
4026 * try to precache a NULL acl entry for files that don't have
4027 * any xattrs or acls
4028 */
4029 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
4030 btrfs_ino(inode), &first_xattr_slot);
4031 if (first_xattr_slot != -1) {
4032 path->slots[0] = first_xattr_slot;
4033 ret = btrfs_load_inode_props(inode, path);
4034 if (ret)
4035 btrfs_err(fs_info,
4036 "error loading props for ino %llu (root %llu): %d",
4037 btrfs_ino(inode), btrfs_root_id(root), ret);
4038 }
4039
4040 if (!maybe_acls)
4041 cache_no_acl(vfs_inode);
4042
4043 switch (vfs_inode->i_mode & S_IFMT) {
4044 case S_IFREG:
4045 vfs_inode->i_mapping->a_ops = &btrfs_aops;
4046 vfs_inode->i_fop = &btrfs_file_operations;
4047 vfs_inode->i_op = &btrfs_file_inode_operations;
4048 break;
4049 case S_IFDIR:
4050 vfs_inode->i_fop = &btrfs_dir_file_operations;
4051 vfs_inode->i_op = &btrfs_dir_inode_operations;
4052 break;
4053 case S_IFLNK:
4054 vfs_inode->i_op = &btrfs_symlink_inode_operations;
4055 inode_nohighmem(vfs_inode);
4056 vfs_inode->i_mapping->a_ops = &btrfs_aops;
4057 break;
4058 default:
4059 vfs_inode->i_op = &btrfs_special_inode_operations;
4060 init_special_inode(vfs_inode, vfs_inode->i_mode, rdev);
4061 break;
4062 }
4063
4064 btrfs_sync_inode_flags_to_i_flags(inode);
4065
4066 ret = btrfs_add_inode_to_root(inode, true);
4067 if (ret)
4068 goto out;
4069
4070 return 0;
4071 out:
4072 iget_failed(vfs_inode);
4073 return ret;
4074 }
4075
4076 /*
4077 * given a leaf and an inode, copy the inode fields into the leaf
4078 */
fill_inode_item(struct btrfs_trans_handle * trans,struct extent_buffer * leaf,struct btrfs_inode_item * item,struct inode * inode)4079 static void fill_inode_item(struct btrfs_trans_handle *trans,
4080 struct extent_buffer *leaf,
4081 struct btrfs_inode_item *item,
4082 struct inode *inode)
4083 {
4084 u64 flags;
4085
4086 btrfs_set_inode_uid(leaf, item, i_uid_read(inode));
4087 btrfs_set_inode_gid(leaf, item, i_gid_read(inode));
4088 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
4089 btrfs_set_inode_mode(leaf, item, inode->i_mode);
4090 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
4091
4092 btrfs_set_timespec_sec(leaf, &item->atime, inode_get_atime_sec(inode));
4093 btrfs_set_timespec_nsec(leaf, &item->atime, inode_get_atime_nsec(inode));
4094
4095 btrfs_set_timespec_sec(leaf, &item->mtime, inode_get_mtime_sec(inode));
4096 btrfs_set_timespec_nsec(leaf, &item->mtime, inode_get_mtime_nsec(inode));
4097
4098 btrfs_set_timespec_sec(leaf, &item->ctime, inode_get_ctime_sec(inode));
4099 btrfs_set_timespec_nsec(leaf, &item->ctime, inode_get_ctime_nsec(inode));
4100
4101 btrfs_set_timespec_sec(leaf, &item->otime, BTRFS_I(inode)->i_otime_sec);
4102 btrfs_set_timespec_nsec(leaf, &item->otime, BTRFS_I(inode)->i_otime_nsec);
4103
4104 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
4105 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
4106 btrfs_set_inode_sequence(leaf, item, inode_peek_iversion(inode));
4107 btrfs_set_inode_transid(leaf, item, trans->transid);
4108 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
4109 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4110 BTRFS_I(inode)->ro_flags);
4111 btrfs_set_inode_flags(leaf, item, flags);
4112 btrfs_set_inode_block_group(leaf, item, 0);
4113 }
4114
4115 /*
4116 * copy everything in the in-memory inode into the btree.
4117 */
btrfs_update_inode_item(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)4118 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
4119 struct btrfs_inode *inode)
4120 {
4121 struct btrfs_inode_item *inode_item;
4122 BTRFS_PATH_AUTO_FREE(path);
4123 struct extent_buffer *leaf;
4124 struct btrfs_key key;
4125 int ret;
4126
4127 path = btrfs_alloc_path();
4128 if (!path)
4129 return -ENOMEM;
4130
4131 btrfs_get_inode_key(inode, &key);
4132 ret = btrfs_lookup_inode(trans, inode->root, path, &key, 1);
4133 if (ret) {
4134 if (ret > 0)
4135 ret = -ENOENT;
4136 return ret;
4137 }
4138
4139 leaf = path->nodes[0];
4140 inode_item = btrfs_item_ptr(leaf, path->slots[0],
4141 struct btrfs_inode_item);
4142
4143 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
4144 btrfs_set_inode_last_trans(trans, inode);
4145 return 0;
4146 }
4147
4148 /*
4149 * copy everything in the in-memory inode into the btree.
4150 */
btrfs_update_inode(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)4151 int btrfs_update_inode(struct btrfs_trans_handle *trans,
4152 struct btrfs_inode *inode)
4153 {
4154 struct btrfs_root *root = inode->root;
4155 struct btrfs_fs_info *fs_info = root->fs_info;
4156 int ret;
4157
4158 /*
4159 * If the inode is a free space inode, we can deadlock during commit
4160 * if we put it into the delayed code.
4161 *
4162 * The data relocation inode should also be directly updated
4163 * without delay
4164 */
4165 if (!btrfs_is_free_space_inode(inode)
4166 && !btrfs_is_data_reloc_root(root)
4167 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4168 btrfs_update_root_times(trans, root);
4169
4170 ret = btrfs_delayed_update_inode(trans, inode);
4171 if (!ret)
4172 btrfs_set_inode_last_trans(trans, inode);
4173 return ret;
4174 }
4175
4176 return btrfs_update_inode_item(trans, inode);
4177 }
4178
btrfs_update_inode_fallback(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)4179 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4180 struct btrfs_inode *inode)
4181 {
4182 int ret;
4183
4184 ret = btrfs_update_inode(trans, inode);
4185 if (ret == -ENOSPC)
4186 return btrfs_update_inode_item(trans, inode);
4187 return ret;
4188 }
4189
4190 /*
4191 * unlink helper that gets used here in inode.c and in the tree logging
4192 * recovery code. It remove a link in a directory with a given name, and
4193 * also drops the back refs in the inode to the directory
4194 */
__btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_inode * inode,const struct fscrypt_str * name,struct btrfs_rename_ctx * rename_ctx)4195 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4196 struct btrfs_inode *dir,
4197 struct btrfs_inode *inode,
4198 const struct fscrypt_str *name,
4199 struct btrfs_rename_ctx *rename_ctx)
4200 {
4201 struct btrfs_root *root = dir->root;
4202 struct btrfs_fs_info *fs_info = root->fs_info;
4203 struct btrfs_path *path;
4204 int ret = 0;
4205 struct btrfs_dir_item *di;
4206 u64 index;
4207 u64 ino = btrfs_ino(inode);
4208 u64 dir_ino = btrfs_ino(dir);
4209
4210 path = btrfs_alloc_path();
4211 if (!path)
4212 return -ENOMEM;
4213
4214 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1);
4215 if (IS_ERR_OR_NULL(di)) {
4216 btrfs_free_path(path);
4217 return di ? PTR_ERR(di) : -ENOENT;
4218 }
4219 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4220 /*
4221 * Down the call chains below we'll also need to allocate a path, so no
4222 * need to hold on to this one for longer than necessary.
4223 */
4224 btrfs_free_path(path);
4225 if (ret)
4226 return ret;
4227
4228 /*
4229 * If we don't have dir index, we have to get it by looking up
4230 * the inode ref, since we get the inode ref, remove it directly,
4231 * it is unnecessary to do delayed deletion.
4232 *
4233 * But if we have dir index, needn't search inode ref to get it.
4234 * Since the inode ref is close to the inode item, it is better
4235 * that we delay to delete it, and just do this deletion when
4236 * we update the inode item.
4237 */
4238 if (inode->dir_index) {
4239 ret = btrfs_delayed_delete_inode_ref(inode);
4240 if (!ret) {
4241 index = inode->dir_index;
4242 goto skip_backref;
4243 }
4244 }
4245
4246 ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index);
4247 if (ret) {
4248 btrfs_crit(fs_info,
4249 "failed to delete reference to %.*s, root %llu inode %llu parent %llu",
4250 name->len, name->name, btrfs_root_id(root), ino, dir_ino);
4251 btrfs_abort_transaction(trans, ret);
4252 return ret;
4253 }
4254 skip_backref:
4255 if (rename_ctx)
4256 rename_ctx->index = index;
4257
4258 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4259 if (ret) {
4260 btrfs_abort_transaction(trans, ret);
4261 return ret;
4262 }
4263
4264 /*
4265 * If we are in a rename context, we don't need to update anything in the
4266 * log. That will be done later during the rename by btrfs_log_new_name().
4267 * Besides that, doing it here would only cause extra unnecessary btree
4268 * operations on the log tree, increasing latency for applications.
4269 */
4270 if (!rename_ctx) {
4271 btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino);
4272 btrfs_del_dir_entries_in_log(trans, root, name, dir, index);
4273 }
4274
4275 /*
4276 * If we have a pending delayed iput we could end up with the final iput
4277 * being run in btrfs-cleaner context. If we have enough of these built
4278 * up we can end up burning a lot of time in btrfs-cleaner without any
4279 * way to throttle the unlinks. Since we're currently holding a ref on
4280 * the inode we can run the delayed iput here without any issues as the
4281 * final iput won't be done until after we drop the ref we're currently
4282 * holding.
4283 */
4284 btrfs_run_delayed_iput(fs_info, inode);
4285
4286 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2);
4287 inode_inc_iversion(&inode->vfs_inode);
4288 inode_set_ctime_current(&inode->vfs_inode);
4289 inode_inc_iversion(&dir->vfs_inode);
4290 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode));
4291
4292 return btrfs_update_inode(trans, dir);
4293 }
4294
btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_inode * inode,const struct fscrypt_str * name)4295 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4296 struct btrfs_inode *dir, struct btrfs_inode *inode,
4297 const struct fscrypt_str *name)
4298 {
4299 int ret;
4300
4301 ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL);
4302 if (!ret) {
4303 drop_nlink(&inode->vfs_inode);
4304 ret = btrfs_update_inode(trans, inode);
4305 }
4306 return ret;
4307 }
4308
4309 /*
4310 * helper to start transaction for unlink and rmdir.
4311 *
4312 * unlink and rmdir are special in btrfs, they do not always free space, so
4313 * if we cannot make our reservations the normal way try and see if there is
4314 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4315 * allow the unlink to occur.
4316 */
__unlink_start_trans(struct btrfs_inode * dir)4317 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir)
4318 {
4319 struct btrfs_root *root = dir->root;
4320
4321 return btrfs_start_transaction_fallback_global_rsv(root,
4322 BTRFS_UNLINK_METADATA_UNITS);
4323 }
4324
btrfs_unlink(struct inode * dir,struct dentry * dentry)4325 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4326 {
4327 struct btrfs_trans_handle *trans;
4328 struct inode *inode = d_inode(dentry);
4329 int ret;
4330 struct fscrypt_name fname;
4331
4332 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4333 if (ret)
4334 return ret;
4335
4336 /* This needs to handle no-key deletions later on */
4337
4338 trans = __unlink_start_trans(BTRFS_I(dir));
4339 if (IS_ERR(trans)) {
4340 ret = PTR_ERR(trans);
4341 goto fscrypt_free;
4342 }
4343
4344 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4345 false);
4346
4347 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4348 &fname.disk_name);
4349 if (ret)
4350 goto end_trans;
4351
4352 if (inode->i_nlink == 0) {
4353 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4354 if (ret)
4355 goto end_trans;
4356 }
4357
4358 end_trans:
4359 btrfs_end_transaction(trans);
4360 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
4361 fscrypt_free:
4362 fscrypt_free_filename(&fname);
4363 return ret;
4364 }
4365
btrfs_unlink_subvol(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct dentry * dentry)4366 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4367 struct btrfs_inode *dir, struct dentry *dentry)
4368 {
4369 struct btrfs_root *root = dir->root;
4370 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4371 struct btrfs_path *path;
4372 struct extent_buffer *leaf;
4373 struct btrfs_dir_item *di;
4374 struct btrfs_key key;
4375 u64 index;
4376 int ret;
4377 u64 objectid;
4378 u64 dir_ino = btrfs_ino(dir);
4379 struct fscrypt_name fname;
4380
4381 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
4382 if (ret)
4383 return ret;
4384
4385 /* This needs to handle no-key deletions later on */
4386
4387 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4388 objectid = btrfs_root_id(inode->root);
4389 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4390 objectid = inode->ref_root_id;
4391 } else {
4392 WARN_ON(1);
4393 fscrypt_free_filename(&fname);
4394 return -EINVAL;
4395 }
4396
4397 path = btrfs_alloc_path();
4398 if (!path) {
4399 ret = -ENOMEM;
4400 goto out;
4401 }
4402
4403 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4404 &fname.disk_name, -1);
4405 if (IS_ERR_OR_NULL(di)) {
4406 ret = di ? PTR_ERR(di) : -ENOENT;
4407 goto out;
4408 }
4409
4410 leaf = path->nodes[0];
4411 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4412 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4413 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4414 if (ret) {
4415 btrfs_abort_transaction(trans, ret);
4416 goto out;
4417 }
4418 btrfs_release_path(path);
4419
4420 /*
4421 * This is a placeholder inode for a subvolume we didn't have a
4422 * reference to at the time of the snapshot creation. In the meantime
4423 * we could have renamed the real subvol link into our snapshot, so
4424 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
4425 * Instead simply lookup the dir_index_item for this entry so we can
4426 * remove it. Otherwise we know we have a ref to the root and we can
4427 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4428 */
4429 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4430 di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name);
4431 if (IS_ERR(di)) {
4432 ret = PTR_ERR(di);
4433 btrfs_abort_transaction(trans, ret);
4434 goto out;
4435 }
4436
4437 leaf = path->nodes[0];
4438 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4439 index = key.offset;
4440 btrfs_release_path(path);
4441 } else {
4442 ret = btrfs_del_root_ref(trans, objectid,
4443 btrfs_root_id(root), dir_ino,
4444 &index, &fname.disk_name);
4445 if (ret) {
4446 btrfs_abort_transaction(trans, ret);
4447 goto out;
4448 }
4449 }
4450
4451 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4452 if (ret) {
4453 btrfs_abort_transaction(trans, ret);
4454 goto out;
4455 }
4456
4457 btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2);
4458 inode_inc_iversion(&dir->vfs_inode);
4459 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode));
4460 ret = btrfs_update_inode_fallback(trans, dir);
4461 if (ret)
4462 btrfs_abort_transaction(trans, ret);
4463 out:
4464 btrfs_free_path(path);
4465 fscrypt_free_filename(&fname);
4466 return ret;
4467 }
4468
4469 /*
4470 * Helper to check if the subvolume references other subvolumes or if it's
4471 * default.
4472 */
may_destroy_subvol(struct btrfs_root * root)4473 static noinline int may_destroy_subvol(struct btrfs_root *root)
4474 {
4475 struct btrfs_fs_info *fs_info = root->fs_info;
4476 BTRFS_PATH_AUTO_FREE(path);
4477 struct btrfs_dir_item *di;
4478 struct btrfs_key key;
4479 struct fscrypt_str name = FSTR_INIT("default", 7);
4480 u64 dir_id;
4481 int ret;
4482
4483 path = btrfs_alloc_path();
4484 if (!path)
4485 return -ENOMEM;
4486
4487 /* Make sure this root isn't set as the default subvol */
4488 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4489 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4490 dir_id, &name, 0);
4491 if (di && !IS_ERR(di)) {
4492 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4493 if (key.objectid == btrfs_root_id(root)) {
4494 ret = -EPERM;
4495 btrfs_err(fs_info,
4496 "deleting default subvolume %llu is not allowed",
4497 key.objectid);
4498 return ret;
4499 }
4500 btrfs_release_path(path);
4501 }
4502
4503 key.objectid = btrfs_root_id(root);
4504 key.type = BTRFS_ROOT_REF_KEY;
4505 key.offset = (u64)-1;
4506
4507 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4508 if (ret < 0)
4509 return ret;
4510 if (ret == 0) {
4511 /*
4512 * Key with offset -1 found, there would have to exist a root
4513 * with such id, but this is out of valid range.
4514 */
4515 return -EUCLEAN;
4516 }
4517
4518 ret = 0;
4519 if (path->slots[0] > 0) {
4520 path->slots[0]--;
4521 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4522 if (key.objectid == btrfs_root_id(root) && key.type == BTRFS_ROOT_REF_KEY)
4523 ret = -ENOTEMPTY;
4524 }
4525
4526 return ret;
4527 }
4528
4529 /* Delete all dentries for inodes belonging to the root */
btrfs_prune_dentries(struct btrfs_root * root)4530 static void btrfs_prune_dentries(struct btrfs_root *root)
4531 {
4532 struct btrfs_fs_info *fs_info = root->fs_info;
4533 struct btrfs_inode *inode;
4534 u64 min_ino = 0;
4535
4536 if (!BTRFS_FS_ERROR(fs_info))
4537 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4538
4539 inode = btrfs_find_first_inode(root, min_ino);
4540 while (inode) {
4541 if (atomic_read(&inode->vfs_inode.i_count) > 1)
4542 d_prune_aliases(&inode->vfs_inode);
4543
4544 min_ino = btrfs_ino(inode) + 1;
4545 /*
4546 * btrfs_drop_inode() will have it removed from the inode
4547 * cache when its usage count hits zero.
4548 */
4549 iput(&inode->vfs_inode);
4550 cond_resched();
4551 inode = btrfs_find_first_inode(root, min_ino);
4552 }
4553 }
4554
btrfs_delete_subvolume(struct btrfs_inode * dir,struct dentry * dentry)4555 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry)
4556 {
4557 struct btrfs_root *root = dir->root;
4558 struct btrfs_fs_info *fs_info = root->fs_info;
4559 struct inode *inode = d_inode(dentry);
4560 struct btrfs_root *dest = BTRFS_I(inode)->root;
4561 struct btrfs_trans_handle *trans;
4562 struct btrfs_block_rsv block_rsv;
4563 u64 root_flags;
4564 u64 qgroup_reserved = 0;
4565 int ret;
4566
4567 down_write(&fs_info->subvol_sem);
4568
4569 /*
4570 * Don't allow to delete a subvolume with send in progress. This is
4571 * inside the inode lock so the error handling that has to drop the bit
4572 * again is not run concurrently.
4573 */
4574 spin_lock(&dest->root_item_lock);
4575 if (dest->send_in_progress) {
4576 spin_unlock(&dest->root_item_lock);
4577 btrfs_warn(fs_info,
4578 "attempt to delete subvolume %llu during send",
4579 btrfs_root_id(dest));
4580 ret = -EPERM;
4581 goto out_up_write;
4582 }
4583 if (atomic_read(&dest->nr_swapfiles)) {
4584 spin_unlock(&dest->root_item_lock);
4585 btrfs_warn(fs_info,
4586 "attempt to delete subvolume %llu with active swapfile",
4587 btrfs_root_id(root));
4588 ret = -EPERM;
4589 goto out_up_write;
4590 }
4591 root_flags = btrfs_root_flags(&dest->root_item);
4592 btrfs_set_root_flags(&dest->root_item,
4593 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4594 spin_unlock(&dest->root_item_lock);
4595
4596 ret = may_destroy_subvol(dest);
4597 if (ret)
4598 goto out_undead;
4599
4600 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4601 /*
4602 * One for dir inode,
4603 * two for dir entries,
4604 * two for root ref/backref.
4605 */
4606 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4607 if (ret)
4608 goto out_undead;
4609 qgroup_reserved = block_rsv.qgroup_rsv_reserved;
4610
4611 trans = btrfs_start_transaction(root, 0);
4612 if (IS_ERR(trans)) {
4613 ret = PTR_ERR(trans);
4614 goto out_release;
4615 }
4616 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
4617 qgroup_reserved = 0;
4618 trans->block_rsv = &block_rsv;
4619 trans->bytes_reserved = block_rsv.size;
4620
4621 btrfs_record_snapshot_destroy(trans, dir);
4622
4623 ret = btrfs_unlink_subvol(trans, dir, dentry);
4624 if (ret) {
4625 btrfs_abort_transaction(trans, ret);
4626 goto out_end_trans;
4627 }
4628
4629 ret = btrfs_record_root_in_trans(trans, dest);
4630 if (ret) {
4631 btrfs_abort_transaction(trans, ret);
4632 goto out_end_trans;
4633 }
4634
4635 memset(&dest->root_item.drop_progress, 0,
4636 sizeof(dest->root_item.drop_progress));
4637 btrfs_set_root_drop_level(&dest->root_item, 0);
4638 btrfs_set_root_refs(&dest->root_item, 0);
4639
4640 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4641 ret = btrfs_insert_orphan_item(trans,
4642 fs_info->tree_root,
4643 btrfs_root_id(dest));
4644 if (ret) {
4645 btrfs_abort_transaction(trans, ret);
4646 goto out_end_trans;
4647 }
4648 }
4649
4650 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4651 BTRFS_UUID_KEY_SUBVOL, btrfs_root_id(dest));
4652 if (ret && ret != -ENOENT) {
4653 btrfs_abort_transaction(trans, ret);
4654 goto out_end_trans;
4655 }
4656 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4657 ret = btrfs_uuid_tree_remove(trans,
4658 dest->root_item.received_uuid,
4659 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4660 btrfs_root_id(dest));
4661 if (ret && ret != -ENOENT) {
4662 btrfs_abort_transaction(trans, ret);
4663 goto out_end_trans;
4664 }
4665 }
4666
4667 free_anon_bdev(dest->anon_dev);
4668 dest->anon_dev = 0;
4669 out_end_trans:
4670 trans->block_rsv = NULL;
4671 trans->bytes_reserved = 0;
4672 ret = btrfs_end_transaction(trans);
4673 inode->i_flags |= S_DEAD;
4674 out_release:
4675 btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL);
4676 if (qgroup_reserved)
4677 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
4678 out_undead:
4679 if (ret) {
4680 spin_lock(&dest->root_item_lock);
4681 root_flags = btrfs_root_flags(&dest->root_item);
4682 btrfs_set_root_flags(&dest->root_item,
4683 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4684 spin_unlock(&dest->root_item_lock);
4685 }
4686 out_up_write:
4687 up_write(&fs_info->subvol_sem);
4688 if (!ret) {
4689 d_invalidate(dentry);
4690 btrfs_prune_dentries(dest);
4691 ASSERT(dest->send_in_progress == 0);
4692 }
4693
4694 return ret;
4695 }
4696
btrfs_rmdir(struct inode * vfs_dir,struct dentry * dentry)4697 static int btrfs_rmdir(struct inode *vfs_dir, struct dentry *dentry)
4698 {
4699 struct btrfs_inode *dir = BTRFS_I(vfs_dir);
4700 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4701 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4702 int ret = 0;
4703 struct btrfs_trans_handle *trans;
4704 struct fscrypt_name fname;
4705
4706 if (inode->vfs_inode.i_size > BTRFS_EMPTY_DIR_SIZE)
4707 return -ENOTEMPTY;
4708 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4709 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) {
4710 btrfs_err(fs_info,
4711 "extent tree v2 doesn't support snapshot deletion yet");
4712 return -EOPNOTSUPP;
4713 }
4714 return btrfs_delete_subvolume(dir, dentry);
4715 }
4716
4717 ret = fscrypt_setup_filename(vfs_dir, &dentry->d_name, 1, &fname);
4718 if (ret)
4719 return ret;
4720
4721 /* This needs to handle no-key deletions later on */
4722
4723 trans = __unlink_start_trans(dir);
4724 if (IS_ERR(trans)) {
4725 ret = PTR_ERR(trans);
4726 goto out_notrans;
4727 }
4728
4729 /*
4730 * Propagate the last_unlink_trans value of the deleted dir to its
4731 * parent directory. This is to prevent an unrecoverable log tree in the
4732 * case we do something like this:
4733 * 1) create dir foo
4734 * 2) create snapshot under dir foo
4735 * 3) delete the snapshot
4736 * 4) rmdir foo
4737 * 5) mkdir foo
4738 * 6) fsync foo or some file inside foo
4739 *
4740 * This is because we can't unlink other roots when replaying the dir
4741 * deletes for directory foo.
4742 */
4743 if (inode->last_unlink_trans >= trans->transid)
4744 btrfs_record_snapshot_destroy(trans, dir);
4745
4746 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4747 ret = btrfs_unlink_subvol(trans, dir, dentry);
4748 goto out;
4749 }
4750
4751 ret = btrfs_orphan_add(trans, inode);
4752 if (ret)
4753 goto out;
4754
4755 /* now the directory is empty */
4756 ret = btrfs_unlink_inode(trans, dir, inode, &fname.disk_name);
4757 if (!ret)
4758 btrfs_i_size_write(inode, 0);
4759 out:
4760 btrfs_end_transaction(trans);
4761 out_notrans:
4762 btrfs_btree_balance_dirty(fs_info);
4763 fscrypt_free_filename(&fname);
4764
4765 return ret;
4766 }
4767
is_inside_block(u64 bytenr,u64 blockstart,u32 blocksize)4768 static bool is_inside_block(u64 bytenr, u64 blockstart, u32 blocksize)
4769 {
4770 ASSERT(IS_ALIGNED(blockstart, blocksize), "blockstart=%llu blocksize=%u",
4771 blockstart, blocksize);
4772
4773 if (blockstart <= bytenr && bytenr <= blockstart + blocksize - 1)
4774 return true;
4775 return false;
4776 }
4777
truncate_block_zero_beyond_eof(struct btrfs_inode * inode,u64 start)4778 static int truncate_block_zero_beyond_eof(struct btrfs_inode *inode, u64 start)
4779 {
4780 const pgoff_t index = (start >> PAGE_SHIFT);
4781 struct address_space *mapping = inode->vfs_inode.i_mapping;
4782 struct folio *folio;
4783 u64 zero_start;
4784 u64 zero_end;
4785 int ret = 0;
4786
4787 again:
4788 folio = filemap_lock_folio(mapping, index);
4789 /* No folio present. */
4790 if (IS_ERR(folio))
4791 return 0;
4792
4793 if (!folio_test_uptodate(folio)) {
4794 ret = btrfs_read_folio(NULL, folio);
4795 folio_lock(folio);
4796 if (folio->mapping != mapping) {
4797 folio_unlock(folio);
4798 folio_put(folio);
4799 goto again;
4800 }
4801 if (!folio_test_uptodate(folio)) {
4802 ret = -EIO;
4803 goto out_unlock;
4804 }
4805 }
4806 folio_wait_writeback(folio);
4807
4808 /*
4809 * We do not need to lock extents nor wait for OE, as it's already
4810 * beyond EOF.
4811 */
4812
4813 zero_start = max_t(u64, folio_pos(folio), start);
4814 zero_end = folio_end(folio);
4815 folio_zero_range(folio, zero_start - folio_pos(folio),
4816 zero_end - zero_start);
4817
4818 out_unlock:
4819 folio_unlock(folio);
4820 folio_put(folio);
4821 return ret;
4822 }
4823
4824 /*
4825 * Handle the truncation of a fs block.
4826 *
4827 * @inode - inode that we're zeroing
4828 * @offset - the file offset of the block to truncate
4829 * The value must be inside [@start, @end], and the function will do
4830 * extra checks if the block that covers @offset needs to be zeroed.
4831 * @start - the start file offset of the range we want to zero
4832 * @end - the end (inclusive) file offset of the range we want to zero.
4833 *
4834 * If the range is not block aligned, read out the folio that covers @offset,
4835 * and if needed zero blocks that are inside the folio and covered by [@start, @end).
4836 * If @start or @end + 1 lands inside a block, that block will be marked dirty
4837 * for writeback.
4838 *
4839 * This is utilized by hole punch, zero range, file expansion.
