xref: /linux/fs/btrfs/delayed-inode.c (revision 3f1c07fc21c68bd3bd2df9d2c9441f6485e934d9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011 Fujitsu.  All rights reserved.
4  * Written by Miao Xie <miaox@cn.fujitsu.com>
5  */
6 
7 #include <linux/slab.h>
8 #include <linux/iversion.h>
9 #include "ctree.h"
10 #include "fs.h"
11 #include "messages.h"
12 #include "misc.h"
13 #include "delayed-inode.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "qgroup.h"
17 #include "locking.h"
18 #include "inode-item.h"
19 #include "space-info.h"
20 #include "accessors.h"
21 #include "file-item.h"
22 
23 #define BTRFS_DELAYED_WRITEBACK		512
24 #define BTRFS_DELAYED_BACKGROUND	128
25 #define BTRFS_DELAYED_BATCH		16
26 
27 static struct kmem_cache *delayed_node_cache;
28 
btrfs_delayed_inode_init(void)29 int __init btrfs_delayed_inode_init(void)
30 {
31 	delayed_node_cache = KMEM_CACHE(btrfs_delayed_node, 0);
32 	if (!delayed_node_cache)
33 		return -ENOMEM;
34 	return 0;
35 }
36 
btrfs_delayed_inode_exit(void)37 void __cold btrfs_delayed_inode_exit(void)
38 {
39 	kmem_cache_destroy(delayed_node_cache);
40 }
41 
btrfs_init_delayed_root(struct btrfs_delayed_root * delayed_root)42 void btrfs_init_delayed_root(struct btrfs_delayed_root *delayed_root)
43 {
44 	atomic_set(&delayed_root->items, 0);
45 	atomic_set(&delayed_root->items_seq, 0);
46 	delayed_root->nodes = 0;
47 	spin_lock_init(&delayed_root->lock);
48 	init_waitqueue_head(&delayed_root->wait);
49 	INIT_LIST_HEAD(&delayed_root->node_list);
50 	INIT_LIST_HEAD(&delayed_root->prepare_list);
51 }
52 
btrfs_init_delayed_node(struct btrfs_delayed_node * delayed_node,struct btrfs_root * root,u64 inode_id)53 static inline void btrfs_init_delayed_node(
54 				struct btrfs_delayed_node *delayed_node,
55 				struct btrfs_root *root, u64 inode_id)
56 {
57 	delayed_node->root = root;
58 	delayed_node->inode_id = inode_id;
59 	refcount_set(&delayed_node->refs, 0);
60 	btrfs_delayed_node_ref_tracker_dir_init(delayed_node);
61 	delayed_node->ins_root = RB_ROOT_CACHED;
62 	delayed_node->del_root = RB_ROOT_CACHED;
63 	mutex_init(&delayed_node->mutex);
64 	INIT_LIST_HEAD(&delayed_node->n_list);
65 	INIT_LIST_HEAD(&delayed_node->p_list);
66 }
67 
btrfs_get_delayed_node(struct btrfs_inode * btrfs_inode,struct btrfs_ref_tracker * tracker)68 static struct btrfs_delayed_node *btrfs_get_delayed_node(
69 		struct btrfs_inode *btrfs_inode,
70 		struct btrfs_ref_tracker *tracker)
71 {
72 	struct btrfs_root *root = btrfs_inode->root;
73 	u64 ino = btrfs_ino(btrfs_inode);
74 	struct btrfs_delayed_node *node;
75 
76 	node = READ_ONCE(btrfs_inode->delayed_node);
77 	if (node) {
78 		refcount_inc(&node->refs);
79 		btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_NOFS);
80 		return node;
81 	}
82 
83 	xa_lock(&root->delayed_nodes);
84 	node = xa_load(&root->delayed_nodes, ino);
85 
86 	if (node) {
87 		if (btrfs_inode->delayed_node) {
88 			refcount_inc(&node->refs);	/* can be accessed */
89 			btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC);
90 			BUG_ON(btrfs_inode->delayed_node != node);
91 			xa_unlock(&root->delayed_nodes);
92 			return node;
93 		}
94 
95 		/*
96 		 * It's possible that we're racing into the middle of removing
97 		 * this node from the xarray.  In this case, the refcount
98 		 * was zero and it should never go back to one.  Just return
99 		 * NULL like it was never in the xarray at all; our release
100 		 * function is in the process of removing it.
101 		 *
102 		 * Some implementations of refcount_inc refuse to bump the
103 		 * refcount once it has hit zero.  If we don't do this dance
104 		 * here, refcount_inc() may decide to just WARN_ONCE() instead
105 		 * of actually bumping the refcount.
106 		 *
107 		 * If this node is properly in the xarray, we want to bump the
108 		 * refcount twice, once for the inode and once for this get
109 		 * operation.
110 		 */
111 		if (refcount_inc_not_zero(&node->refs)) {
112 			refcount_inc(&node->refs);
113 			btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC);
114 			btrfs_delayed_node_ref_tracker_alloc(node, &node->inode_cache_tracker,
115 							     GFP_ATOMIC);
116 			btrfs_inode->delayed_node = node;
117 		} else {
118 			node = NULL;
119 		}
120 
121 		xa_unlock(&root->delayed_nodes);
122 		return node;
123 	}
124 	xa_unlock(&root->delayed_nodes);
125 
126 	return NULL;
127 }
128 
129 /*
130  * Look up an existing delayed node associated with @btrfs_inode or create a new
131  * one and insert it to the delayed nodes of the root.
132  *
133  * Return the delayed node, or error pointer on failure.
134  */
btrfs_get_or_create_delayed_node(struct btrfs_inode * btrfs_inode,struct btrfs_ref_tracker * tracker)135 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
136 		struct btrfs_inode *btrfs_inode,
137 		struct btrfs_ref_tracker *tracker)
138 {
139 	struct btrfs_delayed_node *node;
140 	struct btrfs_root *root = btrfs_inode->root;
141 	u64 ino = btrfs_ino(btrfs_inode);
142 	int ret;
143 	void *ptr;
144 
145 again:
146 	node = btrfs_get_delayed_node(btrfs_inode, tracker);
147 	if (node)
148 		return node;
149 
150 	node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
151 	if (!node)
152 		return ERR_PTR(-ENOMEM);
153 	btrfs_init_delayed_node(node, root, ino);
154 
155 	/* Allocate and reserve the slot, from now it can return a NULL from xa_load(). */
156 	ret = xa_reserve(&root->delayed_nodes, ino, GFP_NOFS);
157 	if (ret == -ENOMEM) {
158 		btrfs_delayed_node_ref_tracker_dir_exit(node);
159 		kmem_cache_free(delayed_node_cache, node);
160 		return ERR_PTR(-ENOMEM);
161 	}
162 	xa_lock(&root->delayed_nodes);
163 	ptr = xa_load(&root->delayed_nodes, ino);
164 	if (ptr) {
165 		/* Somebody inserted it, go back and read it. */
166 		xa_unlock(&root->delayed_nodes);
167 		btrfs_delayed_node_ref_tracker_dir_exit(node);
168 		kmem_cache_free(delayed_node_cache, node);
169 		node = NULL;
170 		goto again;
171 	}
172 	ptr = __xa_store(&root->delayed_nodes, ino, node, GFP_ATOMIC);
173 	ASSERT(xa_err(ptr) != -EINVAL);
174 	ASSERT(xa_err(ptr) != -ENOMEM);
175 	ASSERT(ptr == NULL);
176 
177 	/* Cached in the inode and can be accessed. */
178 	refcount_set(&node->refs, 2);
179 	btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC);
180 	btrfs_delayed_node_ref_tracker_alloc(node, &node->inode_cache_tracker, GFP_ATOMIC);
181 
182 	btrfs_inode->delayed_node = node;
183 	xa_unlock(&root->delayed_nodes);
184 
185 	return node;
186 }
187 
188 /*
189  * Call it when holding delayed_node->mutex
190  *
191  * If mod = 1, add this node into the prepared list.
192  */
btrfs_queue_delayed_node(struct btrfs_delayed_root * root,struct btrfs_delayed_node * node,int mod)193 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
194 				     struct btrfs_delayed_node *node,
195 				     int mod)
196 {
197 	spin_lock(&root->lock);
198 	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
199 		if (!list_empty(&node->p_list))
200 			list_move_tail(&node->p_list, &root->prepare_list);
201 		else if (mod)
202 			list_add_tail(&node->p_list, &root->prepare_list);
203 	} else {
204 		list_add_tail(&node->n_list, &root->node_list);
205 		list_add_tail(&node->p_list, &root->prepare_list);
206 		refcount_inc(&node->refs);	/* inserted into list */
207 		btrfs_delayed_node_ref_tracker_alloc(node, &node->node_list_tracker,
208 						     GFP_ATOMIC);
209 		root->nodes++;
210 		set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
211 	}
212 	spin_unlock(&root->lock);
213 }
214 
215 /* Call it when holding delayed_node->mutex */
btrfs_dequeue_delayed_node(struct btrfs_delayed_root * root,struct btrfs_delayed_node * node)216 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
217 				       struct btrfs_delayed_node *node)
218 {
219 	spin_lock(&root->lock);
220 	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
221 		root->nodes--;
222 		btrfs_delayed_node_ref_tracker_free(node, &node->node_list_tracker);
223 		refcount_dec(&node->refs);	/* not in the list */
224 		list_del_init(&node->n_list);
225 		if (!list_empty(&node->p_list))
226 			list_del_init(&node->p_list);
227 		clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
228 	}
229 	spin_unlock(&root->lock);
230 }
231 
btrfs_first_delayed_node(struct btrfs_delayed_root * delayed_root,struct btrfs_ref_tracker * tracker)232 static struct btrfs_delayed_node *btrfs_first_delayed_node(
233 			struct btrfs_delayed_root *delayed_root,
234 			struct btrfs_ref_tracker *tracker)
235 {
236 	struct btrfs_delayed_node *node;
237 
238 	spin_lock(&delayed_root->lock);
239 	node = list_first_entry_or_null(&delayed_root->node_list,
240 					struct btrfs_delayed_node, n_list);
241 	if (node) {
242 		refcount_inc(&node->refs);
243 		btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC);
244 	}
245 	spin_unlock(&delayed_root->lock);
246 
247 	return node;
248 }
249 
btrfs_next_delayed_node(struct btrfs_delayed_node * node,struct btrfs_ref_tracker * tracker)250 static struct btrfs_delayed_node *btrfs_next_delayed_node(
251 						struct btrfs_delayed_node *node,
252 						struct btrfs_ref_tracker *tracker)
253 {
254 	struct btrfs_delayed_root *delayed_root;
255 	struct list_head *p;
256 	struct btrfs_delayed_node *next = NULL;
257 
258 	delayed_root = node->root->fs_info->delayed_root;
259 	spin_lock(&delayed_root->lock);
260 	if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
261 		/* not in the list */
262 		if (list_empty(&delayed_root->node_list))
263 			goto out;
264 		p = delayed_root->node_list.next;
265 	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
266 		goto out;
267 	else
268 		p = node->n_list.next;
269 
270 	next = list_entry(p, struct btrfs_delayed_node, n_list);
271 	refcount_inc(&next->refs);
272 	btrfs_delayed_node_ref_tracker_alloc(next, tracker, GFP_ATOMIC);
273 out:
274 	spin_unlock(&delayed_root->lock);
275 
276 	return next;
277 }
278 
__btrfs_release_delayed_node(struct btrfs_delayed_node * delayed_node,int mod,struct btrfs_ref_tracker * tracker)279 static void __btrfs_release_delayed_node(
280 				struct btrfs_delayed_node *delayed_node,
281 				int mod, struct btrfs_ref_tracker *tracker)
282 {
283 	struct btrfs_delayed_root *delayed_root;
284 
285 	if (!delayed_node)
286 		return;
287 
288 	delayed_root = delayed_node->root->fs_info->delayed_root;
289 
290 	mutex_lock(&delayed_node->mutex);
291 	if (delayed_node->count)
292 		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
293 	else
294 		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
295 	mutex_unlock(&delayed_node->mutex);
296 
297 	btrfs_delayed_node_ref_tracker_free(delayed_node, tracker);
298 	if (refcount_dec_and_test(&delayed_node->refs)) {
299 		struct btrfs_root *root = delayed_node->root;
300 
301 		xa_erase(&root->delayed_nodes, delayed_node->inode_id);
302 		/*
303 		 * Once our refcount goes to zero, nobody is allowed to bump it
304 		 * back up.  We can delete it now.
