1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/blkdev.h> 8 #include <linux/radix-tree.h> 9 #include <linux/writeback.h> 10 #include <linux/workqueue.h> 11 #include <linux/kthread.h> 12 #include <linux/slab.h> 13 #include <linux/migrate.h> 14 #include <linux/ratelimit.h> 15 #include <linux/uuid.h> 16 #include <linux/semaphore.h> 17 #include <linux/error-injection.h> 18 #include <linux/crc32c.h> 19 #include <linux/sched/mm.h> 20 #include <linux/unaligned.h> 21 #include "ctree.h" 22 #include "disk-io.h" 23 #include "transaction.h" 24 #include "btrfs_inode.h" 25 #include "delayed-inode.h" 26 #include "bio.h" 27 #include "print-tree.h" 28 #include "locking.h" 29 #include "tree-log.h" 30 #include "free-space-cache.h" 31 #include "free-space-tree.h" 32 #include "dev-replace.h" 33 #include "raid56.h" 34 #include "sysfs.h" 35 #include "qgroup.h" 36 #include "compression.h" 37 #include "tree-checker.h" 38 #include "ref-verify.h" 39 #include "block-group.h" 40 #include "discard.h" 41 #include "space-info.h" 42 #include "zoned.h" 43 #include "subpage.h" 44 #include "fs.h" 45 #include "accessors.h" 46 #include "extent-tree.h" 47 #include "root-tree.h" 48 #include "defrag.h" 49 #include "uuid-tree.h" 50 #include "relocation.h" 51 #include "scrub.h" 52 #include "super.h" 53 #include "delayed-inode.h" 54 55 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 56 BTRFS_HEADER_FLAG_RELOC |\ 57 BTRFS_SUPER_FLAG_ERROR |\ 58 BTRFS_SUPER_FLAG_SEEDING |\ 59 BTRFS_SUPER_FLAG_METADUMP |\ 60 BTRFS_SUPER_FLAG_METADUMP_V2) 61 62 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 63 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 64 65 /* 66 * Compute the csum of a btree block and store the result to provided buffer. 67 */ 68 static void csum_tree_block(struct extent_buffer *buf, u8 *result) 69 { 70 struct btrfs_fs_info *fs_info = buf->fs_info; 71 int num_pages; 72 u32 first_page_part; 73 struct btrfs_csum_ctx csum; 74 char *kaddr; 75 int i; 76 77 btrfs_csum_init(&csum, fs_info->csum_type); 78 79 if (buf->addr) { 80 /* Pages are contiguous, handle them as a big one. */ 81 kaddr = buf->addr; 82 first_page_part = fs_info->nodesize; 83 num_pages = 1; 84 } else { 85 kaddr = folio_address(buf->folios[0]); 86 first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize); 87 num_pages = num_extent_pages(buf); 88 } 89 90 btrfs_csum_update(&csum, kaddr + BTRFS_CSUM_SIZE, 91 first_page_part - BTRFS_CSUM_SIZE); 92 93 /* 94 * Multiple single-page folios case would reach here. 95 * 96 * nodesize <= PAGE_SIZE and large folio all handled by above 97 * btrfs_csum_update() already. 98 */ 99 for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) { 100 kaddr = folio_address(buf->folios[i]); 101 btrfs_csum_update(&csum, kaddr, PAGE_SIZE); 102 } 103 memset(result, 0, BTRFS_CSUM_SIZE); 104 btrfs_csum_final(&csum, result); 105 } 106 107 /* 108 * we can't consider a given block up to date unless the transid of the 109 * block matches the transid in the parent node's pointer. This is how we 110 * detect blocks that either didn't get written at all or got written 111 * in the wrong place. 112 */ 113 int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, bool atomic) 114 { 115 if (!extent_buffer_uptodate(eb)) 116 return 0; 117 118 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 119 return 1; 120 121 if (atomic) 122 return -EAGAIN; 123 124 if (!extent_buffer_uptodate(eb) || 125 btrfs_header_generation(eb) != parent_transid) { 126 btrfs_err_rl(eb->fs_info, 127 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", 128 eb->start, eb->read_mirror, 129 parent_transid, btrfs_header_generation(eb)); 130 clear_extent_buffer_uptodate(eb); 131 return 0; 132 } 133 return 1; 134 } 135 136 static bool btrfs_supported_super_csum(u16 csum_type) 137 { 138 switch (csum_type) { 139 case BTRFS_CSUM_TYPE_CRC32: 140 case BTRFS_CSUM_TYPE_XXHASH: 141 case BTRFS_CSUM_TYPE_SHA256: 142 case BTRFS_CSUM_TYPE_BLAKE2: 143 return true; 144 default: 145 return false; 146 } 147 } 148 149 /* 150 * Return 0 if the superblock checksum type matches the checksum value of that 151 * algorithm. Pass the raw disk superblock data. 152 */ 153 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 154 const struct btrfs_super_block *disk_sb) 155 { 156 u8 result[BTRFS_CSUM_SIZE]; 157 158 /* 159 * The super_block structure does not span the whole 160 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is 161 * filled with zeros and is included in the checksum. 162 */ 163 btrfs_csum(fs_info->csum_type, (const u8 *)disk_sb + BTRFS_CSUM_SIZE, 164 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result); 165 166 if (memcmp(disk_sb->csum, result, fs_info->csum_size)) 167 return 1; 168 169 return 0; 170 } 171 172 static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, 173 int mirror_num) 174 { 175 struct btrfs_fs_info *fs_info = eb->fs_info; 176 const u32 step = min(fs_info->nodesize, PAGE_SIZE); 177 const u32 nr_steps = eb->len / step; 178 phys_addr_t paddrs[BTRFS_MAX_BLOCKSIZE / PAGE_SIZE]; 179 180 if (sb_rdonly(fs_info->sb)) 181 return -EROFS; 182 183 for (int i = 0; i < num_extent_pages(eb); i++) { 184 struct folio *folio = eb->folios[i]; 185 186 /* No large folio support yet. */ 187 ASSERT(folio_order(folio) == 0); 188 ASSERT(i < nr_steps); 189 190 /* 191 * For nodesize < page size, there is just one paddr, with some 192 * offset inside the page. 193 * 194 * For nodesize >= page size, it's one or more paddrs, and eb->start 195 * must be aligned to page boundary. 196 */ 197 paddrs[i] = page_to_phys(&folio->page) + offset_in_page(eb->start); 198 } 199 200 return btrfs_repair_io_failure(fs_info, 0, eb->start, eb->len, 201 eb->start, paddrs, step, mirror_num); 202 } 203 204 /* 205 * helper to read a given tree block, doing retries as required when 206 * the checksums don't match and we have alternate mirrors to try. 207 * 208 * @check: expected tree parentness check, see the comments of the 209 * structure for details. 210 */ 211 int btrfs_read_extent_buffer(struct extent_buffer *eb, 212 const struct btrfs_tree_parent_check *check) 213 { 214 struct btrfs_fs_info *fs_info = eb->fs_info; 215 int failed = 0; 216 int ret; 217 int num_copies = 0; 218 int mirror_num = 0; 219 int failed_mirror = 0; 220 221 ASSERT(check); 222 223 while (1) { 224 ret = read_extent_buffer_pages(eb, mirror_num, check); 225 if (!ret) 226 break; 227 228 num_copies = btrfs_num_copies(fs_info, 229 eb->start, eb->len); 230 if (num_copies == 1) 231 break; 232 233 if (!failed_mirror) { 234 failed = 1; 235 failed_mirror = eb->read_mirror; 236 } 237 238 mirror_num++; 239 if (mirror_num == failed_mirror) 240 mirror_num++; 241 242 if (mirror_num > num_copies) 243 break; 244 } 245 246 if (failed && !ret && failed_mirror) 247 btrfs_repair_eb_io_failure(eb, failed_mirror); 248 249 return ret; 250 } 251 252 /* 253 * Checksum a dirty tree block before IO. 254 */ 255 int btree_csum_one_bio(struct btrfs_bio *bbio) 256 { 257 struct extent_buffer *eb = bbio->private; 258 struct btrfs_fs_info *fs_info = eb->fs_info; 259 u64 found_start = btrfs_header_bytenr(eb); 260 u64 last_trans; 261 u8 result[BTRFS_CSUM_SIZE]; 262 int ret; 263 264 /* Btree blocks are always contiguous on disk. */ 265 if (WARN_ON_ONCE(bbio->file_offset != eb->start)) 266 return -EIO; 267 if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len)) 268 return -EIO; 269 270 /* 271 * If an extent_buffer is marked as EXTENT_BUFFER_ZONED_ZEROOUT, don't 272 * checksum it but zero-out its content. This is done to preserve 273 * ordering of I/O without unnecessarily writing out data. 274 */ 275 if (test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags)) { 276 memzero_extent_buffer(eb, 0, eb->len); 277 return 0; 278 } 279 280 if (WARN_ON_ONCE(found_start != eb->start)) 281 return -EIO; 282 if (WARN_ON(!btrfs_meta_folio_test_uptodate(eb->folios[0], eb))) 283 return -EIO; 284 285 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid, 286 offsetof(struct btrfs_header, fsid), 287 BTRFS_FSID_SIZE) == 0); 288 csum_tree_block(eb, result); 289 290 if (btrfs_header_level(eb)) 291 ret = btrfs_check_node(eb); 292 else 293 ret = btrfs_check_leaf(eb); 294 295 if (ret < 0) 296 goto error; 297 298 /* 299 * Also check the generation, the eb reached here must be newer than 300 * last committed. Or something seriously wrong happened. 301 */ 302 last_trans = btrfs_get_last_trans_committed(fs_info); 303 if (unlikely(btrfs_header_generation(eb) <= last_trans)) { 304 ret = -EUCLEAN; 305 btrfs_err(fs_info, 306 "block=%llu bad generation, have %llu expect > %llu", 307 eb->start, btrfs_header_generation(eb), last_trans); 308 goto error; 309 } 310 write_extent_buffer(eb, result, 0, fs_info->csum_size); 311 return 0; 312 313 error: 314 btrfs_print_tree(eb, 0); 315 btrfs_err(fs_info, "block=%llu write time tree block corruption detected", 316 eb->start); 317 /* 318 * Be noisy if this is an extent buffer from a log tree. We don't abort 319 * a transaction in case there's a bad log tree extent buffer, we just 320 * fallback to a transaction commit. Still we want to know when there is 321 * a bad log tree extent buffer, as that may signal a bug somewhere. 