1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/blkdev.h> 8 #include <linux/radix-tree.h> 9 #include <linux/writeback.h> 10 #include <linux/workqueue.h> 11 #include <linux/kthread.h> 12 #include <linux/slab.h> 13 #include <linux/migrate.h> 14 #include <linux/ratelimit.h> 15 #include <linux/uuid.h> 16 #include <linux/semaphore.h> 17 #include <linux/error-injection.h> 18 #include <linux/crc32c.h> 19 #include <linux/sched/mm.h> 20 #include <linux/unaligned.h> 21 #include <crypto/hash.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "bio.h" 27 #include "print-tree.h" 28 #include "locking.h" 29 #include "tree-log.h" 30 #include "free-space-cache.h" 31 #include "free-space-tree.h" 32 #include "dev-replace.h" 33 #include "raid56.h" 34 #include "sysfs.h" 35 #include "qgroup.h" 36 #include "compression.h" 37 #include "tree-checker.h" 38 #include "ref-verify.h" 39 #include "block-group.h" 40 #include "discard.h" 41 #include "space-info.h" 42 #include "zoned.h" 43 #include "subpage.h" 44 #include "fs.h" 45 #include "accessors.h" 46 #include "extent-tree.h" 47 #include "root-tree.h" 48 #include "defrag.h" 49 #include "uuid-tree.h" 50 #include "relocation.h" 51 #include "scrub.h" 52 #include "super.h" 53 #include "delayed-inode.h" 54 55 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 56 BTRFS_HEADER_FLAG_RELOC |\ 57 BTRFS_SUPER_FLAG_ERROR |\ 58 BTRFS_SUPER_FLAG_SEEDING |\ 59 BTRFS_SUPER_FLAG_METADUMP |\ 60 BTRFS_SUPER_FLAG_METADUMP_V2) 61 62 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 63 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 64 65 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info) 66 { 67 if (fs_info->csum_shash) 68 crypto_free_shash(fs_info->csum_shash); 69 } 70 71 /* 72 * Compute the csum of a btree block and store the result to provided buffer. 73 */ 74 static void csum_tree_block(struct extent_buffer *buf, u8 *result) 75 { 76 struct btrfs_fs_info *fs_info = buf->fs_info; 77 int num_pages; 78 u32 first_page_part; 79 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 80 char *kaddr; 81 int i; 82 83 shash->tfm = fs_info->csum_shash; 84 crypto_shash_init(shash); 85 86 if (buf->addr) { 87 /* Pages are contiguous, handle them as a big one. */ 88 kaddr = buf->addr; 89 first_page_part = fs_info->nodesize; 90 num_pages = 1; 91 } else { 92 kaddr = folio_address(buf->folios[0]); 93 first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize); 94 num_pages = num_extent_pages(buf); 95 } 96 97 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE, 98 first_page_part - BTRFS_CSUM_SIZE); 99 100 /* 101 * Multiple single-page folios case would reach here. 102 * 103 * nodesize <= PAGE_SIZE and large folio all handled by above 104 * crypto_shash_update() already. 105 */ 106 for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) { 107 kaddr = folio_address(buf->folios[i]); 108 crypto_shash_update(shash, kaddr, PAGE_SIZE); 109 } 110 memset(result, 0, BTRFS_CSUM_SIZE); 111 crypto_shash_final(shash, result); 112 } 113 114 /* 115 * we can't consider a given block up to date unless the transid of the 116 * block matches the transid in the parent node's pointer. This is how we 117 * detect blocks that either didn't get written at all or got written 118 * in the wrong place. 119 */ 120 int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, bool atomic) 121 { 122 if (!extent_buffer_uptodate(eb)) 123 return 0; 124 125 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 126 return 1; 127 128 if (atomic) 129 return -EAGAIN; 130 131 if (!extent_buffer_uptodate(eb) || 132 btrfs_header_generation(eb) != parent_transid) { 133 btrfs_err_rl(eb->fs_info, 134 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", 135 eb->start, eb->read_mirror, 136 parent_transid, btrfs_header_generation(eb)); 137 clear_extent_buffer_uptodate(eb); 138 return 0; 139 } 140 return 1; 141 } 142 143 static bool btrfs_supported_super_csum(u16 csum_type) 144 { 145 switch (csum_type) { 146 case BTRFS_CSUM_TYPE_CRC32: 147 case BTRFS_CSUM_TYPE_XXHASH: 148 case BTRFS_CSUM_TYPE_SHA256: 149 case BTRFS_CSUM_TYPE_BLAKE2: 150 return true; 151 default: 152 return false; 153 } 154 } 155 156 /* 157 * Return 0 if the superblock checksum type matches the checksum value of that 158 * algorithm. Pass the raw disk superblock data. 159 */ 160 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 161 const struct btrfs_super_block *disk_sb) 162 { 163 char result[BTRFS_CSUM_SIZE]; 164 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 165 166 shash->tfm = fs_info->csum_shash; 167 168 /* 169 * The super_block structure does not span the whole 170 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is 171 * filled with zeros and is included in the checksum. 172 */ 173 crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE, 174 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result); 175 176 if (memcmp(disk_sb->csum, result, fs_info->csum_size)) 177 return 1; 178 179 return 0; 180 } 181 182 static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, 183 int mirror_num) 184 { 185 struct btrfs_fs_info *fs_info = eb->fs_info; 186 const u32 step = min(fs_info->nodesize, PAGE_SIZE); 187 const u32 nr_steps = eb->len / step; 188 phys_addr_t paddrs[BTRFS_MAX_BLOCKSIZE / PAGE_SIZE]; 189 int ret = 0; 190 191 if (sb_rdonly(fs_info->sb)) 192 return -EROFS; 193 194 for (int i = 0; i < num_extent_pages(eb); i++) { 195 struct folio *folio = eb->folios[i]; 196 197 /* No large folio support yet. */ 198 ASSERT(folio_order(folio) == 0); 199 ASSERT(i < nr_steps); 200 201 /* 202 * For nodesize < page size, there is just one paddr, with some 203 * offset inside the page. 204 * 205 * For nodesize >= page size, it's one or more paddrs, and eb->start 206 * must be aligned to page boundary. 207 */ 208 paddrs[i] = page_to_phys(&folio->page) + offset_in_page(eb->start); 209 } 210 211 ret = btrfs_repair_io_failure(fs_info, 0, eb->start, eb->len, eb->start, 212 paddrs, step, mirror_num); 213 return ret; 214 } 215 216 /* 217 * helper to read a given tree block, doing retries as required when 218 * the checksums don't match and we have alternate mirrors to try. 219 * 220 * @check: expected tree parentness check, see the comments of the 221 * structure for details. 222 */ 223 int btrfs_read_extent_buffer(struct extent_buffer *eb, 224 const struct btrfs_tree_parent_check *check) 225 { 226 struct btrfs_fs_info *fs_info = eb->fs_info; 227 int failed = 0; 228 int ret; 229 int num_copies = 0; 230 int mirror_num = 0; 231 int failed_mirror = 0; 232 233 ASSERT(check); 234 235 while (1) { 236 ret = read_extent_buffer_pages(eb, mirror_num, check); 237 if (!ret) 238 break; 239 240 num_copies = btrfs_num_copies(fs_info, 241 eb->start, eb->len); 242 if (num_copies == 1) 243 break; 244 245 if (!failed_mirror) { 246 failed = 1; 247 failed_mirror = eb->read_mirror; 248 } 249 250 mirror_num++; 251 if (mirror_num == failed_mirror) 252 mirror_num++; 253 254 if (mirror_num > num_copies) 255 break; 256 } 257 258 if (failed && !ret && failed_mirror) 259 btrfs_repair_eb_io_failure(eb, failed_mirror); 260 261 return ret; 262 } 263 264 /* 265 * Checksum a dirty tree block before IO. 266 */ 267 int btree_csum_one_bio(struct btrfs_bio *bbio) 268 { 269 struct extent_buffer *eb = bbio->private; 270 struct btrfs_fs_info *fs_info = eb->fs_info; 271 u64 found_start = btrfs_header_bytenr(eb); 272 u64 last_trans; 273 u8 result[BTRFS_CSUM_SIZE]; 274 int ret; 275 276 /* Btree blocks are always contiguous on disk. */ 277 if (WARN_ON_ONCE(bbio->file_offset != eb->start)) 278 return -EIO; 279 if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len)) 280 return -EIO; 281 282 /* 283 * If an extent_buffer is marked as EXTENT_BUFFER_ZONED_ZEROOUT, don't 284 * checksum it but zero-out its content. This is done to preserve 285 * ordering of I/O without unnecessarily writing out data. 286 */ 287 if (test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags)) { 288 memzero_extent_buffer(eb, 0, eb->len); 289 return 0; 290 } 291 292 if (WARN_ON_ONCE(found_start != eb->start)) 293 return -EIO; 294 if (WARN_ON(!btrfs_meta_folio_test_uptodate(eb->folios[0], eb))) 295 return -EIO; 296 297 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid, 298 offsetof(struct btrfs_header, fsid), 299 BTRFS_FSID_SIZE) == 0); 300 csum_tree_block(eb, result); 301 302 if (btrfs_header_level(eb)) 303 ret = btrfs_check_node(eb); 304 else 305 ret = btrfs_check_leaf(eb); 306 307 if (ret < 0) 308 goto error; 309 310 /* 311 * Also check the generation, the eb reached here must be newer than 312 * last committed. Or something seriously wrong happened. 313 */ 314 last_trans = btrfs_get_last_trans_committed(fs_info); 315 if (unlikely(btrfs_header_generation(eb) <= last_trans)) { 316 ret = -EUCLEAN; 317 btrfs_err(fs_info, 318 "block=%llu bad generation, have %llu expect > %llu", 319 eb->start, btrfs_header_generation(eb), last_trans); 320 goto error; 321 } 322 write_extent_buffer(eb, result, 0, fs_info->csum_size); 323 return 0; 324 325 error: 326 btrfs_print_tree(eb, 0); 327 btrfs_err(fs_info, "block=%llu write time tree block corruption detected", 328 eb->start); 329 /* 330 * Be noisy if this is an extent buffer from a log tree. We don't abort 331 * a transaction in case there's a bad log tree extent buffer, we just 332 * fallback to a transaction commit. Still we want to know when there is 333 * a bad log tree extent buffer, as that may signal a bug somewhere. 334 */ 335 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) || 336 btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID); 337 return ret; 338 } 339 340 static bool check_tree_block_fsid(struct extent_buffer *eb) 341 { 342 struct btrfs_fs_info *fs_info = eb->fs_info; 343 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 344 u8 fsid[BTRFS_FSID_SIZE]; 345 346 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid), 347 BTRFS_FSID_SIZE); 348 349 /* 350 * alloc_fsid_devices() copies the fsid into fs_devices::metadata_uuid. 351 * This is then overwritten by metadata_uuid if it is present in the 352 * device_list_add(). The same true for a seed device as well. So use of 353 * fs_devices::metadata_uuid is appropriate here. 354 */ 355 if (memcmp(fsid, fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0) 356 return false; 357 358 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) 359 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE)) 360 return false; 361 362 return true; 363 } 364 365 /* Do basic extent buffer checks at read time */ 366 int btrfs_validate_extent_buffer(struct extent_buffer *eb, 367 const struct btrfs_tree_parent_check *check) 368 { 369 struct btrfs_fs_info *fs_info = eb->fs_info; 370 u64 found_start; 371 const u32 csum_size = fs_info->csum_size; 372 u8 found_level; 373 u8 result[BTRFS_CSUM_SIZE]; 374 const u8 *header_csum; 375 int ret = 0; 376 const bool ignore_csum = btrfs_test_opt(fs_info, IGNOREMETACSUMS); 377 378 ASSERT(check); 379 380 found_start = btrfs_header_bytenr(eb); 381 if (unlikely(found_start != eb->start)) { 382 btrfs_err_rl(fs_info, 383 "bad tree block start, mirror %u want %llu have %llu", 384 eb->read_mirror, eb->start, found_start); 385 ret = -EIO; 386 goto out; 387 } 388 if (unlikely(check_tree_block_fsid(eb))) { 389 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u", 390 eb->start, eb->read_mirror); 391 ret = -EIO; 392 goto out; 393 } 394 found_level = btrfs_header_level(eb); 395 if (unlikely(found_level >= BTRFS_MAX_LEVEL)) { 396 btrfs_err(fs_info, 397 "bad tree block level, mirror %u level %d on logical %llu", 398 eb->read_mirror, btrfs_header_level(eb), eb->start); 399 ret = -EIO; 400 goto out; 401 } 402 403 csum_tree_block(eb, result); 404 header_csum = folio_address(eb->folios[0]) + 405 get_eb_offset_in_folio(eb, offsetof(struct btrfs_header, csum)); 406 407 if (memcmp(result, header_csum, csum_size) != 0) { 408 btrfs_warn_rl(fs_info, 409 "checksum verify failed on logical %llu mirror %u wanted " BTRFS_CSUM_FMT " found " BTRFS_CSUM_FMT " level %d%s", 410 eb->start, eb->read_mirror, 411 BTRFS_CSUM_FMT_VALUE(csum_size, header_csum), 412 BTRFS_CSUM_FMT_VALUE(csum_size, result), 413 btrfs_header_level(eb), 414 ignore_csum ? ", ignored" : ""); 415 if (unlikely(!ignore_csum)) { 416 ret = -EUCLEAN; 417 goto out; 418 } 419 } 420 421 if (unlikely(found_level != check->level)) { 422 btrfs_err(fs_info, 423 "level verify failed on logical %llu mirror %u wanted %u found %u", 424 eb->start, eb->read_mirror, check->level, found_level); 425 ret = -EIO; 426 goto out; 427 } 428 if (unlikely(check->transid && 429 btrfs_header_generation(eb) != check->transid)) { 430 btrfs_err_rl(eb->fs_info, 431 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", 432 eb->start, eb->read_mirror, check->transid, 433 btrfs_header_generation(eb)); 434 ret = -EIO; 435 goto out; 436 } 437 if (check->has_first_key) { 438 const struct btrfs_key *expect_key = &check->first_key; 439 struct btrfs_key found_key; 440 441 if (found_level) 442 btrfs_node_key_to_cpu(eb, &found_key, 0); 443 else 444 btrfs_item_key_to_cpu(eb, &found_key, 0); 445 if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) { 446 btrfs_err(fs_info, 447 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 448 eb->start, check->transid, 449 expect_key->objectid, 450 expect_key->type, expect_key->offset, 451 found_key.objectid, found_key.type, 452 found_key.offset); 453 ret = -EUCLEAN; 454 goto out; 455 } 456 } 457 if (check->owner_root) { 458 ret = btrfs_check_eb_owner(eb, check->owner_root); 459 if (ret < 0) 460 goto out; 461 } 462 463 /* If this is a leaf block and it is corrupt, just return -EIO. */ 464 if (found_level == 0 && btrfs_check_leaf(eb)) 465 ret = -EIO; 466 467 if (found_level > 0 && btrfs_check_node(eb)) 468 ret = -EIO; 469 470 if (ret) 471 btrfs_err(fs_info, 472 "read time tree block corruption detected on logical %llu mirror %u", 473 eb->start, eb->read_mirror); 474 out: 475 return ret; 476 } 477 478 #ifdef CONFIG_MIGRATION 479 static int btree_migrate_folio(struct address_space *mapping, 480 struct folio *dst, struct folio *src, enum migrate_mode mode) 481 { 482 /* 483 * we can't safely write a btree page from here, 484 * we haven't done the locking hook 485 */ 486 if (folio_test_dirty(src)) 487 return -EAGAIN; 488 /* 489 * Buffers may be managed in a filesystem specific way. 490 * We must have no buffers or drop them. 491 */ 492 if (folio_get_private(src) && 493 !filemap_release_folio(src, GFP_KERNEL)) 494 return -EAGAIN; 495 return migrate_folio(mapping, dst, src, mode); 496 } 497 #else 498 #define btree_migrate_folio NULL 499 #endif 500 501 static int btree_writepages(struct address_space *mapping, 502 struct writeback_control *wbc) 503 { 504 int ret; 505 506 if (wbc->sync_mode == WB_SYNC_NONE) { 507 struct btrfs_fs_info *fs_info; 508 509 if (wbc->for_kupdate) 510 return 0; 511 512 fs_info = inode_to_fs_info(mapping->host); 513 /* this is a bit racy, but that's ok */ 514 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 515 BTRFS_DIRTY_METADATA_THRESH, 516 fs_info->dirty_metadata_batch); 517 if (ret < 0) 518 return 0; 519 } 520 return btree_write_cache_pages(mapping, wbc); 521 } 522 523 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags) 524 { 525 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 526 return false; 527 528 return try_release_extent_buffer(folio); 529 } 530 531 static void btree_invalidate_folio(struct folio *folio, size_t offset, 532 size_t length) 533 { 534 struct extent_io_tree *tree; 535 536 tree = &folio_to_inode(folio)->io_tree; 537 extent_invalidate_folio(tree, folio, offset); 538 btree_release_folio(folio, GFP_NOFS); 539 if (folio_get_private(folio)) { 540 btrfs_warn(folio_to_fs_info(folio), 541 "folio private not zero on folio %llu", 542 (unsigned long long)folio_pos(folio)); 543 folio_detach_private(folio); 544 } 545 } 546 547 #ifdef DEBUG 548 static bool btree_dirty_folio(struct address_space *mapping, 549 struct folio *folio) 550 { 551 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host); 552 struct btrfs_subpage_info *spi = fs_info->subpage_info; 553 struct btrfs_subpage *subpage; 554 struct extent_buffer *eb; 555 int cur_bit = 0; 556 u64 page_start = folio_pos(folio); 557 558 if (fs_info->sectorsize == PAGE_SIZE) { 559 eb = folio_get_private(folio); 560 BUG_ON(!eb); 561 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 562 BUG_ON(!atomic_read(&eb->refs)); 563 btrfs_assert_tree_write_locked(eb); 564 return filemap_dirty_folio(mapping, folio); 565 } 566 567 ASSERT(spi); 568 subpage = folio_get_private(folio); 569 570 for (cur_bit = spi->dirty_offset; 571 cur_bit < spi->dirty_offset + spi->bitmap_nr_bits; 572 cur_bit++) { 573 unsigned long flags; 574 u64 cur; 575 576 spin_lock_irqsave(&subpage->lock, flags); 577 if (!test_bit(cur_bit, subpage->bitmaps)) { 578 spin_unlock_irqrestore(&subpage->lock, flags); 579 continue; 580 } 581 spin_unlock_irqrestore(&subpage->lock, flags); 582 cur = page_start + cur_bit * fs_info->sectorsize; 583 584 eb = find_extent_buffer(fs_info, cur); 585 ASSERT(eb); 586 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 587 ASSERT(atomic_read(&eb->refs)); 588 btrfs_assert_tree_write_locked(eb); 589 free_extent_buffer(eb); 590 591 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits) - 1; 592 } 593 return filemap_dirty_folio(mapping, folio); 594 } 595 #else 596 #define btree_dirty_folio filemap_dirty_folio 597 #endif 598 599 static const struct address_space_operations btree_aops = { 600 .writepages = btree_writepages, 601 .release_folio = btree_release_folio, 602 .invalidate_folio = btree_invalidate_folio, 603 .migrate_folio = btree_migrate_folio, 604 .dirty_folio = btree_dirty_folio, 605 }; 606 607 struct extent_buffer *btrfs_find_create_tree_block( 608 struct btrfs_fs_info *fs_info, 609 u64 bytenr, u64 owner_root, 610 int level) 611 { 612 if (btrfs_is_testing(fs_info)) 613 return alloc_test_extent_buffer(fs_info, bytenr); 614 return alloc_extent_buffer(fs_info, bytenr, owner_root, level); 615 } 616 617 /* 618 * Read tree block at logical address @bytenr and do variant basic but critical 619 * verification. 620 * 621 * @check: expected tree parentness check, see comments of the 622 * structure for details. 