305 		 */
306 		ASSERT(refcount_read(&delayed_node->refs) == 0);
307 		btrfs_delayed_node_ref_tracker_dir_exit(delayed_node);
308 		kmem_cache_free(delayed_node_cache, delayed_node);
309 	}
310 }
311 
btrfs_release_delayed_node(struct btrfs_delayed_node * node,struct btrfs_ref_tracker * tracker)312 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node,
313 					      struct btrfs_ref_tracker *tracker)
314 {
315 	__btrfs_release_delayed_node(node, 0, tracker);
316 }
317 
btrfs_first_prepared_delayed_node(struct btrfs_delayed_root * delayed_root,struct btrfs_ref_tracker * tracker)318 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
319 					struct btrfs_delayed_root *delayed_root,
320 					struct btrfs_ref_tracker *tracker)
321 {
322 	struct btrfs_delayed_node *node;
323 
324 	spin_lock(&delayed_root->lock);
325 	node = list_first_entry_or_null(&delayed_root->prepare_list,
326 					struct btrfs_delayed_node, p_list);
327 	if (node) {
328 		list_del_init(&node->p_list);
329 		refcount_inc(&node->refs);
330 		btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC);
331 	}
332 	spin_unlock(&delayed_root->lock);
333 
334 	return node;
335 }
336 
btrfs_release_prepared_delayed_node(struct btrfs_delayed_node * node,struct btrfs_ref_tracker * tracker)337 static inline void btrfs_release_prepared_delayed_node(
338 					struct btrfs_delayed_node *node,
339 					struct btrfs_ref_tracker *tracker)
340 {
341 	__btrfs_release_delayed_node(node, 1, tracker);
342 }
343 
btrfs_alloc_delayed_item(u16 data_len,struct btrfs_delayed_node * node,enum btrfs_delayed_item_type type)344 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u16 data_len,
345 					   struct btrfs_delayed_node *node,
346 					   enum btrfs_delayed_item_type type)
347 {
348 	struct btrfs_delayed_item *item;
349 
350 	item = kmalloc(struct_size(item, data, data_len), GFP_NOFS);
351 	if (item) {
352 		item->data_len = data_len;
353 		item->type = type;
354 		item->bytes_reserved = 0;
355 		item->delayed_node = node;
356 		RB_CLEAR_NODE(&item->rb_node);
357 		INIT_LIST_HEAD(&item->log_list);
358 		item->logged = false;
359 		refcount_set(&item->refs, 1);
360 	}
361 	return item;
362 }
363 
delayed_item_index_cmp(const void * key,const struct rb_node * node)364 static int delayed_item_index_cmp(const void *key, const struct rb_node *node)
365 {
366 	const u64 *index = key;
367 	const struct btrfs_delayed_item *delayed_item = rb_entry(node,
368 						 struct btrfs_delayed_item, rb_node);
369 
370 	if (delayed_item->index < *index)
371 		return 1;
372 	else if (delayed_item->index > *index)
373 		return -1;
374 
375 	return 0;
376 }
377 
378 /*
379  * Look up the delayed item by key.
380  *
381  * @delayed_node: pointer to the delayed node
382  * @index:	  the dir index value to lookup (offset of a dir index key)
383  *
384  * Note: if we don't find the right item, we will return the prev item and
385  * the next item.
386  */
__btrfs_lookup_delayed_item(struct rb_root * root,u64 index)387 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
388 				struct rb_root *root,
389 				u64 index)
390 {
391 	struct rb_node *node;
392 
393 	node = rb_find(&index, root, delayed_item_index_cmp);
394 	return rb_entry_safe(node, struct btrfs_delayed_item, rb_node);
395 }
396 
btrfs_delayed_item_cmp(const struct rb_node * new,const struct rb_node * exist)397 static int btrfs_delayed_item_cmp(const struct rb_node *new,
398 				  const struct rb_node *exist)
399 {
400 	const struct btrfs_delayed_item *new_item =
401 		rb_entry(new, struct btrfs_delayed_item, rb_node);
402 
403 	return delayed_item_index_cmp(&new_item->index, exist);
404 }
405 
__btrfs_add_delayed_item(struct btrfs_delayed_node * delayed_node,struct btrfs_delayed_item * ins)406 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
407 				    struct btrfs_delayed_item *ins)
408 {
409 	struct rb_root_cached *root;
410 	struct rb_node *exist;
411 
412 	if (ins->type == BTRFS_DELAYED_INSERTION_ITEM)
413 		root = &delayed_node->ins_root;
414 	else
415 		root = &delayed_node->del_root;
416 
417 	exist = rb_find_add_cached(&ins->rb_node, root, btrfs_delayed_item_cmp);
418 	if (exist)
419 		return -EEXIST;
420 
421 	if (ins->type == BTRFS_DELAYED_INSERTION_ITEM &&
422 	    ins->index >= delayed_node->index_cnt)
423 		delayed_node->index_cnt = ins->index + 1;
424 
425 	delayed_node->count++;
426 	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
427 	return 0;
428 }
429 
finish_one_item(struct btrfs_delayed_root * delayed_root)430 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
431 {
432 	int seq = atomic_inc_return(&delayed_root->items_seq);
433 
434 	/* atomic_dec_return implies a barrier */
435 	if ((atomic_dec_return(&delayed_root->items) <
436 	    BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
437 		cond_wake_up_nomb(&delayed_root->wait);
438 }
439 
__btrfs_remove_delayed_item(struct btrfs_delayed_item * delayed_item)440 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
441 {
442 	struct btrfs_delayed_node *delayed_node = delayed_item->delayed_node;
443 	struct rb_root_cached *root;
444 	struct btrfs_delayed_root *delayed_root;
445 
446 	/* Not inserted, ignore it. */
447 	if (RB_EMPTY_NODE(&delayed_item->rb_node))
448 		return;
449 
450 	/* If it's in a rbtree, then we need to have delayed node locked. */
451 	lockdep_assert_held(&delayed_node->mutex);
452 
453 	delayed_root = delayed_node->root->fs_info->delayed_root;
454 
455 	if (delayed_item->type == BTRFS_DELAYED_INSERTION_ITEM)
456 		root = &delayed_node->ins_root;
457 	else
458 		root = &delayed_node->del_root;
459 
460 	rb_erase_cached(&delayed_item->rb_node, root);
461 	RB_CLEAR_NODE(&delayed_item->rb_node);
462 	delayed_node->count--;
463 
464 	finish_one_item(delayed_root);
465 }
466 
btrfs_release_delayed_item(struct btrfs_delayed_item * item)467 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
468 {
469 	if (item) {
470 		__btrfs_remove_delayed_item(item);
471 		if (refcount_dec_and_test(&item->refs))
472 			kfree(item);
473 	}
474 }
475 
__btrfs_first_delayed_insertion_item(struct btrfs_delayed_node * delayed_node)476 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
477 					struct btrfs_delayed_node *delayed_node)
478 {
479 	struct rb_node *p = rb_first_cached(&delayed_node->ins_root);
480 
481 	return rb_entry_safe(p, struct btrfs_delayed_item, rb_node);
482 }
483 
__btrfs_first_delayed_deletion_item(struct btrfs_delayed_node * delayed_node)484 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
485 					struct btrfs_delayed_node *delayed_node)
486 {
487 	struct rb_node *p = rb_first_cached(&delayed_node->del_root);
488 
489 	return rb_entry_safe(p, struct btrfs_delayed_item, rb_node);
490 }
491 
__btrfs_next_delayed_item(struct btrfs_delayed_item * item)492 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
493 						struct btrfs_delayed_item *item)
494 {
495 	struct rb_node *p = rb_next(&item->rb_node);
496 
497 	return rb_entry_safe(p, struct btrfs_delayed_item, rb_node);
498 }
499 
btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle * trans,struct btrfs_delayed_item * item)500 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
501 					       struct btrfs_delayed_item *item)
502 {
503 	struct btrfs_block_rsv *src_rsv;
504 	struct btrfs_block_rsv *dst_rsv;
505 	struct btrfs_fs_info *fs_info = trans->fs_info;
506 	u64 num_bytes;
507 	int ret;
508 
509 	if (!trans->bytes_reserved)
510 		return 0;
511 
512 	src_rsv = trans->block_rsv;
513 	dst_rsv = &fs_info->delayed_block_rsv;
514 
515 	num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
516 
517 	/*
518 	 * Here we migrate space rsv from transaction rsv, since have already
519 	 * reserved space when starting a transaction.  So no need to reserve
520 	 * qgroup space here.
521 	 */
522 	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
523 	if (!ret) {
524 		trace_btrfs_space_reservation(fs_info, "delayed_item",
525 					      item->delayed_node->inode_id,
526 					      num_bytes, 1);
527 		/*
528 		 * For insertions we track reserved metadata space by accounting
529 		 * for the number of leaves that will be used, based on the delayed
530 		 * node's curr_index_batch_size and index_item_leaves fields.
531 		 */
532 		if (item->type == BTRFS_DELAYED_DELETION_ITEM)
533 			item->bytes_reserved = num_bytes;
534 	}
535 
536 	return ret;
537 }
538 
btrfs_delayed_item_release_metadata(struct btrfs_root * root,struct btrfs_delayed_item * item)539 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
540 						struct btrfs_delayed_item *item)
541 {
542 	struct btrfs_block_rsv *rsv;
543 	struct btrfs_fs_info *fs_info = root->fs_info;
544 
545 	if (!item->bytes_reserved)
546 		return;
547 
548 	rsv = &fs_info->delayed_block_rsv;
549 	/*
550 	 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
551 	 * to release/reserve qgroup space.