322 */ 323 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) || 324 btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID); 325 return ret; 326 } 327 328 static bool check_tree_block_fsid(struct extent_buffer *eb) 329 { 330 struct btrfs_fs_info *fs_info = eb->fs_info; 331 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 332 u8 fsid[BTRFS_FSID_SIZE]; 333 334 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid), 335 BTRFS_FSID_SIZE); 336 337 /* 338 * alloc_fsid_devices() copies the fsid into fs_devices::metadata_uuid. 339 * This is then overwritten by metadata_uuid if it is present in the 340 * device_list_add(). The same true for a seed device as well. So use of 341 * fs_devices::metadata_uuid is appropriate here. 342 */ 343 if (memcmp(fsid, fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0) 344 return false; 345 346 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) 347 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE)) 348 return false; 349 350 return true; 351 } 352 353 /* Do basic extent buffer checks at read time */ 354 int btrfs_validate_extent_buffer(struct extent_buffer *eb, 355 const struct btrfs_tree_parent_check *check) 356 { 357 struct btrfs_fs_info *fs_info = eb->fs_info; 358 u64 found_start; 359 const u32 csum_size = fs_info->csum_size; 360 u8 found_level; 361 u8 result[BTRFS_CSUM_SIZE]; 362 const u8 *header_csum; 363 int ret = 0; 364 const bool ignore_csum = btrfs_test_opt(fs_info, IGNOREMETACSUMS); 365 366 ASSERT(check); 367 368 found_start = btrfs_header_bytenr(eb); 369 if (unlikely(found_start != eb->start)) { 370 btrfs_err_rl(fs_info, 371 "bad tree block start, mirror %u want %llu have %llu", 372 eb->read_mirror, eb->start, found_start); 373 return -EIO; 374 } 375 if (unlikely(check_tree_block_fsid(eb))) { 376 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u", 377 eb->start, eb->read_mirror); 378 return -EIO; 379 } 380 found_level = btrfs_header_level(eb); 381 if (unlikely(found_level >= BTRFS_MAX_LEVEL)) { 382 btrfs_err(fs_info, 383 "bad tree block level, mirror %u level %d on logical %llu", 384 eb->read_mirror, btrfs_header_level(eb), eb->start); 385 return -EIO; 386 } 387 388 csum_tree_block(eb, result); 389 header_csum = folio_address(eb->folios[0]) + 390 get_eb_offset_in_folio(eb, offsetof(struct btrfs_header, csum)); 391 392 if (memcmp(result, header_csum, csum_size) != 0) { 393 btrfs_warn_rl(fs_info, 394 "checksum verify failed on logical %llu mirror %u wanted " BTRFS_CSUM_FMT " found " BTRFS_CSUM_FMT " level %d%s", 395 eb->start, eb->read_mirror, 396 BTRFS_CSUM_FMT_VALUE(csum_size, header_csum), 397 BTRFS_CSUM_FMT_VALUE(csum_size, result), 398 btrfs_header_level(eb), 399 ignore_csum ? ", ignored" : ""); 400 if (unlikely(!ignore_csum)) 401 return -EUCLEAN; 402 } 403 404 if (unlikely(found_level != check->level)) { 405 btrfs_err(fs_info, 406 "level verify failed on logical %llu mirror %u wanted %u found %u", 407 eb->start, eb->read_mirror, check->level, found_level); 408 return -EIO; 409 } 410 if (unlikely(check->transid && 411 btrfs_header_generation(eb) != check->transid)) { 412 btrfs_err_rl(eb->fs_info, 413 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", 414 eb->start, eb->read_mirror, check->transid, 415 btrfs_header_generation(eb)); 416 return -EIO; 417 } 418 if (check->has_first_key) { 419 const struct btrfs_key *expect_key = &check->first_key; 420 struct btrfs_key found_key; 421 422 if (found_level) 423 btrfs_node_key_to_cpu(eb, &found_key, 0); 424 else 425 btrfs_item_key_to_cpu(eb, &found_key, 0); 426 if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) { 427 btrfs_err(fs_info, 428 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 429 eb->start, check->transid, 430 expect_key->objectid, 431 expect_key->type, expect_key->offset, 432 found_key.objectid, found_key.type, 433 found_key.offset); 434 return -EUCLEAN; 435 } 436 } 437 if (check->owner_root) { 438 ret = btrfs_check_eb_owner(eb, check->owner_root); 439 if (ret < 0) 440 return ret; 441 } 442 443 /* If this is a leaf block and it is corrupt, just return -EIO. */ 444 if (found_level == 0 && btrfs_check_leaf(eb)) 445 ret = -EIO; 446 447 if (found_level > 0 && btrfs_check_node(eb)) 448 ret = -EIO; 449 450 if (ret) 451 btrfs_err(fs_info, 452 "read time tree block corruption detected on logical %llu mirror %u", 453 eb->start, eb->read_mirror); 454 return ret; 455 } 456 457 #ifdef CONFIG_MIGRATION 458 static int btree_migrate_folio(struct address_space *mapping, 459 struct folio *dst, struct folio *src, enum migrate_mode mode) 460 { 461 /* 462 * we can't safely write a btree page from here, 463 * we haven't done the locking hook 464 */ 465 if (folio_test_dirty(src)) 466 return -EAGAIN; 467 /* 468 * Buffers may be managed in a filesystem specific way. 469 * We must have no buffers or drop them. 470 */ 471 if (folio_get_private(src) && 472 !filemap_release_folio(src, GFP_KERNEL)) 473 return -EAGAIN; 474 return migrate_folio(mapping, dst, src, mode); 475 } 476 #else 477 #define btree_migrate_folio NULL 478 #endif 479 480 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags) 481 { 482 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 483 return false; 484 485 return try_release_extent_buffer(folio); 486 } 487 488 static void btree_invalidate_folio(struct folio *folio, size_t offset, 489 size_t length) 490 { 491 struct extent_io_tree *tree; 492 493 tree = &folio_to_inode(folio)->io_tree; 494 extent_invalidate_folio(tree, folio, offset); 495 btree_release_folio(folio, GFP_NOFS); 496 if (folio_get_private(folio)) { 497 btrfs_warn(folio_to_fs_info(folio), 498 "folio private not zero on folio %llu", 499 (unsigned long long)folio_pos(folio)); 500 folio_detach_private(folio); 501 } 502 } 503 504 #ifdef DEBUG 505 static bool btree_dirty_folio(struct address_space *mapping, 506 struct folio *folio) 507 { 508 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host); 509 struct btrfs_subpage_info *spi = fs_info->subpage_info; 510 struct btrfs_subpage *subpage; 511 struct extent_buffer *eb; 512 int cur_bit = 0; 513 u64 page_start = folio_pos(folio); 514 515 if (fs_info->sectorsize == PAGE_SIZE) { 516 eb = folio_get_private(folio); 517 BUG_ON(!eb); 518 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 519 BUG_ON(!atomic_read(&eb->refs)); 520 btrfs_assert_tree_write_locked(eb); 521 return filemap_dirty_folio(mapping, folio); 522 } 523 524 ASSERT(spi); 525 subpage = folio_get_private(folio); 526 527 for (cur_bit = spi->dirty_offset; 528 cur_bit < spi->dirty_offset + spi->bitmap_nr_bits; 529 cur_bit++) { 530 unsigned long flags; 531 u64 cur; 532 533 spin_lock_irqsave(&subpage->lock, flags); 534 if (!test_bit(cur_bit, subpage->bitmaps)) { 535 spin_unlock_irqrestore(&subpage->lock, flags); 536 continue; 537 } 538 spin_unlock_irqrestore(&subpage->lock, flags); 539 cur = page_start + cur_bit * fs_info->sectorsize; 540 541 eb = find_extent_buffer(fs_info, cur); 542 ASSERT(eb); 543 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 544 ASSERT(atomic_read(&eb->refs)); 545 btrfs_assert_tree_write_locked(eb); 546 free_extent_buffer(eb); 547 548 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits) - 1; 549 } 550 return filemap_dirty_folio(mapping, folio); 551 } 552 #else 553 #define btree_dirty_folio filemap_dirty_folio 554 #endif 555 556 static const struct address_space_operations btree_aops = { 557 .writepages = btree_writepages, 558 .release_folio = btree_release_folio, 559 .invalidate_folio = btree_invalidate_folio, 560 .migrate_folio = btree_migrate_folio, 561 .dirty_folio = btree_dirty_folio, 562 }; 563 564 struct extent_buffer *btrfs_find_create_tree_block( 565 struct btrfs_fs_info *fs_info, 566 u64 bytenr, u64 owner_root, 567 int level) 568 { 569 if (btrfs_is_testing(fs_info)) 570 return alloc_test_extent_buffer(fs_info, bytenr); 571 return alloc_extent_buffer(fs_info, bytenr, owner_root, level); 572 } 573 574 /* 575 * Read tree block at logical address @bytenr and do variant basic but critical 576 * verification. 577 * 578 * @check: expected tree parentness check, see comments of the 579 * structure for details. 580 */ 581 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 582 struct btrfs_tree_parent_check *check) 583 { 584 struct extent_buffer *buf = NULL; 585 int ret; 586 587 ASSERT(check); 588 589 buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root, 590 check->level); 591 if (IS_ERR(buf)) 592 return buf; 593 594 ret = btrfs_read_extent_buffer(buf, check); 595 if (ret) { 596 free_extent_buffer_stale(buf); 597 return ERR_PTR(ret); 598 } 599 return buf; 600 601 } 602 603 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 604 u64 objectid, gfp_t flags) 605 { 606 struct btrfs_root *root; 607 608 root = kzalloc(sizeof(*root), flags); 609 if (!root) 610 return NULL; 611 612 root->fs_info = fs_info; 613 root->root_key.objectid = objectid; 614 RB_CLEAR_NODE(&root->rb_node); 615 616 xa_init(&root->inodes); 617 xa_init(&root->delayed_nodes); 618 619 btrfs_init_root_block_rsv(root); 620 621 INIT_LIST_HEAD(&root->dirty_list); 622 INIT_LIST_HEAD(&root->root_list); 623 INIT_LIST_HEAD(&root->delalloc_inodes); 624 INIT_LIST_HEAD(&root->delalloc_root); 625 INIT_LIST_HEAD(&root->ordered_extents); 626 INIT_LIST_HEAD(&root->ordered_root); 627 INIT_LIST_HEAD(&root->reloc_dirty_list); 628 spin_lock_init(&root->delalloc_lock); 629 spin_lock_init(&root->ordered_extent_lock); 630 spin_lock_init(&root->accounting_lock); 631 spin_lock_init(&root->qgroup_meta_rsv_lock); 632 mutex_init(&root->objectid_mutex); 633 mutex_init(&root->log_mutex); 634 mutex_init(&root->ordered_extent_mutex); 635 mutex_init(&root->delalloc_mutex); 636 init_waitqueue_head(&root->qgroup_flush_wait); 637 init_waitqueue_head(&root->log_writer_wait); 638 init_waitqueue_head(&root->log_commit_wait[0]); 639 init_waitqueue_head(&root->log_commit_wait[1]); 640 INIT_LIST_HEAD(&root->log_ctxs[0]); 641 INIT_LIST_HEAD(&root->log_ctxs[1]); 642 atomic_set(&root->log_commit[0], 0); 643 atomic_set(&root->log_commit[1], 0); 644 atomic_set(&root->log_writers, 0); 645 atomic_set(&root->log_batch, 0); 646 refcount_set(&root->refs, 1); 647 atomic_set(&root->snapshot_force_cow, 0); 648 atomic_set(&root->nr_swapfiles, 0); 649 root->log_transid_committed = -1; 650 if (!btrfs_is_testing(fs_info)) { 651 btrfs_extent_io_tree_init(fs_info, &root->dirty_log_pages, 652 IO_TREE_ROOT_DIRTY_LOG_PAGES); 653 btrfs_extent_io_tree_init(fs_info, &root->log_csum_range, 654 IO_TREE_LOG_CSUM_RANGE); 655 } 656 657 spin_lock_init(&root->root_item_lock); 658 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks); 659 #ifdef CONFIG_BTRFS_DEBUG 660 INIT_LIST_HEAD(&root->leak_list); 661 spin_lock(&fs_info->fs_roots_radix_lock); 662 list_add_tail(&root->leak_list, &fs_info->allocated_roots); 663 spin_unlock(&fs_info->fs_roots_radix_lock); 664 #endif 665 666 return root; 667 } 668 669 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 