623 */ 624 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 625 struct btrfs_tree_parent_check *check) 626 { 627 struct extent_buffer *buf = NULL; 628 int ret; 629 630 ASSERT(check); 631 632 buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root, 633 check->level); 634 if (IS_ERR(buf)) 635 return buf; 636 637 ret = btrfs_read_extent_buffer(buf, check); 638 if (ret) { 639 free_extent_buffer_stale(buf); 640 return ERR_PTR(ret); 641 } 642 return buf; 643 644 } 645 646 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 647 u64 objectid, gfp_t flags) 648 { 649 struct btrfs_root *root; 650 651 root = kzalloc(sizeof(*root), flags); 652 if (!root) 653 return NULL; 654 655 root->fs_info = fs_info; 656 root->root_key.objectid = objectid; 657 RB_CLEAR_NODE(&root->rb_node); 658 659 xa_init(&root->inodes); 660 xa_init(&root->delayed_nodes); 661 662 btrfs_init_root_block_rsv(root); 663 664 INIT_LIST_HEAD(&root->dirty_list); 665 INIT_LIST_HEAD(&root->root_list); 666 INIT_LIST_HEAD(&root->delalloc_inodes); 667 INIT_LIST_HEAD(&root->delalloc_root); 668 INIT_LIST_HEAD(&root->ordered_extents); 669 INIT_LIST_HEAD(&root->ordered_root); 670 INIT_LIST_HEAD(&root->reloc_dirty_list); 671 spin_lock_init(&root->delalloc_lock); 672 spin_lock_init(&root->ordered_extent_lock); 673 spin_lock_init(&root->accounting_lock); 674 spin_lock_init(&root->qgroup_meta_rsv_lock); 675 mutex_init(&root->objectid_mutex); 676 mutex_init(&root->log_mutex); 677 mutex_init(&root->ordered_extent_mutex); 678 mutex_init(&root->delalloc_mutex); 679 init_waitqueue_head(&root->qgroup_flush_wait); 680 init_waitqueue_head(&root->log_writer_wait); 681 init_waitqueue_head(&root->log_commit_wait[0]); 682 init_waitqueue_head(&root->log_commit_wait[1]); 683 INIT_LIST_HEAD(&root->log_ctxs[0]); 684 INIT_LIST_HEAD(&root->log_ctxs[1]); 685 atomic_set(&root->log_commit[0], 0); 686 atomic_set(&root->log_commit[1], 0); 687 atomic_set(&root->log_writers, 0); 688 atomic_set(&root->log_batch, 0); 689 refcount_set(&root->refs, 1); 690 atomic_set(&root->snapshot_force_cow, 0); 691 atomic_set(&root->nr_swapfiles, 0); 692 root->log_transid_committed = -1; 693 if (!btrfs_is_testing(fs_info)) { 694 btrfs_extent_io_tree_init(fs_info, &root->dirty_log_pages, 695 IO_TREE_ROOT_DIRTY_LOG_PAGES); 696 btrfs_extent_io_tree_init(fs_info, &root->log_csum_range, 697 IO_TREE_LOG_CSUM_RANGE); 698 } 699 700 spin_lock_init(&root->root_item_lock); 701 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks); 702 #ifdef CONFIG_BTRFS_DEBUG 703 INIT_LIST_HEAD(&root->leak_list); 704 spin_lock(&fs_info->fs_roots_radix_lock); 705 list_add_tail(&root->leak_list, &fs_info->allocated_roots); 706 spin_unlock(&fs_info->fs_roots_radix_lock); 707 #endif 708 709 return root; 710 } 711 712 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 713 /* Should only be used by the testing infrastructure */ 714 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 715 { 716 struct btrfs_root *root; 717 718 if (!fs_info) 719 return ERR_PTR(-EINVAL); 720 721 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL); 722 if (!root) 723 return ERR_PTR(-ENOMEM); 724 725 /* We don't use the stripesize in selftest, set it as sectorsize */ 726 root->alloc_bytenr = 0; 727 728 return root; 729 } 730 #endif 731 732 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node) 733 { 734 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node); 735 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node); 736 737 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key); 738 } 739 740 static int global_root_key_cmp(const void *k, const struct rb_node *node) 741 { 742 const struct btrfs_key *key = k; 743 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node); 744 745 return btrfs_comp_cpu_keys(key, &root->root_key); 746 } 747 748 int btrfs_global_root_insert(struct btrfs_root *root) 749 { 750 struct btrfs_fs_info *fs_info = root->fs_info; 751 struct rb_node *tmp; 752 int ret = 0; 753 754 write_lock(&fs_info->global_root_lock); 755 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp); 756 write_unlock(&fs_info->global_root_lock); 757 758 if (tmp) { 759 ret = -EEXIST; 760 btrfs_warn(fs_info, "global root %llu %llu already exists", 761 btrfs_root_id(root), root->root_key.offset); 762 } 763 return ret; 764 } 765 766 void btrfs_global_root_delete(struct btrfs_root *root) 767 { 768 struct btrfs_fs_info *fs_info = root->fs_info; 769 770 write_lock(&fs_info->global_root_lock); 771 rb_erase(&root->rb_node, &fs_info->global_root_tree); 772 write_unlock(&fs_info->global_root_lock); 773 } 774 775 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info, 776 struct btrfs_key *key) 777 { 778 struct rb_node *node; 779 struct btrfs_root *root = NULL; 780 781 read_lock(&fs_info->global_root_lock); 782 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp); 783 if (node) 784 root = container_of(node, struct btrfs_root, rb_node); 785 read_unlock(&fs_info->global_root_lock); 786 787 return root; 788 } 789 790 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr) 791 { 792 struct btrfs_block_group *block_group; 793 u64 ret; 794 795 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 796 return 0; 797 798 if (bytenr) 799 block_group = btrfs_lookup_block_group(fs_info, bytenr); 800 else 801 block_group = btrfs_lookup_first_block_group(fs_info, bytenr); 802 ASSERT(block_group); 803 if (!block_group) 804 return 0; 805 ret = block_group->global_root_id; 806 btrfs_put_block_group(block_group); 807 808 return ret; 809 } 810 811 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr) 812 { 813 struct btrfs_key key = { 814 .objectid = BTRFS_CSUM_TREE_OBJECTID, 815 .type = BTRFS_ROOT_ITEM_KEY, 816 .offset = btrfs_global_root_id(fs_info, bytenr), 817 }; 818 819 return btrfs_global_root(fs_info, &key); 820 } 821 822 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr) 823 { 824 struct btrfs_key key = { 825 .objectid = BTRFS_EXTENT_TREE_OBJECTID, 826 .type = BTRFS_ROOT_ITEM_KEY, 827 .offset = btrfs_global_root_id(fs_info, bytenr), 828 }; 829 830 return btrfs_global_root(fs_info, &key); 831 } 832 833 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 834 u64 objectid) 835 { 836 struct btrfs_fs_info *fs_info = trans->fs_info; 837 struct extent_buffer *leaf; 838 struct btrfs_root *tree_root = fs_info->tree_root; 839 struct btrfs_root *root; 840 struct btrfs_key key; 841 unsigned int nofs_flag; 842 int ret = 0; 843 844 /* 845 * We're holding a transaction handle, so use a NOFS memory allocation 846 * context to avoid deadlock if reclaim happens. 847 */ 848 nofs_flag = memalloc_nofs_save(); 849 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL); 850 memalloc_nofs_restore(nofs_flag); 851 if (!root) 852 return ERR_PTR(-ENOMEM); 853 854 root->root_key.objectid = objectid; 855 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 856 root->root_key.offset = 0; 857 858 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 859 0, BTRFS_NESTING_NORMAL); 860 if (IS_ERR(leaf)) { 861 ret = PTR_ERR(leaf); 862 leaf = NULL; 863 goto fail; 864 } 865 866 root->node = leaf; 867 btrfs_mark_buffer_dirty(trans, leaf); 868 869 root->commit_root = btrfs_root_node(root); 870 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 871 872 btrfs_set_root_flags(&root->root_item, 0); 873 btrfs_set_root_limit(&root->root_item, 0); 874 btrfs_set_root_bytenr(&root->root_item, leaf->start); 875 btrfs_set_root_generation(&root->root_item, trans->transid); 876 btrfs_set_root_level(&root->root_item, 0); 877 btrfs_set_root_refs(&root->root_item, 1); 878 btrfs_set_root_used(&root->root_item, leaf->len); 879 btrfs_set_root_last_snapshot(&root->root_item, 0); 880 btrfs_set_root_dirid(&root->root_item, 0); 881 if (btrfs_is_fstree(objectid)) 882 generate_random_guid(root->root_item.uuid); 883 else 884 export_guid(root->root_item.uuid, &guid_null); 885 btrfs_set_root_drop_level(&root->root_item, 0); 886 887 btrfs_tree_unlock(leaf); 888 889 key.objectid = objectid; 890 key.type = BTRFS_ROOT_ITEM_KEY; 891 key.offset = 0; 892 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 893 if (ret) 894 goto fail; 895 896 return root; 897 898 fail: 899 btrfs_put_root(root); 900 901 return ERR_PTR(ret); 902 } 903 904 static struct btrfs_root *alloc_log_tree(struct btrfs_fs_info *fs_info) 905 { 906 struct btrfs_root *root; 907 908 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS); 909 if (!root) 910 return ERR_PTR(-ENOMEM); 911 912 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 913 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 914 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 915 916 return root; 917 } 918 919 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans, 920 struct btrfs_root *root) 921 { 922 struct extent_buffer *leaf; 923 924 /* 925 * DON'T set SHAREABLE bit for log trees. 926 * 927 * Log trees are not exposed to user space thus can't be snapshotted, 928 * and they go away before a real commit is actually done. 929 * 930 * They do store pointers to file data extents, and those reference 931 * counts still get updated (along with back refs to the log tree). 932 */ 933 934 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 935 NULL, 0, 0, 0, 0, BTRFS_NESTING_NORMAL); 936 if (IS_ERR(leaf)) 937 return PTR_ERR(leaf); 938 939 root->node = leaf; 940 941 btrfs_mark_buffer_dirty(trans, root->node); 942 btrfs_tree_unlock(root->node); 943 944 return 0; 945 } 946 947 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 948 struct btrfs_fs_info *fs_info) 949 { 950 struct btrfs_root *log_root; 951 952 log_root = alloc_log_tree(fs_info); 953 if (IS_ERR(log_root)) 954 return PTR_ERR(log_root); 955 956 if (!btrfs_is_zoned(fs_info)) { 957 int ret = btrfs_alloc_log_tree_node(trans, log_root); 958 959 if (ret) { 960 btrfs_put_root(log_root); 961 return ret; 962 } 963 } 964 965 WARN_ON(fs_info->log_root_tree); 966 fs_info->log_root_tree = log_root; 967 return 0; 968 } 969 970 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 971 struct btrfs_root *root) 972 { 973 struct btrfs_fs_info *fs_info = root->fs_info; 974 struct btrfs_root *log_root; 975 struct btrfs_inode_item *inode_item; 976 int ret; 977 978 log_root = alloc_log_tree(fs_info); 979 if (IS_ERR(log_root)) 980 return PTR_ERR(log_root); 981 982 ret = btrfs_alloc_log_tree_node(trans, log_root); 983 if (ret) { 984 btrfs_put_root(log_root); 985 return ret; 986 } 987 988 btrfs_set_root_last_trans(log_root, trans->transid); 989 log_root->root_key.offset = btrfs_root_id(root); 990 991 inode_item = &log_root->root_item.inode; 992 btrfs_set_stack_inode_generation(inode_item, 1); 993 btrfs_set_stack_inode_size(inode_item, 3); 994 btrfs_set_stack_inode_nlink(inode_item, 1); 995 btrfs_set_stack_inode_nbytes(inode_item, 996 fs_info->nodesize); 997 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 998 999 btrfs_set_root_node(&log_root->root_item, log_root->node); 1000 1001 WARN_ON(root->log_root); 1002 root->log_root = log_root; 1003 btrfs_set_root_log_transid(root, 0); 1004 root->log_transid_committed = -1; 1005 btrfs_set_root_last_log_commit(root, 0); 1006 return 0; 1007 } 1008 1009 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root, 1010 struct btrfs_path *path, 1011 const struct btrfs_key *key) 1012 { 1013 struct btrfs_root *root; 1014 struct btrfs_tree_parent_check check = { 0 }; 1015 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1016 u64 generation; 1017 int ret; 1018 int level; 1019 1020 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS); 1021 if (!root) 1022 return ERR_PTR(-ENOMEM); 1023 1024 ret = btrfs_find_root(tree_root, key, path, 1025 &root->root_item, &root->root_key); 1026 if (ret) { 1027 if (ret > 0) 1028 ret = -ENOENT; 1029 goto fail; 1030 } 1031 1032 generation = btrfs_root_generation(&root->root_item); 1033 level = btrfs_root_level(&root->root_item); 1034 check.level = level; 1035 check.transid = generation; 1036 check.owner_root = key->objectid; 1037 root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item), 1038 &check); 1039 if (IS_ERR(root->node)) { 1040 ret = PTR_ERR(root->node); 1041 root->node = NULL; 1042 goto fail; 1043 } 1044 if (unlikely(!btrfs_buffer_uptodate(root->node, generation, false))) { 1045 ret = -EIO; 1046 goto fail; 1047 } 1048 1049 /* 1050 * For real fs, and not log/reloc trees, root owner must 1051 * match its root node owner 1052 */ 1053 if (unlikely(!btrfs_is_testing(fs_info) && 1054 btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID && 1055 btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID && 1056 btrfs_root_id(root) != btrfs_header_owner(root->node))) { 1057 btrfs_crit(fs_info, 1058 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu", 1059 btrfs_root_id(root), root->node->start, 1060 btrfs_header_owner(root->node), 1061 btrfs_root_id(root)); 1062 ret = -EUCLEAN; 1063 goto fail; 1064 } 1065 root->commit_root = btrfs_root_node(root); 1066 return root; 1067 fail: 1068 btrfs_put_root(root); 1069 return ERR_PTR(ret); 1070 } 1071 1072 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1073 const struct btrfs_key *key) 1074 { 1075 struct btrfs_root *root; 1076 BTRFS_PATH_AUTO_FREE(path); 1077 1078 path = btrfs_alloc_path(); 1079 if (!path) 1080 return ERR_PTR(-ENOMEM); 1081 root = read_tree_root_path(tree_root, path, key); 1082 1083 return root; 1084 } 1085 1086 /* 1087 * Initialize subvolume root in-memory structure. 1088 * 1089 * @anon_dev: anonymous device to attach to the root, if zero, allocate new 1090 * 1091 * In case of failure the caller is responsible to call btrfs_free_fs_root() 1092 */ 1093 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev) 1094 { 1095 int ret; 1096 1097 btrfs_drew_lock_init(&root->snapshot_lock); 1098 1099 if (btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID && 1100 !btrfs_is_data_reloc_root(root) && 1101 btrfs_is_fstree(btrfs_root_id(root))) { 1102 set_bit(BTRFS_ROOT_SHAREABLE, &root->state); 1103 btrfs_check_and_init_root_item(&root->root_item); 1104 } 1105 1106 /* 1107 * Don't assign anonymous block device to roots that are not exposed to 1108 * userspace, the id pool is limited to 1M 1109 */ 1110 if (btrfs_is_fstree(btrfs_root_id(root)) && 1111 btrfs_root_refs(&root->root_item) > 0) { 1112 if (!anon_dev) { 1113 ret = get_anon_bdev(&root->anon_dev); 1114 if (ret) 1115 return ret; 1116 } else { 1117 root->anon_dev = anon_dev; 1118 } 1119 } 1120 1121 mutex_lock(&root->objectid_mutex); 1122 ret = btrfs_init_root_free_objectid(root); 1123 if (ret) { 1124 mutex_unlock(&root->objectid_mutex); 1125 return ret; 1126 } 1127 1128 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 1129 1130 mutex_unlock(&root->objectid_mutex); 1131 1132 return 0; 1133 } 1134 1135 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1136 u64 root_id) 1137 { 1138 struct btrfs_root *root; 1139 1140 spin_lock(&fs_info->fs_roots_radix_lock); 1141 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1142 (unsigned long)root_id); 1143 root = btrfs_grab_root(root); 1144 spin_unlock(&fs_info->fs_roots_radix_lock); 1145 return root; 1146 } 1147 1148 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info, 1149 u64 objectid) 1150 { 1151 struct btrfs_key key = { 1152 .objectid = objectid, 1153 .type = BTRFS_ROOT_ITEM_KEY, 1154 .offset = 0, 1155 }; 1156 1157 switch (objectid) { 1158 case BTRFS_ROOT_TREE_OBJECTID: 1159 return btrfs_grab_root(fs_info->tree_root); 1160 case BTRFS_EXTENT_TREE_OBJECTID: 1161 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1162 case BTRFS_CHUNK_TREE_OBJECTID: 1163 return btrfs_grab_root(fs_info->chunk_root); 1164 case BTRFS_DEV_TREE_OBJECTID: 1165 return btrfs_grab_root(fs_info->dev_root); 1166 case BTRFS_CSUM_TREE_OBJECTID: 1167 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1168 case BTRFS_QUOTA_TREE_OBJECTID: 1169 return btrfs_grab_root(fs_info->quota_root); 1170 case BTRFS_UUID_TREE_OBJECTID: 1171 return btrfs_grab_root(fs_info->uuid_root); 1172 case BTRFS_BLOCK_GROUP_TREE_OBJECTID: 1173 return btrfs_grab_root(fs_info->block_group_root); 1174 case BTRFS_FREE_SPACE_TREE_OBJECTID: 1175 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1176 case BTRFS_RAID_STRIPE_TREE_OBJECTID: 1177 return btrfs_grab_root(fs_info->stripe_root); 1178 default: 1179 return NULL; 1180 } 1181 } 1182 1183 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1184 struct btrfs_root *root) 1185 { 1186 int ret; 1187 1188 ret = radix_tree_preload(GFP_NOFS); 1189 if (ret) 1190 return ret; 1191 1192 spin_lock(&fs_info->fs_roots_radix_lock); 1193 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1194 (unsigned long)btrfs_root_id(root), 1195 root); 1196 if (ret == 0) { 1197 btrfs_grab_root(root); 1198 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1199 } 1200 spin_unlock(&fs_info->fs_roots_radix_lock); 1201 radix_tree_preload_end(); 1202 1203 return ret; 1204 } 1205 1206 void btrfs_check_leaked_roots(const struct btrfs_fs_info *fs_info) 1207 { 1208 #ifdef CONFIG_BTRFS_DEBUG 1209 struct btrfs_root *root; 1210 1211 while (!list_empty(&fs_info->allocated_roots)) { 1212 char buf[BTRFS_ROOT_NAME_BUF_LEN]; 1213 1214 root = list_first_entry(&fs_info->allocated_roots, 1215 struct btrfs_root, leak_list); 1216 btrfs_err(fs_info, "leaked root %s refcount %d", 1217 btrfs_root_name(&root->root_key, buf), 1218 refcount_read(&root->refs)); 1219 WARN_ON_ONCE(1); 1220 while (refcount_read(&root->refs) > 1) 1221 btrfs_put_root(root); 1222 btrfs_put_root(root); 1223 } 1224 #endif 1225 } 1226 1227 static void free_global_roots(struct btrfs_fs_info *fs_info) 1228 { 1229 struct btrfs_root *root; 1230 struct rb_node *node; 1231 1232 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) { 1233 root = rb_entry(node, struct btrfs_root, rb_node); 1234 rb_erase(&root->rb_node, &fs_info->global_root_tree); 1235 btrfs_put_root(root); 1236 } 1237 } 1238 1239 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info) 1240 { 1241 struct percpu_counter *em_counter = &fs_info->evictable_extent_maps; 1242 1243 if (fs_info->fs_devices) 1244 btrfs_close_devices(fs_info->fs_devices); 1245 btrfs_free_compress_wsm(fs_info); 1246 percpu_counter_destroy(&fs_info->stats_read_blocks); 1247 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 1248 percpu_counter_destroy(&fs_info->delalloc_bytes); 1249 percpu_counter_destroy(&fs_info->ordered_bytes); 1250 if (percpu_counter_initialized(em_counter)) 1251 ASSERT(percpu_counter_sum_positive(em_counter) == 0); 1252 percpu_counter_destroy(em_counter); 1253 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 1254 btrfs_free_csum_hash(fs_info); 1255 btrfs_free_stripe_hash_table(fs_info); 1256 btrfs_free_ref_cache(fs_info); 1257 kfree(fs_info->balance_ctl); 1258 kfree(fs_info->delayed_root); 1259 free_global_roots(fs_info); 1260 btrfs_put_root(fs_info->tree_root); 1261 btrfs_put_root(fs_info->chunk_root); 1262 btrfs_put_root(fs_info->dev_root); 1263 btrfs_put_root(fs_info->quota_root); 1264 btrfs_put_root(fs_info->uuid_root); 1265 btrfs_put_root(fs_info->fs_root); 1266 btrfs_put_root(fs_info->data_reloc_root); 1267 btrfs_put_root(fs_info->block_group_root); 1268 btrfs_put_root(fs_info->stripe_root); 1269 btrfs_check_leaked_roots(fs_info); 1270 btrfs_extent_buffer_leak_debug_check(fs_info); 1271 kfree(fs_info->super_copy); 1272 kfree(fs_info->super_for_commit); 1273 kvfree(fs_info); 1274 } 1275 1276 1277 /* 1278 * Get an in-memory reference of a root structure. 1279 * 1280 * For essential trees like root/extent tree, we grab it from fs_info directly. 1281 * For subvolume trees, we check the cached filesystem roots first. If not 1282 * found, then read it from disk and add it to cached fs roots. 1283 * 1284 * Caller should release the root by calling btrfs_put_root() after the usage. 1285 * 1286 * NOTE: Reloc and log trees can't be read by this function as they share the 1287 * same root objectid. 1288 * 1289 * @objectid: root id 1290 * @anon_dev: preallocated anonymous block device number for new roots, 1291 * pass NULL for a new allocation. 