552 	 */
553 	trace_btrfs_space_reservation(fs_info, "delayed_item",
554 				      item->delayed_node->inode_id,
555 				      item->bytes_reserved, 0);
556 	btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
557 }
558 
btrfs_delayed_item_release_leaves(struct btrfs_delayed_node * node,unsigned int num_leaves)559 static void btrfs_delayed_item_release_leaves(struct btrfs_delayed_node *node,
560 					      unsigned int num_leaves)
561 {
562 	struct btrfs_fs_info *fs_info = node->root->fs_info;
563 	const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, num_leaves);
564 
565 	/* There are no space reservations during log replay, bail out. */
566 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
567 		return;
568 
569 	trace_btrfs_space_reservation(fs_info, "delayed_item", node->inode_id,
570 				      bytes, 0);
571 	btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, bytes, NULL);
572 }
573 
btrfs_delayed_inode_reserve_metadata(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_delayed_node * node)574 static int btrfs_delayed_inode_reserve_metadata(
575 					struct btrfs_trans_handle *trans,
576 					struct btrfs_root *root,
577 					struct btrfs_delayed_node *node)
578 {
579 	struct btrfs_fs_info *fs_info = root->fs_info;
580 	struct btrfs_block_rsv *src_rsv;
581 	struct btrfs_block_rsv *dst_rsv;
582 	u64 num_bytes;
583 	int ret;
584 
585 	src_rsv = trans->block_rsv;
586 	dst_rsv = &fs_info->delayed_block_rsv;
587 
588 	num_bytes = btrfs_calc_metadata_size(fs_info, 1);
589 
590 	/*
591 	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
592 	 * which doesn't reserve space for speed.  This is a problem since we
593 	 * still need to reserve space for this update, so try to reserve the
594 	 * space.
595 	 *
596 	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
597 	 * we always reserve enough to update the inode item.
598 	 */
599 	if (!src_rsv || (!trans->bytes_reserved &&
600 			 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
601 		ret = btrfs_qgroup_reserve_meta(root, num_bytes,
602 					  BTRFS_QGROUP_RSV_META_PREALLOC, true);
603 		if (ret < 0)
604 			return ret;
605 		ret = btrfs_block_rsv_add(fs_info, dst_rsv, num_bytes,
606 					  BTRFS_RESERVE_NO_FLUSH);
607 		/* NO_FLUSH could only fail with -ENOSPC */
608 		ASSERT(ret == 0 || ret == -ENOSPC);
609 		if (ret)
610 			btrfs_qgroup_free_meta_prealloc(root, num_bytes);
611 	} else {
612 		ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
613 	}
614 
615 	if (!ret) {
616 		trace_btrfs_space_reservation(fs_info, "delayed_inode",
617 					      node->inode_id, num_bytes, 1);
618 		node->bytes_reserved = num_bytes;
619 	}
620 
621 	return ret;
622 }
623 
btrfs_delayed_inode_release_metadata(struct btrfs_fs_info * fs_info,struct btrfs_delayed_node * node,bool qgroup_free)624 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
625 						struct btrfs_delayed_node *node,
626 						bool qgroup_free)
627 {
628 	struct btrfs_block_rsv *rsv;
629 
630 	if (!node->bytes_reserved)
631 		return;
632 
633 	rsv = &fs_info->delayed_block_rsv;
634 	trace_btrfs_space_reservation(fs_info, "delayed_inode",
635 				      node->inode_id, node->bytes_reserved, 0);
636 	btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
637 	if (qgroup_free)
638 		btrfs_qgroup_free_meta_prealloc(node->root,
639 				node->bytes_reserved);
640 	else
641 		btrfs_qgroup_convert_reserved_meta(node->root,
642 				node->bytes_reserved);
643 	node->bytes_reserved = 0;
644 }
645 
646 /*
647  * Insert a single delayed item or a batch of delayed items, as many as possible
648  * that fit in a leaf. The delayed items (dir index keys) are sorted by their key
649  * in the rbtree, and if there's a gap between two consecutive dir index items,
650  * then it means at some point we had delayed dir indexes to add but they got
651  * removed (by btrfs_delete_delayed_dir_index()) before we attempted to flush them
652  * into the subvolume tree. Dir index keys also have their offsets coming from a
653  * monotonically increasing counter, so we can't get new keys with an offset that
654  * fits within a gap between delayed dir index items.
655  */
btrfs_insert_delayed_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_item * first_item)656 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
657 				     struct btrfs_root *root,
658 				     struct btrfs_path *path,
659 				     struct btrfs_delayed_item *first_item)
660 {
661 	struct btrfs_fs_info *fs_info = root->fs_info;
662 	struct btrfs_delayed_node *node = first_item->delayed_node;
663 	LIST_HEAD(item_list);
664 	struct btrfs_delayed_item *curr;
665 	struct btrfs_delayed_item *next;
666 	const int max_size = BTRFS_LEAF_DATA_SIZE(fs_info);
667 	struct btrfs_item_batch batch;
668 	struct btrfs_key first_key;
669 	const u32 first_data_size = first_item->data_len;
670 	int total_size;
671 	char AUTO_KFREE(ins_data);
672 	int ret;
673 	bool continuous_keys_only = false;
674 
675 	lockdep_assert_held(&node->mutex);
676 
677 	/*
678 	 * During normal operation the delayed index offset is continuously
679 	 * increasing, so we can batch insert all items as there will not be any
680 	 * overlapping keys in the tree.
681 	 *
682 	 * The exception to this is log replay, where we may have interleaved
683 	 * offsets in the tree, so our batch needs to be continuous keys only in
684 	 * order to ensure we do not end up with out of order items in our leaf.
685 	 */
686 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
687 		continuous_keys_only = true;
688 
689 	/*
690 	 * For delayed items to insert, we track reserved metadata bytes based
691 	 * on the number of leaves that we will use.
692 	 * See btrfs_insert_delayed_dir_index() and
693 	 * btrfs_delayed_item_reserve_metadata()).
694 	 */
695 	ASSERT(first_item->bytes_reserved == 0);
696 
697 	list_add_tail(&first_item->tree_list, &item_list);
698 	batch.total_data_size = first_data_size;
699 	batch.nr = 1;
700 	total_size = first_data_size + sizeof(struct btrfs_item);
701 	curr = first_item;
702 
703 	while (true) {
704 		int next_size;
705 
706 		next = __btrfs_next_delayed_item(curr);
707 		if (!next)
708 			break;
709 
710 		/*
711 		 * We cannot allow gaps in the key space if we're doing log
712 		 * replay.
713 		 */
714 		if (continuous_keys_only && (next->index != curr->index + 1))
715 			break;
716 
717 		ASSERT(next->bytes_reserved == 0);
718 
719 		next_size = next->data_len + sizeof(struct btrfs_item);
720 		if (total_size + next_size > max_size)
721 			break;
722 
723 		list_add_tail(&next->tree_list, &item_list);
724 		batch.nr++;
725 		total_size += next_size;
726 		batch.total_data_size += next->data_len;
727 		curr = next;
728 	}
729 
730 	if (batch.nr == 1) {
731 		first_key.objectid = node->inode_id;
732 		first_key.type = BTRFS_DIR_INDEX_KEY;
733 		first_key.offset = first_item->index;
734 		batch.keys = &first_key;
735 		batch.data_sizes = &first_data_size;
736 	} else {
737 		struct btrfs_key *ins_keys;
738 		u32 *ins_sizes;
739 		int i = 0;
740 
741 		ins_data = kmalloc_array(batch.nr,
742 					 sizeof(u32) + sizeof(struct btrfs_key), GFP_NOFS);
743 		if (!ins_data)
744 			return -ENOMEM;
745 		ins_sizes = (u32 *)ins_data;
746 		ins_keys = (struct btrfs_key *)(ins_data + batch.nr * sizeof(u32));
747 		batch.keys = ins_keys;
748 		batch.data_sizes = ins_sizes;
749 		list_for_each_entry(curr, &item_list, tree_list) {
750 			ins_keys[i].objectid = node->inode_id;
751 			ins_keys[i].type = BTRFS_DIR_INDEX_KEY;
752 			ins_keys[i].offset = curr->index;
753 			ins_sizes[i] = curr->data_len;
754 			i++;
755 		}
756 	}
757 
758 	ret = btrfs_insert_empty_items(trans, root, path, &batch);
759 	if (ret)
760 		return ret;
761 
762 	list_for_each_entry(curr, &item_list, tree_list) {
763 		char *data_ptr;
764 
765 		data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
766 		write_extent_buffer(path->nodes[0], &curr->data,
767 				    (unsigned long)data_ptr, curr->data_len);
768 		path->slots[0]++;
769 	}
770 
771 	/*
772 	 * Now release our path before releasing the delayed items and their
773 	 * metadata reservations, so that we don't block other tasks for more
774 	 * time than needed.
775 	 */
776 	btrfs_release_path(path);
777 
778 	ASSERT(node->index_item_leaves > 0);
779 
780 	/*
781 	 * For normal operations we will batch an entire leaf's worth of delayed
782 	 * items, so if there are more items to process we can decrement
783 	 * index_item_leaves by 1 as we inserted 1 leaf's worth of items.
784 	 *
785 	 * However for log replay we may not have inserted an entire leaf's
786 	 * worth of items, we may have not had continuous items, so decrementing
787 	 * here would mess up the index_item_leaves accounting.  For this case
788 	 * only clean up the accounting when there are no items left.
789 	 */
790 	if (next && !continuous_keys_only) {
791 		/*
792 		 * We inserted one batch of items into a leaf a there are more
793 		 * items to flush in a future batch, now release one unit of
794 		 * metadata space from the delayed block reserve, corresponding
795 		 * the leaf we just flushed to.
796 		 */
797 		btrfs_delayed_item_release_leaves(node, 1);
798 		node->index_item_leaves--;
799 	} else if (!next) {
800 		/*
801 		 * There are no more items to insert. We can have a number of
802 		 * reserved leaves > 1 here - this happens when many dir index
803 		 * items are added and then removed before they are flushed (file
804 		 * names with a very short life, never span a transaction). So
805 		 * release all remaining leaves.
