1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2009 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/rbtree.h>
11 #include <linux/slab.h>
12 #include <linux/error-injection.h>
13 #include "ctree.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "volumes.h"
17 #include "locking.h"
18 #include "btrfs_inode.h"
19 #include "async-thread.h"
20 #include "free-space-cache.h"
21 #include "qgroup.h"
22 #include "print-tree.h"
23 #include "delalloc-space.h"
24 #include "block-group.h"
25 #include "backref.h"
26 #include "misc.h"
27 #include "subpage.h"
28 #include "zoned.h"
29 #include "inode-item.h"
30 #include "space-info.h"
31 #include "fs.h"
32 #include "accessors.h"
33 #include "extent-tree.h"
34 #include "root-tree.h"
35 #include "file-item.h"
36 #include "relocation.h"
37 #include "super.h"
38 #include "tree-checker.h"
39 #include "raid-stripe-tree.h"
40
41 /*
42 * Relocation overview
43 *
44 * [What does relocation do]
45 *
46 * The objective of relocation is to relocate all extents of the target block
47 * group to other block groups.
48 * This is utilized by resize (shrink only), profile converting, compacting
49 * space, or balance routine to spread chunks over devices.
50 *
51 * Before | After
52 * ------------------------------------------------------------------
53 * BG A: 10 data extents | BG A: deleted
54 * BG B: 2 data extents | BG B: 10 data extents (2 old + 8 relocated)
55 * BG C: 1 extents | BG C: 3 data extents (1 old + 2 relocated)
56 *
57 * [How does relocation work]
58 *
59 * 1. Mark the target block group read-only
60 * New extents won't be allocated from the target block group.
61 *
62 * 2.1 Record each extent in the target block group
63 * To build a proper map of extents to be relocated.
64 *
65 * 2.2 Build data reloc tree and reloc trees
66 * Data reloc tree will contain an inode, recording all newly relocated
67 * data extents.
68 * There will be only one data reloc tree for one data block group.
69 *
70 * Reloc tree will be a special snapshot of its source tree, containing
71 * relocated tree blocks.
72 * Each tree referring to a tree block in target block group will get its
73 * reloc tree built.
74 *
75 * 2.3 Swap source tree with its corresponding reloc tree
76 * Each involved tree only refers to new extents after swap.
77 *
78 * 3. Cleanup reloc trees and data reloc tree.
79 * As old extents in the target block group are still referenced by reloc
80 * trees, we need to clean them up before really freeing the target block
81 * group.
82 *
83 * The main complexity is in steps 2.2 and 2.3.
84 *
85 * The entry point of relocation is relocate_block_group() function.
86 */
87
88 #define RELOCATION_RESERVED_NODES 256
89 /*
90 * map address of tree root to tree
91 */
92 struct mapping_node {
93 union {
94 /* Use rb_simple_node for search/insert */
95 struct {
96 struct rb_node rb_node;
97 u64 bytenr;
98 };
99
100 struct rb_simple_node simple_node;
101 };
102 void *data;
103 };
104
105 struct mapping_tree {
106 struct rb_root rb_root;
107 spinlock_t lock;
108 };
109
110 /*
111 * present a tree block to process
112 */
113 struct tree_block {
114 union {
115 /* Use rb_simple_node for search/insert */
116 struct {
117 struct rb_node rb_node;
118 u64 bytenr;
119 };
120
121 struct rb_simple_node simple_node;
122 };
123 u64 owner;
124 struct btrfs_key key;
125 u8 level;
126 bool key_ready;
127 };
128
129 #define MAX_EXTENTS 128
130
131 struct file_extent_cluster {
132 u64 start;
133 u64 end;
134 u64 boundary[MAX_EXTENTS];
135 unsigned int nr;
136 u64 owning_root;
137 };
138
139 /* Stages of data relocation. */
140 enum reloc_stage {
141 MOVE_DATA_EXTENTS,
142 UPDATE_DATA_PTRS
143 };
144
145 struct reloc_control {
146 /* block group to relocate */
147 struct btrfs_block_group *block_group;
148 /* extent tree */
149 struct btrfs_root *extent_root;
150 /* inode for moving data */
151 struct inode *data_inode;
152
153 struct btrfs_block_rsv *block_rsv;
154
155 struct btrfs_backref_cache backref_cache;
156
157 struct file_extent_cluster cluster;
158 /* tree blocks have been processed */
159 struct extent_io_tree processed_blocks;
160 /* map start of tree root to corresponding reloc tree */
161 struct mapping_tree reloc_root_tree;
162 /* list of reloc trees */
163 struct list_head reloc_roots;
164 /* list of subvolume trees that get relocated */
165 struct list_head dirty_subvol_roots;
166 /* size of metadata reservation for merging reloc trees */
167 u64 merging_rsv_size;
168 /* size of relocated tree nodes */
169 u64 nodes_relocated;
170 /* reserved size for block group relocation*/
171 u64 reserved_bytes;
172
173 u64 search_start;
174 u64 extents_found;
175
176 enum reloc_stage stage;
177 bool create_reloc_tree;
178 bool merge_reloc_tree;
179 bool found_file_extent;
180 };
181
mark_block_processed(struct reloc_control * rc,struct btrfs_backref_node * node)182 static void mark_block_processed(struct reloc_control *rc,
183 struct btrfs_backref_node *node)
184 {
185 u32 blocksize;
186
187 if (node->level == 0 ||
188 in_range(node->bytenr, rc->block_group->start,
189 rc->block_group->length)) {
190 blocksize = rc->extent_root->fs_info->nodesize;
191 btrfs_set_extent_bit(&rc->processed_blocks, node->bytenr,
192 node->bytenr + blocksize - 1, EXTENT_DIRTY,
193 NULL);
194 }
195 node->processed = 1;
196 }
197
198 /*
199 * walk up backref nodes until reach node presents tree root
200 */
walk_up_backref(struct btrfs_backref_node * node,struct btrfs_backref_edge * edges[],int * index)201 static struct btrfs_backref_node *walk_up_backref(
202 struct btrfs_backref_node *node,
203 struct btrfs_backref_edge *edges[], int *index)
204 {
205 struct btrfs_backref_edge *edge;
206 int idx = *index;
207
208 while (!list_empty(&node->upper)) {
209 edge = list_first_entry(&node->upper, struct btrfs_backref_edge,
210 list[LOWER]);
211 edges[idx++] = edge;
212 node = edge->node[UPPER];
213 }
214 BUG_ON(node->detached);
215 *index = idx;
216 return node;
217 }
218
219 /*
220 * walk down backref nodes to find start of next reference path
221 */
walk_down_backref(struct btrfs_backref_edge * edges[],int * index)222 static struct btrfs_backref_node *walk_down_backref(
223 struct btrfs_backref_edge *edges[], int *index)
224 {
225 struct btrfs_backref_edge *edge;
226 struct btrfs_backref_node *lower;
227 int idx = *index;
228
229 while (idx > 0) {
230 edge = edges[idx - 1];
231 lower = edge->node[LOWER];
232 if (list_is_last(&edge->list[LOWER], &lower->upper)) {
233 idx--;
234 continue;
235 }
236 edge = list_first_entry(&edge->list[LOWER], struct btrfs_backref_edge,
237 list[LOWER]);
238 edges[idx - 1] = edge;
239 *index = idx;
240 return edge->node[UPPER];
241 }
242 *index = 0;
243 return NULL;
244 }
245
reloc_root_is_dead(const struct btrfs_root * root)246 static bool reloc_root_is_dead(const struct btrfs_root *root)
247 {
248 /*
249 * Pair with set_bit/clear_bit in clean_dirty_subvols and
250 * btrfs_update_reloc_root. We need to see the updated bit before
251 * trying to access reloc_root
252 */
253 smp_rmb();
254 if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
255 return true;
256 return false;
257 }
258
259 /*
260 * Check if this subvolume tree has valid reloc tree.
261 *
262 * Reloc tree after swap is considered dead, thus not considered as valid.
263 * This is enough for most callers, as they don't distinguish dead reloc root
264 * from no reloc root. But btrfs_should_ignore_reloc_root() below is a
265 * special case.
266 */
have_reloc_root(const struct btrfs_root * root)267 static bool have_reloc_root(const struct btrfs_root *root)
268 {
269 if (reloc_root_is_dead(root))
270 return false;
271 if (!root->reloc_root)
272 return false;
273 return true;
274 }
275
btrfs_should_ignore_reloc_root(const struct btrfs_root * root)276 bool btrfs_should_ignore_reloc_root(const struct btrfs_root *root)
277 {
278 struct btrfs_root *reloc_root;
279
280 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
281 return false;
282
283 /* This root has been merged with its reloc tree, we can ignore it */
284 if (reloc_root_is_dead(root))
285 return true;
286
287 reloc_root = root->reloc_root;
288 if (!reloc_root)
289 return false;
290
291 if (btrfs_header_generation(reloc_root->commit_root) ==
292 root->fs_info->running_transaction->transid)
293 return false;
294 /*
295 * If there is reloc tree and it was created in previous transaction
296 * backref lookup can find the reloc tree, so backref node for the fs
297 * tree root is useless for relocation.
298 */
299 return true;
300 }
301
302 /*
303 * find reloc tree by address of tree root
304 */
find_reloc_root(struct btrfs_fs_info * fs_info,u64 bytenr)305 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr)
306 {
307 struct reloc_control *rc = fs_info->reloc_ctl;
308 struct rb_node *rb_node;
309 struct mapping_node *node;
310 struct btrfs_root *root = NULL;
311
312 ASSERT(rc);
313 spin_lock(&rc->reloc_root_tree.lock);
314 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr);
315 if (rb_node) {
316 node = rb_entry(rb_node, struct mapping_node, rb_node);
317 root = node->data;
318 }
319 spin_unlock(&rc->reloc_root_tree.lock);
320 return btrfs_grab_root(root);
321 }
322
323 /*
324 * For useless nodes, do two major clean ups:
325 *
326 * - Cleanup the children edges and nodes
327 * If child node is also orphan (no parent) during cleanup, then the child
328 * node will also be cleaned up.
329 *
330 * - Freeing up leaves (level 0), keeps nodes detached
331 * For nodes, the node is still cached as "detached"
332 *
333 * Return false if @node is not in the @useless_nodes list.
334 * Return true if @node is in the @useless_nodes list.
335 */
handle_useless_nodes(struct reloc_control * rc,struct btrfs_backref_node * node)336 static bool handle_useless_nodes(struct reloc_control *rc,
337 struct btrfs_backref_node *node)
338 {
339 struct btrfs_backref_cache *cache = &rc->backref_cache;
340 struct list_head *useless_node = &cache->useless_node;
341 bool ret = false;
342
343 while (!list_empty(useless_node)) {
344 struct btrfs_backref_node *cur;
345
346 cur = list_first_entry(useless_node, struct btrfs_backref_node,
347 list);
348 list_del_init(&cur->list);
349
350 /* Only tree root nodes can be added to @useless_nodes */
351 ASSERT(list_empty(&cur->upper));
352
353 if (cur == node)
354 ret = true;
355
356 /* Cleanup the lower edges */
357 while (!list_empty(&cur->lower)) {
358 struct btrfs_backref_edge *edge;
359 struct btrfs_backref_node *lower;
360
361 edge = list_first_entry(&cur->lower, struct btrfs_backref_edge,
362 list[UPPER]);
363 list_del(&edge->list[UPPER]);
364 list_del(&edge->list[LOWER]);
365 lower = edge->node[LOWER];
366 btrfs_backref_free_edge(cache, edge);
367
368 /* Child node is also orphan, queue for cleanup */
369 if (list_empty(&lower->upper))
370 list_add(&lower->list, useless_node);
371 }
372 /* Mark this block processed for relocation */
373 mark_block_processed(rc, cur);
374
375 /*
376 * Backref nodes for tree leaves are deleted from the cache.
377 * Backref nodes for upper level tree blocks are left in the
378 * cache to avoid unnecessary backref lookup.
379 */
380 if (cur->level > 0) {
381 cur->detached = 1;
382 } else {
383 rb_erase(&cur->rb_node, &cache->rb_root);
384 btrfs_backref_free_node(cache, cur);
385 }
386 }
387 return ret;
388 }
389
390 /*
391 * Build backref tree for a given tree block. Root of the backref tree
392 * corresponds the tree block, leaves of the backref tree correspond roots of
393 * b-trees that reference the tree block.
394 *
395 * The basic idea of this function is check backrefs of a given block to find
396 * upper level blocks that reference the block, and then check backrefs of
397 * these upper level blocks recursively. The recursion stops when tree root is
398 * reached or backrefs for the block is cached.
399 *
400 * NOTE: if we find that backrefs for a block are cached, we know backrefs for
401 * all upper level blocks that directly/indirectly reference the block are also
402 * cached.
403 */
build_backref_tree(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_key * node_key,int level,u64 bytenr)404 static noinline_for_stack struct btrfs_backref_node *build_backref_tree(
405 struct btrfs_trans_handle *trans,
406 struct reloc_control *rc, struct btrfs_key *node_key,
407 int level, u64 bytenr)
408 {
409 struct btrfs_backref_iter *iter;
410 struct btrfs_backref_cache *cache = &rc->backref_cache;
411 /* For searching parent of TREE_BLOCK_REF */
412 struct btrfs_path *path;
413 struct btrfs_backref_node *cur;
414 struct btrfs_backref_node *node = NULL;
415 struct btrfs_backref_edge *edge;
416 int ret;
417
418 iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info);
419 if (!iter)
420 return ERR_PTR(-ENOMEM);
421 path = btrfs_alloc_path();
422 if (!path) {
423 ret = -ENOMEM;
424 goto out;
425 }
426
427 node = btrfs_backref_alloc_node(cache, bytenr, level);
428 if (!node) {
429 ret = -ENOMEM;
430 goto out;
431 }
432
433 cur = node;
434
435 /* Breadth-first search to build backref cache */
436 do {
437 ret = btrfs_backref_add_tree_node(trans, cache, path, iter,
438 node_key, cur);
439 if (ret < 0)
440 goto out;
441
442 edge = list_first_entry_or_null(&cache->pending_edge,
443 struct btrfs_backref_edge, list[UPPER]);
444 /*
445 * The pending list isn't empty, take the first block to
446 * process
447 */
448 if (edge) {
449 list_del_init(&edge->list[UPPER]);
450 cur = edge->node[UPPER];
451 }
452 } while (edge);
453
454 /* Finish the upper linkage of newly added edges/nodes */
455 ret = btrfs_backref_finish_upper_links(cache, node);
456 if (ret < 0)
457 goto out;
458
459 if (handle_useless_nodes(rc, node))
460 node = NULL;
461 out:
462 btrfs_free_path(iter->path);
463 kfree(iter);
464 btrfs_free_path(path);
465 if (ret) {
466 btrfs_backref_error_cleanup(cache, node);
467 return ERR_PTR(ret);
468 }
469 ASSERT(!node || !node->detached);
470 ASSERT(list_empty(&cache->useless_node) &&
471 list_empty(&cache->pending_edge));
472 return node;
473 }
474
475 /*
476 * helper to add 'address of tree root -> reloc tree' mapping
477 */
__add_reloc_root(struct btrfs_root * root)478 static int __add_reloc_root(struct btrfs_root *root)
479 {
480 struct btrfs_fs_info *fs_info = root->fs_info;
481 struct rb_node *rb_node;
482 struct mapping_node *node;
483 struct reloc_control *rc = fs_info->reloc_ctl;
484
485 node = kmalloc(sizeof(*node), GFP_NOFS);
486 if (!node)
487 return -ENOMEM;
488
489 node->bytenr = root->commit_root->start;
490 node->data = root;
491
492 spin_lock(&rc->reloc_root_tree.lock);
493 rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root, &node->simple_node);
494 spin_unlock(&rc->reloc_root_tree.lock);
495 if (rb_node) {
496 btrfs_err(fs_info,
497 "Duplicate root found for start=%llu while inserting into relocation tree",
498 node->bytenr);
499 return -EEXIST;
500 }
501
502 list_add_tail(&root->root_list, &rc->reloc_roots);
503 return 0;
504 }
505
506 /*
507 * helper to delete the 'address of tree root -> reloc tree'
508 * mapping
509 */
__del_reloc_root(struct btrfs_root * root)510 static void __del_reloc_root(struct btrfs_root *root)
511 {
512 struct btrfs_fs_info *fs_info = root->fs_info;
513 struct rb_node *rb_node;
514 struct mapping_node *node = NULL;
515 struct reloc_control *rc = fs_info->reloc_ctl;
516 bool put_ref = false;
517
518 if (rc && root->node) {
519 spin_lock(&rc->reloc_root_tree.lock);
520 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
521 root->commit_root->start);
522 if (rb_node) {
523 node = rb_entry(rb_node, struct mapping_node, rb_node);
524 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
525 RB_CLEAR_NODE(&node->rb_node);
526 }
527 spin_unlock(&rc->reloc_root_tree.lock);
528 ASSERT(!node || (struct btrfs_root *)node->data == root);
529 }
530
531 /*
532 * We only put the reloc root here if it's on the list. There's a lot
533 * of places where the pattern is to splice the rc->reloc_roots, process
534 * the reloc roots, and then add the reloc root back onto
535 * rc->reloc_roots. If we call __del_reloc_root while it's off of the
536 * list we don't want the reference being dropped, because the guy
537 * messing with the list is in charge of the reference.
538 */
539 spin_lock(&fs_info->trans_lock);
540 if (!list_empty(&root->root_list)) {
541 put_ref = true;
542 list_del_init(&root->root_list);
543 }
544 spin_unlock(&fs_info->trans_lock);
545 if (put_ref)
546 btrfs_put_root(root);
547 kfree(node);
548 }
549
550 /*
551 * helper to update the 'address of tree root -> reloc tree'
552 * mapping
553 */
__update_reloc_root(struct btrfs_root * root)554 static int __update_reloc_root(struct btrfs_root *root)
555 {
556 struct btrfs_fs_info *fs_info = root->fs_info;
557 struct rb_node *rb_node;
558 struct mapping_node *node = NULL;
559 struct reloc_control *rc = fs_info->reloc_ctl;
560
561 spin_lock(&rc->reloc_root_tree.lock);
562 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
563 root->commit_root->start);
564 if (rb_node) {
565 node = rb_entry(rb_node, struct mapping_node, rb_node);
566 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
567 }
568 spin_unlock(&rc->reloc_root_tree.lock);
569
570 if (!node)
571 return 0;
572 BUG_ON((struct btrfs_root *)node->data != root);
573
574 spin_lock(&rc->reloc_root_tree.lock);
575 node->bytenr = root->node->start;
576 rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root, &node->simple_node);
577 spin_unlock(&rc->reloc_root_tree.lock);
578 if (rb_node)
579 btrfs_backref_panic(fs_info, node->bytenr, -EEXIST);
580 return 0;
581 }
582
create_reloc_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 objectid)583 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
584 struct btrfs_root *root, u64 objectid)
585 {
586 struct btrfs_fs_info *fs_info = root->fs_info;
587 struct btrfs_root *reloc_root;
588 struct extent_buffer *eb;
589 struct btrfs_root_item *root_item;
590 struct btrfs_key root_key;
591 int ret = 0;
592 bool must_abort = false;
593
594 root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
595 if (!root_item)
596 return ERR_PTR(-ENOMEM);
597
598 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
599 root_key.type = BTRFS_ROOT_ITEM_KEY;
600 root_key.offset = objectid;
601
602 if (btrfs_root_id(root) == objectid) {
603 u64 commit_root_gen;
604
605 /* called by btrfs_init_reloc_root */
606 ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
607 BTRFS_TREE_RELOC_OBJECTID);
608 if (ret)
609 goto fail;
610
611 /*
612 * Set the last_snapshot field to the generation of the commit
613 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
614 * correctly (returns true) when the relocation root is created
615 * either inside the critical section of a transaction commit
616 * (through transaction.c:qgroup_account_snapshot()) and when
617 * it's created before the transaction commit is started.
