1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2011 Fujitsu. All rights reserved.
4 * Written by Miao Xie <miaox@cn.fujitsu.com>
5 */
6
7 #include <linux/slab.h>
8 #include <linux/iversion.h>
9 #include "ctree.h"
10 #include "fs.h"
11 #include "messages.h"
12 #include "misc.h"
13 #include "delayed-inode.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "qgroup.h"
17 #include "locking.h"
18 #include "inode-item.h"
19 #include "space-info.h"
20 #include "accessors.h"
21 #include "file-item.h"
22
23 #define BTRFS_DELAYED_WRITEBACK 512
24 #define BTRFS_DELAYED_BACKGROUND 128
25 #define BTRFS_DELAYED_BATCH 16
26
27 static struct kmem_cache *delayed_node_cache;
28
btrfs_delayed_inode_init(void)29 int __init btrfs_delayed_inode_init(void)
30 {
31 delayed_node_cache = KMEM_CACHE(btrfs_delayed_node, 0);
32 if (!delayed_node_cache)
33 return -ENOMEM;
34 return 0;
35 }
36
btrfs_delayed_inode_exit(void)37 void __cold btrfs_delayed_inode_exit(void)
38 {
39 kmem_cache_destroy(delayed_node_cache);
40 }
41
btrfs_init_delayed_root(struct btrfs_delayed_root * delayed_root)42 void btrfs_init_delayed_root(struct btrfs_delayed_root *delayed_root)
43 {
44 atomic_set(&delayed_root->items, 0);
45 atomic_set(&delayed_root->items_seq, 0);
46 delayed_root->nodes = 0;
47 spin_lock_init(&delayed_root->lock);
48 init_waitqueue_head(&delayed_root->wait);
49 INIT_LIST_HEAD(&delayed_root->node_list);
50 INIT_LIST_HEAD(&delayed_root->prepare_list);
51 }
52
btrfs_init_delayed_node(struct btrfs_delayed_node * delayed_node,struct btrfs_root * root,u64 inode_id)53 static inline void btrfs_init_delayed_node(
54 struct btrfs_delayed_node *delayed_node,
55 struct btrfs_root *root, u64 inode_id)
56 {
57 delayed_node->root = root;
58 delayed_node->inode_id = inode_id;
59 refcount_set(&delayed_node->refs, 0);
60 btrfs_delayed_node_ref_tracker_dir_init(delayed_node);
61 delayed_node->ins_root = RB_ROOT_CACHED;
62 delayed_node->del_root = RB_ROOT_CACHED;
63 mutex_init(&delayed_node->mutex);
64 INIT_LIST_HEAD(&delayed_node->n_list);
65 INIT_LIST_HEAD(&delayed_node->p_list);
66 }
67
btrfs_get_delayed_node(struct btrfs_inode * btrfs_inode,struct btrfs_ref_tracker * tracker)68 static struct btrfs_delayed_node *btrfs_get_delayed_node(
69 struct btrfs_inode *btrfs_inode,
70 struct btrfs_ref_tracker *tracker)
71 {
72 struct btrfs_root *root = btrfs_inode->root;
73 u64 ino = btrfs_ino(btrfs_inode);
74 struct btrfs_delayed_node *node;
75
76 node = READ_ONCE(btrfs_inode->delayed_node);
77 if (node) {
78 refcount_inc(&node->refs);
79 btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_NOFS);
80 return node;
81 }
82
83 xa_lock(&root->delayed_nodes);
84 node = xa_load(&root->delayed_nodes, ino);
85
86 if (node) {
87 if (btrfs_inode->delayed_node) {
88 refcount_inc(&node->refs); /* can be accessed */
89 btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC);
90 BUG_ON(btrfs_inode->delayed_node != node);
91 xa_unlock(&root->delayed_nodes);
92 return node;
93 }
94
95 /*
96 * It's possible that we're racing into the middle of removing
97 * this node from the xarray. In this case, the refcount
98 * was zero and it should never go back to one. Just return
99 * NULL like it was never in the xarray at all; our release
100 * function is in the process of removing it.
101 *
102 * Some implementations of refcount_inc refuse to bump the
103 * refcount once it has hit zero. If we don't do this dance
104 * here, refcount_inc() may decide to just WARN_ONCE() instead
105 * of actually bumping the refcount.
106 *
107 * If this node is properly in the xarray, we want to bump the
108 * refcount twice, once for the inode and once for this get
109 * operation.
110 */
111 if (refcount_inc_not_zero(&node->refs)) {
112 refcount_inc(&node->refs);
113 btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC);
114 btrfs_delayed_node_ref_tracker_alloc(node, &node->inode_cache_tracker,
115 GFP_ATOMIC);
116 btrfs_inode->delayed_node = node;
117 } else {
118 node = NULL;
119 }
120
121 xa_unlock(&root->delayed_nodes);
122 return node;
123 }
124 xa_unlock(&root->delayed_nodes);
125
126 return NULL;
127 }
128
129 /*
130 * Look up an existing delayed node associated with @btrfs_inode or create a new
131 * one and insert it to the delayed nodes of the root.
132 *
133 * Return the delayed node, or error pointer on failure.
134 */
btrfs_get_or_create_delayed_node(struct btrfs_inode * btrfs_inode,struct btrfs_ref_tracker * tracker)135 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
136 struct btrfs_inode *btrfs_inode,
137 struct btrfs_ref_tracker *tracker)
138 {
139 struct btrfs_delayed_node *node;
140 struct btrfs_root *root = btrfs_inode->root;
141 u64 ino = btrfs_ino(btrfs_inode);
142 int ret;
143 void *ptr;
144
145 again:
146 node = btrfs_get_delayed_node(btrfs_inode, tracker);
147 if (node)
148 return node;
149
150 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
151 if (!node)
152 return ERR_PTR(-ENOMEM);
153 btrfs_init_delayed_node(node, root, ino);
154
155 /* Allocate and reserve the slot, from now it can return a NULL from xa_load(). */
156 ret = xa_reserve(&root->delayed_nodes, ino, GFP_NOFS);
157 if (ret == -ENOMEM) {
158 btrfs_delayed_node_ref_tracker_dir_exit(node);
159 kmem_cache_free(delayed_node_cache, node);
160 return ERR_PTR(-ENOMEM);
161 }
162 xa_lock(&root->delayed_nodes);
163 ptr = xa_load(&root->delayed_nodes, ino);
164 if (ptr) {
165 /* Somebody inserted it, go back and read it. */
166 xa_unlock(&root->delayed_nodes);
167 btrfs_delayed_node_ref_tracker_dir_exit(node);
168 kmem_cache_free(delayed_node_cache, node);
169 node = NULL;
170 goto again;
171 }
172 ptr = __xa_store(&root->delayed_nodes, ino, node, GFP_ATOMIC);
173 ASSERT(xa_err(ptr) != -EINVAL);
174 ASSERT(xa_err(ptr) != -ENOMEM);
175 ASSERT(ptr == NULL);
176
177 /* Cached in the inode and can be accessed. */
178 refcount_set(&node->refs, 2);
179 btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC);
180 btrfs_delayed_node_ref_tracker_alloc(node, &node->inode_cache_tracker, GFP_ATOMIC);
181
182 btrfs_inode->delayed_node = node;
183 xa_unlock(&root->delayed_nodes);
184
185 return node;
186 }
187
188 /*
189 * Call it when holding delayed_node->mutex
190 *
191 * If mod = 1, add this node into the prepared list.
192 */
btrfs_queue_delayed_node(struct btrfs_delayed_root * root,struct btrfs_delayed_node * node,int mod)193 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
194 struct btrfs_delayed_node *node,
195 int mod)
196 {
197 spin_lock(&root->lock);
198 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
199 if (!list_empty(&node->p_list))
200 list_move_tail(&node->p_list, &root->prepare_list);
201 else if (mod)
202 list_add_tail(&node->p_list, &root->prepare_list);
203 } else {
204 list_add_tail(&node->n_list, &root->node_list);
205 list_add_tail(&node->p_list, &root->prepare_list);
206 refcount_inc(&node->refs); /* inserted into list */
207 btrfs_delayed_node_ref_tracker_alloc(node, &node->node_list_tracker,
208 GFP_ATOMIC);
209 root->nodes++;
210 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
211 }
212 spin_unlock(&root->lock);
213 }
214
215 /* Call it when holding delayed_node->mutex */
btrfs_dequeue_delayed_node(struct btrfs_delayed_root * root,struct btrfs_delayed_node * node)216 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
217 struct btrfs_delayed_node *node)
218 {
219 spin_lock(&root->lock);
220 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
221 root->nodes--;
222 btrfs_delayed_node_ref_tracker_free(node, &node->node_list_tracker);
223 refcount_dec(&node->refs); /* not in the list */
224 list_del_init(&node->n_list);
225 if (!list_empty(&node->p_list))
226 list_del_init(&node->p_list);
227 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
228 }
229 spin_unlock(&root->lock);
230 }
231
btrfs_first_delayed_node(struct btrfs_delayed_root * delayed_root,struct btrfs_ref_tracker * tracker)232 static struct btrfs_delayed_node *btrfs_first_delayed_node(
233 struct btrfs_delayed_root *delayed_root,
234 struct btrfs_ref_tracker *tracker)
235 {
236 struct btrfs_delayed_node *node;
237
238 spin_lock(&delayed_root->lock);
239 node = list_first_entry_or_null(&delayed_root->node_list,
240 struct btrfs_delayed_node, n_list);
241 if (node) {
242 refcount_inc(&node->refs);
243 btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC);
244 }
245 spin_unlock(&delayed_root->lock);
246
247 return node;
248 }
249
btrfs_next_delayed_node(struct btrfs_delayed_node * node,struct btrfs_ref_tracker * tracker)250 static struct btrfs_delayed_node *btrfs_next_delayed_node(
251 struct btrfs_delayed_node *node,
252 struct btrfs_ref_tracker *tracker)
253 {
254 struct btrfs_delayed_root *delayed_root;
255 struct list_head *p;
256 struct btrfs_delayed_node *next = NULL;
257
258 delayed_root = node->root->fs_info->delayed_root;
259 spin_lock(&delayed_root->lock);
260 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
261 /* not in the list */
262 if (list_empty(&delayed_root->node_list))
263 goto out;
264 p = delayed_root->node_list.next;
265 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
266 goto out;
267 else
268 p = node->n_list.next;
269
270 next = list_entry(p, struct btrfs_delayed_node, n_list);
271 refcount_inc(&next->refs);
272 btrfs_delayed_node_ref_tracker_alloc(next, tracker, GFP_ATOMIC);
273 out:
274 spin_unlock(&delayed_root->lock);
275
276 return next;
277 }
278
__btrfs_release_delayed_node(struct btrfs_delayed_node * delayed_node,int mod,struct btrfs_ref_tracker * tracker)279 static void __btrfs_release_delayed_node(
280 struct btrfs_delayed_node *delayed_node,
281 int mod, struct btrfs_ref_tracker *tracker)
282 {
283 struct btrfs_delayed_root *delayed_root;
284
285 if (!delayed_node)
286 return;
287
288 delayed_root = delayed_node->root->fs_info->delayed_root;
289
290 mutex_lock(&delayed_node->mutex);
291 if (delayed_node->count)
292 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
293 else
294 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
295 mutex_unlock(&delayed_node->mutex);
296
297 btrfs_delayed_node_ref_tracker_free(delayed_node, tracker);
298 if (refcount_dec_and_test(&delayed_node->refs)) {
299 struct btrfs_root *root = delayed_node->root;
300
301 xa_erase(&root->delayed_nodes, delayed_node->inode_id);
302 /*
303 * Once our refcount goes to zero, nobody is allowed to bump it
304 * back up. We can delete it now.