806 		 */
807 		btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
808 		node->index_item_leaves = 0;
809 	}
810 
811 	list_for_each_entry_safe(curr, next, &item_list, tree_list) {
812 		list_del(&curr->tree_list);
813 		btrfs_release_delayed_item(curr);
814 	}
815 
816 	return 0;
817 }
818 
btrfs_insert_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_root * root,struct btrfs_delayed_node * node)819 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
820 				      struct btrfs_path *path,
821 				      struct btrfs_root *root,
822 				      struct btrfs_delayed_node *node)
823 {
824 	int ret = 0;
825 
826 	while (ret == 0) {
827 		struct btrfs_delayed_item *curr;
828 
829 		mutex_lock(&node->mutex);
830 		curr = __btrfs_first_delayed_insertion_item(node);
831 		if (!curr) {
832 			mutex_unlock(&node->mutex);
833 			break;
834 		}
835 		ret = btrfs_insert_delayed_item(trans, root, path, curr);
836 		mutex_unlock(&node->mutex);
837 	}
838 
839 	return ret;
840 }
841 
btrfs_batch_delete_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_item * item)842 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
843 				    struct btrfs_root *root,
844 				    struct btrfs_path *path,
845 				    struct btrfs_delayed_item *item)
846 {
847 	const u64 ino = item->delayed_node->inode_id;
848 	struct btrfs_fs_info *fs_info = root->fs_info;
849 	struct btrfs_delayed_item *curr, *next;
850 	struct extent_buffer *leaf = path->nodes[0];
851 	LIST_HEAD(batch_list);
852 	int nitems, slot, last_slot;
853 	int ret;
854 	u64 total_reserved_size = item->bytes_reserved;
855 
856 	ASSERT(leaf != NULL);
857 
858 	slot = path->slots[0];
859 	last_slot = btrfs_header_nritems(leaf) - 1;
860 	/*
861 	 * Our caller always gives us a path pointing to an existing item, so
862 	 * this can not happen.
863 	 */
864 	ASSERT(slot <= last_slot);
865 	if (WARN_ON(slot > last_slot))
866 		return -ENOENT;
867 
868 	nitems = 1;
869 	curr = item;
870 	list_add_tail(&curr->tree_list, &batch_list);
871 
872 	/*
873 	 * Keep checking if the next delayed item matches the next item in the
874 	 * leaf - if so, we can add it to the batch of items to delete from the
875 	 * leaf.
876 	 */
877 	while (slot < last_slot) {
878 		struct btrfs_key key;
879 
880 		next = __btrfs_next_delayed_item(curr);
881 		if (!next)
882 			break;
883 
884 		slot++;
885 		btrfs_item_key_to_cpu(leaf, &key, slot);
886 		if (key.objectid != ino ||
887 		    key.type != BTRFS_DIR_INDEX_KEY ||
888 		    key.offset != next->index)
889 			break;
890 		nitems++;
891 		curr = next;
892 		list_add_tail(&curr->tree_list, &batch_list);
893 		total_reserved_size += curr->bytes_reserved;
894 	}
895 
896 	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
897 	if (ret)
898 		return ret;
899 
900 	/* In case of BTRFS_FS_LOG_RECOVERING items won't have reserved space */
901 	if (total_reserved_size > 0) {
902 		/*
903 		 * Check btrfs_delayed_item_reserve_metadata() to see why we
904 		 * don't need to release/reserve qgroup space.
905 		 */
906 		trace_btrfs_space_reservation(fs_info, "delayed_item", ino,
907 					      total_reserved_size, 0);
908 		btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv,
909 					total_reserved_size, NULL);
910 	}
911 
912 	list_for_each_entry_safe(curr, next, &batch_list, tree_list) {
913 		list_del(&curr->tree_list);
914 		btrfs_release_delayed_item(curr);
915 	}
916 
917 	return 0;
918 }
919 
btrfs_delete_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_root * root,struct btrfs_delayed_node * node)920 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
921 				      struct btrfs_path *path,
922 				      struct btrfs_root *root,
923 				      struct btrfs_delayed_node *node)
924 {
925 	struct btrfs_key key;
926 	int ret = 0;
927 
928 	key.objectid = node->inode_id;
929 	key.type = BTRFS_DIR_INDEX_KEY;
930 
931 	while (ret == 0) {
932 		struct btrfs_delayed_item *item;
933 
934 		mutex_lock(&node->mutex);
935 		item = __btrfs_first_delayed_deletion_item(node);
936 		if (!item) {
937 			mutex_unlock(&node->mutex);
938 			break;
939 		}
940 
941 		key.offset = item->index;
942 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
943 		if (ret > 0) {
944 			/*
945 			 * There's no matching item in the leaf. This means we
946 			 * have already deleted this item in a past run of the
947 			 * delayed items. We ignore errors when running delayed
948 			 * items from an async context, through a work queue job
949 			 * running btrfs_async_run_delayed_root(), and don't
950 			 * release delayed items that failed to complete. This
951 			 * is because we will retry later, and at transaction
952 			 * commit time we always run delayed items and will
953 			 * then deal with errors if they fail to run again.
954 			 *
955 			 * So just release delayed items for which we can't find
956 			 * an item in the tree, and move to the next item.
957 			 */
958 			btrfs_release_path(path);
959 			btrfs_release_delayed_item(item);
960 			ret = 0;
961 		} else if (ret == 0) {
962 			ret = btrfs_batch_delete_items(trans, root, path, item);
963 			btrfs_release_path(path);
964 		}
965 
966 		/*
967 		 * We unlock and relock on each iteration, this is to prevent
968 		 * blocking other tasks for too long while we are being run from
969 		 * the async context (work queue job). Those tasks are typically
970 		 * running system calls like creat/mkdir/rename/unlink/etc which
971 		 * need to add delayed items to this delayed node.
972 		 */
973 		mutex_unlock(&node->mutex);
974 	}
975 
976 	return ret;
977 }
978 
btrfs_release_delayed_inode(struct btrfs_delayed_node * delayed_node)979 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
980 {
981 	struct btrfs_delayed_root *delayed_root;
982 
983 	if (delayed_node &&
984 	    test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
985 		ASSERT(delayed_node->root);
986 		clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
987 		delayed_node->count--;
988 
989 		delayed_root = delayed_node->root->fs_info->delayed_root;
990 		finish_one_item(delayed_root);
991 	}
992 }
993 
btrfs_release_delayed_iref(struct btrfs_delayed_node * delayed_node)994 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
995 {
996 
997 	if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) {
998 		struct btrfs_delayed_root *delayed_root;
999 
1000 		ASSERT(delayed_node->root);
1001 		delayed_node->count--;
1002 
1003 		delayed_root = delayed_node->root->fs_info->delayed_root;
1004 		finish_one_item(delayed_root);
1005 	}
1006 }
1007 
__btrfs_update_delayed_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_node * node)1008 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1009 					struct btrfs_root *root,
1010 					struct btrfs_path *path,
1011 					struct btrfs_delayed_node *node)
1012 {
1013 	struct btrfs_fs_info *fs_info = root->fs_info;
1014 	struct btrfs_key key;
1015 	struct btrfs_inode_item *inode_item;
1016 	struct extent_buffer *leaf;
1017 	int mod;
1018 	int ret;
1019 
1020 	key.objectid = node->inode_id;
1021 	key.type = BTRFS_INODE_ITEM_KEY;
1022 	key.offset = 0;
1023 
1024 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1025 		mod = -1;
1026 	else
1027 		mod = 1;
1028 
1029 	ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1030 	if (ret > 0)
1031 		ret = -ENOENT;
1032 	if (ret < 0) {
1033 		/*
1034 		 * If we fail to update the delayed inode we need to abort the
1035 		 * transaction, because we could leave the inode with the
1036 		 * improper counts behind.
1037 		 */
1038 		if (unlikely(ret != -ENOENT))
1039 			btrfs_abort_transaction(trans, ret);
1040 		goto out;
1041 	}
1042 
1043 	leaf = path->nodes[0];
1044 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
1045 				    struct btrfs_inode_item);
1046 	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1047 			    sizeof(struct btrfs_inode_item));
1048 
1049 	if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1050 		goto out;
1051 
1052 	/*
1053 	 * Now we're going to delete the INODE_REF/EXTREF, which should be the
1054 	 * only one ref left.  Check if the next item is an INODE_REF/EXTREF.
1055 	 *
1056 	 * But if we're the last item already, release and search for the last
1057 	 * INODE_REF/EXTREF.
1058 	 */
1059 	if (path->slots[0] + 1 >= btrfs_header_nritems(leaf)) {
1060 		key.objectid = node->inode_id;
1061 		key.type = BTRFS_INODE_EXTREF_KEY;
1062 		key.offset = (u64)-1;
1063 
1064 		btrfs_release_path(path);
1065 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1066 		if (unlikely(ret < 0)) {
1067 			btrfs_abort_transaction(trans, ret);
1068 			goto err_out;
1069 		}
1070 		ASSERT(ret > 0);
1071 		ASSERT(path->slots[0] > 0);
1072 		ret = 0;
1073 		path->slots[0]--;
1074 		leaf = path->nodes[0];
1075 	} else {
1076 		path->slots[0]++;
1077 	}
1078 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1079 	if (key.objectid != node->inode_id)
1080 		goto out;
1081 	if (key.type != BTRFS_INODE_REF_KEY &&
1082 	    key.type != BTRFS_INODE_EXTREF_KEY)
1083 		goto out;
1084 
1085 	/*
1086 	 * Delayed iref deletion is for the inode who has only one link,
1087 	 * so there is only one iref. The case that several irefs are
1088 	 * in the same item doesn't exist.
1089 	 */
1090 	ret = btrfs_del_item(trans, root, path);
1091 	if (ret < 0)
1092 		btrfs_abort_transaction(trans, ret);
1093 out:
1094 	btrfs_release_delayed_iref(node);
1095 	btrfs_release_path(path);
1096 err_out:
1097 	btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1098 	btrfs_release_delayed_inode(node);
1099 	return ret;
1100 }
1101 
btrfs_update_delayed_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_node * node)1102 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1103 					     struct btrfs_root *root,
1104 					     struct btrfs_path *path,
1105 					     struct btrfs_delayed_node *node)
1106 {
1107 	int ret;
1108 
1109 	mutex_lock(&node->mutex);
1110 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1111 		mutex_unlock(&node->mutex);
1112 		return 0;
1113 	}
1114 
1115 	ret = __btrfs_update_delayed_inode(trans, root, path, node);
1116 	mutex_unlock(&node->mutex);
1117 	return ret;
1118 }
1119 
1120 static inline int
__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_delayed_node * node)1121 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1122 				   struct btrfs_path *path,
1123 				   struct btrfs_delayed_node *node)
1124 {
1125 	int ret;
1126 
1127 	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1128 	if (ret)
1129 		return ret;
1130 
1131 	ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1132 	if (ret)
1133 		return ret;
1134 
1135 	ret = btrfs_record_root_in_trans(trans, node->root);
1136 	if (ret)
1137 		return ret;
1138 	ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1139 	return ret;
1140 }
1141 
1142 /*
1143  * Called when committing the transaction.
1144  * Returns 0 on success.
1145  * Returns < 0 on error and returns with an aborted transaction with any
1146  * outstanding delayed items cleaned up.
