1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011 Fujitsu. All rights reserved. 4 * Written by Miao Xie <miaox@cn.fujitsu.com> 5 */ 6 7 #include <linux/slab.h> 8 #include <linux/iversion.h> 9 #include "ctree.h" 10 #include "fs.h" 11 #include "messages.h" 12 #include "misc.h" 13 #include "delayed-inode.h" 14 #include "disk-io.h" 15 #include "transaction.h" 16 #include "qgroup.h" 17 #include "locking.h" 18 #include "inode-item.h" 19 #include "space-info.h" 20 #include "accessors.h" 21 #include "file-item.h" 22 23 #define BTRFS_DELAYED_WRITEBACK 512 24 #define BTRFS_DELAYED_BACKGROUND 128 25 #define BTRFS_DELAYED_BATCH 16 26 27 static struct kmem_cache *delayed_node_cache; 28 29 int __init btrfs_delayed_inode_init(void) 30 { 31 delayed_node_cache = KMEM_CACHE(btrfs_delayed_node, 0); 32 if (!delayed_node_cache) 33 return -ENOMEM; 34 return 0; 35 } 36 37 void __cold btrfs_delayed_inode_exit(void) 38 { 39 kmem_cache_destroy(delayed_node_cache); 40 } 41 42 void btrfs_init_delayed_root(struct btrfs_delayed_root *delayed_root) 43 { 44 atomic_set(&delayed_root->items, 0); 45 atomic_set(&delayed_root->items_seq, 0); 46 delayed_root->nodes = 0; 47 spin_lock_init(&delayed_root->lock); 48 init_waitqueue_head(&delayed_root->wait); 49 INIT_LIST_HEAD(&delayed_root->node_list); 50 INIT_LIST_HEAD(&delayed_root->prepare_list); 51 } 52 53 static inline void btrfs_init_delayed_node( 54 struct btrfs_delayed_node *delayed_node, 55 struct btrfs_root *root, u64 inode_id) 56 { 57 delayed_node->root = root; 58 delayed_node->inode_id = inode_id; 59 refcount_set(&delayed_node->refs, 0); 60 btrfs_delayed_node_ref_tracker_dir_init(delayed_node); 61 delayed_node->ins_root = RB_ROOT_CACHED; 62 delayed_node->del_root = RB_ROOT_CACHED; 63 mutex_init(&delayed_node->mutex); 64 INIT_LIST_HEAD(&delayed_node->n_list); 65 INIT_LIST_HEAD(&delayed_node->p_list); 66 } 67 68 static struct btrfs_delayed_node *btrfs_get_delayed_node( 69 struct btrfs_inode *btrfs_inode, 70 struct btrfs_ref_tracker *tracker) 71 { 72 struct btrfs_root *root = btrfs_inode->root; 73 u64 ino = btrfs_ino(btrfs_inode); 74 struct btrfs_delayed_node *node; 75 76 node = READ_ONCE(btrfs_inode->delayed_node); 77 if (node) { 78 refcount_inc(&node->refs); 79 btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_NOFS); 80 return node; 81 } 82 83 xa_lock(&root->delayed_nodes); 84 node = xa_load(&root->delayed_nodes, ino); 85 86 if (node) { 87 if (btrfs_inode->delayed_node) { 88 refcount_inc(&node->refs); /* can be accessed */ 89 btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC); 90 BUG_ON(btrfs_inode->delayed_node != node); 91 xa_unlock(&root->delayed_nodes); 92 return node; 93 } 94 95 /* 96 * It's possible that we're racing into the middle of removing 97 * this node from the xarray. In this case, the refcount 98 * was zero and it should never go back to one. Just return 99 * NULL like it was never in the xarray at all; our release 100 * function is in the process of removing it. 101 * 102 * Some implementations of refcount_inc refuse to bump the 103 * refcount once it has hit zero. If we don't do this dance 104 * here, refcount_inc() may decide to just WARN_ONCE() instead 105 * of actually bumping the refcount. 106 * 107 * If this node is properly in the xarray, we want to bump the 108 * refcount twice, once for the inode and once for this get 109 * operation. 110 */ 111 if (refcount_inc_not_zero(&node->refs)) { 112 refcount_inc(&node->refs); 113 btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC); 114 btrfs_delayed_node_ref_tracker_alloc(node, &node->inode_cache_tracker, 115 GFP_ATOMIC); 116 btrfs_inode->delayed_node = node; 117 } else { 118 node = NULL; 119 } 120 121 xa_unlock(&root->delayed_nodes); 122 return node; 123 } 124 xa_unlock(&root->delayed_nodes); 125 126 return NULL; 127 } 128 129 /* 130 * Look up an existing delayed node associated with @btrfs_inode or create a new 131 * one and insert it to the delayed nodes of the root. 132 * 133 * Return the delayed node, or error pointer on failure. 134 */ 135 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node( 136 struct btrfs_inode *btrfs_inode, 137 struct btrfs_ref_tracker *tracker) 138 { 139 struct btrfs_delayed_node *node; 140 struct btrfs_root *root = btrfs_inode->root; 141 u64 ino = btrfs_ino(btrfs_inode); 142 int ret; 143 void *ptr; 144 145 again: 146 node = btrfs_get_delayed_node(btrfs_inode, tracker); 147 if (node) 148 return node; 149 150 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS); 151 if (!node) 152 return ERR_PTR(-ENOMEM); 153 btrfs_init_delayed_node(node, root, ino); 154 155 /* Cached in the inode and can be accessed. */ 156 refcount_set(&node->refs, 2); 157 btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_NOFS); 158 btrfs_delayed_node_ref_tracker_alloc(node, &node->inode_cache_tracker, GFP_NOFS); 159 160 /* Allocate and reserve the slot, from now it can return a NULL from xa_load(). */ 161 ret = xa_reserve(&root->delayed_nodes, ino, GFP_NOFS); 162 if (ret == -ENOMEM) 163 goto cleanup; 164 165 xa_lock(&root->delayed_nodes); 166 ptr = xa_load(&root->delayed_nodes, ino); 167 if (ptr) { 168 /* Somebody inserted it, go back and read it. */ 169 xa_unlock(&root->delayed_nodes); 170 goto cleanup; 171 } 172 ptr = __xa_store(&root->delayed_nodes, ino, node, GFP_ATOMIC); 173 ASSERT(xa_err(ptr) != -EINVAL); 174 ASSERT(xa_err(ptr) != -ENOMEM); 175 ASSERT(ptr == NULL); 176 btrfs_inode->delayed_node = node; 177 xa_unlock(&root->delayed_nodes); 178 179 return node; 180 cleanup: 181 btrfs_delayed_node_ref_tracker_free(node, tracker); 182 btrfs_delayed_node_ref_tracker_free(node, &node->inode_cache_tracker); 183 btrfs_delayed_node_ref_tracker_dir_exit(node); 184 kmem_cache_free(delayed_node_cache, node); 185 if (ret) 186 return ERR_PTR(ret); 187 goto again; 188 } 189 190 /* 191 * Call it when holding delayed_node->mutex 192 * 193 * If mod = 1, add this node into the prepared list. 194 */ 195 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root, 196 struct btrfs_delayed_node *node, 197 int mod) 198 { 199 spin_lock(&root->lock); 200 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 201 if (!list_empty(&node->p_list)) 202 list_move_tail(&node->p_list, &root->prepare_list); 203 else if (mod) 204 list_add_tail(&node->p_list, &root->prepare_list); 205 } else { 206 list_add_tail(&node->n_list, &root->node_list); 207 list_add_tail(&node->p_list, &root->prepare_list); 208 refcount_inc(&node->refs); /* inserted into list */ 209 btrfs_delayed_node_ref_tracker_alloc(node, &node->node_list_tracker, 210 GFP_ATOMIC); 211 root->nodes++; 212 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); 213 } 214 spin_unlock(&root->lock); 215 } 216 217 /* Call it when holding delayed_node->mutex */ 218 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root, 219 struct btrfs_delayed_node *node) 220 { 221 spin_lock(&root->lock); 222 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 223 root->nodes--; 224 btrfs_delayed_node_ref_tracker_free(node, &node->node_list_tracker); 225 refcount_dec(&node->refs); /* not in the list */ 226 list_del_init(&node->n_list); 227 if (!list_empty(&node->p_list)) 228 list_del_init(&node->p_list); 229 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); 230 } 231 spin_unlock(&root->lock); 232 } 233 234 static struct btrfs_delayed_node *btrfs_first_delayed_node( 235 struct btrfs_delayed_root *delayed_root, 236 struct btrfs_ref_tracker *tracker) 237 { 238 struct btrfs_delayed_node *node; 239 240 spin_lock(&delayed_root->lock); 241 node = list_first_entry_or_null(&delayed_root->node_list, 242 struct btrfs_delayed_node, n_list); 243 if (node) { 244 refcount_inc(&node->refs); 245 btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC); 246 } 247 spin_unlock(&delayed_root->lock); 248 249 return node; 250 } 251 252 static struct btrfs_delayed_node *btrfs_next_delayed_node( 253 struct btrfs_delayed_node *node, 254 struct btrfs_ref_tracker *tracker) 255 { 256 struct btrfs_delayed_root *delayed_root; 257 struct list_head *p; 258 struct btrfs_delayed_node *next = NULL; 259 260 delayed_root = node->root->fs_info->delayed_root; 261 spin_lock(&delayed_root->lock); 262 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 263 /* not in the list */ 264 if (list_empty(&delayed_root->node_list)) 265 goto out; 266 p = delayed_root->node_list.next; 267 } else if (list_is_last(&node->n_list, &delayed_root->node_list)) 268 goto out; 269 else 270 p = node->n_list.next; 271 272 next = list_entry(p, struct btrfs_delayed_node, n_list); 273 refcount_inc(&next->refs); 274 btrfs_delayed_node_ref_tracker_alloc(next, tracker, GFP_ATOMIC); 275 out: 276 spin_unlock(&delayed_root->lock); 277 278 return next; 279 } 280 281 static void __btrfs_release_delayed_node( 282 struct btrfs_delayed_node *delayed_node, 283 int mod, struct btrfs_ref_tracker *tracker) 284 { 285 struct btrfs_delayed_root *delayed_root; 286 287 if (!delayed_node) 288 return; 289 290 delayed_root = delayed_node->root->fs_info->delayed_root; 291 292 mutex_lock(&delayed_node->mutex); 