305 */
306 ASSERT(refcount_read(&delayed_node->refs) == 0);
307 btrfs_delayed_node_ref_tracker_dir_exit(delayed_node);
308 kmem_cache_free(delayed_node_cache, delayed_node);
309 }
310 }
311
btrfs_release_delayed_node(struct btrfs_delayed_node * node,struct btrfs_ref_tracker * tracker)312 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node,
313 struct btrfs_ref_tracker *tracker)
314 {
315 __btrfs_release_delayed_node(node, 0, tracker);
316 }
317
btrfs_first_prepared_delayed_node(struct btrfs_delayed_root * delayed_root,struct btrfs_ref_tracker * tracker)318 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
319 struct btrfs_delayed_root *delayed_root,
320 struct btrfs_ref_tracker *tracker)
321 {
322 struct btrfs_delayed_node *node;
323
324 spin_lock(&delayed_root->lock);
325 node = list_first_entry_or_null(&delayed_root->prepare_list,
326 struct btrfs_delayed_node, p_list);
327 if (node) {
328 list_del_init(&node->p_list);
329 refcount_inc(&node->refs);
330 btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC);
331 }
332 spin_unlock(&delayed_root->lock);
333
334 return node;
335 }
336
btrfs_release_prepared_delayed_node(struct btrfs_delayed_node * node,struct btrfs_ref_tracker * tracker)337 static inline void btrfs_release_prepared_delayed_node(
338 struct btrfs_delayed_node *node,
339 struct btrfs_ref_tracker *tracker)
340 {
341 __btrfs_release_delayed_node(node, 1, tracker);
342 }
343
btrfs_alloc_delayed_item(u16 data_len,struct btrfs_delayed_node * node,enum btrfs_delayed_item_type type)344 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u16 data_len,
345 struct btrfs_delayed_node *node,
346 enum btrfs_delayed_item_type type)
347 {
348 struct btrfs_delayed_item *item;
349
350 item = kmalloc(struct_size(item, data, data_len), GFP_NOFS);
351 if (item) {
352 item->data_len = data_len;
353 item->type = type;
354 item->bytes_reserved = 0;
355 item->delayed_node = node;
356 RB_CLEAR_NODE(&item->rb_node);
357 INIT_LIST_HEAD(&item->log_list);
358 item->logged = false;
359 refcount_set(&item->refs, 1);
360 }
361 return item;
362 }
363
delayed_item_index_cmp(const void * key,const struct rb_node * node)364 static int delayed_item_index_cmp(const void *key, const struct rb_node *node)
365 {
366 const u64 *index = key;
367 const struct btrfs_delayed_item *delayed_item = rb_entry(node,
368 struct btrfs_delayed_item, rb_node);
369
370 if (delayed_item->index < *index)
371 return 1;
372 else if (delayed_item->index > *index)
373 return -1;
374
375 return 0;
376 }
377
378 /*
379 * Look up the delayed item by key.
380 *
381 * @delayed_node: pointer to the delayed node
382 * @index: the dir index value to lookup (offset of a dir index key)
383 *
384 * Note: if we don't find the right item, we will return the prev item and
385 * the next item.
386 */
__btrfs_lookup_delayed_item(struct rb_root * root,u64 index)387 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
388 struct rb_root *root,
389 u64 index)
390 {
391 struct rb_node *node;
392
393 node = rb_find(&index, root, delayed_item_index_cmp);
394 return rb_entry_safe(node, struct btrfs_delayed_item, rb_node);
395 }
396
btrfs_delayed_item_cmp(const struct rb_node * new,const struct rb_node * exist)397 static int btrfs_delayed_item_cmp(const struct rb_node *new,
398 const struct rb_node *exist)
399 {
400 const struct btrfs_delayed_item *new_item =
401 rb_entry(new, struct btrfs_delayed_item, rb_node);
402
403 return delayed_item_index_cmp(&new_item->index, exist);
404 }
405
__btrfs_add_delayed_item(struct btrfs_delayed_node * delayed_node,struct btrfs_delayed_item * ins)406 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
407 struct btrfs_delayed_item *ins)
408 {
409 struct rb_root_cached *root;
410 struct rb_node *exist;
411
412 if (ins->type == BTRFS_DELAYED_INSERTION_ITEM)
413 root = &delayed_node->ins_root;
414 else
415 root = &delayed_node->del_root;
416
417 exist = rb_find_add_cached(&ins->rb_node, root, btrfs_delayed_item_cmp);
418 if (exist)
419 return -EEXIST;
420
421 if (ins->type == BTRFS_DELAYED_INSERTION_ITEM &&
422 ins->index >= delayed_node->index_cnt)
423 delayed_node->index_cnt = ins->index + 1;
424
425 delayed_node->count++;
426 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
427 return 0;
428 }
429
finish_one_item(struct btrfs_delayed_root * delayed_root)430 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
431 {
432 int seq = atomic_inc_return(&delayed_root->items_seq);
433
434 /* atomic_dec_return implies a barrier */
435 if ((atomic_dec_return(&delayed_root->items) <
436 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
437 cond_wake_up_nomb(&delayed_root->wait);
438 }
439
__btrfs_remove_delayed_item(struct btrfs_delayed_item * delayed_item)440 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
441 {
442 struct btrfs_delayed_node *delayed_node = delayed_item->delayed_node;
443 struct rb_root_cached *root;
444 struct btrfs_delayed_root *delayed_root;
445
446 /* Not inserted, ignore it. */
447 if (RB_EMPTY_NODE(&delayed_item->rb_node))
448 return;
449
450 /* If it's in a rbtree, then we need to have delayed node locked. */
451 lockdep_assert_held(&delayed_node->mutex);
452
453 delayed_root = delayed_node->root->fs_info->delayed_root;
454
455 if (delayed_item->type == BTRFS_DELAYED_INSERTION_ITEM)
456 root = &delayed_node->ins_root;
457 else
458 root = &delayed_node->del_root;
459
460 rb_erase_cached(&delayed_item->rb_node, root);
461 RB_CLEAR_NODE(&delayed_item->rb_node);
462 delayed_node->count--;
463
464 finish_one_item(delayed_root);
465 }
466
btrfs_release_delayed_item(struct btrfs_delayed_item * item)467 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
468 {
469 if (item) {
470 __btrfs_remove_delayed_item(item);
471 if (refcount_dec_and_test(&item->refs))
472 kfree(item);
473 }
474 }
475
__btrfs_first_delayed_insertion_item(struct btrfs_delayed_node * delayed_node)476 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
477 struct btrfs_delayed_node *delayed_node)
478 {
479 struct rb_node *p = rb_first_cached(&delayed_node->ins_root);
480
481 return rb_entry_safe(p, struct btrfs_delayed_item, rb_node);
482 }
483
__btrfs_first_delayed_deletion_item(struct btrfs_delayed_node * delayed_node)484 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
485 struct btrfs_delayed_node *delayed_node)
486 {
487 struct rb_node *p = rb_first_cached(&delayed_node->del_root);
488
489 return rb_entry_safe(p, struct btrfs_delayed_item, rb_node);
490 }
491
__btrfs_next_delayed_item(struct btrfs_delayed_item * item)492 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
493 struct btrfs_delayed_item *item)
494 {
495 struct rb_node *p = rb_next(&item->rb_node);
496
497 return rb_entry_safe(p, struct btrfs_delayed_item, rb_node);
498 }
499
btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle * trans,struct btrfs_delayed_item * item)500 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
501 struct btrfs_delayed_item *item)
502 {
503 struct btrfs_block_rsv *src_rsv;
504 struct btrfs_block_rsv *dst_rsv;
505 struct btrfs_fs_info *fs_info = trans->fs_info;
506 u64 num_bytes;
507 int ret;
508
509 if (!trans->bytes_reserved)
510 return 0;
511
512 src_rsv = trans->block_rsv;
513 dst_rsv = &fs_info->delayed_block_rsv;
514
515 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
516
517 /*
518 * Here we migrate space rsv from transaction rsv, since have already
519 * reserved space when starting a transaction. So no need to reserve
520 * qgroup space here.
521 */
522 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
523 if (!ret) {
524 trace_btrfs_space_reservation(fs_info, "delayed_item",
525 item->delayed_node->inode_id,
526 num_bytes, 1);
527 /*
528 * For insertions we track reserved metadata space by accounting
529 * for the number of leaves that will be used, based on the delayed
530 * node's curr_index_batch_size and index_item_leaves fields.
531 */
532 if (item->type == BTRFS_DELAYED_DELETION_ITEM)
533 item->bytes_reserved = num_bytes;
534 }
535
536 return ret;
537 }
538
btrfs_delayed_item_release_metadata(struct btrfs_root * root,struct btrfs_delayed_item * item)539 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
540 struct btrfs_delayed_item *item)
541 {
542 struct btrfs_block_rsv *rsv;
543 struct btrfs_fs_info *fs_info = root->fs_info;
544
545 if (!item->bytes_reserved)
546 return;
547
548 rsv = &fs_info->delayed_block_rsv;
549 /*
550 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
551 * to release/reserve qgroup space.