1292 * @check_ref: whether to check root item references, If true, return -ENOENT 1293 * for orphan roots 1294 */ 1295 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info, 1296 u64 objectid, dev_t *anon_dev, 1297 bool check_ref) 1298 { 1299 struct btrfs_root *root; 1300 struct btrfs_path *path; 1301 struct btrfs_key key; 1302 int ret; 1303 1304 root = btrfs_get_global_root(fs_info, objectid); 1305 if (root) 1306 return root; 1307 1308 /* 1309 * If we're called for non-subvolume trees, and above function didn't 1310 * find one, do not try to read it from disk. 1311 * 1312 * This is namely for free-space-tree and quota tree, which can change 1313 * at runtime and should only be grabbed from fs_info. 1314 */ 1315 if (!btrfs_is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) 1316 return ERR_PTR(-ENOENT); 1317 again: 1318 root = btrfs_lookup_fs_root(fs_info, objectid); 1319 if (root) { 1320 /* 1321 * Some other caller may have read out the newly inserted 1322 * subvolume already (for things like backref walk etc). Not 1323 * that common but still possible. In that case, we just need 1324 * to free the anon_dev. 1325 */ 1326 if (unlikely(anon_dev && *anon_dev)) { 1327 free_anon_bdev(*anon_dev); 1328 *anon_dev = 0; 1329 } 1330 1331 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1332 btrfs_put_root(root); 1333 return ERR_PTR(-ENOENT); 1334 } 1335 return root; 1336 } 1337 1338 key.objectid = objectid; 1339 key.type = BTRFS_ROOT_ITEM_KEY; 1340 key.offset = (u64)-1; 1341 root = btrfs_read_tree_root(fs_info->tree_root, &key); 1342 if (IS_ERR(root)) 1343 return root; 1344 1345 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1346 ret = -ENOENT; 1347 goto fail; 1348 } 1349 1350 ret = btrfs_init_fs_root(root, anon_dev ? *anon_dev : 0); 1351 if (ret) 1352 goto fail; 1353 1354 path = btrfs_alloc_path(); 1355 if (!path) { 1356 ret = -ENOMEM; 1357 goto fail; 1358 } 1359 key.objectid = BTRFS_ORPHAN_OBJECTID; 1360 key.type = BTRFS_ORPHAN_ITEM_KEY; 1361 key.offset = objectid; 1362 1363 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1364 btrfs_free_path(path); 1365 if (ret < 0) 1366 goto fail; 1367 if (ret == 0) 1368 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1369 1370 ret = btrfs_insert_fs_root(fs_info, root); 1371 if (ret) { 1372 if (ret == -EEXIST) { 1373 btrfs_put_root(root); 1374 goto again; 1375 } 1376 goto fail; 1377 } 1378 return root; 1379 fail: 1380 /* 1381 * If our caller provided us an anonymous device, then it's his 1382 * responsibility to free it in case we fail. So we have to set our 1383 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root() 1384 * and once again by our caller. 1385 */ 1386 if (anon_dev && *anon_dev) 1387 root->anon_dev = 0; 1388 btrfs_put_root(root); 1389 return ERR_PTR(ret); 1390 } 1391 1392 /* 1393 * Get in-memory reference of a root structure 1394 * 1395 * @objectid: tree objectid 1396 * @check_ref: if set, verify that the tree exists and the item has at least 1397 * one reference 1398 */ 1399 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1400 u64 objectid, bool check_ref) 1401 { 1402 return btrfs_get_root_ref(fs_info, objectid, NULL, check_ref); 1403 } 1404 1405 /* 1406 * Get in-memory reference of a root structure, created as new, optionally pass 1407 * the anonymous block device id 1408 * 1409 * @objectid: tree objectid 1410 * @anon_dev: if NULL, allocate a new anonymous block device or use the 1411 * parameter value if not NULL 1412 */ 1413 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info, 1414 u64 objectid, dev_t *anon_dev) 1415 { 1416 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true); 1417 } 1418 1419 /* 1420 * Return a root for the given objectid. 1421 * 1422 * @fs_info: the fs_info 1423 * @objectid: the objectid we need to lookup 1424 * 1425 * This is exclusively used for backref walking, and exists specifically because 1426 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref 1427 * creation time, which means we may have to read the tree_root in order to look 1428 * up a fs root that is not in memory. If the root is not in memory we will 1429 * read the tree root commit root and look up the fs root from there. This is a 1430 * temporary root, it will not be inserted into the radix tree as it doesn't 1431 * have the most uptodate information, it'll simply be discarded once the 1432 * backref code is finished using the root. 1433 */ 1434 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info, 1435 struct btrfs_path *path, 1436 u64 objectid) 1437 { 1438 struct btrfs_root *root; 1439 struct btrfs_key key; 1440 1441 ASSERT(path->search_commit_root && path->skip_locking); 1442 1443 /* 1444 * This can return -ENOENT if we ask for a root that doesn't exist, but 1445 * since this is called via the backref walking code we won't be looking 1446 * up a root that doesn't exist, unless there's corruption. So if root 1447 * != NULL just return it. 1448 */ 1449 root = btrfs_get_global_root(fs_info, objectid); 1450 if (root) 1451 return root; 1452 1453 root = btrfs_lookup_fs_root(fs_info, objectid); 1454 if (root) 1455 return root; 1456 1457 key.objectid = objectid; 1458 key.type = BTRFS_ROOT_ITEM_KEY; 1459 key.offset = (u64)-1; 1460 root = read_tree_root_path(fs_info->tree_root, path, &key); 1461 btrfs_release_path(path); 1462 1463 return root; 1464 } 1465 1466 static int cleaner_kthread(void *arg) 1467 { 1468 struct btrfs_fs_info *fs_info = arg; 1469 int again; 1470 1471 while (1) { 1472 again = 0; 1473 1474 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1475 1476 /* Make the cleaner go to sleep early. */ 1477 if (btrfs_need_cleaner_sleep(fs_info)) 1478 goto sleep; 1479 1480 /* 1481 * Do not do anything if we might cause open_ctree() to block 1482 * before we have finished mounting the filesystem. 1483 */ 1484 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1485 goto sleep; 1486 1487 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1488 goto sleep; 1489 1490 /* 1491 * Avoid the problem that we change the status of the fs 1492 * during the above check and trylock. 1493 */ 1494 if (btrfs_need_cleaner_sleep(fs_info)) { 1495 mutex_unlock(&fs_info->cleaner_mutex); 1496 goto sleep; 1497 } 1498 1499 if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags)) 1500 btrfs_sysfs_feature_update(fs_info); 1501 1502 btrfs_run_delayed_iputs(fs_info); 1503 1504 again = btrfs_clean_one_deleted_snapshot(fs_info); 1505 mutex_unlock(&fs_info->cleaner_mutex); 1506 1507 /* 1508 * The defragger has dealt with the R/O remount and umount, 1509 * needn't do anything special here. 1510 */ 1511 btrfs_run_defrag_inodes(fs_info); 1512 1513 /* 1514 * Acquires fs_info->reclaim_bgs_lock to avoid racing 1515 * with relocation (btrfs_relocate_chunk) and relocation 1516 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1517 * after acquiring fs_info->reclaim_bgs_lock. So we 1518 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1519 * unused block groups. 1520 */ 1521 btrfs_delete_unused_bgs(fs_info); 1522 1523 /* 1524 * Reclaim block groups in the reclaim_bgs list after we deleted 1525 * all unused block_groups. This possibly gives us some more free 1526 * space. 1527 */ 1528 btrfs_reclaim_bgs(fs_info); 1529 sleep: 1530 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1531 if (kthread_should_park()) 1532 kthread_parkme(); 1533 if (kthread_should_stop()) 1534 return 0; 1535 if (!again) { 1536 set_current_state(TASK_INTERRUPTIBLE); 1537 schedule(); 1538 __set_current_state(TASK_RUNNING); 1539 } 1540 } 1541 } 1542 1543 static int transaction_kthread(void *arg) 1544 { 1545 struct btrfs_root *root = arg; 1546 struct btrfs_fs_info *fs_info = root->fs_info; 1547 struct btrfs_trans_handle *trans; 1548 struct btrfs_transaction *cur; 1549 u64 transid; 1550 time64_t delta; 1551 unsigned long delay; 1552 bool cannot_commit; 1553 1554 do { 1555 cannot_commit = false; 1556 delay = secs_to_jiffies(fs_info->commit_interval); 1557 mutex_lock(&fs_info->transaction_kthread_mutex); 1558 1559 spin_lock(&fs_info->trans_lock); 1560 cur = fs_info->running_transaction; 1561 if (!cur) { 1562 spin_unlock(&fs_info->trans_lock); 1563 goto sleep; 1564 } 1565 1566 delta = ktime_get_seconds() - cur->start_time; 1567 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) && 1568 cur->state < TRANS_STATE_COMMIT_PREP && 1569 delta < fs_info->commit_interval) { 1570 spin_unlock(&fs_info->trans_lock); 1571 delay -= secs_to_jiffies(delta - 1); 1572 delay = min(delay, 1573 secs_to_jiffies(fs_info->commit_interval)); 1574 goto sleep; 1575 } 1576 transid = cur->transid; 1577 spin_unlock(&fs_info->trans_lock); 1578 1579 /* If the file system is aborted, this will always fail. */ 1580 trans = btrfs_attach_transaction(root); 1581 if (IS_ERR(trans)) { 1582 if (PTR_ERR(trans) != -ENOENT) 1583 cannot_commit = true; 1584 goto sleep; 1585 } 1586 if (transid == trans->transid) { 1587 btrfs_commit_transaction(trans); 1588 } else { 1589 btrfs_end_transaction(trans); 1590 } 1591 sleep: 1592 wake_up_process(fs_info->cleaner_kthread); 1593 mutex_unlock(&fs_info->transaction_kthread_mutex); 1594 1595 if (BTRFS_FS_ERROR(fs_info)) 1596 btrfs_cleanup_transaction(fs_info); 1597 if (!kthread_should_stop() && 1598 (!btrfs_transaction_blocked(fs_info) || 1599 cannot_commit)) 1600 schedule_timeout_interruptible(delay); 1601 } while (!kthread_should_stop()); 1602 return 0; 1603 } 1604 1605 /* 1606 * This will find the highest generation in the array of root backups. The 1607 * index of the highest array is returned, or -EINVAL if we can't find 1608 * anything. 1609 * 1610 * We check to make sure the array is valid by comparing the 1611 * generation of the latest root in the array with the generation 1612 * in the super block. If they don't match we pitch it. 1613 */ 1614 static int find_newest_super_backup(struct btrfs_fs_info *info) 1615 { 1616 const u64 newest_gen = btrfs_super_generation(info->super_copy); 1617 u64 cur; 1618 struct btrfs_root_backup *root_backup; 1619 int i; 1620 1621 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1622 root_backup = info->super_copy->super_roots + i; 1623 cur = btrfs_backup_tree_root_gen(root_backup); 1624 if (cur == newest_gen) 1625 return i; 1626 } 1627 1628 return -EINVAL; 1629 } 1630 1631 /* 1632 * copy all the root pointers into the super backup array. 1633 * this will bump the backup pointer by one when it is 1634 * done 1635 */ 1636 static void backup_super_roots(struct btrfs_fs_info *info) 1637 { 1638 const int next_backup = info->backup_root_index; 1639 struct btrfs_root_backup *root_backup; 1640 1641 root_backup = info->super_for_commit->super_roots + next_backup; 1642 1643 /* 1644 * make sure all of our padding and empty slots get zero filled 1645 * regardless of which ones we use today 1646 */ 1647 memset(root_backup, 0, sizeof(*root_backup)); 1648 1649 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1650 1651 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1652 btrfs_set_backup_tree_root_gen(root_backup, 1653 btrfs_header_generation(info->tree_root->node)); 1654 1655 btrfs_set_backup_tree_root_level(root_backup, 1656 btrfs_header_level(info->tree_root->node)); 1657 1658 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1659 btrfs_set_backup_chunk_root_gen(root_backup, 1660 btrfs_header_generation(info->chunk_root->node)); 1661 btrfs_set_backup_chunk_root_level(root_backup, 1662 btrfs_header_level(info->chunk_root->node)); 1663 1664 if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) { 1665 struct btrfs_root *extent_root = btrfs_extent_root(info, 0); 1666 struct btrfs_root *csum_root = btrfs_csum_root(info, 0); 1667 1668 btrfs_set_backup_extent_root(root_backup, 1669 extent_root->node->start); 1670 btrfs_set_backup_extent_root_gen(root_backup, 1671 btrfs_header_generation(extent_root->node)); 1672 btrfs_set_backup_extent_root_level(root_backup, 1673 btrfs_header_level(extent_root->node)); 1674 1675 btrfs_set_backup_csum_root(root_backup, csum_root->node->start); 1676 btrfs_set_backup_csum_root_gen(root_backup, 1677 btrfs_header_generation(csum_root->node)); 1678 btrfs_set_backup_csum_root_level(root_backup, 1679 btrfs_header_level(csum_root->node)); 1680 } 1681 1682 /* 1683 * we might commit during log recovery, which happens before we set 1684 * the fs_root. Make sure it is valid before we fill it in. 1685 */ 1686 if (info->fs_root && info->fs_root->node) { 1687 btrfs_set_backup_fs_root(root_backup, 1688 info->fs_root->node->start); 1689 btrfs_set_backup_fs_root_gen(root_backup, 1690 btrfs_header_generation(info->fs_root->node)); 1691 btrfs_set_backup_fs_root_level(root_backup, 1692 btrfs_header_level(info->fs_root->node)); 1693 } 1694 1695 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1696 btrfs_set_backup_dev_root_gen(root_backup, 1697 btrfs_header_generation(info->dev_root->node)); 1698 btrfs_set_backup_dev_root_level(root_backup, 1699 btrfs_header_level(info->dev_root->node)); 1700 1701 btrfs_set_backup_total_bytes(root_backup, 1702 btrfs_super_total_bytes(info->super_copy)); 1703 btrfs_set_backup_bytes_used(root_backup, 1704 btrfs_super_bytes_used(info->super_copy)); 1705 btrfs_set_backup_num_devices(root_backup, 1706 btrfs_super_num_devices(info->super_copy)); 1707 1708 /* 1709 * if we don't copy this out to the super_copy, it won't get remembered 1710 * for the next commit 1711 */ 1712 memcpy(&info->super_copy->super_roots, 1713 &info->super_for_commit->super_roots, 1714 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1715 } 1716 1717 /* 1718 * Reads a backup root based on the passed priority. Prio 0 is the newest, prio 1719 * 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots 1720 * 1721 * @fs_info: filesystem whose backup roots need to be read 1722 * @priority: priority of backup root required 1723 * 1724 * Returns backup root index on success and -EINVAL otherwise. 1725 */ 1726 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority) 1727 { 1728 int backup_index = find_newest_super_backup(fs_info); 1729 struct btrfs_super_block *super = fs_info->super_copy; 1730 struct btrfs_root_backup *root_backup; 1731 1732 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) { 1733 if (priority == 0) 1734 return backup_index; 1735 1736 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority; 1737 backup_index %= BTRFS_NUM_BACKUP_ROOTS; 1738 } else { 1739 return -EINVAL; 1740 } 1741 1742 root_backup = super->super_roots + backup_index; 1743 1744 btrfs_set_super_generation(super, 1745 btrfs_backup_tree_root_gen(root_backup)); 1746 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 1747 btrfs_set_super_root_level(super, 1748 btrfs_backup_tree_root_level(root_backup)); 1749 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 1750 1751 /* 1752 * Fixme: the total bytes and num_devices need to match or we should 1753 * need a fsck 1754 */ 1755 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 1756 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 1757 1758 return backup_index; 1759 } 1760 1761 /* helper to cleanup workers */ 1762 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 1763 { 1764 btrfs_destroy_workqueue(fs_info->fixup_workers); 1765 btrfs_destroy_workqueue(fs_info->delalloc_workers); 1766 btrfs_destroy_workqueue(fs_info->workers); 1767 if (fs_info->endio_workers) 1768 destroy_workqueue(fs_info->endio_workers); 1769 if (fs_info->rmw_workers) 1770 destroy_workqueue(fs_info->rmw_workers); 1771 btrfs_destroy_workqueue(fs_info->endio_write_workers); 1772 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 1773 btrfs_destroy_workqueue(fs_info->delayed_workers); 1774 btrfs_destroy_workqueue(fs_info->caching_workers); 1775 btrfs_destroy_workqueue(fs_info->flush_workers); 1776 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 1777 if (fs_info->discard_ctl.discard_workers) 1778 destroy_workqueue(fs_info->discard_ctl.discard_workers); 1779 /* 1780 * Now that all other work queues are destroyed, we can safely destroy 1781 * the queues used for metadata I/O, since tasks from those other work 1782 * queues can do metadata I/O operations. 1783 */ 1784 if (fs_info->endio_meta_workers) 1785 destroy_workqueue(fs_info->endio_meta_workers); 1786 } 1787 1788 static void free_root_extent_buffers(struct btrfs_root *root) 1789 { 1790 if (root) { 1791 free_extent_buffer(root->node); 1792 free_extent_buffer(root->commit_root); 1793 root->node = NULL; 1794 root->commit_root = NULL; 1795 } 1796 } 1797 1798 static void free_global_root_pointers(struct btrfs_fs_info *fs_info) 1799 { 1800 struct btrfs_root *root, *tmp; 1801 1802 rbtree_postorder_for_each_entry_safe(root, tmp, 1803 &fs_info->global_root_tree, 1804 rb_node) 1805 free_root_extent_buffers(root); 1806 } 1807 1808 /* helper to cleanup tree roots */ 1809 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root) 1810 { 1811 free_root_extent_buffers(info->tree_root); 1812 1813 free_global_root_pointers(info); 1814 free_root_extent_buffers(info->dev_root); 1815 free_root_extent_buffers(info->quota_root); 1816 free_root_extent_buffers(info->uuid_root); 1817 free_root_extent_buffers(info->fs_root); 1818 free_root_extent_buffers(info->data_reloc_root); 1819 free_root_extent_buffers(info->block_group_root); 1820 free_root_extent_buffers(info->stripe_root); 1821 if (free_chunk_root) 1822 free_root_extent_buffers(info->chunk_root); 1823 } 1824 1825 void btrfs_put_root(struct btrfs_root *root) 1826 { 1827 if (!root) 1828 return; 1829 1830 if (refcount_dec_and_test(&root->refs)) { 1831 if (WARN_ON(!xa_empty(&root->inodes))) 1832 xa_destroy(&root->inodes); 1833 if (WARN_ON(!xa_empty(&root->delayed_nodes))) 1834 xa_destroy(&root->delayed_nodes); 1835 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)); 1836 if (root->anon_dev) 1837 free_anon_bdev(root->anon_dev); 1838 free_root_extent_buffers(root); 1839 #ifdef CONFIG_BTRFS_DEBUG 1840 spin_lock(&root->fs_info->fs_roots_radix_lock); 1841 list_del_init(&root->leak_list); 1842 spin_unlock(&root->fs_info->fs_roots_radix_lock); 1843 #endif 1844 kfree(root); 1845 } 1846 } 1847 1848 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 1849 { 1850 int ret; 1851 struct btrfs_root *gang[8]; 1852 int i; 1853 1854 while (!list_empty(&fs_info->dead_roots)) { 1855 gang[0] = list_first_entry(&fs_info->dead_roots, 1856 struct btrfs_root, root_list); 1857 list_del(&gang[0]->root_list); 1858 1859 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) 1860 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 1861 btrfs_put_root(gang[0]); 1862 } 1863 1864 while (1) { 1865 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 1866 (void **)gang, 0, 1867 ARRAY_SIZE(gang)); 1868 if (!ret) 1869 break; 1870 for (i = 0; i < ret; i++) 1871 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 1872 } 1873 } 1874 1875 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 1876 { 1877 mutex_init(&fs_info->scrub_lock); 1878 atomic_set(&fs_info->scrubs_running, 0); 1879 atomic_set(&fs_info->scrub_pause_req, 0); 1880 atomic_set(&fs_info->scrubs_paused, 0); 1881 atomic_set(&fs_info->scrub_cancel_req, 0); 1882 init_waitqueue_head(&fs_info->scrub_pause_wait); 1883 refcount_set(&fs_info->scrub_workers_refcnt, 0); 1884 } 1885 1886 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 1887 { 1888 spin_lock_init(&fs_info->balance_lock); 1889 mutex_init(&fs_info->balance_mutex); 1890 atomic_set(&fs_info->balance_pause_req, 0); 1891 atomic_set(&fs_info->balance_cancel_req, 0); 1892 fs_info->balance_ctl = NULL; 1893 init_waitqueue_head(&fs_info->balance_wait_q); 1894 atomic_set(&fs_info->reloc_cancel_req, 0); 1895 } 1896 1897 static int btrfs_init_btree_inode(struct super_block *sb) 1898 { 1899 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1900 unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID, 1901 fs_info->tree_root); 1902 struct inode *inode; 1903 1904 inode = new_inode(sb); 1905 if (!inode) 1906 return -ENOMEM; 1907 1908 btrfs_set_inode_number(BTRFS_I(inode), BTRFS_BTREE_INODE_OBJECTID); 1909 set_nlink(inode, 1); 1910 /* 1911 * we set the i_size on the btree inode to the max possible int. 1912 * the real end of the address space is determined by all of 1913 * the devices in the system 1914 */ 1915 