293 if (delayed_node->count) 294 btrfs_queue_delayed_node(delayed_root, delayed_node, mod); 295 else 296 btrfs_dequeue_delayed_node(delayed_root, delayed_node); 297 mutex_unlock(&delayed_node->mutex); 298 299 btrfs_delayed_node_ref_tracker_free(delayed_node, tracker); 300 if (refcount_dec_and_test(&delayed_node->refs)) { 301 struct btrfs_root *root = delayed_node->root; 302 303 xa_erase(&root->delayed_nodes, delayed_node->inode_id); 304 /* 305 * Once our refcount goes to zero, nobody is allowed to bump it 306 * back up. We can delete it now. 307 */ 308 ASSERT(refcount_read(&delayed_node->refs) == 0); 309 btrfs_delayed_node_ref_tracker_dir_exit(delayed_node); 310 kmem_cache_free(delayed_node_cache, delayed_node); 311 } 312 } 313 314 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node, 315 struct btrfs_ref_tracker *tracker) 316 { 317 __btrfs_release_delayed_node(node, 0, tracker); 318 } 319 320 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node( 321 struct btrfs_delayed_root *delayed_root, 322 struct btrfs_ref_tracker *tracker) 323 { 324 struct btrfs_delayed_node *node; 325 326 spin_lock(&delayed_root->lock); 327 node = list_first_entry_or_null(&delayed_root->prepare_list, 328 struct btrfs_delayed_node, p_list); 329 if (node) { 330 list_del_init(&node->p_list); 331 refcount_inc(&node->refs); 332 btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC); 333 } 334 spin_unlock(&delayed_root->lock); 335 336 return node; 337 } 338 339 static inline void btrfs_release_prepared_delayed_node( 340 struct btrfs_delayed_node *node, 341 struct btrfs_ref_tracker *tracker) 342 { 343 __btrfs_release_delayed_node(node, 1, tracker); 344 } 345 346 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u16 data_len, 347 struct btrfs_delayed_node *node, 348 enum btrfs_delayed_item_type type) 349 { 350 struct btrfs_delayed_item *item; 351 352 item = kmalloc(struct_size(item, data, data_len), GFP_NOFS); 353 if (item) { 354 item->data_len = data_len; 355 item->type = type; 356 item->bytes_reserved = 0; 357 item->delayed_node = node; 358 RB_CLEAR_NODE(&item->rb_node); 359 INIT_LIST_HEAD(&item->log_list); 360 item->logged = false; 361 refcount_set(&item->refs, 1); 362 } 363 return item; 364 } 365 366 static int delayed_item_index_cmp(const void *key, const struct rb_node *node) 367 { 368 const u64 *index = key; 369 const struct btrfs_delayed_item *delayed_item = rb_entry(node, 370 struct btrfs_delayed_item, rb_node); 371 372 if (delayed_item->index < *index) 373 return 1; 374 else if (delayed_item->index > *index) 375 return -1; 376 377 return 0; 378 } 379 380 /* 381 * Look up the delayed item by key. 382 * 383 * @delayed_node: pointer to the delayed node 384 * @index: the dir index value to lookup (offset of a dir index key) 385 * 386 * Note: if we don't find the right item, we will return the prev item and 387 * the next item. 388 */ 389 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item( 390 struct rb_root *root, 391 u64 index) 392 { 393 struct rb_node *node; 394 395 node = rb_find(&index, root, delayed_item_index_cmp); 396 return rb_entry_safe(node, struct btrfs_delayed_item, rb_node); 397 } 398 399 static int btrfs_delayed_item_cmp(const struct rb_node *new, 400 const struct rb_node *exist) 401 { 402 const struct btrfs_delayed_item *new_item = 403 rb_entry(new, struct btrfs_delayed_item, rb_node); 404 405 return delayed_item_index_cmp(&new_item->index, exist); 406 } 407 408 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node, 409 struct btrfs_delayed_item *ins) 410 { 411 struct rb_root_cached *root; 412 struct rb_node *exist; 413 414 if (ins->type == BTRFS_DELAYED_INSERTION_ITEM) 415 root = &delayed_node->ins_root; 416 else 417 root = &delayed_node->del_root; 418 419 exist = rb_find_add_cached(&ins->rb_node, root, btrfs_delayed_item_cmp); 420 if (exist) 421 return -EEXIST; 422 423 if (ins->type == BTRFS_DELAYED_INSERTION_ITEM && 424 ins->index >= delayed_node->index_cnt) 425 delayed_node->index_cnt = ins->index + 1; 426 427 delayed_node->count++; 428 atomic_inc(&delayed_node->root->fs_info->delayed_root->items); 429 return 0; 430 } 431 432 static void finish_one_item(struct btrfs_delayed_root *delayed_root) 433 { 434 int seq = atomic_inc_return(&delayed_root->items_seq); 435 436 /* atomic_dec_return implies a barrier */ 437 if ((atomic_dec_return(&delayed_root->items) < 438 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0)) 439 cond_wake_up_nomb(&delayed_root->wait); 440 } 441 442 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item) 443 { 444 struct btrfs_delayed_node *delayed_node = delayed_item->delayed_node; 445 struct rb_root_cached *root; 446 struct btrfs_delayed_root *delayed_root; 447 448 /* Not inserted, ignore it. */ 449 if (RB_EMPTY_NODE(&delayed_item->rb_node)) 450 return; 451 452 /* If it's in a rbtree, then we need to have delayed node locked. */ 453 lockdep_assert_held(&delayed_node->mutex); 454 455 delayed_root = delayed_node->root->fs_info->delayed_root; 456 457 if (delayed_item->type == BTRFS_DELAYED_INSERTION_ITEM) 458 root = &delayed_node->ins_root; 459 else 460 root = &delayed_node->del_root; 461 462 rb_erase_cached(&delayed_item->rb_node, root); 463 RB_CLEAR_NODE(&delayed_item->rb_node); 464 delayed_node->count--; 465 466 finish_one_item(delayed_root); 467 } 468 469 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item) 470 { 471 if (item) { 472 __btrfs_remove_delayed_item(item); 473 if (refcount_dec_and_test(&item->refs)) 474 kfree(item); 475 } 476 } 477 478 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item( 479 struct btrfs_delayed_node *delayed_node) 480 { 481 struct rb_node *p = rb_first_cached(&delayed_node->ins_root); 482 483 return rb_entry_safe(p, struct btrfs_delayed_item, rb_node); 484 } 485 486 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item( 487 struct btrfs_delayed_node *delayed_node) 488 { 489 struct rb_node *p = rb_first_cached(&delayed_node->del_root); 490 491 return rb_entry_safe(p, struct btrfs_delayed_item, rb_node); 492 } 493 494 static struct btrfs_delayed_item *__btrfs_next_delayed_item( 495 struct btrfs_delayed_item *item) 496 { 497 struct rb_node *p = rb_next(&item->rb_node); 498 499 return rb_entry_safe(p, struct btrfs_delayed_item, rb_node); 500 } 501 502 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans, 503 struct btrfs_delayed_item *item) 504 { 505 struct btrfs_block_rsv *src_rsv; 506 struct btrfs_block_rsv *dst_rsv; 507 struct btrfs_fs_info *fs_info = trans->fs_info; 508 u64 num_bytes; 509 int ret; 510 511 if (!trans->bytes_reserved) 512 return 0; 513 514 src_rsv = trans->block_rsv; 515 dst_rsv = &fs_info->delayed_block_rsv; 516 517 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 518 519 /* 520 * Here we migrate space rsv from transaction rsv, since have already 521 * reserved space when starting a transaction. So no need to reserve 522 * qgroup space here. 523 */ 524 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true); 525 if (!ret) { 526 trace_btrfs_space_reservation(fs_info, "delayed_item", 527 item->delayed_node->inode_id, 528 num_bytes, 1); 529 /* 530 * For insertions we track reserved metadata space by accounting 531 * for the number of leaves that will be used, based on the delayed 532 * node's curr_index_batch_size and index_item_leaves fields. 533 */ 534 if (item->type == BTRFS_DELAYED_DELETION_ITEM) 535 item->bytes_reserved = num_bytes; 536 } 537 538 return ret; 539 } 540 541 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root, 542 struct btrfs_delayed_item *item) 543 { 544 struct btrfs_block_rsv *rsv; 545 struct btrfs_fs_info *fs_info = root->fs_info; 546 547 if (!item->bytes_reserved) 548 return; 549 550 rsv = &fs_info->delayed_block_rsv; 551 /* 552 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need 553 * to release/reserve qgroup space. 554 */ 555 trace_btrfs_space_reservation(fs_info, "delayed_item", 556 item->delayed_node->inode_id, 557 item->bytes_reserved, 0); 558 btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL); 559 } 560 561 static void btrfs_delayed_item_release_leaves(struct btrfs_delayed_node *node, 562 unsigned int num_leaves) 563 { 564 struct btrfs_fs_info *fs_info = node->root->fs_info; 565 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, num_leaves); 566 567 /* There are no space reservations during log replay, bail out. */ 568 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 569 return; 570 571 trace_btrfs_space_reservation(fs_info, "delayed_item", node->inode_id, 572 bytes, 0); 573 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, bytes, NULL); 574 } 575 576 static int btrfs_delayed_inode_reserve_metadata( 577 struct btrfs_trans_handle *trans, 578 struct btrfs_root *root, 579 struct btrfs_delayed_node *node) 580 { 581 struct btrfs_fs_info *fs_info = root->fs_info; 582 struct btrfs_block_rsv *src_rsv; 583 struct btrfs_block_rsv *dst_rsv; 584 u64 num_bytes; 585 int ret; 586 587 src_rsv = trans->block_rsv; 588 dst_rsv = &fs_info->delayed_block_rsv; 589 590 num_bytes = btrfs_calc_metadata_size(fs_info, 1); 591 592 /* 593 * btrfs_dirty_inode will update the inode under btrfs_join_transaction 594 * which doesn't reserve space for speed. This is a problem since we 595 * still need to reserve space for this update, so try to reserve the 596 * space. 