552 */
553 trace_btrfs_space_reservation(fs_info, "delayed_item",
554 item->delayed_node->inode_id,
555 item->bytes_reserved, 0);
556 btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
557 }
558
btrfs_delayed_item_release_leaves(struct btrfs_delayed_node * node,unsigned int num_leaves)559 static void btrfs_delayed_item_release_leaves(struct btrfs_delayed_node *node,
560 unsigned int num_leaves)
561 {
562 struct btrfs_fs_info *fs_info = node->root->fs_info;
563 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, num_leaves);
564
565 /* There are no space reservations during log replay, bail out. */
566 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
567 return;
568
569 trace_btrfs_space_reservation(fs_info, "delayed_item", node->inode_id,
570 bytes, 0);
571 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, bytes, NULL);
572 }
573
btrfs_delayed_inode_reserve_metadata(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_delayed_node * node)574 static int btrfs_delayed_inode_reserve_metadata(
575 struct btrfs_trans_handle *trans,
576 struct btrfs_root *root,
577 struct btrfs_delayed_node *node)
578 {
579 struct btrfs_fs_info *fs_info = root->fs_info;
580 struct btrfs_block_rsv *src_rsv;
581 struct btrfs_block_rsv *dst_rsv;
582 u64 num_bytes;
583 int ret;
584
585 src_rsv = trans->block_rsv;
586 dst_rsv = &fs_info->delayed_block_rsv;
587
588 num_bytes = btrfs_calc_metadata_size(fs_info, 1);
589
590 /*
591 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
592 * which doesn't reserve space for speed. This is a problem since we
593 * still need to reserve space for this update, so try to reserve the
594 * space.
595 *
596 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
597 * we always reserve enough to update the inode item.
598 */
599 if (!src_rsv || (!trans->bytes_reserved &&
600 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
601 ret = btrfs_qgroup_reserve_meta(root, num_bytes,
602 BTRFS_QGROUP_RSV_META_PREALLOC, true);
603 if (ret < 0)
604 return ret;
605 ret = btrfs_block_rsv_add(fs_info, dst_rsv, num_bytes,
606 BTRFS_RESERVE_NO_FLUSH);
607 /* NO_FLUSH could only fail with -ENOSPC */
608 ASSERT(ret == 0 || ret == -ENOSPC);
609 if (ret)
610 btrfs_qgroup_free_meta_prealloc(root, num_bytes);
611 } else {
612 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
613 }
614
615 if (!ret) {
616 trace_btrfs_space_reservation(fs_info, "delayed_inode",
617 node->inode_id, num_bytes, 1);
618 node->bytes_reserved = num_bytes;
619 }
620
621 return ret;
622 }
623
btrfs_delayed_inode_release_metadata(struct btrfs_fs_info * fs_info,struct btrfs_delayed_node * node,bool qgroup_free)624 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
625 struct btrfs_delayed_node *node,
626 bool qgroup_free)
627 {
628 struct btrfs_block_rsv *rsv;
629
630 if (!node->bytes_reserved)
631 return;
632
633 rsv = &fs_info->delayed_block_rsv;
634 trace_btrfs_space_reservation(fs_info, "delayed_inode",
635 node->inode_id, node->bytes_reserved, 0);
636 btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
637 if (qgroup_free)
638 btrfs_qgroup_free_meta_prealloc(node->root,
639 node->bytes_reserved);
640 else
641 btrfs_qgroup_convert_reserved_meta(node->root,
642 node->bytes_reserved);
643 node->bytes_reserved = 0;
644 }
645
646 /*
647 * Insert a single delayed item or a batch of delayed items, as many as possible
648 * that fit in a leaf. The delayed items (dir index keys) are sorted by their key
649 * in the rbtree, and if there's a gap between two consecutive dir index items,
650 * then it means at some point we had delayed dir indexes to add but they got
651 * removed (by btrfs_delete_delayed_dir_index()) before we attempted to flush them
652 * into the subvolume tree. Dir index keys also have their offsets coming from a
653 * monotonically increasing counter, so we can't get new keys with an offset that
654 * fits within a gap between delayed dir index items.
655 */
btrfs_insert_delayed_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_item * first_item)656 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
657 struct btrfs_root *root,
658 struct btrfs_path *path,
659 struct btrfs_delayed_item *first_item)
660 {
661 struct btrfs_fs_info *fs_info = root->fs_info;
662 struct btrfs_delayed_node *node = first_item->delayed_node;
663 LIST_HEAD(item_list);
664 struct btrfs_delayed_item *curr;
665 struct btrfs_delayed_item *next;
666 const int max_size = BTRFS_LEAF_DATA_SIZE(fs_info);
667 struct btrfs_item_batch batch;
668 struct btrfs_key first_key;
669 const u32 first_data_size = first_item->data_len;
670 int total_size;
671 char *ins_data = NULL;
672 int ret;
673 bool continuous_keys_only = false;
674
675 lockdep_assert_held(&node->mutex);
676
677 /*
678 * During normal operation the delayed index offset is continuously
679 * increasing, so we can batch insert all items as there will not be any
680 * overlapping keys in the tree.
681 *
682 * The exception to this is log replay, where we may have interleaved
683 * offsets in the tree, so our batch needs to be continuous keys only in
684 * order to ensure we do not end up with out of order items in our leaf.
685 */
686 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
687 continuous_keys_only = true;
688
689 /*
690 * For delayed items to insert, we track reserved metadata bytes based
691 * on the number of leaves that we will use.
692 * See btrfs_insert_delayed_dir_index() and
693 * btrfs_delayed_item_reserve_metadata()).
694 */
695 ASSERT(first_item->bytes_reserved == 0);
696
697 list_add_tail(&first_item->tree_list, &item_list);
698 batch.total_data_size = first_data_size;
699 batch.nr = 1;
700 total_size = first_data_size + sizeof(struct btrfs_item);
701 curr = first_item;
702
703 while (true) {
704 int next_size;
705
706 next = __btrfs_next_delayed_item(curr);
707 if (!next)
708 break;
709
710 /*
711 * We cannot allow gaps in the key space if we're doing log
712 * replay.
713 */
714 if (continuous_keys_only && (next->index != curr->index + 1))
715 break;
716
717 ASSERT(next->bytes_reserved == 0);
718
719 next_size = next->data_len + sizeof(struct btrfs_item);
720 if (total_size + next_size > max_size)
721 break;
722
723 list_add_tail(&next->tree_list, &item_list);
724 batch.nr++;
725 total_size += next_size;
726 batch.total_data_size += next->data_len;
727 curr = next;
728 }
729
730 if (batch.nr == 1) {
731 first_key.objectid = node->inode_id;
732 first_key.type = BTRFS_DIR_INDEX_KEY;
733 first_key.offset = first_item->index;
734 batch.keys = &first_key;
735 batch.data_sizes = &first_data_size;
736 } else {
737 struct btrfs_key *ins_keys;
738 u32 *ins_sizes;
739 int i = 0;
740
741 ins_data = kmalloc_array(batch.nr,
742 sizeof(u32) + sizeof(struct btrfs_key), GFP_NOFS);
743 if (!ins_data) {
744 ret = -ENOMEM;
745 goto out;
746 }
747 ins_sizes = (u32 *)ins_data;
748 ins_keys = (struct btrfs_key *)(ins_data + batch.nr * sizeof(u32));
749 batch.keys = ins_keys;
750 batch.data_sizes = ins_sizes;
751 list_for_each_entry(curr, &item_list, tree_list) {
752 ins_keys[i].objectid = node->inode_id;
753 ins_keys[i].type = BTRFS_DIR_INDEX_KEY;
754 ins_keys[i].offset = curr->index;
755 ins_sizes[i] = curr->data_len;
756 i++;
757 }
758 }
759
760 ret = btrfs_insert_empty_items(trans, root, path, &batch);
761 if (ret)
762 goto out;
763
764 list_for_each_entry(curr, &item_list, tree_list) {
765 char *data_ptr;
766
767 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
768 write_extent_buffer(path->nodes[0], &curr->data,
769 (unsigned long)data_ptr, curr->data_len);
770 path->slots[0]++;
771 }
772
773 /*
774 * Now release our path before releasing the delayed items and their
775 * metadata reservations, so that we don't block other tasks for more
776 * time than needed.
777 */
778 btrfs_release_path(path);
779
780 ASSERT(node->index_item_leaves > 0);
781
782 /*
783 * For normal operations we will batch an entire leaf's worth of delayed
784 * items, so if there are more items to process we can decrement
785 * index_item_leaves by 1 as we inserted 1 leaf's worth of items.
786 *
787 * However for log replay we may not have inserted an entire leaf's
788 * worth of items, we may have not had continuous items, so decrementing
789 * here would mess up the index_item_leaves accounting. For this case
790 * only clean up the accounting when there are no items left.
791 */
792 if (next && !continuous_keys_only) {
793 /*
794 * We inserted one batch of items into a leaf a there are more
795 * items to flush in a future batch, now release one unit of
796 * metadata space from the delayed block reserve, corresponding
797 * the leaf we just flushed to.
798 */
799 btrfs_delayed_item_release_leaves(node, 1);
800 node->index_item_leaves--;
801 } else if (!next) {
802 /*
803 * There are no more items to insert. We can have a number of
804 * reserved leaves > 1 here - this happens when many dir index
805 * items are added and then removed before they are flushed (file
806 * names with a very short life, never span a transaction). So
807 * release all remaining leaves.