670 /* Should only be used by the testing infrastructure */ 671 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 672 { 673 struct btrfs_root *root; 674 675 if (!fs_info) 676 return ERR_PTR(-EINVAL); 677 678 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL); 679 if (!root) 680 return ERR_PTR(-ENOMEM); 681 682 /* We don't use the stripesize in selftest, set it as sectorsize */ 683 root->alloc_bytenr = 0; 684 685 return root; 686 } 687 #endif 688 689 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node) 690 { 691 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node); 692 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node); 693 694 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key); 695 } 696 697 static int global_root_key_cmp(const void *k, const struct rb_node *node) 698 { 699 const struct btrfs_key *key = k; 700 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node); 701 702 return btrfs_comp_cpu_keys(key, &root->root_key); 703 } 704 705 int btrfs_global_root_insert(struct btrfs_root *root) 706 { 707 struct btrfs_fs_info *fs_info = root->fs_info; 708 struct rb_node *tmp; 709 int ret = 0; 710 711 write_lock(&fs_info->global_root_lock); 712 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp); 713 write_unlock(&fs_info->global_root_lock); 714 715 if (tmp) { 716 ret = -EEXIST; 717 btrfs_warn(fs_info, "global root %llu %llu already exists", 718 btrfs_root_id(root), root->root_key.offset); 719 } 720 return ret; 721 } 722 723 void btrfs_global_root_delete(struct btrfs_root *root) 724 { 725 struct btrfs_fs_info *fs_info = root->fs_info; 726 727 write_lock(&fs_info->global_root_lock); 728 rb_erase(&root->rb_node, &fs_info->global_root_tree); 729 write_unlock(&fs_info->global_root_lock); 730 } 731 732 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info, 733 struct btrfs_key *key) 734 { 735 struct rb_node *node; 736 struct btrfs_root *root = NULL; 737 738 read_lock(&fs_info->global_root_lock); 739 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp); 740 if (node) 741 root = container_of(node, struct btrfs_root, rb_node); 742 read_unlock(&fs_info->global_root_lock); 743 744 return root; 745 } 746 747 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr) 748 { 749 struct btrfs_block_group *block_group; 750 u64 ret; 751 752 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 753 return 0; 754 755 if (bytenr) 756 block_group = btrfs_lookup_block_group(fs_info, bytenr); 757 else 758 block_group = btrfs_lookup_first_block_group(fs_info, bytenr); 759 ASSERT(block_group); 760 if (!block_group) 761 return 0; 762 ret = block_group->global_root_id; 763 btrfs_put_block_group(block_group); 764 765 return ret; 766 } 767 768 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr) 769 { 770 struct btrfs_key key = { 771 .objectid = BTRFS_CSUM_TREE_OBJECTID, 772 .type = BTRFS_ROOT_ITEM_KEY, 773 .offset = btrfs_global_root_id(fs_info, bytenr), 774 }; 775 776 return btrfs_global_root(fs_info, &key); 777 } 778 779 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr) 780 { 781 struct btrfs_key key = { 782 .objectid = BTRFS_EXTENT_TREE_OBJECTID, 783 .type = BTRFS_ROOT_ITEM_KEY, 784 .offset = btrfs_global_root_id(fs_info, bytenr), 785 }; 786 787 return btrfs_global_root(fs_info, &key); 788 } 789 790 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 791 u64 objectid) 792 { 793 struct btrfs_fs_info *fs_info = trans->fs_info; 794 struct extent_buffer *leaf; 795 struct btrfs_root *tree_root = fs_info->tree_root; 796 struct btrfs_root *root; 797 unsigned int nofs_flag; 798 int ret = 0; 799 800 /* 801 * We're holding a transaction handle, so use a NOFS memory allocation 802 * context to avoid deadlock if reclaim happens. 803 */ 804 nofs_flag = memalloc_nofs_save(); 805 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL); 806 memalloc_nofs_restore(nofs_flag); 807 if (!root) 808 return ERR_PTR(-ENOMEM); 809 810 root->root_key.objectid = objectid; 811 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 812 root->root_key.offset = 0; 813 814 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 815 0, BTRFS_NESTING_NORMAL); 816 if (IS_ERR(leaf)) { 817 ret = PTR_ERR(leaf); 818 leaf = NULL; 819 goto fail; 820 } 821 822 root->node = leaf; 823 btrfs_mark_buffer_dirty(trans, leaf); 824 825 root->commit_root = btrfs_root_node(root); 826 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 827 828 btrfs_set_root_flags(&root->root_item, 0); 829 btrfs_set_root_limit(&root->root_item, 0); 830 btrfs_set_root_bytenr(&root->root_item, leaf->start); 831 btrfs_set_root_generation(&root->root_item, trans->transid); 832 btrfs_set_root_level(&root->root_item, 0); 833 btrfs_set_root_refs(&root->root_item, 1); 834 btrfs_set_root_used(&root->root_item, leaf->len); 835 btrfs_set_root_last_snapshot(&root->root_item, 0); 836 btrfs_set_root_dirid(&root->root_item, 0); 837 if (btrfs_is_fstree(objectid)) 838 generate_random_guid(root->root_item.uuid); 839 else 840 export_guid(root->root_item.uuid, &guid_null); 841 btrfs_set_root_drop_level(&root->root_item, 0); 842 843 btrfs_tree_unlock(leaf); 844 845 ret = btrfs_insert_root(trans, tree_root, &root->root_key, &root->root_item); 846 if (ret) 847 goto fail; 848 849 return root; 850 851 fail: 852 btrfs_put_root(root); 853 854 return ERR_PTR(ret); 855 } 856 857 static struct btrfs_root *alloc_log_tree(struct btrfs_fs_info *fs_info) 858 { 859 struct btrfs_root *root; 860 861 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS); 862 if (!root) 863 return ERR_PTR(-ENOMEM); 864 865 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 866 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 867 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 868 869 return root; 870 } 871 872 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans, 873 struct btrfs_root *root) 874 { 875 struct extent_buffer *leaf; 876 877 /* 878 * DON'T set SHAREABLE bit for log trees. 879 * 880 * Log trees are not exposed to user space thus can't be snapshotted, 881 * and they go away before a real commit is actually done. 882 * 883 * They do store pointers to file data extents, and those reference 884 * counts still get updated (along with back refs to the log tree). 885 */ 886 887 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 888 NULL, 0, 0, 0, 0, BTRFS_NESTING_NORMAL); 889 if (IS_ERR(leaf)) 890 return PTR_ERR(leaf); 891 892 root->node = leaf; 893 894 btrfs_mark_buffer_dirty(trans, root->node); 895 btrfs_tree_unlock(root->node); 896 897 return 0; 898 } 899 900 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 901 struct btrfs_fs_info *fs_info) 902 { 903 struct btrfs_root *log_root; 904 905 log_root = alloc_log_tree(fs_info); 906 if (IS_ERR(log_root)) 907 return PTR_ERR(log_root); 908 909 if (!btrfs_is_zoned(fs_info)) { 910 int ret = btrfs_alloc_log_tree_node(trans, log_root); 911 912 if (ret) { 913 btrfs_put_root(log_root); 914 return ret; 915 } 916 } 917 918 WARN_ON(fs_info->log_root_tree); 919 fs_info->log_root_tree = log_root; 920 return 0; 921 } 922 923 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 924 struct btrfs_root *root) 925 { 926 struct btrfs_fs_info *fs_info = root->fs_info; 927 struct btrfs_root *log_root; 928 struct btrfs_inode_item *inode_item; 929 int ret; 930 931 log_root = alloc_log_tree(fs_info); 932 if (IS_ERR(log_root)) 933 return PTR_ERR(log_root); 934 935 ret = btrfs_alloc_log_tree_node(trans, log_root); 936 if (ret) { 937 btrfs_put_root(log_root); 938 return ret; 939 } 940 941 btrfs_set_root_last_trans(log_root, trans->transid); 942 log_root->root_key.offset = btrfs_root_id(root); 943 944 inode_item = &log_root->root_item.inode; 945 btrfs_set_stack_inode_generation(inode_item, 1); 946 btrfs_set_stack_inode_size(inode_item, 3); 947 btrfs_set_stack_inode_nlink(inode_item, 1); 948 btrfs_set_stack_inode_nbytes(inode_item, 949 fs_info->nodesize); 950 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 951 952 btrfs_set_root_node(&log_root->root_item, log_root->node); 953 954 WARN_ON(root->log_root); 955 root->log_root = log_root; 956 btrfs_set_root_log_transid(root, 0); 957 root->log_transid_committed = -1; 958 btrfs_set_root_last_log_commit(root, 0); 959 return 0; 960 } 961 962 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root, 963 struct btrfs_path *path, 964 const struct btrfs_key *key) 965 { 966 struct btrfs_root *root; 967 struct btrfs_tree_parent_check check = { 0 }; 968 struct btrfs_fs_info *fs_info = tree_root->fs_info; 969 u64 generation; 970 int ret; 971 int level; 972 973 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS); 974 if (!root) 975 return ERR_PTR(-ENOMEM); 976 977 ret = btrfs_find_root(tree_root, key, path, 978 &root->root_item, &root->root_key); 979 if (ret) { 980 if (ret > 0) 981 ret = -ENOENT; 982 goto fail; 983 } 984 985 generation = btrfs_root_generation(&root->root_item); 986 level = btrfs_root_level(&root->root_item); 987 check.level = level; 988 check.transid = generation; 989 check.owner_root = key->objectid; 990 root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item), 991 &check); 992 if (IS_ERR(root->node)) { 993 ret = PTR_ERR(root->node); 994 root->node = NULL; 995 goto fail; 996 } 997 if (unlikely(!btrfs_buffer_uptodate(root->node, generation, false))) { 998 ret = -EIO; 999 goto fail; 1000 } 1001 1002 /* 1003 * For real fs, and not log/reloc trees, root owner must 1004 * match its root node owner 1005 */ 1006 if (unlikely(!btrfs_is_testing(fs_info) && 1007 btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID && 1008 btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID && 1009 btrfs_root_id(root) != btrfs_header_owner(root->node))) { 1010 btrfs_crit(fs_info, 1011 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu", 1012 btrfs_root_id(root), root->node->start, 1013 btrfs_header_owner(root->node), 1014 btrfs_root_id(root)); 1015 ret = -EUCLEAN; 1016 goto fail; 1017 } 1018 root->commit_root = btrfs_root_node(root); 1019 return root; 1020 fail: 1021 btrfs_put_root(root); 1022 return ERR_PTR(ret); 1023 } 1024 1025 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1026 const struct btrfs_key *key) 1027 { 1028 struct btrfs_root *root; 1029 BTRFS_PATH_AUTO_FREE(path); 1030 1031 path = btrfs_alloc_path(); 1032 if (!path) 1033 return ERR_PTR(-ENOMEM); 1034 root = read_tree_root_path(tree_root, path, key); 1035 1036 return root; 1037 } 1038 1039 /* 1040 * Initialize subvolume root in-memory structure. 