1147  */
__btrfs_run_delayed_items(struct btrfs_trans_handle * trans,int nr)1148 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1149 {
1150 	struct btrfs_fs_info *fs_info = trans->fs_info;
1151 	struct btrfs_delayed_root *delayed_root;
1152 	struct btrfs_delayed_node *curr_node, *prev_node;
1153 	struct btrfs_ref_tracker curr_delayed_node_tracker, prev_delayed_node_tracker;
1154 	struct btrfs_path *path;
1155 	struct btrfs_block_rsv *block_rsv;
1156 	int ret = 0;
1157 	bool count = (nr > 0);
1158 
1159 	if (TRANS_ABORTED(trans))
1160 		return -EIO;
1161 
1162 	path = btrfs_alloc_path();
1163 	if (!path)
1164 		return -ENOMEM;
1165 
1166 	block_rsv = trans->block_rsv;
1167 	trans->block_rsv = &fs_info->delayed_block_rsv;
1168 
1169 	delayed_root = fs_info->delayed_root;
1170 
1171 	curr_node = btrfs_first_delayed_node(delayed_root, &curr_delayed_node_tracker);
1172 	while (curr_node && (!count || nr--)) {
1173 		ret = __btrfs_commit_inode_delayed_items(trans, path,
1174 							 curr_node);
1175 		if (unlikely(ret)) {
1176 			btrfs_abort_transaction(trans, ret);
1177 			break;
1178 		}
1179 
1180 		prev_node = curr_node;
1181 		prev_delayed_node_tracker = curr_delayed_node_tracker;
1182 		curr_node = btrfs_next_delayed_node(curr_node, &curr_delayed_node_tracker);
1183 		/*
1184 		 * See the comment below about releasing path before releasing
1185 		 * node. If the commit of delayed items was successful the path
1186 		 * should always be released, but in case of an error, it may
1187 		 * point to locked extent buffers (a leaf at the very least).
1188 		 */
1189 		ASSERT(path->nodes[0] == NULL);
1190 		btrfs_release_delayed_node(prev_node, &prev_delayed_node_tracker);
1191 	}
1192 
1193 	/*
1194 	 * Release the path to avoid a potential deadlock and lockdep splat when
1195 	 * releasing the delayed node, as that requires taking the delayed node's
1196 	 * mutex. If another task starts running delayed items before we take
1197 	 * the mutex, it will first lock the mutex and then it may try to lock
1198 	 * the same btree path (leaf).
1199 	 */
1200 	btrfs_free_path(path);
1201 
1202 	if (curr_node)
1203 		btrfs_release_delayed_node(curr_node, &curr_delayed_node_tracker);
1204 	trans->block_rsv = block_rsv;
1205 
1206 	return ret;
1207 }
1208 
btrfs_run_delayed_items(struct btrfs_trans_handle * trans)1209 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1210 {
1211 	return __btrfs_run_delayed_items(trans, -1);
1212 }
1213 
btrfs_run_delayed_items_nr(struct btrfs_trans_handle * trans,int nr)1214 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1215 {
1216 	return __btrfs_run_delayed_items(trans, nr);
1217 }
1218 
btrfs_commit_inode_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)1219 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1220 				     struct btrfs_inode *inode)
1221 {
1222 	struct btrfs_ref_tracker delayed_node_tracker;
1223 	struct btrfs_delayed_node *delayed_node =
1224 		btrfs_get_delayed_node(inode, &delayed_node_tracker);
1225 	BTRFS_PATH_AUTO_FREE(path);
1226 	struct btrfs_block_rsv *block_rsv;
1227 	int ret;
1228 
1229 	if (!delayed_node)
1230 		return 0;
1231 
1232 	mutex_lock(&delayed_node->mutex);
1233 	if (!delayed_node->count) {
1234 		mutex_unlock(&delayed_node->mutex);
1235 		btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1236 		return 0;
1237 	}
1238 	mutex_unlock(&delayed_node->mutex);
1239 
1240 	path = btrfs_alloc_path();
1241 	if (!path) {
1242 		btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1243 		return -ENOMEM;
1244 	}
1245 
1246 	block_rsv = trans->block_rsv;
1247 	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1248 
1249 	ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1250 
1251 	btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1252 	trans->block_rsv = block_rsv;
1253 
1254 	return ret;
1255 }
1256 
btrfs_commit_inode_delayed_inode(struct btrfs_inode * inode)1257 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1258 {
1259 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1260 	struct btrfs_trans_handle *trans;
1261 	struct btrfs_ref_tracker delayed_node_tracker;
1262 	struct btrfs_delayed_node *delayed_node;
1263 	struct btrfs_path *path;
1264 	struct btrfs_block_rsv *block_rsv;
1265 	int ret;
1266 
1267 	delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
1268 	if (!delayed_node)
1269 		return 0;
1270 
1271 	mutex_lock(&delayed_node->mutex);
1272 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1273 		mutex_unlock(&delayed_node->mutex);
1274 		btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1275 		return 0;
1276 	}
1277 	mutex_unlock(&delayed_node->mutex);
1278 
1279 	trans = btrfs_join_transaction(delayed_node->root);
1280 	if (IS_ERR(trans)) {
1281 		ret = PTR_ERR(trans);
1282 		goto out;
1283 	}
1284 
1285 	path = btrfs_alloc_path();
1286 	if (!path) {
1287 		ret = -ENOMEM;
1288 		goto trans_out;
1289 	}
1290 
1291 	block_rsv = trans->block_rsv;
1292 	trans->block_rsv = &fs_info->delayed_block_rsv;
1293 
1294 	mutex_lock(&delayed_node->mutex);
1295 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1296 		ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1297 						   path, delayed_node);
1298 	else
1299 		ret = 0;
1300 	mutex_unlock(&delayed_node->mutex);
1301 
1302 	btrfs_free_path(path);
1303 	trans->block_rsv = block_rsv;
1304 trans_out:
1305 	btrfs_end_transaction(trans);
1306 	btrfs_btree_balance_dirty(fs_info);
1307 out:
1308 	btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1309 
1310 	return ret;
1311 }
1312 
btrfs_remove_delayed_node(struct btrfs_inode * inode)1313 void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1314 {
1315 	struct btrfs_delayed_node *delayed_node;
1316 
1317 	delayed_node = READ_ONCE(inode->delayed_node);
1318 	if (!delayed_node)
1319 		return;
1320 
1321 	inode->delayed_node = NULL;
1322 
1323 	btrfs_release_delayed_node(delayed_node, &delayed_node->inode_cache_tracker);
1324 }
1325 
1326 struct btrfs_async_delayed_work {
1327 	struct btrfs_delayed_root *delayed_root;
1328 	int nr;
1329 	struct btrfs_work work;
1330 };
1331 
btrfs_async_run_delayed_root(struct btrfs_work * work)1332 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1333 {
1334 	struct btrfs_async_delayed_work *async_work;
1335 	struct btrfs_delayed_root *delayed_root;
1336 	struct btrfs_trans_handle *trans;
1337 	struct btrfs_path *path;
1338 	struct btrfs_delayed_node *delayed_node = NULL;
1339 	struct btrfs_ref_tracker delayed_node_tracker;
1340 	struct btrfs_root *root;
1341 	struct btrfs_block_rsv *block_rsv;
1342 	int total_done = 0;
1343 
1344 	async_work = container_of(work, struct btrfs_async_delayed_work, work);
1345 	delayed_root = async_work->delayed_root;
1346 
1347 	path = btrfs_alloc_path();
1348 	if (!path)
1349 		goto out;
1350 
1351 	do {
1352 		if (atomic_read(&delayed_root->items) <
1353 		    BTRFS_DELAYED_BACKGROUND / 2)
1354 			break;
1355 
1356 		delayed_node = btrfs_first_prepared_delayed_node(delayed_root,
1357 								 &delayed_node_tracker);
1358 		if (!delayed_node)
1359 			break;
1360 
1361 		root = delayed_node->root;
1362 
1363 		trans = btrfs_join_transaction(root);
1364 		if (IS_ERR(trans)) {
1365 			btrfs_release_path(path);
1366 			btrfs_release_prepared_delayed_node(delayed_node,
1367 							    &delayed_node_tracker);
1368 			total_done++;
1369 			continue;
1370 		}
1371 
1372 		block_rsv = trans->block_rsv;
1373 		trans->block_rsv = &root->fs_info->delayed_block_rsv;
1374 
1375 		__btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1376 
1377 		trans->block_rsv = block_rsv;
1378 		btrfs_end_transaction(trans);
1379 		btrfs_btree_balance_dirty_nodelay(root->fs_info);
1380 
1381 		btrfs_release_path(path);
1382 		btrfs_release_prepared_delayed_node(delayed_node,
1383 						    &delayed_node_tracker);
1384 		total_done++;
1385 
1386 	} while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1387 		 || total_done < async_work->nr);
1388 
1389 	btrfs_free_path(path);
1390 out:
1391 	wake_up(&delayed_root->wait);
1392 	kfree(async_work);
1393 }
1394 
1395 
btrfs_wq_run_delayed_node(struct btrfs_delayed_root * delayed_root,struct btrfs_fs_info * fs_info,int nr)1396 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1397 				     struct btrfs_fs_info *fs_info, int nr)
1398 {
1399 	struct btrfs_async_delayed_work *async_work;
1400 
1401 	async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1402 	if (!async_work)
1403 		return -ENOMEM;
1404 
1405 	async_work->delayed_root = delayed_root;
1406 	btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL);
1407 	async_work->nr = nr;
1408 
1409 	btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1410 	return 0;
1411 }
1412 
btrfs_assert_delayed_root_empty(struct btrfs_fs_info * fs_info)1413 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1414 {
1415 	struct btrfs_ref_tracker delayed_node_tracker;
1416 	struct btrfs_delayed_node *node;
1417 
1418 	node = btrfs_first_delayed_node( fs_info->delayed_root, &delayed_node_tracker);
1419 	if (WARN_ON(node)) {
1420 		btrfs_delayed_node_ref_tracker_free(node,
1421 						    &delayed_node_tracker);
1422 		refcount_dec(&node->refs);
1423 	}
1424 }
1425 
could_end_wait(struct btrfs_delayed_root * delayed_root,int seq)1426 static bool could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1427 {
1428 	int val = atomic_read(&delayed_root->items_seq);
1429 
1430 	if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1431 		return true;
1432 
1433 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1434 		return true;
1435 
1436 	return false;
1437 }
1438 
btrfs_balance_delayed_items(struct btrfs_fs_info * fs_info)1439 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1440 {
1441 	struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1442 
1443 	if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1444 		btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1445 		return;
1446 
1447 	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1448 		int seq;
1449 		int ret;
1450 
1451 		seq = atomic_read(&delayed_root->items_seq);
1452 
1453 		ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1454 		if (ret)
1455 			return;
1456 
1457 		wait_event_interruptible(delayed_root->wait,
1458 					 could_end_wait(delayed_root, seq));
1459 		return;
1460 	}
1461 
1462 	btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1463 }
1464 
btrfs_release_dir_index_item_space(struct btrfs_trans_handle * trans)1465 static void btrfs_release_dir_index_item_space(struct btrfs_trans_handle *trans)
1466 {
1467 	struct btrfs_fs_info *fs_info = trans->fs_info;
1468 	const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
1469 
1470 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1471 		return;
1472 
1473 	/*
1474 	 * Adding the new dir index item does not require touching another
1475 	 * leaf, so we can release 1 unit of metadata that was previously
1476 	 * reserved when starting the transaction. This applies only to
1477 	 * the case where we had a transaction start and excludes the
1478 	 * transaction join case (when replaying log trees).