808 */
809 btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
810 node->index_item_leaves = 0;
811 }
812
813 list_for_each_entry_safe(curr, next, &item_list, tree_list) {
814 list_del(&curr->tree_list);
815 btrfs_release_delayed_item(curr);
816 }
817 out:
818 kfree(ins_data);
819 return ret;
820 }
821
btrfs_insert_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_root * root,struct btrfs_delayed_node * node)822 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
823 struct btrfs_path *path,
824 struct btrfs_root *root,
825 struct btrfs_delayed_node *node)
826 {
827 int ret = 0;
828
829 while (ret == 0) {
830 struct btrfs_delayed_item *curr;
831
832 mutex_lock(&node->mutex);
833 curr = __btrfs_first_delayed_insertion_item(node);
834 if (!curr) {
835 mutex_unlock(&node->mutex);
836 break;
837 }
838 ret = btrfs_insert_delayed_item(trans, root, path, curr);
839 mutex_unlock(&node->mutex);
840 }
841
842 return ret;
843 }
844
btrfs_batch_delete_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_item * item)845 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
846 struct btrfs_root *root,
847 struct btrfs_path *path,
848 struct btrfs_delayed_item *item)
849 {
850 const u64 ino = item->delayed_node->inode_id;
851 struct btrfs_fs_info *fs_info = root->fs_info;
852 struct btrfs_delayed_item *curr, *next;
853 struct extent_buffer *leaf = path->nodes[0];
854 LIST_HEAD(batch_list);
855 int nitems, slot, last_slot;
856 int ret;
857 u64 total_reserved_size = item->bytes_reserved;
858
859 ASSERT(leaf != NULL);
860
861 slot = path->slots[0];
862 last_slot = btrfs_header_nritems(leaf) - 1;
863 /*
864 * Our caller always gives us a path pointing to an existing item, so
865 * this can not happen.
866 */
867 ASSERT(slot <= last_slot);
868 if (WARN_ON(slot > last_slot))
869 return -ENOENT;
870
871 nitems = 1;
872 curr = item;
873 list_add_tail(&curr->tree_list, &batch_list);
874
875 /*
876 * Keep checking if the next delayed item matches the next item in the
877 * leaf - if so, we can add it to the batch of items to delete from the
878 * leaf.
879 */
880 while (slot < last_slot) {
881 struct btrfs_key key;
882
883 next = __btrfs_next_delayed_item(curr);
884 if (!next)
885 break;
886
887 slot++;
888 btrfs_item_key_to_cpu(leaf, &key, slot);
889 if (key.objectid != ino ||
890 key.type != BTRFS_DIR_INDEX_KEY ||
891 key.offset != next->index)
892 break;
893 nitems++;
894 curr = next;
895 list_add_tail(&curr->tree_list, &batch_list);
896 total_reserved_size += curr->bytes_reserved;
897 }
898
899 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
900 if (ret)
901 return ret;
902
903 /* In case of BTRFS_FS_LOG_RECOVERING items won't have reserved space */
904 if (total_reserved_size > 0) {
905 /*
906 * Check btrfs_delayed_item_reserve_metadata() to see why we
907 * don't need to release/reserve qgroup space.
908 */
909 trace_btrfs_space_reservation(fs_info, "delayed_item", ino,
910 total_reserved_size, 0);
911 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv,
912 total_reserved_size, NULL);
913 }
914
915 list_for_each_entry_safe(curr, next, &batch_list, tree_list) {
916 list_del(&curr->tree_list);
917 btrfs_release_delayed_item(curr);
918 }
919
920 return 0;
921 }
922
btrfs_delete_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_root * root,struct btrfs_delayed_node * node)923 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
924 struct btrfs_path *path,
925 struct btrfs_root *root,
926 struct btrfs_delayed_node *node)
927 {
928 struct btrfs_key key;
929 int ret = 0;
930
931 key.objectid = node->inode_id;
932 key.type = BTRFS_DIR_INDEX_KEY;
933
934 while (ret == 0) {
935 struct btrfs_delayed_item *item;
936
937 mutex_lock(&node->mutex);
938 item = __btrfs_first_delayed_deletion_item(node);
939 if (!item) {
940 mutex_unlock(&node->mutex);
941 break;
942 }
943
944 key.offset = item->index;
945 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
946 if (ret > 0) {
947 /*
948 * There's no matching item in the leaf. This means we
949 * have already deleted this item in a past run of the
950 * delayed items. We ignore errors when running delayed
951 * items from an async context, through a work queue job
952 * running btrfs_async_run_delayed_root(), and don't
953 * release delayed items that failed to complete. This
954 * is because we will retry later, and at transaction
955 * commit time we always run delayed items and will
956 * then deal with errors if they fail to run again.
957 *
958 * So just release delayed items for which we can't find
959 * an item in the tree, and move to the next item.
960 */
961 btrfs_release_path(path);
962 btrfs_release_delayed_item(item);
963 ret = 0;
964 } else if (ret == 0) {
965 ret = btrfs_batch_delete_items(trans, root, path, item);
966 btrfs_release_path(path);
967 }
968
969 /*
970 * We unlock and relock on each iteration, this is to prevent
971 * blocking other tasks for too long while we are being run from
972 * the async context (work queue job). Those tasks are typically
973 * running system calls like creat/mkdir/rename/unlink/etc which
974 * need to add delayed items to this delayed node.
975 */
976 mutex_unlock(&node->mutex);
977 }
978
979 return ret;
980 }
981
btrfs_release_delayed_inode(struct btrfs_delayed_node * delayed_node)982 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
983 {
984 struct btrfs_delayed_root *delayed_root;
985
986 if (delayed_node &&
987 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
988 ASSERT(delayed_node->root);
989 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
990 delayed_node->count--;
991
992 delayed_root = delayed_node->root->fs_info->delayed_root;
993 finish_one_item(delayed_root);
994 }
995 }
996
btrfs_release_delayed_iref(struct btrfs_delayed_node * delayed_node)997 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
998 {
999
1000 if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) {
1001 struct btrfs_delayed_root *delayed_root;
1002
1003 ASSERT(delayed_node->root);
1004 delayed_node->count--;
1005
1006 delayed_root = delayed_node->root->fs_info->delayed_root;
1007 finish_one_item(delayed_root);
1008 }
1009 }
1010
__btrfs_update_delayed_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_node * node)1011 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1012 struct btrfs_root *root,
1013 struct btrfs_path *path,
1014 struct btrfs_delayed_node *node)
1015 {
1016 struct btrfs_fs_info *fs_info = root->fs_info;
1017 struct btrfs_key key;
1018 struct btrfs_inode_item *inode_item;
1019 struct extent_buffer *leaf;
1020 int mod;
1021 int ret;
1022
1023 key.objectid = node->inode_id;
1024 key.type = BTRFS_INODE_ITEM_KEY;
1025 key.offset = 0;
1026
1027 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1028 mod = -1;
1029 else
1030 mod = 1;
1031
1032 ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1033 if (ret > 0)
1034 ret = -ENOENT;
1035 if (ret < 0) {
1036 /*
1037 * If we fail to update the delayed inode we need to abort the
1038 * transaction, because we could leave the inode with the
1039 * improper counts behind.
1040 */
1041 if (unlikely(ret != -ENOENT))
1042 btrfs_abort_transaction(trans, ret);
1043 goto out;
1044 }
1045
1046 leaf = path->nodes[0];
1047 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1048 struct btrfs_inode_item);
1049 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1050 sizeof(struct btrfs_inode_item));
1051
1052 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1053 goto out;
1054
1055 /*
1056 * Now we're going to delete the INODE_REF/EXTREF, which should be the
1057 * only one ref left. Check if the next item is an INODE_REF/EXTREF.
1058 *
1059 * But if we're the last item already, release and search for the last
1060 * INODE_REF/EXTREF.
1061 */
1062 if (path->slots[0] + 1 >= btrfs_header_nritems(leaf)) {
1063 key.objectid = node->inode_id;
1064 key.type = BTRFS_INODE_EXTREF_KEY;
1065 key.offset = (u64)-1;
1066
1067 btrfs_release_path(path);
1068 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1069 if (unlikely(ret < 0)) {
1070 btrfs_abort_transaction(trans, ret);
1071 goto err_out;
1072 }
1073 ASSERT(ret > 0);
1074 ASSERT(path->slots[0] > 0);
1075 ret = 0;
1076 path->slots[0]--;
1077 leaf = path->nodes[0];
1078 } else {
1079 path->slots[0]++;
1080 }
1081 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1082 if (key.objectid != node->inode_id)
1083 goto out;
1084 if (key.type != BTRFS_INODE_REF_KEY &&
1085 key.type != BTRFS_INODE_EXTREF_KEY)
1086 goto out;
1087
1088 /*
1089 * Delayed iref deletion is for the inode who has only one link,
1090 * so there is only one iref. The case that several irefs are
1091 * in the same item doesn't exist.
1092 */
1093 ret = btrfs_del_item(trans, root, path);
1094 if (ret < 0)
1095 btrfs_abort_transaction(trans, ret);
1096 out:
1097 btrfs_release_delayed_iref(node);
1098 btrfs_release_path(path);
1099 err_out:
1100 btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1101 btrfs_release_delayed_inode(node);
1102 return ret;
1103 }
1104
btrfs_update_delayed_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_node * node)1105 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1106 struct btrfs_root *root,
1107 struct btrfs_path *path,
1108 struct btrfs_delayed_node *node)
1109 {
1110 int ret;
1111
1112 mutex_lock(&node->mutex);
1113 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1114 mutex_unlock(&node->mutex);
1115 return 0;
1116 }
1117
1118 ret = __btrfs_update_delayed_inode(trans, root, path, node);
1119 mutex_unlock(&node->mutex);
1120 return ret;
1121 }
1122
1123 static inline int
__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_delayed_node * node)1124 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1125 struct btrfs_path *path,
1126 struct btrfs_delayed_node *node)
1127 {
1128 int ret;
1129
1130 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1131 if (ret)
1132 return ret;
1133
1134 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1135 if (ret)
1136 return ret;
1137
1138 ret = btrfs_record_root_in_trans(trans, node->root);
1139 if (ret)
1140 return ret;
1141 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1142 return ret;
1143 }
1144
1145 /*
1146 * Called when committing the transaction.
1147 * Returns 0 on success.
1148 * Returns < 0 on error and returns with an aborted transaction with any
1149 * outstanding delayed items cleaned up.