618 */
619 commit_root_gen = btrfs_header_generation(root->commit_root);
620 btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
621 } else {
622 /*
623 * called by btrfs_reloc_post_snapshot_hook.
624 * the source tree is a reloc tree, all tree blocks
625 * modified after it was created have RELOC flag
626 * set in their headers. so it's OK to not update
627 * the 'last_snapshot'.
628 */
629 ret = btrfs_copy_root(trans, root, root->node, &eb,
630 BTRFS_TREE_RELOC_OBJECTID);
631 if (ret)
632 goto fail;
633 }
634
635 /*
636 * We have changed references at this point, we must abort the
637 * transaction if anything fails.
638 */
639 must_abort = true;
640
641 memcpy(root_item, &root->root_item, sizeof(*root_item));
642 btrfs_set_root_bytenr(root_item, eb->start);
643 btrfs_set_root_level(root_item, btrfs_header_level(eb));
644 btrfs_set_root_generation(root_item, trans->transid);
645
646 if (btrfs_root_id(root) == objectid) {
647 btrfs_set_root_refs(root_item, 0);
648 memset(&root_item->drop_progress, 0,
649 sizeof(struct btrfs_disk_key));
650 btrfs_set_root_drop_level(root_item, 0);
651 }
652
653 btrfs_tree_unlock(eb);
654 free_extent_buffer(eb);
655
656 ret = btrfs_insert_root(trans, fs_info->tree_root,
657 &root_key, root_item);
658 if (ret)
659 goto fail;
660
661 kfree(root_item);
662
663 reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key);
664 if (IS_ERR(reloc_root)) {
665 ret = PTR_ERR(reloc_root);
666 goto abort;
667 }
668 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
669 btrfs_set_root_last_trans(reloc_root, trans->transid);
670 return reloc_root;
671 fail:
672 kfree(root_item);
673 abort:
674 if (must_abort)
675 btrfs_abort_transaction(trans, ret);
676 return ERR_PTR(ret);
677 }
678
679 /*
680 * create reloc tree for a given fs tree. reloc tree is just a
681 * snapshot of the fs tree with special root objectid.
682 *
683 * The reloc_root comes out of here with two references, one for
684 * root->reloc_root, and another for being on the rc->reloc_roots list.
685 */
btrfs_init_reloc_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)686 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
687 struct btrfs_root *root)
688 {
689 struct btrfs_fs_info *fs_info = root->fs_info;
690 struct btrfs_root *reloc_root;
691 struct reloc_control *rc = fs_info->reloc_ctl;
692 struct btrfs_block_rsv *rsv;
693 int clear_rsv = 0;
694 int ret;
695
696 if (!rc)
697 return 0;
698
699 /*
700 * The subvolume has reloc tree but the swap is finished, no need to
701 * create/update the dead reloc tree
702 */
703 if (reloc_root_is_dead(root))
704 return 0;
705
706 /*
707 * This is subtle but important. We do not do
708 * record_root_in_transaction for reloc roots, instead we record their
709 * corresponding fs root, and then here we update the last trans for the
710 * reloc root. This means that we have to do this for the entire life
711 * of the reloc root, regardless of which stage of the relocation we are
712 * in.
713 */
714 if (root->reloc_root) {
715 reloc_root = root->reloc_root;
716 btrfs_set_root_last_trans(reloc_root, trans->transid);
717 return 0;
718 }
719
720 /*
721 * We are merging reloc roots, we do not need new reloc trees. Also
722 * reloc trees never need their own reloc tree.
723 */
724 if (!rc->create_reloc_tree || btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
725 return 0;
726
727 if (!trans->reloc_reserved) {
728 rsv = trans->block_rsv;
729 trans->block_rsv = rc->block_rsv;
730 clear_rsv = 1;
731 }
732 reloc_root = create_reloc_root(trans, root, btrfs_root_id(root));
733 if (clear_rsv)
734 trans->block_rsv = rsv;
735 if (IS_ERR(reloc_root))
736 return PTR_ERR(reloc_root);
737
738 ret = __add_reloc_root(reloc_root);
739 ASSERT(ret != -EEXIST);
740 if (ret) {
741 /* Pairs with create_reloc_root */
742 btrfs_put_root(reloc_root);
743 return ret;
744 }
745 root->reloc_root = btrfs_grab_root(reloc_root);
746 return 0;
747 }
748
749 /*
750 * update root item of reloc tree
751 */
btrfs_update_reloc_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)752 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
753 struct btrfs_root *root)
754 {
755 struct btrfs_fs_info *fs_info = root->fs_info;
756 struct btrfs_root *reloc_root;
757 struct btrfs_root_item *root_item;
758 int ret;
759
760 if (!have_reloc_root(root))
761 return 0;
762
763 reloc_root = root->reloc_root;
764 root_item = &reloc_root->root_item;
765
766 /*
767 * We are probably ok here, but __del_reloc_root() will drop its ref of
768 * the root. We have the ref for root->reloc_root, but just in case
769 * hold it while we update the reloc root.
770 */
771 btrfs_grab_root(reloc_root);
772
773 /* root->reloc_root will stay until current relocation finished */
774 if (fs_info->reloc_ctl && fs_info->reloc_ctl->merge_reloc_tree &&
775 btrfs_root_refs(root_item) == 0) {
776 set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
777 /*
778 * Mark the tree as dead before we change reloc_root so
779 * have_reloc_root will not touch it from now on.
780 */
781 smp_wmb();
782 __del_reloc_root(reloc_root);
783 }
784
785 if (reloc_root->commit_root != reloc_root->node) {
786 __update_reloc_root(reloc_root);
787 btrfs_set_root_node(root_item, reloc_root->node);
788 free_extent_buffer(reloc_root->commit_root);
789 reloc_root->commit_root = btrfs_root_node(reloc_root);
790 }
791
792 ret = btrfs_update_root(trans, fs_info->tree_root,
793 &reloc_root->root_key, root_item);
794 btrfs_put_root(reloc_root);
795 return ret;
796 }
797
798 /*
799 * get new location of data
800 */
get_new_location(struct inode * reloc_inode,u64 * new_bytenr,u64 bytenr,u64 num_bytes)801 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
802 u64 bytenr, u64 num_bytes)
803 {
804 struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
805 struct btrfs_path *path;
806 struct btrfs_file_extent_item *fi;
807 struct extent_buffer *leaf;
808 int ret;
809
810 path = btrfs_alloc_path();
811 if (!path)
812 return -ENOMEM;
813
814 bytenr -= BTRFS_I(reloc_inode)->reloc_block_group_start;
815 ret = btrfs_lookup_file_extent(NULL, root, path,
816 btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
817 if (ret < 0)
818 goto out;
819 if (ret > 0) {
820 ret = -ENOENT;
821 goto out;
822 }
823
824 leaf = path->nodes[0];
825 fi = btrfs_item_ptr(leaf, path->slots[0],
826 struct btrfs_file_extent_item);
827
828 BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
829 btrfs_file_extent_compression(leaf, fi) ||
830 btrfs_file_extent_encryption(leaf, fi) ||
831 btrfs_file_extent_other_encoding(leaf, fi));
832
833 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
834 ret = -EINVAL;
835 goto out;
836 }
837
838 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
839 ret = 0;
840 out:
841 btrfs_free_path(path);
842 return ret;
843 }
844
845 /*
846 * update file extent items in the tree leaf to point to
847 * the new locations.
848 */
849 static noinline_for_stack
replace_file_extents(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_root * root,struct extent_buffer * leaf)850 int replace_file_extents(struct btrfs_trans_handle *trans,
851 struct reloc_control *rc,
852 struct btrfs_root *root,
853 struct extent_buffer *leaf)
854 {
855 struct btrfs_fs_info *fs_info = root->fs_info;
856 struct btrfs_key key;
857 struct btrfs_file_extent_item *fi;
858 struct btrfs_inode *inode = NULL;
859 u64 parent;
860 u64 bytenr;
861 u64 new_bytenr = 0;
862 u64 num_bytes;
863 u64 end;
864 u32 nritems;
865 u32 i;
866 int ret = 0;
867 int first = 1;
868
869 if (rc->stage != UPDATE_DATA_PTRS)
870 return 0;
871
872 /* reloc trees always use full backref */
873 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
874 parent = leaf->start;
875 else
876 parent = 0;
877
878 nritems = btrfs_header_nritems(leaf);
879 for (i = 0; i < nritems; i++) {
880 struct btrfs_ref ref = { 0 };
881
882 cond_resched();
883 btrfs_item_key_to_cpu(leaf, &key, i);
884 if (key.type != BTRFS_EXTENT_DATA_KEY)
885 continue;
886 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
887 if (btrfs_file_extent_type(leaf, fi) ==
888 BTRFS_FILE_EXTENT_INLINE)
889 continue;
890 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
891 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
892 if (bytenr == 0)
893 continue;
894 if (!in_range(bytenr, rc->block_group->start,
895 rc->block_group->length))
896 continue;
897
898 /*
899 * if we are modifying block in fs tree, wait for read_folio
900 * to complete and drop the extent cache
901 */
902 if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID) {
903 if (first) {
904 inode = btrfs_find_first_inode(root, key.objectid);
905 first = 0;
906 } else if (inode && btrfs_ino(inode) < key.objectid) {
907 btrfs_add_delayed_iput(inode);
908 inode = btrfs_find_first_inode(root, key.objectid);
909 }
910 if (inode && btrfs_ino(inode) == key.objectid) {
911 struct extent_state *cached_state = NULL;
912
913 end = key.offset +
914 btrfs_file_extent_num_bytes(leaf, fi);
915 WARN_ON(!IS_ALIGNED(key.offset,
916 fs_info->sectorsize));
917 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
918 end--;
919 /* Take mmap lock to serialize with reflinks. */
920 if (!down_read_trylock(&inode->i_mmap_lock))
921 continue;
922 ret = btrfs_try_lock_extent(&inode->io_tree, key.offset,
923 end, &cached_state);
924 if (!ret) {
925 up_read(&inode->i_mmap_lock);
926 continue;
927 }
928
929 btrfs_drop_extent_map_range(inode, key.offset, end, true);
930 btrfs_unlock_extent(&inode->io_tree, key.offset, end,
931 &cached_state);
932 up_read(&inode->i_mmap_lock);
933 }
934 }
935
936 ret = get_new_location(rc->data_inode, &new_bytenr,
937 bytenr, num_bytes);
938 if (ret) {
939 /*
940 * Don't have to abort since we've not changed anything
941 * in the file extent yet.
942 */
943 break;
944 }
945
946 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
947
948 key.offset -= btrfs_file_extent_offset(leaf, fi);
949 ref.action = BTRFS_ADD_DELAYED_REF;
950 ref.bytenr = new_bytenr;
951 ref.num_bytes = num_bytes;
952 ref.parent = parent;
953 ref.owning_root = btrfs_root_id(root);
954 ref.ref_root = btrfs_header_owner(leaf);
955 btrfs_init_data_ref(&ref, key.objectid, key.offset,
956 btrfs_root_id(root), false);
957 ret = btrfs_inc_extent_ref(trans, &ref);
958 if (ret) {
959 btrfs_abort_transaction(trans, ret);
960 break;
961 }
962
963 ref.action = BTRFS_DROP_DELAYED_REF;
964 ref.bytenr = bytenr;
965 ref.num_bytes = num_bytes;
966 ref.parent = parent;
967 ref.owning_root = btrfs_root_id(root);
968 ref.ref_root = btrfs_header_owner(leaf);
969 btrfs_init_data_ref(&ref, key.objectid, key.offset,
970 btrfs_root_id(root), false);
971 ret = btrfs_free_extent(trans, &ref);
972 if (ret) {
973 btrfs_abort_transaction(trans, ret);
974 break;
975 }
976 }
977 if (inode)
978 btrfs_add_delayed_iput(inode);
979 return ret;
980 }
981
memcmp_node_keys(const struct extent_buffer * eb,int slot,const struct btrfs_path * path,int level)982 static noinline_for_stack int memcmp_node_keys(const struct extent_buffer *eb,
983 int slot, const struct btrfs_path *path,
984 int level)
985 {
986 struct btrfs_disk_key key1;
987 struct btrfs_disk_key key2;
988 btrfs_node_key(eb, &key1, slot);
989 btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
990 return memcmp(&key1, &key2, sizeof(key1));
991 }
992
993 /*
994 * try to replace tree blocks in fs tree with the new blocks
995 * in reloc tree. tree blocks haven't been modified since the
996 * reloc tree was create can be replaced.
997 *
998 * if a block was replaced, level of the block + 1 is returned.
999 * if no block got replaced, 0 is returned. if there are other
1000 * errors, a negative error number is returned.
1001 */
1002 static noinline_for_stack
replace_path(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_root * dest,struct btrfs_root * src,struct btrfs_path * path,struct btrfs_key * next_key,int lowest_level,int max_level)1003 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1004 struct btrfs_root *dest, struct btrfs_root *src,
1005 struct btrfs_path *path, struct btrfs_key *next_key,
1006 int lowest_level, int max_level)
1007 {
1008 struct btrfs_fs_info *fs_info = dest->fs_info;
1009 struct extent_buffer *eb;
1010 struct extent_buffer *parent;
1011 struct btrfs_ref ref = { 0 };
1012 struct btrfs_key key;
1013 u64 old_bytenr;
1014 u64 new_bytenr;
1015 u64 old_ptr_gen;
1016 u64 new_ptr_gen;
1017 u64 last_snapshot;
1018 u32 blocksize;
1019 int cow = 0;
1020 int level;
1021 int ret;
1022 int slot;
1023
1024 ASSERT(btrfs_root_id(src) == BTRFS_TREE_RELOC_OBJECTID);
1025 ASSERT(btrfs_root_id(dest) != BTRFS_TREE_RELOC_OBJECTID);
1026
1027 last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1028 again:
1029 slot = path->slots[lowest_level];
1030 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1031
1032 eb = btrfs_lock_root_node(dest);
1033 level = btrfs_header_level(eb);
1034
1035 if (level < lowest_level) {
1036 btrfs_tree_unlock(eb);
1037 free_extent_buffer(eb);
1038 return 0;
1039 }
1040
1041 if (cow) {
1042 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb,
1043 BTRFS_NESTING_COW);
1044 if (ret) {
1045 btrfs_tree_unlock(eb);
1046 free_extent_buffer(eb);
1047 return ret;
1048 }
1049 }
1050
1051 if (next_key) {
1052 next_key->objectid = (u64)-1;
1053 next_key->type = (u8)-1;
1054 next_key->offset = (u64)-1;
1055 }
1056
1057 parent = eb;
1058 while (1) {
1059 level = btrfs_header_level(parent);
1060 ASSERT(level >= lowest_level);
1061
1062 ret = btrfs_bin_search(parent, 0, &key, &slot);
1063 if (ret < 0)
1064 break;
1065 if (ret && slot > 0)
1066 slot--;
1067
1068 if (next_key && slot + 1 < btrfs_header_nritems(parent))
1069 btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1070
1071 old_bytenr = btrfs_node_blockptr(parent, slot);
1072 blocksize = fs_info->nodesize;
1073 old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1074
1075 if (level <= max_level) {
1076 eb = path->nodes[level];
1077 new_bytenr = btrfs_node_blockptr(eb,
1078 path->slots[level]);
1079 new_ptr_gen = btrfs_node_ptr_generation(eb,
1080 path->slots[level]);
1081 } else {
1082 new_bytenr = 0;
1083 new_ptr_gen = 0;
1084 }
1085
1086 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1087 ret = level;
1088 break;
1089 }
1090
1091 if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1092 memcmp_node_keys(parent, slot, path, level)) {
1093 if (level <= lowest_level) {
1094 ret = 0;
1095 break;
1096 }
1097
1098 eb = btrfs_read_node_slot(parent, slot);
1099 if (IS_ERR(eb)) {
1100 ret = PTR_ERR(eb);
1101 break;
1102 }
1103 btrfs_tree_lock(eb);
1104 if (cow) {
1105 ret = btrfs_cow_block(trans, dest, eb, parent,
1106 slot, &eb,
1107 BTRFS_NESTING_COW);
1108 if (ret) {
1109 btrfs_tree_unlock(eb);
1110 free_extent_buffer(eb);
1111 break;
1112 }
1113 }
1114
1115 btrfs_tree_unlock(parent);
1116 free_extent_buffer(parent);
1117
1118 parent = eb;
1119 continue;
1120 }
1121
1122 if (!cow) {
1123 btrfs_tree_unlock(parent);
1124 free_extent_buffer(parent);
1125 cow = 1;
1126 goto again;
1127 }
1128
1129 btrfs_node_key_to_cpu(path->nodes[level], &key,
1130 path->slots[level]);
1131 btrfs_release_path(path);
1132
1133 path->lowest_level = level;
1134 set_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1135 ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1136 clear_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1137 path->lowest_level = 0;
1138 if (ret) {
1139 if (ret > 0)
1140 ret = -ENOENT;
1141 break;
1142 }
1143
1144 /*
1145 * Info qgroup to trace both subtrees.
1146 *
1147 * We must trace both trees.
1148 * 1) Tree reloc subtree
1149 * If not traced, we will leak data numbers
1150 * 2) Fs subtree
1151 * If not traced, we will double count old data
1152 *
1153 * We don't scan the subtree right now, but only record
1154 * the swapped tree blocks.
1155 * The real subtree rescan is delayed until we have new
1156 * CoW on the subtree root node before transaction commit.
1157 */
1158 ret = btrfs_qgroup_add_swapped_blocks(dest,
1159 rc->block_group, parent, slot,
1160 path->nodes[level], path->slots[level],
1161 last_snapshot);
1162 if (ret < 0)
1163 break;
1164 /*
1165 * swap blocks in fs tree and reloc tree.