4840 */
btrfs_truncate_block(struct btrfs_inode * inode,u64 offset,u64 start,u64 end)4841 int btrfs_truncate_block(struct btrfs_inode *inode, u64 offset, u64 start, u64 end)
4842 {
4843 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4844 struct address_space *mapping = inode->vfs_inode.i_mapping;
4845 struct extent_io_tree *io_tree = &inode->io_tree;
4846 struct btrfs_ordered_extent *ordered;
4847 struct extent_state *cached_state = NULL;
4848 struct extent_changeset *data_reserved = NULL;
4849 bool only_release_metadata = false;
4850 u32 blocksize = fs_info->sectorsize;
4851 pgoff_t index = (offset >> PAGE_SHIFT);
4852 struct folio *folio;
4853 gfp_t mask = btrfs_alloc_write_mask(mapping);
4854 int ret = 0;
4855 const bool in_head_block = is_inside_block(offset, round_down(start, blocksize),
4856 blocksize);
4857 const bool in_tail_block = is_inside_block(offset, round_down(end, blocksize),
4858 blocksize);
4859 bool need_truncate_head = false;
4860 bool need_truncate_tail = false;
4861 u64 zero_start;
4862 u64 zero_end;
4863 u64 block_start;
4864 u64 block_end;
4865
4866 /* @offset should be inside the range. */
4867 ASSERT(start <= offset && offset <= end, "offset=%llu start=%llu end=%llu",
4868 offset, start, end);
4869
4870 /* The range is aligned at both ends. */
4871 if (IS_ALIGNED(start, blocksize) && IS_ALIGNED(end + 1, blocksize)) {
4872 /*
4873 * For block size < page size case, we may have polluted blocks
4874 * beyond EOF. So we also need to zero them out.
4875 */
4876 if (end == (u64)-1 && blocksize < PAGE_SIZE)
4877 ret = truncate_block_zero_beyond_eof(inode, start);
4878 goto out;
4879 }
4880
4881 /*
4882 * @offset may not be inside the head nor tail block. In that case we
4883 * don't need to do anything.
4884 */
4885 if (!in_head_block && !in_tail_block)
4886 goto out;
4887
4888 /*
4889 * Skip the truncatioin if the range in the target block is already aligned.
4890 * The seemingly complex check will also handle the same block case.
4891 */
4892 if (in_head_block && !IS_ALIGNED(start, blocksize))
4893 need_truncate_head = true;
4894 if (in_tail_block && !IS_ALIGNED(end + 1, blocksize))
4895 need_truncate_tail = true;
4896 if (!need_truncate_head && !need_truncate_tail)
4897 goto out;
4898
4899 block_start = round_down(offset, blocksize);
4900 block_end = block_start + blocksize - 1;
4901
4902 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
4903 blocksize, false);
4904 if (ret < 0) {
4905 size_t write_bytes = blocksize;
4906
4907 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) {
4908 /* For nocow case, no need to reserve data space. */
4909 ASSERT(write_bytes == blocksize, "write_bytes=%zu blocksize=%u",
4910 write_bytes, blocksize);
4911 only_release_metadata = true;
4912 } else {
4913 goto out;
4914 }
4915 }
4916 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false);
4917 if (ret < 0) {
4918 if (!only_release_metadata)
4919 btrfs_free_reserved_data_space(inode, data_reserved,
4920 block_start, blocksize);
4921 goto out;
4922 }
4923 again:
4924 folio = __filemap_get_folio(mapping, index,
4925 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mask);
4926 if (IS_ERR(folio)) {
4927 if (only_release_metadata)
4928 btrfs_delalloc_release_metadata(inode, blocksize, true);
4929 else
4930 btrfs_delalloc_release_space(inode, data_reserved,
4931 block_start, blocksize, true);
4932 btrfs_delalloc_release_extents(inode, blocksize);
4933 ret = PTR_ERR(folio);
4934 goto out;
4935 }
4936
4937 if (!folio_test_uptodate(folio)) {
4938 ret = btrfs_read_folio(NULL, folio);
4939 folio_lock(folio);
4940 if (folio->mapping != mapping) {
4941 folio_unlock(folio);
4942 folio_put(folio);
4943 goto again;
4944 }
4945 if (!folio_test_uptodate(folio)) {
4946 ret = -EIO;
4947 goto out_unlock;
4948 }
4949 }
4950
4951 /*
4952 * We unlock the page after the io is completed and then re-lock it
4953 * above. release_folio() could have come in between that and cleared
4954 * folio private, but left the page in the mapping. Set the page mapped
4955 * here to make sure it's properly set for the subpage stuff.
4956 */
4957 ret = set_folio_extent_mapped(folio);
4958 if (ret < 0)
4959 goto out_unlock;
4960
4961 folio_wait_writeback(folio);
4962
4963 btrfs_lock_extent(io_tree, block_start, block_end, &cached_state);
4964
4965 ordered = btrfs_lookup_ordered_extent(inode, block_start);
4966 if (ordered) {
4967 btrfs_unlock_extent(io_tree, block_start, block_end, &cached_state);
4968 folio_unlock(folio);
4969 folio_put(folio);
4970 btrfs_start_ordered_extent(ordered);
4971 btrfs_put_ordered_extent(ordered);
4972 goto again;
4973 }
4974
4975 btrfs_clear_extent_bit(&inode->io_tree, block_start, block_end,
4976 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4977 &cached_state);
4978
4979 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4980 &cached_state);
4981 if (ret) {
4982 btrfs_unlock_extent(io_tree, block_start, block_end, &cached_state);
4983 goto out_unlock;
4984 }
4985
4986 if (end == (u64)-1) {
4987 /*
4988 * We're truncating beyond EOF, the remaining blocks normally are
4989 * already holes thus no need to zero again, but it's possible for
4990 * fs block size < page size cases to have memory mapped writes
4991 * to pollute ranges beyond EOF.
4992 *
4993 * In that case although such polluted blocks beyond EOF will
4994 * not reach disk, it still affects our page caches.
4995 */
4996 zero_start = max_t(u64, folio_pos(folio), start);
4997 zero_end = min_t(u64, folio_end(folio) - 1, end);
4998 } else {
4999 zero_start = max_t(u64, block_start, start);
5000 zero_end = min_t(u64, block_end, end);
5001 }
5002 folio_zero_range(folio, zero_start - folio_pos(folio),
5003 zero_end - zero_start + 1);
5004
5005 btrfs_folio_clear_checked(fs_info, folio, block_start,
5006 block_end + 1 - block_start);
5007 btrfs_folio_set_dirty(fs_info, folio, block_start,
5008 block_end + 1 - block_start);
5009
5010 if (only_release_metadata)
5011 btrfs_set_extent_bit(&inode->io_tree, block_start, block_end,
5012 EXTENT_NORESERVE, &cached_state);
5013
5014 btrfs_unlock_extent(io_tree, block_start, block_end, &cached_state);
5015
5016 out_unlock:
5017 if (ret) {
5018 if (only_release_metadata)
5019 btrfs_delalloc_release_metadata(inode, blocksize, true);
5020 else
5021 btrfs_delalloc_release_space(inode, data_reserved,
5022 block_start, blocksize, true);
5023 }
5024 btrfs_delalloc_release_extents(inode, blocksize);
5025 folio_unlock(folio);
5026 folio_put(folio);
5027 out:
5028 if (only_release_metadata)
5029 btrfs_check_nocow_unlock(inode);
5030 extent_changeset_free(data_reserved);
5031 return ret;
5032 }
5033
maybe_insert_hole(struct btrfs_inode * inode,u64 offset,u64 len)5034 static int maybe_insert_hole(struct btrfs_inode *inode, u64 offset, u64 len)
5035 {
5036 struct btrfs_root *root = inode->root;
5037 struct btrfs_fs_info *fs_info = root->fs_info;
5038 struct btrfs_trans_handle *trans;
5039 struct btrfs_drop_extents_args drop_args = { 0 };
5040 int ret;
5041
5042 /*
5043 * If NO_HOLES is enabled, we don't need to do anything.
5044 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
5045 * or btrfs_update_inode() will be called, which guarantee that the next
5046 * fsync will know this inode was changed and needs to be logged.
5047 */
5048 if (btrfs_fs_incompat(fs_info, NO_HOLES))
5049 return 0;
5050
5051 /*
5052 * 1 - for the one we're dropping
5053 * 1 - for the one we're adding
5054 * 1 - for updating the inode.
5055 */
5056 trans = btrfs_start_transaction(root, 3);
5057 if (IS_ERR(trans))
5058 return PTR_ERR(trans);
5059
5060 drop_args.start = offset;
5061 drop_args.end = offset + len;
5062 drop_args.drop_cache = true;
5063
5064 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
5065 if (ret) {
5066 btrfs_abort_transaction(trans, ret);
5067 btrfs_end_transaction(trans);
5068 return ret;
5069 }
5070
5071 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len);
5072 if (ret) {
5073 btrfs_abort_transaction(trans, ret);
5074 } else {
5075 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
5076 btrfs_update_inode(trans, inode);
5077 }
5078 btrfs_end_transaction(trans);
5079 return ret;
5080 }
5081
5082 /*
5083 * This function puts in dummy file extents for the area we're creating a hole
5084 * for. So if we are truncating this file to a larger size we need to insert
5085 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
5086 * the range between oldsize and size
5087 */
btrfs_cont_expand(struct btrfs_inode * inode,loff_t oldsize,loff_t size)5088 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
5089 {
5090 struct btrfs_root *root = inode->root;
5091 struct btrfs_fs_info *fs_info = root->fs_info;
5092 struct extent_io_tree *io_tree = &inode->io_tree;
5093 struct extent_map *em = NULL;
5094 struct extent_state *cached_state = NULL;
5095 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
5096 u64 block_end = ALIGN(size, fs_info->sectorsize);
5097 u64 last_byte;
5098 u64 cur_offset;
5099 u64 hole_size;
5100 int ret = 0;
5101
5102 /*
5103 * If our size started in the middle of a block we need to zero out the
5104 * rest of the block before we expand the i_size, otherwise we could
5105 * expose stale data.
5106 */
5107 ret = btrfs_truncate_block(inode, oldsize, oldsize, -1);
5108 if (ret)
5109 return ret;
5110
5111 if (size <= hole_start)
5112 return 0;
5113
5114 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
5115 &cached_state);
5116 cur_offset = hole_start;
5117 while (1) {
5118 em = btrfs_get_extent(inode, NULL, cur_offset, block_end - cur_offset);
5119 if (IS_ERR(em)) {
5120 ret = PTR_ERR(em);
5121 em = NULL;
5122 break;
5123 }
5124 last_byte = min(btrfs_extent_map_end(em), block_end);
5125 last_byte = ALIGN(last_byte, fs_info->sectorsize);
5126 hole_size = last_byte - cur_offset;
5127
5128 if (!(em->flags & EXTENT_FLAG_PREALLOC)) {
5129 struct extent_map *hole_em;
5130
5131 ret = maybe_insert_hole(inode, cur_offset, hole_size);
5132 if (ret)
5133 break;
5134
5135 ret = btrfs_inode_set_file_extent_range(inode,
5136 cur_offset, hole_size);
5137 if (ret)
5138 break;
5139
5140 hole_em = btrfs_alloc_extent_map();
5141 if (!hole_em) {
5142 btrfs_drop_extent_map_range(inode, cur_offset,
5143 cur_offset + hole_size - 1,
5144 false);
5145 btrfs_set_inode_full_sync(inode);
5146 goto next;
5147 }
5148 hole_em->start = cur_offset;
5149 hole_em->len = hole_size;
5150
5151 hole_em->disk_bytenr = EXTENT_MAP_HOLE;
5152 hole_em->disk_num_bytes = 0;
5153 hole_em->ram_bytes = hole_size;
5154 hole_em->generation = btrfs_get_fs_generation(fs_info);
5155
5156 ret = btrfs_replace_extent_map_range(inode, hole_em, true);
5157 btrfs_free_extent_map(hole_em);
5158 } else {
5159 ret = btrfs_inode_set_file_extent_range(inode,
5160 cur_offset, hole_size);
5161 if (ret)
5162 break;
5163 }
5164 next:
5165 btrfs_free_extent_map(em);
5166 em = NULL;
5167 cur_offset = last_byte;
5168 if (cur_offset >= block_end)
5169 break;
5170 }
5171 btrfs_free_extent_map(em);
5172 btrfs_unlock_extent(io_tree, hole_start, block_end - 1, &cached_state);
5173 return ret;
5174 }
5175
btrfs_setsize(struct inode * inode,struct iattr * attr)5176 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5177 {
5178 struct btrfs_root *root = BTRFS_I(inode)->root;
5179 struct btrfs_trans_handle *trans;
5180 loff_t oldsize = i_size_read(inode);
5181 loff_t newsize = attr->ia_size;
5182 int mask = attr->ia_valid;
5183 int ret;
5184
5185 /*
5186 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5187 * special case where we need to update the times despite not having
5188 * these flags set. For all other operations the VFS set these flags
5189 * explicitly if it wants a timestamp update.
5190 */
5191 if (newsize != oldsize) {
5192 inode_inc_iversion(inode);
5193 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) {
5194 inode_set_mtime_to_ts(inode,
5195 inode_set_ctime_current(inode));
5196 }
5197 }
5198
5199 if (newsize > oldsize) {
5200 /*
5201 * Don't do an expanding truncate while snapshotting is ongoing.
5202 * This is to ensure the snapshot captures a fully consistent
5203 * state of this file - if the snapshot captures this expanding
5204 * truncation, it must capture all writes that happened before
5205 * this truncation.
5206 */
5207 btrfs_drew_write_lock(&root->snapshot_lock);
5208 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
5209 if (ret) {
5210 btrfs_drew_write_unlock(&root->snapshot_lock);
5211 return ret;
5212 }
5213
5214 trans = btrfs_start_transaction(root, 1);
5215 if (IS_ERR(trans)) {
5216 btrfs_drew_write_unlock(&root->snapshot_lock);
5217 return PTR_ERR(trans);
5218 }
5219
5220 i_size_write(inode, newsize);
5221 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
5222 pagecache_isize_extended(inode, oldsize, newsize);
5223 ret = btrfs_update_inode(trans, BTRFS_I(inode));
5224 btrfs_drew_write_unlock(&root->snapshot_lock);
5225 btrfs_end_transaction(trans);
5226 } else {
5227 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
5228
5229 if (btrfs_is_zoned(fs_info)) {
5230 ret = btrfs_wait_ordered_range(BTRFS_I(inode),
5231 ALIGN(newsize, fs_info->sectorsize),
5232 (u64)-1);
5233 if (ret)
5234 return ret;
5235 }
5236
5237 /*
5238 * We're truncating a file that used to have good data down to
5239 * zero. Make sure any new writes to the file get on disk
5240 * on close.
5241 */
5242 if (newsize == 0)
5243 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
5244 &BTRFS_I(inode)->runtime_flags);
5245
5246 truncate_setsize(inode, newsize);
5247
5248 inode_dio_wait(inode);
5249
5250 ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize);
5251 if (ret && inode->i_nlink) {
5252 int ret2;
5253
5254 /*
5255 * Truncate failed, so fix up the in-memory size. We
5256 * adjusted disk_i_size down as we removed extents, so
5257 * wait for disk_i_size to be stable and then update the
5258 * in-memory size to match.
5259 */
5260 ret2 = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1);
5261 if (ret2)
5262 return ret2;
5263 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5264 }
5265 }
5266
5267 return ret;
5268 }
5269
btrfs_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)5270 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5271 struct iattr *attr)
5272 {
5273 struct inode *inode = d_inode(dentry);
5274 struct btrfs_root *root = BTRFS_I(inode)->root;
5275 int ret;
5276
5277 if (btrfs_root_readonly(root))
5278 return -EROFS;
5279
5280 ret = setattr_prepare(idmap, dentry, attr);
5281 if (ret)
5282 return ret;
5283
5284 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5285 ret = btrfs_setsize(inode, attr);
5286 if (ret)
5287 return ret;
5288 }
5289
5290 if (attr->ia_valid) {
5291 setattr_copy(idmap, inode, attr);
5292 inode_inc_iversion(inode);
5293 ret = btrfs_dirty_inode(BTRFS_I(inode));
5294
5295 if (!ret && attr->ia_valid & ATTR_MODE)
5296 ret = posix_acl_chmod(idmap, dentry, inode->i_mode);
5297 }
5298
5299 return ret;
5300 }
5301
5302 /*
5303 * While truncating the inode pages during eviction, we get the VFS
5304 * calling btrfs_invalidate_folio() against each folio of the inode. This
5305 * is slow because the calls to btrfs_invalidate_folio() result in a
5306 * huge amount of calls to lock_extent() and clear_extent_bit(),
5307 * which keep merging and splitting extent_state structures over and over,
5308 * wasting lots of time.
5309 *
5310 * Therefore if the inode is being evicted, let btrfs_invalidate_folio()
5311 * skip all those expensive operations on a per folio basis and do only
5312 * the ordered io finishing, while we release here the extent_map and
5313 * extent_state structures, without the excessive merging and splitting.
5314 */
evict_inode_truncate_pages(struct inode * inode)5315 static void evict_inode_truncate_pages(struct inode *inode)
5316 {
5317 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5318 struct rb_node *node;
5319
5320 ASSERT(inode->i_state & I_FREEING);
5321 truncate_inode_pages_final(&inode->i_data);
5322
5323 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
5324
5325 /*
5326 * Keep looping until we have no more ranges in the io tree.
5327 * We can have ongoing bios started by readahead that have
5328 * their endio callback (extent_io.c:end_bio_extent_readpage)
5329 * still in progress (unlocked the pages in the bio but did not yet
5330 * unlocked the ranges in the io tree). Therefore this means some
5331 * ranges can still be locked and eviction started because before
5332 * submitting those bios, which are executed by a separate task (work
5333 * queue kthread), inode references (inode->i_count) were not taken
5334 * (which would be dropped in the end io callback of each bio).
5335 * Therefore here we effectively end up waiting for those bios and
5336 * anyone else holding locked ranges without having bumped the inode's
5337 * reference count - if we don't do it, when they access the inode's
5338 * io_tree to unlock a range it may be too late, leading to an
5339 * use-after-free issue.
5340 */
5341 spin_lock(&io_tree->lock);
5342 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5343 struct extent_state *state;
5344 struct extent_state *cached_state = NULL;
5345 u64 start;
5346 u64 end;
5347 unsigned state_flags;
5348
5349 node = rb_first(&io_tree->state);
5350 state = rb_entry(node, struct extent_state, rb_node);
5351 start = state->start;
5352 end = state->end;
5353 state_flags = state->state;
5354 spin_unlock(&io_tree->lock);
5355
5356 btrfs_lock_extent(io_tree, start, end, &cached_state);
5357
5358 /*
5359 * If still has DELALLOC flag, the extent didn't reach disk,
5360 * and its reserved space won't be freed by delayed_ref.
5361 * So we need to free its reserved space here.
5362 * (Refer to comment in btrfs_invalidate_folio, case 2)
5363 *
5364 * Note, end is the bytenr of last byte, so we need + 1 here.
5365 */
5366 if (state_flags & EXTENT_DELALLOC)
5367 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5368 end - start + 1, NULL);
5369
5370 btrfs_clear_extent_bit(io_tree, start, end,
5371 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING,
5372 &cached_state);
5373
5374 cond_resched();
5375 spin_lock(&io_tree->lock);
5376 }
5377 spin_unlock(&io_tree->lock);
5378 }
5379
evict_refill_and_join(struct btrfs_root * root,struct btrfs_block_rsv * rsv)5380 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5381 struct btrfs_block_rsv *rsv)
5382 {
5383 struct btrfs_fs_info *fs_info = root->fs_info;
5384 struct btrfs_trans_handle *trans;
5385 u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1);
5386 int ret;
5387
5388 /*
5389 * Eviction should be taking place at some place safe because of our
5390 * delayed iputs. However the normal flushing code will run delayed
5391 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5392 *
5393 * We reserve the delayed_refs_extra here again because we can't use
5394 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5395 * above. We reserve our extra bit here because we generate a ton of
5396 * delayed refs activity by truncating.
5397 *
5398 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can,
5399 * if we fail to make this reservation we can re-try without the
5400 * delayed_refs_extra so we can make some forward progress.
5401 */
5402 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra,
5403 BTRFS_RESERVE_FLUSH_EVICT);
5404 if (ret) {
5405 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size,
5406 BTRFS_RESERVE_FLUSH_EVICT);
5407 if (ret) {
5408 btrfs_warn(fs_info,
5409 "could not allocate space for delete; will truncate on mount");
5410 return ERR_PTR(-ENOSPC);
5411 }
5412 delayed_refs_extra = 0;
5413 }
5414
5415 trans = btrfs_join_transaction(root);
5416 if (IS_ERR(trans))
5417 return trans;
5418
5419 if (delayed_refs_extra) {
5420 trans->block_rsv = &fs_info->trans_block_rsv;
5421 trans->bytes_reserved = delayed_refs_extra;
5422 btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5423 delayed_refs_extra, true);
5424 }
5425 return trans;
5426 }
5427
btrfs_evict_inode(struct inode * inode)5428 void btrfs_evict_inode(struct inode *inode)
5429 {
5430 struct btrfs_fs_info *fs_info;
5431 struct btrfs_trans_handle *trans;
5432 struct btrfs_root *root = BTRFS_I(inode)->root;
5433 struct btrfs_block_rsv rsv;
5434 int ret;
5435
5436 trace_btrfs_inode_evict(inode);
5437
5438 if (!root) {
5439 fsverity_cleanup_inode(inode);
5440 clear_inode(inode);
5441 return;
5442 }
5443
5444 fs_info = inode_to_fs_info(inode);
5445 evict_inode_truncate_pages(inode);
5446
5447 if (inode->i_nlink &&
5448 ((btrfs_root_refs(&root->root_item) != 0 &&
5449 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID) ||
5450 btrfs_is_free_space_inode(BTRFS_I(inode))))
5451 goto out;
5452
5453 if (is_bad_inode(inode))
5454 goto out;
5455
5456 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5457 goto out;
5458
5459 if (inode->i_nlink > 0) {
5460 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5461 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID);
5462 goto out;
5463 }
5464
5465 /*
5466 * This makes sure the inode item in tree is uptodate and the space for
5467 * the inode update is released.
5468 */
5469 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5470 if (ret)
5471 goto out;
5472
5473 /*
5474 * This drops any pending insert or delete operations we have for this
5475 * inode. We could have a delayed dir index deletion queued up, but
5476 * we're removing the inode completely so that'll be taken care of in
5477 * the truncate.
5478 */
5479 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
5480
5481 btrfs_init_metadata_block_rsv(fs_info, &rsv, BTRFS_BLOCK_RSV_TEMP);
5482 rsv.size = btrfs_calc_metadata_size(fs_info, 1);
5483 rsv.failfast = true;
5484
5485 btrfs_i_size_write(BTRFS_I(inode), 0);
5486
5487 while (1) {
5488 struct btrfs_truncate_control control = {
5489 .inode = BTRFS_I(inode),
5490 .ino = btrfs_ino(BTRFS_I(inode)),
5491 .new_size = 0,
5492 .min_type = 0,
5493 };
5494
5495 trans = evict_refill_and_join(root, &rsv);
5496 if (IS_ERR(trans))
5497 goto out_release;
5498
5499 trans->block_rsv = &rsv;
5500
5501 ret = btrfs_truncate_inode_items(trans, root, &control);
5502 trans->block_rsv = &fs_info->trans_block_rsv;
5503 btrfs_end_transaction(trans);
5504 /*
5505 * We have not added new delayed items for our inode after we
5506 * have flushed its delayed items, so no need to throttle on
5507 * delayed items. However we have modified extent buffers.
5508 */
5509 btrfs_btree_balance_dirty_nodelay(fs_info);
5510 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5511 goto out_release;
5512 else if (!ret)
5513 break;
5514 }
5515
5516 /*
5517 * Errors here aren't a big deal, it just means we leave orphan items in
5518 * the tree. They will be cleaned up on the next mount. If the inode
5519 * number gets reused, cleanup deletes the orphan item without doing
5520 * anything, and unlink reuses the existing orphan item.
5521 *
5522 * If it turns out that we are dropping too many of these, we might want
5523 * to add a mechanism for retrying these after a commit.
5524 */
5525 trans = evict_refill_and_join(root, &rsv);
5526 if (!IS_ERR(trans)) {
5527 trans->block_rsv = &rsv;
5528 btrfs_orphan_del(trans, BTRFS_I(inode));
5529 trans->block_rsv = &fs_info->trans_block_rsv;
5530 btrfs_end_transaction(trans);
5531 }
5532
5533 out_release:
5534 btrfs_block_rsv_release(fs_info, &rsv, (u64)-1, NULL);
5535 out:
5536 /*
5537 * If we didn't successfully delete, the orphan item will still be in
5538 * the tree and we'll retry on the next mount. Again, we might also want
5539 * to retry these periodically in the future.
5540 */
5541 btrfs_remove_delayed_node(BTRFS_I(inode));
5542 fsverity_cleanup_inode(inode);
5543 clear_inode(inode);
5544 }
5545
5546 /*
5547 * Return the key found in the dir entry in the location pointer, fill @type
5548 * with BTRFS_FT_*, and return 0.
5549 *
5550 * If no dir entries were found, returns -ENOENT.
5551 * If found a corrupted location in dir entry, returns -EUCLEAN.
5552 */
btrfs_inode_by_name(struct btrfs_inode * dir,struct dentry * dentry,struct btrfs_key * location,u8 * type)5553 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry,
5554 struct btrfs_key *location, u8 *type)
5555 {
5556 struct btrfs_dir_item *di;
5557 BTRFS_PATH_AUTO_FREE(path);
5558 struct btrfs_root *root = dir->root;
5559 int ret = 0;
5560 struct fscrypt_name fname;
5561
5562 path = btrfs_alloc_path();
5563 if (!path)
5564 return -ENOMEM;
5565
5566 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
5567 if (ret < 0)
5568 return ret;
5569 /*
5570 * fscrypt_setup_filename() should never return a positive value, but
5571 * gcc on sparc/parisc thinks it can, so assert that doesn't happen.
5572 */
5573 ASSERT(ret == 0);
5574
5575 /* This needs to handle no-key deletions later on */
5576
5577 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir),
5578 &fname.disk_name, 0);
5579 if (IS_ERR_OR_NULL(di)) {
5580 ret = di ? PTR_ERR(di) : -ENOENT;
5581 goto out;
5582 }
5583
5584 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5585 if (location->type != BTRFS_INODE_ITEM_KEY &&
5586 location->type != BTRFS_ROOT_ITEM_KEY) {
5587 ret = -EUCLEAN;
5588 btrfs_warn(root->fs_info,
5589 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5590 __func__, fname.disk_name.name, btrfs_ino(dir),
5591 location->objectid, location->type, location->offset);
5592 }
5593 if (!ret)
5594 *type = btrfs_dir_ftype(path->nodes[0], di);
5595 out:
5596 fscrypt_free_filename(&fname);
5597 return ret;
5598 }
5599
5600 /*
5601 * when we hit a tree root in a directory, the btrfs part of the inode
5602 * needs to be changed to reflect the root directory of the tree root. This
5603 * is kind of like crossing a mount point.