1041 * 1042 * @anon_dev: anonymous device to attach to the root, if zero, allocate new 1043 * 1044 * In case of failure the caller is responsible to call btrfs_free_fs_root() 1045 */ 1046 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev) 1047 { 1048 int ret; 1049 1050 btrfs_drew_lock_init(&root->snapshot_lock); 1051 1052 if (btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID && 1053 !btrfs_is_data_reloc_root(root) && 1054 btrfs_is_fstree(btrfs_root_id(root))) { 1055 set_bit(BTRFS_ROOT_SHAREABLE, &root->state); 1056 btrfs_check_and_init_root_item(&root->root_item); 1057 } 1058 1059 /* 1060 * Don't assign anonymous block device to roots that are not exposed to 1061 * userspace, the id pool is limited to 1M 1062 */ 1063 if (btrfs_is_fstree(btrfs_root_id(root)) && 1064 btrfs_root_refs(&root->root_item) > 0) { 1065 if (!anon_dev) { 1066 ret = get_anon_bdev(&root->anon_dev); 1067 if (ret) 1068 return ret; 1069 } else { 1070 root->anon_dev = anon_dev; 1071 } 1072 } 1073 1074 mutex_lock(&root->objectid_mutex); 1075 ret = btrfs_init_root_free_objectid(root); 1076 if (ret) { 1077 mutex_unlock(&root->objectid_mutex); 1078 return ret; 1079 } 1080 1081 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 1082 1083 mutex_unlock(&root->objectid_mutex); 1084 1085 return 0; 1086 } 1087 1088 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1089 u64 root_id) 1090 { 1091 struct btrfs_root *root; 1092 1093 spin_lock(&fs_info->fs_roots_radix_lock); 1094 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1095 (unsigned long)root_id); 1096 root = btrfs_grab_root(root); 1097 spin_unlock(&fs_info->fs_roots_radix_lock); 1098 return root; 1099 } 1100 1101 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info, 1102 u64 objectid) 1103 { 1104 struct btrfs_key key = { 1105 .objectid = objectid, 1106 .type = BTRFS_ROOT_ITEM_KEY, 1107 .offset = 0, 1108 }; 1109 1110 switch (objectid) { 1111 case BTRFS_ROOT_TREE_OBJECTID: 1112 return btrfs_grab_root(fs_info->tree_root); 1113 case BTRFS_EXTENT_TREE_OBJECTID: 1114 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1115 case BTRFS_CHUNK_TREE_OBJECTID: 1116 return btrfs_grab_root(fs_info->chunk_root); 1117 case BTRFS_DEV_TREE_OBJECTID: 1118 return btrfs_grab_root(fs_info->dev_root); 1119 case BTRFS_CSUM_TREE_OBJECTID: 1120 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1121 case BTRFS_QUOTA_TREE_OBJECTID: 1122 return btrfs_grab_root(fs_info->quota_root); 1123 case BTRFS_UUID_TREE_OBJECTID: 1124 return btrfs_grab_root(fs_info->uuid_root); 1125 case BTRFS_BLOCK_GROUP_TREE_OBJECTID: 1126 return btrfs_grab_root(fs_info->block_group_root); 1127 case BTRFS_FREE_SPACE_TREE_OBJECTID: 1128 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1129 case BTRFS_RAID_STRIPE_TREE_OBJECTID: 1130 return btrfs_grab_root(fs_info->stripe_root); 1131 case BTRFS_REMAP_TREE_OBJECTID: 1132 return btrfs_grab_root(fs_info->remap_root); 1133 default: 1134 return NULL; 1135 } 1136 } 1137 1138 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1139 struct btrfs_root *root) 1140 { 1141 int ret; 1142 1143 ret = radix_tree_preload(GFP_NOFS); 1144 if (ret) 1145 return ret; 1146 1147 spin_lock(&fs_info->fs_roots_radix_lock); 1148 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1149 (unsigned long)btrfs_root_id(root), 1150 root); 1151 if (ret == 0) { 1152 btrfs_grab_root(root); 1153 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1154 } 1155 spin_unlock(&fs_info->fs_roots_radix_lock); 1156 radix_tree_preload_end(); 1157 1158 return ret; 1159 } 1160 1161 void btrfs_check_leaked_roots(const struct btrfs_fs_info *fs_info) 1162 { 1163 #ifdef CONFIG_BTRFS_DEBUG 1164 struct btrfs_root *root; 1165 1166 while (!list_empty(&fs_info->allocated_roots)) { 1167 char buf[BTRFS_ROOT_NAME_BUF_LEN]; 1168 1169 root = list_first_entry(&fs_info->allocated_roots, 1170 struct btrfs_root, leak_list); 1171 btrfs_err(fs_info, "leaked root %s refcount %d", 1172 btrfs_root_name(&root->root_key, buf), 1173 refcount_read(&root->refs)); 1174 WARN_ON_ONCE(1); 1175 while (refcount_read(&root->refs) > 1) 1176 btrfs_put_root(root); 1177 btrfs_put_root(root); 1178 } 1179 #endif 1180 } 1181 1182 static void free_global_roots(struct btrfs_fs_info *fs_info) 1183 { 1184 struct btrfs_root *root; 1185 struct rb_node *node; 1186 1187 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) { 1188 root = rb_entry(node, struct btrfs_root, rb_node); 1189 rb_erase(&root->rb_node, &fs_info->global_root_tree); 1190 btrfs_put_root(root); 1191 } 1192 } 1193 1194 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info) 1195 { 1196 struct percpu_counter *em_counter = &fs_info->evictable_extent_maps; 1197 1198 if (fs_info->fs_devices) 1199 btrfs_close_devices(fs_info->fs_devices); 1200 btrfs_free_compress_wsm(fs_info); 1201 percpu_counter_destroy(&fs_info->stats_read_blocks); 1202 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 1203 percpu_counter_destroy(&fs_info->delalloc_bytes); 1204 percpu_counter_destroy(&fs_info->ordered_bytes); 1205 if (percpu_counter_initialized(em_counter)) 1206 ASSERT(percpu_counter_sum_positive(em_counter) == 0); 1207 percpu_counter_destroy(em_counter); 1208 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 1209 btrfs_free_stripe_hash_table(fs_info); 1210 btrfs_free_ref_cache(fs_info); 1211 kfree(fs_info->balance_ctl); 1212 free_global_roots(fs_info); 1213 btrfs_put_root(fs_info->tree_root); 1214 btrfs_put_root(fs_info->chunk_root); 1215 btrfs_put_root(fs_info->dev_root); 1216 btrfs_put_root(fs_info->quota_root); 1217 btrfs_put_root(fs_info->uuid_root); 1218 btrfs_put_root(fs_info->fs_root); 1219 btrfs_put_root(fs_info->data_reloc_root); 1220 btrfs_put_root(fs_info->block_group_root); 1221 btrfs_put_root(fs_info->stripe_root); 1222 btrfs_put_root(fs_info->remap_root); 1223 btrfs_check_leaked_roots(fs_info); 1224 btrfs_extent_buffer_leak_debug_check(fs_info); 1225 kfree(fs_info->super_copy); 1226 kfree(fs_info->super_for_commit); 1227 kvfree(fs_info); 1228 } 1229 1230 1231 /* 1232 * Get an in-memory reference of a root structure. 1233 * 1234 * For essential trees like root/extent tree, we grab it from fs_info directly. 1235 * For subvolume trees, we check the cached filesystem roots first. If not 1236 * found, then read it from disk and add it to cached fs roots. 1237 * 1238 * Caller should release the root by calling btrfs_put_root() after the usage. 1239 * 1240 * NOTE: Reloc and log trees can't be read by this function as they share the 1241 * same root objectid. 1242 * 1243 * @objectid: root id 1244 * @anon_dev: preallocated anonymous block device number for new roots, 1245 * pass NULL for a new allocation. 1246 * @check_ref: whether to check root item references, If true, return -ENOENT 1247 * for orphan roots 1248 */ 1249 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info, 1250 u64 objectid, dev_t *anon_dev, 1251 bool check_ref) 1252 { 1253 struct btrfs_root *root; 1254 struct btrfs_path *path; 1255 struct btrfs_key key; 1256 int ret; 1257 1258 root = btrfs_get_global_root(fs_info, objectid); 1259 if (root) 1260 return root; 1261 1262 /* 1263 * If we're called for non-subvolume trees, and above function didn't 1264 * find one, do not try to read it from disk. 1265 * 1266 * This is namely for free-space-tree and quota tree, which can change 1267 * at runtime and should only be grabbed from fs_info. 1268 */ 1269 if (!btrfs_is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) 1270 return ERR_PTR(-ENOENT); 1271 again: 1272 root = btrfs_lookup_fs_root(fs_info, objectid); 1273 if (root) { 1274 /* 1275 * Some other caller may have read out the newly inserted 1276 * subvolume already (for things like backref walk etc). Not 1277 * that common but still possible. In that case, we just need 1278 * to free the anon_dev. 1279 */ 1280 if (unlikely(anon_dev && *anon_dev)) { 1281 free_anon_bdev(*anon_dev); 1282 *anon_dev = 0; 1283 } 1284 1285 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1286 btrfs_put_root(root); 1287 return ERR_PTR(-ENOENT); 1288 } 1289 return root; 1290 } 1291 1292 key.objectid = objectid; 1293 key.type = BTRFS_ROOT_ITEM_KEY; 1294 key.offset = (u64)-1; 1295 root = btrfs_read_tree_root(fs_info->tree_root, &key); 1296 if (IS_ERR(root)) 1297 return root; 1298 1299 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1300 ret = -ENOENT; 1301 goto fail; 1302 } 1303 1304 ret = btrfs_init_fs_root(root, anon_dev ? *anon_dev : 0); 1305 if (ret) 1306 goto fail; 1307 1308 path = btrfs_alloc_path(); 1309 if (!path) { 1310 ret = -ENOMEM; 1311 goto fail; 1312 } 1313 key.objectid = BTRFS_ORPHAN_OBJECTID; 1314 key.type = BTRFS_ORPHAN_ITEM_KEY; 1315 key.offset = objectid; 1316 1317 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1318 btrfs_free_path(path); 1319 if (ret < 0) 1320 goto fail; 1321 if (ret == 0) 1322 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1323 1324 ret = btrfs_insert_fs_root(fs_info, root); 1325 if (ret) { 1326 if (ret == -EEXIST) { 1327 btrfs_put_root(root); 1328 goto again; 1329 } 1330 goto fail; 1331 } 1332 return root; 1333 fail: 1334 /* 1335 * If our caller provided us an anonymous device, then it's his 1336 * responsibility to free it in case we fail. So we have to set our 1337 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root() 1338 * and once again by our caller. 