1150 */
__btrfs_run_delayed_items(struct btrfs_trans_handle * trans,int nr)1151 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1152 {
1153 struct btrfs_fs_info *fs_info = trans->fs_info;
1154 struct btrfs_delayed_root *delayed_root;
1155 struct btrfs_delayed_node *curr_node, *prev_node;
1156 struct btrfs_ref_tracker curr_delayed_node_tracker, prev_delayed_node_tracker;
1157 struct btrfs_path *path;
1158 struct btrfs_block_rsv *block_rsv;
1159 int ret = 0;
1160 bool count = (nr > 0);
1161
1162 if (TRANS_ABORTED(trans))
1163 return -EIO;
1164
1165 path = btrfs_alloc_path();
1166 if (!path)
1167 return -ENOMEM;
1168
1169 block_rsv = trans->block_rsv;
1170 trans->block_rsv = &fs_info->delayed_block_rsv;
1171
1172 delayed_root = fs_info->delayed_root;
1173
1174 curr_node = btrfs_first_delayed_node(delayed_root, &curr_delayed_node_tracker);
1175 while (curr_node && (!count || nr--)) {
1176 ret = __btrfs_commit_inode_delayed_items(trans, path,
1177 curr_node);
1178 if (unlikely(ret)) {
1179 btrfs_abort_transaction(trans, ret);
1180 break;
1181 }
1182
1183 prev_node = curr_node;
1184 prev_delayed_node_tracker = curr_delayed_node_tracker;
1185 curr_node = btrfs_next_delayed_node(curr_node, &curr_delayed_node_tracker);
1186 /*
1187 * See the comment below about releasing path before releasing
1188 * node. If the commit of delayed items was successful the path
1189 * should always be released, but in case of an error, it may
1190 * point to locked extent buffers (a leaf at the very least).
1191 */
1192 ASSERT(path->nodes[0] == NULL);
1193 btrfs_release_delayed_node(prev_node, &prev_delayed_node_tracker);
1194 }
1195
1196 /*
1197 * Release the path to avoid a potential deadlock and lockdep splat when
1198 * releasing the delayed node, as that requires taking the delayed node's
1199 * mutex. If another task starts running delayed items before we take
1200 * the mutex, it will first lock the mutex and then it may try to lock
1201 * the same btree path (leaf).
1202 */
1203 btrfs_free_path(path);
1204
1205 if (curr_node)
1206 btrfs_release_delayed_node(curr_node, &curr_delayed_node_tracker);
1207 trans->block_rsv = block_rsv;
1208
1209 return ret;
1210 }
1211
btrfs_run_delayed_items(struct btrfs_trans_handle * trans)1212 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1213 {
1214 return __btrfs_run_delayed_items(trans, -1);
1215 }
1216
btrfs_run_delayed_items_nr(struct btrfs_trans_handle * trans,int nr)1217 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1218 {
1219 return __btrfs_run_delayed_items(trans, nr);
1220 }
1221
btrfs_commit_inode_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)1222 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1223 struct btrfs_inode *inode)
1224 {
1225 struct btrfs_ref_tracker delayed_node_tracker;
1226 struct btrfs_delayed_node *delayed_node =
1227 btrfs_get_delayed_node(inode, &delayed_node_tracker);
1228 BTRFS_PATH_AUTO_FREE(path);
1229 struct btrfs_block_rsv *block_rsv;
1230 int ret;
1231
1232 if (!delayed_node)
1233 return 0;
1234
1235 mutex_lock(&delayed_node->mutex);
1236 if (!delayed_node->count) {
1237 mutex_unlock(&delayed_node->mutex);
1238 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1239 return 0;
1240 }
1241 mutex_unlock(&delayed_node->mutex);
1242
1243 path = btrfs_alloc_path();
1244 if (!path) {
1245 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1246 return -ENOMEM;
1247 }
1248
1249 block_rsv = trans->block_rsv;
1250 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1251
1252 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1253
1254 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1255 trans->block_rsv = block_rsv;
1256
1257 return ret;
1258 }
1259
btrfs_commit_inode_delayed_inode(struct btrfs_inode * inode)1260 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1261 {
1262 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1263 struct btrfs_trans_handle *trans;
1264 struct btrfs_ref_tracker delayed_node_tracker;
1265 struct btrfs_delayed_node *delayed_node;
1266 struct btrfs_path *path;
1267 struct btrfs_block_rsv *block_rsv;
1268 int ret;
1269
1270 delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
1271 if (!delayed_node)
1272 return 0;
1273
1274 mutex_lock(&delayed_node->mutex);
1275 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1276 mutex_unlock(&delayed_node->mutex);
1277 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1278 return 0;
1279 }
1280 mutex_unlock(&delayed_node->mutex);
1281
1282 trans = btrfs_join_transaction(delayed_node->root);
1283 if (IS_ERR(trans)) {
1284 ret = PTR_ERR(trans);
1285 goto out;
1286 }
1287
1288 path = btrfs_alloc_path();
1289 if (!path) {
1290 ret = -ENOMEM;
1291 goto trans_out;
1292 }
1293
1294 block_rsv = trans->block_rsv;
1295 trans->block_rsv = &fs_info->delayed_block_rsv;
1296
1297 mutex_lock(&delayed_node->mutex);
1298 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1299 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1300 path, delayed_node);
1301 else
1302 ret = 0;
1303 mutex_unlock(&delayed_node->mutex);
1304
1305 btrfs_free_path(path);
1306 trans->block_rsv = block_rsv;
1307 trans_out:
1308 btrfs_end_transaction(trans);
1309 btrfs_btree_balance_dirty(fs_info);
1310 out:
1311 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1312
1313 return ret;
1314 }
1315
btrfs_remove_delayed_node(struct btrfs_inode * inode)1316 void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1317 {
1318 struct btrfs_delayed_node *delayed_node;
1319
1320 delayed_node = READ_ONCE(inode->delayed_node);
1321 if (!delayed_node)
1322 return;
1323
1324 inode->delayed_node = NULL;
1325
1326 btrfs_release_delayed_node(delayed_node, &delayed_node->inode_cache_tracker);
1327 }
1328
1329 struct btrfs_async_delayed_work {
1330 struct btrfs_delayed_root *delayed_root;
1331 int nr;
1332 struct btrfs_work work;
1333 };
1334
btrfs_async_run_delayed_root(struct btrfs_work * work)1335 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1336 {
1337 struct btrfs_async_delayed_work *async_work;
1338 struct btrfs_delayed_root *delayed_root;
1339 struct btrfs_trans_handle *trans;
1340 struct btrfs_path *path;
1341 struct btrfs_delayed_node *delayed_node = NULL;
1342 struct btrfs_ref_tracker delayed_node_tracker;
1343 struct btrfs_root *root;
1344 struct btrfs_block_rsv *block_rsv;
1345 int total_done = 0;
1346
1347 async_work = container_of(work, struct btrfs_async_delayed_work, work);
1348 delayed_root = async_work->delayed_root;
1349
1350 path = btrfs_alloc_path();
1351 if (!path)
1352 goto out;
1353
1354 do {
1355 if (atomic_read(&delayed_root->items) <
1356 BTRFS_DELAYED_BACKGROUND / 2)
1357 break;
1358
1359 delayed_node = btrfs_first_prepared_delayed_node(delayed_root,
1360 &delayed_node_tracker);
1361 if (!delayed_node)
1362 break;
1363
1364 root = delayed_node->root;
1365
1366 trans = btrfs_join_transaction(root);
1367 if (IS_ERR(trans)) {
1368 btrfs_release_path(path);
1369 btrfs_release_prepared_delayed_node(delayed_node,
1370 &delayed_node_tracker);
1371 total_done++;
1372 continue;
1373 }
1374
1375 block_rsv = trans->block_rsv;
1376 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1377
1378 __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1379
1380 trans->block_rsv = block_rsv;
1381 btrfs_end_transaction(trans);
1382 btrfs_btree_balance_dirty_nodelay(root->fs_info);
1383
1384 btrfs_release_path(path);
1385 btrfs_release_prepared_delayed_node(delayed_node,
1386 &delayed_node_tracker);
1387 total_done++;
1388
1389 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1390 || total_done < async_work->nr);
1391
1392 btrfs_free_path(path);
1393 out:
1394 wake_up(&delayed_root->wait);
1395 kfree(async_work);
1396 }
1397
1398
btrfs_wq_run_delayed_node(struct btrfs_delayed_root * delayed_root,struct btrfs_fs_info * fs_info,int nr)1399 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1400 struct btrfs_fs_info *fs_info, int nr)
1401 {
1402 struct btrfs_async_delayed_work *async_work;
1403
1404 async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1405 if (!async_work)
1406 return -ENOMEM;
1407
1408 async_work->delayed_root = delayed_root;
1409 btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL);
1410 async_work->nr = nr;
1411
1412 btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1413 return 0;
1414 }
1415
btrfs_assert_delayed_root_empty(struct btrfs_fs_info * fs_info)1416 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1417 {
1418 struct btrfs_ref_tracker delayed_node_tracker;
1419 struct btrfs_delayed_node *node;
1420
1421 node = btrfs_first_delayed_node( fs_info->delayed_root, &delayed_node_tracker);
1422 if (WARN_ON(node)) {
1423 btrfs_delayed_node_ref_tracker_free(node,
1424 &delayed_node_tracker);
1425 refcount_dec(&node->refs);
1426 }
1427 }
1428
could_end_wait(struct btrfs_delayed_root * delayed_root,int seq)1429 static bool could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1430 {
1431 int val = atomic_read(&delayed_root->items_seq);
1432
1433 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1434 return true;
1435
1436 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1437 return true;
1438
1439 return false;
1440 }
1441
btrfs_balance_delayed_items(struct btrfs_fs_info * fs_info)1442 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1443 {
1444 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1445
1446 if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1447 btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1448 return;
1449
1450 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1451 int seq;
1452 int ret;
1453
1454 seq = atomic_read(&delayed_root->items_seq);
1455
1456 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1457 if (ret)
1458 return;
1459
1460 wait_event_interruptible(delayed_root->wait,
1461 could_end_wait(delayed_root, seq));
1462 return;
1463 }
1464
1465 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1466 }
1467
btrfs_release_dir_index_item_space(struct btrfs_trans_handle * trans)1468 static void btrfs_release_dir_index_item_space(struct btrfs_trans_handle *trans)
1469 {
1470 struct btrfs_fs_info *fs_info = trans->fs_info;
1471 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
1472
1473 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1474 return;
1475
1476 /*
1477 * Adding the new dir index item does not require touching another
1478 * leaf, so we can release 1 unit of metadata that was previously
1479 * reserved when starting the transaction. This applies only to
1480 * the case where we had a transaction start and excludes the
1481 * transaction join case (when replaying log trees).