5604 */
fixup_tree_root_location(struct btrfs_fs_info * fs_info,struct btrfs_inode * dir,struct dentry * dentry,struct btrfs_key * location,struct btrfs_root ** sub_root)5605 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5606 struct btrfs_inode *dir,
5607 struct dentry *dentry,
5608 struct btrfs_key *location,
5609 struct btrfs_root **sub_root)
5610 {
5611 BTRFS_PATH_AUTO_FREE(path);
5612 struct btrfs_root *new_root;
5613 struct btrfs_root_ref *ref;
5614 struct extent_buffer *leaf;
5615 struct btrfs_key key;
5616 int ret;
5617 int err = 0;
5618 struct fscrypt_name fname;
5619
5620 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname);
5621 if (ret)
5622 return ret;
5623
5624 path = btrfs_alloc_path();
5625 if (!path) {
5626 err = -ENOMEM;
5627 goto out;
5628 }
5629
5630 err = -ENOENT;
5631 key.objectid = btrfs_root_id(dir->root);
5632 key.type = BTRFS_ROOT_REF_KEY;
5633 key.offset = location->objectid;
5634
5635 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5636 if (ret) {
5637 if (ret < 0)
5638 err = ret;
5639 goto out;
5640 }
5641
5642 leaf = path->nodes[0];
5643 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5644 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5645 btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len)
5646 goto out;
5647
5648 ret = memcmp_extent_buffer(leaf, fname.disk_name.name,
5649 (unsigned long)(ref + 1), fname.disk_name.len);
5650 if (ret)
5651 goto out;
5652
5653 btrfs_release_path(path);
5654
5655 new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5656 if (IS_ERR(new_root)) {
5657 err = PTR_ERR(new_root);
5658 goto out;
5659 }
5660
5661 *sub_root = new_root;
5662 location->objectid = btrfs_root_dirid(&new_root->root_item);
5663 location->type = BTRFS_INODE_ITEM_KEY;
5664 location->offset = 0;
5665 err = 0;
5666 out:
5667 fscrypt_free_filename(&fname);
5668 return err;
5669 }
5670
5671
5672
btrfs_del_inode_from_root(struct btrfs_inode * inode)5673 static void btrfs_del_inode_from_root(struct btrfs_inode *inode)
5674 {
5675 struct btrfs_root *root = inode->root;
5676 struct btrfs_inode *entry;
5677 bool empty = false;
5678
5679 xa_lock(&root->inodes);
5680 entry = __xa_erase(&root->inodes, btrfs_ino(inode));
5681 if (entry == inode)
5682 empty = xa_empty(&root->inodes);
5683 xa_unlock(&root->inodes);
5684
5685 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5686 xa_lock(&root->inodes);
5687 empty = xa_empty(&root->inodes);
5688 xa_unlock(&root->inodes);
5689 if (empty)
5690 btrfs_add_dead_root(root);
5691 }
5692 }
5693
5694
btrfs_init_locked_inode(struct inode * inode,void * p)5695 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5696 {
5697 struct btrfs_iget_args *args = p;
5698
5699 btrfs_set_inode_number(BTRFS_I(inode), args->ino);
5700 BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5701
5702 if (args->root && args->root == args->root->fs_info->tree_root &&
5703 args->ino != BTRFS_BTREE_INODE_OBJECTID)
5704 set_bit(BTRFS_INODE_FREE_SPACE_INODE,
5705 &BTRFS_I(inode)->runtime_flags);
5706 return 0;
5707 }
5708
btrfs_find_actor(struct inode * inode,void * opaque)5709 static int btrfs_find_actor(struct inode *inode, void *opaque)
5710 {
5711 struct btrfs_iget_args *args = opaque;
5712
5713 return args->ino == btrfs_ino(BTRFS_I(inode)) &&
5714 args->root == BTRFS_I(inode)->root;
5715 }
5716
btrfs_iget_locked(u64 ino,struct btrfs_root * root)5717 static struct btrfs_inode *btrfs_iget_locked(u64 ino, struct btrfs_root *root)
5718 {
5719 struct inode *inode;
5720 struct btrfs_iget_args args;
5721 unsigned long hashval = btrfs_inode_hash(ino, root);
5722
5723 args.ino = ino;
5724 args.root = root;
5725
5726 inode = iget5_locked_rcu(root->fs_info->sb, hashval, btrfs_find_actor,
5727 btrfs_init_locked_inode,
5728 (void *)&args);
5729 if (!inode)
5730 return NULL;
5731 return BTRFS_I(inode);
5732 }
5733
5734 /*
5735 * Get an inode object given its inode number and corresponding root. Path is
5736 * preallocated to prevent recursing back to iget through allocator.
5737 */
btrfs_iget_path(u64 ino,struct btrfs_root * root,struct btrfs_path * path)5738 struct btrfs_inode *btrfs_iget_path(u64 ino, struct btrfs_root *root,
5739 struct btrfs_path *path)
5740 {
5741 struct btrfs_inode *inode;
5742 int ret;
5743
5744 inode = btrfs_iget_locked(ino, root);
5745 if (!inode)
5746 return ERR_PTR(-ENOMEM);
5747
5748 if (!(inode->vfs_inode.i_state & I_NEW))
5749 return inode;
5750
5751 ret = btrfs_read_locked_inode(inode, path);
5752 if (ret)
5753 return ERR_PTR(ret);
5754
5755 unlock_new_inode(&inode->vfs_inode);
5756 return inode;
5757 }
5758
5759 /*
5760 * Get an inode object given its inode number and corresponding root.
5761 */
btrfs_iget(u64 ino,struct btrfs_root * root)5762 struct btrfs_inode *btrfs_iget(u64 ino, struct btrfs_root *root)
5763 {
5764 struct btrfs_inode *inode;
5765 struct btrfs_path *path;
5766 int ret;
5767
5768 inode = btrfs_iget_locked(ino, root);
5769 if (!inode)
5770 return ERR_PTR(-ENOMEM);
5771
5772 if (!(inode->vfs_inode.i_state & I_NEW))
5773 return inode;
5774
5775 path = btrfs_alloc_path();
5776 if (!path) {
5777 iget_failed(&inode->vfs_inode);
5778 return ERR_PTR(-ENOMEM);
5779 }
5780
5781 ret = btrfs_read_locked_inode(inode, path);
5782 btrfs_free_path(path);
5783 if (ret)
5784 return ERR_PTR(ret);
5785
5786 unlock_new_inode(&inode->vfs_inode);
5787 return inode;
5788 }
5789
new_simple_dir(struct inode * dir,struct btrfs_key * key,struct btrfs_root * root)5790 static struct btrfs_inode *new_simple_dir(struct inode *dir,
5791 struct btrfs_key *key,
5792 struct btrfs_root *root)
5793 {
5794 struct timespec64 ts;
5795 struct inode *vfs_inode;
5796 struct btrfs_inode *inode;
5797
5798 vfs_inode = new_inode(dir->i_sb);
5799 if (!vfs_inode)
5800 return ERR_PTR(-ENOMEM);
5801
5802 inode = BTRFS_I(vfs_inode);
5803 inode->root = btrfs_grab_root(root);
5804 inode->ref_root_id = key->objectid;
5805 set_bit(BTRFS_INODE_ROOT_STUB, &inode->runtime_flags);
5806 set_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags);
5807
5808 btrfs_set_inode_number(inode, BTRFS_EMPTY_SUBVOL_DIR_OBJECTID);
5809 /*
5810 * We only need lookup, the rest is read-only and there's no inode
5811 * associated with the dentry
5812 */
5813 vfs_inode->i_op = &simple_dir_inode_operations;
5814 vfs_inode->i_opflags &= ~IOP_XATTR;
5815 vfs_inode->i_fop = &simple_dir_operations;
5816 vfs_inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5817
5818 ts = inode_set_ctime_current(vfs_inode);
5819 inode_set_mtime_to_ts(vfs_inode, ts);
5820 inode_set_atime_to_ts(vfs_inode, inode_get_atime(dir));
5821 inode->i_otime_sec = ts.tv_sec;
5822 inode->i_otime_nsec = ts.tv_nsec;
5823
5824 vfs_inode->i_uid = dir->i_uid;
5825 vfs_inode->i_gid = dir->i_gid;
5826
5827 return inode;
5828 }
5829
5830 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN);
5831 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE);
5832 static_assert(BTRFS_FT_DIR == FT_DIR);
5833 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV);
5834 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV);
5835 static_assert(BTRFS_FT_FIFO == FT_FIFO);
5836 static_assert(BTRFS_FT_SOCK == FT_SOCK);
5837 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK);
5838
btrfs_inode_type(const struct btrfs_inode * inode)5839 static inline u8 btrfs_inode_type(const struct btrfs_inode *inode)
5840 {
5841 return fs_umode_to_ftype(inode->vfs_inode.i_mode);
5842 }
5843
btrfs_lookup_dentry(struct inode * dir,struct dentry * dentry)5844 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5845 {
5846 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
5847 struct btrfs_inode *inode;
5848 struct btrfs_root *root = BTRFS_I(dir)->root;
5849 struct btrfs_root *sub_root = root;
5850 struct btrfs_key location = { 0 };
5851 u8 di_type = 0;
5852 int ret = 0;
5853
5854 if (dentry->d_name.len > BTRFS_NAME_LEN)
5855 return ERR_PTR(-ENAMETOOLONG);
5856
5857 ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type);
5858 if (ret < 0)
5859 return ERR_PTR(ret);
5860
5861 if (location.type == BTRFS_INODE_ITEM_KEY) {
5862 inode = btrfs_iget(location.objectid, root);
5863 if (IS_ERR(inode))
5864 return ERR_CAST(inode);
5865
5866 /* Do extra check against inode mode with di_type */
5867 if (btrfs_inode_type(inode) != di_type) {
5868 btrfs_crit(fs_info,
5869 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5870 inode->vfs_inode.i_mode, btrfs_inode_type(inode),
5871 di_type);
5872 iput(&inode->vfs_inode);
5873 return ERR_PTR(-EUCLEAN);
5874 }
5875 return &inode->vfs_inode;
5876 }
5877
5878 ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry,
5879 &location, &sub_root);
5880 if (ret < 0) {
5881 if (ret != -ENOENT)
5882 inode = ERR_PTR(ret);
5883 else
5884 inode = new_simple_dir(dir, &location, root);
5885 } else {
5886 inode = btrfs_iget(location.objectid, sub_root);
5887 btrfs_put_root(sub_root);
5888
5889 if (IS_ERR(inode))
5890 return ERR_CAST(inode);
5891
5892 down_read(&fs_info->cleanup_work_sem);
5893 if (!sb_rdonly(inode->vfs_inode.i_sb))
5894 ret = btrfs_orphan_cleanup(sub_root);
5895 up_read(&fs_info->cleanup_work_sem);
5896 if (ret) {
5897 iput(&inode->vfs_inode);
5898 inode = ERR_PTR(ret);
5899 }
5900 }
5901
5902 if (IS_ERR(inode))
5903 return ERR_CAST(inode);
5904
5905 return &inode->vfs_inode;
5906 }
5907
btrfs_dentry_delete(const struct dentry * dentry)5908 static int btrfs_dentry_delete(const struct dentry *dentry)
5909 {
5910 struct btrfs_root *root;
5911 struct inode *inode = d_inode(dentry);
5912
5913 if (!inode && !IS_ROOT(dentry))
5914 inode = d_inode(dentry->d_parent);
5915
5916 if (inode) {
5917 root = BTRFS_I(inode)->root;
5918 if (btrfs_root_refs(&root->root_item) == 0)
5919 return 1;
5920
5921 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5922 return 1;
5923 }
5924 return 0;
5925 }
5926
btrfs_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)5927 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5928 unsigned int flags)
5929 {
5930 struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5931
5932 if (inode == ERR_PTR(-ENOENT))
5933 inode = NULL;
5934 return d_splice_alias(inode, dentry);
5935 }
5936
5937 /*
5938 * Find the highest existing sequence number in a directory and then set the
5939 * in-memory index_cnt variable to the first free sequence number.
5940 */
btrfs_set_inode_index_count(struct btrfs_inode * inode)5941 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
5942 {
5943 struct btrfs_root *root = inode->root;
5944 struct btrfs_key key, found_key;
5945 BTRFS_PATH_AUTO_FREE(path);
5946 struct extent_buffer *leaf;
5947 int ret;
5948
5949 key.objectid = btrfs_ino(inode);
5950 key.type = BTRFS_DIR_INDEX_KEY;
5951 key.offset = (u64)-1;
5952
5953 path = btrfs_alloc_path();
5954 if (!path)
5955 return -ENOMEM;
5956
5957 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5958 if (ret < 0)
5959 return ret;
5960 /* FIXME: we should be able to handle this */
5961 if (ret == 0)
5962 return ret;
5963
5964 if (path->slots[0] == 0) {
5965 inode->index_cnt = BTRFS_DIR_START_INDEX;
5966 return 0;
5967 }
5968
5969 path->slots[0]--;
5970
5971 leaf = path->nodes[0];
5972 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5973
5974 if (found_key.objectid != btrfs_ino(inode) ||
5975 found_key.type != BTRFS_DIR_INDEX_KEY) {
5976 inode->index_cnt = BTRFS_DIR_START_INDEX;
5977 return 0;
5978 }
5979
5980 inode->index_cnt = found_key.offset + 1;
5981
5982 return 0;
5983 }
5984
btrfs_get_dir_last_index(struct btrfs_inode * dir,u64 * index)5985 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index)
5986 {
5987 int ret = 0;
5988
5989 btrfs_inode_lock(dir, 0);
5990 if (dir->index_cnt == (u64)-1) {
5991 ret = btrfs_inode_delayed_dir_index_count(dir);
5992 if (ret) {
5993 ret = btrfs_set_inode_index_count(dir);
5994 if (ret)
5995 goto out;
5996 }
5997 }
5998
5999 /* index_cnt is the index number of next new entry, so decrement it. */
6000 *index = dir->index_cnt - 1;
6001 out:
6002 btrfs_inode_unlock(dir, 0);
6003
6004 return ret;
6005 }
6006
6007 /*
6008 * All this infrastructure exists because dir_emit can fault, and we are holding
6009 * the tree lock when doing readdir. For now just allocate a buffer and copy
6010 * our information into that, and then dir_emit from the buffer. This is
6011 * similar to what NFS does, only we don't keep the buffer around in pagecache
6012 * because I'm afraid I'll mess that up. Long term we need to make filldir do
6013 * copy_to_user_inatomic so we don't have to worry about page faulting under the
6014 * tree lock.
6015 */
btrfs_opendir(struct inode * inode,struct file * file)6016 static int btrfs_opendir(struct inode *inode, struct file *file)
6017 {
6018 struct btrfs_file_private *private;
6019 u64 last_index;
6020 int ret;
6021
6022 ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index);
6023 if (ret)
6024 return ret;
6025
6026 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
6027 if (!private)
6028 return -ENOMEM;
6029 private->last_index = last_index;
6030 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
6031 if (!private->filldir_buf) {
6032 kfree(private);
6033 return -ENOMEM;
6034 }
6035 file->private_data = private;
6036 return 0;
6037 }
6038
btrfs_dir_llseek(struct file * file,loff_t offset,int whence)6039 static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence)
6040 {
6041 struct btrfs_file_private *private = file->private_data;
6042 int ret;
6043
6044 ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)),
6045 &private->last_index);
6046 if (ret)
6047 return ret;
6048
6049 return generic_file_llseek(file, offset, whence);
6050 }
6051
6052 struct dir_entry {
6053 u64 ino;
6054 u64 offset;
6055 unsigned type;
6056 int name_len;
6057 };
6058
btrfs_filldir(void * addr,int entries,struct dir_context * ctx)6059 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
6060 {
6061 while (entries--) {
6062 struct dir_entry *entry = addr;
6063 char *name = (char *)(entry + 1);
6064
6065 ctx->pos = get_unaligned(&entry->offset);
6066 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
6067 get_unaligned(&entry->ino),
6068 get_unaligned(&entry->type)))
6069 return 1;
6070 addr += sizeof(struct dir_entry) +
6071 get_unaligned(&entry->name_len);
6072 ctx->pos++;
6073 }
6074 return 0;
6075 }
6076
btrfs_real_readdir(struct file * file,struct dir_context * ctx)6077 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
6078 {
6079 struct inode *inode = file_inode(file);
6080 struct btrfs_root *root = BTRFS_I(inode)->root;
6081 struct btrfs_file_private *private = file->private_data;
6082 struct btrfs_dir_item *di;
6083 struct btrfs_key key;
6084 struct btrfs_key found_key;
6085 BTRFS_PATH_AUTO_FREE(path);
6086 void *addr;
6087 LIST_HEAD(ins_list);
6088 LIST_HEAD(del_list);
6089 int ret;
6090 char *name_ptr;
6091 int name_len;
6092 int entries = 0;
6093 int total_len = 0;
6094 bool put = false;
6095 struct btrfs_key location;
6096
6097 if (!dir_emit_dots(file, ctx))
6098 return 0;
6099
6100 path = btrfs_alloc_path();
6101 if (!path)
6102 return -ENOMEM;
6103
6104 addr = private->filldir_buf;
6105 path->reada = READA_FORWARD;
6106
6107 put = btrfs_readdir_get_delayed_items(BTRFS_I(inode), private->last_index,
6108 &ins_list, &del_list);
6109
6110 again:
6111 key.type = BTRFS_DIR_INDEX_KEY;
6112 key.offset = ctx->pos;
6113 key.objectid = btrfs_ino(BTRFS_I(inode));
6114
6115 btrfs_for_each_slot(root, &key, &found_key, path, ret) {
6116 struct dir_entry *entry;
6117 struct extent_buffer *leaf = path->nodes[0];
6118 u8 ftype;
6119
6120 if (found_key.objectid != key.objectid)
6121 break;
6122 if (found_key.type != BTRFS_DIR_INDEX_KEY)
6123 break;
6124 if (found_key.offset < ctx->pos)
6125 continue;
6126 if (found_key.offset > private->last_index)
6127 break;
6128 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
6129 continue;
6130 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
6131 name_len = btrfs_dir_name_len(leaf, di);
6132 if ((total_len + sizeof(struct dir_entry) + name_len) >=
6133 PAGE_SIZE) {
6134 btrfs_release_path(path);
6135 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6136 if (ret)
6137 goto nopos;
6138 addr = private->filldir_buf;
6139 entries = 0;
6140 total_len = 0;
6141 goto again;
6142 }
6143
6144 ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di));
6145 entry = addr;
6146 name_ptr = (char *)(entry + 1);
6147 read_extent_buffer(leaf, name_ptr,
6148 (unsigned long)(di + 1), name_len);
6149 put_unaligned(name_len, &entry->name_len);
6150 put_unaligned(fs_ftype_to_dtype(ftype), &entry->type);
6151 btrfs_dir_item_key_to_cpu(leaf, di, &location);
6152 put_unaligned(location.objectid, &entry->ino);
6153 put_unaligned(found_key.offset, &entry->offset);
6154 entries++;
6155 addr += sizeof(struct dir_entry) + name_len;
6156 total_len += sizeof(struct dir_entry) + name_len;
6157 }
6158 /* Catch error encountered during iteration */
6159 if (ret < 0)
6160 goto err;
6161
6162 btrfs_release_path(path);
6163
6164 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6165 if (ret)
6166 goto nopos;
6167
6168 if (btrfs_readdir_delayed_dir_index(ctx, &ins_list))
6169 goto nopos;
6170
6171 /*
6172 * Stop new entries from being returned after we return the last
6173 * entry.
6174 *
6175 * New directory entries are assigned a strictly increasing
6176 * offset. This means that new entries created during readdir
6177 * are *guaranteed* to be seen in the future by that readdir.
6178 * This has broken buggy programs which operate on names as
6179 * they're returned by readdir. Until we reuse freed offsets
6180 * we have this hack to stop new entries from being returned
6181 * under the assumption that they'll never reach this huge
6182 * offset.
6183 *
6184 * This is being careful not to overflow 32bit loff_t unless the
6185 * last entry requires it because doing so has broken 32bit apps
6186 * in the past.
6187 */
6188 if (ctx->pos >= INT_MAX)
6189 ctx->pos = LLONG_MAX;
6190 else
6191 ctx->pos = INT_MAX;
6192 nopos:
6193 ret = 0;
6194 err:
6195 if (put)
6196 btrfs_readdir_put_delayed_items(BTRFS_I(inode), &ins_list, &del_list);
6197 return ret;
6198 }
6199
6200 /*
6201 * This is somewhat expensive, updating the tree every time the
6202 * inode changes. But, it is most likely to find the inode in cache.
6203 * FIXME, needs more benchmarking...there are no reasons other than performance
6204 * to keep or drop this code.
6205 */
btrfs_dirty_inode(struct btrfs_inode * inode)6206 static int btrfs_dirty_inode(struct btrfs_inode *inode)
6207 {
6208 struct btrfs_root *root = inode->root;
6209 struct btrfs_fs_info *fs_info = root->fs_info;
6210 struct btrfs_trans_handle *trans;
6211 int ret;
6212
6213 if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags))
6214 return 0;
6215
6216 trans = btrfs_join_transaction(root);
6217 if (IS_ERR(trans))
6218 return PTR_ERR(trans);
6219
6220 ret = btrfs_update_inode(trans, inode);
6221 if (ret == -ENOSPC || ret == -EDQUOT) {
6222 /* whoops, lets try again with the full transaction */
6223 btrfs_end_transaction(trans);
6224 trans = btrfs_start_transaction(root, 1);
6225 if (IS_ERR(trans))
6226 return PTR_ERR(trans);
6227
6228 ret = btrfs_update_inode(trans, inode);
6229 }
6230 btrfs_end_transaction(trans);
6231 if (inode->delayed_node)
6232 btrfs_balance_delayed_items(fs_info);
6233
6234 return ret;
6235 }
6236
6237 /*
6238 * This is a copy of file_update_time. We need this so we can return error on
6239 * ENOSPC for updating the inode in the case of file write and mmap writes.
6240 */
btrfs_update_time(struct inode * inode,int flags)6241 static int btrfs_update_time(struct inode *inode, int flags)
6242 {
6243 struct btrfs_root *root = BTRFS_I(inode)->root;
6244 bool dirty;
6245
6246 if (btrfs_root_readonly(root))
6247 return -EROFS;
6248
6249 dirty = inode_update_timestamps(inode, flags);
6250 return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0;
6251 }
6252
6253 /*
6254 * helper to find a free sequence number in a given directory. This current
6255 * code is very simple, later versions will do smarter things in the btree
6256 */
btrfs_set_inode_index(struct btrfs_inode * dir,u64 * index)6257 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6258 {
6259 int ret = 0;
6260
6261 if (dir->index_cnt == (u64)-1) {
6262 ret = btrfs_inode_delayed_dir_index_count(dir);
6263 if (ret) {
6264 ret = btrfs_set_inode_index_count(dir);
6265 if (ret)
6266 return ret;
6267 }
6268 }
6269
6270 *index = dir->index_cnt;
6271 dir->index_cnt++;
6272
6273 return ret;
6274 }
6275
btrfs_insert_inode_locked(struct inode * inode)6276 static int btrfs_insert_inode_locked(struct inode *inode)
6277 {
6278 struct btrfs_iget_args args;
6279
6280 args.ino = btrfs_ino(BTRFS_I(inode));
6281 args.root = BTRFS_I(inode)->root;
6282
6283 return insert_inode_locked4(inode,
6284 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6285 btrfs_find_actor, &args);
6286 }
6287
btrfs_new_inode_prepare(struct btrfs_new_inode_args * args,unsigned int * trans_num_items)6288 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
6289 unsigned int *trans_num_items)
6290 {
6291 struct inode *dir = args->dir;
6292 struct inode *inode = args->inode;
6293 int ret;
6294
6295 if (!args->orphan) {
6296 ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0,
6297 &args->fname);
6298 if (ret)
6299 return ret;
6300 }
6301
6302 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl);
6303 if (ret) {
6304 fscrypt_free_filename(&args->fname);
6305 return ret;
6306 }
6307
6308 /* 1 to add inode item */
6309 *trans_num_items = 1;
6310 /* 1 to add compression property */
6311 if (BTRFS_I(dir)->prop_compress)
6312 (*trans_num_items)++;
6313 /* 1 to add default ACL xattr */
6314 if (args->default_acl)
6315 (*trans_num_items)++;
6316 /* 1 to add access ACL xattr */
6317 if (args->acl)
6318 (*trans_num_items)++;
6319 #ifdef CONFIG_SECURITY
6320 /* 1 to add LSM xattr */
6321 if (dir->i_security)
6322 (*trans_num_items)++;
6323 #endif
6324 if (args->orphan) {
6325 /* 1 to add orphan item */
6326 (*trans_num_items)++;
6327 } else {
6328 /*
6329 * 1 to add dir item
6330 * 1 to add dir index
6331 * 1 to update parent inode item
6332 *
6333 * No need for 1 unit for the inode ref item because it is
6334 * inserted in a batch together with the inode item at
6335 * btrfs_create_new_inode().
6336 */
6337 *trans_num_items += 3;
6338 }
6339 return 0;
6340 }
6341
btrfs_new_inode_args_destroy(struct btrfs_new_inode_args * args)6342 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args)
6343 {
6344 posix_acl_release(args->acl);
6345 posix_acl_release(args->default_acl);
6346 fscrypt_free_filename(&args->fname);
6347 }
6348
6349 /*
6350 * Inherit flags from the parent inode.
6351 *
6352 * Currently only the compression flags and the cow flags are inherited.
6353 */
btrfs_inherit_iflags(struct btrfs_inode * inode,struct btrfs_inode * dir)6354 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir)
6355 {
6356 unsigned int flags;
6357
6358 flags = dir->flags;
6359
6360 if (flags & BTRFS_INODE_NOCOMPRESS) {
6361 inode->flags &= ~BTRFS_INODE_COMPRESS;
6362 inode->flags |= BTRFS_INODE_NOCOMPRESS;
6363 } else if (flags & BTRFS_INODE_COMPRESS) {
6364 inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
6365 inode->flags |= BTRFS_INODE_COMPRESS;
6366 }
6367
6368 if (flags & BTRFS_INODE_NODATACOW) {
6369 inode->flags |= BTRFS_INODE_NODATACOW;
6370 if (S_ISREG(inode->vfs_inode.i_mode))
6371 inode->flags |= BTRFS_INODE_NODATASUM;
6372 }
6373
6374 btrfs_sync_inode_flags_to_i_flags(inode);
6375 }
6376
btrfs_create_new_inode(struct btrfs_trans_handle * trans,struct btrfs_new_inode_args * args)6377 int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
6378 struct btrfs_new_inode_args *args)
6379 {
6380 struct timespec64 ts;
6381 struct inode *dir = args->dir;
6382 struct inode *inode = args->inode;
6383 const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name;
6384 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
6385 struct btrfs_root *root;
6386 struct btrfs_inode_item *inode_item;
6387 struct btrfs_path *path;
6388 u64 objectid;
6389 struct btrfs_inode_ref *ref;
6390 struct btrfs_key key[2];
6391 u32 sizes[2];
6392 struct btrfs_item_batch batch;
6393 unsigned long ptr;
6394 int ret;
6395 bool xa_reserved = false;
6396
6397 path = btrfs_alloc_path();
6398 if (!path)
6399 return -ENOMEM;
6400
6401 if (!args->subvol)
6402 BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root);
6403 root = BTRFS_I(inode)->root;
6404
6405 ret = btrfs_init_file_extent_tree(BTRFS_I(inode));
6406 if (ret)
6407 goto out;
6408
6409 ret = btrfs_get_free_objectid(root, &objectid);
6410 if (ret)
6411 goto out;
6412 btrfs_set_inode_number(BTRFS_I(inode), objectid);
6413
6414 ret = xa_reserve(&root->inodes, objectid, GFP_NOFS);
6415 if (ret)
6416 goto out;
6417 xa_reserved = true;
6418
6419 if (args->orphan) {
6420 /*
6421 * O_TMPFILE, set link count to 0, so that after this point, we
6422 * fill in an inode item with the correct link count.
6423 */
6424 set_nlink(inode, 0);
6425 } else {
6426 trace_btrfs_inode_request(dir);
6427
6428 ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index);
6429 if (ret)
6430 goto out;
6431 }
6432
6433 if (S_ISDIR(inode->i_mode))
6434 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX;
6435
6436 BTRFS_I(inode)->generation = trans->transid;
6437 inode->i_generation = BTRFS_I(inode)->generation;
6438
6439 /*
6440 * We don't have any capability xattrs set here yet, shortcut any
6441 * queries for the xattrs here. If we add them later via the inode
6442 * security init path or any other path this flag will be cleared.
6443 */
6444 set_bit(BTRFS_INODE_NO_CAP_XATTR, &BTRFS_I(inode)->runtime_flags);
6445
6446 /*
6447 * Subvolumes don't inherit flags from their parent directory.
6448 * Originally this was probably by accident, but we probably can't
6449 * change it now without compatibility issues.
6450 */
6451 if (!args->subvol)
6452 btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir));
6453
6454 if (S_ISREG(inode->i_mode)) {
6455 if (btrfs_test_opt(fs_info, NODATASUM))
6456 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6457 if (btrfs_test_opt(fs_info, NODATACOW))
6458 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6459 BTRFS_INODE_NODATASUM;
6460 btrfs_update_inode_mapping_flags(BTRFS_I(inode));
6461 btrfs_set_inode_mapping_order(BTRFS_I(inode));
6462 }
6463
6464 ret = btrfs_insert_inode_locked(inode);
6465 if (ret < 0) {
6466 if (!args->orphan)
6467 BTRFS_I(dir)->index_cnt--;
6468 goto out;
6469 }
6470
6471 /*
6472 * We could have gotten an inode number from somebody who was fsynced
6473 * and then removed in this same transaction, so let's just set full
6474 * sync since it will be a full sync anyway and this will blow away the
6475 * old info in the log.