1166 */
1167 btrfs_set_node_blockptr(parent, slot, new_bytenr);
1168 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1169
1170 btrfs_set_node_blockptr(path->nodes[level],
1171 path->slots[level], old_bytenr);
1172 btrfs_set_node_ptr_generation(path->nodes[level],
1173 path->slots[level], old_ptr_gen);
1174
1175 ref.action = BTRFS_ADD_DELAYED_REF;
1176 ref.bytenr = old_bytenr;
1177 ref.num_bytes = blocksize;
1178 ref.parent = path->nodes[level]->start;
1179 ref.owning_root = btrfs_root_id(src);
1180 ref.ref_root = btrfs_root_id(src);
1181 btrfs_init_tree_ref(&ref, level - 1, 0, true);
1182 ret = btrfs_inc_extent_ref(trans, &ref);
1183 if (ret) {
1184 btrfs_abort_transaction(trans, ret);
1185 break;
1186 }
1187
1188 ref.action = BTRFS_ADD_DELAYED_REF;
1189 ref.bytenr = new_bytenr;
1190 ref.num_bytes = blocksize;
1191 ref.parent = 0;
1192 ref.owning_root = btrfs_root_id(dest);
1193 ref.ref_root = btrfs_root_id(dest);
1194 btrfs_init_tree_ref(&ref, level - 1, 0, true);
1195 ret = btrfs_inc_extent_ref(trans, &ref);
1196 if (ret) {
1197 btrfs_abort_transaction(trans, ret);
1198 break;
1199 }
1200
1201 /* We don't know the real owning_root, use 0. */
1202 ref.action = BTRFS_DROP_DELAYED_REF;
1203 ref.bytenr = new_bytenr;
1204 ref.num_bytes = blocksize;
1205 ref.parent = path->nodes[level]->start;
1206 ref.owning_root = 0;
1207 ref.ref_root = btrfs_root_id(src);
1208 btrfs_init_tree_ref(&ref, level - 1, 0, true);
1209 ret = btrfs_free_extent(trans, &ref);
1210 if (ret) {
1211 btrfs_abort_transaction(trans, ret);
1212 break;
1213 }
1214
1215 /* We don't know the real owning_root, use 0. */
1216 ref.action = BTRFS_DROP_DELAYED_REF;
1217 ref.bytenr = old_bytenr;
1218 ref.num_bytes = blocksize;
1219 ref.parent = 0;
1220 ref.owning_root = 0;
1221 ref.ref_root = btrfs_root_id(dest);
1222 btrfs_init_tree_ref(&ref, level - 1, 0, true);
1223 ret = btrfs_free_extent(trans, &ref);
1224 if (ret) {
1225 btrfs_abort_transaction(trans, ret);
1226 break;
1227 }
1228
1229 btrfs_unlock_up_safe(path, 0);
1230
1231 ret = level;
1232 break;
1233 }
1234 btrfs_tree_unlock(parent);
1235 free_extent_buffer(parent);
1236 return ret;
1237 }
1238
1239 /*
1240 * helper to find next relocated block in reloc tree
1241 */
1242 static noinline_for_stack
walk_up_reloc_tree(struct btrfs_root * root,struct btrfs_path * path,int * level)1243 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1244 int *level)
1245 {
1246 struct extent_buffer *eb;
1247 int i;
1248 u64 last_snapshot;
1249 u32 nritems;
1250
1251 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1252
1253 for (i = 0; i < *level; i++) {
1254 free_extent_buffer(path->nodes[i]);
1255 path->nodes[i] = NULL;
1256 }
1257
1258 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1259 eb = path->nodes[i];
1260 nritems = btrfs_header_nritems(eb);
1261 while (path->slots[i] + 1 < nritems) {
1262 path->slots[i]++;
1263 if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1264 last_snapshot)
1265 continue;
1266
1267 *level = i;
1268 return 0;
1269 }
1270 free_extent_buffer(path->nodes[i]);
1271 path->nodes[i] = NULL;
1272 }
1273 return 1;
1274 }
1275
1276 /*
1277 * walk down reloc tree to find relocated block of lowest level
1278 */
1279 static noinline_for_stack
walk_down_reloc_tree(struct btrfs_root * root,struct btrfs_path * path,int * level)1280 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1281 int *level)
1282 {
1283 struct extent_buffer *eb = NULL;
1284 int i;
1285 u64 ptr_gen = 0;
1286 u64 last_snapshot;
1287 u32 nritems;
1288
1289 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1290
1291 for (i = *level; i > 0; i--) {
1292 eb = path->nodes[i];
1293 nritems = btrfs_header_nritems(eb);
1294 while (path->slots[i] < nritems) {
1295 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1296 if (ptr_gen > last_snapshot)
1297 break;
1298 path->slots[i]++;
1299 }
1300 if (path->slots[i] >= nritems) {
1301 if (i == *level)
1302 break;
1303 *level = i + 1;
1304 return 0;
1305 }
1306 if (i == 1) {
1307 *level = i;
1308 return 0;
1309 }
1310
1311 eb = btrfs_read_node_slot(eb, path->slots[i]);
1312 if (IS_ERR(eb))
1313 return PTR_ERR(eb);
1314 BUG_ON(btrfs_header_level(eb) != i - 1);
1315 path->nodes[i - 1] = eb;
1316 path->slots[i - 1] = 0;
1317 }
1318 return 1;
1319 }
1320
1321 /*
1322 * invalidate extent cache for file extents whose key in range of
1323 * [min_key, max_key)
1324 */
invalidate_extent_cache(struct btrfs_root * root,const struct btrfs_key * min_key,const struct btrfs_key * max_key)1325 static int invalidate_extent_cache(struct btrfs_root *root,
1326 const struct btrfs_key *min_key,
1327 const struct btrfs_key *max_key)
1328 {
1329 struct btrfs_fs_info *fs_info = root->fs_info;
1330 struct btrfs_inode *inode = NULL;
1331 u64 objectid;
1332 u64 start, end;
1333 u64 ino;
1334
1335 objectid = min_key->objectid;
1336 while (1) {
1337 struct extent_state *cached_state = NULL;
1338
1339 cond_resched();
1340 if (inode)
1341 iput(&inode->vfs_inode);
1342
1343 if (objectid > max_key->objectid)
1344 break;
1345
1346 inode = btrfs_find_first_inode(root, objectid);
1347 if (!inode)
1348 break;
1349 ino = btrfs_ino(inode);
1350
1351 if (ino > max_key->objectid) {
1352 iput(&inode->vfs_inode);
1353 break;
1354 }
1355
1356 objectid = ino + 1;
1357 if (!S_ISREG(inode->vfs_inode.i_mode))
1358 continue;
1359
1360 if (unlikely(min_key->objectid == ino)) {
1361 if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1362 continue;
1363 if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1364 start = 0;
1365 else {
1366 start = min_key->offset;
1367 WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
1368 }
1369 } else {
1370 start = 0;
1371 }
1372
1373 if (unlikely(max_key->objectid == ino)) {
1374 if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1375 continue;
1376 if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1377 end = (u64)-1;
1378 } else {
1379 if (max_key->offset == 0)
1380 continue;
1381 end = max_key->offset;
1382 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1383 end--;
1384 }
1385 } else {
1386 end = (u64)-1;
1387 }
1388
1389 /* the lock_extent waits for read_folio to complete */
1390 btrfs_lock_extent(&inode->io_tree, start, end, &cached_state);
1391 btrfs_drop_extent_map_range(inode, start, end, true);
1392 btrfs_unlock_extent(&inode->io_tree, start, end, &cached_state);
1393 }
1394 return 0;
1395 }
1396
find_next_key(struct btrfs_path * path,int level,struct btrfs_key * key)1397 static int find_next_key(struct btrfs_path *path, int level,
1398 struct btrfs_key *key)
1399
1400 {
1401 while (level < BTRFS_MAX_LEVEL) {
1402 if (!path->nodes[level])
1403 break;
1404 if (path->slots[level] + 1 <
1405 btrfs_header_nritems(path->nodes[level])) {
1406 btrfs_node_key_to_cpu(path->nodes[level], key,
1407 path->slots[level] + 1);
1408 return 0;
1409 }
1410 level++;
1411 }
1412 return 1;
1413 }
1414
1415 /*
1416 * Insert current subvolume into reloc_control::dirty_subvol_roots
1417 */
insert_dirty_subvol(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_root * root)1418 static int insert_dirty_subvol(struct btrfs_trans_handle *trans,
1419 struct reloc_control *rc,
1420 struct btrfs_root *root)
1421 {
1422 struct btrfs_root *reloc_root = root->reloc_root;
1423 struct btrfs_root_item *reloc_root_item;
1424 int ret;
1425
1426 /* @root must be a subvolume tree root with a valid reloc tree */
1427 ASSERT(btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID);
1428 ASSERT(reloc_root);
1429
1430 reloc_root_item = &reloc_root->root_item;
1431 memset(&reloc_root_item->drop_progress, 0,
1432 sizeof(reloc_root_item->drop_progress));
1433 btrfs_set_root_drop_level(reloc_root_item, 0);
1434 btrfs_set_root_refs(reloc_root_item, 0);
1435 ret = btrfs_update_reloc_root(trans, root);
1436 if (ret)
1437 return ret;
1438
1439 if (list_empty(&root->reloc_dirty_list)) {
1440 btrfs_grab_root(root);
1441 list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
1442 }
1443
1444 return 0;
1445 }
1446
clean_dirty_subvols(struct reloc_control * rc)1447 static int clean_dirty_subvols(struct reloc_control *rc)
1448 {
1449 struct btrfs_root *root;
1450 struct btrfs_root *next;
1451 int ret = 0;
1452 int ret2;
1453
1454 list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
1455 reloc_dirty_list) {
1456 if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID) {
1457 /* Merged subvolume, cleanup its reloc root */
1458 struct btrfs_root *reloc_root = root->reloc_root;
1459
1460 list_del_init(&root->reloc_dirty_list);
1461 root->reloc_root = NULL;
1462 /*
1463 * Need barrier to ensure clear_bit() only happens after
1464 * root->reloc_root = NULL. Pairs with have_reloc_root.
1465 */
1466 smp_wmb();
1467 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1468 if (reloc_root) {
1469 /*
1470 * btrfs_drop_snapshot drops our ref we hold for
1471 * ->reloc_root. If it fails however we must
1472 * drop the ref ourselves.
1473 */
1474 ret2 = btrfs_drop_snapshot(reloc_root, 0, 1);
1475 if (ret2 < 0) {
1476 btrfs_put_root(reloc_root);
1477 if (!ret)
1478 ret = ret2;
1479 }
1480 }
1481 btrfs_put_root(root);
1482 } else {
1483 /* Orphan reloc tree, just clean it up */
1484 ret2 = btrfs_drop_snapshot(root, 0, 1);
1485 if (ret2 < 0) {
1486 btrfs_put_root(root);
1487 if (!ret)
1488 ret = ret2;
1489 }
1490 }
1491 }
1492 return ret;
1493 }
1494
1495 /*
1496 * merge the relocated tree blocks in reloc tree with corresponding
1497 * fs tree.
1498 */
merge_reloc_root(struct reloc_control * rc,struct btrfs_root * root)1499 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1500 struct btrfs_root *root)
1501 {
1502 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1503 struct btrfs_key key;
1504 struct btrfs_key next_key;
1505 struct btrfs_trans_handle *trans = NULL;
1506 struct btrfs_root *reloc_root;
1507 struct btrfs_root_item *root_item;
1508 struct btrfs_path *path;
1509 struct extent_buffer *leaf;
1510 int reserve_level;
1511 int level;
1512 int max_level;
1513 int replaced = 0;
1514 int ret = 0;
1515 u32 min_reserved;
1516
1517 path = btrfs_alloc_path();
1518 if (!path)
1519 return -ENOMEM;
1520 path->reada = READA_FORWARD;
1521
1522 reloc_root = root->reloc_root;
1523 root_item = &reloc_root->root_item;
1524
1525 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
1526 level = btrfs_root_level(root_item);
1527 refcount_inc(&reloc_root->node->refs);
1528 path->nodes[level] = reloc_root->node;
1529 path->slots[level] = 0;
1530 } else {
1531 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
1532
1533 level = btrfs_root_drop_level(root_item);
1534 BUG_ON(level == 0);
1535 path->lowest_level = level;
1536 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
1537 path->lowest_level = 0;
1538 if (ret < 0) {
1539 btrfs_free_path(path);
1540 return ret;
1541 }
1542
1543 btrfs_node_key_to_cpu(path->nodes[level], &next_key,
1544 path->slots[level]);
1545 WARN_ON(memcmp(&key, &next_key, sizeof(key)));
1546
1547 btrfs_unlock_up_safe(path, 0);
1548 }
1549
1550 /*
1551 * In merge_reloc_root(), we modify the upper level pointer to swap the
1552 * tree blocks between reloc tree and subvolume tree. Thus for tree
1553 * block COW, we COW at most from level 1 to root level for each tree.
1554 *
1555 * Thus the needed metadata size is at most root_level * nodesize,
1556 * and * 2 since we have two trees to COW.
1557 */
1558 reserve_level = max_t(int, 1, btrfs_root_level(root_item));
1559 min_reserved = fs_info->nodesize * reserve_level * 2;
1560 memset(&next_key, 0, sizeof(next_key));
1561
1562 while (1) {
1563 ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
1564 min_reserved,
1565 BTRFS_RESERVE_FLUSH_LIMIT);
1566 if (ret)
1567 goto out;
1568 trans = btrfs_start_transaction(root, 0);
1569 if (IS_ERR(trans)) {
1570 ret = PTR_ERR(trans);
1571 trans = NULL;
1572 goto out;
1573 }
1574
1575 /*
1576 * At this point we no longer have a reloc_control, so we can't
1577 * depend on btrfs_init_reloc_root to update our last_trans.
1578 *
1579 * But that's ok, we started the trans handle on our
1580 * corresponding fs_root, which means it's been added to the
1581 * dirty list. At commit time we'll still call
1582 * btrfs_update_reloc_root() and update our root item
1583 * appropriately.
1584 */
1585 btrfs_set_root_last_trans(reloc_root, trans->transid);
1586 trans->block_rsv = rc->block_rsv;
1587
1588 replaced = 0;
1589 max_level = level;
1590
1591 ret = walk_down_reloc_tree(reloc_root, path, &level);
1592 if (ret < 0)
1593 goto out;
1594 if (ret > 0)
1595 break;
1596
1597 if (!find_next_key(path, level, &key) &&
1598 btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
1599 ret = 0;
1600 } else {
1601 ret = replace_path(trans, rc, root, reloc_root, path,
1602 &next_key, level, max_level);
1603 }
1604 if (ret < 0)
1605 goto out;
1606 if (ret > 0) {
1607 level = ret;
1608 btrfs_node_key_to_cpu(path->nodes[level], &key,
1609 path->slots[level]);
1610 replaced = 1;
1611 }
1612
1613 ret = walk_up_reloc_tree(reloc_root, path, &level);
1614 if (ret > 0)
1615 break;
1616
1617 BUG_ON(level == 0);
1618 /*
1619 * save the merging progress in the drop_progress.
1620 * this is OK since root refs == 1 in this case.
1621 */
1622 btrfs_node_key(path->nodes[level], &root_item->drop_progress,
1623 path->slots[level]);
1624 btrfs_set_root_drop_level(root_item, level);
1625
1626 btrfs_end_transaction_throttle(trans);
1627 trans = NULL;
1628
1629 btrfs_btree_balance_dirty(fs_info);
1630
1631 if (replaced && rc->stage == UPDATE_DATA_PTRS)
1632 invalidate_extent_cache(root, &key, &next_key);
1633 }
1634
1635 /*
1636 * handle the case only one block in the fs tree need to be
1637 * relocated and the block is tree root.
1638 */
1639 leaf = btrfs_lock_root_node(root);
1640 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf,
1641 BTRFS_NESTING_COW);
1642 btrfs_tree_unlock(leaf);
1643 free_extent_buffer(leaf);
1644 out:
1645 btrfs_free_path(path);
1646
1647 if (ret == 0) {
1648 ret = insert_dirty_subvol(trans, rc, root);
1649 if (ret)
1650 btrfs_abort_transaction(trans, ret);
1651 }
1652
1653 if (trans)
1654 btrfs_end_transaction_throttle(trans);
1655
1656 btrfs_btree_balance_dirty(fs_info);
1657
1658 if (replaced && rc->stage == UPDATE_DATA_PTRS)
1659 invalidate_extent_cache(root, &key, &next_key);
1660
1661 return ret;
1662 }
1663
1664 static noinline_for_stack
prepare_to_merge(struct reloc_control * rc,int err)1665 int prepare_to_merge(struct reloc_control *rc, int err)
1666 {
1667 struct btrfs_root *root = rc->extent_root;
1668 struct btrfs_fs_info *fs_info = root->fs_info;
1669 struct btrfs_root *reloc_root;
1670 struct btrfs_trans_handle *trans;
1671 LIST_HEAD(reloc_roots);
1672 u64 num_bytes = 0;
1673 int ret;
1674
1675 mutex_lock(&fs_info->reloc_mutex);
1676 rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
1677 rc->merging_rsv_size += rc->nodes_relocated * 2;
1678 mutex_unlock(&fs_info->reloc_mutex);
1679
1680 again:
1681 if (!err) {
1682 num_bytes = rc->merging_rsv_size;
1683 ret = btrfs_block_rsv_add(fs_info, rc->block_rsv, num_bytes,
1684 BTRFS_RESERVE_FLUSH_ALL);
1685 if (ret)
1686 err = ret;
1687 }
1688
1689 trans = btrfs_join_transaction(rc->extent_root);
1690 if (IS_ERR(trans)) {
1691 if (!err)
1692 btrfs_block_rsv_release(fs_info, rc->block_rsv,
1693 num_bytes, NULL);
1694 return PTR_ERR(trans);
1695 }
1696
1697 if (!err) {
1698 if (num_bytes != rc->merging_rsv_size) {
1699 btrfs_end_transaction(trans);
1700 btrfs_block_rsv_release(fs_info, rc->block_rsv,
1701 num_bytes, NULL);
1702 goto again;
1703 }
1704 }
1705
1706 rc->merge_reloc_tree = true;
1707
1708 while (!list_empty(&rc->reloc_roots)) {
1709 reloc_root = list_first_entry(&rc->reloc_roots,
1710 struct btrfs_root, root_list);
1711 list_del_init(&reloc_root->root_list);
1712
1713 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1714 false);
1715 if (IS_ERR(root)) {
1716 /*
1717 * Even if we have an error we need this reloc root
1718 * back on our list so we can clean up properly.