1482 */
1483 trace_btrfs_space_reservation(fs_info, "transaction",
1484 trans->transid, bytes, 0);
1485 btrfs_block_rsv_release(fs_info, trans->block_rsv, bytes, NULL);
1486 ASSERT(trans->bytes_reserved >= bytes);
1487 trans->bytes_reserved -= bytes;
1488 }
1489
1490 /* Will return 0, -ENOMEM or -EEXIST (index number collision, unexpected). */
btrfs_insert_delayed_dir_index(struct btrfs_trans_handle * trans,const char * name,int name_len,struct btrfs_inode * dir,const struct btrfs_disk_key * disk_key,u8 flags,u64 index)1491 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1492 const char *name, int name_len,
1493 struct btrfs_inode *dir,
1494 const struct btrfs_disk_key *disk_key, u8 flags,
1495 u64 index)
1496 {
1497 struct btrfs_fs_info *fs_info = trans->fs_info;
1498 const unsigned int leaf_data_size = BTRFS_LEAF_DATA_SIZE(fs_info);
1499 struct btrfs_delayed_node *delayed_node;
1500 struct btrfs_ref_tracker delayed_node_tracker;
1501 struct btrfs_delayed_item *delayed_item;
1502 struct btrfs_dir_item *dir_item;
1503 bool reserve_leaf_space;
1504 u32 data_len;
1505 int ret;
1506
1507 delayed_node = btrfs_get_or_create_delayed_node(dir, &delayed_node_tracker);
1508 if (IS_ERR(delayed_node))
1509 return PTR_ERR(delayed_node);
1510
1511 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len,
1512 delayed_node,
1513 BTRFS_DELAYED_INSERTION_ITEM);
1514 if (!delayed_item) {
1515 ret = -ENOMEM;
1516 goto release_node;
1517 }
1518
1519 delayed_item->index = index;
1520
1521 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1522 dir_item->location = *disk_key;
1523 btrfs_set_stack_dir_transid(dir_item, trans->transid);
1524 btrfs_set_stack_dir_data_len(dir_item, 0);
1525 btrfs_set_stack_dir_name_len(dir_item, name_len);
1526 btrfs_set_stack_dir_flags(dir_item, flags);
1527 memcpy((char *)(dir_item + 1), name, name_len);
1528
1529 data_len = delayed_item->data_len + sizeof(struct btrfs_item);
1530
1531 mutex_lock(&delayed_node->mutex);
1532
1533 /*
1534 * First attempt to insert the delayed item. This is to make the error
1535 * handling path simpler in case we fail (-EEXIST). There's no risk of
1536 * any other task coming in and running the delayed item before we do
1537 * the metadata space reservation below, because we are holding the
1538 * delayed node's mutex and that mutex must also be locked before the
1539 * node's delayed items can be run.
1540 */
1541 ret = __btrfs_add_delayed_item(delayed_node, delayed_item);
1542 if (unlikely(ret)) {
1543 btrfs_err(trans->fs_info,
1544 "error adding delayed dir index item, name: %.*s, index: %llu, root: %llu, dir: %llu, dir->index_cnt: %llu, delayed_node->index_cnt: %llu, error: %d",
1545 name_len, name, index, btrfs_root_id(delayed_node->root),
1546 delayed_node->inode_id, dir->index_cnt,
1547 delayed_node->index_cnt, ret);
1548 btrfs_release_delayed_item(delayed_item);
1549 btrfs_release_dir_index_item_space(trans);
1550 mutex_unlock(&delayed_node->mutex);
1551 goto release_node;
1552 }
1553
1554 if (delayed_node->index_item_leaves == 0 ||
1555 delayed_node->curr_index_batch_size + data_len > leaf_data_size) {
1556 delayed_node->curr_index_batch_size = data_len;
1557 reserve_leaf_space = true;
1558 } else {
1559 delayed_node->curr_index_batch_size += data_len;
1560 reserve_leaf_space = false;
1561 }
1562
1563 if (reserve_leaf_space) {
1564 ret = btrfs_delayed_item_reserve_metadata(trans, delayed_item);
1565 /*
1566 * Space was reserved for a dir index item insertion when we
1567 * started the transaction, so getting a failure here should be
1568 * impossible.
1569 */
1570 if (WARN_ON(ret)) {
1571 btrfs_release_delayed_item(delayed_item);
1572 mutex_unlock(&delayed_node->mutex);
1573 goto release_node;
1574 }
1575
1576 delayed_node->index_item_leaves++;
1577 } else {
1578 btrfs_release_dir_index_item_space(trans);
1579 }
1580 mutex_unlock(&delayed_node->mutex);
1581
1582 release_node:
1583 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1584 return ret;
1585 }
1586
btrfs_delete_delayed_insertion_item(struct btrfs_delayed_node * node,u64 index)1587 static bool btrfs_delete_delayed_insertion_item(struct btrfs_delayed_node *node,
1588 u64 index)
1589 {
1590 struct btrfs_delayed_item *item;
1591
1592 mutex_lock(&node->mutex);
1593 item = __btrfs_lookup_delayed_item(&node->ins_root.rb_root, index);
1594 if (!item) {
1595 mutex_unlock(&node->mutex);
1596 return false;
1597 }
1598
1599 /*
1600 * For delayed items to insert, we track reserved metadata bytes based
1601 * on the number of leaves that we will use.
1602 * See btrfs_insert_delayed_dir_index() and
1603 * btrfs_delayed_item_reserve_metadata()).
1604 */
1605 ASSERT(item->bytes_reserved == 0);
1606 ASSERT(node->index_item_leaves > 0);
1607
1608 /*
1609 * If there's only one leaf reserved, we can decrement this item from the
1610 * current batch, otherwise we can not because we don't know which leaf
1611 * it belongs to. With the current limit on delayed items, we rarely
1612 * accumulate enough dir index items to fill more than one leaf (even
1613 * when using a leaf size of 4K).
1614 */
1615 if (node->index_item_leaves == 1) {
1616 const u32 data_len = item->data_len + sizeof(struct btrfs_item);
1617
1618 ASSERT(node->curr_index_batch_size >= data_len);
1619 node->curr_index_batch_size -= data_len;
1620 }
1621
1622 btrfs_release_delayed_item(item);
1623
1624 /* If we now have no more dir index items, we can release all leaves. */
1625 if (RB_EMPTY_ROOT(&node->ins_root.rb_root)) {
1626 btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
1627 node->index_item_leaves = 0;
1628 }
1629
1630 mutex_unlock(&node->mutex);
1631 return true;
1632 }
1633
btrfs_delete_delayed_dir_index(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,u64 index)1634 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1635 struct btrfs_inode *dir, u64 index)
1636 {
1637 struct btrfs_delayed_node *node;
1638 struct btrfs_ref_tracker delayed_node_tracker;
1639 struct btrfs_delayed_item *item;
1640 int ret;
1641
1642 node = btrfs_get_or_create_delayed_node(dir, &delayed_node_tracker);
1643 if (IS_ERR(node))
1644 return PTR_ERR(node);
1645
1646 if (btrfs_delete_delayed_insertion_item(node, index)) {
1647 ret = 0;
1648 goto end;
1649 }
1650
1651 item = btrfs_alloc_delayed_item(0, node, BTRFS_DELAYED_DELETION_ITEM);
1652 if (!item) {
1653 ret = -ENOMEM;
1654 goto end;
1655 }
1656
1657 item->index = index;
1658
1659 ret = btrfs_delayed_item_reserve_metadata(trans, item);
1660 /*
1661 * we have reserved enough space when we start a new transaction,
1662 * so reserving metadata failure is impossible.
1663 */
1664 if (ret < 0) {
1665 btrfs_err(trans->fs_info,
1666 "metadata reservation failed for delayed dir item deletion, index: %llu, root: %llu, inode: %llu, error: %d",
1667 index, btrfs_root_id(node->root), node->inode_id, ret);
1668 btrfs_release_delayed_item(item);
1669 goto end;
1670 }
1671
1672 mutex_lock(&node->mutex);
1673 ret = __btrfs_add_delayed_item(node, item);
1674 if (unlikely(ret)) {
1675 btrfs_err(trans->fs_info,
1676 "failed to add delayed dir index item, root: %llu, inode: %llu, index: %llu, error: %d",
1677 index, btrfs_root_id(node->root), node->inode_id, ret);
1678 btrfs_delayed_item_release_metadata(dir->root, item);
1679 btrfs_release_delayed_item(item);
1680 }
1681 mutex_unlock(&node->mutex);
1682 end:
1683 btrfs_release_delayed_node(node, &delayed_node_tracker);
1684 return ret;
1685 }
1686
btrfs_inode_delayed_dir_index_count(struct btrfs_inode * inode)1687 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1688 {
1689 struct btrfs_ref_tracker delayed_node_tracker;
1690 struct btrfs_delayed_node *delayed_node;
1691
1692 delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
1693 if (!delayed_node)
1694 return -ENOENT;
1695
1696 /*
1697 * Since we have held i_mutex of this directory, it is impossible that
1698 * a new directory index is added into the delayed node and index_cnt
1699 * is updated now. So we needn't lock the delayed node.
1700 */
1701 if (!delayed_node->index_cnt) {
1702 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1703 return -EINVAL;
1704 }
1705
1706 inode->index_cnt = delayed_node->index_cnt;
1707 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1708 return 0;
1709 }
1710
btrfs_readdir_get_delayed_items(struct btrfs_inode * inode,u64 last_index,struct list_head * ins_list,struct list_head * del_list)1711 bool btrfs_readdir_get_delayed_items(struct btrfs_inode *inode,
1712 u64 last_index,
1713 struct list_head *ins_list,
1714 struct list_head *del_list)
1715 {
1716 struct btrfs_delayed_node *delayed_node;
1717 struct btrfs_delayed_item *item;
1718 struct btrfs_ref_tracker delayed_node_tracker;
1719
1720 delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
1721 if (!delayed_node)
1722 return false;
1723
1724 /*
1725 * We can only do one readdir with delayed items at a time because of
1726 * item->readdir_list.