6476 */
6477 btrfs_set_inode_full_sync(BTRFS_I(inode));
6478
6479 key[0].objectid = objectid;
6480 key[0].type = BTRFS_INODE_ITEM_KEY;
6481 key[0].offset = 0;
6482
6483 sizes[0] = sizeof(struct btrfs_inode_item);
6484
6485 if (!args->orphan) {
6486 /*
6487 * Start new inodes with an inode_ref. This is slightly more
6488 * efficient for small numbers of hard links since they will
6489 * be packed into one item. Extended refs will kick in if we
6490 * add more hard links than can fit in the ref item.
6491 */
6492 key[1].objectid = objectid;
6493 key[1].type = BTRFS_INODE_REF_KEY;
6494 if (args->subvol) {
6495 key[1].offset = objectid;
6496 sizes[1] = 2 + sizeof(*ref);
6497 } else {
6498 key[1].offset = btrfs_ino(BTRFS_I(dir));
6499 sizes[1] = name->len + sizeof(*ref);
6500 }
6501 }
6502
6503 batch.keys = &key[0];
6504 batch.data_sizes = &sizes[0];
6505 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]);
6506 batch.nr = args->orphan ? 1 : 2;
6507 ret = btrfs_insert_empty_items(trans, root, path, &batch);
6508 if (ret != 0) {
6509 btrfs_abort_transaction(trans, ret);
6510 goto discard;
6511 }
6512
6513 ts = simple_inode_init_ts(inode);
6514 BTRFS_I(inode)->i_otime_sec = ts.tv_sec;
6515 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec;
6516
6517 /*
6518 * We're going to fill the inode item now, so at this point the inode
6519 * must be fully initialized.
6520 */
6521
6522 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6523 struct btrfs_inode_item);
6524 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6525 sizeof(*inode_item));
6526 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6527
6528 if (!args->orphan) {
6529 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6530 struct btrfs_inode_ref);
6531 ptr = (unsigned long)(ref + 1);
6532 if (args->subvol) {
6533 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2);
6534 btrfs_set_inode_ref_index(path->nodes[0], ref, 0);
6535 write_extent_buffer(path->nodes[0], "..", ptr, 2);
6536 } else {
6537 btrfs_set_inode_ref_name_len(path->nodes[0], ref,
6538 name->len);
6539 btrfs_set_inode_ref_index(path->nodes[0], ref,
6540 BTRFS_I(inode)->dir_index);
6541 write_extent_buffer(path->nodes[0], name->name, ptr,
6542 name->len);
6543 }
6544 }
6545
6546 /*
6547 * We don't need the path anymore, plus inheriting properties, adding
6548 * ACLs, security xattrs, orphan item or adding the link, will result in
6549 * allocating yet another path. So just free our path.
6550 */
6551 btrfs_free_path(path);
6552 path = NULL;
6553
6554 if (args->subvol) {
6555 struct btrfs_inode *parent;
6556
6557 /*
6558 * Subvolumes inherit properties from their parent subvolume,
6559 * not the directory they were created in.
6560 */
6561 parent = btrfs_iget(BTRFS_FIRST_FREE_OBJECTID, BTRFS_I(dir)->root);
6562 if (IS_ERR(parent)) {
6563 ret = PTR_ERR(parent);
6564 } else {
6565 ret = btrfs_inode_inherit_props(trans, BTRFS_I(inode),
6566 parent);
6567 iput(&parent->vfs_inode);
6568 }
6569 } else {
6570 ret = btrfs_inode_inherit_props(trans, BTRFS_I(inode),
6571 BTRFS_I(dir));
6572 }
6573 if (ret) {
6574 btrfs_err(fs_info,
6575 "error inheriting props for ino %llu (root %llu): %d",
6576 btrfs_ino(BTRFS_I(inode)), btrfs_root_id(root), ret);
6577 }
6578
6579 /*
6580 * Subvolumes don't inherit ACLs or get passed to the LSM. This is
6581 * probably a bug.
6582 */
6583 if (!args->subvol) {
6584 ret = btrfs_init_inode_security(trans, args);
6585 if (ret) {
6586 btrfs_abort_transaction(trans, ret);
6587 goto discard;
6588 }
6589 }
6590
6591 ret = btrfs_add_inode_to_root(BTRFS_I(inode), false);
6592 if (WARN_ON(ret)) {
6593 /* Shouldn't happen, we used xa_reserve() before. */
6594 btrfs_abort_transaction(trans, ret);
6595 goto discard;
6596 }
6597
6598 trace_btrfs_inode_new(inode);
6599 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6600
6601 btrfs_update_root_times(trans, root);
6602
6603 if (args->orphan) {
6604 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
6605 if (ret) {
6606 btrfs_abort_transaction(trans, ret);
6607 goto discard;
6608 }
6609 } else {
6610 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
6611 0, BTRFS_I(inode)->dir_index);
6612 if (ret) {
6613 btrfs_abort_transaction(trans, ret);
6614 goto discard;
6615 }
6616 }
6617
6618 return 0;
6619
6620 discard:
6621 /*
6622 * discard_new_inode() calls iput(), but the caller owns the reference
6623 * to the inode.
6624 */
6625 ihold(inode);
6626 discard_new_inode(inode);
6627 out:
6628 if (xa_reserved)
6629 xa_release(&root->inodes, objectid);
6630
6631 btrfs_free_path(path);
6632 return ret;
6633 }
6634
6635 /*
6636 * utility function to add 'inode' into 'parent_inode' with
6637 * a give name and a given sequence number.
6638 * if 'add_backref' is true, also insert a backref from the
6639 * inode to the parent directory.
6640 */
btrfs_add_link(struct btrfs_trans_handle * trans,struct btrfs_inode * parent_inode,struct btrfs_inode * inode,const struct fscrypt_str * name,int add_backref,u64 index)6641 int btrfs_add_link(struct btrfs_trans_handle *trans,
6642 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6643 const struct fscrypt_str *name, int add_backref, u64 index)
6644 {
6645 int ret = 0;
6646 struct btrfs_key key;
6647 struct btrfs_root *root = parent_inode->root;
6648 u64 ino = btrfs_ino(inode);
6649 u64 parent_ino = btrfs_ino(parent_inode);
6650
6651 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6652 memcpy(&key, &inode->root->root_key, sizeof(key));
6653 } else {
6654 key.objectid = ino;
6655 key.type = BTRFS_INODE_ITEM_KEY;
6656 key.offset = 0;
6657 }
6658
6659 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6660 ret = btrfs_add_root_ref(trans, key.objectid,
6661 btrfs_root_id(root), parent_ino,
6662 index, name);
6663 } else if (add_backref) {
6664 ret = btrfs_insert_inode_ref(trans, root, name,
6665 ino, parent_ino, index);
6666 }
6667
6668 /* Nothing to clean up yet */
6669 if (ret)
6670 return ret;
6671
6672 ret = btrfs_insert_dir_item(trans, name, parent_inode, &key,
6673 btrfs_inode_type(inode), index);
6674 if (ret == -EEXIST || ret == -EOVERFLOW)
6675 goto fail_dir_item;
6676 else if (ret) {
6677 btrfs_abort_transaction(trans, ret);
6678 return ret;
6679 }
6680
6681 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6682 name->len * 2);
6683 inode_inc_iversion(&parent_inode->vfs_inode);
6684 /*
6685 * If we are replaying a log tree, we do not want to update the mtime
6686 * and ctime of the parent directory with the current time, since the
6687 * log replay procedure is responsible for setting them to their correct
6688 * values (the ones it had when the fsync was done).
6689 */
6690 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags))
6691 inode_set_mtime_to_ts(&parent_inode->vfs_inode,
6692 inode_set_ctime_current(&parent_inode->vfs_inode));
6693
6694 ret = btrfs_update_inode(trans, parent_inode);
6695 if (ret)
6696 btrfs_abort_transaction(trans, ret);
6697 return ret;
6698
6699 fail_dir_item:
6700 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6701 u64 local_index;
6702 int ret2;
6703
6704 ret2 = btrfs_del_root_ref(trans, key.objectid, btrfs_root_id(root),
6705 parent_ino, &local_index, name);
6706 if (ret2)
6707 btrfs_abort_transaction(trans, ret2);
6708 } else if (add_backref) {
6709 int ret2;
6710
6711 ret2 = btrfs_del_inode_ref(trans, root, name, ino, parent_ino, NULL);
6712 if (ret2)
6713 btrfs_abort_transaction(trans, ret2);
6714 }
6715
6716 /* Return the original error code */
6717 return ret;
6718 }
6719
btrfs_create_common(struct inode * dir,struct dentry * dentry,struct inode * inode)6720 static int btrfs_create_common(struct inode *dir, struct dentry *dentry,
6721 struct inode *inode)
6722 {
6723 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
6724 struct btrfs_root *root = BTRFS_I(dir)->root;
6725 struct btrfs_new_inode_args new_inode_args = {
6726 .dir = dir,
6727 .dentry = dentry,
6728 .inode = inode,
6729 };
6730 unsigned int trans_num_items;
6731 struct btrfs_trans_handle *trans;
6732 int ret;
6733
6734 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
6735 if (ret)
6736 goto out_inode;
6737
6738 trans = btrfs_start_transaction(root, trans_num_items);
6739 if (IS_ERR(trans)) {
6740 ret = PTR_ERR(trans);
6741 goto out_new_inode_args;
6742 }
6743
6744 ret = btrfs_create_new_inode(trans, &new_inode_args);
6745 if (!ret)
6746 d_instantiate_new(dentry, inode);
6747
6748 btrfs_end_transaction(trans);
6749 btrfs_btree_balance_dirty(fs_info);
6750 out_new_inode_args:
6751 btrfs_new_inode_args_destroy(&new_inode_args);
6752 out_inode:
6753 if (ret)
6754 iput(inode);
6755 return ret;
6756 }
6757
btrfs_mknod(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t rdev)6758 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
6759 struct dentry *dentry, umode_t mode, dev_t rdev)
6760 {
6761 struct inode *inode;
6762
6763 inode = new_inode(dir->i_sb);
6764 if (!inode)
6765 return -ENOMEM;
6766 inode_init_owner(idmap, inode, dir, mode);
6767 inode->i_op = &btrfs_special_inode_operations;
6768 init_special_inode(inode, inode->i_mode, rdev);
6769 return btrfs_create_common(dir, dentry, inode);
6770 }
6771
btrfs_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)6772 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir,
6773 struct dentry *dentry, umode_t mode, bool excl)
6774 {
6775 struct inode *inode;
6776
6777 inode = new_inode(dir->i_sb);
6778 if (!inode)
6779 return -ENOMEM;
6780 inode_init_owner(idmap, inode, dir, mode);
6781 inode->i_fop = &btrfs_file_operations;
6782 inode->i_op = &btrfs_file_inode_operations;
6783 inode->i_mapping->a_ops = &btrfs_aops;
6784 return btrfs_create_common(dir, dentry, inode);
6785 }
6786
btrfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)6787 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6788 struct dentry *dentry)
6789 {
6790 struct btrfs_trans_handle *trans = NULL;
6791 struct btrfs_root *root = BTRFS_I(dir)->root;
6792 struct inode *inode = d_inode(old_dentry);
6793 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
6794 struct fscrypt_name fname;
6795 u64 index;
6796 int ret;
6797 int drop_inode = 0;
6798
6799 /* do not allow sys_link's with other subvols of the same device */
6800 if (btrfs_root_id(root) != btrfs_root_id(BTRFS_I(inode)->root))
6801 return -EXDEV;
6802
6803 if (inode->i_nlink >= BTRFS_LINK_MAX)
6804 return -EMLINK;
6805
6806 ret = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname);
6807 if (ret)
6808 goto fail;
6809
6810 ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
6811 if (ret)
6812 goto fail;
6813
6814 /*
6815 * 2 items for inode and inode ref
6816 * 2 items for dir items
6817 * 1 item for parent inode
6818 * 1 item for orphan item deletion if O_TMPFILE
6819 */
6820 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6821 if (IS_ERR(trans)) {
6822 ret = PTR_ERR(trans);
6823 trans = NULL;
6824 goto fail;
6825 }
6826
6827 /* There are several dir indexes for this inode, clear the cache. */
6828 BTRFS_I(inode)->dir_index = 0ULL;
6829 inc_nlink(inode);
6830 inode_inc_iversion(inode);
6831 inode_set_ctime_current(inode);
6832 ihold(inode);
6833 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6834
6835 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6836 &fname.disk_name, 1, index);
6837
6838 if (ret) {
6839 drop_inode = 1;
6840 } else {
6841 struct dentry *parent = dentry->d_parent;
6842
6843 ret = btrfs_update_inode(trans, BTRFS_I(inode));
6844 if (ret)
6845 goto fail;
6846 if (inode->i_nlink == 1) {
6847 /*
6848 * If new hard link count is 1, it's a file created
6849 * with open(2) O_TMPFILE flag.
6850 */
6851 ret = btrfs_orphan_del(trans, BTRFS_I(inode));
6852 if (ret)
6853 goto fail;
6854 }
6855 d_instantiate(dentry, inode);
6856 btrfs_log_new_name(trans, old_dentry, NULL, 0, parent);
6857 }
6858
6859 fail:
6860 fscrypt_free_filename(&fname);
6861 if (trans)
6862 btrfs_end_transaction(trans);
6863 if (drop_inode) {
6864 inode_dec_link_count(inode);
6865 iput(inode);
6866 }
6867 btrfs_btree_balance_dirty(fs_info);
6868 return ret;
6869 }
6870
btrfs_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)6871 static struct dentry *btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
6872 struct dentry *dentry, umode_t mode)
6873 {
6874 struct inode *inode;
6875
6876 inode = new_inode(dir->i_sb);
6877 if (!inode)
6878 return ERR_PTR(-ENOMEM);
6879 inode_init_owner(idmap, inode, dir, S_IFDIR | mode);
6880 inode->i_op = &btrfs_dir_inode_operations;
6881 inode->i_fop = &btrfs_dir_file_operations;
6882 return ERR_PTR(btrfs_create_common(dir, dentry, inode));
6883 }
6884
uncompress_inline(struct btrfs_path * path,struct folio * folio,struct btrfs_file_extent_item * item)6885 static noinline int uncompress_inline(struct btrfs_path *path,
6886 struct folio *folio,
6887 struct btrfs_file_extent_item *item)
6888 {
6889 int ret;
6890 struct extent_buffer *leaf = path->nodes[0];
6891 const u32 blocksize = leaf->fs_info->sectorsize;
6892 char *tmp;
6893 size_t max_size;
6894 unsigned long inline_size;
6895 unsigned long ptr;
6896 int compress_type;
6897
6898 compress_type = btrfs_file_extent_compression(leaf, item);
6899 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6900 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
6901 tmp = kmalloc(inline_size, GFP_NOFS);
6902 if (!tmp)
6903 return -ENOMEM;
6904 ptr = btrfs_file_extent_inline_start(item);
6905
6906 read_extent_buffer(leaf, tmp, ptr, inline_size);
6907
6908 max_size = min_t(unsigned long, blocksize, max_size);
6909 ret = btrfs_decompress(compress_type, tmp, folio, 0, inline_size,
6910 max_size);
6911
6912 /*
6913 * decompression code contains a memset to fill in any space between the end
6914 * of the uncompressed data and the end of max_size in case the decompressed
6915 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6916 * the end of an inline extent and the beginning of the next block, so we
6917 * cover that region here.
6918 */
6919
6920 if (max_size < blocksize)
6921 folio_zero_range(folio, max_size, blocksize - max_size);
6922 kfree(tmp);
6923 return ret;
6924 }
6925
read_inline_extent(struct btrfs_path * path,struct folio * folio)6926 static int read_inline_extent(struct btrfs_path *path, struct folio *folio)
6927 {
6928 const u32 blocksize = path->nodes[0]->fs_info->sectorsize;
6929 struct btrfs_file_extent_item *fi;
6930 void *kaddr;
6931 size_t copy_size;
6932
6933 if (!folio || folio_test_uptodate(folio))
6934 return 0;
6935
6936 ASSERT(folio_pos(folio) == 0);
6937
6938 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
6939 struct btrfs_file_extent_item);
6940 if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE)
6941 return uncompress_inline(path, folio, fi);
6942
6943 copy_size = min_t(u64, blocksize,
6944 btrfs_file_extent_ram_bytes(path->nodes[0], fi));
6945 kaddr = kmap_local_folio(folio, 0);
6946 read_extent_buffer(path->nodes[0], kaddr,
6947 btrfs_file_extent_inline_start(fi), copy_size);
6948 kunmap_local(kaddr);
6949 if (copy_size < blocksize)
6950 folio_zero_range(folio, copy_size, blocksize - copy_size);
6951 return 0;
6952 }
6953
6954 /*
6955 * Lookup the first extent overlapping a range in a file.
6956 *
6957 * @inode: file to search in
6958 * @page: page to read extent data into if the extent is inline
6959 * @start: file offset
6960 * @len: length of range starting at @start
6961 *
6962 * Return the first &struct extent_map which overlaps the given range, reading
6963 * it from the B-tree and caching it if necessary. Note that there may be more
6964 * extents which overlap the given range after the returned extent_map.
6965 *
6966 * If @page is not NULL and the extent is inline, this also reads the extent
6967 * data directly into the page and marks the extent up to date in the io_tree.
6968 *
6969 * Return: ERR_PTR on error, non-NULL extent_map on success.
6970 */
btrfs_get_extent(struct btrfs_inode * inode,struct folio * folio,u64 start,u64 len)6971 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6972 struct folio *folio, u64 start, u64 len)
6973 {
6974 struct btrfs_fs_info *fs_info = inode->root->fs_info;
6975 int ret = 0;
6976 u64 extent_start = 0;
6977 u64 extent_end = 0;
6978 u64 objectid = btrfs_ino(inode);
6979 int extent_type = -1;
6980 struct btrfs_path *path = NULL;
6981 struct btrfs_root *root = inode->root;
6982 struct btrfs_file_extent_item *item;
6983 struct extent_buffer *leaf;
6984 struct btrfs_key found_key;
6985 struct extent_map *em = NULL;
6986 struct extent_map_tree *em_tree = &inode->extent_tree;
6987
6988 read_lock(&em_tree->lock);
6989 em = btrfs_lookup_extent_mapping(em_tree, start, len);
6990 read_unlock(&em_tree->lock);
6991
6992 if (em) {
6993 if (em->start > start || em->start + em->len <= start)
6994 btrfs_free_extent_map(em);
6995 else if (em->disk_bytenr == EXTENT_MAP_INLINE && folio)
6996 btrfs_free_extent_map(em);
6997 else
6998 goto out;
6999 }
7000 em = btrfs_alloc_extent_map();
7001 if (!em) {
7002 ret = -ENOMEM;
7003 goto out;
7004 }
7005 em->start = EXTENT_MAP_HOLE;
7006 em->disk_bytenr = EXTENT_MAP_HOLE;
7007 em->len = (u64)-1;
7008
7009 path = btrfs_alloc_path();
7010 if (!path) {
7011 ret = -ENOMEM;
7012 goto out;
7013 }
7014
7015 /* Chances are we'll be called again, so go ahead and do readahead */
7016 path->reada = READA_FORWARD;
7017
7018 /*
7019 * The same explanation in load_free_space_cache applies here as well,
7020 * we only read when we're loading the free space cache, and at that
7021 * point the commit_root has everything we need.
7022 */
7023 if (btrfs_is_free_space_inode(inode)) {
7024 path->search_commit_root = 1;
7025 path->skip_locking = 1;
7026 }
7027
7028 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
7029 if (ret < 0) {
7030 goto out;
7031 } else if (ret > 0) {
7032 if (path->slots[0] == 0)
7033 goto not_found;
7034 path->slots[0]--;
7035 ret = 0;
7036 }
7037
7038 leaf = path->nodes[0];
7039 item = btrfs_item_ptr(leaf, path->slots[0],
7040 struct btrfs_file_extent_item);
7041 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7042 if (found_key.objectid != objectid ||
7043 found_key.type != BTRFS_EXTENT_DATA_KEY) {
7044 /*
7045 * If we backup past the first extent we want to move forward
7046 * and see if there is an extent in front of us, otherwise we'll
7047 * say there is a hole for our whole search range which can
7048 * cause problems.
7049 */
7050 extent_end = start;
7051 goto next;
7052 }
7053
7054 extent_type = btrfs_file_extent_type(leaf, item);
7055 extent_start = found_key.offset;
7056 extent_end = btrfs_file_extent_end(path);
7057 if (extent_type == BTRFS_FILE_EXTENT_REG ||
7058 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
7059 /* Only regular file could have regular/prealloc extent */
7060 if (!S_ISREG(inode->vfs_inode.i_mode)) {
7061 ret = -EUCLEAN;
7062 btrfs_crit(fs_info,
7063 "regular/prealloc extent found for non-regular inode %llu",
7064 btrfs_ino(inode));
7065 goto out;
7066 }
7067 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
7068 extent_start);
7069 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
7070 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
7071 path->slots[0],
7072 extent_start);
7073 }
7074 next:
7075 if (start >= extent_end) {
7076 path->slots[0]++;
7077 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
7078 ret = btrfs_next_leaf(root, path);
7079 if (ret < 0)
7080 goto out;
7081 else if (ret > 0)
7082 goto not_found;
7083
7084 leaf = path->nodes[0];
7085 }
7086 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7087 if (found_key.objectid != objectid ||
7088 found_key.type != BTRFS_EXTENT_DATA_KEY)
7089 goto not_found;
7090 if (start + len <= found_key.offset)
7091 goto not_found;
7092 if (start > found_key.offset)
7093 goto next;
7094
7095 /* New extent overlaps with existing one */
7096 em->start = start;
7097 em->len = found_key.offset - start;
7098 em->disk_bytenr = EXTENT_MAP_HOLE;
7099 goto insert;
7100 }
7101
7102 btrfs_extent_item_to_extent_map(inode, path, item, em);
7103
7104 if (extent_type == BTRFS_FILE_EXTENT_REG ||
7105 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
7106 goto insert;
7107 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
7108 /*
7109 * Inline extent can only exist at file offset 0. This is
7110 * ensured by tree-checker and inline extent creation path.
7111 * Thus all members representing file offsets should be zero.
7112 */
7113 ASSERT(extent_start == 0);
7114 ASSERT(em->start == 0);
7115
7116 /*
7117 * btrfs_extent_item_to_extent_map() should have properly
7118 * initialized em members already.
7119 *
7120 * Other members are not utilized for inline extents.
7121 */
7122 ASSERT(em->disk_bytenr == EXTENT_MAP_INLINE);
7123 ASSERT(em->len == fs_info->sectorsize);
7124
7125 ret = read_inline_extent(path, folio);
7126 if (ret < 0)
7127 goto out;
7128 goto insert;
7129 }
7130 not_found:
7131 em->start = start;
7132 em->len = len;
7133 em->disk_bytenr = EXTENT_MAP_HOLE;
7134 insert:
7135 ret = 0;
7136 btrfs_release_path(path);
7137 if (em->start > start || btrfs_extent_map_end(em) <= start) {
7138 btrfs_err(fs_info,
7139 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7140 em->start, em->len, start, len);
7141 ret = -EIO;
7142 goto out;
7143 }
7144
7145 write_lock(&em_tree->lock);
7146 ret = btrfs_add_extent_mapping(inode, &em, start, len);
7147 write_unlock(&em_tree->lock);
7148 out:
7149 btrfs_free_path(path);
7150
7151 trace_btrfs_get_extent(root, inode, em);
7152
7153 if (ret) {
7154 btrfs_free_extent_map(em);
7155 return ERR_PTR(ret);
7156 }
7157 return em;
7158 }
7159
btrfs_extent_readonly(struct btrfs_fs_info * fs_info,u64 bytenr)7160 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
7161 {
7162 struct btrfs_block_group *block_group;
7163 bool readonly = false;
7164
7165 block_group = btrfs_lookup_block_group(fs_info, bytenr);
7166 if (!block_group || block_group->ro)
7167 readonly = true;
7168 if (block_group)
7169 btrfs_put_block_group(block_group);
7170 return readonly;
7171 }
7172
7173 /*
7174 * Check if we can do nocow write into the range [@offset, @offset + @len)
7175 *
7176 * @offset: File offset
7177 * @len: The length to write, will be updated to the nocow writeable
7178 * range
7179 * @orig_start: (optional) Return the original file offset of the file extent
7180 * @orig_len: (optional) Return the original on-disk length of the file extent
7181 * @ram_bytes: (optional) Return the ram_bytes of the file extent
7182 *
7183 * Return:
7184 * >0 and update @len if we can do nocow write
7185 * 0 if we can't do nocow write
7186 * <0 if error happened
7187 *
7188 * NOTE: This only checks the file extents, caller is responsible to wait for
7189 * any ordered extents.
7190 */
can_nocow_extent(struct btrfs_inode * inode,u64 offset,u64 * len,struct btrfs_file_extent * file_extent,bool nowait)7191 noinline int can_nocow_extent(struct btrfs_inode *inode, u64 offset, u64 *len,
7192 struct btrfs_file_extent *file_extent,
7193 bool nowait)
7194 {
7195 struct btrfs_root *root = inode->root;
7196 struct btrfs_fs_info *fs_info = root->fs_info;
7197 struct can_nocow_file_extent_args nocow_args = { 0 };
7198 BTRFS_PATH_AUTO_FREE(path);
7199 int ret;
7200 struct extent_buffer *leaf;
7201 struct extent_io_tree *io_tree = &inode->io_tree;
7202 struct btrfs_file_extent_item *fi;
7203 struct btrfs_key key;
7204 int found_type;
7205
7206 path = btrfs_alloc_path();
7207 if (!path)
7208 return -ENOMEM;
7209 path->nowait = nowait;
7210
7211 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
7212 offset, 0);
7213 if (ret < 0)
7214 return ret;
7215
7216 if (ret == 1) {
7217 if (path->slots[0] == 0) {
7218 /* Can't find the item, must COW. */
7219 return 0;
7220 }
7221 path->slots[0]--;
7222 }
7223 ret = 0;
7224 leaf = path->nodes[0];
7225 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
7226 if (key.objectid != btrfs_ino(inode) ||
7227 key.type != BTRFS_EXTENT_DATA_KEY) {
7228 /* Not our file or wrong item type, must COW. */
7229 return 0;
7230 }
7231
7232 if (key.offset > offset) {
7233 /* Wrong offset, must COW. */
7234 return 0;
7235 }
7236
7237 if (btrfs_file_extent_end(path) <= offset)
7238 return 0;
7239
7240 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
7241 found_type = btrfs_file_extent_type(leaf, fi);
7242
7243 nocow_args.start = offset;
7244 nocow_args.end = offset + *len - 1;
7245 nocow_args.free_path = true;
7246
7247 ret = can_nocow_file_extent(path, &key, inode, &nocow_args);
7248 /* can_nocow_file_extent() has freed the path. */
7249 path = NULL;
7250
7251 if (ret != 1) {
7252 /* Treat errors as not being able to NOCOW. */
7253 return 0;
7254 }
7255
7256 if (btrfs_extent_readonly(fs_info,
7257 nocow_args.file_extent.disk_bytenr +
7258 nocow_args.file_extent.offset))
7259 return 0;
7260
7261 if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
7262 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7263 u64 range_end;
7264
7265 range_end = round_up(offset + nocow_args.file_extent.num_bytes,
7266 root->fs_info->sectorsize) - 1;
7267 ret = btrfs_test_range_bit_exists(io_tree, offset, range_end,
7268 EXTENT_DELALLOC);
7269 if (ret)
7270 return -EAGAIN;
7271 }
7272
7273 if (file_extent)
7274 memcpy(file_extent, &nocow_args.file_extent, sizeof(*file_extent));
7275
7276 *len = nocow_args.file_extent.num_bytes;
7277
7278 return 1;
7279 }
7280
7281 /* The callers of this must take lock_extent() */
btrfs_create_io_em(struct btrfs_inode * inode,u64 start,const struct btrfs_file_extent * file_extent,int type)7282 struct extent_map *btrfs_create_io_em(struct btrfs_inode *inode, u64 start,
7283 const struct btrfs_file_extent *file_extent,
7284 int type)
7285 {
7286 struct extent_map *em;
7287 int ret;
7288
7289 /*
7290 * Note the missing NOCOW type.
7291 *
7292 * For pure NOCOW writes, we should not create an io extent map, but
7293 * just reusing the existing one.
7294 * Only PREALLOC writes (NOCOW write into preallocated range) can
7295 * create an io extent map.