1719 */
1720 list_add(&reloc_root->root_list, &reloc_roots);
1721 btrfs_abort_transaction(trans, (int)PTR_ERR(root));
1722 if (!err)
1723 err = PTR_ERR(root);
1724 break;
1725 }
1726
1727 if (unlikely(root->reloc_root != reloc_root)) {
1728 if (root->reloc_root) {
1729 btrfs_err(fs_info,
1730 "reloc tree mismatch, root %lld has reloc root key (%lld %u %llu) gen %llu, expect reloc root key (%lld %u %llu) gen %llu",
1731 btrfs_root_id(root),
1732 btrfs_root_id(root->reloc_root),
1733 root->reloc_root->root_key.type,
1734 root->reloc_root->root_key.offset,
1735 btrfs_root_generation(
1736 &root->reloc_root->root_item),
1737 btrfs_root_id(reloc_root),
1738 reloc_root->root_key.type,
1739 reloc_root->root_key.offset,
1740 btrfs_root_generation(
1741 &reloc_root->root_item));
1742 } else {
1743 btrfs_err(fs_info,
1744 "reloc tree mismatch, root %lld has no reloc root, expect reloc root key (%lld %u %llu) gen %llu",
1745 btrfs_root_id(root),
1746 btrfs_root_id(reloc_root),
1747 reloc_root->root_key.type,
1748 reloc_root->root_key.offset,
1749 btrfs_root_generation(
1750 &reloc_root->root_item));
1751 }
1752 list_add(&reloc_root->root_list, &reloc_roots);
1753 btrfs_put_root(root);
1754 btrfs_abort_transaction(trans, -EUCLEAN);
1755 if (!err)
1756 err = -EUCLEAN;
1757 break;
1758 }
1759
1760 /*
1761 * set reference count to 1, so btrfs_recover_relocation
1762 * knows it should resumes merging
1763 */
1764 if (!err)
1765 btrfs_set_root_refs(&reloc_root->root_item, 1);
1766 ret = btrfs_update_reloc_root(trans, root);
1767
1768 /*
1769 * Even if we have an error we need this reloc root back on our
1770 * list so we can clean up properly.
1771 */
1772 list_add(&reloc_root->root_list, &reloc_roots);
1773 btrfs_put_root(root);
1774
1775 if (ret) {
1776 btrfs_abort_transaction(trans, ret);
1777 if (!err)
1778 err = ret;
1779 break;
1780 }
1781 }
1782
1783 list_splice(&reloc_roots, &rc->reloc_roots);
1784
1785 if (!err)
1786 err = btrfs_commit_transaction(trans);
1787 else
1788 btrfs_end_transaction(trans);
1789 return err;
1790 }
1791
1792 static noinline_for_stack
free_reloc_roots(struct list_head * list)1793 void free_reloc_roots(struct list_head *list)
1794 {
1795 struct btrfs_root *reloc_root, *tmp;
1796
1797 list_for_each_entry_safe(reloc_root, tmp, list, root_list)
1798 __del_reloc_root(reloc_root);
1799 }
1800
1801 static noinline_for_stack
merge_reloc_roots(struct reloc_control * rc)1802 void merge_reloc_roots(struct reloc_control *rc)
1803 {
1804 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1805 struct btrfs_root *root;
1806 struct btrfs_root *reloc_root;
1807 LIST_HEAD(reloc_roots);
1808 int found = 0;
1809 int ret = 0;
1810 again:
1811 root = rc->extent_root;
1812
1813 /*
1814 * this serializes us with btrfs_record_root_in_transaction,
1815 * we have to make sure nobody is in the middle of
1816 * adding their roots to the list while we are
1817 * doing this splice
1818 */
1819 mutex_lock(&fs_info->reloc_mutex);
1820 list_splice_init(&rc->reloc_roots, &reloc_roots);
1821 mutex_unlock(&fs_info->reloc_mutex);
1822
1823 while (!list_empty(&reloc_roots)) {
1824 found = 1;
1825 reloc_root = list_first_entry(&reloc_roots, struct btrfs_root, root_list);
1826
1827 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1828 false);
1829 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
1830 if (WARN_ON(IS_ERR(root))) {
1831 /*
1832 * For recovery we read the fs roots on mount,
1833 * and if we didn't find the root then we marked
1834 * the reloc root as a garbage root. For normal
1835 * relocation obviously the root should exist in
1836 * memory. However there's no reason we can't
1837 * handle the error properly here just in case.
1838 */
1839 ret = PTR_ERR(root);
1840 goto out;
1841 }
1842 if (WARN_ON(root->reloc_root != reloc_root)) {
1843 /*
1844 * This can happen if on-disk metadata has some
1845 * corruption, e.g. bad reloc tree key offset.
1846 */
1847 ret = -EINVAL;
1848 goto out;
1849 }
1850 ret = merge_reloc_root(rc, root);
1851 btrfs_put_root(root);
1852 if (ret) {
1853 if (list_empty(&reloc_root->root_list))
1854 list_add_tail(&reloc_root->root_list,
1855 &reloc_roots);
1856 goto out;
1857 }
1858 } else {
1859 if (!IS_ERR(root)) {
1860 if (root->reloc_root == reloc_root) {
1861 root->reloc_root = NULL;
1862 btrfs_put_root(reloc_root);
1863 }
1864 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE,
1865 &root->state);
1866 btrfs_put_root(root);
1867 }
1868
1869 list_del_init(&reloc_root->root_list);
1870 /* Don't forget to queue this reloc root for cleanup */
1871 list_add_tail(&reloc_root->reloc_dirty_list,
1872 &rc->dirty_subvol_roots);
1873 }
1874 }
1875
1876 if (found) {
1877 found = 0;
1878 goto again;
1879 }
1880 out:
1881 if (ret) {
1882 btrfs_handle_fs_error(fs_info, ret, NULL);
1883 free_reloc_roots(&reloc_roots);
1884
1885 /* new reloc root may be added */
1886 mutex_lock(&fs_info->reloc_mutex);
1887 list_splice_init(&rc->reloc_roots, &reloc_roots);
1888 mutex_unlock(&fs_info->reloc_mutex);
1889 free_reloc_roots(&reloc_roots);
1890 }
1891
1892 /*
1893 * We used to have
1894 *
1895 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
1896 *
1897 * here, but it's wrong. If we fail to start the transaction in
1898 * prepare_to_merge() we will have only 0 ref reloc roots, none of which
1899 * have actually been removed from the reloc_root_tree rb tree. This is
1900 * fine because we're bailing here, and we hold a reference on the root
1901 * for the list that holds it, so these roots will be cleaned up when we
1902 * do the reloc_dirty_list afterwards. Meanwhile the root->reloc_root
1903 * will be cleaned up on unmount.
1904 *
1905 * The remaining nodes will be cleaned up by free_reloc_control.
1906 */
1907 }
1908
free_block_list(struct rb_root * blocks)1909 static void free_block_list(struct rb_root *blocks)
1910 {
1911 struct tree_block *block;
1912 struct rb_node *rb_node;
1913 while ((rb_node = rb_first(blocks))) {
1914 block = rb_entry(rb_node, struct tree_block, rb_node);
1915 rb_erase(rb_node, blocks);
1916 kfree(block);
1917 }
1918 }
1919
record_reloc_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * reloc_root)1920 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
1921 struct btrfs_root *reloc_root)
1922 {
1923 struct btrfs_fs_info *fs_info = reloc_root->fs_info;
1924 struct btrfs_root *root;
1925 int ret;
1926
1927 if (btrfs_get_root_last_trans(reloc_root) == trans->transid)
1928 return 0;
1929
1930 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false);
1931
1932 /*
1933 * This should succeed, since we can't have a reloc root without having
1934 * already looked up the actual root and created the reloc root for this
1935 * root.
1936 *
1937 * However if there's some sort of corruption where we have a ref to a
1938 * reloc root without a corresponding root this could return ENOENT.
1939 */
1940 if (IS_ERR(root)) {
1941 DEBUG_WARN("error %ld reading root for reloc root", PTR_ERR(root));
1942 return PTR_ERR(root);
1943 }
1944 if (root->reloc_root != reloc_root) {
1945 DEBUG_WARN("unexpected reloc root found");
1946 btrfs_err(fs_info,
1947 "root %llu has two reloc roots associated with it",
1948 reloc_root->root_key.offset);
1949 btrfs_put_root(root);
1950 return -EUCLEAN;
1951 }
1952 ret = btrfs_record_root_in_trans(trans, root);
1953 btrfs_put_root(root);
1954
1955 return ret;
1956 }
1957
1958 static noinline_for_stack
select_reloc_root(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_backref_node * node,struct btrfs_backref_edge * edges[])1959 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
1960 struct reloc_control *rc,
1961 struct btrfs_backref_node *node,
1962 struct btrfs_backref_edge *edges[])
1963 {
1964 struct btrfs_backref_node *next;
1965 struct btrfs_root *root;
1966 int index = 0;
1967 int ret;
1968
1969 next = walk_up_backref(node, edges, &index);
1970 root = next->root;
1971
1972 /*
1973 * If there is no root, then our references for this block are
1974 * incomplete, as we should be able to walk all the way up to a block
1975 * that is owned by a root.
1976 *
1977 * This path is only for SHAREABLE roots, so if we come upon a
1978 * non-SHAREABLE root then we have backrefs that resolve improperly.
1979 *
1980 * Both of these cases indicate file system corruption, or a bug in the
1981 * backref walking code.
1982 */
1983 if (unlikely(!root)) {
1984 btrfs_err(trans->fs_info,
1985 "bytenr %llu doesn't have a backref path ending in a root",
1986 node->bytenr);
1987 return ERR_PTR(-EUCLEAN);
1988 }
1989 if (unlikely(!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))) {
1990 btrfs_err(trans->fs_info,
1991 "bytenr %llu has multiple refs with one ending in a non-shareable root",
1992 node->bytenr);
1993 return ERR_PTR(-EUCLEAN);
1994 }
1995
1996 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) {
1997 ret = record_reloc_root_in_trans(trans, root);
1998 if (ret)
1999 return ERR_PTR(ret);
2000 goto found;
2001 }
2002
2003 ret = btrfs_record_root_in_trans(trans, root);
2004 if (ret)
2005 return ERR_PTR(ret);
2006 root = root->reloc_root;
2007
2008 /*
2009 * We could have raced with another thread which failed, so
2010 * root->reloc_root may not be set, return ENOENT in this case.
2011 */
2012 if (!root)
2013 return ERR_PTR(-ENOENT);
2014
2015 if (next->new_bytenr) {
2016 /*
2017 * We just created the reloc root, so we shouldn't have
2018 * ->new_bytenr set yet. If it is then we have multiple roots
2019 * pointing at the same bytenr which indicates corruption, or
2020 * we've made a mistake in the backref walking code.
2021 */
2022 ASSERT(next->new_bytenr == 0);
2023 btrfs_err(trans->fs_info,
2024 "bytenr %llu possibly has multiple roots pointing at the same bytenr %llu",
2025 node->bytenr, next->bytenr);
2026 return ERR_PTR(-EUCLEAN);
2027 }
2028
2029 next->new_bytenr = root->node->start;
2030 btrfs_put_root(next->root);
2031 next->root = btrfs_grab_root(root);
2032 ASSERT(next->root);
2033 mark_block_processed(rc, next);
2034 found:
2035 next = node;
2036 /* setup backref node path for btrfs_reloc_cow_block */
2037 while (1) {
2038 rc->backref_cache.path[next->level] = next;
2039 if (--index < 0)
2040 break;
2041 next = edges[index]->node[UPPER];
2042 }
2043 return root;
2044 }
2045
2046 /*
2047 * Select a tree root for relocation.
2048 *
2049 * Return NULL if the block is not shareable. We should use do_relocation() in
2050 * this case.
2051 *
2052 * Return a tree root pointer if the block is shareable.
2053 * Return -ENOENT if the block is root of reloc tree.
2054 */
2055 static noinline_for_stack
select_one_root(struct btrfs_backref_node * node)2056 struct btrfs_root *select_one_root(struct btrfs_backref_node *node)
2057 {
2058 struct btrfs_backref_node *next;
2059 struct btrfs_root *root;
2060 struct btrfs_root *fs_root = NULL;
2061 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2062 int index = 0;
2063
2064 next = node;
2065 while (1) {
2066 cond_resched();
2067 next = walk_up_backref(next, edges, &index);
2068 root = next->root;
2069
2070 /*
2071 * This can occur if we have incomplete extent refs leading all
2072 * the way up a particular path, in this case return -EUCLEAN.
2073 */
2074 if (!root)
2075 return ERR_PTR(-EUCLEAN);
2076
2077 /* No other choice for non-shareable tree */
2078 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2079 return root;
2080
2081 if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID)
2082 fs_root = root;
2083
2084 if (next != node)
2085 return NULL;
2086
2087 next = walk_down_backref(edges, &index);
2088 if (!next || next->level <= node->level)
2089 break;
2090 }
2091
2092 if (!fs_root)
2093 return ERR_PTR(-ENOENT);
2094 return fs_root;
2095 }
2096
calcu_metadata_size(struct reloc_control * rc,struct btrfs_backref_node * node)2097 static noinline_for_stack u64 calcu_metadata_size(struct reloc_control *rc,
2098 struct btrfs_backref_node *node)
2099 {
2100 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2101 struct btrfs_backref_node *next = node;
2102 struct btrfs_backref_edge *edge;
2103 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2104 u64 num_bytes = 0;
2105 int index = 0;
2106
2107 BUG_ON(node->processed);
2108
2109 while (next) {
2110 cond_resched();
2111 while (1) {
2112 if (next->processed)
2113 break;
2114
2115 num_bytes += fs_info->nodesize;
2116
2117 if (list_empty(&next->upper))
2118 break;
2119
2120 edge = list_first_entry(&next->upper, struct btrfs_backref_edge,
2121 list[LOWER]);
2122 edges[index++] = edge;
2123 next = edge->node[UPPER];
2124 }
2125 next = walk_down_backref(edges, &index);
2126 }
2127 return num_bytes;
2128 }
2129
refill_metadata_space(struct btrfs_trans_handle * trans,struct reloc_control * rc,u64 num_bytes)2130 static int refill_metadata_space(struct btrfs_trans_handle *trans,
2131 struct reloc_control *rc, u64 num_bytes)
2132 {
2133 struct btrfs_fs_info *fs_info = trans->fs_info;
2134 int ret;
2135
2136 trans->block_rsv = rc->block_rsv;
2137 rc->reserved_bytes += num_bytes;
2138
2139 /*
2140 * We are under a transaction here so we can only do limited flushing.
2141 * If we get an enospc just kick back -EAGAIN so we know to drop the
2142 * transaction and try to refill when we can flush all the things.
2143 */
2144 ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, num_bytes,
2145 BTRFS_RESERVE_FLUSH_LIMIT);
2146 if (ret) {
2147 u64 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2148
2149 while (tmp <= rc->reserved_bytes)
2150 tmp <<= 1;
2151 /*
2152 * only one thread can access block_rsv at this point,
2153 * so we don't need hold lock to protect block_rsv.
2154 * we expand more reservation size here to allow enough
2155 * space for relocation and we will return earlier in
2156 * enospc case.
2157 */
2158 rc->block_rsv->size = tmp + fs_info->nodesize *
2159 RELOCATION_RESERVED_NODES;
2160 return -EAGAIN;
2161 }
2162
2163 return 0;
2164 }
2165
reserve_metadata_space(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_backref_node * node)2166 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2167 struct reloc_control *rc,
2168 struct btrfs_backref_node *node)
2169 {
2170 u64 num_bytes;
2171
2172 num_bytes = calcu_metadata_size(rc, node) * 2;
2173 return refill_metadata_space(trans, rc, num_bytes);
2174 }
2175
2176 /*
2177 * relocate a block tree, and then update pointers in upper level
2178 * blocks that reference the block to point to the new location.
2179 *
2180 * if called by link_to_upper, the block has already been relocated.
2181 * in that case this function just updates pointers.
2182 */
do_relocation(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_backref_node * node,struct btrfs_key * key,struct btrfs_path * path,int lowest)2183 static int do_relocation(struct btrfs_trans_handle *trans,
2184 struct reloc_control *rc,
2185 struct btrfs_backref_node *node,
2186 struct btrfs_key *key,
2187 struct btrfs_path *path, int lowest)
2188 {
2189 struct btrfs_backref_node *upper;
2190 struct btrfs_backref_edge *edge;
2191 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2192 struct btrfs_root *root;
2193 struct extent_buffer *eb;
2194 u32 blocksize;
2195 u64 bytenr;
2196 int slot;
2197 int ret = 0;
2198
2199 /*
2200 * If we are lowest then this is the first time we're processing this
2201 * block, and thus shouldn't have an eb associated with it yet.
2202 */
2203 ASSERT(!lowest || !node->eb);
2204
2205 path->lowest_level = node->level + 1;
2206 rc->backref_cache.path[node->level] = node;
2207 list_for_each_entry(edge, &node->upper, list[LOWER]) {
2208 cond_resched();
2209
2210 upper = edge->node[UPPER];
2211 root = select_reloc_root(trans, rc, upper, edges);
2212 if (IS_ERR(root)) {
2213 ret = PTR_ERR(root);
2214 goto next;
2215 }
2216
2217 if (upper->eb && !upper->locked) {
2218 if (!lowest) {
2219 ret = btrfs_bin_search(upper->eb, 0, key, &slot);
2220 if (ret < 0)
2221 goto next;
2222 BUG_ON(ret);
2223 bytenr = btrfs_node_blockptr(upper->eb, slot);
2224 if (node->eb->start == bytenr)
2225 goto next;
2226 }
2227 btrfs_backref_drop_node_buffer(upper);
2228 }
2229
2230 if (!upper->eb) {
2231 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2232 if (ret) {
2233 if (ret > 0)
2234 ret = -ENOENT;
2235
2236 btrfs_release_path(path);
2237 break;
2238 }
2239
2240 if (!upper->eb) {
2241 upper->eb = path->nodes[upper->level];
2242 path->nodes[upper->level] = NULL;
2243 } else {
2244 BUG_ON(upper->eb != path->nodes[upper->level]);
2245 }
2246
2247 upper->locked = 1;
2248 path->locks[upper->level] = 0;
2249
2250 slot = path->slots[upper->level];
2251 btrfs_release_path(path);
2252 } else {
2253 ret = btrfs_bin_search(upper->eb, 0, key, &slot);
2254 if (ret < 0)
2255 goto next;
2256 BUG_ON(ret);
2257 }
2258
2259 bytenr = btrfs_node_blockptr(upper->eb, slot);
2260 if (lowest) {
2261 if (bytenr != node->bytenr) {
2262 btrfs_err(root->fs_info,
2263 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2264 bytenr, node->bytenr, slot,
2265 upper->eb->start);
2266 ret = -EIO;
2267 goto next;
2268 }
2269 } else {
2270 if (node->eb->start == bytenr)
2271 goto next;
2272 }
2273
2274 blocksize = root->fs_info->nodesize;
2275 eb = btrfs_read_node_slot(upper->eb, slot);
2276 if (IS_ERR(eb)) {
2277 ret = PTR_ERR(eb);
2278 goto next;
2279 }
2280 btrfs_tree_lock(eb);
2281
2282 if (!node->eb) {
2283 ret = btrfs_cow_block(trans, root, eb, upper->eb,
2284 slot, &eb, BTRFS_NESTING_COW);
2285 btrfs_tree_unlock(eb);
2286 free_extent_buffer(eb);
2287 if (ret < 0)
2288 goto next;
2289 /*
2290 * We've just COWed this block, it should have updated
2291 * the correct backref node entry.