1339 */ 1340 if (anon_dev && *anon_dev) 1341 root->anon_dev = 0; 1342 btrfs_put_root(root); 1343 return ERR_PTR(ret); 1344 } 1345 1346 /* 1347 * Get in-memory reference of a root structure 1348 * 1349 * @objectid: tree objectid 1350 * @check_ref: if set, verify that the tree exists and the item has at least 1351 * one reference 1352 */ 1353 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1354 u64 objectid, bool check_ref) 1355 { 1356 return btrfs_get_root_ref(fs_info, objectid, NULL, check_ref); 1357 } 1358 1359 /* 1360 * Get in-memory reference of a root structure, created as new, optionally pass 1361 * the anonymous block device id 1362 * 1363 * @objectid: tree objectid 1364 * @anon_dev: if NULL, allocate a new anonymous block device or use the 1365 * parameter value if not NULL 1366 */ 1367 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info, 1368 u64 objectid, dev_t *anon_dev) 1369 { 1370 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true); 1371 } 1372 1373 /* 1374 * Return a root for the given objectid. 1375 * 1376 * @fs_info: the fs_info 1377 * @objectid: the objectid we need to lookup 1378 * 1379 * This is exclusively used for backref walking, and exists specifically because 1380 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref 1381 * creation time, which means we may have to read the tree_root in order to look 1382 * up a fs root that is not in memory. If the root is not in memory we will 1383 * read the tree root commit root and look up the fs root from there. This is a 1384 * temporary root, it will not be inserted into the radix tree as it doesn't 1385 * have the most uptodate information, it'll simply be discarded once the 1386 * backref code is finished using the root. 1387 */ 1388 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info, 1389 struct btrfs_path *path, 1390 u64 objectid) 1391 { 1392 struct btrfs_root *root; 1393 struct btrfs_key key; 1394 1395 ASSERT(path->search_commit_root && path->skip_locking); 1396 1397 /* 1398 * This can return -ENOENT if we ask for a root that doesn't exist, but 1399 * since this is called via the backref walking code we won't be looking 1400 * up a root that doesn't exist, unless there's corruption. So if root 1401 * != NULL just return it. 1402 */ 1403 root = btrfs_get_global_root(fs_info, objectid); 1404 if (root) 1405 return root; 1406 1407 root = btrfs_lookup_fs_root(fs_info, objectid); 1408 if (root) 1409 return root; 1410 1411 key.objectid = objectid; 1412 key.type = BTRFS_ROOT_ITEM_KEY; 1413 key.offset = (u64)-1; 1414 root = read_tree_root_path(fs_info->tree_root, path, &key); 1415 btrfs_release_path(path); 1416 1417 return root; 1418 } 1419 1420 static int cleaner_kthread(void *arg) 1421 { 1422 struct btrfs_fs_info *fs_info = arg; 1423 int again; 1424 1425 while (1) { 1426 again = 0; 1427 1428 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1429 1430 /* Make the cleaner go to sleep early. */ 1431 if (btrfs_need_cleaner_sleep(fs_info)) 1432 goto sleep; 1433 1434 /* 1435 * Do not do anything if we might cause open_ctree() to block 1436 * before we have finished mounting the filesystem. 1437 */ 1438 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1439 goto sleep; 1440 1441 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1442 goto sleep; 1443 1444 /* 1445 * Avoid the problem that we change the status of the fs 1446 * during the above check and trylock. 1447 */ 1448 if (btrfs_need_cleaner_sleep(fs_info)) { 1449 mutex_unlock(&fs_info->cleaner_mutex); 1450 goto sleep; 1451 } 1452 1453 if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags)) 1454 btrfs_sysfs_feature_update(fs_info); 1455 1456 btrfs_run_delayed_iputs(fs_info); 1457 1458 again = btrfs_clean_one_deleted_snapshot(fs_info); 1459 mutex_unlock(&fs_info->cleaner_mutex); 1460 1461 /* 1462 * The defragger has dealt with the R/O remount and umount, 1463 * needn't do anything special here. 1464 */ 1465 btrfs_run_defrag_inodes(fs_info); 1466 1467 if (btrfs_fs_incompat(fs_info, REMAP_TREE) && 1468 !btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1469 btrfs_handle_fully_remapped_bgs(fs_info); 1470 1471 /* 1472 * Acquires fs_info->reclaim_bgs_lock to avoid racing 1473 * with relocation (btrfs_relocate_chunk) and relocation 1474 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1475 * after acquiring fs_info->reclaim_bgs_lock. So we 1476 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1477 * unused block groups. 1478 */ 1479 btrfs_delete_unused_bgs(fs_info); 1480 1481 /* 1482 * Reclaim block groups in the reclaim_bgs list after we deleted 1483 * all unused block_groups. This possibly gives us some more free 1484 * space. 1485 */ 1486 btrfs_reclaim_bgs(fs_info); 1487 sleep: 1488 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1489 if (kthread_should_park()) 1490 kthread_parkme(); 1491 if (kthread_should_stop()) 1492 return 0; 1493 if (!again) { 1494 set_current_state(TASK_INTERRUPTIBLE); 1495 schedule(); 1496 __set_current_state(TASK_RUNNING); 1497 } 1498 } 1499 } 1500 1501 static int transaction_kthread(void *arg) 1502 { 1503 struct btrfs_root *root = arg; 1504 struct btrfs_fs_info *fs_info = root->fs_info; 1505 struct btrfs_trans_handle *trans; 1506 struct btrfs_transaction *cur; 1507 u64 transid; 1508 time64_t delta; 1509 unsigned long delay; 1510 bool cannot_commit; 1511 1512 do { 1513 cannot_commit = false; 1514 delay = secs_to_jiffies(fs_info->commit_interval); 1515 mutex_lock(&fs_info->transaction_kthread_mutex); 1516 1517 spin_lock(&fs_info->trans_lock); 1518 cur = fs_info->running_transaction; 1519 if (!cur) { 1520 spin_unlock(&fs_info->trans_lock); 1521 goto sleep; 1522 } 1523 1524 delta = ktime_get_seconds() - cur->start_time; 1525 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) && 1526 cur->state < TRANS_STATE_COMMIT_PREP && 1527 delta < fs_info->commit_interval) { 1528 spin_unlock(&fs_info->trans_lock); 1529 delay -= secs_to_jiffies(delta - 1); 1530 delay = min(delay, 1531 secs_to_jiffies(fs_info->commit_interval)); 1532 goto sleep; 1533 } 1534 transid = cur->transid; 1535 spin_unlock(&fs_info->trans_lock); 1536 1537 /* If the file system is aborted, this will always fail. */ 1538 trans = btrfs_attach_transaction(root); 1539 if (IS_ERR(trans)) { 1540 if (PTR_ERR(trans) != -ENOENT) 1541 cannot_commit = true; 1542 goto sleep; 1543 } 1544 if (transid == trans->transid) { 1545 btrfs_commit_transaction(trans); 1546 } else { 1547 btrfs_end_transaction(trans); 1548 } 1549 sleep: 1550 wake_up_process(fs_info->cleaner_kthread); 1551 mutex_unlock(&fs_info->transaction_kthread_mutex); 1552 1553 if (BTRFS_FS_ERROR(fs_info)) 1554 btrfs_cleanup_transaction(fs_info); 1555 if (!kthread_should_stop() && 1556 (!btrfs_transaction_blocked(fs_info) || 1557 cannot_commit)) 1558 schedule_timeout_interruptible(delay); 1559 } while (!kthread_should_stop()); 1560 return 0; 1561 } 1562 1563 /* 1564 * This will find the highest generation in the array of root backups. The 1565 * index of the highest array is returned, or -EINVAL if we can't find 1566 * anything. 1567 * 1568 * We check to make sure the array is valid by comparing the 1569 * generation of the latest root in the array with the generation 1570 * in the super block. If they don't match we pitch it. 1571 */ 1572 static int find_newest_super_backup(struct btrfs_fs_info *info) 1573 { 1574 const u64 newest_gen = btrfs_super_generation(info->super_copy); 1575 u64 cur; 1576 struct btrfs_root_backup *root_backup; 1577 int i; 1578 1579 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1580 root_backup = info->super_copy->super_roots + i; 1581 cur = btrfs_backup_tree_root_gen(root_backup); 1582 if (cur == newest_gen) 1583 return i; 1584 } 1585 1586 return -EINVAL; 1587 } 1588 1589 /* 1590 * copy all the root pointers into the super backup array. 1591 * this will bump the backup pointer by one when it is 1592 * done 1593 */ 1594 static void backup_super_roots(struct btrfs_fs_info *info) 1595 { 1596 const int next_backup = info->backup_root_index; 1597 struct btrfs_root_backup *root_backup; 1598 1599 root_backup = info->super_for_commit->super_roots + next_backup; 1600 1601 /* 1602 * make sure all of our padding and empty slots get zero filled 1603 * regardless of which ones we use today 1604 */ 1605 memset(root_backup, 0, sizeof(*root_backup)); 1606 1607 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1608 1609 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1610 btrfs_set_backup_tree_root_gen(root_backup, 1611 btrfs_header_generation(info->tree_root->node)); 1612 1613 btrfs_set_backup_tree_root_level(root_backup, 1614 btrfs_header_level(info->tree_root->node)); 1615 1616 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1617 btrfs_set_backup_chunk_root_gen(root_backup, 1618 btrfs_header_generation(info->chunk_root->node)); 1619 btrfs_set_backup_chunk_root_level(root_backup, 1620 btrfs_header_level(info->chunk_root->node)); 1621 1622 if (!btrfs_fs_incompat(info, EXTENT_TREE_V2)) { 1623 struct btrfs_root *extent_root = btrfs_extent_root(info, 0); 1624 struct btrfs_root *csum_root = btrfs_csum_root(info, 0); 1625 1626 btrfs_set_backup_extent_root(root_backup, 1627 extent_root->node->start); 1628 btrfs_set_backup_extent_root_gen(root_backup, 1629 btrfs_header_generation(extent_root->node)); 1630 btrfs_set_backup_extent_root_level(root_backup, 1631 btrfs_header_level(extent_root->node)); 1632 1633 btrfs_set_backup_csum_root(root_backup, csum_root->node->start); 1634 btrfs_set_backup_csum_root_gen(root_backup, 1635 btrfs_header_generation(csum_root->node)); 1636 btrfs_set_backup_csum_root_level(root_backup, 1637 btrfs_header_level(csum_root->node)); 1638 } 1639 1640 /* 1641 * we might commit during log recovery, which happens before we set 1642 * the fs_root. Make sure it is valid before we fill it in. 1643 */ 1644 if (info->fs_root && info->fs_root->node) { 1645 btrfs_set_backup_fs_root(root_backup, 1646 info->fs_root->node->start); 1647 btrfs_set_backup_fs_root_gen(root_backup, 1648 btrfs_header_generation(info->fs_root->node)); 1649 btrfs_set_backup_fs_root_level(root_backup, 1650 btrfs_header_level(info->fs_root->node)); 1651 } 1652 1653 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1654 btrfs_set_backup_dev_root_gen(root_backup, 1655 btrfs_header_generation(info->dev_root->node)); 1656 btrfs_set_backup_dev_root_level(root_backup, 1657 btrfs_header_level(info->dev_root->node)); 1658 1659 btrfs_set_backup_total_bytes(root_backup, 1660 btrfs_super_total_bytes(info->super_copy)); 1661 btrfs_set_backup_bytes_used(root_backup, 1662 btrfs_super_bytes_used(info->super_copy)); 1663 btrfs_set_backup_num_devices(root_backup, 1664 btrfs_super_num_devices(info->super_copy)); 1665 1666 /* 1667 * if we don't copy this out to the super_copy, it won't get remembered 1668 * for the next commit 1669 */ 1670 memcpy(&info->super_copy->super_roots, 1671 &info->super_for_commit->super_roots, 1672 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1673 } 1674 1675 /* 1676 * Reads a backup root based on the passed priority. Prio 0 is the newest, prio 1677 * 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots 1678 * 1679 * @fs_info: filesystem whose backup roots need to be read 1680 * @priority: priority of backup root required 1681 * 1682 * Returns backup root index on success and -EINVAL otherwise. 