597 * 598 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since 599 * we always reserve enough to update the inode item. 600 */ 601 if (!src_rsv || (!trans->bytes_reserved && 602 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) { 603 ret = btrfs_qgroup_reserve_meta(root, num_bytes, 604 BTRFS_QGROUP_RSV_META_PREALLOC, true); 605 if (ret < 0) 606 return ret; 607 ret = btrfs_block_rsv_add(fs_info, dst_rsv, num_bytes, 608 BTRFS_RESERVE_NO_FLUSH); 609 /* NO_FLUSH could only fail with -ENOSPC */ 610 ASSERT(ret == 0 || ret == -ENOSPC); 611 if (ret) 612 btrfs_qgroup_free_meta_prealloc(root, num_bytes); 613 } else { 614 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true); 615 } 616 617 if (!ret) { 618 trace_btrfs_space_reservation(fs_info, "delayed_inode", 619 node->inode_id, num_bytes, 1); 620 node->bytes_reserved = num_bytes; 621 } 622 623 return ret; 624 } 625 626 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info, 627 struct btrfs_delayed_node *node, 628 bool qgroup_free) 629 { 630 struct btrfs_block_rsv *rsv; 631 632 if (!node->bytes_reserved) 633 return; 634 635 rsv = &fs_info->delayed_block_rsv; 636 trace_btrfs_space_reservation(fs_info, "delayed_inode", 637 node->inode_id, node->bytes_reserved, 0); 638 btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL); 639 if (qgroup_free) 640 btrfs_qgroup_free_meta_prealloc(node->root, 641 node->bytes_reserved); 642 else 643 btrfs_qgroup_convert_reserved_meta(node->root, 644 node->bytes_reserved); 645 node->bytes_reserved = 0; 646 } 647 648 /* 649 * Insert a single delayed item or a batch of delayed items, as many as possible 650 * that fit in a leaf. The delayed items (dir index keys) are sorted by their key 651 * in the rbtree, and if there's a gap between two consecutive dir index items, 652 * then it means at some point we had delayed dir indexes to add but they got 653 * removed (by btrfs_delete_delayed_dir_index()) before we attempted to flush them 654 * into the subvolume tree. Dir index keys also have their offsets coming from a 655 * monotonically increasing counter, so we can't get new keys with an offset that 656 * fits within a gap between delayed dir index items. 657 */ 658 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans, 659 struct btrfs_root *root, 660 struct btrfs_path *path, 661 struct btrfs_delayed_item *first_item) 662 { 663 struct btrfs_fs_info *fs_info = root->fs_info; 664 struct btrfs_delayed_node *node = first_item->delayed_node; 665 LIST_HEAD(item_list); 666 struct btrfs_delayed_item *curr; 667 struct btrfs_delayed_item *next; 668 const int max_size = BTRFS_LEAF_DATA_SIZE(fs_info); 669 struct btrfs_item_batch batch; 670 struct btrfs_key first_key; 671 const u32 first_data_size = first_item->data_len; 672 int total_size; 673 char AUTO_KFREE(ins_data); 674 int ret; 675 bool continuous_keys_only = false; 676 677 lockdep_assert_held(&node->mutex); 678 679 /* 680 * During normal operation the delayed index offset is continuously 681 * increasing, so we can batch insert all items as there will not be any 682 * overlapping keys in the tree. 683 * 684 * The exception to this is log replay, where we may have interleaved 685 * offsets in the tree, so our batch needs to be continuous keys only in 686 * order to ensure we do not end up with out of order items in our leaf. 687 */ 688 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 689 continuous_keys_only = true; 690 691 /* 692 * For delayed items to insert, we track reserved metadata bytes based 693 * on the number of leaves that we will use. 694 * See btrfs_insert_delayed_dir_index() and 695 * btrfs_delayed_item_reserve_metadata()). 696 */ 697 ASSERT(first_item->bytes_reserved == 0); 698 699 list_add_tail(&first_item->tree_list, &item_list); 700 batch.total_data_size = first_data_size; 701 batch.nr = 1; 702 total_size = first_data_size + sizeof(struct btrfs_item); 703 curr = first_item; 704 705 while (true) { 706 int next_size; 707 708 next = __btrfs_next_delayed_item(curr); 709 if (!next) 710 break; 711 712 /* 713 * We cannot allow gaps in the key space if we're doing log 714 * replay. 715 */ 716 if (continuous_keys_only && (next->index != curr->index + 1)) 717 break; 718 719 ASSERT(next->bytes_reserved == 0); 720 721 next_size = next->data_len + sizeof(struct btrfs_item); 722 if (total_size + next_size > max_size) 723 break; 724 725 list_add_tail(&next->tree_list, &item_list); 726 batch.nr++; 727 total_size += next_size; 728 batch.total_data_size += next->data_len; 729 curr = next; 730 } 731 732 if (batch.nr == 1) { 733 first_key.objectid = node->inode_id; 734 first_key.type = BTRFS_DIR_INDEX_KEY; 735 first_key.offset = first_item->index; 736 batch.keys = &first_key; 737 batch.data_sizes = &first_data_size; 738 } else { 739 struct btrfs_key *ins_keys; 740 u32 *ins_sizes; 741 int i = 0; 742 743 ins_data = kmalloc_array(batch.nr, 744 sizeof(u32) + sizeof(struct btrfs_key), GFP_NOFS); 745 if (!ins_data) 746 return -ENOMEM; 747 ins_sizes = (u32 *)ins_data; 748 ins_keys = (struct btrfs_key *)(ins_data + batch.nr * sizeof(u32)); 749 batch.keys = ins_keys; 750 batch.data_sizes = ins_sizes; 751 list_for_each_entry(curr, &item_list, tree_list) { 752 ins_keys[i].objectid = node->inode_id; 753 ins_keys[i].type = BTRFS_DIR_INDEX_KEY; 754 ins_keys[i].offset = curr->index; 755 ins_sizes[i] = curr->data_len; 756 i++; 757 } 758 } 759 760 ret = btrfs_insert_empty_items(trans, root, path, &batch); 761 if (ret) 762 return ret; 763 764 list_for_each_entry(curr, &item_list, tree_list) { 765 char *data_ptr; 766 767 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char); 768 write_extent_buffer(path->nodes[0], &curr->data, 769 (unsigned long)data_ptr, curr->data_len); 770 path->slots[0]++; 771 } 772 773 /* 774 * Now release our path before releasing the delayed items and their 775 * metadata reservations, so that we don't block other tasks for more 776 * time than needed. 777 */ 778 btrfs_release_path(path); 779 780 ASSERT(node->index_item_leaves > 0); 781 782 /* 783 * For normal operations we will batch an entire leaf's worth of delayed 784 * items, so if there are more items to process we can decrement 785 * index_item_leaves by 1 as we inserted 1 leaf's worth of items. 786 * 787 * However for log replay we may not have inserted an entire leaf's 788 * worth of items, we may have not had continuous items, so decrementing 789 * here would mess up the index_item_leaves accounting. For this case 790 * only clean up the accounting when there are no items left. 791 */ 792 if (next && !continuous_keys_only) { 793 /* 794 * We inserted one batch of items into a leaf a there are more 795 * items to flush in a future batch, now release one unit of 796 * metadata space from the delayed block reserve, corresponding 797 * the leaf we just flushed to. 798 */ 799 btrfs_delayed_item_release_leaves(node, 1); 800 node->index_item_leaves--; 801 } else if (!next) { 802 /* 803 * There are no more items to insert. We can have a number of 804 * reserved leaves > 1 here - this happens when many dir index 805 * items are added and then removed before they are flushed (file 806 * names with a very short life, never span a transaction). So 807 * release all remaining leaves. 808 */ 809 btrfs_delayed_item_release_leaves(node, node->index_item_leaves); 810 node->index_item_leaves = 0; 811 } 812 813 list_for_each_entry_safe(curr, next, &item_list, tree_list) { 814 list_del(&curr->tree_list); 815 btrfs_release_delayed_item(curr); 816 } 817 818 return 0; 819 } 820 821 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans, 822 struct btrfs_path *path, 823 struct btrfs_root *root, 824 struct btrfs_delayed_node *node) 825 { 826 int ret = 0; 827 828 while (ret == 0) { 829 struct btrfs_delayed_item *curr; 830 831 mutex_lock(&node->mutex); 832 curr = __btrfs_first_delayed_insertion_item(node); 833 if (!curr) { 834 mutex_unlock(&node->mutex); 835 break; 836 } 837 ret = btrfs_insert_delayed_item(trans, root, path, curr); 838 mutex_unlock(&node->mutex); 839 } 840 841 return ret; 842 } 843 844 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans, 845 struct btrfs_root *root, 846 struct btrfs_path *path, 847 struct btrfs_delayed_item *item) 848 { 849 const u64 ino = item->delayed_node->inode_id; 850 struct btrfs_fs_info *fs_info = root->fs_info; 851 struct btrfs_delayed_item *curr, *next; 852 struct extent_buffer *leaf = path->nodes[0]; 853 LIST_HEAD(batch_list); 854 int nitems, slot, last_slot; 855 int ret; 856 u64 total_reserved_size = item->bytes_reserved; 857 858 ASSERT(leaf != NULL); 859 860 slot = path->slots[0]; 861 last_slot = btrfs_header_nritems(leaf) - 1; 862 /* 863 * Our caller always gives us a path pointing to an existing item, so 864 * this can not happen. 