7296 */
7297 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7298 type == BTRFS_ORDERED_COMPRESSED ||
7299 type == BTRFS_ORDERED_REGULAR);
7300
7301 switch (type) {
7302 case BTRFS_ORDERED_PREALLOC:
7303 /* We're only referring part of a larger preallocated extent. */
7304 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes);
7305 break;
7306 case BTRFS_ORDERED_REGULAR:
7307 /* COW results a new extent matching our file extent size. */
7308 ASSERT(file_extent->disk_num_bytes == file_extent->num_bytes);
7309 ASSERT(file_extent->ram_bytes == file_extent->num_bytes);
7310
7311 /* Since it's a new extent, we should not have any offset. */
7312 ASSERT(file_extent->offset == 0);
7313 break;
7314 case BTRFS_ORDERED_COMPRESSED:
7315 /* Must be compressed. */
7316 ASSERT(file_extent->compression != BTRFS_COMPRESS_NONE);
7317
7318 /*
7319 * Encoded write can make us to refer to part of the
7320 * uncompressed extent.
7321 */
7322 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes);
7323 break;
7324 }
7325
7326 em = btrfs_alloc_extent_map();
7327 if (!em)
7328 return ERR_PTR(-ENOMEM);
7329
7330 em->start = start;
7331 em->len = file_extent->num_bytes;
7332 em->disk_bytenr = file_extent->disk_bytenr;
7333 em->disk_num_bytes = file_extent->disk_num_bytes;
7334 em->ram_bytes = file_extent->ram_bytes;
7335 em->generation = -1;
7336 em->offset = file_extent->offset;
7337 em->flags |= EXTENT_FLAG_PINNED;
7338 if (type == BTRFS_ORDERED_COMPRESSED)
7339 btrfs_extent_map_set_compression(em, file_extent->compression);
7340
7341 ret = btrfs_replace_extent_map_range(inode, em, true);
7342 if (ret) {
7343 btrfs_free_extent_map(em);
7344 return ERR_PTR(ret);
7345 }
7346
7347 /* em got 2 refs now, callers needs to do btrfs_free_extent_map once. */
7348 return em;
7349 }
7350
7351 /*
7352 * For release_folio() and invalidate_folio() we have a race window where
7353 * folio_end_writeback() is called but the subpage spinlock is not yet released.
7354 * If we continue to release/invalidate the page, we could cause use-after-free
7355 * for subpage spinlock. So this function is to spin and wait for subpage
7356 * spinlock.
7357 */
wait_subpage_spinlock(struct folio * folio)7358 static void wait_subpage_spinlock(struct folio *folio)
7359 {
7360 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
7361 struct btrfs_folio_state *bfs;
7362
7363 if (!btrfs_is_subpage(fs_info, folio))
7364 return;
7365
7366 ASSERT(folio_test_private(folio) && folio_get_private(folio));
7367 bfs = folio_get_private(folio);
7368
7369 /*
7370 * This may look insane as we just acquire the spinlock and release it,
7371 * without doing anything. But we just want to make sure no one is
7372 * still holding the subpage spinlock.
7373 * And since the page is not dirty nor writeback, and we have page
7374 * locked, the only possible way to hold a spinlock is from the endio
7375 * function to clear page writeback.
7376 *
7377 * Here we just acquire the spinlock so that all existing callers
7378 * should exit and we're safe to release/invalidate the page.
7379 */
7380 spin_lock_irq(&bfs->lock);
7381 spin_unlock_irq(&bfs->lock);
7382 }
7383
btrfs_launder_folio(struct folio * folio)7384 static int btrfs_launder_folio(struct folio *folio)
7385 {
7386 return btrfs_qgroup_free_data(folio_to_inode(folio), NULL, folio_pos(folio),
7387 folio_size(folio), NULL);
7388 }
7389
__btrfs_release_folio(struct folio * folio,gfp_t gfp_flags)7390 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7391 {
7392 if (try_release_extent_mapping(folio, gfp_flags)) {
7393 wait_subpage_spinlock(folio);
7394 clear_folio_extent_mapped(folio);
7395 return true;
7396 }
7397 return false;
7398 }
7399
btrfs_release_folio(struct folio * folio,gfp_t gfp_flags)7400 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7401 {
7402 if (folio_test_writeback(folio) || folio_test_dirty(folio))
7403 return false;
7404 return __btrfs_release_folio(folio, gfp_flags);
7405 }
7406
7407 #ifdef CONFIG_MIGRATION
btrfs_migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode)7408 static int btrfs_migrate_folio(struct address_space *mapping,
7409 struct folio *dst, struct folio *src,
7410 enum migrate_mode mode)
7411 {
7412 int ret = filemap_migrate_folio(mapping, dst, src, mode);
7413
7414 if (ret != MIGRATEPAGE_SUCCESS)
7415 return ret;
7416
7417 if (folio_test_ordered(src)) {
7418 folio_clear_ordered(src);
7419 folio_set_ordered(dst);
7420 }
7421
7422 return MIGRATEPAGE_SUCCESS;
7423 }
7424 #else
7425 #define btrfs_migrate_folio NULL
7426 #endif
7427
btrfs_invalidate_folio(struct folio * folio,size_t offset,size_t length)7428 static void btrfs_invalidate_folio(struct folio *folio, size_t offset,
7429 size_t length)
7430 {
7431 struct btrfs_inode *inode = folio_to_inode(folio);
7432 struct btrfs_fs_info *fs_info = inode->root->fs_info;
7433 struct extent_io_tree *tree = &inode->io_tree;
7434 struct extent_state *cached_state = NULL;
7435 u64 page_start = folio_pos(folio);
7436 u64 page_end = page_start + folio_size(folio) - 1;
7437 u64 cur;
7438 int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
7439
7440 /*
7441 * We have folio locked so no new ordered extent can be created on this
7442 * page, nor bio can be submitted for this folio.
7443 *
7444 * But already submitted bio can still be finished on this folio.
7445 * Furthermore, endio function won't skip folio which has Ordered
7446 * already cleared, so it's possible for endio and
7447 * invalidate_folio to do the same ordered extent accounting twice
7448 * on one folio.
7449 *
7450 * So here we wait for any submitted bios to finish, so that we won't
7451 * do double ordered extent accounting on the same folio.
7452 */
7453 folio_wait_writeback(folio);
7454 wait_subpage_spinlock(folio);
7455
7456 /*
7457 * For subpage case, we have call sites like
7458 * btrfs_punch_hole_lock_range() which passes range not aligned to
7459 * sectorsize.
7460 * If the range doesn't cover the full folio, we don't need to and
7461 * shouldn't clear page extent mapped, as folio->private can still
7462 * record subpage dirty bits for other part of the range.
7463 *
7464 * For cases that invalidate the full folio even the range doesn't
7465 * cover the full folio, like invalidating the last folio, we're
7466 * still safe to wait for ordered extent to finish.
7467 */
7468 if (!(offset == 0 && length == folio_size(folio))) {
7469 btrfs_release_folio(folio, GFP_NOFS);
7470 return;
7471 }
7472
7473 if (!inode_evicting)
7474 btrfs_lock_extent(tree, page_start, page_end, &cached_state);
7475
7476 cur = page_start;
7477 while (cur < page_end) {
7478 struct btrfs_ordered_extent *ordered;
7479 u64 range_end;
7480 u32 range_len;
7481 u32 extra_flags = 0;
7482
7483 ordered = btrfs_lookup_first_ordered_range(inode, cur,
7484 page_end + 1 - cur);
7485 if (!ordered) {
7486 range_end = page_end;
7487 /*
7488 * No ordered extent covering this range, we are safe
7489 * to delete all extent states in the range.
7490 */
7491 extra_flags = EXTENT_CLEAR_ALL_BITS;
7492 goto next;
7493 }
7494 if (ordered->file_offset > cur) {
7495 /*
7496 * There is a range between [cur, oe->file_offset) not
7497 * covered by any ordered extent.
7498 * We are safe to delete all extent states, and handle
7499 * the ordered extent in the next iteration.
7500 */
7501 range_end = ordered->file_offset - 1;
7502 extra_flags = EXTENT_CLEAR_ALL_BITS;
7503 goto next;
7504 }
7505
7506 range_end = min(ordered->file_offset + ordered->num_bytes - 1,
7507 page_end);
7508 ASSERT(range_end + 1 - cur < U32_MAX);
7509 range_len = range_end + 1 - cur;
7510 if (!btrfs_folio_test_ordered(fs_info, folio, cur, range_len)) {
7511 /*
7512 * If Ordered is cleared, it means endio has
7513 * already been executed for the range.
7514 * We can't delete the extent states as
7515 * btrfs_finish_ordered_io() may still use some of them.
7516 */
7517 goto next;
7518 }
7519 btrfs_folio_clear_ordered(fs_info, folio, cur, range_len);
7520
7521 /*
7522 * IO on this page will never be started, so we need to account
7523 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
7524 * here, must leave that up for the ordered extent completion.
7525 *
7526 * This will also unlock the range for incoming
7527 * btrfs_finish_ordered_io().
7528 */
7529 if (!inode_evicting)
7530 btrfs_clear_extent_bit(tree, cur, range_end,
7531 EXTENT_DELALLOC |
7532 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
7533 EXTENT_DEFRAG, &cached_state);
7534
7535 spin_lock_irq(&inode->ordered_tree_lock);
7536 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
7537 ordered->truncated_len = min(ordered->truncated_len,
7538 cur - ordered->file_offset);
7539 spin_unlock_irq(&inode->ordered_tree_lock);
7540
7541 /*
7542 * If the ordered extent has finished, we're safe to delete all
7543 * the extent states of the range, otherwise
7544 * btrfs_finish_ordered_io() will get executed by endio for
7545 * other pages, so we can't delete extent states.
7546 */
7547 if (btrfs_dec_test_ordered_pending(inode, &ordered,
7548 cur, range_end + 1 - cur)) {
7549 btrfs_finish_ordered_io(ordered);
7550 /*
7551 * The ordered extent has finished, now we're again
7552 * safe to delete all extent states of the range.
7553 */
7554 extra_flags = EXTENT_CLEAR_ALL_BITS;
7555 }
7556 next:
7557 if (ordered)
7558 btrfs_put_ordered_extent(ordered);
7559 /*
7560 * Qgroup reserved space handler
7561 * Sector(s) here will be either:
7562 *
7563 * 1) Already written to disk or bio already finished
7564 * Then its QGROUP_RESERVED bit in io_tree is already cleared.
7565 * Qgroup will be handled by its qgroup_record then.
7566 * btrfs_qgroup_free_data() call will do nothing here.
7567 *
7568 * 2) Not written to disk yet
7569 * Then btrfs_qgroup_free_data() call will clear the
7570 * QGROUP_RESERVED bit of its io_tree, and free the qgroup
7571 * reserved data space.
7572 * Since the IO will never happen for this page.
7573 */
7574 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur, NULL);
7575 if (!inode_evicting)
7576 btrfs_clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED |
7577 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
7578 EXTENT_DEFRAG | extra_flags,
7579 &cached_state);
7580 cur = range_end + 1;
7581 }
7582 /*
7583 * We have iterated through all ordered extents of the page, the page
7584 * should not have Ordered anymore, or the above iteration
7585 * did something wrong.
7586 */
7587 ASSERT(!folio_test_ordered(folio));
7588 btrfs_folio_clear_checked(fs_info, folio, folio_pos(folio), folio_size(folio));
7589 if (!inode_evicting)
7590 __btrfs_release_folio(folio, GFP_NOFS);
7591 clear_folio_extent_mapped(folio);
7592 }
7593
btrfs_truncate(struct btrfs_inode * inode,bool skip_writeback)7594 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback)
7595 {
7596 struct btrfs_truncate_control control = {
7597 .inode = inode,
7598 .ino = btrfs_ino(inode),
7599 .min_type = BTRFS_EXTENT_DATA_KEY,
7600 .clear_extent_range = true,
7601 };
7602 struct btrfs_root *root = inode->root;
7603 struct btrfs_fs_info *fs_info = root->fs_info;
7604 struct btrfs_block_rsv rsv;
7605 int ret;
7606 struct btrfs_trans_handle *trans;
7607 u64 mask = fs_info->sectorsize - 1;
7608 const u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
7609
7610 if (!skip_writeback) {
7611 ret = btrfs_wait_ordered_range(inode,
7612 inode->vfs_inode.i_size & (~mask),
7613 (u64)-1);
7614 if (ret)
7615 return ret;
7616 }
7617
7618 /*
7619 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
7620 * things going on here:
7621 *
7622 * 1) We need to reserve space to update our inode.
7623 *
7624 * 2) We need to have something to cache all the space that is going to
7625 * be free'd up by the truncate operation, but also have some slack
7626 * space reserved in case it uses space during the truncate (thank you
7627 * very much snapshotting).
7628 *
7629 * And we need these to be separate. The fact is we can use a lot of
7630 * space doing the truncate, and we have no earthly idea how much space
7631 * we will use, so we need the truncate reservation to be separate so it
7632 * doesn't end up using space reserved for updating the inode. We also
7633 * need to be able to stop the transaction and start a new one, which
7634 * means we need to be able to update the inode several times, and we
7635 * have no idea of knowing how many times that will be, so we can't just
7636 * reserve 1 item for the entirety of the operation, so that has to be
7637 * done separately as well.
7638 *
7639 * So that leaves us with
7640 *
7641 * 1) rsv - for the truncate reservation, which we will steal from the
7642 * transaction reservation.
7643 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
7644 * updating the inode.
7645 */
7646 btrfs_init_metadata_block_rsv(fs_info, &rsv, BTRFS_BLOCK_RSV_TEMP);
7647 rsv.size = min_size;
7648 rsv.failfast = true;
7649
7650 /*
7651 * 1 for the truncate slack space
7652 * 1 for updating the inode.
7653 */
7654 trans = btrfs_start_transaction(root, 2);
7655 if (IS_ERR(trans)) {
7656 ret = PTR_ERR(trans);
7657 goto out;
7658 }
7659
7660 /* Migrate the slack space for the truncate to our reserve */
7661 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, &rsv,
7662 min_size, false);
7663 /*
7664 * We have reserved 2 metadata units when we started the transaction and
7665 * min_size matches 1 unit, so this should never fail, but if it does,
7666 * it's not critical we just fail truncation.
7667 */
7668 if (WARN_ON(ret)) {
7669 btrfs_end_transaction(trans);
7670 goto out;
7671 }
7672
7673 trans->block_rsv = &rsv;
7674
7675 while (1) {
7676 struct extent_state *cached_state = NULL;
7677 const u64 new_size = inode->vfs_inode.i_size;
7678 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
7679
7680 control.new_size = new_size;
7681 btrfs_lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
7682 /*
7683 * We want to drop from the next block forward in case this new
7684 * size is not block aligned since we will be keeping the last
7685 * block of the extent just the way it is.
7686 */
7687 btrfs_drop_extent_map_range(inode,
7688 ALIGN(new_size, fs_info->sectorsize),
7689 (u64)-1, false);
7690
7691 ret = btrfs_truncate_inode_items(trans, root, &control);
7692
7693 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
7694 btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
7695
7696 btrfs_unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
7697
7698 trans->block_rsv = &fs_info->trans_block_rsv;
7699 if (ret != -ENOSPC && ret != -EAGAIN)
7700 break;
7701
7702 ret = btrfs_update_inode(trans, inode);
7703 if (ret)
7704 break;
7705
7706 btrfs_end_transaction(trans);
7707 btrfs_btree_balance_dirty(fs_info);
7708
7709 trans = btrfs_start_transaction(root, 2);
7710 if (IS_ERR(trans)) {
7711 ret = PTR_ERR(trans);
7712 trans = NULL;
7713 break;
7714 }
7715
7716 btrfs_block_rsv_release(fs_info, &rsv, -1, NULL);
7717 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
7718 &rsv, min_size, false);
7719 /*
7720 * We have reserved 2 metadata units when we started the
7721 * transaction and min_size matches 1 unit, so this should never
7722 * fail, but if it does, it's not critical we just fail truncation.
7723 */
7724 if (WARN_ON(ret))
7725 break;
7726
7727 trans->block_rsv = &rsv;
7728 }
7729
7730 /*
7731 * We can't call btrfs_truncate_block inside a trans handle as we could
7732 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we
7733 * know we've truncated everything except the last little bit, and can
7734 * do btrfs_truncate_block and then update the disk_i_size.
7735 */
7736 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) {
7737 btrfs_end_transaction(trans);
7738 btrfs_btree_balance_dirty(fs_info);
7739
7740 ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size,
7741 inode->vfs_inode.i_size, (u64)-1);
7742 if (ret)
7743 goto out;
7744 trans = btrfs_start_transaction(root, 1);
7745 if (IS_ERR(trans)) {
7746 ret = PTR_ERR(trans);
7747 goto out;
7748 }
7749 btrfs_inode_safe_disk_i_size_write(inode, 0);
7750 }
7751
7752 if (trans) {
7753 int ret2;
7754
7755 trans->block_rsv = &fs_info->trans_block_rsv;
7756 ret2 = btrfs_update_inode(trans, inode);
7757 if (ret2 && !ret)
7758 ret = ret2;
7759
7760 ret2 = btrfs_end_transaction(trans);
7761 if (ret2 && !ret)
7762 ret = ret2;
7763 btrfs_btree_balance_dirty(fs_info);
7764 }
7765 out:
7766 btrfs_block_rsv_release(fs_info, &rsv, (u64)-1, NULL);
7767 /*
7768 * So if we truncate and then write and fsync we normally would just
7769 * write the extents that changed, which is a problem if we need to
7770 * first truncate that entire inode. So set this flag so we write out
7771 * all of the extents in the inode to the sync log so we're completely
7772 * safe.
7773 *
7774 * If no extents were dropped or trimmed we don't need to force the next
7775 * fsync to truncate all the inode's items from the log and re-log them
7776 * all. This means the truncate operation did not change the file size,
7777 * or changed it to a smaller size but there was only an implicit hole
7778 * between the old i_size and the new i_size, and there were no prealloc
7779 * extents beyond i_size to drop.
7780 */
7781 if (control.extents_found > 0)
7782 btrfs_set_inode_full_sync(inode);
7783
7784 return ret;
7785 }
7786
btrfs_new_subvol_inode(struct mnt_idmap * idmap,struct inode * dir)7787 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap,
7788 struct inode *dir)
7789 {
7790 struct inode *inode;
7791
7792 inode = new_inode(dir->i_sb);
7793 if (inode) {
7794 /*
7795 * Subvolumes don't inherit the sgid bit or the parent's gid if
7796 * the parent's sgid bit is set. This is probably a bug.
7797 */
7798 inode_init_owner(idmap, inode, NULL,
7799 S_IFDIR | (~current_umask() & S_IRWXUGO));
7800 inode->i_op = &btrfs_dir_inode_operations;
7801 inode->i_fop = &btrfs_dir_file_operations;
7802 }
7803 return inode;
7804 }
7805
btrfs_alloc_inode(struct super_block * sb)7806 struct inode *btrfs_alloc_inode(struct super_block *sb)
7807 {
7808 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
7809 struct btrfs_inode *ei;
7810 struct inode *inode;
7811
7812 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL);
7813 if (!ei)
7814 return NULL;
7815
7816 ei->root = NULL;
7817 ei->generation = 0;
7818 ei->last_trans = 0;
7819 ei->last_sub_trans = 0;
7820 ei->logged_trans = 0;
7821 ei->delalloc_bytes = 0;
7822 ei->new_delalloc_bytes = 0;
7823 ei->defrag_bytes = 0;
7824 ei->disk_i_size = 0;
7825 ei->flags = 0;
7826 ei->ro_flags = 0;
7827 /*
7828 * ->index_cnt will be properly initialized later when creating a new
7829 * inode (btrfs_create_new_inode()) or when reading an existing inode
7830 * from disk (btrfs_read_locked_inode()).
7831 */
7832 ei->csum_bytes = 0;
7833 ei->dir_index = 0;
7834 ei->last_unlink_trans = 0;
7835 ei->last_reflink_trans = 0;
7836 ei->last_log_commit = 0;
7837
7838 spin_lock_init(&ei->lock);
7839 ei->outstanding_extents = 0;
7840 if (sb->s_magic != BTRFS_TEST_MAGIC)
7841 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
7842 BTRFS_BLOCK_RSV_DELALLOC);
7843 ei->runtime_flags = 0;
7844 ei->prop_compress = BTRFS_COMPRESS_NONE;
7845 ei->defrag_compress = BTRFS_COMPRESS_NONE;
7846
7847 ei->delayed_node = NULL;
7848
7849 ei->i_otime_sec = 0;
7850 ei->i_otime_nsec = 0;
7851
7852 inode = &ei->vfs_inode;
7853 btrfs_extent_map_tree_init(&ei->extent_tree);
7854
7855 /* This io tree sets the valid inode. */
7856 btrfs_extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO);
7857 ei->io_tree.inode = ei;
7858
7859 ei->file_extent_tree = NULL;
7860
7861 mutex_init(&ei->log_mutex);
7862 spin_lock_init(&ei->ordered_tree_lock);
7863 ei->ordered_tree = RB_ROOT;
7864 ei->ordered_tree_last = NULL;
7865 INIT_LIST_HEAD(&ei->delalloc_inodes);
7866 INIT_LIST_HEAD(&ei->delayed_iput);
7867 init_rwsem(&ei->i_mmap_lock);
7868
7869 return inode;
7870 }
7871
7872 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
btrfs_test_destroy_inode(struct inode * inode)7873 void btrfs_test_destroy_inode(struct inode *inode)
7874 {
7875 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
7876 kfree(BTRFS_I(inode)->file_extent_tree);
7877 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7878 }
7879 #endif
7880
btrfs_free_inode(struct inode * inode)7881 void btrfs_free_inode(struct inode *inode)
7882 {
7883 kfree(BTRFS_I(inode)->file_extent_tree);
7884 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7885 }
7886
btrfs_destroy_inode(struct inode * vfs_inode)7887 void btrfs_destroy_inode(struct inode *vfs_inode)
7888 {
7889 struct btrfs_ordered_extent *ordered;
7890 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
7891 struct btrfs_root *root = inode->root;
7892 bool freespace_inode;
7893
7894 WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
7895 WARN_ON(vfs_inode->i_data.nrpages);
7896 WARN_ON(inode->block_rsv.reserved);
7897 WARN_ON(inode->block_rsv.size);
7898 WARN_ON(inode->outstanding_extents);
7899 if (!S_ISDIR(vfs_inode->i_mode)) {
7900 WARN_ON(inode->delalloc_bytes);
7901 WARN_ON(inode->new_delalloc_bytes);
7902 WARN_ON(inode->csum_bytes);
7903 }
7904 if (!root || !btrfs_is_data_reloc_root(root))
7905 WARN_ON(inode->defrag_bytes);
7906
7907 /*
7908 * This can happen where we create an inode, but somebody else also
7909 * created the same inode and we need to destroy the one we already
7910 * created.
7911 */
7912 if (!root)
7913 return;
7914
7915 /*
7916 * If this is a free space inode do not take the ordered extents lockdep
7917 * map.
7918 */
7919 freespace_inode = btrfs_is_free_space_inode(inode);
7920
7921 while (1) {
7922 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7923 if (!ordered)
7924 break;
7925 else {
7926 btrfs_err(root->fs_info,
7927 "found ordered extent %llu %llu on inode cleanup",
7928 ordered->file_offset, ordered->num_bytes);
7929
7930 if (!freespace_inode)
7931 btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent);
7932
7933 btrfs_remove_ordered_extent(inode, ordered);
7934 btrfs_put_ordered_extent(ordered);
7935 btrfs_put_ordered_extent(ordered);
7936 }
7937 }
7938 btrfs_qgroup_check_reserved_leak(inode);
7939 btrfs_del_inode_from_root(inode);
7940 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
7941 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
7942 btrfs_put_root(inode->root);
7943 }
7944
btrfs_drop_inode(struct inode * inode)7945 int btrfs_drop_inode(struct inode *inode)
7946 {
7947 struct btrfs_root *root = BTRFS_I(inode)->root;
7948
7949 if (root == NULL)
7950 return 1;
7951
7952 /* the snap/subvol tree is on deleting */
7953 if (btrfs_root_refs(&root->root_item) == 0)
7954 return 1;
7955 else
7956 return generic_drop_inode(inode);
7957 }
7958
init_once(void * foo)7959 static void init_once(void *foo)
7960 {
7961 struct btrfs_inode *ei = foo;
7962
7963 inode_init_once(&ei->vfs_inode);
7964 }
7965
btrfs_destroy_cachep(void)7966 void __cold btrfs_destroy_cachep(void)
7967 {
7968 /*
7969 * Make sure all delayed rcu free inodes are flushed before we
7970 * destroy cache.
7971 */
7972 rcu_barrier();
7973 kmem_cache_destroy(btrfs_inode_cachep);
7974 }
7975
btrfs_init_cachep(void)7976 int __init btrfs_init_cachep(void)
7977 {
7978 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
7979 sizeof(struct btrfs_inode), 0,
7980 SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT,
7981 init_once);
7982 if (!btrfs_inode_cachep)
7983 return -ENOMEM;
7984
7985 return 0;
7986 }
7987
btrfs_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int flags)7988 static int btrfs_getattr(struct mnt_idmap *idmap,
7989 const struct path *path, struct kstat *stat,
7990 u32 request_mask, unsigned int flags)
7991 {
7992 u64 delalloc_bytes;
7993 u64 inode_bytes;
7994 struct inode *inode = d_inode(path->dentry);
7995 u32 blocksize = btrfs_sb(inode->i_sb)->sectorsize;
7996 u32 bi_flags = BTRFS_I(inode)->flags;
7997 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
7998
7999 stat->result_mask |= STATX_BTIME;
8000 stat->btime.tv_sec = BTRFS_I(inode)->i_otime_sec;
8001 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime_nsec;
8002 if (bi_flags & BTRFS_INODE_APPEND)
8003 stat->attributes |= STATX_ATTR_APPEND;
8004 if (bi_flags & BTRFS_INODE_COMPRESS)
8005 stat->attributes |= STATX_ATTR_COMPRESSED;
8006 if (bi_flags & BTRFS_INODE_IMMUTABLE)
8007 stat->attributes |= STATX_ATTR_IMMUTABLE;
8008 if (bi_flags & BTRFS_INODE_NODUMP)
8009 stat->attributes |= STATX_ATTR_NODUMP;
8010 if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
8011 stat->attributes |= STATX_ATTR_VERITY;
8012
8013 stat->attributes_mask |= (STATX_ATTR_APPEND |
8014 STATX_ATTR_COMPRESSED |
8015 STATX_ATTR_IMMUTABLE |
8016 STATX_ATTR_NODUMP);
8017
8018 generic_fillattr(idmap, request_mask, inode, stat);
8019 stat->dev = BTRFS_I(inode)->root->anon_dev;
8020
8021 stat->subvol = btrfs_root_id(BTRFS_I(inode)->root);
8022 stat->result_mask |= STATX_SUBVOL;
8023
8024 spin_lock(&BTRFS_I(inode)->lock);
8025 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
8026 inode_bytes = inode_get_bytes(inode);
8027 spin_unlock(&BTRFS_I(inode)->lock);
8028 stat->blocks = (ALIGN(inode_bytes, blocksize) +
8029 ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT;
8030 return 0;
8031 }
8032
btrfs_rename_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)8033 static int btrfs_rename_exchange(struct inode *old_dir,
8034 struct dentry *old_dentry,
8035 struct inode *new_dir,
8036 struct dentry *new_dentry)
8037 {
8038 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir);
8039 struct btrfs_trans_handle *trans;
8040 unsigned int trans_num_items;
8041 struct btrfs_root *root = BTRFS_I(old_dir)->root;
8042 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8043 struct inode *new_inode = new_dentry->d_inode;
8044 struct inode *old_inode = old_dentry->d_inode;
8045 struct btrfs_rename_ctx old_rename_ctx;
8046 struct btrfs_rename_ctx new_rename_ctx;
8047 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8048 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
8049 u64 old_idx = 0;
8050 u64 new_idx = 0;
8051 int ret;
8052 int ret2;
8053 bool need_abort = false;
8054 bool logs_pinned = false;
8055 struct fscrypt_name old_fname, new_fname;
8056 struct fscrypt_str *old_name, *new_name;
8057
8058 /*
8059 * For non-subvolumes allow exchange only within one subvolume, in the
8060 * same inode namespace. Two subvolumes (represented as directory) can
8061 * be exchanged as they're a logical link and have a fixed inode number.