2292 */
2293 ASSERT(node->eb == eb);
2294 } else {
2295 struct btrfs_ref ref = {
2296 .action = BTRFS_ADD_DELAYED_REF,
2297 .bytenr = node->eb->start,
2298 .num_bytes = blocksize,
2299 .parent = upper->eb->start,
2300 .owning_root = btrfs_header_owner(upper->eb),
2301 .ref_root = btrfs_header_owner(upper->eb),
2302 };
2303
2304 btrfs_set_node_blockptr(upper->eb, slot,
2305 node->eb->start);
2306 btrfs_set_node_ptr_generation(upper->eb, slot,
2307 trans->transid);
2308 btrfs_mark_buffer_dirty(trans, upper->eb);
2309
2310 btrfs_init_tree_ref(&ref, node->level,
2311 btrfs_root_id(root), false);
2312 ret = btrfs_inc_extent_ref(trans, &ref);
2313 if (!ret)
2314 ret = btrfs_drop_subtree(trans, root, eb,
2315 upper->eb);
2316 if (ret)
2317 btrfs_abort_transaction(trans, ret);
2318 }
2319 next:
2320 if (!upper->pending)
2321 btrfs_backref_drop_node_buffer(upper);
2322 else
2323 btrfs_backref_unlock_node_buffer(upper);
2324 if (ret)
2325 break;
2326 }
2327
2328 if (!ret && node->pending) {
2329 btrfs_backref_drop_node_buffer(node);
2330 list_del_init(&node->list);
2331 node->pending = 0;
2332 }
2333
2334 path->lowest_level = 0;
2335
2336 /*
2337 * We should have allocated all of our space in the block rsv and thus
2338 * shouldn't ENOSPC.
2339 */
2340 ASSERT(ret != -ENOSPC);
2341 return ret;
2342 }
2343
link_to_upper(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_backref_node * node,struct btrfs_path * path)2344 static int link_to_upper(struct btrfs_trans_handle *trans,
2345 struct reloc_control *rc,
2346 struct btrfs_backref_node *node,
2347 struct btrfs_path *path)
2348 {
2349 struct btrfs_key key;
2350
2351 btrfs_node_key_to_cpu(node->eb, &key, 0);
2352 return do_relocation(trans, rc, node, &key, path, 0);
2353 }
2354
finish_pending_nodes(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_path * path,int err)2355 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2356 struct reloc_control *rc,
2357 struct btrfs_path *path, int err)
2358 {
2359 LIST_HEAD(list);
2360 struct btrfs_backref_cache *cache = &rc->backref_cache;
2361 struct btrfs_backref_node *node;
2362 int level;
2363 int ret;
2364
2365 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2366 while (!list_empty(&cache->pending[level])) {
2367 node = list_first_entry(&cache->pending[level],
2368 struct btrfs_backref_node, list);
2369 list_move_tail(&node->list, &list);
2370 BUG_ON(!node->pending);
2371
2372 if (!err) {
2373 ret = link_to_upper(trans, rc, node, path);
2374 if (ret < 0)
2375 err = ret;
2376 }
2377 }
2378 list_splice_init(&list, &cache->pending[level]);
2379 }
2380 return err;
2381 }
2382
2383 /*
2384 * mark a block and all blocks directly/indirectly reference the block
2385 * as processed.
2386 */
update_processed_blocks(struct reloc_control * rc,struct btrfs_backref_node * node)2387 static void update_processed_blocks(struct reloc_control *rc,
2388 struct btrfs_backref_node *node)
2389 {
2390 struct btrfs_backref_node *next = node;
2391 struct btrfs_backref_edge *edge;
2392 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2393 int index = 0;
2394
2395 while (next) {
2396 cond_resched();
2397 while (1) {
2398 if (next->processed)
2399 break;
2400
2401 mark_block_processed(rc, next);
2402
2403 if (list_empty(&next->upper))
2404 break;
2405
2406 edge = list_first_entry(&next->upper, struct btrfs_backref_edge,
2407 list[LOWER]);
2408 edges[index++] = edge;
2409 next = edge->node[UPPER];
2410 }
2411 next = walk_down_backref(edges, &index);
2412 }
2413 }
2414
tree_block_processed(u64 bytenr,struct reloc_control * rc)2415 static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2416 {
2417 u32 blocksize = rc->extent_root->fs_info->nodesize;
2418
2419 if (btrfs_test_range_bit(&rc->processed_blocks, bytenr,
2420 bytenr + blocksize - 1, EXTENT_DIRTY, NULL))
2421 return 1;
2422 return 0;
2423 }
2424
get_tree_block_key(struct btrfs_fs_info * fs_info,struct tree_block * block)2425 static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2426 struct tree_block *block)
2427 {
2428 struct btrfs_tree_parent_check check = {
2429 .level = block->level,
2430 .owner_root = block->owner,
2431 .transid = block->key.offset
2432 };
2433 struct extent_buffer *eb;
2434
2435 eb = read_tree_block(fs_info, block->bytenr, &check);
2436 if (IS_ERR(eb))
2437 return PTR_ERR(eb);
2438 if (!extent_buffer_uptodate(eb)) {
2439 free_extent_buffer(eb);
2440 return -EIO;
2441 }
2442 if (block->level == 0)
2443 btrfs_item_key_to_cpu(eb, &block->key, 0);
2444 else
2445 btrfs_node_key_to_cpu(eb, &block->key, 0);
2446 free_extent_buffer(eb);
2447 block->key_ready = true;
2448 return 0;
2449 }
2450
2451 /*
2452 * helper function to relocate a tree block
2453 */
relocate_tree_block(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_backref_node * node,struct btrfs_key * key,struct btrfs_path * path)2454 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2455 struct reloc_control *rc,
2456 struct btrfs_backref_node *node,
2457 struct btrfs_key *key,
2458 struct btrfs_path *path)
2459 {
2460 struct btrfs_root *root;
2461 int ret = 0;
2462
2463 if (!node)
2464 return 0;
2465
2466 /*
2467 * If we fail here we want to drop our backref_node because we are going
2468 * to start over and regenerate the tree for it.
2469 */
2470 ret = reserve_metadata_space(trans, rc, node);
2471 if (ret)
2472 goto out;
2473
2474 BUG_ON(node->processed);
2475 root = select_one_root(node);
2476 if (IS_ERR(root)) {
2477 ret = PTR_ERR(root);
2478
2479 /* See explanation in select_one_root for the -EUCLEAN case. */
2480 ASSERT(ret == -ENOENT);
2481 if (ret == -ENOENT) {
2482 ret = 0;
2483 update_processed_blocks(rc, node);
2484 }
2485 goto out;
2486 }
2487
2488 if (root) {
2489 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2490 /*
2491 * This block was the root block of a root, and this is
2492 * the first time we're processing the block and thus it
2493 * should not have had the ->new_bytenr modified.
2494 *
2495 * However in the case of corruption we could have
2496 * multiple refs pointing to the same block improperly,
2497 * and thus we would trip over these checks. ASSERT()
2498 * for the developer case, because it could indicate a
2499 * bug in the backref code, however error out for a
2500 * normal user in the case of corruption.
2501 */
2502 ASSERT(node->new_bytenr == 0);
2503 if (node->new_bytenr) {
2504 btrfs_err(root->fs_info,
2505 "bytenr %llu has improper references to it",
2506 node->bytenr);
2507 ret = -EUCLEAN;
2508 goto out;
2509 }
2510 ret = btrfs_record_root_in_trans(trans, root);
2511 if (ret)
2512 goto out;
2513 /*
2514 * Another thread could have failed, need to check if we
2515 * have reloc_root actually set.
2516 */
2517 if (!root->reloc_root) {
2518 ret = -ENOENT;
2519 goto out;
2520 }
2521 root = root->reloc_root;
2522 node->new_bytenr = root->node->start;
2523 btrfs_put_root(node->root);
2524 node->root = btrfs_grab_root(root);
2525 ASSERT(node->root);
2526 } else {
2527 btrfs_err(root->fs_info,
2528 "bytenr %llu resolved to a non-shareable root",
2529 node->bytenr);
2530 ret = -EUCLEAN;
2531 goto out;
2532 }
2533 if (!ret)
2534 update_processed_blocks(rc, node);
2535 } else {
2536 ret = do_relocation(trans, rc, node, key, path, 1);
2537 }
2538 out:
2539 if (ret || node->level == 0)
2540 btrfs_backref_cleanup_node(&rc->backref_cache, node);
2541 return ret;
2542 }
2543
relocate_cowonly_block(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct tree_block * block,struct btrfs_path * path)2544 static int relocate_cowonly_block(struct btrfs_trans_handle *trans,
2545 struct reloc_control *rc, struct tree_block *block,
2546 struct btrfs_path *path)
2547 {
2548 struct btrfs_fs_info *fs_info = trans->fs_info;
2549 struct btrfs_root *root;
2550 u64 num_bytes;
2551 int nr_levels;
2552 int ret;
2553
2554 root = btrfs_get_fs_root(fs_info, block->owner, true);
2555 if (IS_ERR(root))
2556 return PTR_ERR(root);
2557
2558 nr_levels = max(btrfs_header_level(root->node) - block->level, 0) + 1;
2559
2560 num_bytes = fs_info->nodesize * nr_levels;
2561 ret = refill_metadata_space(trans, rc, num_bytes);
2562 if (ret) {
2563 btrfs_put_root(root);
2564 return ret;
2565 }
2566 path->lowest_level = block->level;
2567 if (root == root->fs_info->chunk_root)
2568 btrfs_reserve_chunk_metadata(trans, false);
2569
2570 ret = btrfs_search_slot(trans, root, &block->key, path, 0, 1);
2571 path->lowest_level = 0;
2572 btrfs_release_path(path);
2573
2574 if (root == root->fs_info->chunk_root)
2575 btrfs_trans_release_chunk_metadata(trans);
2576 if (ret > 0)
2577 ret = 0;
2578 btrfs_put_root(root);
2579
2580 return ret;
2581 }
2582
2583 /*
2584 * relocate a list of blocks
2585 */
2586 static noinline_for_stack
relocate_tree_blocks(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct rb_root * blocks)2587 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2588 struct reloc_control *rc, struct rb_root *blocks)
2589 {
2590 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2591 struct btrfs_backref_node *node;
2592 struct btrfs_path *path;
2593 struct tree_block *block;
2594 struct tree_block *next;
2595 int ret = 0;
2596
2597 path = btrfs_alloc_path();
2598 if (!path) {
2599 ret = -ENOMEM;
2600 goto out_free_blocks;
2601 }
2602
2603 /* Kick in readahead for tree blocks with missing keys */
2604 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2605 if (!block->key_ready)
2606 btrfs_readahead_tree_block(fs_info, block->bytenr,
2607 block->owner, 0,
2608 block->level);
2609 }
2610
2611 /* Get first keys */
2612 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2613 if (!block->key_ready) {
2614 ret = get_tree_block_key(fs_info, block);
2615 if (ret)
2616 goto out_free_path;
2617 }
2618 }
2619
2620 /* Do tree relocation */
2621 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2622 /*
2623 * For COWonly blocks, or the data reloc tree, we only need to
2624 * COW down to the block, there's no need to generate a backref
2625 * tree.
2626 */
2627 if (block->owner &&
2628 (!btrfs_is_fstree(block->owner) ||
2629 block->owner == BTRFS_DATA_RELOC_TREE_OBJECTID)) {
2630 ret = relocate_cowonly_block(trans, rc, block, path);
2631 if (ret)
2632 break;
2633 continue;
2634 }
2635
2636 node = build_backref_tree(trans, rc, &block->key,
2637 block->level, block->bytenr);
2638 if (IS_ERR(node)) {
2639 ret = PTR_ERR(node);
2640 goto out;
2641 }
2642
2643 ret = relocate_tree_block(trans, rc, node, &block->key,
2644 path);
2645 if (ret < 0)
2646 break;
2647 }
2648 out:
2649 ret = finish_pending_nodes(trans, rc, path, ret);
2650
2651 out_free_path:
2652 btrfs_free_path(path);
2653 out_free_blocks:
2654 free_block_list(blocks);
2655 return ret;
2656 }
2657
prealloc_file_extent_cluster(struct reloc_control * rc)2658 static noinline_for_stack int prealloc_file_extent_cluster(struct reloc_control *rc)
2659 {
2660 const struct file_extent_cluster *cluster = &rc->cluster;
2661 struct btrfs_inode *inode = BTRFS_I(rc->data_inode);
2662 u64 alloc_hint = 0;
2663 u64 start;
2664 u64 end;
2665 u64 offset = inode->reloc_block_group_start;
2666 u64 num_bytes;
2667 int nr;
2668 int ret = 0;
2669 u64 prealloc_start = cluster->start - offset;
2670 u64 prealloc_end = cluster->end - offset;
2671 u64 cur_offset = prealloc_start;
2672
2673 /*
2674 * For blocksize < folio size case (either bs < page size or large folios),
2675 * beyond i_size, all blocks are filled with zero.
2676 *
2677 * If the current cluster covers the above range, btrfs_do_readpage()
2678 * will skip the read, and relocate_one_folio() will later writeback
2679 * the padding zeros as new data, causing data corruption.
2680 *
2681 * Here we have to invalidate the cache covering our cluster.
2682 */
2683 ret = filemap_invalidate_inode(&inode->vfs_inode, true, prealloc_start,
2684 prealloc_end);
2685 if (ret < 0)
2686 return ret;
2687
2688 BUG_ON(cluster->start != cluster->boundary[0]);
2689 ret = btrfs_alloc_data_chunk_ondemand(inode,
2690 prealloc_end + 1 - prealloc_start);
2691 if (ret)
2692 return ret;
2693
2694 btrfs_inode_lock(inode, 0);
2695 for (nr = 0; nr < cluster->nr; nr++) {
2696 struct extent_state *cached_state = NULL;
2697
2698 start = cluster->boundary[nr] - offset;
2699 if (nr + 1 < cluster->nr)
2700 end = cluster->boundary[nr + 1] - 1 - offset;
2701 else
2702 end = cluster->end - offset;
2703
2704 btrfs_lock_extent(&inode->io_tree, start, end, &cached_state);
2705 num_bytes = end + 1 - start;
2706 ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start,
2707 num_bytes, num_bytes,
2708 end + 1, &alloc_hint);
2709 cur_offset = end + 1;
2710 btrfs_unlock_extent(&inode->io_tree, start, end, &cached_state);
2711 if (ret)
2712 break;
2713 }
2714 btrfs_inode_unlock(inode, 0);
2715
2716 if (cur_offset < prealloc_end)
2717 btrfs_free_reserved_data_space_noquota(inode,
2718 prealloc_end + 1 - cur_offset);
2719 return ret;
2720 }
2721
setup_relocation_extent_mapping(struct reloc_control * rc)2722 static noinline_for_stack int setup_relocation_extent_mapping(struct reloc_control *rc)
2723 {
2724 struct btrfs_inode *inode = BTRFS_I(rc->data_inode);
2725 struct extent_map *em;
2726 struct extent_state *cached_state = NULL;
2727 u64 offset = inode->reloc_block_group_start;
2728 u64 start = rc->cluster.start - offset;
2729 u64 end = rc->cluster.end - offset;
2730 int ret = 0;
2731
2732 em = btrfs_alloc_extent_map();
2733 if (!em)
2734 return -ENOMEM;
2735
2736 em->start = start;
2737 em->len = end + 1 - start;
2738 em->disk_bytenr = rc->cluster.start;
2739 em->disk_num_bytes = em->len;
2740 em->ram_bytes = em->len;
2741 em->flags |= EXTENT_FLAG_PINNED;
2742
2743 btrfs_lock_extent(&inode->io_tree, start, end, &cached_state);
2744 ret = btrfs_replace_extent_map_range(inode, em, false);
2745 btrfs_unlock_extent(&inode->io_tree, start, end, &cached_state);
2746 btrfs_free_extent_map(em);
2747
2748 return ret;
2749 }
2750
2751 /*
2752 * Allow error injection to test balance/relocation cancellation
2753 */
btrfs_should_cancel_balance(const struct btrfs_fs_info * fs_info)2754 noinline int btrfs_should_cancel_balance(const struct btrfs_fs_info *fs_info)
2755 {
2756 return atomic_read(&fs_info->balance_cancel_req) ||
2757 atomic_read(&fs_info->reloc_cancel_req) ||
2758 fatal_signal_pending(current);
2759 }
2760 ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE);
2761
get_cluster_boundary_end(const struct file_extent_cluster * cluster,int cluster_nr)2762 static u64 get_cluster_boundary_end(const struct file_extent_cluster *cluster,
2763 int cluster_nr)
2764 {
2765 /* Last extent, use cluster end directly */
2766 if (cluster_nr >= cluster->nr - 1)
2767 return cluster->end;
2768
2769 /* Use next boundary start*/
2770 return cluster->boundary[cluster_nr + 1] - 1;
2771 }
2772
relocate_one_folio(struct reloc_control * rc,struct file_ra_state * ra,int * cluster_nr,u64 * file_offset_ret)2773 static int relocate_one_folio(struct reloc_control *rc,
2774 struct file_ra_state *ra,
2775 int *cluster_nr, u64 *file_offset_ret)
2776 {
2777 const struct file_extent_cluster *cluster = &rc->cluster;
2778 struct inode *inode = rc->data_inode;
2779 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2780 const u64 orig_file_offset = *file_offset_ret;
2781 u64 offset = BTRFS_I(inode)->reloc_block_group_start;
2782 const pgoff_t last_index = (cluster->end - offset) >> PAGE_SHIFT;
2783 const pgoff_t index = orig_file_offset >> PAGE_SHIFT;
2784 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2785 struct folio *folio;
2786 u64 folio_start;
2787 u64 folio_end;
2788 u64 cur;
2789 int ret;
2790 const bool use_rst = btrfs_need_stripe_tree_update(fs_info, rc->block_group->flags);
2791
2792 ASSERT(index <= last_index);
2793 again:
2794 folio = filemap_lock_folio(inode->i_mapping, index);
2795 if (IS_ERR(folio)) {
2796
2797 /*
2798 * On relocation we're doing readahead on the relocation inode,
2799 * but if the filesystem is backed by a RAID stripe tree we can
2800 * get ENOENT (e.g. due to preallocated extents not being
2801 * mapped in the RST) from the lookup.
2802 *
2803 * But readahead doesn't handle the error and submits invalid
2804 * reads to the device, causing a assertion failures.