865 */ 866 ASSERT(slot <= last_slot); 867 if (WARN_ON(slot > last_slot)) 868 return -ENOENT; 869 870 nitems = 1; 871 curr = item; 872 list_add_tail(&curr->tree_list, &batch_list); 873 874 /* 875 * Keep checking if the next delayed item matches the next item in the 876 * leaf - if so, we can add it to the batch of items to delete from the 877 * leaf. 878 */ 879 while (slot < last_slot) { 880 struct btrfs_key key; 881 882 next = __btrfs_next_delayed_item(curr); 883 if (!next) 884 break; 885 886 slot++; 887 btrfs_item_key_to_cpu(leaf, &key, slot); 888 if (key.objectid != ino || 889 key.type != BTRFS_DIR_INDEX_KEY || 890 key.offset != next->index) 891 break; 892 nitems++; 893 curr = next; 894 list_add_tail(&curr->tree_list, &batch_list); 895 total_reserved_size += curr->bytes_reserved; 896 } 897 898 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems); 899 if (ret) 900 return ret; 901 902 /* In case of BTRFS_FS_LOG_RECOVERING items won't have reserved space */ 903 if (total_reserved_size > 0) { 904 /* 905 * Check btrfs_delayed_item_reserve_metadata() to see why we 906 * don't need to release/reserve qgroup space. 907 */ 908 trace_btrfs_space_reservation(fs_info, "delayed_item", ino, 909 total_reserved_size, 0); 910 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, 911 total_reserved_size, NULL); 912 } 913 914 list_for_each_entry_safe(curr, next, &batch_list, tree_list) { 915 list_del(&curr->tree_list); 916 btrfs_release_delayed_item(curr); 917 } 918 919 return 0; 920 } 921 922 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans, 923 struct btrfs_path *path, 924 struct btrfs_root *root, 925 struct btrfs_delayed_node *node) 926 { 927 struct btrfs_key key; 928 int ret = 0; 929 930 key.objectid = node->inode_id; 931 key.type = BTRFS_DIR_INDEX_KEY; 932 933 while (ret == 0) { 934 struct btrfs_delayed_item *item; 935 936 mutex_lock(&node->mutex); 937 item = __btrfs_first_delayed_deletion_item(node); 938 if (!item) { 939 mutex_unlock(&node->mutex); 940 break; 941 } 942 943 key.offset = item->index; 944 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 945 if (ret > 0) { 946 /* 947 * There's no matching item in the leaf. This means we 948 * have already deleted this item in a past run of the 949 * delayed items. We ignore errors when running delayed 950 * items from an async context, through a work queue job 951 * running btrfs_async_run_delayed_root(), and don't 952 * release delayed items that failed to complete. This 953 * is because we will retry later, and at transaction 954 * commit time we always run delayed items and will 955 * then deal with errors if they fail to run again. 956 * 957 * So just release delayed items for which we can't find 958 * an item in the tree, and move to the next item. 959 */ 960 btrfs_release_path(path); 961 btrfs_release_delayed_item(item); 962 ret = 0; 963 } else if (ret == 0) { 964 ret = btrfs_batch_delete_items(trans, root, path, item); 965 btrfs_release_path(path); 966 } 967 968 /* 969 * We unlock and relock on each iteration, this is to prevent 970 * blocking other tasks for too long while we are being run from 971 * the async context (work queue job). Those tasks are typically 972 * running system calls like creat/mkdir/rename/unlink/etc which 973 * need to add delayed items to this delayed node. 974 */ 975 mutex_unlock(&node->mutex); 976 } 977 978 return ret; 979 } 980 981 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node) 982 { 983 struct btrfs_delayed_root *delayed_root; 984 985 if (delayed_node && 986 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 987 ASSERT(delayed_node->root); 988 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); 989 delayed_node->count--; 990 991 delayed_root = delayed_node->root->fs_info->delayed_root; 992 finish_one_item(delayed_root); 993 } 994 } 995 996 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node) 997 { 998 999 if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) { 1000 struct btrfs_delayed_root *delayed_root; 1001 1002 ASSERT(delayed_node->root); 1003 delayed_node->count--; 1004 1005 delayed_root = delayed_node->root->fs_info->delayed_root; 1006 finish_one_item(delayed_root); 1007 } 1008 } 1009 1010 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 1011 struct btrfs_root *root, 1012 struct btrfs_path *path, 1013 struct btrfs_delayed_node *node) 1014 { 1015 struct btrfs_fs_info *fs_info = root->fs_info; 1016 struct btrfs_key key; 1017 struct btrfs_inode_item *inode_item; 1018 struct extent_buffer *leaf; 1019 int mod; 1020 int ret; 1021 1022 key.objectid = node->inode_id; 1023 key.type = BTRFS_INODE_ITEM_KEY; 1024 key.offset = 0; 1025 1026 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) 1027 mod = -1; 1028 else 1029 mod = 1; 1030 1031 ret = btrfs_lookup_inode(trans, root, path, &key, mod); 1032 if (ret > 0) 1033 ret = -ENOENT; 1034 if (ret < 0) { 1035 /* 1036 * If we fail to update the delayed inode we need to abort the 1037 * transaction, because we could leave the inode with the 1038 * improper counts behind. 1039 */ 1040 if (unlikely(ret != -ENOENT)) 1041 btrfs_abort_transaction(trans, ret); 1042 goto out; 1043 } 1044 1045 leaf = path->nodes[0]; 1046 inode_item = btrfs_item_ptr(leaf, path->slots[0], 1047 struct btrfs_inode_item); 1048 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item, 1049 sizeof(struct btrfs_inode_item)); 1050 1051 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) 1052 goto out; 1053 1054 /* 1055 * Now we're going to delete the INODE_REF/EXTREF, which should be the 1056 * only one ref left. Check if the next item is an INODE_REF/EXTREF. 1057 * 1058 * But if we're the last item already, release and search for the last 1059 * INODE_REF/EXTREF. 1060 */ 1061 if (path->slots[0] + 1 >= btrfs_header_nritems(leaf)) { 1062 key.objectid = node->inode_id; 1063 key.type = BTRFS_INODE_EXTREF_KEY; 1064 key.offset = (u64)-1; 1065 1066 btrfs_release_path(path); 1067 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1068 if (unlikely(ret < 0)) { 1069 btrfs_abort_transaction(trans, ret); 1070 goto err_out; 1071 } 1072 ASSERT(ret > 0); 1073 ASSERT(path->slots[0] > 0); 1074 ret = 0; 1075 path->slots[0]--; 1076 leaf = path->nodes[0]; 1077 } else { 1078 path->slots[0]++; 1079 } 1080 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1081 if (key.objectid != node->inode_id) 1082 goto out; 1083 if (key.type != BTRFS_INODE_REF_KEY && 1084 key.type != BTRFS_INODE_EXTREF_KEY) 1085 goto out; 1086 1087 /* 1088 * Delayed iref deletion is for the inode who has only one link, 1089 * so there is only one iref. The case that several irefs are 1090 * in the same item doesn't exist. 1091 */ 1092 ret = btrfs_del_item(trans, root, path); 1093 if (ret < 0) 1094 btrfs_abort_transaction(trans, ret); 1095 out: 1096 btrfs_release_delayed_iref(node); 1097 btrfs_release_path(path); 1098 err_out: 1099 btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0)); 1100 btrfs_release_delayed_inode(node); 1101 return ret; 1102 } 1103 1104 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 1105 struct btrfs_root *root, 1106 struct btrfs_path *path, 1107 struct btrfs_delayed_node *node) 1108 { 1109 int ret; 1110 1111 mutex_lock(&node->mutex); 1112 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) { 1113 mutex_unlock(&node->mutex); 1114 return 0; 1115 } 1116 1117 ret = __btrfs_update_delayed_inode(trans, root, path, node); 1118 mutex_unlock(&node->mutex); 1119 return ret; 1120 } 1121 1122 static inline int 1123 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1124 struct btrfs_path *path, 1125 struct btrfs_delayed_node *node) 1126 { 1127 int ret; 1128 1129 ret = btrfs_insert_delayed_items(trans, path, node->root, node); 1130 if (ret) 1131 return ret; 1132 1133 ret = btrfs_delete_delayed_items(trans, path, node->root, node); 1134 if (ret) 1135 return ret; 1136 1137 ret = btrfs_record_root_in_trans(trans, node->root); 1138 if (ret) 1139 return ret; 1140 ret = btrfs_update_delayed_inode(trans, node->root, path, node); 1141 return ret; 1142 } 1143 1144 /* 1145 * Called when committing the transaction. 1146 * Returns 0 on success. 1147 * Returns < 0 on error and returns with an aborted transaction with any 1148 * outstanding delayed items cleaned up. 1149 */ 1150 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr) 1151 { 1152 struct btrfs_fs_info *fs_info = trans->fs_info; 1153 struct btrfs_delayed_root *delayed_root; 1154 struct btrfs_delayed_node *curr_node, *prev_node; 1155 struct btrfs_ref_tracker curr_delayed_node_tracker, prev_delayed_node_tracker; 1156 struct btrfs_path *path; 1157 struct btrfs_block_rsv *block_rsv; 1158 int ret = 0; 1159 bool count = (nr > 0); 1160 1161 if (TRANS_ABORTED(trans)) 1162 return -EIO; 1163 1164 path = btrfs_alloc_path(); 1165 if (!path) 1166 return -ENOMEM; 1167 1168 block_rsv = trans->block_rsv; 1169 trans->block_rsv = &fs_info->delayed_block_rsv; 1170 1171 delayed_root = fs_info->delayed_root; 1172 1173 curr_node = btrfs_first_delayed_node(delayed_root, &curr_delayed_node_tracker); 1174 while (curr_node && (!count || nr--)) { 1175 ret = __btrfs_commit_inode_delayed_items(trans, path, 1176 curr_node); 1177 if (unlikely(ret)) { 1178 btrfs_abort_transaction(trans, ret); 1179 break; 1180 } 1181 1182 prev_node = curr_node; 1183 prev_delayed_node_tracker = curr_delayed_node_tracker; 1184 curr_node = btrfs_next_delayed_node(curr_node, &curr_delayed_node_tracker); 1185 /* 1186 * See the comment below about releasing path before releasing 1187 * node. If the commit of delayed items was successful the path 1188 * should always be released, but in case of an error, it may 1189 * point to locked extent buffers (a leaf at the very least). 