inode->i_size = OFFSET_MAX; 1916 inode->i_mapping->a_ops = &btree_aops; 1917 mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS); 1918 1919 btrfs_extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree, 1920 IO_TREE_BTREE_INODE_IO); 1921 btrfs_extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 1922 1923 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root); 1924 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 1925 __insert_inode_hash(inode, hash); 1926 set_bit(AS_KERNEL_FILE, &inode->i_mapping->flags); 1927 fs_info->btree_inode = inode; 1928 1929 return 0; 1930 } 1931 1932 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 1933 { 1934 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 1935 init_rwsem(&fs_info->dev_replace.rwsem); 1936 init_waitqueue_head(&fs_info->dev_replace.replace_wait); 1937 } 1938 1939 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 1940 { 1941 spin_lock_init(&fs_info->qgroup_lock); 1942 mutex_init(&fs_info->qgroup_ioctl_lock); 1943 fs_info->qgroup_tree = RB_ROOT; 1944 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 1945 fs_info->qgroup_seq = 1; 1946 fs_info->qgroup_rescan_running = false; 1947 fs_info->qgroup_drop_subtree_thres = BTRFS_QGROUP_DROP_SUBTREE_THRES_DEFAULT; 1948 mutex_init(&fs_info->qgroup_rescan_lock); 1949 } 1950 1951 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info) 1952 { 1953 u32 max_active = fs_info->thread_pool_size; 1954 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 1955 unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_PERCPU; 1956 1957 fs_info->workers = 1958 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16); 1959 1960 fs_info->delalloc_workers = 1961 btrfs_alloc_workqueue(fs_info, "delalloc", 1962 flags, max_active, 2); 1963 1964 fs_info->flush_workers = 1965 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 1966 flags, max_active, 0); 1967 1968 fs_info->caching_workers = 1969 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 1970 1971 fs_info->fixup_workers = 1972 btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags); 1973 1974 fs_info->endio_workers = 1975 alloc_workqueue("btrfs-endio", flags, max_active); 1976 fs_info->endio_meta_workers = 1977 alloc_workqueue("btrfs-endio-meta", flags, max_active); 1978 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active); 1979 fs_info->endio_write_workers = 1980 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 1981 max_active, 2); 1982 fs_info->endio_freespace_worker = 1983 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 1984 max_active, 0); 1985 fs_info->delayed_workers = 1986 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 1987 max_active, 0); 1988 fs_info->qgroup_rescan_workers = 1989 btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan", 1990 ordered_flags); 1991 fs_info->discard_ctl.discard_workers = 1992 alloc_ordered_workqueue("btrfs-discard", WQ_FREEZABLE); 1993 1994 if (!(fs_info->workers && 1995 fs_info->delalloc_workers && fs_info->flush_workers && 1996 fs_info->endio_workers && fs_info->endio_meta_workers && 1997 fs_info->endio_write_workers && 1998 fs_info->endio_freespace_worker && fs_info->rmw_workers && 1999 fs_info->caching_workers && fs_info->fixup_workers && 2000 fs_info->delayed_workers && fs_info->qgroup_rescan_workers && 2001 fs_info->discard_ctl.discard_workers)) { 2002 return -ENOMEM; 2003 } 2004 2005 return 0; 2006 } 2007 2008 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type) 2009 { 2010 struct crypto_shash *csum_shash; 2011 const char *csum_driver = btrfs_super_csum_driver(csum_type); 2012 2013 csum_shash = crypto_alloc_shash(csum_driver, 0, 0); 2014 2015 if (IS_ERR(csum_shash)) { 2016 btrfs_err(fs_info, "error allocating %s hash for checksum", 2017 csum_driver); 2018 return PTR_ERR(csum_shash); 2019 } 2020 2021 fs_info->csum_shash = csum_shash; 2022 2023 /* Check if the checksum implementation is a fast accelerated one. */ 2024 switch (csum_type) { 2025 case BTRFS_CSUM_TYPE_CRC32: 2026 if (crc32_optimizations() & CRC32C_OPTIMIZATION) 2027 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); 2028 break; 2029 case BTRFS_CSUM_TYPE_XXHASH: 2030 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); 2031 break; 2032 default: 2033 break; 2034 } 2035 2036 btrfs_info(fs_info, "using %s (%s) checksum algorithm", 2037 btrfs_super_csum_name(csum_type), 2038 crypto_shash_driver_name(csum_shash)); 2039 return 0; 2040 } 2041 2042 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2043 struct btrfs_fs_devices *fs_devices) 2044 { 2045 int ret; 2046 struct btrfs_tree_parent_check check = { 0 }; 2047 struct btrfs_root *log_tree_root; 2048 struct btrfs_super_block *disk_super = fs_info->super_copy; 2049 u64 bytenr = btrfs_super_log_root(disk_super); 2050 int level = btrfs_super_log_root_level(disk_super); 2051 2052 if (unlikely(fs_devices->rw_devices == 0)) { 2053 btrfs_warn(fs_info, "log replay required on RO media"); 2054 return -EIO; 2055 } 2056 2057 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, 2058 GFP_KERNEL); 2059 if (!log_tree_root) 2060 return -ENOMEM; 2061 2062 check.level = level; 2063 check.transid = fs_info->generation + 1; 2064 check.owner_root = BTRFS_TREE_LOG_OBJECTID; 2065 log_tree_root->node = read_tree_block(fs_info, bytenr, &check); 2066 if (IS_ERR(log_tree_root->node)) { 2067 btrfs_warn(fs_info, "failed to read log tree"); 2068 ret = PTR_ERR(log_tree_root->node); 2069 log_tree_root->node = NULL; 2070 btrfs_put_root(log_tree_root); 2071 return ret; 2072 } 2073 if (unlikely(!extent_buffer_uptodate(log_tree_root->node))) { 2074 btrfs_err(fs_info, "failed to read log tree"); 2075 btrfs_put_root(log_tree_root); 2076 return -EIO; 2077 } 2078 2079 /* returns with log_tree_root freed on success */ 2080 ret = btrfs_recover_log_trees(log_tree_root); 2081 btrfs_put_root(log_tree_root); 2082 if (ret) { 2083 btrfs_handle_fs_error(fs_info, ret, 2084 "Failed to recover log tree"); 2085 return ret; 2086 } 2087 2088 if (sb_rdonly(fs_info->sb)) { 2089 ret = btrfs_commit_super(fs_info); 2090 if (ret) 2091 return ret; 2092 } 2093 2094 return 0; 2095 } 2096 2097 static int load_global_roots_objectid(struct btrfs_root *tree_root, 2098 struct btrfs_path *path, u64 objectid, 2099 const char *name) 2100 { 2101 struct btrfs_fs_info *fs_info = tree_root->fs_info; 2102 struct btrfs_root *root; 2103 u64 max_global_id = 0; 2104 int ret; 2105 struct btrfs_key key = { 2106 .objectid = objectid, 2107 .type = BTRFS_ROOT_ITEM_KEY, 2108 .offset = 0, 2109 }; 2110 bool found = false; 2111 2112 /* If we have IGNOREDATACSUMS skip loading these roots. */ 2113 if (objectid == BTRFS_CSUM_TREE_OBJECTID && 2114 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) { 2115 set_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state); 2116 return 0; 2117 } 2118 2119 while (1) { 2120 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0); 2121 if (ret < 0) 2122 break; 2123 2124 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2125 ret = btrfs_next_leaf(tree_root, path); 2126 if (ret) { 2127 if (ret > 0) 2128 ret = 0; 2129 break; 2130 } 2131 } 2132 ret = 0; 2133 2134 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2135 if (key.objectid != objectid) 2136 break; 2137 btrfs_release_path(path); 2138 2139 /* 2140 * Just worry about this for extent tree, it'll be the same for 2141 * everybody. 2142 */ 2143 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2144 max_global_id = max(max_global_id, key.offset); 2145 2146 found = true; 2147 root = read_tree_root_path(tree_root, path, &key); 2148 if (IS_ERR(root)) { 2149 ret = PTR_ERR(root); 2150 break; 2151 } 2152 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2153 ret = btrfs_global_root_insert(root); 2154 if (ret) { 2155 btrfs_put_root(root); 2156 break; 2157 } 2158 key.offset++; 2159 } 2160 btrfs_release_path(path); 2161 2162 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2163 fs_info->nr_global_roots = max_global_id + 1; 2164 2165 if (!found || ret) { 2166 if (objectid == BTRFS_CSUM_TREE_OBJECTID) 2167 set_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state); 2168 2169 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) 2170 ret = ret ? ret : -ENOENT; 2171 else 2172 ret = 0; 2173 btrfs_err(fs_info, "failed to load root %s", name); 2174 } 2175 return ret; 2176 } 2177 2178 static int load_global_roots(struct btrfs_root *tree_root) 2179 { 2180 BTRFS_PATH_AUTO_FREE(path); 2181 int ret; 2182 2183 path = btrfs_alloc_path(); 2184 if (!path) 2185 return -ENOMEM; 2186 2187 ret = load_global_roots_objectid(tree_root, path, 2188 BTRFS_EXTENT_TREE_OBJECTID, "extent"); 2189 if (ret) 2190 return ret; 2191 ret = load_global_roots_objectid(tree_root, path, 2192 BTRFS_CSUM_TREE_OBJECTID, "csum"); 2193 if (ret) 2194 return ret; 2195 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE)) 2196 return ret; 2197 ret = load_global_roots_objectid(tree_root, path, 2198 BTRFS_FREE_SPACE_TREE_OBJECTID, 2199 "free space"); 2200 2201 return ret; 2202 } 2203 2204 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2205 { 2206 struct btrfs_root *tree_root = fs_info->tree_root; 2207 struct btrfs_root *root; 2208 struct btrfs_key location; 2209 int ret; 2210 2211 ASSERT(fs_info->tree_root); 2212 2213 ret = load_global_roots(tree_root); 2214 if (ret) 2215 return ret; 2216 2217 location.type = BTRFS_ROOT_ITEM_KEY; 2218 location.offset = 0; 2219 2220 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) { 2221 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID; 2222 root = btrfs_read_tree_root(tree_root, &location); 2223 if (IS_ERR(root)) { 2224 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2225 ret = PTR_ERR(root); 2226 goto out; 2227 } 2228 } else { 2229 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2230 fs_info->block_group_root = root; 2231 } 2232 } 2233 2234 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2235 root = btrfs_read_tree_root(tree_root, &location); 2236 if (IS_ERR(root)) { 2237 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2238 ret = PTR_ERR(root); 2239 goto out; 2240 } 2241 } else { 2242 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2243 fs_info->dev_root = root; 2244 } 2245 /* Initialize fs_info for all devices in any case */ 2246 ret = btrfs_init_devices_late(fs_info); 2247 if (ret) 2248 goto out; 2249 2250 /* 2251 * This tree can share blocks with some other fs tree during relocation 2252 * and we need a proper setup by btrfs_get_fs_root 2253 */ 2254 root = btrfs_get_fs_root(tree_root->fs_info, 2255 BTRFS_DATA_RELOC_TREE_OBJECTID, true); 2256 if (IS_ERR(root)) { 2257 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2258 ret = PTR_ERR(root); 2259 goto out; 2260 } 2261 } else { 2262 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2263 fs_info->data_reloc_root = root; 2264 } 2265 2266 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2267 root = btrfs_read_tree_root(tree_root, &location); 2268 if (!IS_ERR(root)) { 2269 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2270 fs_info->quota_root = root; 2271 } 2272 2273 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2274 root = btrfs_read_tree_root(tree_root, &location); 2275 if (IS_ERR(root)) { 2276 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2277 ret = PTR_ERR(root); 2278 if (ret != -ENOENT) 2279 goto out; 2280 } 2281 } else { 2282 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2283 fs_info->uuid_root = root; 2284 } 2285 2286 if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) { 2287 location.objectid = BTRFS_RAID_STRIPE_TREE_OBJECTID; 2288 root = btrfs_read_tree_root(tree_root, &location); 2289 if (IS_ERR(root)) { 2290 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2291 ret = PTR_ERR(root); 2292 goto out; 2293 } 2294 } else { 2295 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2296 fs_info->stripe_root = root; 2297 } 2298 } 2299 2300 return 0; 2301 out: 2302 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", 2303 location.objectid, ret); 2304 return ret; 2305 } 2306 2307 static int validate_sys_chunk_array(const struct btrfs_fs_info *fs_info, 2308 const struct btrfs_super_block *sb) 2309 { 2310 unsigned int cur = 0; /* Offset inside the sys chunk array */ 2311 /* 2312 * At sb read time, fs_info is not fully initialized. Thus we have 2313 * to use super block sectorsize, which should have been validated. 2314 */ 2315 const u32 sectorsize = btrfs_super_sectorsize(sb); 2316 u32 sys_array_size = btrfs_super_sys_array_size(sb); 2317 2318 if (unlikely(sys_array_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)) { 2319 btrfs_err(fs_info, "system chunk array too big %u > %u", 2320 sys_array_size, BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2321 return -EUCLEAN; 2322 } 2323 2324 while (cur < sys_array_size) { 2325 struct btrfs_disk_key *disk_key; 2326 struct btrfs_chunk *chunk; 2327 struct btrfs_key key; 2328 u64 type; 2329 u16 num_stripes; 2330 u32 len; 2331 int ret; 2332 2333 disk_key = (struct btrfs_disk_key *)(sb->sys_chunk_array + cur); 2334 len = sizeof(*disk_key); 2335 2336 if (unlikely(cur + len > sys_array_size)) 2337 goto short_read; 2338 cur += len; 2339 2340 btrfs_disk_key_to_cpu(&key, disk_key); 2341 if (unlikely(key.type != BTRFS_CHUNK_ITEM_KEY)) { 2342 btrfs_err(fs_info, 2343 "unexpected item type %u in sys_array at offset %u", 2344 key.type, cur); 2345 return -EUCLEAN; 2346 } 2347 chunk = (struct btrfs_chunk *)(sb->sys_chunk_array + cur); 2348 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 2349 if (unlikely(cur + btrfs_chunk_item_size(num_stripes) > sys_array_size)) 2350 goto short_read; 2351 type = btrfs_stack_chunk_type(chunk); 2352 if (unlikely(!(type & BTRFS_BLOCK_GROUP_SYSTEM))) { 2353 btrfs_err(fs_info, 2354 "invalid chunk type %llu in sys_array at offset %u", 2355 type, cur); 2356 return -EUCLEAN; 2357 } 2358 ret = btrfs_check_chunk_valid(fs_info, NULL, chunk, key.offset, 2359 sectorsize); 2360 if (ret < 0) 2361 return ret; 2362 cur += btrfs_chunk_item_size(num_stripes); 2363 } 2364 return 0; 2365 short_read: 2366 btrfs_err(fs_info, 2367 "super block sys chunk array short read, cur=%u sys_array_size=%u", 2368 cur, sys_array_size); 2369 return -EUCLEAN; 2370 } 2371 2372 /* 2373 * Real super block validation 2374 * NOTE: super csum type and incompat features will not be checked here. 2375 * 2376 * @sb: super block to check 2377 * @mirror_num: the super block number to check its bytenr: 2378 * 0 the primary (1st) sb 2379 * 1, 2 2nd and 3rd backup copy 2380 * -1 skip bytenr check 2381 */ 2382 int btrfs_validate_super(const struct btrfs_fs_info *fs_info, 2383 const struct btrfs_super_block *sb, int mirror_num) 2384 { 2385 u64 nodesize = btrfs_super_nodesize(sb); 2386 u64 sectorsize = btrfs_super_sectorsize(sb); 2387 int ret = 0; 2388 const bool ignore_flags = btrfs_test_opt(fs_info, IGNORESUPERFLAGS); 2389 2390 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 2391 btrfs_err(fs_info, "no valid FS found"); 2392 ret = -EINVAL; 2393 } 2394 if ((btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)) { 2395 if (!ignore_flags) { 2396 btrfs_err(fs_info, 2397 "unrecognized or unsupported super flag 0x%llx", 2398 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2399 ret = -EINVAL; 2400 } else { 2401 btrfs_info(fs_info, 2402 "unrecognized or unsupported super flags: 0x%llx, ignored", 2403 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2404 } 2405 } 2406 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 2407 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 2408 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 2409 ret = -EINVAL; 2410 } 2411 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 2412 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 2413 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 2414 ret = -EINVAL; 2415 } 2416 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 2417 btrfs_err(fs_info, "log_root level too big: %d >= %d", 2418 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 2419 ret = -EINVAL; 2420 } 2421 2422 /* 2423 * Check sectorsize and nodesize first, other check will need it. 2424 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 2425 */ 2426 if (!is_power_of_2(sectorsize) || sectorsize < BTRFS_MIN_BLOCKSIZE || 2427 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2428 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 2429 ret = -EINVAL; 2430 } 2431 2432 if (!btrfs_supported_blocksize(sectorsize)) { 2433 btrfs_err(fs_info, 2434 "sectorsize %llu not yet supported for page size %lu", 2435 sectorsize, PAGE_SIZE); 2436 ret = -EINVAL; 2437 } 2438 2439 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 2440 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2441 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 2442 ret = -EINVAL; 2443 } 2444 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 2445 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 2446 le32_to_cpu(sb->__unused_leafsize), nodesize); 2447 ret = -EINVAL; 2448 } 2449 2450 /* Root alignment check */ 2451 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 2452 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 2453 btrfs_super_root(sb)); 2454 ret = -EINVAL; 2455 } 2456 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 2457 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 2458 btrfs_super_chunk_root(sb)); 2459 ret = -EINVAL; 2460 } 2461 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 2462 btrfs_warn(fs_info, "log_root block unaligned: %llu", 2463 btrfs_super_log_root(sb)); 2464 ret = -EINVAL; 2465 } 2466 2467 if (!fs_info->fs_devices->temp_fsid && 2468 memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) { 2469 btrfs_err(fs_info, 2470 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU", 2471 sb->fsid, fs_info->fs_devices->fsid); 2472 ret = -EINVAL; 2473 } 2474 2475 if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb), 2476 BTRFS_FSID_SIZE) != 0) { 2477 btrfs_err(fs_info, 2478 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU", 2479 btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid); 2480 ret = -EINVAL; 2481 } 2482 2483 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid, 2484 BTRFS_FSID_SIZE) != 0) { 2485 btrfs_err(fs_info, 2486 "dev_item UUID does not match metadata fsid: %pU != %pU", 2487 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid); 2488 ret = -EINVAL; 2489 } 2490 2491 /* 2492 * Artificial requirement for block-group-tree to force newer features 2493 * (free-space-tree, no-holes) so the test matrix is smaller. 