1727 */
1728 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
1729 btrfs_inode_lock(inode, 0);
1730
1731 mutex_lock(&delayed_node->mutex);
1732 item = __btrfs_first_delayed_insertion_item(delayed_node);
1733 while (item && item->index <= last_index) {
1734 refcount_inc(&item->refs);
1735 list_add_tail(&item->readdir_list, ins_list);
1736 item = __btrfs_next_delayed_item(item);
1737 }
1738
1739 item = __btrfs_first_delayed_deletion_item(delayed_node);
1740 while (item && item->index <= last_index) {
1741 refcount_inc(&item->refs);
1742 list_add_tail(&item->readdir_list, del_list);
1743 item = __btrfs_next_delayed_item(item);
1744 }
1745 mutex_unlock(&delayed_node->mutex);
1746 /*
1747 * This delayed node is still cached in the btrfs inode, so refs
1748 * must be > 1 now, and we needn't check it is going to be freed
1749 * or not.
1750 *
1751 * Besides that, this function is used to read dir, we do not
1752 * insert/delete delayed items in this period. So we also needn't
1753 * requeue or dequeue this delayed node.
1754 */
1755 btrfs_delayed_node_ref_tracker_free(delayed_node, &delayed_node_tracker);
1756 refcount_dec(&delayed_node->refs);
1757
1758 return true;
1759 }
1760
btrfs_readdir_put_delayed_items(struct btrfs_inode * inode,struct list_head * ins_list,struct list_head * del_list)1761 void btrfs_readdir_put_delayed_items(struct btrfs_inode *inode,
1762 struct list_head *ins_list,
1763 struct list_head *del_list)
1764 {
1765 struct btrfs_delayed_item *curr, *next;
1766
1767 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1768 list_del(&curr->readdir_list);
1769 if (refcount_dec_and_test(&curr->refs))
1770 kfree(curr);
1771 }
1772
1773 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1774 list_del(&curr->readdir_list);
1775 if (refcount_dec_and_test(&curr->refs))
1776 kfree(curr);
1777 }
1778
1779 /*
1780 * The VFS is going to do up_read(), so we need to downgrade back to a
1781 * read lock.
1782 */
1783 downgrade_write(&inode->vfs_inode.i_rwsem);
1784 }
1785
btrfs_should_delete_dir_index(const struct list_head * del_list,u64 index)1786 bool btrfs_should_delete_dir_index(const struct list_head *del_list, u64 index)
1787 {
1788 struct btrfs_delayed_item *curr;
1789 bool ret = false;
1790
1791 list_for_each_entry(curr, del_list, readdir_list) {
1792 if (curr->index > index)
1793 break;
1794 if (curr->index == index) {
1795 ret = true;
1796 break;
1797 }
1798 }
1799 return ret;
1800 }
1801
1802 /*
1803 * Read dir info stored in the delayed tree.
1804 */
btrfs_readdir_delayed_dir_index(struct dir_context * ctx,const struct list_head * ins_list)1805 bool btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1806 const struct list_head *ins_list)
1807 {
1808 struct btrfs_dir_item *di;
1809 struct btrfs_delayed_item *curr, *next;
1810 struct btrfs_key location;
1811 char *name;
1812 int name_len;
1813 unsigned char d_type;
1814
1815 /*
1816 * Changing the data of the delayed item is impossible. So
1817 * we needn't lock them. And we have held i_mutex of the
1818 * directory, nobody can delete any directory indexes now.
1819 */
1820 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1821 bool over;
1822
1823 list_del(&curr->readdir_list);
1824
1825 if (curr->index < ctx->pos) {
1826 if (refcount_dec_and_test(&curr->refs))
1827 kfree(curr);
1828 continue;
1829 }
1830
1831 ctx->pos = curr->index;
1832
1833 di = (struct btrfs_dir_item *)curr->data;
1834 name = (char *)(di + 1);
1835 name_len = btrfs_stack_dir_name_len(di);
1836
1837 d_type = fs_ftype_to_dtype(btrfs_dir_flags_to_ftype(di->type));
1838 btrfs_disk_key_to_cpu(&location, &di->location);
1839
1840 over = !dir_emit(ctx, name, name_len, location.objectid, d_type);
1841
1842 if (refcount_dec_and_test(&curr->refs))
1843 kfree(curr);
1844
1845 if (over)
1846 return true;
1847 ctx->pos++;
1848 }
1849 return false;
1850 }
1851
fill_stack_inode_item(struct btrfs_trans_handle * trans,struct btrfs_inode_item * inode_item,struct btrfs_inode * inode)1852 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1853 struct btrfs_inode_item *inode_item,
1854 struct btrfs_inode *inode)
1855 {
1856 struct inode *vfs_inode = &inode->vfs_inode;
1857 u64 flags;
1858
1859 btrfs_set_stack_inode_uid(inode_item, i_uid_read(vfs_inode));
1860 btrfs_set_stack_inode_gid(inode_item, i_gid_read(vfs_inode));
1861 btrfs_set_stack_inode_size(inode_item, inode->disk_i_size);
1862 btrfs_set_stack_inode_mode(inode_item, vfs_inode->i_mode);
1863 btrfs_set_stack_inode_nlink(inode_item, vfs_inode->i_nlink);
1864 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(vfs_inode));
1865 btrfs_set_stack_inode_generation(inode_item, inode->generation);
1866 btrfs_set_stack_inode_sequence(inode_item,
1867 inode_peek_iversion(vfs_inode));
1868 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1869 btrfs_set_stack_inode_rdev(inode_item, vfs_inode->i_rdev);
1870 flags = btrfs_inode_combine_flags(inode->flags, inode->ro_flags);
1871 btrfs_set_stack_inode_flags(inode_item, flags);
1872 btrfs_set_stack_inode_block_group(inode_item, 0);
1873
1874 btrfs_set_stack_timespec_sec(&inode_item->atime,
1875 inode_get_atime_sec(vfs_inode));
1876 btrfs_set_stack_timespec_nsec(&inode_item->atime,
1877 inode_get_atime_nsec(vfs_inode));
1878
1879 btrfs_set_stack_timespec_sec(&inode_item->mtime,
1880 inode_get_mtime_sec(vfs_inode));
1881 btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1882 inode_get_mtime_nsec(vfs_inode));
1883
1884 btrfs_set_stack_timespec_sec(&inode_item->ctime,
1885 inode_get_ctime_sec(vfs_inode));
1886 btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1887 inode_get_ctime_nsec(vfs_inode));
1888
1889 btrfs_set_stack_timespec_sec(&inode_item->otime, inode->i_otime_sec);
1890 btrfs_set_stack_timespec_nsec(&inode_item->otime, inode->i_otime_nsec);
1891 }
1892
btrfs_fill_inode(struct btrfs_inode * inode,u32 * rdev)1893 int btrfs_fill_inode(struct btrfs_inode *inode, u32 *rdev)
1894 {
1895 struct btrfs_delayed_node *delayed_node;
1896 struct btrfs_ref_tracker delayed_node_tracker;
1897 struct btrfs_inode_item *inode_item;
1898 struct inode *vfs_inode = &inode->vfs_inode;
1899
1900 delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
1901 if (!delayed_node)
1902 return -ENOENT;
1903
1904 mutex_lock(&delayed_node->mutex);
1905 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1906 mutex_unlock(&delayed_node->mutex);
1907 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1908 return -ENOENT;
1909 }
1910
1911 inode_item = &delayed_node->inode_item;
1912
1913 i_uid_write(vfs_inode, btrfs_stack_inode_uid(inode_item));
1914 i_gid_write(vfs_inode, btrfs_stack_inode_gid(inode_item));
1915 btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
1916 vfs_inode->i_mode = btrfs_stack_inode_mode(inode_item);
1917 set_nlink(vfs_inode, btrfs_stack_inode_nlink(inode_item));
1918 inode_set_bytes(vfs_inode, btrfs_stack_inode_nbytes(inode_item));
1919 inode->generation = btrfs_stack_inode_generation(inode_item);
1920 inode->last_trans = btrfs_stack_inode_transid(inode_item);
1921
1922 inode_set_iversion_queried(vfs_inode, btrfs_stack_inode_sequence(inode_item));
1923 vfs_inode->i_rdev = 0;
1924 *rdev = btrfs_stack_inode_rdev(inode_item);
1925 btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item),
1926 &inode->flags, &inode->ro_flags);
1927
1928 inode_set_atime(vfs_inode, btrfs_stack_timespec_sec(&inode_item->atime),
1929 btrfs_stack_timespec_nsec(&inode_item->atime));
1930
1931 inode_set_mtime(vfs_inode, btrfs_stack_timespec_sec(&inode_item->mtime),
1932 btrfs_stack_timespec_nsec(&inode_item->mtime));
1933
1934 inode_set_ctime(vfs_inode, btrfs_stack_timespec_sec(&inode_item->ctime),
1935 btrfs_stack_timespec_nsec(&inode_item->ctime));
1936
1937 inode->i_otime_sec = btrfs_stack_timespec_sec(&inode_item->otime);
1938 inode->i_otime_nsec = btrfs_stack_timespec_nsec(&inode_item->otime);
1939
1940 vfs_inode->i_generation = inode->generation;
1941 if (S_ISDIR(vfs_inode->i_mode))
1942 inode->index_cnt = (u64)-1;
1943
1944 mutex_unlock(&delayed_node->mutex);
1945 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1946 return 0;
1947 }
1948
btrfs_delayed_update_inode(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)1949 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1950 struct btrfs_inode *inode)
1951 {
1952 struct btrfs_root *root = inode->root;
1953 struct btrfs_delayed_node *delayed_node;
1954 struct btrfs_ref_tracker delayed_node_tracker;
1955 int ret = 0;
1956
1957 delayed_node = btrfs_get_or_create_delayed_node(inode, &delayed_node_tracker);
1958 if (IS_ERR(delayed_node))
1959 return PTR_ERR(delayed_node);
1960
1961 mutex_lock(&delayed_node->mutex);
1962 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1963 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1964 goto release_node;
1965 }
1966
1967 ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
1968 if (ret)
1969 goto release_node;
1970
1971 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1972 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1973 delayed_node->count++;
1974 atomic_inc(&root->fs_info->delayed_root->items);
1975 release_node:
1976 mutex_unlock(&delayed_node->mutex);
1977 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1978 return ret;
1979 }
1980
btrfs_delayed_delete_inode_ref(struct btrfs_inode * inode)1981 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1982 {
1983 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1984 struct btrfs_delayed_node *delayed_node;
1985 struct btrfs_ref_tracker delayed_node_tracker;
1986
1987 /*
1988 * we don't do delayed inode updates during log recovery because it
1989 * leads to enospc problems. This means we also can't do
1990 * delayed inode refs
1991 */
1992 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1993 return -EAGAIN;
1994
1995 delayed_node = btrfs_get_or_create_delayed_node(inode, &delayed_node_tracker);
1996 if (IS_ERR(delayed_node))
1997 return PTR_ERR(delayed_node);
1998
1999 /*
2000 * We don't reserve space for inode ref deletion is because:
2001 * - We ONLY do async inode ref deletion for the inode who has only
2002 * one link(i_nlink == 1), it means there is only one inode ref.