1190 */ 1191 ASSERT(path->nodes[0] == NULL); 1192 btrfs_release_delayed_node(prev_node, &prev_delayed_node_tracker); 1193 } 1194 1195 /* 1196 * Release the path to avoid a potential deadlock and lockdep splat when 1197 * releasing the delayed node, as that requires taking the delayed node's 1198 * mutex. If another task starts running delayed items before we take 1199 * the mutex, it will first lock the mutex and then it may try to lock 1200 * the same btree path (leaf). 1201 */ 1202 btrfs_free_path(path); 1203 1204 if (curr_node) 1205 btrfs_release_delayed_node(curr_node, &curr_delayed_node_tracker); 1206 trans->block_rsv = block_rsv; 1207 1208 return ret; 1209 } 1210 1211 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans) 1212 { 1213 return __btrfs_run_delayed_items(trans, -1); 1214 } 1215 1216 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr) 1217 { 1218 return __btrfs_run_delayed_items(trans, nr); 1219 } 1220 1221 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1222 struct btrfs_inode *inode) 1223 { 1224 struct btrfs_ref_tracker delayed_node_tracker; 1225 struct btrfs_delayed_node *delayed_node = 1226 btrfs_get_delayed_node(inode, &delayed_node_tracker); 1227 BTRFS_PATH_AUTO_FREE(path); 1228 struct btrfs_block_rsv *block_rsv; 1229 int ret; 1230 1231 if (!delayed_node) 1232 return 0; 1233 1234 mutex_lock(&delayed_node->mutex); 1235 if (!delayed_node->count) { 1236 mutex_unlock(&delayed_node->mutex); 1237 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker); 1238 return 0; 1239 } 1240 mutex_unlock(&delayed_node->mutex); 1241 1242 path = btrfs_alloc_path(); 1243 if (!path) { 1244 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker); 1245 return -ENOMEM; 1246 } 1247 1248 block_rsv = trans->block_rsv; 1249 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv; 1250 1251 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node); 1252 1253 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker); 1254 trans->block_rsv = block_rsv; 1255 1256 return ret; 1257 } 1258 1259 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode) 1260 { 1261 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1262 struct btrfs_trans_handle *trans; 1263 struct btrfs_ref_tracker delayed_node_tracker; 1264 struct btrfs_delayed_node *delayed_node; 1265 struct btrfs_path *path; 1266 struct btrfs_block_rsv *block_rsv; 1267 int ret; 1268 1269 delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker); 1270 if (!delayed_node) 1271 return 0; 1272 1273 mutex_lock(&delayed_node->mutex); 1274 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1275 mutex_unlock(&delayed_node->mutex); 1276 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker); 1277 return 0; 1278 } 1279 mutex_unlock(&delayed_node->mutex); 1280 1281 trans = btrfs_join_transaction(delayed_node->root); 1282 if (IS_ERR(trans)) { 1283 ret = PTR_ERR(trans); 1284 goto out; 1285 } 1286 1287 path = btrfs_alloc_path(); 1288 if (!path) { 1289 ret = -ENOMEM; 1290 goto trans_out; 1291 } 1292 1293 block_rsv = trans->block_rsv; 1294 trans->block_rsv = &fs_info->delayed_block_rsv; 1295 1296 mutex_lock(&delayed_node->mutex); 1297 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) 1298 ret = __btrfs_update_delayed_inode(trans, delayed_node->root, 1299 path, delayed_node); 1300 else 1301 ret = 0; 1302 mutex_unlock(&delayed_node->mutex); 1303 1304 btrfs_free_path(path); 1305 trans->block_rsv = block_rsv; 1306 trans_out: 1307 btrfs_end_transaction(trans); 1308 btrfs_btree_balance_dirty(fs_info); 1309 out: 1310 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker); 1311 1312 return ret; 1313 } 1314 1315 void btrfs_remove_delayed_node(struct btrfs_inode *inode) 1316 { 1317 struct btrfs_delayed_node *delayed_node; 1318 1319 delayed_node = READ_ONCE(inode->delayed_node); 1320 if (!delayed_node) 1321 return; 1322 1323 inode->delayed_node = NULL; 1324 1325 btrfs_release_delayed_node(delayed_node, &delayed_node->inode_cache_tracker); 1326 } 1327 1328 struct btrfs_async_delayed_work { 1329 struct btrfs_delayed_root *delayed_root; 1330 int nr; 1331 struct btrfs_work work; 1332 }; 1333 1334 static void btrfs_async_run_delayed_root(struct btrfs_work *work) 1335 { 1336 struct btrfs_async_delayed_work *async_work; 1337 struct btrfs_delayed_root *delayed_root; 1338 struct btrfs_trans_handle *trans; 1339 struct btrfs_path *path; 1340 struct btrfs_delayed_node *delayed_node = NULL; 1341 struct btrfs_ref_tracker delayed_node_tracker; 1342 struct btrfs_root *root; 1343 struct btrfs_block_rsv *block_rsv; 1344 int total_done = 0; 1345 1346 async_work = container_of(work, struct btrfs_async_delayed_work, work); 1347 delayed_root = async_work->delayed_root; 1348 1349 path = btrfs_alloc_path(); 1350 if (!path) 1351 goto out; 1352 1353 do { 1354 if (atomic_read(&delayed_root->items) < 1355 BTRFS_DELAYED_BACKGROUND / 2) 1356 break; 1357 1358 delayed_node = btrfs_first_prepared_delayed_node(delayed_root, 1359 &delayed_node_tracker); 1360 if (!delayed_node) 1361 break; 1362 1363 root = delayed_node->root; 1364 1365 trans = btrfs_join_transaction(root); 1366 if (IS_ERR(trans)) { 1367 btrfs_release_path(path); 1368 btrfs_release_prepared_delayed_node(delayed_node, 1369 &delayed_node_tracker); 1370 total_done++; 1371 continue; 1372 } 1373 1374 block_rsv = trans->block_rsv; 1375 trans->block_rsv = &root->fs_info->delayed_block_rsv; 1376 1377 __btrfs_commit_inode_delayed_items(trans, path, delayed_node); 1378 1379 trans->block_rsv = block_rsv; 1380 btrfs_end_transaction(trans); 1381 btrfs_btree_balance_dirty_nodelay(root->fs_info); 1382 1383 btrfs_release_path(path); 1384 btrfs_release_prepared_delayed_node(delayed_node, 1385 &delayed_node_tracker); 1386 total_done++; 1387 1388 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK) 1389 || total_done < async_work->nr); 1390 1391 btrfs_free_path(path); 1392 out: 1393 wake_up(&delayed_root->wait); 1394 kfree(async_work); 1395 } 1396 1397 1398 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root, 1399 struct btrfs_fs_info *fs_info, int nr) 1400 { 1401 struct btrfs_async_delayed_work *async_work; 1402 1403 async_work = kmalloc(sizeof(*async_work), GFP_NOFS); 1404 if (!async_work) 1405 return -ENOMEM; 1406 1407 async_work->delayed_root = delayed_root; 1408 btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL); 1409 async_work->nr = nr; 1410 1411 btrfs_queue_work(fs_info->delayed_workers, &async_work->work); 1412 return 0; 1413 } 1414 1415 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info) 1416 { 1417 struct btrfs_ref_tracker delayed_node_tracker; 1418 struct btrfs_delayed_node *node; 1419 1420 node = btrfs_first_delayed_node( fs_info->delayed_root, &delayed_node_tracker); 1421 if (WARN_ON(node)) { 1422 btrfs_delayed_node_ref_tracker_free(node, 1423 &delayed_node_tracker); 1424 refcount_dec(&node->refs); 1425 } 1426 } 1427 1428 static bool could_end_wait(struct btrfs_delayed_root *delayed_root, int seq) 1429 { 1430 int val = atomic_read(&delayed_root->items_seq); 1431 1432 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH) 1433 return true; 1434 1435 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) 1436 return true; 1437 1438 return false; 1439 } 1440 1441 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info) 1442 { 1443 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root; 1444 1445 if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) || 1446 btrfs_workqueue_normal_congested(fs_info->delayed_workers)) 1447 return; 1448 1449 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) { 1450 int seq; 1451 int ret; 1452 1453 seq = atomic_read(&delayed_root->items_seq); 1454 1455 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0); 1456 if (ret) 1457 return; 1458 1459 wait_event_interruptible(delayed_root->wait, 1460 could_end_wait(delayed_root, seq)); 1461 return; 1462 } 1463 1464 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH); 1465 } 1466 1467 static void btrfs_release_dir_index_item_space(struct btrfs_trans_handle *trans) 1468 { 1469 struct btrfs_fs_info *fs_info = trans->fs_info; 1470 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 1471 1472 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 1473 return; 1474 1475 /* 1476 * Adding the new dir index item does not require touching another 1477 * leaf, so we can release 1 unit of metadata that was previously 1478 * reserved when starting the transaction. This applies only to 1479 * the case where we had a transaction start and excludes the 1480 * transaction join case (when replaying log trees). 