1683 */ 1684 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority) 1685 { 1686 int backup_index = find_newest_super_backup(fs_info); 1687 struct btrfs_super_block *super = fs_info->super_copy; 1688 struct btrfs_root_backup *root_backup; 1689 1690 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) { 1691 if (priority == 0) 1692 return backup_index; 1693 1694 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority; 1695 backup_index %= BTRFS_NUM_BACKUP_ROOTS; 1696 } else { 1697 return -EINVAL; 1698 } 1699 1700 root_backup = super->super_roots + backup_index; 1701 1702 btrfs_set_super_generation(super, 1703 btrfs_backup_tree_root_gen(root_backup)); 1704 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 1705 btrfs_set_super_root_level(super, 1706 btrfs_backup_tree_root_level(root_backup)); 1707 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 1708 1709 /* 1710 * Fixme: the total bytes and num_devices need to match or we should 1711 * need a fsck 1712 */ 1713 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 1714 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 1715 1716 return backup_index; 1717 } 1718 1719 /* helper to cleanup workers */ 1720 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 1721 { 1722 btrfs_destroy_workqueue(fs_info->fixup_workers); 1723 btrfs_destroy_workqueue(fs_info->delalloc_workers); 1724 btrfs_destroy_workqueue(fs_info->workers); 1725 if (fs_info->endio_workers) 1726 destroy_workqueue(fs_info->endio_workers); 1727 if (fs_info->rmw_workers) 1728 destroy_workqueue(fs_info->rmw_workers); 1729 btrfs_destroy_workqueue(fs_info->endio_write_workers); 1730 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 1731 btrfs_destroy_workqueue(fs_info->delayed_workers); 1732 btrfs_destroy_workqueue(fs_info->caching_workers); 1733 btrfs_destroy_workqueue(fs_info->flush_workers); 1734 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 1735 if (fs_info->discard_ctl.discard_workers) 1736 destroy_workqueue(fs_info->discard_ctl.discard_workers); 1737 /* 1738 * Now that all other work queues are destroyed, we can safely destroy 1739 * the queues used for metadata I/O, since tasks from those other work 1740 * queues can do metadata I/O operations. 1741 */ 1742 if (fs_info->endio_meta_workers) 1743 destroy_workqueue(fs_info->endio_meta_workers); 1744 } 1745 1746 static void free_root_extent_buffers(struct btrfs_root *root) 1747 { 1748 if (root) { 1749 free_extent_buffer(root->node); 1750 free_extent_buffer(root->commit_root); 1751 root->node = NULL; 1752 root->commit_root = NULL; 1753 } 1754 } 1755 1756 static void free_global_root_pointers(struct btrfs_fs_info *fs_info) 1757 { 1758 struct btrfs_root *root, *tmp; 1759 1760 rbtree_postorder_for_each_entry_safe(root, tmp, 1761 &fs_info->global_root_tree, 1762 rb_node) 1763 free_root_extent_buffers(root); 1764 } 1765 1766 /* helper to cleanup tree roots */ 1767 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root) 1768 { 1769 free_root_extent_buffers(info->tree_root); 1770 1771 free_global_root_pointers(info); 1772 free_root_extent_buffers(info->dev_root); 1773 free_root_extent_buffers(info->quota_root); 1774 free_root_extent_buffers(info->uuid_root); 1775 free_root_extent_buffers(info->fs_root); 1776 free_root_extent_buffers(info->data_reloc_root); 1777 free_root_extent_buffers(info->block_group_root); 1778 free_root_extent_buffers(info->stripe_root); 1779 free_root_extent_buffers(info->remap_root); 1780 if (free_chunk_root) 1781 free_root_extent_buffers(info->chunk_root); 1782 } 1783 1784 void btrfs_put_root(struct btrfs_root *root) 1785 { 1786 if (!root) 1787 return; 1788 1789 if (refcount_dec_and_test(&root->refs)) { 1790 if (WARN_ON(!xa_empty(&root->inodes))) 1791 xa_destroy(&root->inodes); 1792 if (WARN_ON(!xa_empty(&root->delayed_nodes))) 1793 xa_destroy(&root->delayed_nodes); 1794 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)); 1795 if (root->anon_dev) 1796 free_anon_bdev(root->anon_dev); 1797 free_root_extent_buffers(root); 1798 #ifdef CONFIG_BTRFS_DEBUG 1799 spin_lock(&root->fs_info->fs_roots_radix_lock); 1800 list_del_init(&root->leak_list); 1801 spin_unlock(&root->fs_info->fs_roots_radix_lock); 1802 #endif 1803 kfree(root); 1804 } 1805 } 1806 1807 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 1808 { 1809 int ret; 1810 struct btrfs_root *gang[8]; 1811 int i; 1812 1813 while (!list_empty(&fs_info->dead_roots)) { 1814 gang[0] = list_first_entry(&fs_info->dead_roots, 1815 struct btrfs_root, root_list); 1816 list_del(&gang[0]->root_list); 1817 1818 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) 1819 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 1820 btrfs_put_root(gang[0]); 1821 } 1822 1823 while (1) { 1824 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 1825 (void **)gang, 0, 1826 ARRAY_SIZE(gang)); 1827 if (!ret) 1828 break; 1829 for (i = 0; i < ret; i++) 1830 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 1831 } 1832 } 1833 1834 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 1835 { 1836 mutex_init(&fs_info->scrub_lock); 1837 atomic_set(&fs_info->scrubs_running, 0); 1838 atomic_set(&fs_info->scrub_pause_req, 0); 1839 atomic_set(&fs_info->scrubs_paused, 0); 1840 atomic_set(&fs_info->scrub_cancel_req, 0); 1841 init_waitqueue_head(&fs_info->scrub_pause_wait); 1842 refcount_set(&fs_info->scrub_workers_refcnt, 0); 1843 } 1844 1845 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 1846 { 1847 spin_lock_init(&fs_info->balance_lock); 1848 mutex_init(&fs_info->balance_mutex); 1849 atomic_set(&fs_info->balance_pause_req, 0); 1850 atomic_set(&fs_info->balance_cancel_req, 0); 1851 fs_info->balance_ctl = NULL; 1852 init_waitqueue_head(&fs_info->balance_wait_q); 1853 atomic_set(&fs_info->reloc_cancel_req, 0); 1854 } 1855 1856 static int btrfs_init_btree_inode(struct super_block *sb) 1857 { 1858 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1859 unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID, 1860 fs_info->tree_root); 1861 struct inode *inode; 1862 1863 inode = new_inode(sb); 1864 if (!inode) 1865 return -ENOMEM; 1866 1867 btrfs_set_inode_number(BTRFS_I(inode), BTRFS_BTREE_INODE_OBJECTID); 1868 set_nlink(inode, 1); 1869 /* 1870 * we set the i_size on the btree inode to the max possible int. 1871 * the real end of the address space is determined by all of 1872 * the devices in the system 1873 */ 1874 inode->i_size = OFFSET_MAX; 1875 inode->i_mapping->a_ops = &btree_aops; 1876 mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS); 1877 1878 btrfs_extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree, 1879 IO_TREE_BTREE_INODE_IO); 1880 btrfs_extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 1881 1882 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root); 1883 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 1884 __insert_inode_hash(inode, hash); 1885 set_bit(AS_KERNEL_FILE, &inode->i_mapping->flags); 1886 fs_info->btree_inode = inode; 1887 1888 return 0; 1889 } 1890 1891 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 1892 { 1893 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 1894 init_rwsem(&fs_info->dev_replace.rwsem); 1895 init_waitqueue_head(&fs_info->dev_replace.replace_wait); 1896 } 1897 1898 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 1899 { 1900 spin_lock_init(&fs_info->qgroup_lock); 1901 mutex_init(&fs_info->qgroup_ioctl_lock); 1902 fs_info->qgroup_tree = RB_ROOT; 1903 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 1904 fs_info->qgroup_seq = 1; 1905 fs_info->qgroup_rescan_running = false; 1906 fs_info->qgroup_drop_subtree_thres = BTRFS_QGROUP_DROP_SUBTREE_THRES_DEFAULT; 1907 mutex_init(&fs_info->qgroup_rescan_lock); 1908 } 1909 1910 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info) 1911 { 1912 u32 max_active = fs_info->thread_pool_size; 1913 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 1914 unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_PERCPU; 1915 1916 fs_info->workers = 1917 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16); 1918 1919 fs_info->delalloc_workers = 1920 btrfs_alloc_workqueue(fs_info, "delalloc", 1921 flags, max_active, 2); 1922 1923 fs_info->flush_workers = 1924 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 1925 flags, max_active, 0); 1926 1927 fs_info->caching_workers = 1928 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 1929 1930 fs_info->fixup_workers = 1931 btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags); 1932 1933 fs_info->endio_workers = 1934 alloc_workqueue("btrfs-endio", flags, max_active); 1935 fs_info->endio_meta_workers = 1936 alloc_workqueue("btrfs-endio-meta", flags, max_active); 1937 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active); 1938 fs_info->endio_write_workers = 1939 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 1940 max_active, 2); 1941 fs_info->endio_freespace_worker = 1942 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 1943 max_active, 0); 1944 fs_info->delayed_workers = 1945 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 1946 max_active, 0); 1947 fs_info->qgroup_rescan_workers = 1948 btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan", 1949 ordered_flags); 1950 fs_info->discard_ctl.discard_workers = 1951 alloc_ordered_workqueue("btrfs-discard", WQ_FREEZABLE); 1952 1953 if (!