1479 	 */
1480 	trace_btrfs_space_reservation(fs_info, "transaction",
1481 				      trans->transid, bytes, 0);
1482 	btrfs_block_rsv_release(fs_info, trans->block_rsv, bytes, NULL);
1483 	ASSERT(trans->bytes_reserved >= bytes);
1484 	trans->bytes_reserved -= bytes;
1485 }
1486 
1487 /* Will return 0, -ENOMEM or -EEXIST (index number collision, unexpected). */
btrfs_insert_delayed_dir_index(struct btrfs_trans_handle * trans,const char * name,int name_len,struct btrfs_inode * dir,const struct btrfs_disk_key * disk_key,u8 flags,u64 index)1488 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1489 				   const char *name, int name_len,
1490 				   struct btrfs_inode *dir,
1491 				   const struct btrfs_disk_key *disk_key, u8 flags,
1492 				   u64 index)
1493 {
1494 	struct btrfs_fs_info *fs_info = trans->fs_info;
1495 	const unsigned int leaf_data_size = BTRFS_LEAF_DATA_SIZE(fs_info);
1496 	struct btrfs_delayed_node *delayed_node;
1497 	struct btrfs_ref_tracker delayed_node_tracker;
1498 	struct btrfs_delayed_item *delayed_item;
1499 	struct btrfs_dir_item *dir_item;
1500 	bool reserve_leaf_space;
1501 	u32 data_len;
1502 	int ret;
1503 
1504 	delayed_node = btrfs_get_or_create_delayed_node(dir, &delayed_node_tracker);
1505 	if (IS_ERR(delayed_node))
1506 		return PTR_ERR(delayed_node);
1507 
1508 	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len,
1509 						delayed_node,
1510 						BTRFS_DELAYED_INSERTION_ITEM);
1511 	if (!delayed_item) {
1512 		ret = -ENOMEM;
1513 		goto release_node;
1514 	}
1515 
1516 	delayed_item->index = index;
1517 
1518 	dir_item = (struct btrfs_dir_item *)delayed_item->data;
1519 	dir_item->location = *disk_key;
1520 	btrfs_set_stack_dir_transid(dir_item, trans->transid);
1521 	btrfs_set_stack_dir_data_len(dir_item, 0);
1522 	btrfs_set_stack_dir_name_len(dir_item, name_len);
1523 	btrfs_set_stack_dir_flags(dir_item, flags);
1524 	memcpy((char *)(dir_item + 1), name, name_len);
1525 
1526 	data_len = delayed_item->data_len + sizeof(struct btrfs_item);
1527 
1528 	mutex_lock(&delayed_node->mutex);
1529 
1530 	/*
1531 	 * First attempt to insert the delayed item. This is to make the error
1532 	 * handling path simpler in case we fail (-EEXIST). There's no risk of
1533 	 * any other task coming in and running the delayed item before we do
1534 	 * the metadata space reservation below, because we are holding the
1535 	 * delayed node's mutex and that mutex must also be locked before the
1536 	 * node's delayed items can be run.
1537 	 */
1538 	ret = __btrfs_add_delayed_item(delayed_node, delayed_item);
1539 	if (unlikely(ret)) {
1540 		btrfs_err(trans->fs_info,
1541 "error adding delayed dir index item, name: %.*s, index: %llu, root: %llu, dir: %llu, dir->index_cnt: %llu, delayed_node->index_cnt: %llu, error: %d",
1542 			  name_len, name, index, btrfs_root_id(delayed_node->root),
1543 			  delayed_node->inode_id, dir->index_cnt,
1544 			  delayed_node->index_cnt, ret);
1545 		btrfs_release_delayed_item(delayed_item);
1546 		btrfs_release_dir_index_item_space(trans);
1547 		mutex_unlock(&delayed_node->mutex);
1548 		goto release_node;
1549 	}
1550 
1551 	if (delayed_node->index_item_leaves == 0 ||
1552 	    delayed_node->curr_index_batch_size + data_len > leaf_data_size) {
1553 		delayed_node->curr_index_batch_size = data_len;
1554 		reserve_leaf_space = true;
1555 	} else {
1556 		delayed_node->curr_index_batch_size += data_len;
1557 		reserve_leaf_space = false;
1558 	}
1559 
1560 	if (reserve_leaf_space) {
1561 		ret = btrfs_delayed_item_reserve_metadata(trans, delayed_item);
1562 		/*
1563 		 * Space was reserved for a dir index item insertion when we
1564 		 * started the transaction, so getting a failure here should be
1565 		 * impossible.
1566 		 */
1567 		if (WARN_ON(ret)) {
1568 			btrfs_release_delayed_item(delayed_item);
1569 			mutex_unlock(&delayed_node->mutex);
1570 			goto release_node;
1571 		}
1572 
1573 		delayed_node->index_item_leaves++;
1574 	} else {
1575 		btrfs_release_dir_index_item_space(trans);
1576 	}
1577 	mutex_unlock(&delayed_node->mutex);
1578 
1579 release_node:
1580 	btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1581 	return ret;
1582 }
1583 
btrfs_delete_delayed_insertion_item(struct btrfs_delayed_node * node,u64 index)1584 static bool btrfs_delete_delayed_insertion_item(struct btrfs_delayed_node *node,
1585 						u64 index)
1586 {
1587 	struct btrfs_delayed_item *item;
1588 
1589 	mutex_lock(&node->mutex);
1590 	item = __btrfs_lookup_delayed_item(&node->ins_root.rb_root, index);
1591 	if (!item) {
1592 		mutex_unlock(&node->mutex);
1593 		return false;
1594 	}
1595 
1596 	/*
1597 	 * For delayed items to insert, we track reserved metadata bytes based
1598 	 * on the number of leaves that we will use.
1599 	 * See btrfs_insert_delayed_dir_index() and
1600 	 * btrfs_delayed_item_reserve_metadata()).
1601 	 */
1602 	ASSERT(item->bytes_reserved == 0);
1603 	ASSERT(node->index_item_leaves > 0);
1604 
1605 	/*
1606 	 * If there's only one leaf reserved, we can decrement this item from the
1607 	 * current batch, otherwise we can not because we don't know which leaf
1608 	 * it belongs to. With the current limit on delayed items, we rarely
1609 	 * accumulate enough dir index items to fill more than one leaf (even
1610 	 * when using a leaf size of 4K).
1611 	 */
1612 	if (node->index_item_leaves == 1) {
1613 		const u32 data_len = item->data_len + sizeof(struct btrfs_item);
1614 
1615 		ASSERT(node->curr_index_batch_size >= data_len);
1616 		node->curr_index_batch_size -= data_len;
1617 	}
1618 
1619 	btrfs_release_delayed_item(item);
1620 
1621 	/* If we now have no more dir index items, we can release all leaves. */
1622 	if (RB_EMPTY_ROOT(&node->ins_root.rb_root)) {
1623 		btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
1624 		node->index_item_leaves = 0;
1625 	}
1626 
1627 	mutex_unlock(&node->mutex);
1628 	return true;
1629 }
1630 
btrfs_delete_delayed_dir_index(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,u64 index)1631 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1632 				   struct btrfs_inode *dir, u64 index)
1633 {
1634 	struct btrfs_delayed_node *node;
1635 	struct btrfs_ref_tracker delayed_node_tracker;
1636 	struct btrfs_delayed_item *item;
1637 	int ret;
1638 
1639 	node = btrfs_get_or_create_delayed_node(dir, &delayed_node_tracker);
1640 	if (IS_ERR(node))
1641 		return PTR_ERR(node);
1642 
1643 	if (btrfs_delete_delayed_insertion_item(node, index)) {
1644 		ret = 0;
1645 		goto end;
1646 	}
1647 
1648 	item = btrfs_alloc_delayed_item(0, node, BTRFS_DELAYED_DELETION_ITEM);
1649 	if (!item) {
1650 		ret = -ENOMEM;
1651 		goto end;
1652 	}
1653 
1654 	item->index = index;
1655 
1656 	ret = btrfs_delayed_item_reserve_metadata(trans, item);
1657 	/*
1658 	 * we have reserved enough space when we start a new transaction,
1659 	 * so reserving metadata failure is impossible.
1660 	 */
1661 	if (ret < 0) {
1662 		btrfs_err(trans->fs_info,
1663 "metadata reservation failed for delayed dir item deletion, index: %llu, root: %llu, inode: %llu, error: %d",
1664 			  index, btrfs_root_id(node->root), node->inode_id, ret);
1665 		btrfs_release_delayed_item(item);
1666 		goto end;
1667 	}
1668 
1669 	mutex_lock(&node->mutex);
1670 	ret = __btrfs_add_delayed_item(node, item);
1671 	if (unlikely(ret)) {
1672 		btrfs_err(trans->fs_info,
1673 "failed to add delayed dir index item, root: %llu, inode: %llu, index: %llu, error: %d",
1674 			  index, btrfs_root_id(node->root), node->inode_id, ret);
1675 		btrfs_delayed_item_release_metadata(dir->root, item);
1676 		btrfs_release_delayed_item(item);
1677 	}
1678 	mutex_unlock(&node->mutex);
1679 end:
1680 	btrfs_release_delayed_node(node, &delayed_node_tracker);
1681 	return ret;
1682 }
1683 
btrfs_inode_delayed_dir_index_count(struct btrfs_inode * inode)1684 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1685 {
1686 	struct btrfs_ref_tracker delayed_node_tracker;
1687 	struct btrfs_delayed_node *delayed_node;
1688 
1689 	delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
1690 	if (!delayed_node)
1691 		return -ENOENT;
1692 
1693 	/*
1694 	 * Since we have held i_mutex of this directory, it is impossible that
1695 	 * a new directory index is added into the delayed node and index_cnt
1696 	 * is updated now. So we needn't lock the delayed node.
1697 	 */
1698 	if (!delayed_node->index_cnt) {
1699 		btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1700 		return -EINVAL;
1701 	}
1702 
1703 	inode->index_cnt = delayed_node->index_cnt;
1704 	btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1705 	return 0;
1706 }
1707 
btrfs_readdir_get_delayed_items(struct btrfs_inode * inode,u64 last_index,struct list_head * ins_list,struct list_head * del_list)1708 bool btrfs_readdir_get_delayed_items(struct btrfs_inode *inode,
1709 				     u64 last_index,
1710 				     struct list_head *ins_list,
1711 				     struct list_head *del_list)
1712 {
1713 	struct btrfs_delayed_node *delayed_node;
1714 	struct btrfs_delayed_item *item;
1715 	struct btrfs_ref_tracker delayed_node_tracker;
1716 
1717 	delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
1718 	if (!delayed_node)
1719 		return false;
1720 
1721 	/*
1722 	 * We can only do one readdir with delayed items at a time because of
1723 	 * item->readdir_list.