2805 */
2806 if (!use_rst)
2807 page_cache_sync_readahead(inode->i_mapping, ra, NULL,
2808 index, last_index + 1 - index);
2809 folio = __filemap_get_folio(inode->i_mapping, index,
2810 FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
2811 mask);
2812 if (IS_ERR(folio))
2813 return PTR_ERR(folio);
2814 }
2815
2816 if (folio_test_readahead(folio) && !use_rst)
2817 page_cache_async_readahead(inode->i_mapping, ra, NULL,
2818 folio, last_index + 1 - index);
2819
2820 if (!folio_test_uptodate(folio)) {
2821 btrfs_read_folio(NULL, folio);
2822 folio_lock(folio);
2823 if (!folio_test_uptodate(folio)) {
2824 ret = -EIO;
2825 goto release_folio;
2826 }
2827 if (folio->mapping != inode->i_mapping) {
2828 folio_unlock(folio);
2829 folio_put(folio);
2830 goto again;
2831 }
2832 }
2833
2834 /*
2835 * We could have lost folio private when we dropped the lock to read the
2836 * folio above, make sure we set_folio_extent_mapped() here so we have any
2837 * of the subpage blocksize stuff we need in place.
2838 */
2839 ret = set_folio_extent_mapped(folio);
2840 if (ret < 0)
2841 goto release_folio;
2842
2843 folio_start = folio_pos(folio);
2844 folio_end = folio_start + folio_size(folio) - 1;
2845
2846 /*
2847 * Start from the cluster, as for subpage case, the cluster can start
2848 * inside the folio.
2849 */
2850 cur = max(folio_start, cluster->boundary[*cluster_nr] - offset);
2851 while (cur <= folio_end) {
2852 struct extent_state *cached_state = NULL;
2853 u64 extent_start = cluster->boundary[*cluster_nr] - offset;
2854 u64 extent_end = get_cluster_boundary_end(cluster,
2855 *cluster_nr) - offset;
2856 u64 clamped_start = max(folio_start, extent_start);
2857 u64 clamped_end = min(folio_end, extent_end);
2858 u32 clamped_len = clamped_end + 1 - clamped_start;
2859
2860 /* Reserve metadata for this range */
2861 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
2862 clamped_len, clamped_len,
2863 false);
2864 if (ret)
2865 goto release_folio;
2866
2867 /* Mark the range delalloc and dirty for later writeback */
2868 btrfs_lock_extent(&BTRFS_I(inode)->io_tree, clamped_start,
2869 clamped_end, &cached_state);
2870 ret = btrfs_set_extent_delalloc(BTRFS_I(inode), clamped_start,
2871 clamped_end, 0, &cached_state);
2872 if (ret) {
2873 btrfs_clear_extent_bit(&BTRFS_I(inode)->io_tree,
2874 clamped_start, clamped_end,
2875 EXTENT_LOCKED | EXTENT_BOUNDARY,
2876 &cached_state);
2877 btrfs_delalloc_release_metadata(BTRFS_I(inode),
2878 clamped_len, true);
2879 btrfs_delalloc_release_extents(BTRFS_I(inode),
2880 clamped_len);
2881 goto release_folio;
2882 }
2883 btrfs_folio_set_dirty(fs_info, folio, clamped_start, clamped_len);
2884
2885 /*
2886 * Set the boundary if it's inside the folio.
2887 * Data relocation requires the destination extents to have the
2888 * same size as the source.
2889 * EXTENT_BOUNDARY bit prevents current extent from being merged
2890 * with previous extent.
2891 */
2892 if (in_range(cluster->boundary[*cluster_nr] - offset,
2893 folio_start, folio_size(folio))) {
2894 u64 boundary_start = cluster->boundary[*cluster_nr] -
2895 offset;
2896 u64 boundary_end = boundary_start +
2897 fs_info->sectorsize - 1;
2898
2899 btrfs_set_extent_bit(&BTRFS_I(inode)->io_tree,
2900 boundary_start, boundary_end,
2901 EXTENT_BOUNDARY, NULL);
2902 }
2903 btrfs_unlock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end,
2904 &cached_state);
2905 btrfs_delalloc_release_extents(BTRFS_I(inode), clamped_len);
2906 cur += clamped_len;
2907
2908 /* Crossed extent end, go to next extent */
2909 if (cur >= extent_end) {
2910 (*cluster_nr)++;
2911 /* Just finished the last extent of the cluster, exit. */
2912 if (*cluster_nr >= cluster->nr)
2913 break;
2914 }
2915 }
2916 folio_unlock(folio);
2917 folio_put(folio);
2918
2919 balance_dirty_pages_ratelimited(inode->i_mapping);
2920 btrfs_throttle(fs_info);
2921 if (btrfs_should_cancel_balance(fs_info))
2922 ret = -ECANCELED;
2923 *file_offset_ret = folio_end + 1;
2924 return ret;
2925
2926 release_folio:
2927 folio_unlock(folio);
2928 folio_put(folio);
2929 return ret;
2930 }
2931
relocate_file_extent_cluster(struct reloc_control * rc)2932 static int relocate_file_extent_cluster(struct reloc_control *rc)
2933 {
2934 struct inode *inode = rc->data_inode;
2935 const struct file_extent_cluster *cluster = &rc->cluster;
2936 u64 offset = BTRFS_I(inode)->reloc_block_group_start;
2937 u64 cur_file_offset = cluster->start - offset;
2938 struct file_ra_state *ra;
2939 int cluster_nr = 0;
2940 int ret = 0;
2941
2942 if (!cluster->nr)
2943 return 0;
2944
2945 ra = kzalloc(sizeof(*ra), GFP_NOFS);
2946 if (!ra)
2947 return -ENOMEM;
2948
2949 ret = prealloc_file_extent_cluster(rc);
2950 if (ret)
2951 goto out;
2952
2953 file_ra_state_init(ra, inode->i_mapping);
2954
2955 ret = setup_relocation_extent_mapping(rc);
2956 if (ret)
2957 goto out;
2958
2959 while (cur_file_offset < cluster->end - offset) {
2960 ret = relocate_one_folio(rc, ra, &cluster_nr, &cur_file_offset);
2961 if (ret)
2962 break;
2963 }
2964 if (ret == 0)
2965 WARN_ON(cluster_nr != cluster->nr);
2966 out:
2967 kfree(ra);
2968 return ret;
2969 }
2970
relocate_data_extent(struct reloc_control * rc,const struct btrfs_key * extent_key)2971 static noinline_for_stack int relocate_data_extent(struct reloc_control *rc,
2972 const struct btrfs_key *extent_key)
2973 {
2974 struct inode *inode = rc->data_inode;
2975 struct file_extent_cluster *cluster = &rc->cluster;
2976 int ret;
2977 struct btrfs_root *root = BTRFS_I(inode)->root;
2978
2979 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
2980 ret = relocate_file_extent_cluster(rc);
2981 if (ret)
2982 return ret;
2983 cluster->nr = 0;
2984 }
2985
2986 /*
2987 * Under simple quotas, we set root->relocation_src_root when we find
2988 * the extent. If adjacent extents have different owners, we can't merge
2989 * them while relocating. Handle this by storing the owning root that
2990 * started a cluster and if we see an extent from a different root break
2991 * cluster formation (just like the above case of non-adjacent extents).
2992 *
2993 * Without simple quotas, relocation_src_root is always 0, so we should
2994 * never see a mismatch, and it should have no effect on relocation
2995 * clusters.
2996 */
2997 if (cluster->nr > 0 && cluster->owning_root != root->relocation_src_root) {
2998 u64 tmp = root->relocation_src_root;
2999
3000 /*
3001 * root->relocation_src_root is the state that actually affects
3002 * the preallocation we do here, so set it to the root owning
3003 * the cluster we need to relocate.
3004 */
3005 root->relocation_src_root = cluster->owning_root;
3006 ret = relocate_file_extent_cluster(rc);
3007 if (ret)
3008 return ret;
3009 cluster->nr = 0;
3010 /* And reset it back for the current extent's owning root. */
3011 root->relocation_src_root = tmp;
3012 }
3013
3014 if (!cluster->nr) {
3015 cluster->start = extent_key->objectid;
3016 cluster->owning_root = root->relocation_src_root;
3017 }
3018 else
3019 BUG_ON(cluster->nr >= MAX_EXTENTS);
3020 cluster->end = extent_key->objectid + extent_key->offset - 1;
3021 cluster->boundary[cluster->nr] = extent_key->objectid;
3022 cluster->nr++;
3023
3024 if (cluster->nr >= MAX_EXTENTS) {
3025 ret = relocate_file_extent_cluster(rc);
3026 if (ret)
3027 return ret;
3028 cluster->nr = 0;
3029 }
3030 return 0;
3031 }
3032
3033 /*
3034 * helper to add a tree block to the list.
3035 * the major work is getting the generation and level of the block
3036 */
add_tree_block(struct reloc_control * rc,const struct btrfs_key * extent_key,struct btrfs_path * path,struct rb_root * blocks)3037 static int add_tree_block(struct reloc_control *rc,
3038 const struct btrfs_key *extent_key,
3039 struct btrfs_path *path,
3040 struct rb_root *blocks)
3041 {
3042 struct extent_buffer *eb;
3043 struct btrfs_extent_item *ei;
3044 struct btrfs_tree_block_info *bi;
3045 struct tree_block *block;
3046 struct rb_node *rb_node;
3047 u32 item_size;
3048 int level = -1;
3049 u64 generation;
3050 u64 owner = 0;
3051
3052 eb = path->nodes[0];
3053 item_size = btrfs_item_size(eb, path->slots[0]);
3054
3055 if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3056 item_size >= sizeof(*ei) + sizeof(*bi)) {
3057 unsigned long ptr = 0, end;
3058
3059 ei = btrfs_item_ptr(eb, path->slots[0],
3060 struct btrfs_extent_item);
3061 end = (unsigned long)ei + item_size;
3062 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3063 bi = (struct btrfs_tree_block_info *)(ei + 1);
3064 level = btrfs_tree_block_level(eb, bi);
3065 ptr = (unsigned long)(bi + 1);
3066 } else {
3067 level = (int)extent_key->offset;
3068 ptr = (unsigned long)(ei + 1);
3069 }
3070 generation = btrfs_extent_generation(eb, ei);
3071
3072 /*
3073 * We're reading random blocks without knowing their owner ahead
3074 * of time. This is ok most of the time, as all reloc roots and
3075 * fs roots have the same lock type. However normal trees do
3076 * not, and the only way to know ahead of time is to read the
3077 * inline ref offset. We know it's an fs root if
3078 *
3079 * 1. There's more than one ref.
3080 * 2. There's a SHARED_DATA_REF_KEY set.
3081 * 3. FULL_BACKREF is set on the flags.
3082 *
3083 * Otherwise it's safe to assume that the ref offset == the
3084 * owner of this block, so we can use that when calling
3085 * read_tree_block.
3086 */
3087 if (btrfs_extent_refs(eb, ei) == 1 &&
3088 !(btrfs_extent_flags(eb, ei) &
3089 BTRFS_BLOCK_FLAG_FULL_BACKREF) &&
3090 ptr < end) {
3091 struct btrfs_extent_inline_ref *iref;
3092 int type;
3093
3094 iref = (struct btrfs_extent_inline_ref *)ptr;
3095 type = btrfs_get_extent_inline_ref_type(eb, iref,
3096 BTRFS_REF_TYPE_BLOCK);
3097 if (type == BTRFS_REF_TYPE_INVALID)
3098 return -EINVAL;
3099 if (type == BTRFS_TREE_BLOCK_REF_KEY)
3100 owner = btrfs_extent_inline_ref_offset(eb, iref);
3101 }
3102 } else {
3103 btrfs_print_leaf(eb);
3104 btrfs_err(rc->block_group->fs_info,
3105 "unrecognized tree backref at tree block %llu slot %u",
3106 eb->start, path->slots[0]);
3107 btrfs_release_path(path);
3108 return -EUCLEAN;
3109 }
3110
3111 btrfs_release_path(path);
3112
3113 BUG_ON(level == -1);
3114
3115 block = kmalloc(sizeof(*block), GFP_NOFS);
3116 if (!block)
3117 return -ENOMEM;
3118
3119 block->bytenr = extent_key->objectid;
3120 block->key.objectid = rc->extent_root->fs_info->nodesize;
3121 block->key.offset = generation;
3122 block->level = level;
3123 block->key_ready = false;
3124 block->owner = owner;
3125
3126 rb_node = rb_simple_insert(blocks, &block->simple_node);
3127 if (rb_node)
3128 btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr,
3129 -EEXIST);
3130
3131 return 0;
3132 }
3133
3134 /*
3135 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3136 */
__add_tree_block(struct reloc_control * rc,u64 bytenr,u32 blocksize,struct rb_root * blocks)3137 static int __add_tree_block(struct reloc_control *rc,
3138 u64 bytenr, u32 blocksize,
3139 struct rb_root *blocks)
3140 {
3141 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3142 struct btrfs_path *path;
3143 struct btrfs_key key;
3144 int ret;
3145 bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3146
3147 if (tree_block_processed(bytenr, rc))
3148 return 0;
3149
3150 if (rb_simple_search(blocks, bytenr))
3151 return 0;
3152
3153 path = btrfs_alloc_path();
3154 if (!path)
3155 return -ENOMEM;
3156 again:
3157 key.objectid = bytenr;
3158 if (skinny) {
3159 key.type = BTRFS_METADATA_ITEM_KEY;
3160 key.offset = (u64)-1;
3161 } else {
3162 key.type = BTRFS_EXTENT_ITEM_KEY;
3163 key.offset = blocksize;
3164 }
3165
3166 path->search_commit_root = 1;
3167 path->skip_locking = 1;
3168 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3169 if (ret < 0)
3170 goto out;
3171
3172 if (ret > 0 && skinny) {
3173 if (path->slots[0]) {
3174 path->slots[0]--;
3175 btrfs_item_key_to_cpu(path->nodes[0], &key,
3176 path->slots[0]);
3177 if (key.objectid == bytenr &&
3178 (key.type == BTRFS_METADATA_ITEM_KEY ||
3179 (key.type == BTRFS_EXTENT_ITEM_KEY &&
3180 key.offset == blocksize)))
3181 ret = 0;
3182 }
3183
3184 if (ret) {
3185 skinny = false;
3186 btrfs_release_path(path);
3187 goto again;
3188 }
3189 }
3190 if (ret) {
3191 ASSERT(ret == 1);
3192 btrfs_print_leaf(path->nodes[0]);
3193 btrfs_err(fs_info,
3194 "tree block extent item (%llu) is not found in extent tree",
3195 bytenr);
3196 WARN_ON(1);
3197 ret = -EINVAL;
3198 goto out;
3199 }
3200
3201 ret = add_tree_block(rc, &key, path, blocks);
3202 out:
3203 btrfs_free_path(path);
3204 return ret;
3205 }
3206
delete_block_group_cache(struct btrfs_block_group * block_group,struct inode * inode,u64 ino)3207 static int delete_block_group_cache(struct btrfs_block_group *block_group,
3208 struct inode *inode,
3209 u64 ino)
3210 {
3211 struct btrfs_fs_info *fs_info = block_group->fs_info;
3212 struct btrfs_root *root = fs_info->tree_root;
3213 struct btrfs_trans_handle *trans;
3214 struct btrfs_inode *btrfs_inode;
3215 int ret = 0;
3216
3217 if (inode)
3218 goto truncate;
3219
3220 btrfs_inode = btrfs_iget(ino, root);
3221 if (IS_ERR(btrfs_inode))
3222 return -ENOENT;
3223 inode = &btrfs_inode->vfs_inode;
3224
3225 truncate:
3226 ret = btrfs_check_trunc_cache_free_space(fs_info,
3227 &fs_info->global_block_rsv);
3228 if (ret)
3229 goto out;
3230
3231 trans = btrfs_join_transaction(root);
3232 if (IS_ERR(trans)) {
3233 ret = PTR_ERR(trans);
3234 goto out;
3235 }
3236
3237 ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3238
3239 btrfs_end_transaction(trans);
3240 btrfs_btree_balance_dirty(fs_info);
3241 out:
3242 iput(inode);
3243 return ret;
3244 }
3245
3246 /*
3247 * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
3248 * cache inode, to avoid free space cache data extent blocking data relocation.