8062 */
8063 if (root != dest &&
8064 (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
8065 new_ino != BTRFS_FIRST_FREE_OBJECTID))
8066 return -EXDEV;
8067
8068 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
8069 if (ret)
8070 return ret;
8071
8072 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
8073 if (ret) {
8074 fscrypt_free_filename(&old_fname);
8075 return ret;
8076 }
8077
8078 old_name = &old_fname.disk_name;
8079 new_name = &new_fname.disk_name;
8080
8081 /* close the race window with snapshot create/destroy ioctl */
8082 if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
8083 new_ino == BTRFS_FIRST_FREE_OBJECTID)
8084 down_read(&fs_info->subvol_sem);
8085
8086 /*
8087 * For each inode:
8088 * 1 to remove old dir item
8089 * 1 to remove old dir index
8090 * 1 to add new dir item
8091 * 1 to add new dir index
8092 * 1 to update parent inode
8093 *
8094 * If the parents are the same, we only need to account for one
8095 */
8096 trans_num_items = (old_dir == new_dir ? 9 : 10);
8097 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8098 /*
8099 * 1 to remove old root ref
8100 * 1 to remove old root backref
8101 * 1 to add new root ref
8102 * 1 to add new root backref
8103 */
8104 trans_num_items += 4;
8105 } else {
8106 /*
8107 * 1 to update inode item
8108 * 1 to remove old inode ref
8109 * 1 to add new inode ref
8110 */
8111 trans_num_items += 3;
8112 }
8113 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
8114 trans_num_items += 4;
8115 else
8116 trans_num_items += 3;
8117 trans = btrfs_start_transaction(root, trans_num_items);
8118 if (IS_ERR(trans)) {
8119 ret = PTR_ERR(trans);
8120 goto out_notrans;
8121 }
8122
8123 if (dest != root) {
8124 ret = btrfs_record_root_in_trans(trans, dest);
8125 if (ret)
8126 goto out_fail;
8127 }
8128
8129 /*
8130 * We need to find a free sequence number both in the source and
8131 * in the destination directory for the exchange.
8132 */
8133 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
8134 if (ret)
8135 goto out_fail;
8136 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
8137 if (ret)
8138 goto out_fail;
8139
8140 BTRFS_I(old_inode)->dir_index = 0ULL;
8141 BTRFS_I(new_inode)->dir_index = 0ULL;
8142
8143 /* Reference for the source. */
8144 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8145 /* force full log commit if subvolume involved. */
8146 btrfs_set_log_full_commit(trans);
8147 } else {
8148 ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino,
8149 btrfs_ino(BTRFS_I(new_dir)),
8150 old_idx);
8151 if (ret)
8152 goto out_fail;
8153 need_abort = true;
8154 }
8155
8156 /* And now for the dest. */
8157 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8158 /* force full log commit if subvolume involved. */
8159 btrfs_set_log_full_commit(trans);
8160 } else {
8161 ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino,
8162 btrfs_ino(BTRFS_I(old_dir)),
8163 new_idx);
8164 if (ret) {
8165 if (need_abort)
8166 btrfs_abort_transaction(trans, ret);
8167 goto out_fail;
8168 }
8169 }
8170
8171 /* Update inode version and ctime/mtime. */
8172 inode_inc_iversion(old_dir);
8173 inode_inc_iversion(new_dir);
8174 inode_inc_iversion(old_inode);
8175 inode_inc_iversion(new_inode);
8176 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
8177
8178 if (old_ino != BTRFS_FIRST_FREE_OBJECTID &&
8179 new_ino != BTRFS_FIRST_FREE_OBJECTID) {
8180 /*
8181 * If we are renaming in the same directory (and it's not for
8182 * root entries) pin the log early to prevent any concurrent
8183 * task from logging the directory after we removed the old
8184 * entries and before we add the new entries, otherwise that
8185 * task can sync a log without any entry for the inodes we are
8186 * renaming and therefore replaying that log, if a power failure
8187 * happens after syncing the log, would result in deleting the
8188 * inodes.
8189 *
8190 * If the rename affects two different directories, we want to
8191 * make sure the that there's no log commit that contains
8192 * updates for only one of the directories but not for the
8193 * other.
8194 *
8195 * If we are renaming an entry for a root, we don't care about
8196 * log updates since we called btrfs_set_log_full_commit().
8197 */
8198 btrfs_pin_log_trans(root);
8199 btrfs_pin_log_trans(dest);
8200 logs_pinned = true;
8201 }
8202
8203 if (old_dentry->d_parent != new_dentry->d_parent) {
8204 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8205 BTRFS_I(old_inode), true);
8206 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
8207 BTRFS_I(new_inode), true);
8208 }
8209
8210 /* src is a subvolume */
8211 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8212 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
8213 if (ret) {
8214 btrfs_abort_transaction(trans, ret);
8215 goto out_fail;
8216 }
8217 } else { /* src is an inode */
8218 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
8219 BTRFS_I(old_dentry->d_inode),
8220 old_name, &old_rename_ctx);
8221 if (ret) {
8222 btrfs_abort_transaction(trans, ret);
8223 goto out_fail;
8224 }
8225 ret = btrfs_update_inode(trans, BTRFS_I(old_inode));
8226 if (ret) {
8227 btrfs_abort_transaction(trans, ret);
8228 goto out_fail;
8229 }
8230 }
8231
8232 /* dest is a subvolume */
8233 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8234 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
8235 if (ret) {
8236 btrfs_abort_transaction(trans, ret);
8237 goto out_fail;
8238 }
8239 } else { /* dest is an inode */
8240 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir),
8241 BTRFS_I(new_dentry->d_inode),
8242 new_name, &new_rename_ctx);
8243 if (ret) {
8244 btrfs_abort_transaction(trans, ret);
8245 goto out_fail;
8246 }
8247 ret = btrfs_update_inode(trans, BTRFS_I(new_inode));
8248 if (ret) {
8249 btrfs_abort_transaction(trans, ret);
8250 goto out_fail;
8251 }
8252 }
8253
8254 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8255 new_name, 0, old_idx);
8256 if (ret) {
8257 btrfs_abort_transaction(trans, ret);
8258 goto out_fail;
8259 }
8260
8261 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
8262 old_name, 0, new_idx);
8263 if (ret) {
8264 btrfs_abort_transaction(trans, ret);
8265 goto out_fail;
8266 }
8267
8268 if (old_inode->i_nlink == 1)
8269 BTRFS_I(old_inode)->dir_index = old_idx;
8270 if (new_inode->i_nlink == 1)
8271 BTRFS_I(new_inode)->dir_index = new_idx;
8272
8273 /*
8274 * Do the log updates for all inodes.
8275 *
8276 * If either entry is for a root we don't need to update the logs since
8277 * we've called btrfs_set_log_full_commit() before.
8278 */
8279 if (logs_pinned) {
8280 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
8281 old_rename_ctx.index, new_dentry->d_parent);
8282 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir),
8283 new_rename_ctx.index, old_dentry->d_parent);
8284 }
8285
8286 out_fail:
8287 if (logs_pinned) {
8288 btrfs_end_log_trans(root);
8289 btrfs_end_log_trans(dest);
8290 }
8291 ret2 = btrfs_end_transaction(trans);
8292 ret = ret ? ret : ret2;
8293 out_notrans:
8294 if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
8295 old_ino == BTRFS_FIRST_FREE_OBJECTID)
8296 up_read(&fs_info->subvol_sem);
8297
8298 fscrypt_free_filename(&new_fname);
8299 fscrypt_free_filename(&old_fname);
8300 return ret;
8301 }
8302
new_whiteout_inode(struct mnt_idmap * idmap,struct inode * dir)8303 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap,
8304 struct inode *dir)
8305 {
8306 struct inode *inode;
8307
8308 inode = new_inode(dir->i_sb);
8309 if (inode) {
8310 inode_init_owner(idmap, inode, dir,
8311 S_IFCHR | WHITEOUT_MODE);
8312 inode->i_op = &btrfs_special_inode_operations;
8313 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV);
8314 }
8315 return inode;
8316 }
8317
btrfs_rename(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)8318 static int btrfs_rename(struct mnt_idmap *idmap,
8319 struct inode *old_dir, struct dentry *old_dentry,
8320 struct inode *new_dir, struct dentry *new_dentry,
8321 unsigned int flags)
8322 {
8323 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir);
8324 struct btrfs_new_inode_args whiteout_args = {
8325 .dir = old_dir,
8326 .dentry = old_dentry,
8327 };
8328 struct btrfs_trans_handle *trans;
8329 unsigned int trans_num_items;
8330 struct btrfs_root *root = BTRFS_I(old_dir)->root;
8331 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8332 struct inode *new_inode = d_inode(new_dentry);
8333 struct inode *old_inode = d_inode(old_dentry);
8334 struct btrfs_rename_ctx rename_ctx;
8335 u64 index = 0;
8336 int ret;
8337 int ret2;
8338 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8339 struct fscrypt_name old_fname, new_fname;
8340 bool logs_pinned = false;
8341
8342 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
8343 return -EPERM;
8344
8345 /* we only allow rename subvolume link between subvolumes */
8346 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8347 return -EXDEV;
8348
8349 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8350 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
8351 return -ENOTEMPTY;
8352
8353 if (S_ISDIR(old_inode->i_mode) && new_inode &&
8354 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8355 return -ENOTEMPTY;
8356
8357 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
8358 if (ret)
8359 return ret;
8360
8361 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
8362 if (ret) {
8363 fscrypt_free_filename(&old_fname);
8364 return ret;
8365 }
8366
8367 /* check for collisions, even if the name isn't there */
8368 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name);
8369 if (ret) {
8370 if (ret == -EEXIST) {
8371 /* we shouldn't get
8372 * eexist without a new_inode */
8373 if (WARN_ON(!new_inode)) {
8374 goto out_fscrypt_names;
8375 }
8376 } else {
8377 /* maybe -EOVERFLOW */
8378 goto out_fscrypt_names;
8379 }
8380 }
8381 ret = 0;
8382
8383 /*
8384 * we're using rename to replace one file with another. Start IO on it
8385 * now so we don't add too much work to the end of the transaction
8386 */
8387 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
8388 filemap_flush(old_inode->i_mapping);
8389
8390 if (flags & RENAME_WHITEOUT) {
8391 whiteout_args.inode = new_whiteout_inode(idmap, old_dir);
8392 if (!whiteout_args.inode) {
8393 ret = -ENOMEM;
8394 goto out_fscrypt_names;
8395 }
8396 ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items);
8397 if (ret)
8398 goto out_whiteout_inode;
8399 } else {
8400 /* 1 to update the old parent inode. */
8401 trans_num_items = 1;
8402 }
8403
8404 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8405 /* Close the race window with snapshot create/destroy ioctl */
8406 down_read(&fs_info->subvol_sem);
8407 /*
8408 * 1 to remove old root ref
8409 * 1 to remove old root backref
8410 * 1 to add new root ref
8411 * 1 to add new root backref
8412 */
8413 trans_num_items += 4;
8414 } else {
8415 /*
8416 * 1 to update inode
8417 * 1 to remove old inode ref
8418 * 1 to add new inode ref
8419 */
8420 trans_num_items += 3;
8421 }
8422 /*
8423 * 1 to remove old dir item
8424 * 1 to remove old dir index
8425 * 1 to add new dir item
8426 * 1 to add new dir index
8427 */
8428 trans_num_items += 4;
8429 /* 1 to update new parent inode if it's not the same as the old parent */
8430 if (new_dir != old_dir)
8431 trans_num_items++;
8432 if (new_inode) {
8433 /*
8434 * 1 to update inode
8435 * 1 to remove inode ref
8436 * 1 to remove dir item
8437 * 1 to remove dir index
8438 * 1 to possibly add orphan item
8439 */
8440 trans_num_items += 5;
8441 }
8442 trans = btrfs_start_transaction(root, trans_num_items);
8443 if (IS_ERR(trans)) {
8444 ret = PTR_ERR(trans);
8445 goto out_notrans;
8446 }
8447
8448 if (dest != root) {
8449 ret = btrfs_record_root_in_trans(trans, dest);
8450 if (ret)
8451 goto out_fail;
8452 }
8453
8454 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
8455 if (ret)
8456 goto out_fail;
8457
8458 BTRFS_I(old_inode)->dir_index = 0ULL;
8459 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8460 /* force full log commit if subvolume involved. */
8461 btrfs_set_log_full_commit(trans);
8462 } else {
8463 ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name,
8464 old_ino, btrfs_ino(BTRFS_I(new_dir)),
8465 index);
8466 if (ret)
8467 goto out_fail;
8468 }
8469
8470 inode_inc_iversion(old_dir);
8471 inode_inc_iversion(new_dir);
8472 inode_inc_iversion(old_inode);
8473 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
8474
8475 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
8476 /*
8477 * If we are renaming in the same directory (and it's not a
8478 * root entry) pin the log to prevent any concurrent task from
8479 * logging the directory after we removed the old entry and
8480 * before we add the new entry, otherwise that task can sync
8481 * a log without any entry for the inode we are renaming and
8482 * therefore replaying that log, if a power failure happens
8483 * after syncing the log, would result in deleting the inode.
8484 *
8485 * If the rename affects two different directories, we want to
8486 * make sure the that there's no log commit that contains
8487 * updates for only one of the directories but not for the
8488 * other.
8489 *
8490 * If we are renaming an entry for a root, we don't care about
8491 * log updates since we called btrfs_set_log_full_commit().
8492 */
8493 btrfs_pin_log_trans(root);
8494 btrfs_pin_log_trans(dest);
8495 logs_pinned = true;
8496 }
8497
8498 if (old_dentry->d_parent != new_dentry->d_parent)
8499 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8500 BTRFS_I(old_inode), true);
8501
8502 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8503 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
8504 if (ret) {
8505 btrfs_abort_transaction(trans, ret);
8506 goto out_fail;
8507 }
8508 } else {
8509 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
8510 BTRFS_I(d_inode(old_dentry)),
8511 &old_fname.disk_name, &rename_ctx);
8512 if (ret) {
8513 btrfs_abort_transaction(trans, ret);
8514 goto out_fail;
8515 }
8516 ret = btrfs_update_inode(trans, BTRFS_I(old_inode));
8517 if (ret) {
8518 btrfs_abort_transaction(trans, ret);
8519 goto out_fail;
8520 }
8521 }
8522
8523 if (new_inode) {
8524 inode_inc_iversion(new_inode);
8525 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
8526 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8527 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
8528 if (ret) {
8529 btrfs_abort_transaction(trans, ret);
8530 goto out_fail;
8531 }
8532 BUG_ON(new_inode->i_nlink == 0);
8533 } else {
8534 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir),
8535 BTRFS_I(d_inode(new_dentry)),
8536 &new_fname.disk_name);
8537 if (ret) {
8538 btrfs_abort_transaction(trans, ret);
8539 goto out_fail;
8540 }
8541 }
8542 if (new_inode->i_nlink == 0) {
8543 ret = btrfs_orphan_add(trans,
8544 BTRFS_I(d_inode(new_dentry)));
8545 if (ret) {
8546 btrfs_abort_transaction(trans, ret);
8547 goto out_fail;
8548 }
8549 }
8550 }
8551
8552 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8553 &new_fname.disk_name, 0, index);
8554 if (ret) {
8555 btrfs_abort_transaction(trans, ret);
8556 goto out_fail;
8557 }
8558
8559 if (old_inode->i_nlink == 1)
8560 BTRFS_I(old_inode)->dir_index = index;
8561
8562 if (logs_pinned)
8563 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
8564 rename_ctx.index, new_dentry->d_parent);
8565
8566 if (flags & RENAME_WHITEOUT) {
8567 ret = btrfs_create_new_inode(trans, &whiteout_args);
8568 if (ret) {
8569 btrfs_abort_transaction(trans, ret);
8570 goto out_fail;
8571 } else {
8572 unlock_new_inode(whiteout_args.inode);
8573 iput(whiteout_args.inode);
8574 whiteout_args.inode = NULL;
8575 }
8576 }
8577 out_fail:
8578 if (logs_pinned) {
8579 btrfs_end_log_trans(root);
8580 btrfs_end_log_trans(dest);
8581 }
8582 ret2 = btrfs_end_transaction(trans);
8583 ret = ret ? ret : ret2;
8584 out_notrans:
8585 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8586 up_read(&fs_info->subvol_sem);
8587 if (flags & RENAME_WHITEOUT)
8588 btrfs_new_inode_args_destroy(&whiteout_args);
8589 out_whiteout_inode:
8590 if (flags & RENAME_WHITEOUT)
8591 iput(whiteout_args.inode);
8592 out_fscrypt_names:
8593 fscrypt_free_filename(&old_fname);
8594 fscrypt_free_filename(&new_fname);
8595 return ret;
8596 }
8597
btrfs_rename2(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)8598 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir,
8599 struct dentry *old_dentry, struct inode *new_dir,
8600 struct dentry *new_dentry, unsigned int flags)
8601 {
8602 int ret;
8603
8604 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
8605 return -EINVAL;
8606
8607 if (flags & RENAME_EXCHANGE)
8608 ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir,
8609 new_dentry);
8610 else
8611 ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir,
8612 new_dentry, flags);
8613
8614 btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info);
8615
8616 return ret;
8617 }
8618
8619 struct btrfs_delalloc_work {
8620 struct inode *inode;
8621 struct completion completion;
8622 struct list_head list;
8623 struct btrfs_work work;
8624 };
8625
btrfs_run_delalloc_work(struct btrfs_work * work)8626 static void btrfs_run_delalloc_work(struct btrfs_work *work)
8627 {
8628 struct btrfs_delalloc_work *delalloc_work;
8629 struct inode *inode;
8630
8631 delalloc_work = container_of(work, struct btrfs_delalloc_work,
8632 work);
8633 inode = delalloc_work->inode;
8634 filemap_flush(inode->i_mapping);
8635 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8636 &BTRFS_I(inode)->runtime_flags))
8637 filemap_flush(inode->i_mapping);
8638
8639 iput(inode);
8640 complete(&delalloc_work->completion);
8641 }
8642
btrfs_alloc_delalloc_work(struct inode * inode)8643 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
8644 {
8645 struct btrfs_delalloc_work *work;
8646
8647 work = kmalloc(sizeof(*work), GFP_NOFS);
8648 if (!work)
8649 return NULL;
8650
8651 init_completion(&work->completion);
8652 INIT_LIST_HEAD(&work->list);
8653 work->inode = inode;
8654 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL);
8655
8656 return work;
8657 }
8658
8659 /*
8660 * some fairly slow code that needs optimization. This walks the list
8661 * of all the inodes with pending delalloc and forces them to disk.
8662 */
start_delalloc_inodes(struct btrfs_root * root,struct writeback_control * wbc,bool snapshot,bool in_reclaim_context)8663 static int start_delalloc_inodes(struct btrfs_root *root,
8664 struct writeback_control *wbc, bool snapshot,
8665 bool in_reclaim_context)
8666 {
8667 struct btrfs_delalloc_work *work, *next;
8668 LIST_HEAD(works);
8669 LIST_HEAD(splice);
8670 int ret = 0;
8671 bool full_flush = wbc->nr_to_write == LONG_MAX;
8672
8673 mutex_lock(&root->delalloc_mutex);
8674 spin_lock(&root->delalloc_lock);
8675 list_splice_init(&root->delalloc_inodes, &splice);
8676 while (!list_empty(&splice)) {
8677 struct btrfs_inode *inode;
8678 struct inode *tmp_inode;
8679
8680 inode = list_first_entry(&splice, struct btrfs_inode, delalloc_inodes);
8681
8682 list_move_tail(&inode->delalloc_inodes, &root->delalloc_inodes);
8683
8684 if (in_reclaim_context &&
8685 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &inode->runtime_flags))
8686 continue;
8687
8688 tmp_inode = igrab(&inode->vfs_inode);
8689 if (!tmp_inode) {
8690 cond_resched_lock(&root->delalloc_lock);
8691 continue;
8692 }
8693 spin_unlock(&root->delalloc_lock);
8694
8695 if (snapshot)
8696 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, &inode->runtime_flags);
8697 if (full_flush) {
8698 work = btrfs_alloc_delalloc_work(&inode->vfs_inode);
8699 if (!work) {
8700 iput(&inode->vfs_inode);
8701 ret = -ENOMEM;
8702 goto out;
8703 }
8704 list_add_tail(&work->list, &works);
8705 btrfs_queue_work(root->fs_info->flush_workers,
8706 &work->work);
8707 } else {
8708 ret = filemap_fdatawrite_wbc(inode->vfs_inode.i_mapping, wbc);
8709 btrfs_add_delayed_iput(inode);
8710 if (ret || wbc->nr_to_write <= 0)
8711 goto out;
8712 }
8713 cond_resched();
8714 spin_lock(&root->delalloc_lock);
8715 }
8716 spin_unlock(&root->delalloc_lock);
8717
8718 out:
8719 list_for_each_entry_safe(work, next, &works, list) {
8720 list_del_init(&work->list);
8721 wait_for_completion(&work->completion);
8722 kfree(work);
8723 }
8724
8725 if (!list_empty(&splice)) {
8726 spin_lock(&root->delalloc_lock);
8727 list_splice_tail(&splice, &root->delalloc_inodes);
8728 spin_unlock(&root->delalloc_lock);
8729 }
8730 mutex_unlock(&root->delalloc_mutex);
8731 return ret;
8732 }
8733
btrfs_start_delalloc_snapshot(struct btrfs_root * root,bool in_reclaim_context)8734 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
8735 {
8736 struct writeback_control wbc = {
8737 .nr_to_write = LONG_MAX,
8738 .sync_mode = WB_SYNC_NONE,
8739 .range_start = 0,
8740 .range_end = LLONG_MAX,
8741 };
8742 struct btrfs_fs_info *fs_info = root->fs_info;
8743
8744 if (BTRFS_FS_ERROR(fs_info))
8745 return -EROFS;
8746
8747 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context);
8748 }
8749
btrfs_start_delalloc_roots(struct btrfs_fs_info * fs_info,long nr,bool in_reclaim_context)8750 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
8751 bool in_reclaim_context)
8752 {
8753 struct writeback_control wbc = {
8754 .nr_to_write = nr,
8755 .sync_mode = WB_SYNC_NONE,
8756 .range_start = 0,
8757 .range_end = LLONG_MAX,
8758 };
8759 struct btrfs_root *root;
8760 LIST_HEAD(splice);
8761 int ret;
8762
8763 if (BTRFS_FS_ERROR(fs_info))
8764 return -EROFS;
8765
8766 mutex_lock(&fs_info->delalloc_root_mutex);
8767 spin_lock(&fs_info->delalloc_root_lock);
8768 list_splice_init(&fs_info->delalloc_roots, &splice);
8769 while (!list_empty(&splice)) {
8770 /*
8771 * Reset nr_to_write here so we know that we're doing a full
8772 * flush.
8773 */
8774 if (nr == LONG_MAX)
8775 wbc.nr_to_write = LONG_MAX;
8776
8777 root = list_first_entry(&splice, struct btrfs_root,
8778 delalloc_root);
8779 root = btrfs_grab_root(root);
8780 BUG_ON(!root);
8781 list_move_tail(&root->delalloc_root,
8782 &fs_info->delalloc_roots);
8783 spin_unlock(&fs_info->delalloc_root_lock);
8784
8785 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
8786 btrfs_put_root(root);
8787 if (ret < 0 || wbc.nr_to_write <= 0)
8788 goto out;
8789 spin_lock(&fs_info->delalloc_root_lock);
8790 }
8791 spin_unlock(&fs_info->delalloc_root_lock);
8792
8793 ret = 0;
8794 out:
8795 if (!list_empty(&splice)) {
8796 spin_lock(&fs_info->delalloc_root_lock);
8797 list_splice_tail(&splice, &fs_info->delalloc_roots);
8798 spin_unlock(&fs_info->delalloc_root_lock);
8799 }
8800 mutex_unlock(&fs_info->delalloc_root_mutex);
8801 return ret;
8802 }
8803
btrfs_symlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,const char * symname)8804 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
8805 struct dentry *dentry, const char *symname)
8806 {
8807 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
8808 struct btrfs_trans_handle *trans;
8809 struct btrfs_root *root = BTRFS_I(dir)->root;
8810 struct btrfs_path *path;
8811 struct btrfs_key key;
8812 struct inode *inode;
8813 struct btrfs_new_inode_args new_inode_args = {
8814 .dir = dir,
8815 .dentry = dentry,
8816 };
8817 unsigned int trans_num_items;
8818 int ret;
8819 int name_len;
8820 int datasize;
8821 unsigned long ptr;
8822 struct btrfs_file_extent_item *ei;
8823 struct extent_buffer *leaf;
8824
8825 name_len = strlen(symname);
8826 /*
8827 * Symlinks utilize uncompressed inline extent data, which should not
8828 * reach block size.
8829 */
8830 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
8831 name_len >= fs_info->sectorsize)
8832 return -ENAMETOOLONG;
8833
8834 inode = new_inode(dir->i_sb);
8835 if (!inode)
8836 return -ENOMEM;
8837 inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO);
8838 inode->i_op = &btrfs_symlink_inode_operations;
8839 inode_nohighmem(inode);
8840 inode->i_mapping->a_ops = &btrfs_aops;
8841 btrfs_i_size_write(BTRFS_I(inode), name_len);
8842 inode_set_bytes(inode, name_len);
8843
8844 new_inode_args.inode = inode;
8845 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
8846 if (ret)
8847 goto out_inode;
8848 /* 1 additional item for the inline extent */
8849 trans_num_items++;
8850
8851 trans = btrfs_start_transaction(root, trans_num_items);
8852 if (IS_ERR(trans)) {
8853 ret = PTR_ERR(trans);
8854 goto out_new_inode_args;
8855 }
8856
8857 ret = btrfs_create_new_inode(trans, &new_inode_args);
8858 if (ret)
8859 goto out;
8860
8861 path = btrfs_alloc_path();
8862 if (!path) {
8863 ret = -ENOMEM;
8864 btrfs_abort_transaction(trans, ret);
8865 discard_new_inode(inode);
8866 inode = NULL;
8867 goto out;
8868 }
8869 key.objectid = btrfs_ino(BTRFS_I(inode));
8870 key.type = BTRFS_EXTENT_DATA_KEY;
8871 key.offset = 0;
8872 datasize = btrfs_file_extent_calc_inline_size(name_len);
8873 ret = btrfs_insert_empty_item(trans, root, path, &key, datasize);
8874 if (ret) {
8875 btrfs_abort_transaction(trans, ret);
8876 btrfs_free_path(path);
8877 discard_new_inode(inode);
8878 inode = NULL;
8879 goto out;
8880 }
8881 leaf = path->nodes[0];
8882 ei = btrfs_item_ptr(leaf, path->slots[0],
8883 struct btrfs_file_extent_item);
8884 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
8885 btrfs_set_file_extent_type(leaf, ei,
8886 BTRFS_FILE_EXTENT_INLINE);
8887 btrfs_set_file_extent_encryption(leaf, ei, 0);
8888 btrfs_set_file_extent_compression(leaf, ei, 0);
8889 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
8890 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
8891
8892 ptr = btrfs_file_extent_inline_start(ei);
8893 write_extent_buffer(leaf, symname, ptr, name_len);
8894 btrfs_free_path(path);
8895
8896 d_instantiate_new(dentry, inode);
8897 ret = 0;
8898 out:
8899 btrfs_end_transaction(trans);
8900 btrfs_btree_balance_dirty(fs_info);
8901 out_new_inode_args:
8902 btrfs_new_inode_args_destroy(&new_inode_args);
8903 out_inode:
8904 if (ret)
8905 iput(inode);
8906 return ret;
8907 }
8908
insert_prealloc_file_extent(struct btrfs_trans_handle * trans_in,struct btrfs_inode * inode,struct btrfs_key * ins,u64 file_offset)8909 static struct btrfs_trans_handle *insert_prealloc_file_extent(
8910 struct btrfs_trans_handle *trans_in,
8911 struct btrfs_inode *inode,
8912 struct btrfs_key *ins,
8913 u64 file_offset)
8914 {
8915 struct btrfs_file_extent_item stack_fi;
8916 struct btrfs_replace_extent_info extent_info;
8917 struct btrfs_trans_handle *trans = trans_in;
8918 struct btrfs_path *path;
8919 u64 start = ins->objectid;
8920 u64 len = ins->offset;
8921 u64 qgroup_released = 0;
8922 int ret;
8923
8924 memset(&stack_fi, 0, sizeof(stack_fi));
8925
8926 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
8927 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
8928 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
8929 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
8930 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
8931 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
8932 /* Encryption and other encoding is reserved and all 0 */
8933
8934 ret = btrfs_qgroup_release_data(inode, file_offset, len, &qgroup_released);
8935 if (ret < 0)
8936 return ERR_PTR(ret);
8937
8938 if (trans) {
8939 ret = insert_reserved_file_extent(trans, inode,
8940 file_offset, &stack_fi,
8941 true, qgroup_released);
8942 if (ret)
8943 goto free_qgroup;
8944 return trans;
8945 }
8946
8947 extent_info.disk_offset = start;
8948 extent_info.disk_len = len;
8949 extent_info.data_offset = 0;
8950 extent_info.data_len = len;
8951 extent_info.file_offset = file_offset;
8952 extent_info.extent_buf = (char *)&stack_fi;
8953 extent_info.is_new_extent = true;
8954 extent_info.update_times = true;
8955 extent_info.qgroup_reserved = qgroup_released;
8956 extent_info.insertions = 0;
8957
8958 path = btrfs_alloc_path();
8959 if (!path) {
8960 ret = -ENOMEM;
8961 goto free_qgroup;
8962 }
8963
8964 ret = btrfs_replace_file_extents(inode, path, file_offset,
8965 file_offset + len - 1, &extent_info,
8966 &trans);
8967 btrfs_free_path(path);
8968 if (ret)
8969 goto free_qgroup;
8970 return trans;
8971
8972 free_qgroup:
8973 /*
8974 * We have released qgroup data range at the beginning of the function,
8975 * and normally qgroup_released bytes will be freed when committing
8976 * transaction.