1724 	 */
1725 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
1726 	btrfs_inode_lock(inode, 0);
1727 
1728 	mutex_lock(&delayed_node->mutex);
1729 	item = __btrfs_first_delayed_insertion_item(delayed_node);
1730 	while (item && item->index <= last_index) {
1731 		refcount_inc(&item->refs);
1732 		list_add_tail(&item->readdir_list, ins_list);
1733 		item = __btrfs_next_delayed_item(item);
1734 	}
1735 
1736 	item = __btrfs_first_delayed_deletion_item(delayed_node);
1737 	while (item && item->index <= last_index) {
1738 		refcount_inc(&item->refs);
1739 		list_add_tail(&item->readdir_list, del_list);
1740 		item = __btrfs_next_delayed_item(item);
1741 	}
1742 	mutex_unlock(&delayed_node->mutex);
1743 	/*
1744 	 * This delayed node is still cached in the btrfs inode, so refs
1745 	 * must be > 1 now, and we needn't check it is going to be freed
1746 	 * or not.
1747 	 *
1748 	 * Besides that, this function is used to read dir, we do not
1749 	 * insert/delete delayed items in this period. So we also needn't
1750 	 * requeue or dequeue this delayed node.
1751 	 */
1752 	btrfs_delayed_node_ref_tracker_free(delayed_node, &delayed_node_tracker);
1753 	refcount_dec(&delayed_node->refs);
1754 
1755 	return true;
1756 }
1757 
btrfs_readdir_put_delayed_items(struct btrfs_inode * inode,struct list_head * ins_list,struct list_head * del_list)1758 void btrfs_readdir_put_delayed_items(struct btrfs_inode *inode,
1759 				     struct list_head *ins_list,
1760 				     struct list_head *del_list)
1761 {
1762 	struct btrfs_delayed_item *curr, *next;
1763 
1764 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1765 		list_del(&curr->readdir_list);
1766 		if (refcount_dec_and_test(&curr->refs))
1767 			kfree(curr);
1768 	}
1769 
1770 	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1771 		list_del(&curr->readdir_list);
1772 		if (refcount_dec_and_test(&curr->refs))
1773 			kfree(curr);
1774 	}
1775 
1776 	/*
1777 	 * The VFS is going to do up_read(), so we need to downgrade back to a
1778 	 * read lock.
1779 	 */
1780 	downgrade_write(&inode->vfs_inode.i_rwsem);
1781 }
1782 
btrfs_should_delete_dir_index(const struct list_head * del_list,u64 index)1783 bool btrfs_should_delete_dir_index(const struct list_head *del_list, u64 index)
1784 {
1785 	struct btrfs_delayed_item *curr;
1786 	bool ret = false;
1787 
1788 	list_for_each_entry(curr, del_list, readdir_list) {
1789 		if (curr->index > index)
1790 			break;
1791 		if (curr->index == index) {
1792 			ret = true;
1793 			break;
1794 		}
1795 	}
1796 	return ret;
1797 }
1798 
1799 /*
1800  * Read dir info stored in the delayed tree.
1801  */
btrfs_readdir_delayed_dir_index(struct dir_context * ctx,const struct list_head * ins_list)1802 bool btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1803 				     const struct list_head *ins_list)
1804 {
1805 	struct btrfs_dir_item *di;
1806 	struct btrfs_delayed_item *curr, *next;
1807 	struct btrfs_key location;
1808 	char *name;
1809 	int name_len;
1810 	unsigned char d_type;
1811 
1812 	/*
1813 	 * Changing the data of the delayed item is impossible. So
1814 	 * we needn't lock them. And we have held i_mutex of the
1815 	 * directory, nobody can delete any directory indexes now.
1816 	 */
1817 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1818 		bool over;
1819 
1820 		list_del(&curr->readdir_list);
1821 
1822 		if (curr->index < ctx->pos) {
1823 			if (refcount_dec_and_test(&curr->refs))
1824 				kfree(curr);
1825 			continue;
1826 		}
1827 
1828 		ctx->pos = curr->index;
1829 
1830 		di = (struct btrfs_dir_item *)curr->data;
1831 		name = (char *)(di + 1);
1832 		name_len = btrfs_stack_dir_name_len(di);
1833 
1834 		d_type = fs_ftype_to_dtype(btrfs_dir_flags_to_ftype(di->type));
1835 		btrfs_disk_key_to_cpu(&location, &di->location);
1836 
1837 		over = !dir_emit(ctx, name, name_len, location.objectid, d_type);
1838 
1839 		if (refcount_dec_and_test(&curr->refs))
1840 			kfree(curr);
1841 
1842 		if (over)
1843 			return true;
1844 		ctx->pos++;
1845 	}
1846 	return false;
1847 }
1848 
fill_stack_inode_item(struct btrfs_trans_handle * trans,struct btrfs_inode_item * inode_item,struct btrfs_inode * inode)1849 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1850 				  struct btrfs_inode_item *inode_item,
1851 				  struct btrfs_inode *inode)
1852 {
1853 	struct inode *vfs_inode = &inode->vfs_inode;
1854 	u64 flags;
1855 
1856 	btrfs_set_stack_inode_uid(inode_item, i_uid_read(vfs_inode));
1857 	btrfs_set_stack_inode_gid(inode_item, i_gid_read(vfs_inode));
1858 	btrfs_set_stack_inode_size(inode_item, inode->disk_i_size);
1859 	btrfs_set_stack_inode_mode(inode_item, vfs_inode->i_mode);
1860 	btrfs_set_stack_inode_nlink(inode_item, vfs_inode->i_nlink);
1861 	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(vfs_inode));
1862 	btrfs_set_stack_inode_generation(inode_item, inode->generation);
1863 	btrfs_set_stack_inode_sequence(inode_item,
1864 				       inode_peek_iversion(vfs_inode));
1865 	btrfs_set_stack_inode_transid(inode_item, trans->transid);
1866 	btrfs_set_stack_inode_rdev(inode_item, vfs_inode->i_rdev);
1867 	flags = btrfs_inode_combine_flags(inode->flags, inode->ro_flags);
1868 	btrfs_set_stack_inode_flags(inode_item, flags);
1869 	btrfs_set_stack_inode_block_group(inode_item, 0);
1870 
1871 	btrfs_set_stack_timespec_sec(&inode_item->atime,
1872 				     inode_get_atime_sec(vfs_inode));
1873 	btrfs_set_stack_timespec_nsec(&inode_item->atime,
1874 				      inode_get_atime_nsec(vfs_inode));
1875 
1876 	btrfs_set_stack_timespec_sec(&inode_item->mtime,
1877 				     inode_get_mtime_sec(vfs_inode));
1878 	btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1879 				      inode_get_mtime_nsec(vfs_inode));
1880 
1881 	btrfs_set_stack_timespec_sec(&inode_item->ctime,
1882 				     inode_get_ctime_sec(vfs_inode));
1883 	btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1884 				      inode_get_ctime_nsec(vfs_inode));
1885 
1886 	btrfs_set_stack_timespec_sec(&inode_item->otime, inode->i_otime_sec);
1887 	btrfs_set_stack_timespec_nsec(&inode_item->otime, inode->i_otime_nsec);
1888 }
1889 
btrfs_fill_inode(struct btrfs_inode * inode,u32 * rdev)1890 int btrfs_fill_inode(struct btrfs_inode *inode, u32 *rdev)
1891 {
1892 	struct btrfs_delayed_node *delayed_node;
1893 	struct btrfs_ref_tracker delayed_node_tracker;
1894 	struct btrfs_inode_item *inode_item;
1895 	struct inode *vfs_inode = &inode->vfs_inode;
1896 
1897 	delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
1898 	if (!delayed_node)
1899 		return -ENOENT;
1900 
1901 	mutex_lock(&delayed_node->mutex);
1902 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1903 		mutex_unlock(&delayed_node->mutex);
1904 		btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1905 		return -ENOENT;
1906 	}
1907 
1908 	inode_item = &delayed_node->inode_item;
1909 
1910 	i_uid_write(vfs_inode, btrfs_stack_inode_uid(inode_item));
1911 	i_gid_write(vfs_inode, btrfs_stack_inode_gid(inode_item));
1912 	btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
1913 	vfs_inode->i_mode = btrfs_stack_inode_mode(inode_item);
1914 	set_nlink(vfs_inode, btrfs_stack_inode_nlink(inode_item));
1915 	inode_set_bytes(vfs_inode, btrfs_stack_inode_nbytes(inode_item));
1916 	inode->generation = btrfs_stack_inode_generation(inode_item);
1917 	inode->last_trans = btrfs_stack_inode_transid(inode_item);
1918 
1919 	inode_set_iversion_queried(vfs_inode, btrfs_stack_inode_sequence(inode_item));
1920 	vfs_inode->i_rdev = 0;
1921 	*rdev = btrfs_stack_inode_rdev(inode_item);
1922 	btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item),
1923 				&inode->flags, &inode->ro_flags);
1924 
1925 	inode_set_atime(vfs_inode, btrfs_stack_timespec_sec(&inode_item->atime),
1926 			btrfs_stack_timespec_nsec(&inode_item->atime));
1927 
1928 	inode_set_mtime(vfs_inode, btrfs_stack_timespec_sec(&inode_item->mtime),
1929 			btrfs_stack_timespec_nsec(&inode_item->mtime));
1930 
1931 	inode_set_ctime(vfs_inode, btrfs_stack_timespec_sec(&inode_item->ctime),
1932 			btrfs_stack_timespec_nsec(&inode_item->ctime));
1933 
1934 	inode->i_otime_sec = btrfs_stack_timespec_sec(&inode_item->otime);
1935 	inode->i_otime_nsec = btrfs_stack_timespec_nsec(&inode_item->otime);
1936 
1937 	vfs_inode->i_generation = inode->generation;
1938 	if (S_ISDIR(vfs_inode->i_mode))
1939 		inode->index_cnt = (u64)-1;
1940 
1941 	mutex_unlock(&delayed_node->mutex);
1942 	btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1943 	return 0;
1944 }
1945 
btrfs_delayed_update_inode(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)1946 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1947 			       struct btrfs_inode *inode)
1948 {
1949 	struct btrfs_root *root = inode->root;
1950 	struct btrfs_delayed_node *delayed_node;
1951 	struct btrfs_ref_tracker delayed_node_tracker;
1952 	int ret = 0;
1953 
1954 	delayed_node = btrfs_get_or_create_delayed_node(inode, &delayed_node_tracker);
1955 	if (IS_ERR(delayed_node))
1956 		return PTR_ERR(delayed_node);
1957 
1958 	mutex_lock(&delayed_node->mutex);
1959 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1960 		fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1961 		goto release_node;
1962 	}
1963 
1964 	ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
1965 	if (ret)
1966 		goto release_node;
1967 
1968 	fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1969 	set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1970 	delayed_node->count++;
1971 	atomic_inc(&root->fs_info->delayed_root->items);
1972 release_node:
1973 	mutex_unlock(&delayed_node->mutex);
1974 	btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1975 	return ret;
1976 }
1977 
btrfs_delayed_delete_inode_ref(struct btrfs_inode * inode)1978 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1979 {
1980 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1981 	struct btrfs_delayed_node *delayed_node;
1982 	struct btrfs_ref_tracker delayed_node_tracker;
1983 
1984 	/*
1985 	 * we don't do delayed inode updates during log recovery because it
1986 	 * leads to enospc problems.  This means we also can't do
1987 	 * delayed inode refs
1988 	 */
1989 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1990 		return -EAGAIN;
1991 
1992 	delayed_node = btrfs_get_or_create_delayed_node(inode, &delayed_node_tracker);
1993 	if (IS_ERR(delayed_node))
1994 		return PTR_ERR(delayed_node);
1995 
1996 	/*
1997 	 * We don't reserve space for inode ref deletion is because:
1998 	 * - We ONLY do async inode ref deletion for the inode who has only
1999 	 *   one link(i_nlink == 1), it means there is only one inode ref.