3249 */
delete_v1_space_cache(struct extent_buffer * leaf,struct btrfs_block_group * block_group,u64 data_bytenr)3250 static int delete_v1_space_cache(struct extent_buffer *leaf,
3251 struct btrfs_block_group *block_group,
3252 u64 data_bytenr)
3253 {
3254 u64 space_cache_ino;
3255 struct btrfs_file_extent_item *ei;
3256 struct btrfs_key key;
3257 bool found = false;
3258 int i;
3259 int ret;
3260
3261 if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID)
3262 return 0;
3263
3264 for (i = 0; i < btrfs_header_nritems(leaf); i++) {
3265 u8 type;
3266
3267 btrfs_item_key_to_cpu(leaf, &key, i);
3268 if (key.type != BTRFS_EXTENT_DATA_KEY)
3269 continue;
3270 ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
3271 type = btrfs_file_extent_type(leaf, ei);
3272
3273 if ((type == BTRFS_FILE_EXTENT_REG ||
3274 type == BTRFS_FILE_EXTENT_PREALLOC) &&
3275 btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) {
3276 found = true;
3277 space_cache_ino = key.objectid;
3278 break;
3279 }
3280 }
3281 if (!found)
3282 return -ENOENT;
3283 ret = delete_block_group_cache(block_group, NULL, space_cache_ino);
3284 return ret;
3285 }
3286
3287 /*
3288 * helper to find all tree blocks that reference a given data extent
3289 */
add_data_references(struct reloc_control * rc,const struct btrfs_key * extent_key,struct btrfs_path * path,struct rb_root * blocks)3290 static noinline_for_stack int add_data_references(struct reloc_control *rc,
3291 const struct btrfs_key *extent_key,
3292 struct btrfs_path *path,
3293 struct rb_root *blocks)
3294 {
3295 struct btrfs_backref_walk_ctx ctx = { 0 };
3296 struct ulist_iterator leaf_uiter;
3297 struct ulist_node *ref_node = NULL;
3298 const u32 blocksize = rc->extent_root->fs_info->nodesize;
3299 int ret = 0;
3300
3301 btrfs_release_path(path);
3302
3303 ctx.bytenr = extent_key->objectid;
3304 ctx.skip_inode_ref_list = true;
3305 ctx.fs_info = rc->extent_root->fs_info;
3306
3307 ret = btrfs_find_all_leafs(&ctx);
3308 if (ret < 0)
3309 return ret;
3310
3311 ULIST_ITER_INIT(&leaf_uiter);
3312 while ((ref_node = ulist_next(ctx.refs, &leaf_uiter))) {
3313 struct btrfs_tree_parent_check check = { 0 };
3314 struct extent_buffer *eb;
3315
3316 eb = read_tree_block(ctx.fs_info, ref_node->val, &check);
3317 if (IS_ERR(eb)) {
3318 ret = PTR_ERR(eb);
3319 break;
3320 }
3321 ret = delete_v1_space_cache(eb, rc->block_group,
3322 extent_key->objectid);
3323 free_extent_buffer(eb);
3324 if (ret < 0)
3325 break;
3326 ret = __add_tree_block(rc, ref_node->val, blocksize, blocks);
3327 if (ret < 0)
3328 break;
3329 }
3330 if (ret < 0)
3331 free_block_list(blocks);
3332 ulist_free(ctx.refs);
3333 return ret;
3334 }
3335
3336 /*
3337 * helper to find next unprocessed extent
3338 */
3339 static noinline_for_stack
find_next_extent(struct reloc_control * rc,struct btrfs_path * path,struct btrfs_key * extent_key)3340 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3341 struct btrfs_key *extent_key)
3342 {
3343 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3344 struct btrfs_key key;
3345 struct extent_buffer *leaf;
3346 u64 start, end, last;
3347 int ret;
3348
3349 last = rc->block_group->start + rc->block_group->length;
3350 while (1) {
3351 bool block_found;
3352
3353 cond_resched();
3354 if (rc->search_start >= last) {
3355 ret = 1;
3356 break;
3357 }
3358
3359 key.objectid = rc->search_start;
3360 key.type = BTRFS_EXTENT_ITEM_KEY;
3361 key.offset = 0;
3362
3363 path->search_commit_root = 1;
3364 path->skip_locking = 1;
3365 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3366 0, 0);
3367 if (ret < 0)
3368 break;
3369 next:
3370 leaf = path->nodes[0];
3371 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3372 ret = btrfs_next_leaf(rc->extent_root, path);
3373 if (ret != 0)
3374 break;
3375 leaf = path->nodes[0];
3376 }
3377
3378 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3379 if (key.objectid >= last) {
3380 ret = 1;
3381 break;
3382 }
3383
3384 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3385 key.type != BTRFS_METADATA_ITEM_KEY) {
3386 path->slots[0]++;
3387 goto next;
3388 }
3389
3390 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3391 key.objectid + key.offset <= rc->search_start) {
3392 path->slots[0]++;
3393 goto next;
3394 }
3395
3396 if (key.type == BTRFS_METADATA_ITEM_KEY &&
3397 key.objectid + fs_info->nodesize <=
3398 rc->search_start) {
3399 path->slots[0]++;
3400 goto next;
3401 }
3402
3403 block_found = btrfs_find_first_extent_bit(&rc->processed_blocks,
3404 key.objectid, &start, &end,
3405 EXTENT_DIRTY, NULL);
3406
3407 if (block_found && start <= key.objectid) {
3408 btrfs_release_path(path);
3409 rc->search_start = end + 1;
3410 } else {
3411 if (key.type == BTRFS_EXTENT_ITEM_KEY)
3412 rc->search_start = key.objectid + key.offset;
3413 else
3414 rc->search_start = key.objectid +
3415 fs_info->nodesize;
3416 memcpy(extent_key, &key, sizeof(key));
3417 return 0;
3418 }
3419 }
3420 btrfs_release_path(path);
3421 return ret;
3422 }
3423
set_reloc_control(struct reloc_control * rc)3424 static void set_reloc_control(struct reloc_control *rc)
3425 {
3426 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3427
3428 mutex_lock(&fs_info->reloc_mutex);
3429 fs_info->reloc_ctl = rc;
3430 mutex_unlock(&fs_info->reloc_mutex);
3431 }
3432
unset_reloc_control(struct reloc_control * rc)3433 static void unset_reloc_control(struct reloc_control *rc)
3434 {
3435 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3436
3437 mutex_lock(&fs_info->reloc_mutex);
3438 fs_info->reloc_ctl = NULL;
3439 mutex_unlock(&fs_info->reloc_mutex);
3440 }
3441
3442 static noinline_for_stack
prepare_to_relocate(struct reloc_control * rc)3443 int prepare_to_relocate(struct reloc_control *rc)
3444 {
3445 struct btrfs_trans_handle *trans;
3446 int ret;
3447
3448 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3449 BTRFS_BLOCK_RSV_TEMP);
3450 if (!rc->block_rsv)
3451 return -ENOMEM;
3452
3453 memset(&rc->cluster, 0, sizeof(rc->cluster));
3454 rc->search_start = rc->block_group->start;
3455 rc->extents_found = 0;
3456 rc->nodes_relocated = 0;
3457 rc->merging_rsv_size = 0;
3458 rc->reserved_bytes = 0;
3459 rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3460 RELOCATION_RESERVED_NODES;
3461 ret = btrfs_block_rsv_refill(rc->extent_root->fs_info,
3462 rc->block_rsv, rc->block_rsv->size,
3463 BTRFS_RESERVE_FLUSH_ALL);
3464 if (ret)
3465 return ret;
3466
3467 rc->create_reloc_tree = true;
3468 set_reloc_control(rc);
3469
3470 trans = btrfs_join_transaction(rc->extent_root);
3471 if (IS_ERR(trans)) {
3472 unset_reloc_control(rc);
3473 /*
3474 * extent tree is not a ref_cow tree and has no reloc_root to
3475 * cleanup. And callers are responsible to free the above
3476 * block rsv.
3477 */
3478 return PTR_ERR(trans);
3479 }
3480
3481 ret = btrfs_commit_transaction(trans);
3482 if (ret)
3483 unset_reloc_control(rc);
3484
3485 return ret;
3486 }
3487
relocate_block_group(struct reloc_control * rc)3488 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3489 {
3490 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3491 struct rb_root blocks = RB_ROOT;
3492 struct btrfs_key key;
3493 struct btrfs_trans_handle *trans = NULL;
3494 struct btrfs_path *path;
3495 struct btrfs_extent_item *ei;
3496 u64 flags;
3497 int ret;
3498 int err = 0;
3499 int progress = 0;
3500
3501 path = btrfs_alloc_path();
3502 if (!path)
3503 return -ENOMEM;
3504 path->reada = READA_FORWARD;
3505
3506 ret = prepare_to_relocate(rc);
3507 if (ret) {
3508 err = ret;
3509 goto out_free;
3510 }
3511
3512 while (1) {
3513 rc->reserved_bytes = 0;
3514 ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
3515 rc->block_rsv->size,
3516 BTRFS_RESERVE_FLUSH_ALL);
3517 if (ret) {
3518 err = ret;
3519 break;
3520 }
3521 progress++;
3522 trans = btrfs_start_transaction(rc->extent_root, 0);
3523 if (IS_ERR(trans)) {
3524 err = PTR_ERR(trans);
3525 trans = NULL;
3526 break;
3527 }
3528 restart:
3529 if (rc->backref_cache.last_trans != trans->transid)
3530 btrfs_backref_release_cache(&rc->backref_cache);
3531 rc->backref_cache.last_trans = trans->transid;
3532
3533 ret = find_next_extent(rc, path, &key);
3534 if (ret < 0)
3535 err = ret;
3536 if (ret != 0)
3537 break;
3538
3539 rc->extents_found++;
3540
3541 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3542 struct btrfs_extent_item);
3543 flags = btrfs_extent_flags(path->nodes[0], ei);
3544
3545 /*
3546 * If we are relocating a simple quota owned extent item, we
3547 * need to note the owner on the reloc data root so that when
3548 * we allocate the replacement item, we can attribute it to the
3549 * correct eventual owner (rather than the reloc data root).
3550 */
3551 if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE) {
3552 struct btrfs_root *root = BTRFS_I(rc->data_inode)->root;
3553 u64 owning_root_id = btrfs_get_extent_owner_root(fs_info,
3554 path->nodes[0],
3555 path->slots[0]);
3556
3557 root->relocation_src_root = owning_root_id;
3558 }
3559
3560 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3561 ret = add_tree_block(rc, &key, path, &blocks);
3562 } else if (rc->stage == UPDATE_DATA_PTRS &&
3563 (flags & BTRFS_EXTENT_FLAG_DATA)) {
3564 ret = add_data_references(rc, &key, path, &blocks);
3565 } else {
3566 btrfs_release_path(path);
3567 ret = 0;
3568 }
3569 if (ret < 0) {
3570 err = ret;
3571 break;
3572 }
3573
3574 if (!RB_EMPTY_ROOT(&blocks)) {
3575 ret = relocate_tree_blocks(trans, rc, &blocks);
3576 if (ret < 0) {
3577 if (ret != -EAGAIN) {
3578 err = ret;
3579 break;
3580 }
3581 rc->extents_found--;
3582 rc->search_start = key.objectid;
3583 }
3584 }
3585
3586 btrfs_end_transaction_throttle(trans);
3587 btrfs_btree_balance_dirty(fs_info);
3588 trans = NULL;
3589
3590 if (rc->stage == MOVE_DATA_EXTENTS &&
3591 (flags & BTRFS_EXTENT_FLAG_DATA)) {
3592 rc->found_file_extent = true;
3593 ret = relocate_data_extent(rc, &key);
3594 if (ret < 0) {
3595 err = ret;
3596 break;
3597 }
3598 }
3599 if (btrfs_should_cancel_balance(fs_info)) {
3600 err = -ECANCELED;
3601 break;
3602 }
3603 }
3604 if (trans && progress && err == -ENOSPC) {
3605 ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
3606 if (ret == 1) {
3607 err = 0;
3608 progress = 0;
3609 goto restart;
3610 }
3611 }
3612
3613 btrfs_release_path(path);
3614 btrfs_clear_extent_bit(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY, NULL);
3615
3616 if (trans) {
3617 btrfs_end_transaction_throttle(trans);
3618 btrfs_btree_balance_dirty(fs_info);
3619 }
3620
3621 if (!err) {
3622 ret = relocate_file_extent_cluster(rc);
3623 if (ret < 0)
3624 err = ret;
3625 }
3626
3627 rc->create_reloc_tree = false;
3628 set_reloc_control(rc);
3629
3630 btrfs_backref_release_cache(&rc->backref_cache);
3631 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3632
3633 /*
3634 * Even in the case when the relocation is cancelled, we should all go
3635 * through prepare_to_merge() and merge_reloc_roots().
3636 *
3637 * For error (including cancelled balance), prepare_to_merge() will
3638 * mark all reloc trees orphan, then queue them for cleanup in
3639 * merge_reloc_roots()
3640 */
3641 err = prepare_to_merge(rc, err);
3642
3643 merge_reloc_roots(rc);
3644
3645 rc->merge_reloc_tree = false;
3646 unset_reloc_control(rc);
3647 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3648
3649 /* get rid of pinned extents */
3650 trans = btrfs_join_transaction(rc->extent_root);
3651 if (IS_ERR(trans)) {
3652 err = PTR_ERR(trans);
3653 goto out_free;
3654 }
3655 ret = btrfs_commit_transaction(trans);
3656 if (ret && !err)
3657 err = ret;
3658 out_free:
3659 ret = clean_dirty_subvols(rc);
3660 if (ret < 0 && !err)
3661 err = ret;
3662 btrfs_free_block_rsv(fs_info, rc->block_rsv);
3663 btrfs_free_path(path);
3664 return err;
3665 }
3666
__insert_orphan_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 objectid)3667 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3668 struct btrfs_root *root, u64 objectid)
3669 {
3670 struct btrfs_path *path;
3671 struct btrfs_inode_item *item;
3672 struct extent_buffer *leaf;
3673 int ret;
3674
3675 path = btrfs_alloc_path();
3676 if (!path)
3677 return -ENOMEM;
3678
3679 ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3680 if (ret)
3681 goto out;
3682
3683 leaf = path->nodes[0];
3684 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3685 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3686 btrfs_set_inode_generation(leaf, item, 1);
3687 btrfs_set_inode_size(leaf, item, 0);
3688 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3689 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
3690 BTRFS_INODE_PREALLOC);
3691 out:
3692 btrfs_free_path(path);
3693 return ret;
3694 }
3695
delete_orphan_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 objectid)3696 static void delete_orphan_inode(struct btrfs_trans_handle *trans,
3697 struct btrfs_root *root, u64 objectid)
3698 {
3699 struct btrfs_path *path;
3700 struct btrfs_key key;
3701 int ret = 0;
3702
3703 path = btrfs_alloc_path();
3704 if (!path) {
3705 ret = -ENOMEM;
3706 goto out;
3707 }
3708
3709 key.objectid = objectid;
3710 key.type = BTRFS_INODE_ITEM_KEY;
3711 key.offset = 0;
3712 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3713 if (ret) {
3714 if (ret > 0)
3715 ret = -ENOENT;
3716 goto out;
3717 }
3718 ret = btrfs_del_item(trans, root, path);
3719 out:
3720 if (ret)
3721 btrfs_abort_transaction(trans, ret);
3722 btrfs_free_path(path);
3723 }
3724
3725 /*
3726 * helper to create inode for data relocation.
3727 * the inode is in data relocation tree and its link count is 0
3728 */
create_reloc_inode(const struct btrfs_block_group * group)3729 static noinline_for_stack struct inode *create_reloc_inode(
3730 const struct btrfs_block_group *group)
3731 {
3732 struct btrfs_fs_info *fs_info = group->fs_info;
3733 struct btrfs_inode *inode = NULL;
3734 struct btrfs_trans_handle *trans;
3735 struct btrfs_root *root;
3736 u64 objectid;
3737 int ret = 0;
3738
3739 root = btrfs_grab_root(fs_info->data_reloc_root);
3740 trans = btrfs_start_transaction(root, 6);
3741 if (IS_ERR(trans)) {
3742 btrfs_put_root(root);
3743 return ERR_CAST(trans);
3744 }
3745
3746 ret = btrfs_get_free_objectid(root, &objectid);
3747 if (ret)
3748 goto out;
3749
3750 ret = __insert_orphan_inode(trans, root, objectid);
3751 if (ret)
3752 goto out;
3753
3754 inode = btrfs_iget(objectid, root);
3755 if (IS_ERR(inode)) {
3756 delete_orphan_inode(trans, root, objectid);
3757 ret = PTR_ERR(inode);
3758 inode = NULL;
3759 goto out;
3760 }
3761 inode->reloc_block_group_start = group->start;
3762
3763 ret = btrfs_orphan_add(trans, inode);
3764 out:
3765 btrfs_put_root(root);
3766 btrfs_end_transaction(trans);
3767 btrfs_btree_balance_dirty(fs_info);
3768 if (ret) {
3769 if (inode)
3770 iput(&inode->vfs_inode);
3771 return ERR_PTR(ret);
3772 }
3773 return &inode->vfs_inode;
3774 }
3775
3776 /*
3777 * Mark start of chunk relocation that is cancellable. Check if the cancellation
3778 * has been requested meanwhile and don't start in that case.
3779 *
3780 * Return:
3781 * 0 success
3782 * -EINPROGRESS operation is already in progress, that's probably a bug
3783 * -ECANCELED cancellation request was set before the operation started
3784 */
reloc_chunk_start(struct btrfs_fs_info * fs_info)3785 static int reloc_chunk_start(struct btrfs_fs_info *fs_info)
3786 {
3787 if (test_and_set_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) {
3788 /* This should not happen */
3789 btrfs_err(fs_info, "reloc already running, cannot start");
3790 return -EINPROGRESS;
3791 }
3792
3793 if (atomic_read(&fs_info->reloc_cancel_req) > 0) {
3794 btrfs_info(fs_info, "chunk relocation canceled on start");
3795 /*
3796 * On cancel, clear all requests but let the caller mark
3797 * the end after cleanup operations.
3798 */
3799 atomic_set(&fs_info->reloc_cancel_req, 0);
3800 return -ECANCELED;
3801 }
3802 return 0;
3803 }
3804
3805 /*
3806 * Mark end of chunk relocation that is cancellable and wake any waiters.
3807 */
reloc_chunk_end(struct btrfs_fs_info * fs_info)3808 static void reloc_chunk_end(struct btrfs_fs_info *fs_info)
3809 {
3810 /* Requested after start, clear bit first so any waiters can continue */
3811 if (atomic_read(&fs_info->reloc_cancel_req) > 0)
3812 btrfs_info(fs_info, "chunk relocation canceled during operation");
3813 clear_and_wake_up_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags);
3814 atomic_set(&fs_info->reloc_cancel_req, 0);
3815 }
3816
alloc_reloc_control(struct btrfs_fs_info * fs_info)3817 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
3818 {
3819 struct reloc_control *rc;
3820
3821 rc = kzalloc(sizeof(*rc), GFP_NOFS);
3822 if (!rc)
3823 return NULL;
3824
3825 INIT_LIST_HEAD(&rc->reloc_roots);
3826 INIT_LIST_HEAD(&rc->dirty_subvol_roots);
3827 btrfs_backref_init_cache(fs_info, &rc->backref_cache, true);
3828 rc->reloc_root_tree.rb_root = RB_ROOT;
3829 spin_lock_init(&rc->reloc_root_tree.lock);
3830 btrfs_extent_io_tree_init(fs_info, &rc->processed_blocks, IO_TREE_RELOC_BLOCKS);
3831 return rc;
3832 }
3833
free_reloc_control(struct reloc_control * rc)3834 static void free_reloc_control(struct reloc_control *rc)
3835 {
3836 struct mapping_node *node, *tmp;
3837
3838 free_reloc_roots(&rc->reloc_roots);
3839 rbtree_postorder_for_each_entry_safe(node, tmp,
3840 &rc->reloc_root_tree.rb_root, rb_node)
3841 kfree(node);
3842
3843 kfree(rc);
3844 }
3845
3846 /*
3847 * Print the block group being relocated
3848 */
describe_relocation(struct btrfs_block_group * block_group)3849 static void describe_relocation(struct btrfs_block_group *block_group)
3850 {
3851 char buf[128] = "NONE";
3852
3853 btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
3854
3855 btrfs_info(block_group->fs_info, "relocating block group %llu flags %s",
3856 block_group->start, buf);
3857 }
3858
stage_to_string(enum reloc_stage stage)3859 static const char *stage_to_string(enum reloc_stage stage)
3860 {
3861 if (stage == MOVE_DATA_EXTENTS)
3862 return "move data extents";
3863 if (stage == UPDATE_DATA_PTRS)
3864 return "update data pointers";
3865 return "unknown";
3866 }
3867
3868 /*
3869 * function to relocate all extents in a block group.
3870 */
btrfs_relocate_block_group(struct btrfs_fs_info * fs_info,u64 group_start,bool verbose)3871 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start,
3872 bool verbose)
3873 {
3874 struct btrfs_block_group *bg;
3875 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, group_start);
3876 struct reloc_control *rc;
3877 struct inode *inode;
3878 struct btrfs_path *path;
3879 int ret;
3880 int rw = 0;
3881 int err = 0;
3882
3883 /*
3884 * This only gets set if we had a half-deleted snapshot on mount. We
3885 * cannot allow relocation to start while we're still trying to clean up
3886 * these pending deletions.