2494 */ 2495 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 2496 (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) || 2497 !btrfs_fs_incompat(fs_info, NO_HOLES))) { 2498 btrfs_err(fs_info, 2499 "block-group-tree feature requires free-space-tree and no-holes"); 2500 ret = -EINVAL; 2501 } 2502 2503 /* 2504 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 2505 * done later 2506 */ 2507 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 2508 btrfs_err(fs_info, "bytes_used is too small %llu", 2509 btrfs_super_bytes_used(sb)); 2510 ret = -EINVAL; 2511 } 2512 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 2513 btrfs_err(fs_info, "invalid stripesize %u", 2514 btrfs_super_stripesize(sb)); 2515 ret = -EINVAL; 2516 } 2517 if (btrfs_super_num_devices(sb) > (1UL << 31)) 2518 btrfs_warn(fs_info, "suspicious number of devices: %llu", 2519 btrfs_super_num_devices(sb)); 2520 if (btrfs_super_num_devices(sb) == 0) { 2521 btrfs_err(fs_info, "number of devices is 0"); 2522 ret = -EINVAL; 2523 } 2524 2525 if (mirror_num >= 0 && 2526 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { 2527 btrfs_err(fs_info, "super offset mismatch %llu != %u", 2528 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 2529 ret = -EINVAL; 2530 } 2531 2532 if (ret) 2533 return ret; 2534 2535 ret = validate_sys_chunk_array(fs_info, sb); 2536 2537 /* 2538 * Obvious sys_chunk_array corruptions, it must hold at least one key 2539 * and one chunk 2540 */ 2541 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2542 btrfs_err(fs_info, "system chunk array too big %u > %u", 2543 btrfs_super_sys_array_size(sb), 2544 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2545 ret = -EINVAL; 2546 } 2547 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 2548 + sizeof(struct btrfs_chunk)) { 2549 btrfs_err(fs_info, "system chunk array too small %u < %zu", 2550 btrfs_super_sys_array_size(sb), 2551 sizeof(struct btrfs_disk_key) 2552 + sizeof(struct btrfs_chunk)); 2553 ret = -EINVAL; 2554 } 2555 2556 /* 2557 * The generation is a global counter, we'll trust it more than the others 2558 * but it's still possible that it's the one that's wrong. 2559 */ 2560 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 2561 btrfs_warn(fs_info, 2562 "suspicious: generation < chunk_root_generation: %llu < %llu", 2563 btrfs_super_generation(sb), 2564 btrfs_super_chunk_root_generation(sb)); 2565 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 2566 && btrfs_super_cache_generation(sb) != (u64)-1) 2567 btrfs_warn(fs_info, 2568 "suspicious: generation < cache_generation: %llu < %llu", 2569 btrfs_super_generation(sb), 2570 btrfs_super_cache_generation(sb)); 2571 2572 return ret; 2573 } 2574 2575 /* 2576 * Validation of super block at mount time. 2577 * Some checks already done early at mount time, like csum type and incompat 2578 * flags will be skipped. 2579 */ 2580 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) 2581 { 2582 return btrfs_validate_super(fs_info, fs_info->super_copy, 0); 2583 } 2584 2585 /* 2586 * Validation of super block at write time. 2587 * Some checks like bytenr check will be skipped as their values will be 2588 * overwritten soon. 2589 * Extra checks like csum type and incompat flags will be done here. 2590 */ 2591 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, 2592 struct btrfs_super_block *sb) 2593 { 2594 int ret; 2595 2596 ret = btrfs_validate_super(fs_info, sb, -1); 2597 if (ret < 0) 2598 goto out; 2599 if (unlikely(!btrfs_supported_super_csum(btrfs_super_csum_type(sb)))) { 2600 ret = -EUCLEAN; 2601 btrfs_err(fs_info, "invalid csum type, has %u want %u", 2602 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); 2603 goto out; 2604 } 2605 if (unlikely(btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP)) { 2606 ret = -EUCLEAN; 2607 btrfs_err(fs_info, 2608 "invalid incompat flags, has 0x%llx valid mask 0x%llx", 2609 btrfs_super_incompat_flags(sb), 2610 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); 2611 goto out; 2612 } 2613 out: 2614 if (ret < 0) 2615 btrfs_err(fs_info, 2616 "super block corruption detected before writing it to disk"); 2617 return ret; 2618 } 2619 2620 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level) 2621 { 2622 struct btrfs_tree_parent_check check = { 2623 .level = level, 2624 .transid = gen, 2625 .owner_root = btrfs_root_id(root) 2626 }; 2627 int ret = 0; 2628 2629 root->node = read_tree_block(root->fs_info, bytenr, &check); 2630 if (IS_ERR(root->node)) { 2631 ret = PTR_ERR(root->node); 2632 root->node = NULL; 2633 return ret; 2634 } 2635 if (unlikely(!extent_buffer_uptodate(root->node))) { 2636 free_extent_buffer(root->node); 2637 root->node = NULL; 2638 return -EIO; 2639 } 2640 2641 btrfs_set_root_node(&root->root_item, root->node); 2642 root->commit_root = btrfs_root_node(root); 2643 btrfs_set_root_refs(&root->root_item, 1); 2644 return ret; 2645 } 2646 2647 static int load_important_roots(struct btrfs_fs_info *fs_info) 2648 { 2649 struct btrfs_super_block *sb = fs_info->super_copy; 2650 u64 gen, bytenr; 2651 int level, ret; 2652 2653 bytenr = btrfs_super_root(sb); 2654 gen = btrfs_super_generation(sb); 2655 level = btrfs_super_root_level(sb); 2656 ret = load_super_root(fs_info->tree_root, bytenr, gen, level); 2657 if (ret) { 2658 btrfs_warn(fs_info, "couldn't read tree root"); 2659 return ret; 2660 } 2661 return 0; 2662 } 2663 2664 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info) 2665 { 2666 int backup_index = find_newest_super_backup(fs_info); 2667 struct btrfs_super_block *sb = fs_info->super_copy; 2668 struct btrfs_root *tree_root = fs_info->tree_root; 2669 bool handle_error = false; 2670 int ret = 0; 2671 int i; 2672 2673 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 2674 if (handle_error) { 2675 if (!IS_ERR(tree_root->node)) 2676 free_extent_buffer(tree_root->node); 2677 tree_root->node = NULL; 2678 2679 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 2680 break; 2681 2682 free_root_pointers(fs_info, 0); 2683 2684 /* 2685 * Don't use the log in recovery mode, it won't be 2686 * valid 2687 */ 2688 btrfs_set_super_log_root(sb, 0); 2689 2690 btrfs_warn(fs_info, "try to load backup roots slot %d", i); 2691 ret = read_backup_root(fs_info, i); 2692 backup_index = ret; 2693 if (ret < 0) 2694 return ret; 2695 } 2696 2697 ret = load_important_roots(fs_info); 2698 if (ret) { 2699 handle_error = true; 2700 continue; 2701 } 2702 2703 /* 2704 * No need to hold btrfs_root::objectid_mutex since the fs 2705 * hasn't been fully initialised and we are the only user 2706 */ 2707 ret = btrfs_init_root_free_objectid(tree_root); 2708 if (ret < 0) { 2709 handle_error = true; 2710 continue; 2711 } 2712 2713 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 2714 2715 ret = btrfs_read_roots(fs_info); 2716 if (ret < 0) { 2717 handle_error = true; 2718 continue; 2719 } 2720 2721 /* All successful */ 2722 fs_info->generation = btrfs_header_generation(tree_root->node); 2723 btrfs_set_last_trans_committed(fs_info, fs_info->generation); 2724 fs_info->last_reloc_trans = 0; 2725 2726 /* Always begin writing backup roots after the one being used */ 2727 if (backup_index < 0) { 2728 fs_info->backup_root_index = 0; 2729 } else { 2730 fs_info->backup_root_index = backup_index + 1; 2731 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS; 2732 } 2733 break; 2734 } 2735 2736 return ret; 2737 } 2738 2739 /* 2740 * Lockdep gets confused between our buffer_tree which requires IRQ locking because 2741 * we modify marks in the IRQ context, and our delayed inode xarray which doesn't 2742 * have these requirements. Use a class key so lockdep doesn't get them mixed up. 2743 */ 2744 static struct lock_class_key buffer_xa_class; 2745 2746 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info) 2747 { 2748 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2749 2750 /* Use the same flags as mapping->i_pages. */ 2751 xa_init_flags(&fs_info->buffer_tree, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT); 2752 lockdep_set_class(&fs_info->buffer_tree.xa_lock, &buffer_xa_class); 2753 2754 INIT_LIST_HEAD(&fs_info->trans_list); 2755 INIT_LIST_HEAD(&fs_info->dead_roots); 2756 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2757 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2758 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2759 spin_lock_init(&fs_info->delalloc_root_lock); 2760 spin_lock_init(&fs_info->trans_lock); 2761 spin_lock_init(&fs_info->fs_roots_radix_lock); 2762 spin_lock_init(&fs_info->delayed_iput_lock); 2763 spin_lock_init(&fs_info->defrag_inodes_lock); 2764 spin_lock_init(&fs_info->super_lock); 2765 spin_lock_init(&fs_info->unused_bgs_lock); 2766 spin_lock_init(&fs_info->treelog_bg_lock); 2767 spin_lock_init(&fs_info->zone_active_bgs_lock); 2768 spin_lock_init(&fs_info->relocation_bg_lock); 2769 rwlock_init(&fs_info->tree_mod_log_lock); 2770 rwlock_init(&fs_info->global_root_lock); 2771 mutex_init(&fs_info->unused_bg_unpin_mutex); 2772 mutex_init(&fs_info->reclaim_bgs_lock); 2773 mutex_init(&fs_info->reloc_mutex); 2774 mutex_init(&fs_info->delalloc_root_mutex); 2775 mutex_init(&fs_info->zoned_meta_io_lock); 2776 mutex_init(&fs_info->zoned_data_reloc_io_lock); 2777 seqlock_init(&fs_info->profiles_lock); 2778 2779 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers); 2780 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters); 2781 btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered); 2782 btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent); 2783 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_prep, 2784 BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 2785 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked, 2786 BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2787 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed, 2788 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 2789 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed, 2790 BTRFS_LOCKDEP_TRANS_COMPLETED); 2791 2792 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2793 INIT_LIST_HEAD(&fs_info->space_info); 2794 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2795 INIT_LIST_HEAD(&fs_info->unused_bgs); 2796 INIT_LIST_HEAD(&fs_info->reclaim_bgs); 2797 INIT_LIST_HEAD(&fs_info->zone_active_bgs); 2798 #ifdef CONFIG_BTRFS_DEBUG 2799 INIT_LIST_HEAD(&fs_info->allocated_roots); 2800 INIT_LIST_HEAD(&fs_info->allocated_ebs); 2801 spin_lock_init(&fs_info->eb_leak_lock); 2802 #endif 2803 fs_info->mapping_tree = RB_ROOT_CACHED; 2804 rwlock_init(&fs_info->mapping_tree_lock); 2805 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2806 BTRFS_BLOCK_RSV_GLOBAL); 2807 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2808 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2809 btrfs_init_block_rsv(&fs_info->treelog_rsv, BTRFS_BLOCK_RSV_TREELOG); 2810 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2811 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2812 BTRFS_BLOCK_RSV_DELOPS); 2813 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv, 2814 BTRFS_BLOCK_RSV_DELREFS); 2815 2816 atomic_set(&fs_info->async_delalloc_pages, 0); 2817 atomic_set(&fs_info->defrag_running, 0); 2818 atomic_set(&fs_info->nr_delayed_iputs, 0); 2819 atomic64_set(&fs_info->tree_mod_seq, 0); 2820 fs_info->global_root_tree = RB_ROOT; 2821 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2822 fs_info->metadata_ratio = 0; 2823 fs_info->defrag_inodes = RB_ROOT; 2824 atomic64_set(&fs_info->free_chunk_space, 0); 2825 fs_info->tree_mod_log = RB_ROOT; 2826 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2827 btrfs_init_ref_verify(fs_info); 2828 2829 fs_info->thread_pool_size = min_t(unsigned long, 2830 num_online_cpus() + 2, 8); 2831 2832 INIT_LIST_HEAD(&fs_info->ordered_roots); 2833 spin_lock_init(&fs_info->ordered_root_lock); 2834 2835 btrfs_init_scrub(fs_info); 2836 btrfs_init_balance(fs_info); 2837 btrfs_init_async_reclaim_work(fs_info); 2838 btrfs_init_extent_map_shrinker_work(fs_info); 2839 2840 rwlock_init(&fs_info->block_group_cache_lock); 2841 fs_info->block_group_cache_tree = RB_ROOT_CACHED; 2842 2843 btrfs_extent_io_tree_init(fs_info, &fs_info->excluded_extents, 2844 IO_TREE_FS_EXCLUDED_EXTENTS); 2845 2846 mutex_init(&fs_info->ordered_operations_mutex); 2847 mutex_init(&fs_info->tree_log_mutex); 2848 mutex_init(&fs_info->chunk_mutex); 2849 mutex_init(&fs_info->transaction_kthread_mutex); 2850 mutex_init(&fs_info->cleaner_mutex); 2851 mutex_init(&fs_info->ro_block_group_mutex); 2852 init_rwsem(&fs_info->commit_root_sem); 2853 init_rwsem(&fs_info->cleanup_work_sem); 2854 init_rwsem(&fs_info->subvol_sem); 2855 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2856 2857 btrfs_init_dev_replace_locks(fs_info); 2858 btrfs_init_qgroup(fs_info); 2859 btrfs_discard_init(fs_info); 2860 2861 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2862 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2863 2864 init_waitqueue_head(&fs_info->transaction_throttle); 2865 init_waitqueue_head(&fs_info->transaction_wait); 2866 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2867 init_waitqueue_head(&fs_info->async_submit_wait); 2868 init_waitqueue_head(&fs_info->delayed_iputs_wait); 2869 2870 /* Usable values until the real ones are cached from the superblock */ 2871 fs_info->nodesize = 4096; 2872 fs_info->sectorsize = 4096; 2873 fs_info->sectorsize_bits = ilog2(4096); 2874 fs_info->stripesize = 4096; 2875 2876 /* Default compress algorithm when user does -o compress */ 2877 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2878 2879 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE; 2880 2881 spin_lock_init(&fs_info->swapfile_pins_lock); 2882 fs_info->swapfile_pins = RB_ROOT; 2883 2884 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH; 2885 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work); 2886 } 2887 2888 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb) 2889 { 2890 int ret; 2891 2892 fs_info->sb = sb; 2893 /* Temporary fixed values for block size until we read the superblock. */ 2894 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 2895 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 2896 2897 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL); 2898 if (ret) 2899 return ret; 2900 2901 ret = percpu_counter_init(&fs_info->evictable_extent_maps, 0, GFP_KERNEL); 2902 if (ret) 2903 return ret; 2904 2905 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2906 if (ret) 2907 return ret; 2908 2909 ret = percpu_counter_init(&fs_info->stats_read_blocks, 0, GFP_KERNEL); 2910 if (ret) 2911 return ret; 2912 2913 fs_info->dirty_metadata_batch = PAGE_SIZE * 2914 (1 + ilog2(nr_cpu_ids)); 2915 2916 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2917 if (ret) 2918 return ret; 2919 2920 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, 2921 GFP_KERNEL); 2922 if (ret) 2923 return ret; 2924 2925 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2926 GFP_KERNEL); 2927 if (!fs_info->delayed_root) 2928 return -ENOMEM; 2929 btrfs_init_delayed_root(fs_info->delayed_root); 2930 2931 if (sb_rdonly(sb)) 2932 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state); 2933 if (btrfs_test_opt(fs_info, IGNOREMETACSUMS)) 2934 set_bit(BTRFS_FS_STATE_SKIP_META_CSUMS, &fs_info->fs_state); 2935 2936 return btrfs_alloc_stripe_hash_table(fs_info); 2937 } 2938 2939 static int btrfs_uuid_rescan_kthread(void *data) 2940 { 2941 struct btrfs_fs_info *fs_info = data; 2942 int ret; 2943 2944 /* 2945 * 1st step is to iterate through the existing UUID tree and 2946 * to delete all entries that contain outdated data. 2947 * 2nd step is to add all missing entries to the UUID tree. 2948 */ 2949 ret = btrfs_uuid_tree_iterate(fs_info); 2950 if (ret < 0) { 2951 if (ret != -EINTR) 2952 btrfs_warn(fs_info, "iterating uuid_tree failed %d", 2953 ret); 2954 up(&fs_info->uuid_tree_rescan_sem); 2955 return ret; 2956 } 2957 return btrfs_uuid_scan_kthread(data); 2958 } 2959 2960 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 2961 { 2962 struct task_struct *task; 2963 2964 down(&fs_info->uuid_tree_rescan_sem); 2965 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 2966 if (IS_ERR(task)) { 2967 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 2968 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 2969 up(&fs_info->uuid_tree_rescan_sem); 2970 return PTR_ERR(task); 2971 } 2972 2973 return 0; 2974 } 2975 2976 static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 2977 { 2978 u64 root_objectid = 0; 2979 struct btrfs_root *gang[8]; 2980 int ret = 0; 2981 2982 while (1) { 2983 unsigned int found; 2984 2985 spin_lock(&fs_info->fs_roots_radix_lock); 2986 found = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2987 (void **)gang, root_objectid, 2988 ARRAY_SIZE(gang)); 2989 if (!found) { 2990 spin_unlock(&fs_info->fs_roots_radix_lock); 2991 break; 2992 } 2993 root_objectid = btrfs_root_id(gang[found - 1]) + 1; 2994 2995 for (int i = 0; i < found; i++) { 2996 /* Avoid to grab roots in dead_roots. */ 2997 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 2998 gang[i] = NULL; 2999 continue; 3000 } 3001 /* Grab all the search result for later use. */ 3002 gang[i] = btrfs_grab_root(gang[i]); 3003 } 3004 spin_unlock(&fs_info->fs_roots_radix_lock); 3005 3006 for (int i = 0; i < found; i++) { 3007 if (!gang[i]) 3008 continue; 3009 root_objectid = btrfs_root_id(gang[i]); 3010 /* 3011 * Continue to release the remaining roots after the first 3012 * error without cleanup and preserve the first error 3013 * for the return. 3014 */ 3015 if (!ret) 3016 ret = btrfs_orphan_cleanup(gang[i]); 3017 btrfs_put_root(gang[i]); 3018 } 3019 if (ret) 3020 break; 3021 3022 root_objectid++; 3023 } 3024 return ret; 3025 } 3026 3027 /* 3028 * Mounting logic specific to read-write file systems. Shared by open_ctree 3029 * and btrfs_remount when remounting from read-only to read-write. 3030 */ 3031 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info) 3032 { 3033 int ret; 3034 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE); 3035 bool rebuild_free_space_tree = false; 3036 3037 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 3038 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3039 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 3040 btrfs_warn(fs_info, 3041 "'clear_cache' option is ignored with extent tree v2"); 3042 else 3043 rebuild_free_space_tree = true; 3044 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3045 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 3046 btrfs_warn(fs_info, "free space tree is invalid"); 3047 rebuild_free_space_tree = true; 3048 } 3049 3050 if (rebuild_free_space_tree) { 3051 btrfs_info(fs_info, "rebuilding free space tree"); 3052 ret = btrfs_rebuild_free_space_tree(fs_info); 3053 if (ret) { 3054 btrfs_warn(fs_info, 3055 "failed to rebuild free space tree: %d", ret); 3056 goto out; 3057 } 3058 } 3059 3060 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3061 !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) { 3062 btrfs_info(fs_info, "disabling free space tree"); 3063 ret = btrfs_delete_free_space_tree(fs_info); 3064 if (ret) { 3065 btrfs_warn(fs_info, 3066 "failed to disable free space tree: %d", ret); 3067 goto out; 3068 } 3069 } 3070 3071 /* 3072 * btrfs_find_orphan_roots() is responsible for finding all the dead 3073 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load 3074 * them into the fs_info->fs_roots_radix tree. This must be done before 3075 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it 3076 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan 3077 * item before the root's tree is deleted - this means that if we unmount 3078 * or crash before the deletion completes, on the next mount we will not 3079 * delete what remains of the tree because the orphan item does not 3080 * exists anymore, which is what tells us we have a pending deletion. 