2000 	 *   And in most case, the inode ref and the inode item are in the
2001 	 *   same leaf, and we will deal with them at the same time.
2002 	 *   Since we are sure we will reserve the space for the inode item,
2003 	 *   it is unnecessary to reserve space for inode ref deletion.
2004 	 * - If the inode ref and the inode item are not in the same leaf,
2005 	 *   We also needn't worry about enospc problem, because we reserve
2006 	 *   much more space for the inode update than it needs.
2007 	 * - At the worst, we can steal some space from the global reservation.
2008 	 *   It is very rare.
2009 	 */
2010 	mutex_lock(&delayed_node->mutex);
2011 	if (!test_and_set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) {
2012 		delayed_node->count++;
2013 		atomic_inc(&fs_info->delayed_root->items);
2014 	}
2015 	mutex_unlock(&delayed_node->mutex);
2016 	btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
2017 	return 0;
2018 }
2019 
__btrfs_kill_delayed_node(struct btrfs_delayed_node * delayed_node)2020 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
2021 {
2022 	struct btrfs_root *root = delayed_node->root;
2023 	struct btrfs_fs_info *fs_info = root->fs_info;
2024 	struct btrfs_delayed_item *curr_item, *prev_item;
2025 
2026 	mutex_lock(&delayed_node->mutex);
2027 	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
2028 	while (curr_item) {
2029 		prev_item = curr_item;
2030 		curr_item = __btrfs_next_delayed_item(prev_item);
2031 		btrfs_release_delayed_item(prev_item);
2032 	}
2033 
2034 	if (delayed_node->index_item_leaves > 0) {
2035 		btrfs_delayed_item_release_leaves(delayed_node,
2036 					  delayed_node->index_item_leaves);
2037 		delayed_node->index_item_leaves = 0;
2038 	}
2039 
2040 	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
2041 	while (curr_item) {
2042 		btrfs_delayed_item_release_metadata(root, curr_item);
2043 		prev_item = curr_item;
2044 		curr_item = __btrfs_next_delayed_item(prev_item);
2045 		btrfs_release_delayed_item(prev_item);
2046 	}
2047 
2048 	btrfs_release_delayed_iref(delayed_node);
2049 
2050 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
2051 		btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
2052 		btrfs_release_delayed_inode(delayed_node);
2053 	}
2054 	mutex_unlock(&delayed_node->mutex);
2055 }
2056 
btrfs_kill_delayed_inode_items(struct btrfs_inode * inode)2057 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
2058 {
2059 	struct btrfs_delayed_node *delayed_node;
2060 	struct btrfs_ref_tracker delayed_node_tracker;
2061 
2062 	delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
2063 	if (!delayed_node)
2064 		return;
2065 
2066 	__btrfs_kill_delayed_node(delayed_node);
2067 	btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
2068 }
2069 
btrfs_kill_all_delayed_nodes(struct btrfs_root * root)2070 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
2071 {
2072 	unsigned long index = 0;
2073 	struct btrfs_delayed_node *delayed_nodes[8];
2074 	struct btrfs_ref_tracker delayed_node_trackers[8];
2075 
2076 	while (1) {
2077 		struct btrfs_delayed_node *node;
2078 		int count;
2079 
2080 		xa_lock(&root->delayed_nodes);
2081 		if (xa_empty(&root->delayed_nodes)) {
2082 			xa_unlock(&root->delayed_nodes);
2083 			return;
2084 		}
2085 
2086 		count = 0;
2087 		xa_for_each_start(&root->delayed_nodes, index, node, index) {
2088 			/*
2089 			 * Don't increase refs in case the node is dead and
2090 			 * about to be removed from the tree in the loop below
2091 			 */
2092 			if (refcount_inc_not_zero(&node->refs)) {
2093 				btrfs_delayed_node_ref_tracker_alloc(node,
2094 						     &delayed_node_trackers[count],
2095 						     GFP_ATOMIC);
2096 				delayed_nodes[count] = node;
2097 				count++;
2098 			}
2099 			if (count >= ARRAY_SIZE(delayed_nodes))
2100 				break;
2101 		}
2102 		xa_unlock(&root->delayed_nodes);
2103 		index++;
2104 
2105 		for (int i = 0; i < count; i++) {
2106 			__btrfs_kill_delayed_node(delayed_nodes[i]);
2107 			btrfs_delayed_node_ref_tracker_dir_print(delayed_nodes[i]);
2108 			btrfs_release_delayed_node(delayed_nodes[i],
2109 						   &delayed_node_trackers[i]);
2110 		}
2111 	}
2112 }
2113 
btrfs_destroy_delayed_inodes(struct btrfs_fs_info * fs_info)2114 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
2115 {
2116 	struct btrfs_delayed_node *curr_node, *prev_node;
2117 	struct btrfs_ref_tracker curr_delayed_node_tracker, prev_delayed_node_tracker;
2118 
2119 	curr_node = btrfs_first_delayed_node(fs_info->delayed_root,
2120 					     &curr_delayed_node_tracker);
2121 	while (curr_node) {
2122 		__btrfs_kill_delayed_node(curr_node);
2123 
2124 		prev_node = curr_node;
2125 		prev_delayed_node_tracker = curr_delayed_node_tracker;
2126 		curr_node = btrfs_next_delayed_node(curr_node, &curr_delayed_node_tracker);
2127 		btrfs_release_delayed_node(prev_node, &prev_delayed_node_tracker);
2128 	}
2129 }
2130 
btrfs_log_get_delayed_items(struct btrfs_inode * inode,struct list_head * ins_list,struct list_head * del_list)2131 void btrfs_log_get_delayed_items(struct btrfs_inode *inode,
2132 				 struct list_head *ins_list,
2133 				 struct list_head *del_list)
2134 {
2135 	struct btrfs_delayed_node *node;
2136 	struct btrfs_delayed_item *item;
2137 	struct btrfs_ref_tracker delayed_node_tracker;
2138 
2139 	node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
2140 	if (!node)
2141 		return;
2142 
2143 	mutex_lock(&node->mutex);
2144 	item = __btrfs_first_delayed_insertion_item(node);
2145 	while (item) {
2146 		/*
2147 		 * It's possible that the item is already in a log list. This
2148 		 * can happen in case two tasks are trying to log the same
2149 		 * directory. For example if we have tasks A and task B:
2150 		 *
2151 		 * Task A collected the delayed items into a log list while
2152 		 * under the inode's log_mutex (at btrfs_log_inode()), but it
2153 		 * only releases the items after logging the inodes they point
2154 		 * to (if they are new inodes), which happens after unlocking
2155 		 * the log mutex;
2156 		 *
2157 		 * Task B enters btrfs_log_inode() and acquires the log_mutex
2158 		 * of the same directory inode, before task B releases the
2159 		 * delayed items. This can happen for example when logging some
2160 		 * inode we need to trigger logging of its parent directory, so
2161 		 * logging two files that have the same parent directory can
2162 		 * lead to this.
2163 		 *
2164 		 * If this happens, just ignore delayed items already in a log
2165 		 * list. All the tasks logging the directory are under a log
2166 		 * transaction and whichever finishes first can not sync the log
2167 		 * before the other completes and leaves the log transaction.
2168 		 */
2169 		if (!item->logged && list_empty(&item->log_list)) {
2170 			refcount_inc(&item->refs);
2171 			list_add_tail(&item->log_list, ins_list);
2172 		}
2173 		item = __btrfs_next_delayed_item(item);
2174 	}
2175 
2176 	item = __btrfs_first_delayed_deletion_item(node);
2177 	while (item) {
2178 		/* It may be non-empty, for the same reason mentioned above. */
2179 		if (!item->logged && list_empty(&item->log_list)) {
2180 			refcount_inc(&item->refs);
2181 			list_add_tail(&item->log_list, del_list);
2182 		}
2183 		item = __btrfs_next_delayed_item(item);
2184 	}
2185 	mutex_unlock(&node->mutex);
2186 
2187 	/*
2188 	 * We are called during inode logging, which means the inode is in use
2189 	 * and can not be evicted before we finish logging the inode. So we never
2190 	 * have the last reference on the delayed inode.
2191 	 * Also, we don't use btrfs_release_delayed_node() because that would
2192 	 * requeue the delayed inode (change its order in the list of prepared
2193 	 * nodes) and we don't want to do such change because we don't create or
2194 	 * delete delayed items.
2195 	 */
2196 	ASSERT(refcount_read(&node->refs) > 1);
2197 	btrfs_delayed_node_ref_tracker_free(node, &delayed_node_tracker);
2198 	refcount_dec(&node->refs);
2199 }
2200 
btrfs_log_put_delayed_items(struct btrfs_inode * inode,struct list_head * ins_list,struct list_head * del_list)2201 void btrfs_log_put_delayed_items(struct btrfs_inode *inode,
2202 				 struct list_head *ins_list,
2203 				 struct list_head *del_list)
2204 {
2205 	struct btrfs_delayed_node *node;
2206 	struct btrfs_delayed_item *item;
2207 	struct btrfs_delayed_item *next;
2208 	struct btrfs_ref_tracker delayed_node_tracker;
2209 
2210 	node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
2211 	if (!node)
2212 		return;
2213 
2214 	mutex_lock(&node->mutex);
2215 
2216 	list_for_each_entry_safe(item, next, ins_list, log_list) {
2217 		item->logged = true;
2218 		list_del_init(&item->log_list);
2219 		if (refcount_dec_and_test(&item->refs))
2220 			kfree(item);
2221 	}
2222 
2223 	list_for_each_entry_safe(item, next, del_list, log_list) {
2224 		item->logged = true;
2225 		list_del_init(&item->log_list);
2226 		if (refcount_dec_and_test(&item->refs))
2227 			kfree(item);
2228 	}
2229 
2230 	mutex_unlock(&node->mutex);
2231 
2232 	/*
2233 	 * We are called during inode logging, which means the inode is in use
2234 	 * and can not be evicted before we finish logging the inode. So we never
2235 	 * have the last reference on the delayed inode.
2236 	 * Also, we don't use btrfs_release_delayed_node() because that would
2237 	 * requeue the delayed inode (change its order in the list of prepared
2238 	 * nodes) and we don't want to do such change because we don't create or
2239 	 * delete delayed items.
2240 	 */
2241 	ASSERT(refcount_read(&node->refs) > 1);
2242 	btrfs_delayed_node_ref_tracker_free(node, &delayed_node_tracker);
2243 	refcount_dec(&node->refs);
2244 }
2245