3887 */
3888 ret = wait_on_bit(&fs_info->flags, BTRFS_FS_UNFINISHED_DROPS, TASK_INTERRUPTIBLE);
3889 if (ret)
3890 return ret;
3891
3892 /* We may have been woken up by close_ctree, so bail if we're closing. */
3893 if (btrfs_fs_closing(fs_info))
3894 return -EINTR;
3895
3896 bg = btrfs_lookup_block_group(fs_info, group_start);
3897 if (!bg)
3898 return -ENOENT;
3899
3900 /*
3901 * Relocation of a data block group creates ordered extents. Without
3902 * sb_start_write(), we can freeze the filesystem while unfinished
3903 * ordered extents are left. Such ordered extents can cause a deadlock
3904 * e.g. when syncfs() is waiting for their completion but they can't
3905 * finish because they block when joining a transaction, due to the
3906 * fact that the freeze locks are being held in write mode.
3907 */
3908 if (bg->flags & BTRFS_BLOCK_GROUP_DATA)
3909 ASSERT(sb_write_started(fs_info->sb));
3910
3911 if (btrfs_pinned_by_swapfile(fs_info, bg)) {
3912 btrfs_put_block_group(bg);
3913 return -ETXTBSY;
3914 }
3915
3916 rc = alloc_reloc_control(fs_info);
3917 if (!rc) {
3918 btrfs_put_block_group(bg);
3919 return -ENOMEM;
3920 }
3921
3922 ret = reloc_chunk_start(fs_info);
3923 if (ret < 0) {
3924 err = ret;
3925 goto out_put_bg;
3926 }
3927
3928 rc->extent_root = extent_root;
3929 rc->block_group = bg;
3930
3931 ret = btrfs_inc_block_group_ro(rc->block_group, true);
3932 if (ret) {
3933 err = ret;
3934 goto out;
3935 }
3936 rw = 1;
3937
3938 path = btrfs_alloc_path();
3939 if (!path) {
3940 err = -ENOMEM;
3941 goto out;
3942 }
3943
3944 inode = lookup_free_space_inode(rc->block_group, path);
3945 btrfs_free_path(path);
3946
3947 if (!IS_ERR(inode))
3948 ret = delete_block_group_cache(rc->block_group, inode, 0);
3949 else
3950 ret = PTR_ERR(inode);
3951
3952 if (ret && ret != -ENOENT) {
3953 err = ret;
3954 goto out;
3955 }
3956
3957 rc->data_inode = create_reloc_inode(rc->block_group);
3958 if (IS_ERR(rc->data_inode)) {
3959 err = PTR_ERR(rc->data_inode);
3960 rc->data_inode = NULL;
3961 goto out;
3962 }
3963
3964 if (verbose)
3965 describe_relocation(rc->block_group);
3966
3967 btrfs_wait_block_group_reservations(rc->block_group);
3968 btrfs_wait_nocow_writers(rc->block_group);
3969 btrfs_wait_ordered_roots(fs_info, U64_MAX, rc->block_group);
3970
3971 ret = btrfs_zone_finish(rc->block_group);
3972 WARN_ON(ret && ret != -EAGAIN);
3973
3974 while (1) {
3975 enum reloc_stage finishes_stage;
3976
3977 mutex_lock(&fs_info->cleaner_mutex);
3978 ret = relocate_block_group(rc);
3979 mutex_unlock(&fs_info->cleaner_mutex);
3980 if (ret < 0)
3981 err = ret;
3982
3983 finishes_stage = rc->stage;
3984 /*
3985 * We may have gotten ENOSPC after we already dirtied some
3986 * extents. If writeout happens while we're relocating a
3987 * different block group we could end up hitting the
3988 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
3989 * btrfs_reloc_cow_block. Make sure we write everything out
3990 * properly so we don't trip over this problem, and then break
3991 * out of the loop if we hit an error.
3992 */
3993 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
3994 ret = btrfs_wait_ordered_range(BTRFS_I(rc->data_inode), 0,
3995 (u64)-1);
3996 if (ret)
3997 err = ret;
3998 invalidate_mapping_pages(rc->data_inode->i_mapping,
3999 0, -1);
4000 rc->stage = UPDATE_DATA_PTRS;
4001 }
4002
4003 if (err < 0)
4004 goto out;
4005
4006 if (rc->extents_found == 0)
4007 break;
4008
4009 if (verbose)
4010 btrfs_info(fs_info, "found %llu extents, stage: %s",
4011 rc->extents_found,
4012 stage_to_string(finishes_stage));
4013 }
4014
4015 WARN_ON(rc->block_group->pinned > 0);
4016 WARN_ON(rc->block_group->reserved > 0);
4017 WARN_ON(rc->block_group->used > 0);
4018 out:
4019 if (err && rw)
4020 btrfs_dec_block_group_ro(rc->block_group);
4021 iput(rc->data_inode);
4022 out_put_bg:
4023 btrfs_put_block_group(bg);
4024 reloc_chunk_end(fs_info);
4025 free_reloc_control(rc);
4026 return err;
4027 }
4028
mark_garbage_root(struct btrfs_root * root)4029 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4030 {
4031 struct btrfs_fs_info *fs_info = root->fs_info;
4032 struct btrfs_trans_handle *trans;
4033 int ret, err;
4034
4035 trans = btrfs_start_transaction(fs_info->tree_root, 0);
4036 if (IS_ERR(trans))
4037 return PTR_ERR(trans);
4038
4039 memset(&root->root_item.drop_progress, 0,
4040 sizeof(root->root_item.drop_progress));
4041 btrfs_set_root_drop_level(&root->root_item, 0);
4042 btrfs_set_root_refs(&root->root_item, 0);
4043 ret = btrfs_update_root(trans, fs_info->tree_root,
4044 &root->root_key, &root->root_item);
4045
4046 err = btrfs_end_transaction(trans);
4047 if (err)
4048 return err;
4049 return ret;
4050 }
4051
4052 /*
4053 * recover relocation interrupted by system crash.
4054 *
4055 * this function resumes merging reloc trees with corresponding fs trees.
4056 * this is important for keeping the sharing of tree blocks
4057 */
btrfs_recover_relocation(struct btrfs_fs_info * fs_info)4058 int btrfs_recover_relocation(struct btrfs_fs_info *fs_info)
4059 {
4060 LIST_HEAD(reloc_roots);
4061 struct btrfs_key key;
4062 struct btrfs_root *fs_root;
4063 struct btrfs_root *reloc_root;
4064 struct btrfs_path *path;
4065 struct extent_buffer *leaf;
4066 struct reloc_control *rc = NULL;
4067 struct btrfs_trans_handle *trans;
4068 int ret2;
4069 int ret = 0;
4070
4071 path = btrfs_alloc_path();
4072 if (!path)
4073 return -ENOMEM;
4074 path->reada = READA_BACK;
4075
4076 key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4077 key.type = BTRFS_ROOT_ITEM_KEY;
4078 key.offset = (u64)-1;
4079
4080 while (1) {
4081 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4082 path, 0, 0);
4083 if (ret < 0)
4084 goto out;
4085 if (ret > 0) {
4086 if (path->slots[0] == 0)
4087 break;
4088 path->slots[0]--;
4089 }
4090 ret = 0;
4091 leaf = path->nodes[0];
4092 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4093 btrfs_release_path(path);
4094
4095 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4096 key.type != BTRFS_ROOT_ITEM_KEY)
4097 break;
4098
4099 reloc_root = btrfs_read_tree_root(fs_info->tree_root, &key);
4100 if (IS_ERR(reloc_root)) {
4101 ret = PTR_ERR(reloc_root);
4102 goto out;
4103 }
4104
4105 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
4106 list_add(&reloc_root->root_list, &reloc_roots);
4107
4108 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4109 fs_root = btrfs_get_fs_root(fs_info,
4110 reloc_root->root_key.offset, false);
4111 if (IS_ERR(fs_root)) {
4112 ret = PTR_ERR(fs_root);
4113 if (ret != -ENOENT)
4114 goto out;
4115 ret = mark_garbage_root(reloc_root);
4116 if (ret < 0)
4117 goto out;
4118 ret = 0;
4119 } else {
4120 btrfs_put_root(fs_root);
4121 }
4122 }
4123
4124 if (key.offset == 0)
4125 break;
4126
4127 key.offset--;
4128 }
4129 btrfs_release_path(path);
4130
4131 if (list_empty(&reloc_roots))
4132 goto out;
4133
4134 rc = alloc_reloc_control(fs_info);
4135 if (!rc) {
4136 ret = -ENOMEM;
4137 goto out;
4138 }
4139
4140 ret = reloc_chunk_start(fs_info);
4141 if (ret < 0)
4142 goto out_end;
4143
4144 rc->extent_root = btrfs_extent_root(fs_info, 0);
4145
4146 set_reloc_control(rc);
4147
4148 trans = btrfs_join_transaction(rc->extent_root);
4149 if (IS_ERR(trans)) {
4150 ret = PTR_ERR(trans);
4151 goto out_unset;
4152 }
4153
4154 rc->merge_reloc_tree = true;
4155
4156 while (!list_empty(&reloc_roots)) {
4157 reloc_root = list_first_entry(&reloc_roots, struct btrfs_root, root_list);
4158 list_del(&reloc_root->root_list);
4159
4160 if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4161 list_add_tail(&reloc_root->root_list,
4162 &rc->reloc_roots);
4163 continue;
4164 }
4165
4166 fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
4167 false);
4168 if (IS_ERR(fs_root)) {
4169 ret = PTR_ERR(fs_root);
4170 list_add_tail(&reloc_root->root_list, &reloc_roots);
4171 btrfs_end_transaction(trans);
4172 goto out_unset;
4173 }
4174
4175 ret = __add_reloc_root(reloc_root);
4176 ASSERT(ret != -EEXIST);
4177 if (ret) {
4178 list_add_tail(&reloc_root->root_list, &reloc_roots);
4179 btrfs_put_root(fs_root);
4180 btrfs_end_transaction(trans);
4181 goto out_unset;
4182 }
4183 fs_root->reloc_root = btrfs_grab_root(reloc_root);
4184 btrfs_put_root(fs_root);
4185 }
4186
4187 ret = btrfs_commit_transaction(trans);
4188 if (ret)
4189 goto out_unset;
4190
4191 merge_reloc_roots(rc);
4192
4193 unset_reloc_control(rc);
4194
4195 trans = btrfs_join_transaction(rc->extent_root);
4196 if (IS_ERR(trans)) {
4197 ret = PTR_ERR(trans);
4198 goto out_clean;
4199 }
4200 ret = btrfs_commit_transaction(trans);
4201 out_clean:
4202 ret2 = clean_dirty_subvols(rc);
4203 if (ret2 < 0 && !ret)
4204 ret = ret2;
4205 out_unset:
4206 unset_reloc_control(rc);
4207 out_end:
4208 reloc_chunk_end(fs_info);
4209 free_reloc_control(rc);
4210 out:
4211 free_reloc_roots(&reloc_roots);
4212
4213 btrfs_free_path(path);
4214
4215 if (ret == 0) {
4216 /* cleanup orphan inode in data relocation tree */
4217 fs_root = btrfs_grab_root(fs_info->data_reloc_root);
4218 ASSERT(fs_root);
4219 ret = btrfs_orphan_cleanup(fs_root);
4220 btrfs_put_root(fs_root);
4221 }
4222 return ret;
4223 }
4224
4225 /*
4226 * helper to add ordered checksum for data relocation.
4227 *
4228 * cloning checksum properly handles the nodatasum extents.
4229 * it also saves CPU time to re-calculate the checksum.
4230 */
btrfs_reloc_clone_csums(struct btrfs_ordered_extent * ordered)4231 int btrfs_reloc_clone_csums(struct btrfs_ordered_extent *ordered)
4232 {
4233 struct btrfs_inode *inode = ordered->inode;
4234 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4235 u64 disk_bytenr = ordered->file_offset + inode->reloc_block_group_start;
4236 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, disk_bytenr);
4237 LIST_HEAD(list);
4238 int ret;
4239
4240 ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4241 disk_bytenr + ordered->num_bytes - 1,
4242 &list, false);
4243 if (ret < 0) {
4244 btrfs_mark_ordered_extent_error(ordered);
4245 return ret;
4246 }
4247
4248 while (!list_empty(&list)) {
4249 struct btrfs_ordered_sum *sums =
4250 list_first_entry(&list, struct btrfs_ordered_sum, list);
4251
4252 list_del_init(&sums->list);
4253
4254 /*
4255 * We need to offset the new_bytenr based on where the csum is.
4256 * We need to do this because we will read in entire prealloc
4257 * extents but we may have written to say the middle of the
4258 * prealloc extent, so we need to make sure the csum goes with
4259 * the right disk offset.
4260 *
4261 * We can do this because the data reloc inode refers strictly
4262 * to the on disk bytes, so we don't have to worry about
4263 * disk_len vs real len like with real inodes since it's all
4264 * disk length.
4265 */
4266 sums->logical = ordered->disk_bytenr + sums->logical - disk_bytenr;
4267 btrfs_add_ordered_sum(ordered, sums);
4268 }
4269
4270 return 0;
4271 }
4272
btrfs_reloc_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct extent_buffer * buf,struct extent_buffer * cow)4273 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4274 struct btrfs_root *root,
4275 const struct extent_buffer *buf,
4276 struct extent_buffer *cow)
4277 {
4278 struct btrfs_fs_info *fs_info = root->fs_info;
4279 struct reloc_control *rc;
4280 struct btrfs_backref_node *node;
4281 int first_cow = 0;
4282 int level;
4283 int ret = 0;
4284
4285 rc = fs_info->reloc_ctl;
4286 if (!rc)
4287 return 0;
4288
4289 BUG_ON(rc->stage == UPDATE_DATA_PTRS && btrfs_is_data_reloc_root(root));
4290
4291 level = btrfs_header_level(buf);
4292 if (btrfs_header_generation(buf) <=
4293 btrfs_root_last_snapshot(&root->root_item))
4294 first_cow = 1;
4295
4296 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID && rc->create_reloc_tree) {
4297 WARN_ON(!first_cow && level == 0);
4298
4299 node = rc->backref_cache.path[level];
4300
4301 /*
4302 * If node->bytenr != buf->start and node->new_bytenr !=
4303 * buf->start then we've got the wrong backref node for what we
4304 * expected to see here and the cache is incorrect.
4305 */
4306 if (unlikely(node->bytenr != buf->start && node->new_bytenr != buf->start)) {
4307 btrfs_err(fs_info,
4308 "bytenr %llu was found but our backref cache was expecting %llu or %llu",
4309 buf->start, node->bytenr, node->new_bytenr);
4310 return -EUCLEAN;
4311 }
4312
4313 btrfs_backref_drop_node_buffer(node);
4314 refcount_inc(&cow->refs);
4315 node->eb = cow;
4316 node->new_bytenr = cow->start;
4317
4318 if (!node->pending) {
4319 list_move_tail(&node->list,
4320 &rc->backref_cache.pending[level]);
4321 node->pending = 1;
4322 }
4323
4324 if (first_cow)
4325 mark_block_processed(rc, node);
4326
4327 if (first_cow && level > 0)
4328 rc->nodes_relocated += buf->len;
4329 }
4330
4331 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4332 ret = replace_file_extents(trans, rc, root, cow);
4333 return ret;
4334 }
4335
4336 /*
4337 * called before creating snapshot. it calculates metadata reservation
4338 * required for relocating tree blocks in the snapshot
4339 */
btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot * pending,u64 * bytes_to_reserve)4340 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4341 u64 *bytes_to_reserve)
4342 {
4343 struct btrfs_root *root = pending->root;
4344 struct reloc_control *rc = root->fs_info->reloc_ctl;
4345
4346 if (!rc || !have_reloc_root(root))
4347 return;
4348
4349 if (!rc->merge_reloc_tree)
4350 return;
4351
4352 root = root->reloc_root;
4353 BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4354 /*
4355 * relocation is in the stage of merging trees. the space
4356 * used by merging a reloc tree is twice the size of
4357 * relocated tree nodes in the worst case. half for cowing
4358 * the reloc tree, half for cowing the fs tree. the space
4359 * used by cowing the reloc tree will be freed after the
4360 * tree is dropped. if we create snapshot, cowing the fs
4361 * tree may use more space than it frees. so we need
4362 * reserve extra space.
4363 */
4364 *bytes_to_reserve += rc->nodes_relocated;
4365 }
4366
4367 /*
4368 * called after snapshot is created. migrate block reservation
4369 * and create reloc root for the newly created snapshot
4370 *
4371 * This is similar to btrfs_init_reloc_root(), we come out of here with two
4372 * references held on the reloc_root, one for root->reloc_root and one for
4373 * rc->reloc_roots.
4374 */
btrfs_reloc_post_snapshot(struct btrfs_trans_handle * trans,struct btrfs_pending_snapshot * pending)4375 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4376 struct btrfs_pending_snapshot *pending)
4377 {
4378 struct btrfs_root *root = pending->root;
4379 struct btrfs_root *reloc_root;
4380 struct btrfs_root *new_root;
4381 struct reloc_control *rc = root->fs_info->reloc_ctl;
4382 int ret;
4383
4384 if (!rc || !have_reloc_root(root))
4385 return 0;
4386
4387 rc = root->fs_info->reloc_ctl;
4388 rc->merging_rsv_size += rc->nodes_relocated;
4389
4390 if (rc->merge_reloc_tree) {
4391 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4392 rc->block_rsv,
4393 rc->nodes_relocated, true);
4394 if (ret)
4395 return ret;
4396 }
4397
4398 new_root = pending->snap;
4399 reloc_root = create_reloc_root(trans, root->reloc_root, btrfs_root_id(new_root));
4400 if (IS_ERR(reloc_root))
4401 return PTR_ERR(reloc_root);
4402
4403 ret = __add_reloc_root(reloc_root);
4404 ASSERT(ret != -EEXIST);
4405 if (ret) {
4406 /* Pairs with create_reloc_root */
4407 btrfs_put_root(reloc_root);
4408 return ret;
4409 }
4410 new_root->reloc_root = btrfs_grab_root(reloc_root);
4411 return 0;
4412 }
4413
4414 /*
4415 * Get the current bytenr for the block group which is being relocated.
4416 *
4417 * Return U64_MAX if no running relocation.
4418 */
btrfs_get_reloc_bg_bytenr(const struct btrfs_fs_info * fs_info)4419 u64 btrfs_get_reloc_bg_bytenr(const struct btrfs_fs_info *fs_info)
4420 {
4421 u64 logical = U64_MAX;
4422
4423 lockdep_assert_held(&fs_info->reloc_mutex);
4424
4425 if (fs_info->reloc_ctl && fs_info->reloc_ctl->block_group)
4426 logical = fs_info->reloc_ctl->block_group->start;
4427 return logical;
4428 }
4429