3081 */ 3082 ret = btrfs_find_orphan_roots(fs_info); 3083 if (ret) 3084 goto out; 3085 3086 ret = btrfs_cleanup_fs_roots(fs_info); 3087 if (ret) 3088 goto out; 3089 3090 down_read(&fs_info->cleanup_work_sem); 3091 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3092 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3093 up_read(&fs_info->cleanup_work_sem); 3094 goto out; 3095 } 3096 up_read(&fs_info->cleanup_work_sem); 3097 3098 mutex_lock(&fs_info->cleaner_mutex); 3099 ret = btrfs_recover_relocation(fs_info); 3100 mutex_unlock(&fs_info->cleaner_mutex); 3101 if (ret < 0) { 3102 btrfs_warn(fs_info, "failed to recover relocation: %d", ret); 3103 goto out; 3104 } 3105 3106 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3107 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3108 btrfs_info(fs_info, "creating free space tree"); 3109 ret = btrfs_create_free_space_tree(fs_info); 3110 if (ret) { 3111 btrfs_warn(fs_info, 3112 "failed to create free space tree: %d", ret); 3113 goto out; 3114 } 3115 } 3116 3117 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) { 3118 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt); 3119 if (ret) 3120 goto out; 3121 } 3122 3123 ret = btrfs_resume_balance_async(fs_info); 3124 if (ret) 3125 goto out; 3126 3127 ret = btrfs_resume_dev_replace_async(fs_info); 3128 if (ret) { 3129 btrfs_warn(fs_info, "failed to resume dev_replace"); 3130 goto out; 3131 } 3132 3133 btrfs_qgroup_rescan_resume(fs_info); 3134 3135 if (!fs_info->uuid_root) { 3136 btrfs_info(fs_info, "creating UUID tree"); 3137 ret = btrfs_create_uuid_tree(fs_info); 3138 if (ret) { 3139 btrfs_warn(fs_info, 3140 "failed to create the UUID tree %d", ret); 3141 goto out; 3142 } 3143 } 3144 3145 out: 3146 return ret; 3147 } 3148 3149 /* 3150 * Do various sanity and dependency checks of different features. 3151 * 3152 * @is_rw_mount: If the mount is read-write. 3153 * 3154 * This is the place for less strict checks (like for subpage or artificial 3155 * feature dependencies). 3156 * 3157 * For strict checks or possible corruption detection, see 3158 * btrfs_validate_super(). 3159 * 3160 * This should be called after btrfs_parse_options(), as some mount options 3161 * (space cache related) can modify on-disk format like free space tree and 3162 * screw up certain feature dependencies. 3163 */ 3164 int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount) 3165 { 3166 struct btrfs_super_block *disk_super = fs_info->super_copy; 3167 u64 incompat = btrfs_super_incompat_flags(disk_super); 3168 const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super); 3169 const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP); 3170 3171 if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 3172 btrfs_err(fs_info, 3173 "cannot mount because of unknown incompat features (0x%llx)", 3174 incompat); 3175 return -EINVAL; 3176 } 3177 3178 /* Runtime limitation for mixed block groups. */ 3179 if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 3180 (fs_info->sectorsize != fs_info->nodesize)) { 3181 btrfs_err(fs_info, 3182 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 3183 fs_info->nodesize, fs_info->sectorsize); 3184 return -EINVAL; 3185 } 3186 3187 /* Mixed backref is an always-enabled feature. */ 3188 incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 3189 3190 /* Set compression related flags just in case. */ 3191 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 3192 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 3193 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 3194 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 3195 3196 /* 3197 * An ancient flag, which should really be marked deprecated. 3198 * Such runtime limitation doesn't really need a incompat flag. 3199 */ 3200 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) 3201 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 3202 3203 if (compat_ro_unsupp && is_rw_mount) { 3204 btrfs_err(fs_info, 3205 "cannot mount read-write because of unknown compat_ro features (0x%llx)", 3206 compat_ro); 3207 return -EINVAL; 3208 } 3209 3210 /* 3211 * We have unsupported RO compat features, although RO mounted, we 3212 * should not cause any metadata writes, including log replay. 3213 * Or we could screw up whatever the new feature requires. 3214 */ 3215 if (compat_ro_unsupp && btrfs_super_log_root(disk_super) && 3216 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3217 btrfs_err(fs_info, 3218 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay", 3219 compat_ro); 3220 return -EINVAL; 3221 } 3222 3223 /* 3224 * Artificial limitations for block group tree, to force 3225 * block-group-tree to rely on no-holes and free-space-tree. 3226 */ 3227 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 3228 (!btrfs_fs_incompat(fs_info, NO_HOLES) || 3229 !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) { 3230 btrfs_err(fs_info, 3231 "block-group-tree feature requires no-holes and free-space-tree features"); 3232 return -EINVAL; 3233 } 3234 3235 /* 3236 * Subpage/bs > ps runtime limitation on v1 cache. 3237 * 3238 * V1 space cache still has some hard coded PAGE_SIZE usage, while 3239 * we're already defaulting to v2 cache, no need to bother v1 as it's 3240 * going to be deprecated anyway. 3241 */ 3242 if (fs_info->sectorsize != PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) { 3243 btrfs_warn(fs_info, 3244 "v1 space cache is not supported for page size %lu with sectorsize %u", 3245 PAGE_SIZE, fs_info->sectorsize); 3246 return -EINVAL; 3247 } 3248 3249 /* This can be called by remount, we need to protect the super block. */ 3250 spin_lock(&fs_info->super_lock); 3251 btrfs_set_super_incompat_flags(disk_super, incompat); 3252 spin_unlock(&fs_info->super_lock); 3253 3254 return 0; 3255 } 3256 3257 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices) 3258 { 3259 u32 sectorsize; 3260 u32 nodesize; 3261 u32 stripesize; 3262 u64 generation; 3263 u16 csum_type; 3264 struct btrfs_super_block *disk_super; 3265 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 3266 struct btrfs_root *tree_root; 3267 struct btrfs_root *chunk_root; 3268 int ret; 3269 int level; 3270 3271 ret = init_mount_fs_info(fs_info, sb); 3272 if (ret) 3273 goto fail; 3274 3275 /* These need to be init'ed before we start creating inodes and such. */ 3276 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, 3277 GFP_KERNEL); 3278 fs_info->tree_root = tree_root; 3279 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID, 3280 GFP_KERNEL); 3281 fs_info->chunk_root = chunk_root; 3282 if (!tree_root || !chunk_root) { 3283 ret = -ENOMEM; 3284 goto fail; 3285 } 3286 3287 ret = btrfs_init_btree_inode(sb); 3288 if (ret) 3289 goto fail; 3290 3291 invalidate_bdev(fs_devices->latest_dev->bdev); 3292 3293 /* 3294 * Read super block and check the signature bytes only 3295 */ 3296 disk_super = btrfs_read_disk_super(fs_devices->latest_dev->bdev, 0, false); 3297 if (IS_ERR(disk_super)) { 3298 ret = PTR_ERR(disk_super); 3299 goto fail_alloc; 3300 } 3301 3302 btrfs_info(fs_info, "first mount of filesystem %pU", disk_super->fsid); 3303 /* 3304 * Verify the type first, if that or the checksum value are 3305 * corrupted, we'll find out 3306 */ 3307 csum_type = btrfs_super_csum_type(disk_super); 3308 if (!btrfs_supported_super_csum(csum_type)) { 3309 btrfs_err(fs_info, "unsupported checksum algorithm: %u", 3310 csum_type); 3311 ret = -EINVAL; 3312 btrfs_release_disk_super(disk_super); 3313 goto fail_alloc; 3314 } 3315 3316 fs_info->csum_size = btrfs_super_csum_size(disk_super); 3317 3318 ret = btrfs_init_csum_hash(fs_info, csum_type); 3319 if (ret) { 3320 btrfs_release_disk_super(disk_super); 3321 goto fail_alloc; 3322 } 3323 3324 /* 3325 * We want to check superblock checksum, the type is stored inside. 3326 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 3327 */ 3328 if (btrfs_check_super_csum(fs_info, disk_super)) { 3329 btrfs_err(fs_info, "superblock checksum mismatch"); 3330 ret = -EINVAL; 3331 btrfs_release_disk_super(disk_super); 3332 goto fail_alloc; 3333 } 3334 3335 /* 3336 * super_copy is zeroed at allocation time and we never touch the 3337 * following bytes up to INFO_SIZE, the checksum is calculated from 3338 * the whole block of INFO_SIZE 3339 */ 3340 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy)); 3341 btrfs_release_disk_super(disk_super); 3342 3343 disk_super = fs_info->super_copy; 3344 3345 memcpy(fs_info->super_for_commit, fs_info->super_copy, 3346 sizeof(*fs_info->super_for_commit)); 3347 3348 ret = btrfs_validate_mount_super(fs_info); 3349 if (ret) { 3350 btrfs_err(fs_info, "superblock contains fatal errors"); 3351 ret = -EINVAL; 3352 goto fail_alloc; 3353 } 3354 3355 if (!btrfs_super_root(disk_super)) { 3356 btrfs_err(fs_info, "invalid superblock tree root bytenr"); 3357 ret = -EINVAL; 3358 goto fail_alloc; 3359 } 3360 3361 /* check FS state, whether FS is broken. */ 3362 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 3363 WRITE_ONCE(fs_info->fs_error, -EUCLEAN); 3364 3365 /* Set up fs_info before parsing mount options */ 3366 nodesize = btrfs_super_nodesize(disk_super); 3367 sectorsize = btrfs_super_sectorsize(disk_super); 3368 stripesize = sectorsize; 3369 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 3370 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 3371 3372 fs_info->nodesize = nodesize; 3373 fs_info->nodesize_bits = ilog2(nodesize); 3374 fs_info->sectorsize = sectorsize; 3375 fs_info->sectorsize_bits = ilog2(sectorsize); 3376 fs_info->block_min_order = ilog2(round_up(sectorsize, PAGE_SIZE) >> PAGE_SHIFT); 3377 fs_info->block_max_order = ilog2((BITS_PER_LONG << fs_info->sectorsize_bits) >> PAGE_SHIFT); 3378 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size; 3379 fs_info->stripesize = stripesize; 3380 fs_info->fs_devices->fs_info = fs_info; 3381 3382 if (fs_info->sectorsize > PAGE_SIZE) 3383 btrfs_warn(fs_info, 3384 "support for block size %u with page size %lu is experimental, some features may be missing", 3385 fs_info->sectorsize, PAGE_SIZE); 3386 /* 3387 * Handle the space caching options appropriately now that we have the 3388 * super block loaded and validated. 3389 */ 3390 btrfs_set_free_space_cache_settings(fs_info); 3391 3392 if (!btrfs_check_options(fs_info, &fs_info->mount_opt, sb->s_flags)) { 3393 ret = -EINVAL; 3394 goto fail_alloc; 3395 } 3396 3397 ret = btrfs_check_features(fs_info, !sb_rdonly(sb)); 3398 if (ret < 0) 3399 goto fail_alloc; 3400 3401 /* 3402 * At this point our mount options are validated, if we set ->max_inline 3403 * to something non-standard make sure we truncate it to sectorsize. 3404 */ 3405 fs_info->max_inline = min_t(u64, fs_info->max_inline, fs_info->sectorsize); 3406 3407 ret = btrfs_alloc_compress_wsm(fs_info); 3408 if (ret) 3409 goto fail_sb_buffer; 3410 ret = btrfs_init_workqueues(fs_info); 3411 if (ret) 3412 goto fail_sb_buffer; 3413 3414 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 3415 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 3416 3417 /* Update the values for the current filesystem. */ 3418 sb->s_blocksize = sectorsize; 3419 sb->s_blocksize_bits = blksize_bits(sectorsize); 3420 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE); 3421 3422 mutex_lock(&fs_info->chunk_mutex); 3423 ret = btrfs_read_sys_array(fs_info); 3424 mutex_unlock(&fs_info->chunk_mutex); 3425 if (ret) { 3426 btrfs_err(fs_info, "failed to read the system array: %d", ret); 3427 goto fail_sb_buffer; 3428 } 3429 3430 generation = btrfs_super_chunk_root_generation(disk_super); 3431 level = btrfs_super_chunk_root_level(disk_super); 3432 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super), 3433 generation, level); 3434 if (ret) { 3435 btrfs_err(fs_info, "failed to read chunk root"); 3436 goto fail_tree_roots; 3437 } 3438 3439 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 3440 offsetof(struct btrfs_header, chunk_tree_uuid), 3441 BTRFS_UUID_SIZE); 3442 3443 ret = btrfs_read_chunk_tree(fs_info); 3444 if (ret) { 3445 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 3446 goto fail_tree_roots; 3447 } 3448 3449 /* 3450 * At this point we know all the devices that make this filesystem, 3451 * including the seed devices but we don't know yet if the replace 3452 * target is required. So free devices that are not part of this 3453 * filesystem but skip the replace target device which is checked 3454 * below in btrfs_init_dev_replace(). 3455 */ 3456 btrfs_free_extra_devids(fs_devices); 3457 if (unlikely(!fs_devices->latest_dev->bdev)) { 3458 btrfs_err(fs_info, "failed to read devices"); 3459 ret = -EIO; 3460 goto fail_tree_roots; 3461 } 3462 3463 ret = init_tree_roots(fs_info); 3464 if (ret) 3465 goto fail_tree_roots; 3466 3467 /* 3468 * Get zone type information of zoned block devices. This will also 3469 * handle emulation of a zoned filesystem if a regular device has the 3470 * zoned incompat feature flag set. 3471 */ 3472 ret = btrfs_get_dev_zone_info_all_devices(fs_info); 3473 if (ret) { 3474 btrfs_err(fs_info, 3475 "zoned: failed to read device zone info: %d", ret); 3476 goto fail_block_groups; 3477 } 3478 3479 /* 3480 * If we have a uuid root and we're not being told to rescan we need to 3481 * check the generation here so we can set the 3482 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the 3483 * transaction during a balance or the log replay without updating the 3484 * uuid generation, and then if we crash we would rescan the uuid tree, 3485 * even though it was perfectly fine. 3486 */ 3487 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) && 3488 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super)) 3489 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3490 3491 ret = btrfs_verify_dev_extents(fs_info); 3492 if (ret) { 3493 btrfs_err(fs_info, 3494 "failed to verify dev extents against chunks: %d", 3495 ret); 3496 goto fail_block_groups; 3497 } 3498 ret = btrfs_recover_balance(fs_info); 3499 if (ret) { 3500 btrfs_err(fs_info, "failed to recover balance: %d", ret); 3501 goto fail_block_groups; 3502 } 3503 3504 ret = btrfs_init_dev_stats(fs_info); 3505 if (ret) { 3506 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3507 goto fail_block_groups; 3508 } 3509 3510 ret = btrfs_init_dev_replace(fs_info); 3511 if (ret) { 3512 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3513 goto fail_block_groups; 3514 } 3515 3516 ret = btrfs_check_zoned_mode(fs_info); 3517 if (ret) { 3518 btrfs_err(fs_info, "failed to initialize zoned mode: %d", 3519 ret); 3520 goto fail_block_groups; 3521 } 3522 3523 ret = btrfs_sysfs_add_fsid(fs_devices); 3524 if (ret) { 3525 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3526 ret); 3527 goto fail_block_groups; 3528 } 3529 3530 ret = btrfs_sysfs_add_mounted(fs_info); 3531 if (ret) { 3532 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3533 goto fail_fsdev_sysfs; 3534 } 3535 3536 ret = btrfs_init_space_info(fs_info); 3537 if (ret) { 3538 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3539 goto fail_sysfs; 3540 } 3541 3542 ret = btrfs_read_block_groups(fs_info); 3543 if (ret) { 3544 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3545 goto fail_sysfs; 3546 } 3547 3548 btrfs_zoned_reserve_data_reloc_bg(fs_info); 3549 btrfs_free_zone_cache(fs_info); 3550 3551 btrfs_check_active_zone_reservation(fs_info); 3552 3553 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices && 3554 !btrfs_check_rw_degradable(fs_info, NULL)) { 3555 btrfs_warn(fs_info, 3556 "writable mount is not allowed due to too many missing devices"); 3557 ret = -EINVAL; 3558 goto fail_sysfs; 3559 } 3560 3561 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info, 3562 "btrfs-cleaner"); 3563 if (IS_ERR(fs_info->cleaner_kthread)) { 3564 ret = PTR_ERR(fs_info->cleaner_kthread); 3565 goto fail_sysfs; 3566 } 3567 3568 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3569 tree_root, 3570 "btrfs-transaction"); 3571 if (IS_ERR(fs_info->transaction_kthread)) { 3572 ret = PTR_ERR(fs_info->transaction_kthread); 3573 goto fail_cleaner; 3574 } 3575 3576 ret = btrfs_read_qgroup_config(fs_info); 3577 if (ret) 3578 goto fail_trans_kthread; 3579 3580 if (btrfs_build_ref_tree(fs_info)) 3581 btrfs_err(fs_info, "couldn't build ref tree"); 3582 3583 /* do not make disk changes in broken FS or nologreplay is given */ 3584 if (btrfs_super_log_root(disk_super) != 0 && 3585 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3586 btrfs_info(fs_info, "start tree-log replay"); 3587 ret = btrfs_replay_log(fs_info, fs_devices); 3588 if (ret) 3589 goto fail_qgroup; 3590 } 3591 3592 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true); 3593 if (IS_ERR(fs_info->fs_root)) { 3594 ret = PTR_ERR(fs_info->fs_root); 3595 btrfs_warn(fs_info, "failed to read fs tree: %d", ret); 3596 fs_info->fs_root = NULL; 3597 goto fail_qgroup; 3598 } 3599 3600 if (sb_rdonly(sb)) 3601 return 0; 3602 3603 ret = btrfs_start_pre_rw_mount(fs_info); 3604 if (ret) { 3605 close_ctree(fs_info); 3606 return ret; 3607 } 3608 btrfs_discard_resume(fs_info); 3609 3610 if (fs_info->uuid_root && 3611 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3612 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) { 3613 btrfs_info(fs_info, "checking UUID tree"); 3614 ret = btrfs_check_uuid_tree(fs_info); 3615 if (ret) { 3616 btrfs_warn(fs_info, 3617 "failed to check the UUID tree: %d", ret); 3618 close_ctree(fs_info); 3619 return ret; 3620 } 3621 } 3622 3623 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3624 3625 /* Kick the cleaner thread so it'll start deleting snapshots. */ 3626 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags)) 3627 wake_up_process(fs_info->cleaner_kthread); 3628 3629 return 0; 3630 3631 fail_qgroup: 3632 btrfs_free_qgroup_config(fs_info); 3633 fail_trans_kthread: 3634 kthread_stop(fs_info->transaction_kthread); 3635 btrfs_cleanup_transaction(fs_info); 3636 btrfs_free_fs_roots(fs_info); 3637 fail_cleaner: 3638 kthread_stop(fs_info->cleaner_kthread); 3639 3640 /* 3641 * make sure we're done with the btree inode before we stop our 3642 * kthreads 3643 */ 3644 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3645 3646 fail_sysfs: 3647 btrfs_sysfs_remove_mounted(fs_info); 3648 3649 fail_fsdev_sysfs: 3650 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3651 3652 fail_block_groups: 3653 btrfs_put_block_group_cache(fs_info); 3654 3655 fail_tree_roots: 3656 if (fs_info->data_reloc_root) 3657 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root); 3658 free_root_pointers(fs_info, true); 3659 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3660 3661 fail_sb_buffer: 3662 btrfs_stop_all_workers(fs_info); 3663 btrfs_free_block_groups(fs_info); 3664 fail_alloc: 3665 btrfs_mapping_tree_free(fs_info); 3666 3667 iput(fs_info->btree_inode); 3668 fail: 3669 ASSERT(ret < 0); 3670 return ret; 3671 } 3672 ALLOW_ERROR_INJECTION(open_ctree, ERRNO); 3673 3674 static void btrfs_end_super_write(struct bio *bio) 3675 { 3676 struct btrfs_device *device = bio->bi_private; 3677 struct folio_iter fi; 3678 3679 bio_for_each_folio_all(fi, bio) { 3680 if (bio->bi_status) { 3681 btrfs_warn_rl(device->fs_info, 3682 "lost super block write due to IO error on %s (%d)", 3683 btrfs_dev_name(device), 3684 blk_status_to_errno(bio->bi_status)); 3685 btrfs_dev_stat_inc_and_print(device, 3686 BTRFS_DEV_STAT_WRITE_ERRS); 3687 /* Ensure failure if the primary sb fails. */ 3688 if (bio->bi_opf & REQ_FUA) 3689 atomic_add(BTRFS_SUPER_PRIMARY_WRITE_ERROR, 3690 &device->sb_write_errors); 3691 else 3692 atomic_inc(&device->sb_write_errors); 3693 } 3694 folio_unlock(fi.folio); 3695 folio_put(fi.folio); 3696 } 3697 3698 bio_put(bio); 3699 } 3700 3701 /* 3702 * Write superblock @sb to the @device. Do not wait for completion, all the 3703 * folios we use for writing are locked. 3704 * 3705 * Write @max_mirrors copies of the superblock, where 0 means default that fit 3706 * the expected device size at commit time. Note that max_mirrors must be 3707 * same for write and wait phases. 