1481 */ 1482 trace_btrfs_space_reservation(fs_info, "transaction", 1483 trans->transid, bytes, 0); 1484 btrfs_block_rsv_release(fs_info, trans->block_rsv, bytes, NULL); 1485 ASSERT(trans->bytes_reserved >= bytes); 1486 trans->bytes_reserved -= bytes; 1487 } 1488 1489 /* Will return 0, -ENOMEM or -EEXIST (index number collision, unexpected). */ 1490 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans, 1491 const char *name, int name_len, 1492 struct btrfs_inode *dir, 1493 const struct btrfs_disk_key *disk_key, u8 flags, 1494 u64 index) 1495 { 1496 struct btrfs_fs_info *fs_info = trans->fs_info; 1497 const unsigned int leaf_data_size = BTRFS_LEAF_DATA_SIZE(fs_info); 1498 struct btrfs_delayed_node *delayed_node; 1499 struct btrfs_ref_tracker delayed_node_tracker; 1500 struct btrfs_delayed_item *delayed_item; 1501 struct btrfs_dir_item *dir_item; 1502 bool reserve_leaf_space; 1503 u32 data_len; 1504 int ret; 1505 1506 delayed_node = btrfs_get_or_create_delayed_node(dir, &delayed_node_tracker); 1507 if (IS_ERR(delayed_node)) 1508 return PTR_ERR(delayed_node); 1509 1510 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len, 1511 delayed_node, 1512 BTRFS_DELAYED_INSERTION_ITEM); 1513 if (!delayed_item) { 1514 ret = -ENOMEM; 1515 goto release_node; 1516 } 1517 1518 delayed_item->index = index; 1519 1520 dir_item = (struct btrfs_dir_item *)delayed_item->data; 1521 dir_item->location = *disk_key; 1522 btrfs_set_stack_dir_transid(dir_item, trans->transid); 1523 btrfs_set_stack_dir_data_len(dir_item, 0); 1524 btrfs_set_stack_dir_name_len(dir_item, name_len); 1525 btrfs_set_stack_dir_flags(dir_item, flags); 1526 memcpy((char *)(dir_item + 1), name, name_len); 1527 1528 data_len = delayed_item->data_len + sizeof(struct btrfs_item); 1529 1530 mutex_lock(&delayed_node->mutex); 1531 1532 /* 1533 * First attempt to insert the delayed item. This is to make the error 1534 * handling path simpler in case we fail (-EEXIST). There's no risk of 1535 * any other task coming in and running the delayed item before we do 1536 * the metadata space reservation below, because we are holding the 1537 * delayed node's mutex and that mutex must also be locked before the 1538 * node's delayed items can be run. 1539 */ 1540 ret = __btrfs_add_delayed_item(delayed_node, delayed_item); 1541 if (unlikely(ret)) { 1542 btrfs_err(trans->fs_info, 1543 "error adding delayed dir index item, name: %.*s, index: %llu, root: %llu, dir: %llu, dir->index_cnt: %llu, delayed_node->index_cnt: %llu, error: %d", 1544 name_len, name, index, btrfs_root_id(delayed_node->root), 1545 delayed_node->inode_id, dir->index_cnt, 1546 delayed_node->index_cnt, ret); 1547 btrfs_release_delayed_item(delayed_item); 1548 btrfs_release_dir_index_item_space(trans); 1549 mutex_unlock(&delayed_node->mutex); 1550 goto release_node; 1551 } 1552 1553 if (delayed_node->index_item_leaves == 0 || 1554 delayed_node->curr_index_batch_size + data_len > leaf_data_size) { 1555 delayed_node->curr_index_batch_size = data_len; 1556 reserve_leaf_space = true; 1557 } else { 1558 delayed_node->curr_index_batch_size += data_len; 1559 reserve_leaf_space = false; 1560 } 1561 1562 if (reserve_leaf_space) { 1563 ret = btrfs_delayed_item_reserve_metadata(trans, delayed_item); 1564 /* 1565 * Space was reserved for a dir index item insertion when we 1566 * started the transaction, so getting a failure here should be 1567 * impossible. 1568 */ 1569 if (WARN_ON(ret)) { 1570 btrfs_release_delayed_item(delayed_item); 1571 mutex_unlock(&delayed_node->mutex); 1572 goto release_node; 1573 } 1574 1575 delayed_node->index_item_leaves++; 1576 } else { 1577 btrfs_release_dir_index_item_space(trans); 1578 } 1579 mutex_unlock(&delayed_node->mutex); 1580 1581 release_node: 1582 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker); 1583 return ret; 1584 } 1585 1586 static bool btrfs_delete_delayed_insertion_item(struct btrfs_delayed_node *node, 1587 u64 index) 1588 { 1589 struct btrfs_delayed_item *item; 1590 1591 mutex_lock(&node->mutex); 1592 item = __btrfs_lookup_delayed_item(&node->ins_root.rb_root, index); 1593 if (!item) { 1594 mutex_unlock(&node->mutex); 1595 return false; 1596 } 1597 1598 /* 1599 * For delayed items to insert, we track reserved metadata bytes based 1600 * on the number of leaves that we will use. 1601 * See btrfs_insert_delayed_dir_index() and 1602 * btrfs_delayed_item_reserve_metadata()). 1603 */ 1604 ASSERT(item->bytes_reserved == 0); 1605 ASSERT(node->index_item_leaves > 0); 1606 1607 /* 1608 * If there's only one leaf reserved, we can decrement this item from the 1609 * current batch, otherwise we can not because we don't know which leaf 1610 * it belongs to. With the current limit on delayed items, we rarely 1611 * accumulate enough dir index items to fill more than one leaf (even 1612 * when using a leaf size of 4K). 1613 */ 1614 if (node->index_item_leaves == 1) { 1615 const u32 data_len = item->data_len + sizeof(struct btrfs_item); 1616 1617 ASSERT(node->curr_index_batch_size >= data_len); 1618 node->curr_index_batch_size -= data_len; 1619 } 1620 1621 btrfs_release_delayed_item(item); 1622 1623 /* If we now have no more dir index items, we can release all leaves. */ 1624 if (RB_EMPTY_ROOT(&node->ins_root.rb_root)) { 1625 btrfs_delayed_item_release_leaves(node, node->index_item_leaves); 1626 node->index_item_leaves = 0; 1627 } 1628 1629 mutex_unlock(&node->mutex); 1630 return true; 1631 } 1632 1633 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans, 1634 struct btrfs_inode *dir, u64 index) 1635 { 1636 struct btrfs_delayed_node *node; 1637 struct btrfs_ref_tracker delayed_node_tracker; 1638 struct btrfs_delayed_item *item; 1639 int ret; 1640 1641 node = btrfs_get_or_create_delayed_node(dir, &delayed_node_tracker); 1642 if (IS_ERR(node)) 1643 return PTR_ERR(node); 1644 1645 if (btrfs_delete_delayed_insertion_item(node, index)) { 1646 ret = 0; 1647 goto end; 1648 } 1649 1650 item = btrfs_alloc_delayed_item(0, node, BTRFS_DELAYED_DELETION_ITEM); 1651 if (!item) { 1652 ret = -ENOMEM; 1653 goto end; 1654 } 1655 1656 item->index = index; 1657 1658 ret = btrfs_delayed_item_reserve_metadata(trans, item); 1659 /* 1660 * we have reserved enough space when we start a new transaction, 1661 * so reserving metadata failure is impossible. 1662 */ 1663 if (ret < 0) { 1664 btrfs_err(trans->fs_info, 1665 "metadata reservation failed for delayed dir item deletion, index: %llu, root: %llu, inode: %llu, error: %d", 1666 index, btrfs_root_id(node->root), node->inode_id, ret); 1667 btrfs_release_delayed_item(item); 1668 goto end; 1669 } 1670 1671 mutex_lock(&node->mutex); 1672 ret = __btrfs_add_delayed_item(node, item); 1673 if (unlikely(ret)) { 1674 btrfs_err(trans->fs_info, 1675 "failed to add delayed dir index item, root: %llu, inode: %llu, index: %llu, error: %d", 1676 index, btrfs_root_id(node->root), node->inode_id, ret); 1677 btrfs_delayed_item_release_metadata(dir->root, item); 1678 btrfs_release_delayed_item(item); 1679 } 1680 mutex_unlock(&node->mutex); 1681 end: 1682 btrfs_release_delayed_node(node, &delayed_node_tracker); 1683 return ret; 1684 } 1685 1686 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode) 1687 { 1688 struct btrfs_ref_tracker delayed_node_tracker; 1689 struct btrfs_delayed_node *delayed_node; 1690 1691 delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker); 1692 if (!delayed_node) 1693 return -ENOENT; 1694 1695 /* 1696 * Since we have held i_mutex of this directory, it is impossible that 1697 * a new directory index is added into the delayed node and index_cnt 1698 * is updated now. So we needn't lock the delayed node. 1699 */ 1700 if (!delayed_node->index_cnt) { 1701 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker); 1702 return -EINVAL; 1703 } 1704 1705 inode->index_cnt = delayed_node->index_cnt; 1706 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker); 1707 return 0; 1708 } 1709 1710 bool btrfs_readdir_get_delayed_items(struct btrfs_inode *inode, 1711 u64 last_index, 1712 struct list_head *ins_list, 1713 struct list_head *del_list) 1714 { 1715 struct btrfs_delayed_node *delayed_node; 1716 struct btrfs_delayed_item *item; 1717 struct btrfs_ref_tracker delayed_node_tracker; 1718 1719 delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker); 1720 if (!delayed_node) 1721 return false; 1722 1723 /* 1724 * We can only do one readdir with delayed items at a time because of 1725 * item->readdir_list. 1726 */ 1727 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 1728 btrfs_inode_lock(inode, 0); 1729 1730 mutex_lock(&delayed_node->mutex); 1731 item = __btrfs_first_delayed_insertion_item(delayed_node); 1732 while (item && item->index <= last_index) { 1733 refcount_inc(&item->refs); 1734 list_add_tail(&item->readdir_list, ins_list); 1735 item = __btrfs_next_delayed_item(item); 1736 } 1737 1738 item = __btrfs_first_delayed_deletion_item(delayed_node); 