(fs_info->workers && 1954 fs_info->delalloc_workers && fs_info->flush_workers && 1955 fs_info->endio_workers && fs_info->endio_meta_workers && 1956 fs_info->endio_write_workers && 1957 fs_info->endio_freespace_worker && fs_info->rmw_workers && 1958 fs_info->caching_workers && fs_info->fixup_workers && 1959 fs_info->delayed_workers && fs_info->qgroup_rescan_workers && 1960 fs_info->discard_ctl.discard_workers)) { 1961 return -ENOMEM; 1962 } 1963 1964 return 0; 1965 } 1966 1967 static void btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type) 1968 { 1969 /* Check if the checksum implementation is a fast accelerated one. */ 1970 switch (csum_type) { 1971 case BTRFS_CSUM_TYPE_CRC32: 1972 if (crc32_optimizations() & CRC32C_OPTIMIZATION) 1973 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); 1974 break; 1975 case BTRFS_CSUM_TYPE_XXHASH: 1976 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); 1977 break; 1978 default: 1979 break; 1980 } 1981 1982 btrfs_info(fs_info, "using %s checksum algorithm", 1983 btrfs_super_csum_name(csum_type)); 1984 } 1985 1986 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 1987 struct btrfs_fs_devices *fs_devices) 1988 { 1989 int ret; 1990 struct btrfs_tree_parent_check check = { 0 }; 1991 struct btrfs_root *log_tree_root; 1992 struct btrfs_super_block *disk_super = fs_info->super_copy; 1993 u64 bytenr = btrfs_super_log_root(disk_super); 1994 int level = btrfs_super_log_root_level(disk_super); 1995 1996 if (unlikely(fs_devices->rw_devices == 0)) { 1997 btrfs_warn(fs_info, "log replay required on RO media"); 1998 return -EIO; 1999 } 2000 2001 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, 2002 GFP_KERNEL); 2003 if (!log_tree_root) 2004 return -ENOMEM; 2005 2006 check.level = level; 2007 check.transid = fs_info->generation + 1; 2008 check.owner_root = BTRFS_TREE_LOG_OBJECTID; 2009 log_tree_root->node = read_tree_block(fs_info, bytenr, &check); 2010 if (IS_ERR(log_tree_root->node)) { 2011 btrfs_warn(fs_info, "failed to read log tree"); 2012 ret = PTR_ERR(log_tree_root->node); 2013 log_tree_root->node = NULL; 2014 btrfs_put_root(log_tree_root); 2015 return ret; 2016 } 2017 if (unlikely(!extent_buffer_uptodate(log_tree_root->node))) { 2018 btrfs_err(fs_info, "failed to read log tree"); 2019 btrfs_put_root(log_tree_root); 2020 return -EIO; 2021 } 2022 2023 /* returns with log_tree_root freed on success */ 2024 ret = btrfs_recover_log_trees(log_tree_root); 2025 btrfs_put_root(log_tree_root); 2026 if (ret) { 2027 btrfs_handle_fs_error(fs_info, ret, 2028 "Failed to recover log tree"); 2029 return ret; 2030 } 2031 2032 if (sb_rdonly(fs_info->sb)) { 2033 ret = btrfs_commit_super(fs_info); 2034 if (ret) 2035 return ret; 2036 } 2037 2038 return 0; 2039 } 2040 2041 static int load_global_roots_objectid(struct btrfs_root *tree_root, 2042 struct btrfs_path *path, u64 objectid, 2043 const char *name) 2044 { 2045 struct btrfs_fs_info *fs_info = tree_root->fs_info; 2046 struct btrfs_root *root; 2047 u64 max_global_id = 0; 2048 int ret; 2049 struct btrfs_key key = { 2050 .objectid = objectid, 2051 .type = BTRFS_ROOT_ITEM_KEY, 2052 .offset = 0, 2053 }; 2054 bool found = false; 2055 2056 /* If we have IGNOREDATACSUMS skip loading these roots. */ 2057 if (objectid == BTRFS_CSUM_TREE_OBJECTID && 2058 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) { 2059 set_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state); 2060 return 0; 2061 } 2062 2063 while (1) { 2064 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0); 2065 if (ret < 0) 2066 break; 2067 2068 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2069 ret = btrfs_next_leaf(tree_root, path); 2070 if (ret) { 2071 if (ret > 0) 2072 ret = 0; 2073 break; 2074 } 2075 } 2076 ret = 0; 2077 2078 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2079 if (key.objectid != objectid) 2080 break; 2081 btrfs_release_path(path); 2082 2083 /* 2084 * Just worry about this for extent tree, it'll be the same for 2085 * everybody. 2086 */ 2087 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2088 max_global_id = max(max_global_id, key.offset); 2089 2090 found = true; 2091 root = read_tree_root_path(tree_root, path, &key); 2092 if (IS_ERR(root)) { 2093 ret = PTR_ERR(root); 2094 break; 2095 } 2096 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2097 ret = btrfs_global_root_insert(root); 2098 if (ret) { 2099 btrfs_put_root(root); 2100 break; 2101 } 2102 key.offset++; 2103 } 2104 btrfs_release_path(path); 2105 2106 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2107 fs_info->nr_global_roots = max_global_id + 1; 2108 2109 if (!found || ret) { 2110 if (objectid == BTRFS_CSUM_TREE_OBJECTID) 2111 set_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state); 2112 2113 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) 2114 ret = ret ? ret : -ENOENT; 2115 else 2116 ret = 0; 2117 btrfs_err(fs_info, "failed to load root %s", name); 2118 } 2119 return ret; 2120 } 2121 2122 static int load_global_roots(struct btrfs_root *tree_root) 2123 { 2124 BTRFS_PATH_AUTO_FREE(path); 2125 int ret; 2126 2127 path = btrfs_alloc_path(); 2128 if (!path) 2129 return -ENOMEM; 2130 2131 ret = load_global_roots_objectid(tree_root, path, 2132 BTRFS_EXTENT_TREE_OBJECTID, "extent"); 2133 if (ret) 2134 return ret; 2135 ret = load_global_roots_objectid(tree_root, path, 2136 BTRFS_CSUM_TREE_OBJECTID, "csum"); 2137 if (ret) 2138 return ret; 2139 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE)) 2140 return ret; 2141 2142 return load_global_roots_objectid(tree_root, path, 2143 BTRFS_FREE_SPACE_TREE_OBJECTID, 2144 "free space"); 2145 } 2146 2147 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2148 { 2149 struct btrfs_root *tree_root = fs_info->tree_root; 2150 struct btrfs_root *root; 2151 struct btrfs_key location; 2152 int ret; 2153 2154 ASSERT(fs_info->tree_root); 2155 2156 ret = load_global_roots(tree_root); 2157 if (ret) 2158 return ret; 2159 2160 location.type = BTRFS_ROOT_ITEM_KEY; 2161 location.offset = 0; 2162 2163 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) { 2164 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID; 2165 root = btrfs_read_tree_root(tree_root, &location); 2166 if (IS_ERR(root)) { 2167 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2168 ret = PTR_ERR(root); 2169 goto out; 2170 } 2171 } else { 2172 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2173 fs_info->block_group_root = root; 2174 } 2175 } 2176 2177 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2178 root = btrfs_read_tree_root(tree_root, &location); 2179 if (IS_ERR(root)) { 2180 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2181 ret = PTR_ERR(root); 2182 goto out; 2183 } 2184 } else { 2185 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2186 fs_info->dev_root = root; 2187 } 2188 /* Initialize fs_info for all devices in any case */ 2189 ret = btrfs_init_devices_late(fs_info); 2190 if (ret) 2191 goto out; 2192 2193 if (btrfs_fs_incompat(fs_info, REMAP_TREE)) { 2194 /* The remap_root has already been loaded in load_important_roots(). */ 2195 root = fs_info->remap_root; 2196 2197 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2198 2199 root->root_key.objectid = BTRFS_REMAP_TREE_OBJECTID; 2200 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 2201 root->root_key.offset = 0; 2202 2203 /* Check that data reloc tree doesn't also exist. */ 2204 location.objectid = BTRFS_DATA_RELOC_TREE_OBJECTID; 2205 root = btrfs_read_tree_root(fs_info->tree_root, &location); 2206 if (!IS_ERR(root)) { 2207 btrfs_err(fs_info, "data reloc tree exists when remap-tree enabled"); 2208 btrfs_put_root(root); 2209 return -EIO; 2210 } else if (PTR_ERR(root) != -ENOENT) { 2211 btrfs_warn(fs_info, "error %ld when checking for data reloc tree", 2212 PTR_ERR(root)); 2213 } 2214 } else { 2215 /* 2216 * This tree can share blocks with some other fs tree during 2217 * relocation and we need a proper setup by btrfs_get_fs_root(). 2218 */ 2219 root = btrfs_get_fs_root(tree_root->fs_info, 2220 BTRFS_DATA_RELOC_TREE_OBJECTID, true); 2221 if (IS_ERR(root)) { 2222 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2223 location.objectid = BTRFS_DATA_RELOC_TREE_OBJECTID; 2224 ret = PTR_ERR(root); 2225 goto out; 2226 } 2227 } else { 2228 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2229 fs_info->data_reloc_root = root; 2230 } 2231 } 2232 2233 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2234 root = btrfs_read_tree_root(tree_root, &location); 2235 if (!IS_ERR(root)) { 2236 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2237 fs_info->quota_root = root; 2238 } 2239 2240 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2241 root = btrfs_read_tree_root(tree_root, &location); 2242 if (IS_ERR(root)) { 2243 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2244 ret = PTR_ERR(root); 2245 if (ret != -ENOENT) 2246 goto out; 2247 } 2248 } else { 2249 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2250 fs_info->uuid_root = root; 2251 } 2252 2253 if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) { 2254 location.objectid = BTRFS_RAID_STRIPE_TREE_OBJECTID; 2255 root = btrfs_read_tree_root(tree_root, &location); 2256 if (IS_ERR(root)) { 2257 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2258 ret = PTR_ERR(root); 2259 goto out; 2260 } 2261 } else { 2262 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2263 fs_info->stripe_root = root; 2264 } 2265 } 2266 2267 return 0; 2268 out: 2269 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", 2270 location.objectid, ret); 2271 return ret; 2272 } 2273 2274 static int validate_sys_chunk_array(const struct btrfs_fs_info *fs_info, 2275 const struct btrfs_super_block *sb) 2276 { 2277 unsigned int cur = 0; /* Offset inside the sys chunk array */ 2278 /* 2279 * At sb read time, fs_info is not fully initialized. Thus we have 2280 * to use super block sectorsize, which should have been validated. 