3708 * 3709 * Return number of errors when folio is not found or submission fails. 3710 */ 3711 static int write_dev_supers(struct btrfs_device *device, 3712 struct btrfs_super_block *sb, int max_mirrors) 3713 { 3714 struct btrfs_fs_info *fs_info = device->fs_info; 3715 struct address_space *mapping = device->bdev->bd_mapping; 3716 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3717 int i; 3718 int ret; 3719 u64 bytenr, bytenr_orig; 3720 3721 atomic_set(&device->sb_write_errors, 0); 3722 3723 if (max_mirrors == 0) 3724 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3725 3726 shash->tfm = fs_info->csum_shash; 3727 3728 for (i = 0; i < max_mirrors; i++) { 3729 struct folio *folio; 3730 struct bio *bio; 3731 struct btrfs_super_block *disk_super; 3732 size_t offset; 3733 3734 bytenr_orig = btrfs_sb_offset(i); 3735 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr); 3736 if (ret == -ENOENT) { 3737 continue; 3738 } else if (ret < 0) { 3739 btrfs_err(device->fs_info, 3740 "couldn't get super block location for mirror %d error %d", 3741 i, ret); 3742 atomic_inc(&device->sb_write_errors); 3743 continue; 3744 } 3745 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3746 device->commit_total_bytes) 3747 break; 3748 3749 btrfs_set_super_bytenr(sb, bytenr_orig); 3750 3751 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE, 3752 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, 3753 sb->csum); 3754 3755 folio = __filemap_get_folio(mapping, bytenr >> PAGE_SHIFT, 3756 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, 3757 GFP_NOFS); 3758 if (IS_ERR(folio)) { 3759 btrfs_err(device->fs_info, 3760 "couldn't get super block page for bytenr %llu error %ld", 3761 bytenr, PTR_ERR(folio)); 3762 atomic_inc(&device->sb_write_errors); 3763 continue; 3764 } 3765 3766 offset = offset_in_folio(folio, bytenr); 3767 disk_super = folio_address(folio) + offset; 3768 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE); 3769 3770 /* 3771 * Directly use bios here instead of relying on the page cache 3772 * to do I/O, so we don't lose the ability to do integrity 3773 * checking. 3774 */ 3775 bio = bio_alloc(device->bdev, 1, 3776 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO, 3777 GFP_NOFS); 3778 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT; 3779 bio->bi_private = device; 3780 bio->bi_end_io = btrfs_end_super_write; 3781 bio_add_folio_nofail(bio, folio, BTRFS_SUPER_INFO_SIZE, offset); 3782 3783 /* 3784 * We FUA only the first super block. The others we allow to 3785 * go down lazy and there's a short window where the on-disk 3786 * copies might still contain the older version. 3787 */ 3788 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 3789 bio->bi_opf |= REQ_FUA; 3790 submit_bio(bio); 3791 3792 if (btrfs_advance_sb_log(device, i)) 3793 atomic_inc(&device->sb_write_errors); 3794 } 3795 return atomic_read(&device->sb_write_errors) < i ? 0 : -1; 3796 } 3797 3798 /* 3799 * Wait for write completion of superblocks done by write_dev_supers, 3800 * @max_mirrors same for write and wait phases. 3801 * 3802 * Return -1 if primary super block write failed or when there were no super block 3803 * copies written. Otherwise 0. 3804 */ 3805 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 3806 { 3807 int i; 3808 int errors = 0; 3809 bool primary_failed = false; 3810 int ret; 3811 u64 bytenr; 3812 3813 if (max_mirrors == 0) 3814 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3815 3816 for (i = 0; i < max_mirrors; i++) { 3817 struct folio *folio; 3818 3819 ret = btrfs_sb_log_location(device, i, READ, &bytenr); 3820 if (ret == -ENOENT) { 3821 break; 3822 } else if (ret < 0) { 3823 errors++; 3824 if (i == 0) 3825 primary_failed = true; 3826 continue; 3827 } 3828 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3829 device->commit_total_bytes) 3830 break; 3831 3832 folio = filemap_get_folio(device->bdev->bd_mapping, 3833 bytenr >> PAGE_SHIFT); 3834 /* If the folio has been removed, then we know it completed. */ 3835 if (IS_ERR(folio)) 3836 continue; 3837 3838 /* Folio will be unlocked once the write completes. */ 3839 folio_wait_locked(folio); 3840 folio_put(folio); 3841 } 3842 3843 errors += atomic_read(&device->sb_write_errors); 3844 if (errors >= BTRFS_SUPER_PRIMARY_WRITE_ERROR) 3845 primary_failed = true; 3846 if (primary_failed) { 3847 btrfs_err(device->fs_info, "error writing primary super block to device %llu", 3848 device->devid); 3849 return -1; 3850 } 3851 3852 return errors < i ? 0 : -1; 3853 } 3854 3855 /* 3856 * endio for the write_dev_flush, this will wake anyone waiting 3857 * for the barrier when it is done 3858 */ 3859 static void btrfs_end_empty_barrier(struct bio *bio) 3860 { 3861 bio_uninit(bio); 3862 complete(bio->bi_private); 3863 } 3864 3865 /* 3866 * Submit a flush request to the device if it supports it. Error handling is 3867 * done in the waiting counterpart. 3868 */ 3869 static void write_dev_flush(struct btrfs_device *device) 3870 { 3871 struct bio *bio = &device->flush_bio; 3872 3873 device->last_flush_error = BLK_STS_OK; 3874 3875 bio_init(bio, device->bdev, NULL, 0, 3876 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH); 3877 bio->bi_end_io = btrfs_end_empty_barrier; 3878 init_completion(&device->flush_wait); 3879 bio->bi_private = &device->flush_wait; 3880 submit_bio(bio); 3881 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3882 } 3883 3884 /* 3885 * If the flush bio has been submitted by write_dev_flush, wait for it. 3886 * Return true for any error, and false otherwise. 3887 */ 3888 static bool wait_dev_flush(struct btrfs_device *device) 3889 { 3890 struct bio *bio = &device->flush_bio; 3891 3892 if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) 3893 return false; 3894 3895 wait_for_completion_io(&device->flush_wait); 3896 3897 if (bio->bi_status) { 3898 device->last_flush_error = bio->bi_status; 3899 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS); 3900 return true; 3901 } 3902 3903 return false; 3904 } 3905 3906 /* 3907 * send an empty flush down to each device in parallel, 3908 * then wait for them 3909 */ 3910 static int barrier_all_devices(struct btrfs_fs_info *info) 3911 { 3912 struct list_head *head; 3913 struct btrfs_device *dev; 3914 int errors_wait = 0; 3915 3916 lockdep_assert_held(&info->fs_devices->device_list_mutex); 3917 /* send down all the barriers */ 3918 head = &info->fs_devices->devices; 3919 list_for_each_entry(dev, head, dev_list) { 3920 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3921 continue; 3922 if (!dev->bdev) 3923 continue; 3924 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3925 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3926 continue; 3927 3928 write_dev_flush(dev); 3929 } 3930 3931 /* wait for all the barriers */ 3932 list_for_each_entry(dev, head, dev_list) { 3933 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3934 continue; 3935 if (!dev->bdev) { 3936 errors_wait++; 3937 continue; 3938 } 3939 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3940 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3941 continue; 3942 3943 if (wait_dev_flush(dev)) 3944 errors_wait++; 3945 } 3946 3947 /* 3948 * Checks last_flush_error of disks in order to determine the device 3949 * state. 3950 */ 3951 if (unlikely(errors_wait && !btrfs_check_rw_degradable(info, NULL))) 3952 return -EIO; 3953 3954 return 0; 3955 } 3956 3957 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 3958 { 3959 int raid_type; 3960 int min_tolerated = INT_MAX; 3961 3962 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 3963 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 3964 min_tolerated = min_t(int, min_tolerated, 3965 btrfs_raid_array[BTRFS_RAID_SINGLE]. 3966 tolerated_failures); 3967 3968 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 3969 if (raid_type == BTRFS_RAID_SINGLE) 3970 continue; 3971 if (!(flags & btrfs_raid_array[raid_type].bg_flag)) 3972 continue; 3973 min_tolerated = min_t(int, min_tolerated, 3974 btrfs_raid_array[raid_type]. 3975 tolerated_failures); 3976 } 3977 3978 if (min_tolerated == INT_MAX) { 3979 btrfs_warn(NULL, "unknown raid flag: %llu", flags); 3980 min_tolerated = 0; 3981 } 3982 3983 return min_tolerated; 3984 } 3985 3986 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 3987 { 3988 struct list_head *head; 3989 struct btrfs_device *dev; 3990 struct btrfs_super_block *sb; 3991 struct btrfs_dev_item *dev_item; 3992 int ret; 3993 int do_barriers; 3994 int max_errors; 3995 int total_errors = 0; 3996 u64 flags; 3997 3998 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 3999 4000 /* 4001 * max_mirrors == 0 indicates we're from commit_transaction, 4002 * not from fsync where the tree roots in fs_info have not 4003 * been consistent on disk. 4004 */ 4005 if (max_mirrors == 0) 4006 backup_super_roots(fs_info); 4007 4008 sb = fs_info->super_for_commit; 4009 dev_item = &sb->dev_item; 4010 4011 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4012 head = &fs_info->fs_devices->devices; 4013 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 4014 4015 if (do_barriers) { 4016 ret = barrier_all_devices(fs_info); 4017 if (ret) { 4018 mutex_unlock( 4019 &fs_info->fs_devices->device_list_mutex); 4020 btrfs_handle_fs_error(fs_info, ret, 4021 "errors while submitting device barriers."); 4022 return ret; 4023 } 4024 } 4025 4026 list_for_each_entry(dev, head, dev_list) { 4027 if (!dev->bdev) { 4028 total_errors++; 4029 continue; 4030 } 4031 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4032 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4033 continue; 4034 4035 btrfs_set_stack_device_generation(dev_item, 0); 4036 btrfs_set_stack_device_type(dev_item, dev->type); 4037 btrfs_set_stack_device_id(dev_item, dev->devid); 4038 btrfs_set_stack_device_total_bytes(dev_item, 4039 dev->commit_total_bytes); 4040 btrfs_set_stack_device_bytes_used(dev_item, 4041 dev->commit_bytes_used); 4042 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 4043 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 4044 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 4045 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 4046 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid, 4047 BTRFS_FSID_SIZE); 4048 4049 flags = btrfs_super_flags(sb); 4050 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 4051 4052 ret = btrfs_validate_write_super(fs_info, sb); 4053 if (unlikely(ret < 0)) { 4054 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4055 btrfs_handle_fs_error(fs_info, -EUCLEAN, 4056 "unexpected superblock corruption detected"); 4057 return -EUCLEAN; 4058 } 4059 4060 ret = write_dev_supers(dev, sb, max_mirrors); 4061 if (ret) 4062 total_errors++; 4063 } 4064 if (unlikely(total_errors > max_errors)) { 4065 btrfs_err(fs_info, "%d errors while writing supers", 4066 total_errors); 4067 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4068 4069 /* FUA is masked off if unsupported and can't be the reason */ 4070 btrfs_handle_fs_error(fs_info, -EIO, 4071 "%d errors while writing supers", 4072 total_errors); 4073 return -EIO; 4074 } 4075 4076 total_errors = 0; 4077 list_for_each_entry(dev, head, dev_list) { 4078 if (!dev->bdev) 4079 continue; 4080 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4081 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4082 continue; 4083 4084 ret = wait_dev_supers(dev, max_mirrors); 4085 if (ret) 4086 total_errors++; 4087 } 4088 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4089 if (unlikely(total_errors > max_errors)) { 4090 btrfs_handle_fs_error(fs_info, -EIO, 4091 "%d errors while writing supers", 4092 total_errors); 4093 return -EIO; 4094 } 4095 return 0; 4096 } 4097 4098 /* Drop a fs root from the radix tree and free it. */ 4099 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 4100 struct btrfs_root *root) 4101 { 4102 bool drop_ref = false; 4103 4104 spin_lock(&fs_info->fs_roots_radix_lock); 4105 radix_tree_delete(&fs_info->fs_roots_radix, 4106 (unsigned long)btrfs_root_id(root)); 4107 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 4108 drop_ref = true; 4109 spin_unlock(&fs_info->fs_roots_radix_lock); 4110 4111 if (BTRFS_FS_ERROR(fs_info)) { 4112 ASSERT(root->log_root == NULL); 4113 if (root->reloc_root) { 4114 btrfs_put_root(root->reloc_root); 4115 root->reloc_root = NULL; 4116 } 4117 } 4118 4119 if (drop_ref) 4120 btrfs_put_root(root); 4121 } 4122 4123 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 4124 { 4125 mutex_lock(&fs_info->cleaner_mutex); 4126 btrfs_run_delayed_iputs(fs_info); 4127 mutex_unlock(&fs_info->cleaner_mutex); 4128 wake_up_process(fs_info->cleaner_kthread); 4129 4130 /* wait until ongoing cleanup work done */ 4131 down_write(&fs_info->cleanup_work_sem); 4132 up_write(&fs_info->cleanup_work_sem); 4133 4134 return btrfs_commit_current_transaction(fs_info->tree_root); 4135 } 4136 4137 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info) 4138 { 4139 struct btrfs_transaction *trans; 4140 struct btrfs_transaction *tmp; 4141 bool found = false; 4142 4143 /* 4144 * This function is only called at the very end of close_ctree(), 4145 * thus no other running transaction, no need to take trans_lock. 4146 */ 4147 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags)); 4148 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) { 4149 struct extent_state *cached = NULL; 4150 u64 dirty_bytes = 0; 4151 u64 cur = 0; 4152 u64 found_start; 4153 u64 found_end; 4154 4155 found = true; 4156 while (btrfs_find_first_extent_bit(&trans->dirty_pages, cur, 4157 &found_start, &found_end, 4158 EXTENT_DIRTY, &cached)) { 4159 dirty_bytes += found_end + 1 - found_start; 4160 cur = found_end + 1; 4161 } 4162 btrfs_warn(fs_info, 4163 "transaction %llu (with %llu dirty metadata bytes) is not committed", 4164 trans->transid, dirty_bytes); 4165 btrfs_cleanup_one_transaction(trans); 4166 4167 if (trans == fs_info->running_transaction) 4168 fs_info->running_transaction = NULL; 4169 list_del_init(&trans->list); 4170 4171 btrfs_put_transaction(trans); 4172 trace_btrfs_transaction_commit(fs_info); 4173 } 4174 ASSERT(!found); 4175 } 4176 4177 void __cold close_ctree(struct btrfs_fs_info *fs_info) 4178 { 4179 int ret; 4180 4181 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 4182 4183 /* 4184 * If we had UNFINISHED_DROPS we could still be processing them, so 4185 * clear that bit and wake up relocation so it can stop. 4186 * We must do this before stopping the block group reclaim task, because 4187 * at btrfs_relocate_block_group() we wait for this bit, and after the 4188 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we 4189 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will 4190 * return 1. 4191 */ 4192 btrfs_wake_unfinished_drop(fs_info); 4193 4194 /* 4195 * We may have the reclaim task running and relocating a data block group, 4196 * in which case it may create delayed iputs. So stop it before we park 4197 * the cleaner kthread otherwise we can get new delayed iputs after 4198 * parking the cleaner, and that can make the async reclaim task to hang 4199 * if it's waiting for delayed iputs to complete, since the cleaner is 4200 * parked and can not run delayed iputs - this will make us hang when 4201 * trying to stop the async reclaim task. 4202 */ 4203 cancel_work_sync(&fs_info->reclaim_bgs_work); 4204 /* 4205 * We don't want the cleaner to start new transactions, add more delayed 4206 * iputs, etc. while we're closing. We can't use kthread_stop() yet 4207 * because that frees the task_struct, and the transaction kthread might 4208 * still try to wake up the cleaner. 4209 */ 4210 kthread_park(fs_info->cleaner_kthread); 4211 4212 /* wait for the qgroup rescan worker to stop */ 4213 btrfs_qgroup_wait_for_completion(fs_info, false); 4214 4215 /* wait for the uuid_scan task to finish */ 4216 down(&fs_info->uuid_tree_rescan_sem); 4217 /* avoid complains from lockdep et al., set sem back to initial state */ 4218 up(&fs_info->uuid_tree_rescan_sem); 4219 4220 /* pause restriper - we want to resume on mount */ 4221 btrfs_pause_balance(fs_info); 4222 4223 btrfs_dev_replace_suspend_for_unmount(fs_info); 4224 4225 btrfs_scrub_cancel(fs_info); 4226 4227 /* wait for any defraggers to finish */ 4228 wait_event(fs_info->transaction_wait, 4229 (atomic_read(&fs_info->defrag_running) == 0)); 4230 4231 /* clear out the rbtree of defraggable inodes */ 4232 btrfs_cleanup_defrag_inodes(fs_info); 4233 4234 /* 4235 * Handle the error fs first, as it will flush and wait for all ordered 4236 * extents. This will generate delayed iputs, thus we want to handle 4237 * it first. 4238 */ 4239 if (unlikely(BTRFS_FS_ERROR(fs_info))) 4240 btrfs_error_commit_super(fs_info); 4241 4242 /* 4243 * Wait for any fixup workers to complete. 4244 * If we don't wait for them here and they are still running by the time 4245 * we call kthread_stop() against the cleaner kthread further below, we 4246 * get an use-after-free on the cleaner because the fixup worker adds an 4247 * inode to the list of delayed iputs and then attempts to wakeup the 4248 * cleaner kthread, which was already stopped and destroyed. We parked 4249 * already the cleaner, but below we run all pending delayed iputs. 4250 */ 4251 btrfs_flush_workqueue(fs_info->fixup_workers); 4252 /* 4253 * Similar case here, we have to wait for delalloc workers before we 4254 * proceed below and stop the cleaner kthread, otherwise we trigger a 4255 * use-after-tree on the cleaner kthread task_struct when a delalloc 4256 * worker running submit_compressed_extents() adds a delayed iput, which 4257 * does a wake up on the cleaner kthread, which was already freed below 4258 * when we call kthread_stop(). 4259 */ 4260 btrfs_flush_workqueue(fs_info->delalloc_workers); 4261 4262 /* 4263 * We can have ordered extents getting their last reference dropped from 4264 * the fs_info->workers queue because for async writes for data bios we 4265 * queue a work for that queue, at btrfs_wq_submit_bio(), that runs 4266 * run_one_async_done() which calls btrfs_bio_end_io() in case the bio 4267 * has an error, and that later function can do the final 4268 * btrfs_put_ordered_extent() on the ordered extent attached to the bio, 4269 * which adds a delayed iput for the inode. So we must flush the queue 4270 * so that we don't have delayed iputs after committing the current 4271 * transaction below and stopping the cleaner and transaction kthreads. 4272 */ 4273 btrfs_flush_workqueue(fs_info->workers); 4274 4275 /* 4276 * When finishing a compressed write bio we schedule a work queue item 4277 * to finish an ordered extent - end_bbio_compressed_write() 4278 * calls btrfs_finish_ordered_extent() which in turns does a call to 4279 * btrfs_queue_ordered_fn(), and that queues the ordered extent 4280 * completion either in the endio_write_workers work queue or in the 4281 * fs_info->endio_freespace_worker work queue. We flush those queues 4282 * below, so before we flush them we must flush this queue for the 4283 * workers of compressed writes. 4284 */ 4285 flush_workqueue(fs_info->endio_workers); 4286 4287 /* 4288 * After we parked the cleaner kthread, ordered extents may have 4289 * completed and created new delayed iputs. If one of the async reclaim 4290 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we 4291 * can hang forever trying to stop it, because if a delayed iput is 4292 * added after it ran btrfs_run_delayed_iputs() and before it called 4293 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is 4294 * no one else to run iputs. 