2003 * And in most case, the inode ref and the inode item are in the
2004 * same leaf, and we will deal with them at the same time.
2005 * Since we are sure we will reserve the space for the inode item,
2006 * it is unnecessary to reserve space for inode ref deletion.
2007 * - If the inode ref and the inode item are not in the same leaf,
2008 * We also needn't worry about enospc problem, because we reserve
2009 * much more space for the inode update than it needs.
2010 * - At the worst, we can steal some space from the global reservation.
2011 * It is very rare.
2012 */
2013 mutex_lock(&delayed_node->mutex);
2014 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
2015 goto release_node;
2016
2017 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
2018 delayed_node->count++;
2019 atomic_inc(&fs_info->delayed_root->items);
2020 release_node:
2021 mutex_unlock(&delayed_node->mutex);
2022 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
2023 return 0;
2024 }
2025
__btrfs_kill_delayed_node(struct btrfs_delayed_node * delayed_node)2026 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
2027 {
2028 struct btrfs_root *root = delayed_node->root;
2029 struct btrfs_fs_info *fs_info = root->fs_info;
2030 struct btrfs_delayed_item *curr_item, *prev_item;
2031
2032 mutex_lock(&delayed_node->mutex);
2033 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
2034 while (curr_item) {
2035 prev_item = curr_item;
2036 curr_item = __btrfs_next_delayed_item(prev_item);
2037 btrfs_release_delayed_item(prev_item);
2038 }
2039
2040 if (delayed_node->index_item_leaves > 0) {
2041 btrfs_delayed_item_release_leaves(delayed_node,
2042 delayed_node->index_item_leaves);
2043 delayed_node->index_item_leaves = 0;
2044 }
2045
2046 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
2047 while (curr_item) {
2048 btrfs_delayed_item_release_metadata(root, curr_item);
2049 prev_item = curr_item;
2050 curr_item = __btrfs_next_delayed_item(prev_item);
2051 btrfs_release_delayed_item(prev_item);
2052 }
2053
2054 btrfs_release_delayed_iref(delayed_node);
2055
2056 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
2057 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
2058 btrfs_release_delayed_inode(delayed_node);
2059 }
2060 mutex_unlock(&delayed_node->mutex);
2061 }
2062
btrfs_kill_delayed_inode_items(struct btrfs_inode * inode)2063 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
2064 {
2065 struct btrfs_delayed_node *delayed_node;
2066 struct btrfs_ref_tracker delayed_node_tracker;
2067
2068 delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
2069 if (!delayed_node)
2070 return;
2071
2072 __btrfs_kill_delayed_node(delayed_node);
2073 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
2074 }
2075
btrfs_kill_all_delayed_nodes(struct btrfs_root * root)2076 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
2077 {
2078 unsigned long index = 0;
2079 struct btrfs_delayed_node *delayed_nodes[8];
2080 struct btrfs_ref_tracker delayed_node_trackers[8];
2081
2082 while (1) {
2083 struct btrfs_delayed_node *node;
2084 int count;
2085
2086 xa_lock(&root->delayed_nodes);
2087 if (xa_empty(&root->delayed_nodes)) {
2088 xa_unlock(&root->delayed_nodes);
2089 return;
2090 }
2091
2092 count = 0;
2093 xa_for_each_start(&root->delayed_nodes, index, node, index) {
2094 /*
2095 * Don't increase refs in case the node is dead and
2096 * about to be removed from the tree in the loop below
2097 */
2098 if (refcount_inc_not_zero(&node->refs)) {
2099 btrfs_delayed_node_ref_tracker_alloc(node,
2100 &delayed_node_trackers[count],
2101 GFP_ATOMIC);
2102 delayed_nodes[count] = node;
2103 count++;
2104 }
2105 if (count >= ARRAY_SIZE(delayed_nodes))
2106 break;
2107 }
2108 xa_unlock(&root->delayed_nodes);
2109 index++;
2110
2111 for (int i = 0; i < count; i++) {
2112 __btrfs_kill_delayed_node(delayed_nodes[i]);
2113 btrfs_release_delayed_node(delayed_nodes[i],
2114 &delayed_node_trackers[i]);
2115 btrfs_delayed_node_ref_tracker_dir_print(delayed_nodes[i]);
2116 }
2117 }
2118 }
2119
btrfs_destroy_delayed_inodes(struct btrfs_fs_info * fs_info)2120 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
2121 {
2122 struct btrfs_delayed_node *curr_node, *prev_node;
2123 struct btrfs_ref_tracker curr_delayed_node_tracker, prev_delayed_node_tracker;
2124
2125 curr_node = btrfs_first_delayed_node(fs_info->delayed_root,
2126 &curr_delayed_node_tracker);
2127 while (curr_node) {
2128 __btrfs_kill_delayed_node(curr_node);
2129
2130 prev_node = curr_node;
2131 prev_delayed_node_tracker = curr_delayed_node_tracker;
2132 curr_node = btrfs_next_delayed_node(curr_node, &curr_delayed_node_tracker);
2133 btrfs_release_delayed_node(prev_node, &prev_delayed_node_tracker);
2134 }
2135 }
2136
btrfs_log_get_delayed_items(struct btrfs_inode * inode,struct list_head * ins_list,struct list_head * del_list)2137 void btrfs_log_get_delayed_items(struct btrfs_inode *inode,
2138 struct list_head *ins_list,
2139 struct list_head *del_list)
2140 {
2141 struct btrfs_delayed_node *node;
2142 struct btrfs_delayed_item *item;
2143 struct btrfs_ref_tracker delayed_node_tracker;
2144
2145 node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
2146 if (!node)
2147 return;
2148
2149 mutex_lock(&node->mutex);
2150 item = __btrfs_first_delayed_insertion_item(node);
2151 while (item) {
2152 /*
2153 * It's possible that the item is already in a log list. This
2154 * can happen in case two tasks are trying to log the same
2155 * directory. For example if we have tasks A and task B:
2156 *
2157 * Task A collected the delayed items into a log list while
2158 * under the inode's log_mutex (at btrfs_log_inode()), but it
2159 * only releases the items after logging the inodes they point
2160 * to (if they are new inodes), which happens after unlocking
2161 * the log mutex;
2162 *
2163 * Task B enters btrfs_log_inode() and acquires the log_mutex
2164 * of the same directory inode, before task B releases the
2165 * delayed items. This can happen for example when logging some
2166 * inode we need to trigger logging of its parent directory, so
2167 * logging two files that have the same parent directory can
2168 * lead to this.
2169 *
2170 * If this happens, just ignore delayed items already in a log
2171 * list. All the tasks logging the directory are under a log
2172 * transaction and whichever finishes first can not sync the log
2173 * before the other completes and leaves the log transaction.
2174 */
2175 if (!item->logged && list_empty(&item->log_list)) {
2176 refcount_inc(&item->refs);
2177 list_add_tail(&item->log_list, ins_list);
2178 }
2179 item = __btrfs_next_delayed_item(item);
2180 }
2181
2182 item = __btrfs_first_delayed_deletion_item(node);
2183 while (item) {
2184 /* It may be non-empty, for the same reason mentioned above. */
2185 if (!item->logged && list_empty(&item->log_list)) {
2186 refcount_inc(&item->refs);
2187 list_add_tail(&item->log_list, del_list);
2188 }
2189 item = __btrfs_next_delayed_item(item);
2190 }
2191 mutex_unlock(&node->mutex);
2192
2193 /*
2194 * We are called during inode logging, which means the inode is in use
2195 * and can not be evicted before we finish logging the inode. So we never
2196 * have the last reference on the delayed inode.
2197 * Also, we don't use btrfs_release_delayed_node() because that would
2198 * requeue the delayed inode (change its order in the list of prepared
2199 * nodes) and we don't want to do such change because we don't create or
2200 * delete delayed items.
2201 */
2202 ASSERT(refcount_read(&node->refs) > 1);
2203 btrfs_delayed_node_ref_tracker_free(node, &delayed_node_tracker);
2204 refcount_dec(&node->refs);
2205 }
2206
btrfs_log_put_delayed_items(struct btrfs_inode * inode,struct list_head * ins_list,struct list_head * del_list)2207 void btrfs_log_put_delayed_items(struct btrfs_inode *inode,
2208 struct list_head *ins_list,
2209 struct list_head *del_list)
2210 {
2211 struct btrfs_delayed_node *node;
2212 struct btrfs_delayed_item *item;
2213 struct btrfs_delayed_item *next;
2214 struct btrfs_ref_tracker delayed_node_tracker;
2215
2216 node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
2217 if (!node)
2218 return;
2219
2220 mutex_lock(&node->mutex);
2221
2222 list_for_each_entry_safe(item, next, ins_list, log_list) {
2223 item->logged = true;
2224 list_del_init(&item->log_list);
2225 if (refcount_dec_and_test(&item->refs))
2226 kfree(item);
2227 }
2228
2229 list_for_each_entry_safe(item, next, del_list, log_list) {
2230 item->logged = true;
2231 list_del_init(&item->log_list);
2232 if (refcount_dec_and_test(&item->refs))
2233 kfree(item);
2234 }
2235
2236 mutex_unlock(&node->mutex);
2237
2238 /*
2239 * We are called during inode logging, which means the inode is in use
2240 * and can not be evicted before we finish logging the inode. So we never
2241 * have the last reference on the delayed inode.
2242 * Also, we don't use btrfs_release_delayed_node() because that would
2243 * requeue the delayed inode (change its order in the list of prepared
2244 * nodes) and we don't want to do such change because we don't create or
2245 * delete delayed items.
2246 */
2247 ASSERT(refcount_read(&node->refs) > 1);
2248 btrfs_delayed_node_ref_tracker_free(node, &delayed_node_tracker);
2249 refcount_dec(&node->refs);
2250 }
2251