1739 while (item && item->index <= last_index) { 1740 refcount_inc(&item->refs); 1741 list_add_tail(&item->readdir_list, del_list); 1742 item = __btrfs_next_delayed_item(item); 1743 } 1744 mutex_unlock(&delayed_node->mutex); 1745 /* 1746 * This delayed node is still cached in the btrfs inode, so refs 1747 * must be > 1 now, and we needn't check it is going to be freed 1748 * or not. 1749 * 1750 * Besides that, this function is used to read dir, we do not 1751 * insert/delete delayed items in this period. So we also needn't 1752 * requeue or dequeue this delayed node. 1753 */ 1754 btrfs_delayed_node_ref_tracker_free(delayed_node, &delayed_node_tracker); 1755 refcount_dec(&delayed_node->refs); 1756 1757 return true; 1758 } 1759 1760 void btrfs_readdir_put_delayed_items(struct btrfs_inode *inode, 1761 struct list_head *ins_list, 1762 struct list_head *del_list) 1763 { 1764 struct btrfs_delayed_item *curr, *next; 1765 1766 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1767 list_del(&curr->readdir_list); 1768 if (refcount_dec_and_test(&curr->refs)) 1769 kfree(curr); 1770 } 1771 1772 list_for_each_entry_safe(curr, next, del_list, readdir_list) { 1773 list_del(&curr->readdir_list); 1774 if (refcount_dec_and_test(&curr->refs)) 1775 kfree(curr); 1776 } 1777 1778 /* 1779 * The VFS is going to do up_read(), so we need to downgrade back to a 1780 * read lock. 1781 */ 1782 downgrade_write(&inode->vfs_inode.i_rwsem); 1783 } 1784 1785 bool btrfs_should_delete_dir_index(const struct list_head *del_list, u64 index) 1786 { 1787 struct btrfs_delayed_item *curr; 1788 bool ret = false; 1789 1790 list_for_each_entry(curr, del_list, readdir_list) { 1791 if (curr->index > index) 1792 break; 1793 if (curr->index == index) { 1794 ret = true; 1795 break; 1796 } 1797 } 1798 return ret; 1799 } 1800 1801 /* 1802 * Read dir info stored in the delayed tree. 1803 */ 1804 bool btrfs_readdir_delayed_dir_index(struct dir_context *ctx, 1805 const struct list_head *ins_list) 1806 { 1807 struct btrfs_dir_item *di; 1808 struct btrfs_delayed_item *curr, *next; 1809 struct btrfs_key location; 1810 char *name; 1811 int name_len; 1812 unsigned char d_type; 1813 1814 /* 1815 * Changing the data of the delayed item is impossible. So 1816 * we needn't lock them. And we have held i_mutex of the 1817 * directory, nobody can delete any directory indexes now. 1818 */ 1819 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1820 bool over; 1821 1822 list_del(&curr->readdir_list); 1823 1824 if (curr->index < ctx->pos) { 1825 if (refcount_dec_and_test(&curr->refs)) 1826 kfree(curr); 1827 continue; 1828 } 1829 1830 ctx->pos = curr->index; 1831 1832 di = (struct btrfs_dir_item *)curr->data; 1833 name = (char *)(di + 1); 1834 name_len = btrfs_stack_dir_name_len(di); 1835 1836 d_type = fs_ftype_to_dtype(btrfs_dir_flags_to_ftype(di->type)); 1837 btrfs_disk_key_to_cpu(&location, &di->location); 1838 1839 over = !dir_emit(ctx, name, name_len, location.objectid, d_type); 1840 1841 if (refcount_dec_and_test(&curr->refs)) 1842 kfree(curr); 1843 1844 if (over) 1845 return true; 1846 ctx->pos++; 1847 } 1848 return false; 1849 } 1850 1851 static void fill_stack_inode_item(struct btrfs_trans_handle *trans, 1852 struct btrfs_inode_item *inode_item, 1853 struct btrfs_inode *inode) 1854 { 1855 struct inode *vfs_inode = &inode->vfs_inode; 1856 u64 flags; 1857 1858 btrfs_set_stack_inode_uid(inode_item, i_uid_read(vfs_inode)); 1859 btrfs_set_stack_inode_gid(inode_item, i_gid_read(vfs_inode)); 1860 btrfs_set_stack_inode_size(inode_item, inode->disk_i_size); 1861 btrfs_set_stack_inode_mode(inode_item, vfs_inode->i_mode); 1862 btrfs_set_stack_inode_nlink(inode_item, vfs_inode->i_nlink); 1863 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(vfs_inode)); 1864 btrfs_set_stack_inode_generation(inode_item, inode->generation); 1865 btrfs_set_stack_inode_sequence(inode_item, 1866 inode_peek_iversion(vfs_inode)); 1867 btrfs_set_stack_inode_transid(inode_item, trans->transid); 1868 btrfs_set_stack_inode_rdev(inode_item, vfs_inode->i_rdev); 1869 flags = btrfs_inode_combine_flags(inode->flags, inode->ro_flags); 1870 btrfs_set_stack_inode_flags(inode_item, flags); 1871 btrfs_set_stack_inode_block_group(inode_item, 0); 1872 1873 btrfs_set_stack_timespec_sec(&inode_item->atime, 1874 inode_get_atime_sec(vfs_inode)); 1875 btrfs_set_stack_timespec_nsec(&inode_item->atime, 1876 inode_get_atime_nsec(vfs_inode)); 1877 1878 btrfs_set_stack_timespec_sec(&inode_item->mtime, 1879 inode_get_mtime_sec(vfs_inode)); 1880 btrfs_set_stack_timespec_nsec(&inode_item->mtime, 1881 inode_get_mtime_nsec(vfs_inode)); 1882 1883 btrfs_set_stack_timespec_sec(&inode_item->ctime, 1884 inode_get_ctime_sec(vfs_inode)); 1885 btrfs_set_stack_timespec_nsec(&inode_item->ctime, 1886 inode_get_ctime_nsec(vfs_inode)); 1887 1888 btrfs_set_stack_timespec_sec(&inode_item->otime, inode->i_otime_sec); 1889 btrfs_set_stack_timespec_nsec(&inode_item->otime, inode->i_otime_nsec); 1890 } 1891 1892 int btrfs_fill_inode(struct btrfs_inode *inode, u32 *rdev) 1893 { 1894 struct btrfs_delayed_node *delayed_node; 1895 struct btrfs_ref_tracker delayed_node_tracker; 1896 struct btrfs_inode_item *inode_item; 1897 struct inode *vfs_inode = &inode->vfs_inode; 1898 1899 delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker); 1900 if (!delayed_node) 1901 return -ENOENT; 1902 1903 mutex_lock(&delayed_node->mutex); 1904 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1905 mutex_unlock(&delayed_node->mutex); 1906 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker); 1907 return -ENOENT; 1908 } 1909 1910 inode_item = &delayed_node->inode_item; 1911 1912 i_uid_write(vfs_inode, btrfs_stack_inode_uid(inode_item)); 1913 i_gid_write(vfs_inode, btrfs_stack_inode_gid(inode_item)); 1914 btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item)); 1915 vfs_inode->i_mode = btrfs_stack_inode_mode(inode_item); 1916 set_nlink(vfs_inode, btrfs_stack_inode_nlink(inode_item)); 1917 inode_set_bytes(vfs_inode, btrfs_stack_inode_nbytes(inode_item)); 1918 inode->generation = btrfs_stack_inode_generation(inode_item); 1919 inode->last_trans = btrfs_stack_inode_transid(inode_item); 1920 1921 inode_set_iversion_queried(vfs_inode, btrfs_stack_inode_sequence(inode_item)); 1922 vfs_inode->i_rdev = 0; 1923 *rdev = btrfs_stack_inode_rdev(inode_item); 1924 btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item), 1925 &inode->flags, &inode->ro_flags); 1926 1927 inode_set_atime(vfs_inode, btrfs_stack_timespec_sec(&inode_item->atime), 1928 btrfs_stack_timespec_nsec(&inode_item->atime)); 1929 1930 inode_set_mtime(vfs_inode, btrfs_stack_timespec_sec(&inode_item->mtime), 1931 btrfs_stack_timespec_nsec(&inode_item->mtime)); 1932 1933 inode_set_ctime(vfs_inode, btrfs_stack_timespec_sec(&inode_item->ctime), 1934 btrfs_stack_timespec_nsec(&inode_item->ctime)); 1935 1936 inode->i_otime_sec = btrfs_stack_timespec_sec(&inode_item->otime); 1937 inode->i_otime_nsec = btrfs_stack_timespec_nsec(&inode_item->otime); 1938 1939 vfs_inode->i_generation = inode->generation; 1940 if (S_ISDIR(vfs_inode->i_mode)) 1941 inode->index_cnt = (u64)-1; 1942 1943 mutex_unlock(&delayed_node->mutex); 1944 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker); 1945 return 0; 1946 } 1947 1948 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans, 1949 struct btrfs_inode *inode) 1950 { 1951 struct btrfs_root *root = inode->root; 1952 struct btrfs_delayed_node *delayed_node; 1953 struct btrfs_ref_tracker delayed_node_tracker; 1954 int ret = 0; 1955 1956 delayed_node = btrfs_get_or_create_delayed_node(inode, &delayed_node_tracker); 1957 if (IS_ERR(delayed_node)) 1958 return PTR_ERR(delayed_node); 1959 1960 mutex_lock(&delayed_node->mutex); 1961 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1962 fill_stack_inode_item(trans, &delayed_node->inode_item, inode); 1963 goto release_node; 1964 } 1965 1966 ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node); 1967 if (ret) 1968 goto release_node; 1969 1970 fill_stack_inode_item(trans, &delayed_node->inode_item, inode); 1971 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); 1972 delayed_node->count++; 1973 atomic_inc(&root->fs_info->delayed_root->items); 1974 release_node: 1975 mutex_unlock(&delayed_node->mutex); 1976 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker); 1977 return ret; 1978 } 1979 1980 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode) 1981 { 1982 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1983 struct btrfs_delayed_node *delayed_node; 1984 struct btrfs_ref_tracker delayed_node_tracker; 1985 1986 /* 1987 * we don't do delayed inode updates during log recovery because it 1988 * leads to enospc problems. This means we also can't do 1989 * delayed inode refs 1990 */ 1991 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 1992 return -EAGAIN; 1993 1994 delayed_node = btrfs_get_or_create_delayed_node(inode, &delayed_node_tracker); 1995 if (IS_ERR(delayed_node)) 1996 return PTR_ERR(delayed_node); 1997 1998 /* 1999 * We don't reserve space for inode ref deletion is because: 2000 * - We ONLY do async inode ref deletion for the inode who has only 2001 * one link(i_nlink == 1), it means there is only one inode ref. 2002 * And in most case, the inode ref and the inode item are in the 2003 * same leaf, and we will deal with them at the same time. 2004 * Since we are sure we will reserve the space for the inode item, 2005 * it is unnecessary to reserve space for inode ref deletion. 