4295 * 4296 * So wait for all ongoing ordered extents to complete and then run 4297 * delayed iputs. This works because once we reach this point no one 4298 * can create new ordered extents, but delayed iputs can still be added 4299 * by a reclaim worker (see comments further below). 4300 * 4301 * Also note that btrfs_wait_ordered_roots() is not safe here, because 4302 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent, 4303 * but the delayed iput for the respective inode is made only when doing 4304 * the final btrfs_put_ordered_extent() (which must happen at 4305 * btrfs_finish_ordered_io() when we are unmounting). 4306 */ 4307 btrfs_flush_workqueue(fs_info->endio_write_workers); 4308 /* Ordered extents for free space inodes. */ 4309 btrfs_flush_workqueue(fs_info->endio_freespace_worker); 4310 /* 4311 * Run delayed iputs in case an async reclaim worker is waiting for them 4312 * to be run as mentioned above. 4313 */ 4314 btrfs_run_delayed_iputs(fs_info); 4315 4316 cancel_work_sync(&fs_info->async_reclaim_work); 4317 cancel_work_sync(&fs_info->async_data_reclaim_work); 4318 cancel_work_sync(&fs_info->preempt_reclaim_work); 4319 cancel_work_sync(&fs_info->em_shrinker_work); 4320 4321 /* 4322 * Run delayed iputs again because an async reclaim worker may have 4323 * added new ones if it was flushing delalloc: 4324 * 4325 * shrink_delalloc() -> btrfs_start_delalloc_roots() -> 4326 * start_delalloc_inodes() -> btrfs_add_delayed_iput() 4327 */ 4328 btrfs_run_delayed_iputs(fs_info); 4329 4330 /* There should be no more workload to generate new delayed iputs. */ 4331 set_bit(BTRFS_FS_STATE_NO_DELAYED_IPUT, &fs_info->fs_state); 4332 4333 /* Cancel or finish ongoing discard work */ 4334 btrfs_discard_cleanup(fs_info); 4335 4336 if (!sb_rdonly(fs_info->sb)) { 4337 /* 4338 * The cleaner kthread is stopped, so do one final pass over 4339 * unused block groups. 4340 */ 4341 btrfs_delete_unused_bgs(fs_info); 4342 4343 /* 4344 * There might be existing delayed inode workers still running 4345 * and holding an empty delayed inode item. We must wait for 4346 * them to complete first because they can create a transaction. 4347 * This happens when someone calls btrfs_balance_delayed_items() 4348 * and then a transaction commit runs the same delayed nodes 4349 * before any delayed worker has done something with the nodes. 4350 * We must wait for any worker here and not at transaction 4351 * commit time since that could cause a deadlock. 4352 * This is a very rare case. 4353 */ 4354 btrfs_flush_workqueue(fs_info->delayed_workers); 4355 4356 ret = btrfs_commit_super(fs_info); 4357 if (ret) 4358 btrfs_err(fs_info, "commit super ret %d", ret); 4359 } 4360 4361 kthread_stop(fs_info->transaction_kthread); 4362 kthread_stop(fs_info->cleaner_kthread); 4363 4364 ASSERT(list_empty(&fs_info->delayed_iputs)); 4365 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 4366 4367 if (btrfs_check_quota_leak(fs_info)) { 4368 DEBUG_WARN("qgroup reserved space leaked"); 4369 btrfs_err(fs_info, "qgroup reserved space leaked"); 4370 } 4371 4372 btrfs_free_qgroup_config(fs_info); 4373 ASSERT(list_empty(&fs_info->delalloc_roots)); 4374 4375 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 4376 btrfs_info(fs_info, "at unmount delalloc count %lld", 4377 percpu_counter_sum(&fs_info->delalloc_bytes)); 4378 } 4379 4380 if (percpu_counter_sum(&fs_info->ordered_bytes)) 4381 btrfs_info(fs_info, "at unmount dio bytes count %lld", 4382 percpu_counter_sum(&fs_info->ordered_bytes)); 4383 4384 btrfs_sysfs_remove_mounted(fs_info); 4385 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 4386 4387 btrfs_put_block_group_cache(fs_info); 4388 4389 /* 4390 * we must make sure there is not any read request to 4391 * submit after we stopping all workers. 4392 */ 4393 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 4394 btrfs_stop_all_workers(fs_info); 4395 4396 /* We shouldn't have any transaction open at this point */ 4397 warn_about_uncommitted_trans(fs_info); 4398 4399 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 4400 free_root_pointers(fs_info, true); 4401 btrfs_free_fs_roots(fs_info); 4402 4403 /* 4404 * We must free the block groups after dropping the fs_roots as we could 4405 * have had an IO error and have left over tree log blocks that aren't 4406 * cleaned up until the fs roots are freed. This makes the block group 4407 * accounting appear to be wrong because there's pending reserved bytes, 4408 * so make sure we do the block group cleanup afterwards. 4409 */ 4410 btrfs_free_block_groups(fs_info); 4411 4412 iput(fs_info->btree_inode); 4413 4414 btrfs_mapping_tree_free(fs_info); 4415 } 4416 4417 void btrfs_mark_buffer_dirty(struct btrfs_trans_handle *trans, 4418 struct extent_buffer *buf) 4419 { 4420 struct btrfs_fs_info *fs_info = buf->fs_info; 4421 u64 transid = btrfs_header_generation(buf); 4422 4423 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4424 /* 4425 * This is a fast path so only do this check if we have sanity tests 4426 * enabled. Normal people shouldn't be using unmapped buffers as dirty 4427 * outside of the sanity tests. 4428 */ 4429 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) 4430 return; 4431 #endif 4432 /* This is an active transaction (its state < TRANS_STATE_UNBLOCKED). */ 4433 ASSERT(trans->transid == fs_info->generation); 4434 btrfs_assert_tree_write_locked(buf); 4435 if (unlikely(transid != fs_info->generation)) { 4436 btrfs_abort_transaction(trans, -EUCLEAN); 4437 btrfs_crit(fs_info, 4438 "dirty buffer transid mismatch, logical %llu found transid %llu running transid %llu", 4439 buf->start, transid, fs_info->generation); 4440 } 4441 set_extent_buffer_dirty(buf); 4442 } 4443 4444 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4445 int flush_delayed) 4446 { 4447 /* 4448 * looks as though older kernels can get into trouble with 4449 * this code, they end up stuck in balance_dirty_pages forever 4450 */ 4451 int ret; 4452 4453 if (current->flags & PF_MEMALLOC) 4454 return; 4455 4456 if (flush_delayed) 4457 btrfs_balance_delayed_items(fs_info); 4458 4459 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4460 BTRFS_DIRTY_METADATA_THRESH, 4461 fs_info->dirty_metadata_batch); 4462 if (ret > 0) { 4463 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4464 } 4465 } 4466 4467 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4468 { 4469 __btrfs_btree_balance_dirty(fs_info, 1); 4470 } 4471 4472 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4473 { 4474 __btrfs_btree_balance_dirty(fs_info, 0); 4475 } 4476 4477 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4478 { 4479 /* cleanup FS via transaction */ 4480 btrfs_cleanup_transaction(fs_info); 4481 4482 down_write(&fs_info->cleanup_work_sem); 4483 up_write(&fs_info->cleanup_work_sem); 4484 } 4485 4486 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info) 4487 { 4488 struct btrfs_root *gang[8]; 4489 u64 root_objectid = 0; 4490 int ret; 4491 4492 spin_lock(&fs_info->fs_roots_radix_lock); 4493 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4494 (void **)gang, root_objectid, 4495 ARRAY_SIZE(gang))) != 0) { 4496 int i; 4497 4498 for (i = 0; i < ret; i++) 4499 gang[i] = btrfs_grab_root(gang[i]); 4500 spin_unlock(&fs_info->fs_roots_radix_lock); 4501 4502 for (i = 0; i < ret; i++) { 4503 if (!gang[i]) 4504 continue; 4505 root_objectid = btrfs_root_id(gang[i]); 4506 btrfs_free_log(NULL, gang[i]); 4507 btrfs_put_root(gang[i]); 4508 } 4509 root_objectid++; 4510 spin_lock(&fs_info->fs_roots_radix_lock); 4511 } 4512 spin_unlock(&fs_info->fs_roots_radix_lock); 4513 btrfs_free_log_root_tree(NULL, fs_info); 4514 } 4515 4516 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4517 { 4518 struct btrfs_ordered_extent *ordered; 4519 4520 spin_lock(&root->ordered_extent_lock); 4521 /* 4522 * This will just short circuit the ordered completion stuff which will 4523 * make sure the ordered extent gets properly cleaned up. 4524 */ 4525 list_for_each_entry(ordered, &root->ordered_extents, 4526 root_extent_list) 4527 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4528 spin_unlock(&root->ordered_extent_lock); 4529 } 4530 4531 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4532 { 4533 struct btrfs_root *root; 4534 LIST_HEAD(splice); 4535 4536 spin_lock(&fs_info->ordered_root_lock); 4537 list_splice_init(&fs_info->ordered_roots, &splice); 4538 while (!list_empty(&splice)) { 4539 root = list_first_entry(&splice, struct btrfs_root, 4540 ordered_root); 4541 list_move_tail(&root->ordered_root, 4542 &fs_info->ordered_roots); 4543 4544 spin_unlock(&fs_info->ordered_root_lock); 4545 btrfs_destroy_ordered_extents(root); 4546 4547 cond_resched(); 4548 spin_lock(&fs_info->ordered_root_lock); 4549 } 4550 spin_unlock(&fs_info->ordered_root_lock); 4551 4552 /* 4553 * We need this here because if we've been flipped read-only we won't 4554 * get sync() from the umount, so we need to make sure any ordered 4555 * extents that haven't had their dirty pages IO start writeout yet 4556 * actually get run and error out properly. 4557 */ 4558 btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL); 4559 } 4560 4561 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4562 { 4563 struct btrfs_inode *btrfs_inode; 4564 LIST_HEAD(splice); 4565 4566 spin_lock(&root->delalloc_lock); 4567 list_splice_init(&root->delalloc_inodes, &splice); 4568 4569 while (!list_empty(&splice)) { 4570 struct inode *inode = NULL; 4571 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4572 delalloc_inodes); 4573 btrfs_del_delalloc_inode(btrfs_inode); 4574 spin_unlock(&root->delalloc_lock); 4575 4576 /* 4577 * Make sure we get a live inode and that it'll not disappear 4578 * meanwhile. 4579 */ 4580 inode = igrab(&btrfs_inode->vfs_inode); 4581 if (inode) { 4582 unsigned int nofs_flag; 4583 4584 nofs_flag = memalloc_nofs_save(); 4585 invalidate_inode_pages2(inode->i_mapping); 4586 memalloc_nofs_restore(nofs_flag); 4587 iput(inode); 4588 } 4589 spin_lock(&root->delalloc_lock); 4590 } 4591 spin_unlock(&root->delalloc_lock); 4592 } 4593 4594 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4595 { 4596 struct btrfs_root *root; 4597 LIST_HEAD(splice); 4598 4599 spin_lock(&fs_info->delalloc_root_lock); 4600 list_splice_init(&fs_info->delalloc_roots, &splice); 4601 while (!list_empty(&splice)) { 4602 root = list_first_entry(&splice, struct btrfs_root, 4603 delalloc_root); 4604 root = btrfs_grab_root(root); 4605 BUG_ON(!root); 4606 spin_unlock(&fs_info->delalloc_root_lock); 4607 4608 btrfs_destroy_delalloc_inodes(root); 4609 btrfs_put_root(root); 4610 4611 spin_lock(&fs_info->delalloc_root_lock); 4612 } 4613 spin_unlock(&fs_info->delalloc_root_lock); 4614 } 4615 4616 static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 4617 struct extent_io_tree *dirty_pages, 4618 int mark) 4619 { 4620 struct extent_buffer *eb; 4621 u64 start = 0; 4622 u64 end; 4623 4624 while (btrfs_find_first_extent_bit(dirty_pages, start, &start, &end, 4625 mark, NULL)) { 4626 btrfs_clear_extent_bit(dirty_pages, start, end, mark, NULL); 4627 while (start <= end) { 4628 eb = find_extent_buffer(fs_info, start); 4629 start += fs_info->nodesize; 4630 if (!eb) 4631 continue; 4632 4633 btrfs_tree_lock(eb); 4634 wait_on_extent_buffer_writeback(eb); 4635 btrfs_clear_buffer_dirty(NULL, eb); 4636 btrfs_tree_unlock(eb); 4637 4638 free_extent_buffer_stale(eb); 4639 } 4640 } 4641 } 4642 4643 static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 4644 struct extent_io_tree *unpin) 4645 { 4646 u64 start; 4647 u64 end; 4648 4649 while (1) { 4650 struct extent_state *cached_state = NULL; 4651 4652 /* 4653 * The btrfs_finish_extent_commit() may get the same range as 4654 * ours between find_first_extent_bit and clear_extent_dirty. 4655 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin 4656 * the same extent range. 4657 */ 4658 mutex_lock(&fs_info->unused_bg_unpin_mutex); 4659 if (!btrfs_find_first_extent_bit(unpin, 0, &start, &end, 4660 EXTENT_DIRTY, &cached_state)) { 4661 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4662 break; 4663 } 4664 4665 btrfs_clear_extent_dirty(unpin, start, end, &cached_state); 4666 btrfs_free_extent_state(cached_state); 4667 btrfs_error_unpin_extent_range(fs_info, start, end); 4668 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4669 cond_resched(); 4670 } 4671 } 4672 4673 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache) 4674 { 4675 struct inode *inode; 4676 4677 inode = cache->io_ctl.inode; 4678 if (inode) { 4679 unsigned int nofs_flag; 4680 4681 nofs_flag = memalloc_nofs_save(); 4682 invalidate_inode_pages2(inode->i_mapping); 4683 memalloc_nofs_restore(nofs_flag); 4684 4685 BTRFS_I(inode)->generation = 0; 4686 cache->io_ctl.inode = NULL; 4687 iput(inode); 4688 } 4689 ASSERT(cache->io_ctl.pages == NULL); 4690 btrfs_put_block_group(cache); 4691 } 4692 4693 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 4694 struct btrfs_fs_info *fs_info) 4695 { 4696 struct btrfs_block_group *cache; 4697 4698 spin_lock(&cur_trans->dirty_bgs_lock); 4699 while (!list_empty(&cur_trans->dirty_bgs)) { 4700 cache = list_first_entry(&cur_trans->dirty_bgs, 4701 struct btrfs_block_group, 4702 dirty_list); 4703 4704 if (!list_empty(&cache->io_list)) { 4705 spin_unlock(&cur_trans->dirty_bgs_lock); 4706 list_del_init(&cache->io_list); 4707 btrfs_cleanup_bg_io(cache); 4708 spin_lock(&cur_trans->dirty_bgs_lock); 4709 } 4710 4711 list_del_init(&cache->dirty_list); 4712 spin_lock(&cache->lock); 4713 cache->disk_cache_state = BTRFS_DC_ERROR; 4714 spin_unlock(&cache->lock); 4715 4716 spin_unlock(&cur_trans->dirty_bgs_lock); 4717 btrfs_put_block_group(cache); 4718 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info); 4719 spin_lock(&cur_trans->dirty_bgs_lock); 4720 } 4721 spin_unlock(&cur_trans->dirty_bgs_lock); 4722 4723 /* 4724 * Refer to the definition of io_bgs member for details why it's safe 4725 * to use it without any locking 4726 */ 4727 while (!list_empty(&cur_trans->io_bgs)) { 4728 cache = list_first_entry(&cur_trans->io_bgs, 4729 struct btrfs_block_group, 4730 io_list); 4731 4732 list_del_init(&cache->io_list); 4733 spin_lock(&cache->lock); 4734 cache->disk_cache_state = BTRFS_DC_ERROR; 4735 spin_unlock(&cache->lock); 4736 btrfs_cleanup_bg_io(cache); 4737 } 4738 } 4739 4740 static void btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info *fs_info) 4741 { 4742 struct btrfs_root *gang[8]; 4743 int i; 4744 int ret; 4745 4746 spin_lock(&fs_info->fs_roots_radix_lock); 4747 while (1) { 4748 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 4749 (void **)gang, 0, 4750 ARRAY_SIZE(gang), 4751 BTRFS_ROOT_TRANS_TAG); 4752 if (ret == 0) 4753 break; 4754 for (i = 0; i < ret; i++) { 4755 struct btrfs_root *root = gang[i]; 4756 4757 btrfs_qgroup_free_meta_all_pertrans(root); 4758 radix_tree_tag_clear(&fs_info->fs_roots_radix, 4759 (unsigned long)btrfs_root_id(root), 4760 BTRFS_ROOT_TRANS_TAG); 4761 } 4762 } 4763 spin_unlock(&fs_info->fs_roots_radix_lock); 4764 } 4765 4766 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans) 4767 { 4768 struct btrfs_fs_info *fs_info = cur_trans->fs_info; 4769 struct btrfs_device *dev, *tmp; 4770 4771 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 4772 ASSERT(list_empty(&cur_trans->dirty_bgs)); 4773 ASSERT(list_empty(&cur_trans->io_bgs)); 4774 4775 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list, 4776 post_commit_list) { 4777 list_del_init(&dev->post_commit_list); 4778 } 4779 4780 btrfs_destroy_delayed_refs(cur_trans); 4781 4782 cur_trans->state = TRANS_STATE_COMMIT_START; 4783 wake_up(&fs_info->transaction_blocked_wait); 4784 4785 cur_trans->state = TRANS_STATE_UNBLOCKED; 4786 wake_up(&fs_info->transaction_wait); 4787 4788 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 4789 EXTENT_DIRTY); 4790 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents); 4791 4792 cur_trans->state =TRANS_STATE_COMPLETED; 4793 wake_up(&cur_trans->commit_wait); 4794 } 4795 4796 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 4797 { 4798 struct btrfs_transaction *t; 4799 4800 mutex_lock(&fs_info->transaction_kthread_mutex); 4801 4802 spin_lock(&fs_info->trans_lock); 4803 while (!list_empty(&fs_info->trans_list)) { 4804 t = list_first_entry(&fs_info->trans_list, 4805 struct btrfs_transaction, list); 4806 if (t->state >= TRANS_STATE_COMMIT_PREP) { 4807 refcount_inc(&t->use_count); 4808 spin_unlock(&fs_info->trans_lock); 4809 btrfs_wait_for_commit(fs_info, t->transid); 4810 btrfs_put_transaction(t); 4811 spin_lock(&fs_info->trans_lock); 4812 continue; 4813 } 4814 if (t == fs_info->running_transaction) { 4815 t->state = TRANS_STATE_COMMIT_DOING; 4816 spin_unlock(&fs_info->trans_lock); 4817 /* 4818 * We wait for 0 num_writers since we don't hold a trans 4819 * handle open currently for this transaction. 4820 */ 4821 wait_event(t->writer_wait, 4822 atomic_read(&t->num_writers) == 0); 4823 } else { 4824 spin_unlock(&fs_info->trans_lock); 4825 } 4826 btrfs_cleanup_one_transaction(t); 4827 4828 spin_lock(&fs_info->trans_lock); 4829 if (t == fs_info->running_transaction) 4830 fs_info->running_transaction = NULL; 4831 list_del_init(&t->list); 4832 spin_unlock(&fs_info->trans_lock); 4833 4834 btrfs_put_transaction(t); 4835 trace_btrfs_transaction_commit(fs_info); 4836 spin_lock(&fs_info->trans_lock); 4837 } 4838 spin_unlock(&fs_info->trans_lock); 4839 btrfs_destroy_all_ordered_extents(fs_info); 4840 btrfs_destroy_delayed_inodes(fs_info); 4841 btrfs_assert_delayed_root_empty(fs_info); 4842 btrfs_destroy_all_delalloc_inodes(fs_info); 4843 btrfs_drop_all_logs(fs_info); 4844 btrfs_free_all_qgroup_pertrans(fs_info); 4845 mutex_unlock(&fs_info->transaction_kthread_mutex); 4846 4847 return 0; 4848 } 4849 4850 int btrfs_init_root_free_objectid(struct btrfs_root *root) 4851 { 4852 BTRFS_PATH_AUTO_FREE(path); 4853 int ret; 4854 struct extent_buffer *l; 4855 struct btrfs_key search_key; 4856 struct btrfs_key found_key; 4857 int slot; 4858 4859 path = btrfs_alloc_path(); 4860 if (!path) 4861 return -ENOMEM; 4862 4863 search_key.objectid = BTRFS_LAST_FREE_OBJECTID; 4864 search_key.type = -1; 4865 search_key.offset = (u64)-1; 4866 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 4867 if (ret < 0) 4868 return ret; 4869 if (unlikely(ret == 0)) { 4870 /* 4871 * Key with offset -1 found, there would have to exist a root 4872 * with such id, but this is out of valid range. 4873 */ 4874 return -EUCLEAN; 4875 } 4876 if (path->slots[0] > 0) { 4877 slot = path->slots[0] - 1; 4878 l = path->nodes[0]; 4879 btrfs_item_key_to_cpu(l, &found_key, slot); 4880 root->free_objectid = max_t(u64, found_key.objectid + 1, 4881 BTRFS_FIRST_FREE_OBJECTID); 4882 } else { 4883 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID; 4884 } 4885 4886 return 0; 4887 } 4888 4889 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid) 4890 { 4891 int ret; 4892 mutex_lock(&root->objectid_mutex); 4893 4894 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) { 4895 btrfs_warn(root->fs_info, 4896 "the objectid of root %llu reaches its highest value", 4897 btrfs_root_id(root)); 4898 ret = -ENOSPC; 4899 goto out; 4900 } 4901 4902 *objectid = root->free_objectid++; 4903 ret = 0; 4904 out: 4905 mutex_unlock(&root->objectid_mutex); 4906 return ret; 4907 } 4908