8977 * But if we error out early, we have to free what we have released
8978 * or we leak qgroup data reservation.
8979 */
8980 btrfs_qgroup_free_refroot(inode->root->fs_info,
8981 btrfs_root_id(inode->root), qgroup_released,
8982 BTRFS_QGROUP_RSV_DATA);
8983 return ERR_PTR(ret);
8984 }
8985
__btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint,struct btrfs_trans_handle * trans)8986 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
8987 u64 start, u64 num_bytes, u64 min_size,
8988 loff_t actual_len, u64 *alloc_hint,
8989 struct btrfs_trans_handle *trans)
8990 {
8991 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
8992 struct extent_map *em;
8993 struct btrfs_root *root = BTRFS_I(inode)->root;
8994 struct btrfs_key ins;
8995 u64 cur_offset = start;
8996 u64 clear_offset = start;
8997 u64 i_size;
8998 u64 cur_bytes;
8999 u64 last_alloc = (u64)-1;
9000 int ret = 0;
9001 bool own_trans = true;
9002 u64 end = start + num_bytes - 1;
9003
9004 if (trans)
9005 own_trans = false;
9006 while (num_bytes > 0) {
9007 cur_bytes = min_t(u64, num_bytes, SZ_256M);
9008 cur_bytes = max(cur_bytes, min_size);
9009 /*
9010 * If we are severely fragmented we could end up with really
9011 * small allocations, so if the allocator is returning small
9012 * chunks lets make its job easier by only searching for those
9013 * sized chunks.
9014 */
9015 cur_bytes = min(cur_bytes, last_alloc);
9016 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9017 min_size, 0, *alloc_hint, &ins, 1, 0);
9018 if (ret)
9019 break;
9020
9021 /*
9022 * We've reserved this space, and thus converted it from
9023 * ->bytes_may_use to ->bytes_reserved. Any error that happens
9024 * from here on out we will only need to clear our reservation
9025 * for the remaining unreserved area, so advance our
9026 * clear_offset by our extent size.
9027 */
9028 clear_offset += ins.offset;
9029
9030 last_alloc = ins.offset;
9031 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
9032 &ins, cur_offset);
9033 /*
9034 * Now that we inserted the prealloc extent we can finally
9035 * decrement the number of reservations in the block group.
9036 * If we did it before, we could race with relocation and have
9037 * relocation miss the reserved extent, making it fail later.
9038 */
9039 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9040 if (IS_ERR(trans)) {
9041 ret = PTR_ERR(trans);
9042 btrfs_free_reserved_extent(fs_info, ins.objectid,
9043 ins.offset, false);
9044 break;
9045 }
9046
9047 em = btrfs_alloc_extent_map();
9048 if (!em) {
9049 btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset,
9050 cur_offset + ins.offset - 1, false);
9051 btrfs_set_inode_full_sync(BTRFS_I(inode));
9052 goto next;
9053 }
9054
9055 em->start = cur_offset;
9056 em->len = ins.offset;
9057 em->disk_bytenr = ins.objectid;
9058 em->offset = 0;
9059 em->disk_num_bytes = ins.offset;
9060 em->ram_bytes = ins.offset;
9061 em->flags |= EXTENT_FLAG_PREALLOC;
9062 em->generation = trans->transid;
9063
9064 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true);
9065 btrfs_free_extent_map(em);
9066 next:
9067 num_bytes -= ins.offset;
9068 cur_offset += ins.offset;
9069 *alloc_hint = ins.objectid + ins.offset;
9070
9071 inode_inc_iversion(inode);
9072 inode_set_ctime_current(inode);
9073 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9074 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9075 (actual_len > inode->i_size) &&
9076 (cur_offset > inode->i_size)) {
9077 if (cur_offset > actual_len)
9078 i_size = actual_len;
9079 else
9080 i_size = cur_offset;
9081 i_size_write(inode, i_size);
9082 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
9083 }
9084
9085 ret = btrfs_update_inode(trans, BTRFS_I(inode));
9086
9087 if (ret) {
9088 btrfs_abort_transaction(trans, ret);
9089 if (own_trans)
9090 btrfs_end_transaction(trans);
9091 break;
9092 }
9093
9094 if (own_trans) {
9095 btrfs_end_transaction(trans);
9096 trans = NULL;
9097 }
9098 }
9099 if (clear_offset < end)
9100 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
9101 end - clear_offset + 1);
9102 return ret;
9103 }
9104
btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)9105 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9106 u64 start, u64 num_bytes, u64 min_size,
9107 loff_t actual_len, u64 *alloc_hint)
9108 {
9109 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9110 min_size, actual_len, alloc_hint,
9111 NULL);
9112 }
9113
btrfs_prealloc_file_range_trans(struct inode * inode,struct btrfs_trans_handle * trans,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)9114 int btrfs_prealloc_file_range_trans(struct inode *inode,
9115 struct btrfs_trans_handle *trans, int mode,
9116 u64 start, u64 num_bytes, u64 min_size,
9117 loff_t actual_len, u64 *alloc_hint)
9118 {
9119 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9120 min_size, actual_len, alloc_hint, trans);
9121 }
9122
btrfs_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)9123 static int btrfs_permission(struct mnt_idmap *idmap,
9124 struct inode *inode, int mask)
9125 {
9126 struct btrfs_root *root = BTRFS_I(inode)->root;
9127 umode_t mode = inode->i_mode;
9128
9129 if (mask & MAY_WRITE &&
9130 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9131 if (btrfs_root_readonly(root))
9132 return -EROFS;
9133 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9134 return -EACCES;
9135 }
9136 return generic_permission(idmap, inode, mask);
9137 }
9138
btrfs_tmpfile(struct mnt_idmap * idmap,struct inode * dir,struct file * file,umode_t mode)9139 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
9140 struct file *file, umode_t mode)
9141 {
9142 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
9143 struct btrfs_trans_handle *trans;
9144 struct btrfs_root *root = BTRFS_I(dir)->root;
9145 struct inode *inode;
9146 struct btrfs_new_inode_args new_inode_args = {
9147 .dir = dir,
9148 .dentry = file->f_path.dentry,
9149 .orphan = true,
9150 };
9151 unsigned int trans_num_items;
9152 int ret;
9153
9154 inode = new_inode(dir->i_sb);
9155 if (!inode)
9156 return -ENOMEM;
9157 inode_init_owner(idmap, inode, dir, mode);
9158 inode->i_fop = &btrfs_file_operations;
9159 inode->i_op = &btrfs_file_inode_operations;
9160 inode->i_mapping->a_ops = &btrfs_aops;
9161
9162 new_inode_args.inode = inode;
9163 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
9164 if (ret)
9165 goto out_inode;
9166
9167 trans = btrfs_start_transaction(root, trans_num_items);
9168 if (IS_ERR(trans)) {
9169 ret = PTR_ERR(trans);
9170 goto out_new_inode_args;
9171 }
9172
9173 ret = btrfs_create_new_inode(trans, &new_inode_args);
9174
9175 /*
9176 * We set number of links to 0 in btrfs_create_new_inode(), and here we
9177 * set it to 1 because d_tmpfile() will issue a warning if the count is
9178 * 0, through:
9179 *
9180 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9181 */
9182 set_nlink(inode, 1);
9183
9184 if (!ret) {
9185 d_tmpfile(file, inode);
9186 unlock_new_inode(inode);
9187 mark_inode_dirty(inode);
9188 }
9189
9190 btrfs_end_transaction(trans);
9191 btrfs_btree_balance_dirty(fs_info);
9192 out_new_inode_args:
9193 btrfs_new_inode_args_destroy(&new_inode_args);
9194 out_inode:
9195 if (ret)
9196 iput(inode);
9197 return finish_open_simple(file, ret);
9198 }
9199
btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info * fs_info,int compress_type)9200 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
9201 int compress_type)
9202 {
9203 switch (compress_type) {
9204 case BTRFS_COMPRESS_NONE:
9205 return BTRFS_ENCODED_IO_COMPRESSION_NONE;
9206 case BTRFS_COMPRESS_ZLIB:
9207 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB;
9208 case BTRFS_COMPRESS_LZO:
9209 /*
9210 * The LZO format depends on the sector size. 64K is the maximum
9211 * sector size that we support.
9212 */
9213 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K)
9214 return -EINVAL;
9215 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K +
9216 (fs_info->sectorsize_bits - 12);
9217 case BTRFS_COMPRESS_ZSTD:
9218 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD;
9219 default:
9220 return -EUCLEAN;
9221 }
9222 }
9223
btrfs_encoded_read_inline(struct kiocb * iocb,struct iov_iter * iter,u64 start,u64 lockend,struct extent_state ** cached_state,u64 extent_start,size_t count,struct btrfs_ioctl_encoded_io_args * encoded,bool * unlocked)9224 static ssize_t btrfs_encoded_read_inline(
9225 struct kiocb *iocb,
9226 struct iov_iter *iter, u64 start,
9227 u64 lockend,
9228 struct extent_state **cached_state,
9229 u64 extent_start, size_t count,
9230 struct btrfs_ioctl_encoded_io_args *encoded,
9231 bool *unlocked)
9232 {
9233 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9234 struct btrfs_root *root = inode->root;
9235 struct btrfs_fs_info *fs_info = root->fs_info;
9236 struct extent_io_tree *io_tree = &inode->io_tree;
9237 BTRFS_PATH_AUTO_FREE(path);
9238 struct extent_buffer *leaf;
9239 struct btrfs_file_extent_item *item;
9240 u64 ram_bytes;
9241 unsigned long ptr;
9242 void *tmp;
9243 ssize_t ret;
9244 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
9245
9246 path = btrfs_alloc_path();
9247 if (!path)
9248 return -ENOMEM;
9249
9250 path->nowait = nowait;
9251
9252 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
9253 extent_start, 0);
9254 if (ret) {
9255 if (ret > 0) {
9256 /* The extent item disappeared? */
9257 return -EIO;
9258 }
9259 return ret;
9260 }
9261 leaf = path->nodes[0];
9262 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
9263
9264 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
9265 ptr = btrfs_file_extent_inline_start(item);
9266
9267 encoded->len = min_t(u64, extent_start + ram_bytes,
9268 inode->vfs_inode.i_size) - iocb->ki_pos;
9269 ret = btrfs_encoded_io_compression_from_extent(fs_info,
9270 btrfs_file_extent_compression(leaf, item));
9271 if (ret < 0)
9272 return ret;
9273 encoded->compression = ret;
9274 if (encoded->compression) {
9275 size_t inline_size;
9276
9277 inline_size = btrfs_file_extent_inline_item_len(leaf,
9278 path->slots[0]);
9279 if (inline_size > count)
9280 return -ENOBUFS;
9281
9282 count = inline_size;
9283 encoded->unencoded_len = ram_bytes;
9284 encoded->unencoded_offset = iocb->ki_pos - extent_start;
9285 } else {
9286 count = min_t(u64, count, encoded->len);
9287 encoded->len = count;
9288 encoded->unencoded_len = count;
9289 ptr += iocb->ki_pos - extent_start;
9290 }
9291
9292 tmp = kmalloc(count, GFP_NOFS);
9293 if (!tmp)
9294 return -ENOMEM;
9295
9296 read_extent_buffer(leaf, tmp, ptr, count);
9297 btrfs_release_path(path);
9298 btrfs_unlock_extent(io_tree, start, lockend, cached_state);
9299 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9300 *unlocked = true;
9301
9302 ret = copy_to_iter(tmp, count, iter);
9303 if (ret != count)
9304 ret = -EFAULT;
9305 kfree(tmp);
9306
9307 return ret;
9308 }
9309
9310 struct btrfs_encoded_read_private {
9311 struct completion *sync_reads;
9312 void *uring_ctx;
9313 refcount_t pending_refs;
9314 blk_status_t status;
9315 };
9316
btrfs_encoded_read_endio(struct btrfs_bio * bbio)9317 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio)
9318 {
9319 struct btrfs_encoded_read_private *priv = bbio->private;
9320
9321 if (bbio->bio.bi_status) {
9322 /*
9323 * The memory barrier implied by the refcount_dec_and_test() here
9324 * pairs with the memory barrier implied by the refcount_dec_and_test()
9325 * in btrfs_encoded_read_regular_fill_pages() to ensure that
9326 * this write is observed before the load of status in
9327 * btrfs_encoded_read_regular_fill_pages().
9328 */
9329 WRITE_ONCE(priv->status, bbio->bio.bi_status);
9330 }
9331 if (refcount_dec_and_test(&priv->pending_refs)) {
9332 int err = blk_status_to_errno(READ_ONCE(priv->status));
9333
9334 if (priv->uring_ctx) {
9335 btrfs_uring_read_extent_endio(priv->uring_ctx, err);
9336 kfree(priv);
9337 } else {
9338 complete(priv->sync_reads);
9339 }
9340 }
9341 bio_put(&bbio->bio);
9342 }
9343
btrfs_encoded_read_regular_fill_pages(struct btrfs_inode * inode,u64 disk_bytenr,u64 disk_io_size,struct page ** pages,void * uring_ctx)9344 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
9345 u64 disk_bytenr, u64 disk_io_size,
9346 struct page **pages, void *uring_ctx)
9347 {
9348 struct btrfs_fs_info *fs_info = inode->root->fs_info;
9349 struct btrfs_encoded_read_private *priv, sync_priv;
9350 struct completion sync_reads;
9351 unsigned long i = 0;
9352 struct btrfs_bio *bbio;
9353 int ret;
9354
9355 /*
9356 * Fast path for synchronous reads which completes in this call, io_uring
9357 * needs longer time span.
9358 */
9359 if (uring_ctx) {
9360 priv = kmalloc(sizeof(struct btrfs_encoded_read_private), GFP_NOFS);
9361 if (!priv)
9362 return -ENOMEM;
9363 } else {
9364 priv = &sync_priv;
9365 init_completion(&sync_reads);
9366 priv->sync_reads = &sync_reads;
9367 }
9368
9369 refcount_set(&priv->pending_refs, 1);
9370 priv->status = 0;
9371 priv->uring_ctx = uring_ctx;
9372
9373 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
9374 btrfs_encoded_read_endio, priv);
9375 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
9376 bbio->inode = inode;
9377
9378 do {
9379 size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE);
9380
9381 if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) {
9382 refcount_inc(&priv->pending_refs);
9383 btrfs_submit_bbio(bbio, 0);
9384
9385 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
9386 btrfs_encoded_read_endio, priv);
9387 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
9388 bbio->inode = inode;
9389 continue;
9390 }
9391
9392 i++;
9393 disk_bytenr += bytes;
9394 disk_io_size -= bytes;
9395 } while (disk_io_size);
9396
9397 refcount_inc(&priv->pending_refs);
9398 btrfs_submit_bbio(bbio, 0);
9399
9400 if (uring_ctx) {
9401 if (refcount_dec_and_test(&priv->pending_refs)) {
9402 ret = blk_status_to_errno(READ_ONCE(priv->status));
9403 btrfs_uring_read_extent_endio(uring_ctx, ret);
9404 kfree(priv);
9405 return ret;
9406 }
9407
9408 return -EIOCBQUEUED;
9409 } else {
9410 if (!refcount_dec_and_test(&priv->pending_refs))
9411 wait_for_completion_io(&sync_reads);
9412 /* See btrfs_encoded_read_endio() for ordering. */
9413 return blk_status_to_errno(READ_ONCE(priv->status));
9414 }
9415 }
9416
btrfs_encoded_read_regular(struct kiocb * iocb,struct iov_iter * iter,u64 start,u64 lockend,struct extent_state ** cached_state,u64 disk_bytenr,u64 disk_io_size,size_t count,bool compressed,bool * unlocked)9417 ssize_t btrfs_encoded_read_regular(struct kiocb *iocb, struct iov_iter *iter,
9418 u64 start, u64 lockend,
9419 struct extent_state **cached_state,
9420 u64 disk_bytenr, u64 disk_io_size,
9421 size_t count, bool compressed, bool *unlocked)
9422 {
9423 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9424 struct extent_io_tree *io_tree = &inode->io_tree;
9425 struct page **pages;
9426 unsigned long nr_pages, i;
9427 u64 cur;
9428 size_t page_offset;
9429 ssize_t ret;
9430
9431 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
9432 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
9433 if (!pages)
9434 return -ENOMEM;
9435 ret = btrfs_alloc_page_array(nr_pages, pages, false);
9436 if (ret) {
9437 ret = -ENOMEM;
9438 goto out;
9439 }
9440
9441 ret = btrfs_encoded_read_regular_fill_pages(inode, disk_bytenr,
9442 disk_io_size, pages, NULL);
9443 if (ret)
9444 goto out;
9445
9446 btrfs_unlock_extent(io_tree, start, lockend, cached_state);
9447 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9448 *unlocked = true;
9449
9450 if (compressed) {
9451 i = 0;
9452 page_offset = 0;
9453 } else {
9454 i = (iocb->ki_pos - start) >> PAGE_SHIFT;
9455 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1);
9456 }
9457 cur = 0;
9458 while (cur < count) {
9459 size_t bytes = min_t(size_t, count - cur,
9460 PAGE_SIZE - page_offset);
9461
9462 if (copy_page_to_iter(pages[i], page_offset, bytes,
9463 iter) != bytes) {
9464 ret = -EFAULT;
9465 goto out;
9466 }
9467 i++;
9468 cur += bytes;
9469 page_offset = 0;
9470 }
9471 ret = count;
9472 out:
9473 for (i = 0; i < nr_pages; i++) {
9474 if (pages[i])
9475 __free_page(pages[i]);
9476 }
9477 kfree(pages);
9478 return ret;
9479 }
9480
btrfs_encoded_read(struct kiocb * iocb,struct iov_iter * iter,struct btrfs_ioctl_encoded_io_args * encoded,struct extent_state ** cached_state,u64 * disk_bytenr,u64 * disk_io_size)9481 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
9482 struct btrfs_ioctl_encoded_io_args *encoded,
9483 struct extent_state **cached_state,
9484 u64 *disk_bytenr, u64 *disk_io_size)
9485 {
9486 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9487 struct btrfs_fs_info *fs_info = inode->root->fs_info;
9488 struct extent_io_tree *io_tree = &inode->io_tree;
9489 ssize_t ret;
9490 size_t count = iov_iter_count(iter);
9491 u64 start, lockend;
9492 struct extent_map *em;
9493 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
9494 bool unlocked = false;
9495
9496 file_accessed(iocb->ki_filp);
9497
9498 ret = btrfs_inode_lock(inode,
9499 BTRFS_ILOCK_SHARED | (nowait ? BTRFS_ILOCK_TRY : 0));
9500 if (ret)
9501 return ret;
9502
9503 if (iocb->ki_pos >= inode->vfs_inode.i_size) {
9504 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9505 return 0;
9506 }
9507 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize);
9508 /*
9509 * We don't know how long the extent containing iocb->ki_pos is, but if
9510 * it's compressed we know that it won't be longer than this.
9511 */
9512 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
9513
9514 if (nowait) {
9515 struct btrfs_ordered_extent *ordered;
9516
9517 if (filemap_range_needs_writeback(inode->vfs_inode.i_mapping,
9518 start, lockend)) {
9519 ret = -EAGAIN;
9520 goto out_unlock_inode;
9521 }
9522
9523 if (!btrfs_try_lock_extent(io_tree, start, lockend, cached_state)) {
9524 ret = -EAGAIN;
9525 goto out_unlock_inode;
9526 }
9527
9528 ordered = btrfs_lookup_ordered_range(inode, start,
9529 lockend - start + 1);
9530 if (ordered) {
9531 btrfs_put_ordered_extent(ordered);
9532 btrfs_unlock_extent(io_tree, start, lockend, cached_state);
9533 ret = -EAGAIN;
9534 goto out_unlock_inode;
9535 }
9536 } else {
9537 for (;;) {
9538 struct btrfs_ordered_extent *ordered;
9539
9540 ret = btrfs_wait_ordered_range(inode, start,
9541 lockend - start + 1);
9542 if (ret)
9543 goto out_unlock_inode;
9544
9545 btrfs_lock_extent(io_tree, start, lockend, cached_state);
9546 ordered = btrfs_lookup_ordered_range(inode, start,
9547 lockend - start + 1);
9548 if (!ordered)
9549 break;
9550 btrfs_put_ordered_extent(ordered);
9551 btrfs_unlock_extent(io_tree, start, lockend, cached_state);
9552 cond_resched();
9553 }
9554 }
9555
9556 em = btrfs_get_extent(inode, NULL, start, lockend - start + 1);
9557 if (IS_ERR(em)) {
9558 ret = PTR_ERR(em);
9559 goto out_unlock_extent;
9560 }
9561
9562 if (em->disk_bytenr == EXTENT_MAP_INLINE) {
9563 u64 extent_start = em->start;
9564
9565 /*
9566 * For inline extents we get everything we need out of the
9567 * extent item.
9568 */
9569 btrfs_free_extent_map(em);
9570 em = NULL;
9571 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend,
9572 cached_state, extent_start,
9573 count, encoded, &unlocked);
9574 goto out_unlock_extent;
9575 }
9576
9577 /*
9578 * We only want to return up to EOF even if the extent extends beyond
9579 * that.
9580 */
9581 encoded->len = min_t(u64, btrfs_extent_map_end(em),
9582 inode->vfs_inode.i_size) - iocb->ki_pos;
9583 if (em->disk_bytenr == EXTENT_MAP_HOLE ||
9584 (em->flags & EXTENT_FLAG_PREALLOC)) {
9585 *disk_bytenr = EXTENT_MAP_HOLE;
9586 count = min_t(u64, count, encoded->len);
9587 encoded->len = count;
9588 encoded->unencoded_len = count;
9589 } else if (btrfs_extent_map_is_compressed(em)) {
9590 *disk_bytenr = em->disk_bytenr;
9591 /*
9592 * Bail if the buffer isn't large enough to return the whole
9593 * compressed extent.
9594 */
9595 if (em->disk_num_bytes > count) {
9596 ret = -ENOBUFS;
9597 goto out_em;
9598 }
9599 *disk_io_size = em->disk_num_bytes;
9600 count = em->disk_num_bytes;
9601 encoded->unencoded_len = em->ram_bytes;
9602 encoded->unencoded_offset = iocb->ki_pos - (em->start - em->offset);
9603 ret = btrfs_encoded_io_compression_from_extent(fs_info,
9604 btrfs_extent_map_compression(em));
9605 if (ret < 0)
9606 goto out_em;
9607 encoded->compression = ret;
9608 } else {
9609 *disk_bytenr = btrfs_extent_map_block_start(em) + (start - em->start);
9610 if (encoded->len > count)
9611 encoded->len = count;
9612 /*
9613 * Don't read beyond what we locked. This also limits the page
9614 * allocations that we'll do.
9615 */
9616 *disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start;
9617 count = start + *disk_io_size - iocb->ki_pos;
9618 encoded->len = count;
9619 encoded->unencoded_len = count;
9620 *disk_io_size = ALIGN(*disk_io_size, fs_info->sectorsize);
9621 }
9622 btrfs_free_extent_map(em);
9623 em = NULL;
9624
9625 if (*disk_bytenr == EXTENT_MAP_HOLE) {
9626 btrfs_unlock_extent(io_tree, start, lockend, cached_state);
9627 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9628 unlocked = true;
9629 ret = iov_iter_zero(count, iter);
9630 if (ret != count)
9631 ret = -EFAULT;
9632 } else {
9633 ret = -EIOCBQUEUED;
9634 goto out_unlock_extent;
9635 }
9636
9637 out_em:
9638 btrfs_free_extent_map(em);
9639 out_unlock_extent:
9640 /* Leave inode and extent locked if we need to do a read. */
9641 if (!unlocked && ret != -EIOCBQUEUED)
9642 btrfs_unlock_extent(io_tree, start, lockend, cached_state);
9643 out_unlock_inode:
9644 if (!unlocked && ret != -EIOCBQUEUED)
9645 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9646 return ret;
9647 }
9648
btrfs_do_encoded_write(struct kiocb * iocb,struct iov_iter * from,const struct btrfs_ioctl_encoded_io_args * encoded)9649 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
9650 const struct btrfs_ioctl_encoded_io_args *encoded)
9651 {
9652 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9653 struct btrfs_root *root = inode->root;
9654 struct btrfs_fs_info *fs_info = root->fs_info;
9655 struct extent_io_tree *io_tree = &inode->io_tree;
9656 struct extent_changeset *data_reserved = NULL;
9657 struct extent_state *cached_state = NULL;
9658 struct btrfs_ordered_extent *ordered;
9659 struct btrfs_file_extent file_extent;
9660 int compression;
9661 size_t orig_count;
9662 u64 start, end;
9663 u64 num_bytes, ram_bytes, disk_num_bytes;
9664 unsigned long nr_folios, i;
9665 struct folio **folios;
9666 struct btrfs_key ins;
9667 bool extent_reserved = false;
9668 struct extent_map *em;
9669 ssize_t ret;
9670
9671 switch (encoded->compression) {
9672 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB:
9673 compression = BTRFS_COMPRESS_ZLIB;
9674 break;
9675 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD:
9676 compression = BTRFS_COMPRESS_ZSTD;
9677 break;
9678 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K:
9679 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K:
9680 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K:
9681 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K:
9682 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K:
9683 /* The sector size must match for LZO. */
9684 if (encoded->compression -
9685 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 !=
9686 fs_info->sectorsize_bits)
9687 return -EINVAL;
9688 compression = BTRFS_COMPRESS_LZO;
9689 break;
9690 default:
9691 return -EINVAL;
9692 }
9693 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE)
9694 return -EINVAL;
9695
9696 /*
9697 * Compressed extents should always have checksums, so error out if we
9698 * have a NOCOW file or inode was created while mounted with NODATASUM.
9699 */
9700 if (inode->flags & BTRFS_INODE_NODATASUM)
9701 return -EINVAL;
9702
9703 orig_count = iov_iter_count(from);
9704
9705 /* The extent size must be sane. */
9706 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED ||
9707 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0)
9708 return -EINVAL;
9709
9710 /*
9711 * The compressed data must be smaller than the decompressed data.
9712 *
9713 * It's of course possible for data to compress to larger or the same
9714 * size, but the buffered I/O path falls back to no compression for such
9715 * data, and we don't want to break any assumptions by creating these
9716 * extents.
9717 *
9718 * Note that this is less strict than the current check we have that the
9719 * compressed data must be at least one sector smaller than the
9720 * decompressed data. We only want to enforce the weaker requirement
9721 * from old kernels that it is at least one byte smaller.
9722 */
9723 if (orig_count >= encoded->unencoded_len)
9724 return -EINVAL;
9725
9726 /* The extent must start on a sector boundary. */
9727 start = iocb->ki_pos;
9728 if (!IS_ALIGNED(start, fs_info->sectorsize))
9729 return -EINVAL;
9730
9731 /*
9732 * The extent must end on a sector boundary. However, we allow a write
9733 * which ends at or extends i_size to have an unaligned length; we round
9734 * up the extent size and set i_size to the unaligned end.