2006 * - If the inode ref and the inode item are not in the same leaf, 2007 * We also needn't worry about enospc problem, because we reserve 2008 * much more space for the inode update than it needs. 2009 * - At the worst, we can steal some space from the global reservation. 2010 * It is very rare. 2011 */ 2012 mutex_lock(&delayed_node->mutex); 2013 if (!test_and_set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) { 2014 delayed_node->count++; 2015 atomic_inc(&fs_info->delayed_root->items); 2016 } 2017 mutex_unlock(&delayed_node->mutex); 2018 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker); 2019 return 0; 2020 } 2021 2022 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node) 2023 { 2024 struct btrfs_root *root = delayed_node->root; 2025 struct btrfs_fs_info *fs_info = root->fs_info; 2026 struct btrfs_delayed_item *curr_item, *prev_item; 2027 2028 mutex_lock(&delayed_node->mutex); 2029 curr_item = __btrfs_first_delayed_insertion_item(delayed_node); 2030 while (curr_item) { 2031 prev_item = curr_item; 2032 curr_item = __btrfs_next_delayed_item(prev_item); 2033 btrfs_release_delayed_item(prev_item); 2034 } 2035 2036 if (delayed_node->index_item_leaves > 0) { 2037 btrfs_delayed_item_release_leaves(delayed_node, 2038 delayed_node->index_item_leaves); 2039 delayed_node->index_item_leaves = 0; 2040 } 2041 2042 curr_item = __btrfs_first_delayed_deletion_item(delayed_node); 2043 while (curr_item) { 2044 btrfs_delayed_item_release_metadata(root, curr_item); 2045 prev_item = curr_item; 2046 curr_item = __btrfs_next_delayed_item(prev_item); 2047 btrfs_release_delayed_item(prev_item); 2048 } 2049 2050 btrfs_release_delayed_iref(delayed_node); 2051 2052 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 2053 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false); 2054 btrfs_release_delayed_inode(delayed_node); 2055 } 2056 mutex_unlock(&delayed_node->mutex); 2057 } 2058 2059 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode) 2060 { 2061 struct btrfs_delayed_node *delayed_node; 2062 struct btrfs_ref_tracker delayed_node_tracker; 2063 2064 delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker); 2065 if (!delayed_node) 2066 return; 2067 2068 __btrfs_kill_delayed_node(delayed_node); 2069 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker); 2070 } 2071 2072 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root) 2073 { 2074 unsigned long index = 0; 2075 struct btrfs_delayed_node *delayed_nodes[8]; 2076 struct btrfs_ref_tracker delayed_node_trackers[8]; 2077 2078 while (1) { 2079 struct btrfs_delayed_node *node; 2080 int count; 2081 2082 xa_lock(&root->delayed_nodes); 2083 if (xa_empty(&root->delayed_nodes)) { 2084 xa_unlock(&root->delayed_nodes); 2085 return; 2086 } 2087 2088 count = 0; 2089 xa_for_each_start(&root->delayed_nodes, index, node, index) { 2090 /* 2091 * Don't increase refs in case the node is dead and 2092 * about to be removed from the tree in the loop below 2093 */ 2094 if (refcount_inc_not_zero(&node->refs)) { 2095 btrfs_delayed_node_ref_tracker_alloc(node, 2096 &delayed_node_trackers[count], 2097 GFP_ATOMIC); 2098 delayed_nodes[count] = node; 2099 count++; 2100 } 2101 if (count >= ARRAY_SIZE(delayed_nodes)) 2102 break; 2103 } 2104 xa_unlock(&root->delayed_nodes); 2105 index++; 2106 2107 for (int i = 0; i < count; i++) { 2108 __btrfs_kill_delayed_node(delayed_nodes[i]); 2109 btrfs_delayed_node_ref_tracker_dir_print(delayed_nodes[i]); 2110 btrfs_release_delayed_node(delayed_nodes[i], 2111 &delayed_node_trackers[i]); 2112 } 2113 } 2114 } 2115 2116 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info) 2117 { 2118 struct btrfs_delayed_node *curr_node, *prev_node; 2119 struct btrfs_ref_tracker curr_delayed_node_tracker, prev_delayed_node_tracker; 2120 2121 curr_node = btrfs_first_delayed_node(fs_info->delayed_root, 2122 &curr_delayed_node_tracker); 2123 while (curr_node) { 2124 __btrfs_kill_delayed_node(curr_node); 2125 2126 prev_node = curr_node; 2127 prev_delayed_node_tracker = curr_delayed_node_tracker; 2128 curr_node = btrfs_next_delayed_node(curr_node, &curr_delayed_node_tracker); 2129 btrfs_release_delayed_node(prev_node, &prev_delayed_node_tracker); 2130 } 2131 } 2132 2133 void btrfs_log_get_delayed_items(struct btrfs_inode *inode, 2134 struct list_head *ins_list, 2135 struct list_head *del_list) 2136 { 2137 struct btrfs_delayed_node *node; 2138 struct btrfs_delayed_item *item; 2139 struct btrfs_ref_tracker delayed_node_tracker; 2140 2141 node = btrfs_get_delayed_node(inode, &delayed_node_tracker); 2142 if (!node) 2143 return; 2144 2145 mutex_lock(&node->mutex); 2146 item = __btrfs_first_delayed_insertion_item(node); 2147 while (item) { 2148 /* 2149 * It's possible that the item is already in a log list. This 2150 * can happen in case two tasks are trying to log the same 2151 * directory. For example if we have tasks A and task B: 2152 * 2153 * Task A collected the delayed items into a log list while 2154 * under the inode's log_mutex (at btrfs_log_inode()), but it 2155 * only releases the items after logging the inodes they point 2156 * to (if they are new inodes), which happens after unlocking 2157 * the log mutex; 2158 * 2159 * Task B enters btrfs_log_inode() and acquires the log_mutex 2160 * of the same directory inode, before task B releases the 2161 * delayed items. This can happen for example when logging some 2162 * inode we need to trigger logging of its parent directory, so 2163 * logging two files that have the same parent directory can 2164 * lead to this. 2165 * 2166 * If this happens, just ignore delayed items already in a log 2167 * list. All the tasks logging the directory are under a log 2168 * transaction and whichever finishes first can not sync the log 2169 * before the other completes and leaves the log transaction. 2170 */ 2171 if (!item->logged && list_empty(&item->log_list)) { 2172 refcount_inc(&item->refs); 2173 list_add_tail(&item->log_list, ins_list); 2174 } 2175 item = __btrfs_next_delayed_item(item); 2176 } 2177 2178 item = __btrfs_first_delayed_deletion_item(node); 2179 while (item) { 2180 /* It may be non-empty, for the same reason mentioned above. */ 2181 if (!item->logged && list_empty(&item->log_list)) { 2182 refcount_inc(&item->refs); 2183 list_add_tail(&item->log_list, del_list); 2184 } 2185 item = __btrfs_next_delayed_item(item); 2186 } 2187 mutex_unlock(&node->mutex); 2188 2189 /* 2190 * We are called during inode logging, which means the inode is in use 2191 * and can not be evicted before we finish logging the inode. So we never 2192 * have the last reference on the delayed inode. 2193 * Also, we don't use btrfs_release_delayed_node() because that would 2194 * requeue the delayed inode (change its order in the list of prepared 2195 * nodes) and we don't want to do such change because we don't create or 2196 * delete delayed items. 2197 */ 2198 ASSERT(refcount_read(&node->refs) > 1); 2199 btrfs_delayed_node_ref_tracker_free(node, &delayed_node_tracker); 2200 refcount_dec(&node->refs); 2201 } 2202 2203 void btrfs_log_put_delayed_items(struct btrfs_inode *inode, 2204 struct list_head *ins_list, 2205 struct list_head *del_list) 2206 { 2207 struct btrfs_delayed_node *node; 2208 struct btrfs_delayed_item *item; 2209 struct btrfs_delayed_item *next; 2210 struct btrfs_ref_tracker delayed_node_tracker; 2211 2212 node = btrfs_get_delayed_node(inode, &delayed_node_tracker); 2213 if (!node) 2214 return; 2215 2216 mutex_lock(&node->mutex); 2217 2218 list_for_each_entry_safe(item, next, ins_list, log_list) { 2219 item->logged = true; 2220 list_del_init(&item->log_list); 2221 if (refcount_dec_and_test(&item->refs)) 2222 kfree(item); 2223 } 2224 2225 list_for_each_entry_safe(item, next, del_list, log_list) { 2226 item->logged = true; 2227 list_del_init(&item->log_list); 2228 if (refcount_dec_and_test(&item->refs)) 2229 kfree(item); 2230 } 2231 2232 mutex_unlock(&node->mutex); 2233 2234 /* 2235 * We are called during inode logging, which means the inode is in use 2236 * and can not be evicted before we finish logging the inode. So we never 2237 * have the last reference on the delayed inode. 2238 * Also, we don't use btrfs_release_delayed_node() because that would 2239 * requeue the delayed inode (change its order in the list of prepared 2240 * nodes) and we don't want to do such change because we don't create or 2241 * delete delayed items. 2242 */ 2243 ASSERT(refcount_read(&node->refs) > 1); 2244 btrfs_delayed_node_ref_tracker_free(node, &delayed_node_tracker); 2245 refcount_dec(&node->refs); 2246 } 2247