9735 */
9736 if (start + encoded->len < inode->vfs_inode.i_size &&
9737 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize))
9738 return -EINVAL;
9739
9740 /* Finally, the offset in the unencoded data must be sector-aligned. */
9741 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize))
9742 return -EINVAL;
9743
9744 num_bytes = ALIGN(encoded->len, fs_info->sectorsize);
9745 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize);
9746 end = start + num_bytes - 1;
9747
9748 /*
9749 * If the extent cannot be inline, the compressed data on disk must be
9750 * sector-aligned. For convenience, we extend it with zeroes if it
9751 * isn't.
9752 */
9753 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize);
9754 nr_folios = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE);
9755 folios = kvcalloc(nr_folios, sizeof(struct folio *), GFP_KERNEL_ACCOUNT);
9756 if (!folios)
9757 return -ENOMEM;
9758 for (i = 0; i < nr_folios; i++) {
9759 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from));
9760 char *kaddr;
9761
9762 folios[i] = folio_alloc(GFP_KERNEL_ACCOUNT, 0);
9763 if (!folios[i]) {
9764 ret = -ENOMEM;
9765 goto out_folios;
9766 }
9767 kaddr = kmap_local_folio(folios[i], 0);
9768 if (copy_from_iter(kaddr, bytes, from) != bytes) {
9769 kunmap_local(kaddr);
9770 ret = -EFAULT;
9771 goto out_folios;
9772 }
9773 if (bytes < PAGE_SIZE)
9774 memset(kaddr + bytes, 0, PAGE_SIZE - bytes);
9775 kunmap_local(kaddr);
9776 }
9777
9778 for (;;) {
9779 struct btrfs_ordered_extent *ordered;
9780
9781 ret = btrfs_wait_ordered_range(inode, start, num_bytes);
9782 if (ret)
9783 goto out_folios;
9784 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping,
9785 start >> PAGE_SHIFT,
9786 end >> PAGE_SHIFT);
9787 if (ret)
9788 goto out_folios;
9789 btrfs_lock_extent(io_tree, start, end, &cached_state);
9790 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes);
9791 if (!ordered &&
9792 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end))
9793 break;
9794 if (ordered)
9795 btrfs_put_ordered_extent(ordered);
9796 btrfs_unlock_extent(io_tree, start, end, &cached_state);
9797 cond_resched();
9798 }
9799
9800 /*
9801 * We don't use the higher-level delalloc space functions because our
9802 * num_bytes and disk_num_bytes are different.
9803 */
9804 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes);
9805 if (ret)
9806 goto out_unlock;
9807 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes);
9808 if (ret)
9809 goto out_free_data_space;
9810 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes,
9811 false);
9812 if (ret)
9813 goto out_qgroup_free_data;
9814
9815 /* Try an inline extent first. */
9816 if (encoded->unencoded_len == encoded->len &&
9817 encoded->unencoded_offset == 0 &&
9818 can_cow_file_range_inline(inode, start, encoded->len, orig_count)) {
9819 ret = __cow_file_range_inline(inode, encoded->len,
9820 orig_count, compression, folios[0],
9821 true);
9822 if (ret <= 0) {
9823 if (ret == 0)
9824 ret = orig_count;
9825 goto out_delalloc_release;
9826 }
9827 }
9828
9829 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes,
9830 disk_num_bytes, 0, 0, &ins, 1, 1);
9831 if (ret)
9832 goto out_delalloc_release;
9833 extent_reserved = true;
9834
9835 file_extent.disk_bytenr = ins.objectid;
9836 file_extent.disk_num_bytes = ins.offset;
9837 file_extent.num_bytes = num_bytes;
9838 file_extent.ram_bytes = ram_bytes;
9839 file_extent.offset = encoded->unencoded_offset;
9840 file_extent.compression = compression;
9841 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED);
9842 if (IS_ERR(em)) {
9843 ret = PTR_ERR(em);
9844 goto out_free_reserved;
9845 }
9846 btrfs_free_extent_map(em);
9847
9848 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent,
9849 (1U << BTRFS_ORDERED_ENCODED) |
9850 (1U << BTRFS_ORDERED_COMPRESSED));
9851 if (IS_ERR(ordered)) {
9852 btrfs_drop_extent_map_range(inode, start, end, false);
9853 ret = PTR_ERR(ordered);
9854 goto out_free_reserved;
9855 }
9856 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9857
9858 if (start + encoded->len > inode->vfs_inode.i_size)
9859 i_size_write(&inode->vfs_inode, start + encoded->len);
9860
9861 btrfs_unlock_extent(io_tree, start, end, &cached_state);
9862
9863 btrfs_delalloc_release_extents(inode, num_bytes);
9864
9865 btrfs_submit_compressed_write(ordered, folios, nr_folios, 0, false);
9866 ret = orig_count;
9867 goto out;
9868
9869 out_free_reserved:
9870 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9871 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, true);
9872 out_delalloc_release:
9873 btrfs_delalloc_release_extents(inode, num_bytes);
9874 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0);
9875 out_qgroup_free_data:
9876 if (ret < 0)
9877 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes, NULL);
9878 out_free_data_space:
9879 /*
9880 * If btrfs_reserve_extent() succeeded, then we already decremented
9881 * bytes_may_use.
9882 */
9883 if (!extent_reserved)
9884 btrfs_free_reserved_data_space_noquota(inode, disk_num_bytes);
9885 out_unlock:
9886 btrfs_unlock_extent(io_tree, start, end, &cached_state);
9887 out_folios:
9888 for (i = 0; i < nr_folios; i++) {
9889 if (folios[i])
9890 folio_put(folios[i]);
9891 }
9892 kvfree(folios);
9893 out:
9894 if (ret >= 0)
9895 iocb->ki_pos += encoded->len;
9896 return ret;
9897 }
9898
9899 #ifdef CONFIG_SWAP
9900 /*
9901 * Add an entry indicating a block group or device which is pinned by a
9902 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
9903 * negative errno on failure.
9904 */
btrfs_add_swapfile_pin(struct inode * inode,void * ptr,bool is_block_group)9905 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
9906 bool is_block_group)
9907 {
9908 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
9909 struct btrfs_swapfile_pin *sp, *entry;
9910 struct rb_node **p;
9911 struct rb_node *parent = NULL;
9912
9913 sp = kmalloc(sizeof(*sp), GFP_NOFS);
9914 if (!sp)
9915 return -ENOMEM;
9916 sp->ptr = ptr;
9917 sp->inode = inode;
9918 sp->is_block_group = is_block_group;
9919 sp->bg_extent_count = 1;
9920
9921 spin_lock(&fs_info->swapfile_pins_lock);
9922 p = &fs_info->swapfile_pins.rb_node;
9923 while (*p) {
9924 parent = *p;
9925 entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
9926 if (sp->ptr < entry->ptr ||
9927 (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
9928 p = &(*p)->rb_left;
9929 } else if (sp->ptr > entry->ptr ||
9930 (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
9931 p = &(*p)->rb_right;
9932 } else {
9933 if (is_block_group)
9934 entry->bg_extent_count++;
9935 spin_unlock(&fs_info->swapfile_pins_lock);
9936 kfree(sp);
9937 return 1;
9938 }
9939 }
9940 rb_link_node(&sp->node, parent, p);
9941 rb_insert_color(&sp->node, &fs_info->swapfile_pins);
9942 spin_unlock(&fs_info->swapfile_pins_lock);
9943 return 0;
9944 }
9945
9946 /* Free all of the entries pinned by this swapfile. */
btrfs_free_swapfile_pins(struct inode * inode)9947 static void btrfs_free_swapfile_pins(struct inode *inode)
9948 {
9949 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
9950 struct btrfs_swapfile_pin *sp;
9951 struct rb_node *node, *next;
9952
9953 spin_lock(&fs_info->swapfile_pins_lock);
9954 node = rb_first(&fs_info->swapfile_pins);
9955 while (node) {
9956 next = rb_next(node);
9957 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
9958 if (sp->inode == inode) {
9959 rb_erase(&sp->node, &fs_info->swapfile_pins);
9960 if (sp->is_block_group) {
9961 btrfs_dec_block_group_swap_extents(sp->ptr,
9962 sp->bg_extent_count);
9963 btrfs_put_block_group(sp->ptr);
9964 }
9965 kfree(sp);
9966 }
9967 node = next;
9968 }
9969 spin_unlock(&fs_info->swapfile_pins_lock);
9970 }
9971
9972 struct btrfs_swap_info {
9973 u64 start;
9974 u64 block_start;
9975 u64 block_len;
9976 u64 lowest_ppage;
9977 u64 highest_ppage;
9978 unsigned long nr_pages;
9979 int nr_extents;
9980 };
9981
btrfs_add_swap_extent(struct swap_info_struct * sis,struct btrfs_swap_info * bsi)9982 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
9983 struct btrfs_swap_info *bsi)
9984 {
9985 unsigned long nr_pages;
9986 unsigned long max_pages;
9987 u64 first_ppage, first_ppage_reported, next_ppage;
9988 int ret;
9989
9990 /*
9991 * Our swapfile may have had its size extended after the swap header was
9992 * written. In that case activating the swapfile should not go beyond
9993 * the max size set in the swap header.
9994 */
9995 if (bsi->nr_pages >= sis->max)
9996 return 0;
9997
9998 max_pages = sis->max - bsi->nr_pages;
9999 first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT;
10000 next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT;
10001
10002 if (first_ppage >= next_ppage)
10003 return 0;
10004 nr_pages = next_ppage - first_ppage;
10005 nr_pages = min(nr_pages, max_pages);
10006
10007 first_ppage_reported = first_ppage;
10008 if (bsi->start == 0)
10009 first_ppage_reported++;
10010 if (bsi->lowest_ppage > first_ppage_reported)
10011 bsi->lowest_ppage = first_ppage_reported;
10012 if (bsi->highest_ppage < (next_ppage - 1))
10013 bsi->highest_ppage = next_ppage - 1;
10014
10015 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10016 if (ret < 0)
10017 return ret;
10018 bsi->nr_extents += ret;
10019 bsi->nr_pages += nr_pages;
10020 return 0;
10021 }
10022
btrfs_swap_deactivate(struct file * file)10023 static void btrfs_swap_deactivate(struct file *file)
10024 {
10025 struct inode *inode = file_inode(file);
10026
10027 btrfs_free_swapfile_pins(inode);
10028 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10029 }
10030
btrfs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)10031 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10032 sector_t *span)
10033 {
10034 struct inode *inode = file_inode(file);
10035 struct btrfs_root *root = BTRFS_I(inode)->root;
10036 struct btrfs_fs_info *fs_info = root->fs_info;
10037 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10038 struct extent_state *cached_state = NULL;
10039 struct btrfs_chunk_map *map = NULL;
10040 struct btrfs_device *device = NULL;
10041 struct btrfs_swap_info bsi = {
10042 .lowest_ppage = (sector_t)-1ULL,
10043 };
10044 struct btrfs_backref_share_check_ctx *backref_ctx = NULL;
10045 struct btrfs_path *path = NULL;
10046 int ret = 0;
10047 u64 isize;
10048 u64 prev_extent_end = 0;
10049
10050 /*
10051 * Acquire the inode's mmap lock to prevent races with memory mapped
10052 * writes, as they could happen after we flush delalloc below and before
10053 * we lock the extent range further below. The inode was already locked
10054 * up in the call chain.
10055 */
10056 btrfs_assert_inode_locked(BTRFS_I(inode));
10057 down_write(&BTRFS_I(inode)->i_mmap_lock);
10058
10059 /*
10060 * If the swap file was just created, make sure delalloc is done. If the
10061 * file changes again after this, the user is doing something stupid and
10062 * we don't really care.
10063 */
10064 ret = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1);
10065 if (ret)
10066 goto out_unlock_mmap;
10067
10068 /*
10069 * The inode is locked, so these flags won't change after we check them.
10070 */
10071 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10072 btrfs_warn(fs_info, "swapfile must not be compressed");
10073 ret = -EINVAL;
10074 goto out_unlock_mmap;
10075 }
10076 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10077 btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10078 ret = -EINVAL;
10079 goto out_unlock_mmap;
10080 }
10081 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10082 btrfs_warn(fs_info, "swapfile must not be checksummed");
10083 ret = -EINVAL;
10084 goto out_unlock_mmap;
10085 }
10086
10087 path = btrfs_alloc_path();
10088 backref_ctx = btrfs_alloc_backref_share_check_ctx();
10089 if (!path || !backref_ctx) {
10090 ret = -ENOMEM;
10091 goto out_unlock_mmap;
10092 }
10093
10094 /*
10095 * Balance or device remove/replace/resize can move stuff around from
10096 * under us. The exclop protection makes sure they aren't running/won't
10097 * run concurrently while we are mapping the swap extents, and
10098 * fs_info->swapfile_pins prevents them from running while the swap
10099 * file is active and moving the extents. Note that this also prevents
10100 * a concurrent device add which isn't actually necessary, but it's not
10101 * really worth the trouble to allow it.
10102 */
10103 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
10104 btrfs_warn(fs_info,
10105 "cannot activate swapfile while exclusive operation is running");
10106 ret = -EBUSY;
10107 goto out_unlock_mmap;
10108 }
10109
10110 /*
10111 * Prevent snapshot creation while we are activating the swap file.
10112 * We do not want to race with snapshot creation. If snapshot creation
10113 * already started before we bumped nr_swapfiles from 0 to 1 and
10114 * completes before the first write into the swap file after it is
10115 * activated, than that write would fallback to COW.
10116 */
10117 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
10118 btrfs_exclop_finish(fs_info);
10119 btrfs_warn(fs_info,
10120 "cannot activate swapfile because snapshot creation is in progress");
10121 ret = -EINVAL;
10122 goto out_unlock_mmap;
10123 }
10124 /*
10125 * Snapshots can create extents which require COW even if NODATACOW is
10126 * set. We use this counter to prevent snapshots. We must increment it
10127 * before walking the extents because we don't want a concurrent
10128 * snapshot to run after we've already checked the extents.
10129 *
10130 * It is possible that subvolume is marked for deletion but still not
10131 * removed yet. To prevent this race, we check the root status before
10132 * activating the swapfile.
10133 */
10134 spin_lock(&root->root_item_lock);
10135 if (btrfs_root_dead(root)) {
10136 spin_unlock(&root->root_item_lock);
10137
10138 btrfs_drew_write_unlock(&root->snapshot_lock);
10139 btrfs_exclop_finish(fs_info);
10140 btrfs_warn(fs_info,
10141 "cannot activate swapfile because subvolume %llu is being deleted",
10142 btrfs_root_id(root));
10143 ret = -EPERM;
10144 goto out_unlock_mmap;
10145 }
10146 atomic_inc(&root->nr_swapfiles);
10147 spin_unlock(&root->root_item_lock);
10148
10149 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10150
10151 btrfs_lock_extent(io_tree, 0, isize - 1, &cached_state);
10152 while (prev_extent_end < isize) {
10153 struct btrfs_key key;
10154 struct extent_buffer *leaf;
10155 struct btrfs_file_extent_item *ei;
10156 struct btrfs_block_group *bg;
10157 u64 logical_block_start;
10158 u64 physical_block_start;
10159 u64 extent_gen;
10160 u64 disk_bytenr;
10161 u64 len;
10162
10163 key.objectid = btrfs_ino(BTRFS_I(inode));
10164 key.type = BTRFS_EXTENT_DATA_KEY;
10165 key.offset = prev_extent_end;
10166
10167 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
10168 if (ret < 0)
10169 goto out;
10170
10171 /*
10172 * If key not found it means we have an implicit hole (NO_HOLES
10173 * is enabled).
10174 */
10175 if (ret > 0) {
10176 btrfs_warn(fs_info, "swapfile must not have holes");
10177 ret = -EINVAL;
10178 goto out;
10179 }
10180
10181 leaf = path->nodes[0];
10182 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
10183
10184 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) {
10185 /*
10186 * It's unlikely we'll ever actually find ourselves
10187 * here, as a file small enough to fit inline won't be
10188 * big enough to store more than the swap header, but in
10189 * case something changes in the future, let's catch it
10190 * here rather than later.
10191 */
10192 btrfs_warn(fs_info, "swapfile must not be inline");
10193 ret = -EINVAL;
10194 goto out;
10195 }
10196
10197 if (btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) {
10198 btrfs_warn(fs_info, "swapfile must not be compressed");
10199 ret = -EINVAL;
10200 goto out;
10201 }
10202
10203 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
10204 if (disk_bytenr == 0) {
10205 btrfs_warn(fs_info, "swapfile must not have holes");
10206 ret = -EINVAL;
10207 goto out;
10208 }
10209
10210 logical_block_start = disk_bytenr + btrfs_file_extent_offset(leaf, ei);
10211 extent_gen = btrfs_file_extent_generation(leaf, ei);
10212 prev_extent_end = btrfs_file_extent_end(path);
10213
10214 if (prev_extent_end > isize)
10215 len = isize - key.offset;
10216 else
10217 len = btrfs_file_extent_num_bytes(leaf, ei);
10218
10219 backref_ctx->curr_leaf_bytenr = leaf->start;
10220
10221 /*
10222 * Don't need the path anymore, release to avoid deadlocks when
10223 * calling btrfs_is_data_extent_shared() because when joining a
10224 * transaction it can block waiting for the current one's commit
10225 * which in turn may be trying to lock the same leaf to flush
10226 * delayed items for example.
10227 */
10228 btrfs_release_path(path);
10229
10230 ret = btrfs_is_data_extent_shared(BTRFS_I(inode), disk_bytenr,
10231 extent_gen, backref_ctx);
10232 if (ret < 0) {
10233 goto out;
10234 } else if (ret > 0) {
10235 btrfs_warn(fs_info,
10236 "swapfile must not be copy-on-write");
10237 ret = -EINVAL;
10238 goto out;
10239 }
10240
10241 map = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10242 if (IS_ERR(map)) {
10243 ret = PTR_ERR(map);
10244 goto out;
10245 }
10246
10247 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10248 btrfs_warn(fs_info,
10249 "swapfile must have single data profile");
10250 ret = -EINVAL;
10251 goto out;
10252 }
10253
10254 if (device == NULL) {
10255 device = map->stripes[0].dev;
10256 ret = btrfs_add_swapfile_pin(inode, device, false);
10257 if (ret == 1)
10258 ret = 0;
10259 else if (ret)
10260 goto out;
10261 } else if (device != map->stripes[0].dev) {
10262 btrfs_warn(fs_info, "swapfile must be on one device");
10263 ret = -EINVAL;
10264 goto out;
10265 }
10266
10267 physical_block_start = (map->stripes[0].physical +
10268 (logical_block_start - map->start));
10269 btrfs_free_chunk_map(map);
10270 map = NULL;
10271
10272 bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10273 if (!bg) {
10274 btrfs_warn(fs_info,
10275 "could not find block group containing swapfile");
10276 ret = -EINVAL;
10277 goto out;
10278 }
10279
10280 if (!btrfs_inc_block_group_swap_extents(bg)) {
10281 btrfs_warn(fs_info,
10282 "block group for swapfile at %llu is read-only%s",
10283 bg->start,
10284 atomic_read(&fs_info->scrubs_running) ?
10285 " (scrub running)" : "");
10286 btrfs_put_block_group(bg);
10287 ret = -EINVAL;
10288 goto out;
10289 }
10290
10291 ret = btrfs_add_swapfile_pin(inode, bg, true);
10292 if (ret) {
10293 btrfs_put_block_group(bg);
10294 if (ret == 1)
10295 ret = 0;
10296 else
10297 goto out;
10298 }
10299
10300 if (bsi.block_len &&
10301 bsi.block_start + bsi.block_len == physical_block_start) {
10302 bsi.block_len += len;
10303 } else {
10304 if (bsi.block_len) {
10305 ret = btrfs_add_swap_extent(sis, &bsi);
10306 if (ret)
10307 goto out;
10308 }
10309 bsi.start = key.offset;
10310 bsi.block_start = physical_block_start;
10311 bsi.block_len = len;
10312 }
10313
10314 if (fatal_signal_pending(current)) {
10315 ret = -EINTR;
10316 goto out;
10317 }
10318
10319 cond_resched();
10320 }
10321
10322 if (bsi.block_len)
10323 ret = btrfs_add_swap_extent(sis, &bsi);
10324
10325 out:
10326 if (!IS_ERR_OR_NULL(map))
10327 btrfs_free_chunk_map(map);
10328
10329 btrfs_unlock_extent(io_tree, 0, isize - 1, &cached_state);
10330
10331 if (ret)
10332 btrfs_swap_deactivate(file);
10333
10334 btrfs_drew_write_unlock(&root->snapshot_lock);
10335
10336 btrfs_exclop_finish(fs_info);
10337
10338 out_unlock_mmap:
10339 up_write(&BTRFS_I(inode)->i_mmap_lock);
10340 btrfs_free_backref_share_ctx(backref_ctx);
10341 btrfs_free_path(path);
10342 if (ret)
10343 return ret;
10344
10345 if (device)
10346 sis->bdev = device->bdev;
10347 *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10348 sis->max = bsi.nr_pages;
10349 sis->pages = bsi.nr_pages - 1;
10350 return bsi.nr_extents;
10351 }
10352 #else
btrfs_swap_deactivate(struct file * file)10353 static void btrfs_swap_deactivate(struct file *file)
10354 {
10355 }
10356
btrfs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)10357 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10358 sector_t *span)
10359 {
10360 return -EOPNOTSUPP;
10361 }
10362 #endif
10363
10364 /*
10365 * Update the number of bytes used in the VFS' inode. When we replace extents in
10366 * a range (clone, dedupe, fallocate's zero range), we must update the number of
10367 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
10368 * always get a correct value.
10369 */
btrfs_update_inode_bytes(struct btrfs_inode * inode,const u64 add_bytes,const u64 del_bytes)10370 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
10371 const u64 add_bytes,
10372 const u64 del_bytes)
10373 {
10374 if (add_bytes == del_bytes)
10375 return;
10376
10377 spin_lock(&inode->lock);
10378 if (del_bytes > 0)
10379 inode_sub_bytes(&inode->vfs_inode, del_bytes);
10380 if (add_bytes > 0)
10381 inode_add_bytes(&inode->vfs_inode, add_bytes);
10382 spin_unlock(&inode->lock);
10383 }
10384
10385 /*
10386 * Verify that there are no ordered extents for a given file range.
10387 *
10388 * @inode: The target inode.
10389 * @start: Start offset of the file range, should be sector size aligned.
10390 * @end: End offset (inclusive) of the file range, its value +1 should be
10391 * sector size aligned.
10392 *
10393 * This should typically be used for cases where we locked an inode's VFS lock in
10394 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode,
10395 * we have flushed all delalloc in the range, we have waited for all ordered
10396 * extents in the range to complete and finally we have locked the file range in
10397 * the inode's io_tree.
10398 */
btrfs_assert_inode_range_clean(struct btrfs_inode * inode,u64 start,u64 end)10399 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end)
10400 {
10401 struct btrfs_root *root = inode->root;
10402 struct btrfs_ordered_extent *ordered;
10403
10404 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
10405 return;
10406
10407 ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start);
10408 if (ordered) {
10409 btrfs_err(root->fs_info,
10410 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])",
10411 start, end, btrfs_ino(inode), btrfs_root_id(root),
10412 ordered->file_offset,
10413 ordered->file_offset + ordered->num_bytes - 1);
10414 btrfs_put_ordered_extent(ordered);
10415 }
10416
10417 ASSERT(ordered == NULL);
10418 }
10419
10420 /*
10421 * Find the first inode with a minimum number.
10422 *
10423 * @root: The root to search for.
10424 * @min_ino: The minimum inode number.
10425 *
10426 * Find the first inode in the @root with a number >= @min_ino and return it.
10427 * Returns NULL if no such inode found.
10428 */
btrfs_find_first_inode(struct btrfs_root * root,u64 min_ino)10429 struct btrfs_inode *btrfs_find_first_inode(struct btrfs_root *root, u64 min_ino)
10430 {
10431 struct btrfs_inode *inode;
10432 unsigned long from = min_ino;
10433
10434 xa_lock(&root->inodes);
10435 while (true) {
10436 inode = xa_find(&root->inodes, &from, ULONG_MAX, XA_PRESENT);
10437 if (!inode)
10438 break;
10439 if (igrab(&inode->vfs_inode))
10440 break;
10441
10442 from = btrfs_ino(inode) + 1;
10443 cond_resched_lock(&root->inodes.xa_lock);
10444 }
10445 xa_unlock(&root->inodes);
10446
10447 return inode;
10448 }
10449
10450 static const struct inode_operations btrfs_dir_inode_operations = {
10451 .getattr = btrfs_getattr,
10452 .lookup = btrfs_lookup,
10453 .create = btrfs_create,
10454 .unlink = btrfs_unlink,
10455 .link = btrfs_link,
10456 .mkdir = btrfs_mkdir,
10457 .rmdir = btrfs_rmdir,
10458 .rename = btrfs_rename2,
10459 .symlink = btrfs_symlink,
10460 .setattr = btrfs_setattr,
10461 .mknod = btrfs_mknod,
10462 .listxattr = btrfs_listxattr,
10463 .permission = btrfs_permission,
10464 .get_inode_acl = btrfs_get_acl,
10465 .set_acl = btrfs_set_acl,
10466 .update_time = btrfs_update_time,
10467 .tmpfile = btrfs_tmpfile,
10468 .fileattr_get = btrfs_fileattr_get,
10469 .fileattr_set = btrfs_fileattr_set,
10470 };
10471
10472 static const struct file_operations btrfs_dir_file_operations = {
10473 .llseek = btrfs_dir_llseek,
10474 .read = generic_read_dir,
10475 .iterate_shared = btrfs_real_readdir,
10476 .open = btrfs_opendir,
10477 .unlocked_ioctl = btrfs_ioctl,
10478 #ifdef CONFIG_COMPAT
10479 .compat_ioctl = btrfs_compat_ioctl,
10480 #endif
10481 .release = btrfs_release_file,
10482 .fsync = btrfs_sync_file,
10483 };
10484
10485 /*
10486 * btrfs doesn't support the bmap operation because swapfiles
10487 * use bmap to make a mapping of extents in the file. They assume
10488 * these extents won't change over the life of the file and they
10489 * use the bmap result to do IO directly to the drive.
10490 *
10491 * the btrfs bmap call would return logical addresses that aren't
10492 * suitable for IO and they also will change frequently as COW
10493 * operations happen. So, swapfile + btrfs == corruption.
10494 *
10495 * For now we're avoiding this by dropping bmap.
10496 */
10497 static const struct address_space_operations btrfs_aops = {
10498 .read_folio = btrfs_read_folio,
10499 .writepages = btrfs_writepages,
10500 .readahead = btrfs_readahead,
10501 .invalidate_folio = btrfs_invalidate_folio,
10502 .launder_folio = btrfs_launder_folio,
10503 .release_folio = btrfs_release_folio,
10504 .migrate_folio = btrfs_migrate_folio,
10505 .dirty_folio = filemap_dirty_folio,
10506 .error_remove_folio = generic_error_remove_folio,
10507 .swap_activate = btrfs_swap_activate,
10508 .swap_deactivate = btrfs_swap_deactivate,
10509 };
10510
10511 static const struct inode_operations btrfs_file_inode_operations = {
10512 .getattr = btrfs_getattr,
10513 .setattr = btrfs_setattr,
10514 .listxattr = btrfs_listxattr,
10515 .permission = btrfs_permission,
10516 .fiemap = btrfs_fiemap,
10517 .get_inode_acl = btrfs_get_acl,
10518 .set_acl = btrfs_set_acl,
10519 .update_time = btrfs_update_time,
10520 .fileattr_get = btrfs_fileattr_get,
10521 .fileattr_set = btrfs_fileattr_set,
10522 };
10523 static const struct inode_operations btrfs_special_inode_operations = {
10524 .getattr = btrfs_getattr,
10525 .setattr = btrfs_setattr,
10526 .permission = btrfs_permission,
10527 .listxattr = btrfs_listxattr,
10528 .get_inode_acl = btrfs_get_acl,
10529 .set_acl = btrfs_set_acl,
10530 .update_time = btrfs_update_time,
10531 };
10532 static const struct inode_operations btrfs_symlink_inode_operations = {
10533 .get_link = page_get_link,
10534 .getattr = btrfs_getattr,
10535 .setattr = btrfs_setattr,
10536 .permission = btrfs_permission,
10537 .listxattr = btrfs_listxattr,
10538 .update_time = btrfs_update_time,
10539 };
10540
10541 const struct dentry_operations btrfs_dentry_operations = {
10542 .d_delete = btrfs_dentry_delete,
10543 };
10544