2281 */ 2282 const u32 sectorsize = btrfs_super_sectorsize(sb); 2283 u32 sys_array_size = btrfs_super_sys_array_size(sb); 2284 2285 if (unlikely(sys_array_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)) { 2286 btrfs_err(fs_info, "system chunk array too big %u > %u", 2287 sys_array_size, BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2288 return -EUCLEAN; 2289 } 2290 2291 while (cur < sys_array_size) { 2292 struct btrfs_disk_key *disk_key; 2293 struct btrfs_chunk *chunk; 2294 struct btrfs_key key; 2295 u64 type; 2296 u16 num_stripes; 2297 u32 len; 2298 int ret; 2299 2300 disk_key = (struct btrfs_disk_key *)(sb->sys_chunk_array + cur); 2301 len = sizeof(*disk_key); 2302 2303 if (unlikely(cur + len > sys_array_size)) 2304 goto short_read; 2305 cur += len; 2306 2307 btrfs_disk_key_to_cpu(&key, disk_key); 2308 if (unlikely(key.type != BTRFS_CHUNK_ITEM_KEY)) { 2309 btrfs_err(fs_info, 2310 "unexpected item type %u in sys_array at offset %u", 2311 key.type, cur); 2312 return -EUCLEAN; 2313 } 2314 chunk = (struct btrfs_chunk *)(sb->sys_chunk_array + cur); 2315 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 2316 if (unlikely(cur + btrfs_chunk_item_size(num_stripes) > sys_array_size)) 2317 goto short_read; 2318 type = btrfs_stack_chunk_type(chunk); 2319 if (unlikely(!(type & BTRFS_BLOCK_GROUP_SYSTEM))) { 2320 btrfs_err(fs_info, 2321 "invalid chunk type %llu in sys_array at offset %u", 2322 type, cur); 2323 return -EUCLEAN; 2324 } 2325 ret = btrfs_check_chunk_valid(fs_info, NULL, chunk, key.offset, 2326 sectorsize); 2327 if (ret < 0) 2328 return ret; 2329 cur += btrfs_chunk_item_size(num_stripes); 2330 } 2331 return 0; 2332 short_read: 2333 btrfs_err(fs_info, 2334 "super block sys chunk array short read, cur=%u sys_array_size=%u", 2335 cur, sys_array_size); 2336 return -EUCLEAN; 2337 } 2338 2339 /* 2340 * Real super block validation 2341 * NOTE: super csum type and incompat features will not be checked here. 2342 * 2343 * @sb: super block to check 2344 * @mirror_num: the super block number to check its bytenr: 2345 * 0 the primary (1st) sb 2346 * 1, 2 2nd and 3rd backup copy 2347 * -1 skip bytenr check 2348 */ 2349 int btrfs_validate_super(const struct btrfs_fs_info *fs_info, 2350 const struct btrfs_super_block *sb, int mirror_num) 2351 { 2352 u64 nodesize = btrfs_super_nodesize(sb); 2353 u64 sectorsize = btrfs_super_sectorsize(sb); 2354 int ret = 0; 2355 const bool ignore_flags = btrfs_test_opt(fs_info, IGNORESUPERFLAGS); 2356 2357 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 2358 btrfs_err(fs_info, "no valid FS found"); 2359 ret = -EINVAL; 2360 } 2361 if ((btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)) { 2362 if (!ignore_flags) { 2363 btrfs_err(fs_info, 2364 "unrecognized or unsupported super flag 0x%llx", 2365 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2366 ret = -EINVAL; 2367 } else { 2368 btrfs_info(fs_info, 2369 "unrecognized or unsupported super flags: 0x%llx, ignored", 2370 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2371 } 2372 } 2373 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 2374 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 2375 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 2376 ret = -EINVAL; 2377 } 2378 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 2379 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 2380 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 2381 ret = -EINVAL; 2382 } 2383 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 2384 btrfs_err(fs_info, "log_root level too big: %d >= %d", 2385 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 2386 ret = -EINVAL; 2387 } 2388 2389 /* 2390 * Check sectorsize and nodesize first, other check will need it. 2391 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 2392 */ 2393 if (!is_power_of_2(sectorsize) || sectorsize < BTRFS_MIN_BLOCKSIZE || 2394 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2395 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 2396 ret = -EINVAL; 2397 } 2398 2399 if (!btrfs_supported_blocksize(sectorsize)) { 2400 btrfs_err(fs_info, 2401 "sectorsize %llu not yet supported for page size %lu", 2402 sectorsize, PAGE_SIZE); 2403 ret = -EINVAL; 2404 } 2405 2406 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 2407 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2408 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 2409 ret = -EINVAL; 2410 } 2411 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 2412 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 2413 le32_to_cpu(sb->__unused_leafsize), nodesize); 2414 ret = -EINVAL; 2415 } 2416 2417 /* Root alignment check */ 2418 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 2419 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 2420 btrfs_super_root(sb)); 2421 ret = -EINVAL; 2422 } 2423 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 2424 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 2425 btrfs_super_chunk_root(sb)); 2426 ret = -EINVAL; 2427 } 2428 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 2429 btrfs_warn(fs_info, "log_root block unaligned: %llu", 2430 btrfs_super_log_root(sb)); 2431 ret = -EINVAL; 2432 } 2433 2434 if (!fs_info->fs_devices->temp_fsid && 2435 memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) { 2436 btrfs_err(fs_info, 2437 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU", 2438 sb->fsid, fs_info->fs_devices->fsid); 2439 ret = -EINVAL; 2440 } 2441 2442 if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb), 2443 BTRFS_FSID_SIZE) != 0) { 2444 btrfs_err(fs_info, 2445 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU", 2446 btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid); 2447 ret = -EINVAL; 2448 } 2449 2450 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid, 2451 BTRFS_FSID_SIZE) != 0) { 2452 btrfs_err(fs_info, 2453 "dev_item UUID does not match metadata fsid: %pU != %pU", 2454 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid); 2455 ret = -EINVAL; 2456 } 2457 2458 /* 2459 * Artificial requirement for block-group-tree to force newer features 2460 * (free-space-tree, no-holes) so the test matrix is smaller. 2461 */ 2462 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 2463 (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) || 2464 !btrfs_fs_incompat(fs_info, NO_HOLES))) { 2465 btrfs_err(fs_info, 2466 "block-group-tree feature requires free-space-tree and no-holes"); 2467 ret = -EINVAL; 2468 } 2469 2470 if (btrfs_fs_incompat(fs_info, REMAP_TREE)) { 2471 /* 2472 * Reduce test matrix for remap tree by requiring block-group-tree 2473 * and no-holes. Free-space-tree is a hard requirement. 2474 */ 2475 if (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) || 2476 !btrfs_fs_incompat(fs_info, NO_HOLES) || 2477 !btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) { 2478 btrfs_err(fs_info, 2479 "remap-tree feature requires free-space-tree, no-holes, and block-group-tree"); 2480 ret = -EINVAL; 2481 } 2482 2483 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 2484 btrfs_err(fs_info, "remap-tree not supported with mixed-bg"); 2485 ret = -EINVAL; 2486 } 2487 2488 if (btrfs_fs_incompat(fs_info, ZONED)) { 2489 btrfs_err(fs_info, "remap-tree not supported with zoned devices"); 2490 ret = -EINVAL; 2491 } 2492 2493 if (sectorsize > PAGE_SIZE) { 2494 btrfs_err(fs_info, "remap-tree not supported when block size > page size"); 2495 ret = -EINVAL; 2496 } 2497 } 2498 2499 /* 2500 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 2501 * done later 2502 */ 2503 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 2504 btrfs_err(fs_info, "bytes_used is too small %llu", 2505 btrfs_super_bytes_used(sb)); 2506 ret = -EINVAL; 2507 } 2508 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 2509 btrfs_err(fs_info, "invalid stripesize %u", 2510 btrfs_super_stripesize(sb)); 2511 ret = -EINVAL; 2512 } 2513 if (btrfs_super_num_devices(sb) > (1UL << 31)) 2514 btrfs_warn(fs_info, "suspicious number of devices: %llu", 2515 btrfs_super_num_devices(sb)); 2516 if (btrfs_super_num_devices(sb) == 0) { 2517 btrfs_err(fs_info, "number of devices is 0"); 2518 ret = -EINVAL; 2519 } 2520 2521 if (mirror_num >= 0 && 2522 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { 2523 btrfs_err(fs_info, "super offset mismatch %llu != %u", 2524 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 2525 ret = -EINVAL; 2526 } 2527 2528 if (ret) 2529 return ret; 2530 2531 ret = validate_sys_chunk_array(fs_info, sb); 2532 2533 /* 2534 * Obvious sys_chunk_array corruptions, it must hold at least one key 2535 * and one chunk 2536 */ 2537 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2538 btrfs_err(fs_info, "system chunk array too big %u > %u", 2539 btrfs_super_sys_array_size(sb), 2540 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2541 ret = -EINVAL; 2542 } 2543 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 2544 + sizeof(struct btrfs_chunk)) { 2545 btrfs_err(fs_info, "system chunk array too small %u < %zu", 2546 btrfs_super_sys_array_size(sb), 2547 sizeof(struct btrfs_disk_key) 2548 + sizeof(struct btrfs_chunk)); 2549 ret = -EINVAL; 2550 } 2551 2552 /* 2553 * The generation is a global counter, we'll trust it more than the others 2554 * but it's still possible that it's the one that's wrong. 2555 */ 2556 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 2557 btrfs_warn(fs_info, 2558 "suspicious: generation < chunk_root_generation: %llu < %llu", 2559 btrfs_super_generation(sb), 2560 btrfs_super_chunk_root_generation(sb)); 2561 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 2562 && btrfs_super_cache_generation(sb) != (u64)-1) 2563 btrfs_warn(fs_info, 2564 "suspicious: generation < cache_generation: %llu < %llu", 2565 btrfs_super_generation(sb), 2566 btrfs_super_cache_generation(sb)); 2567 2568 return ret; 2569 } 2570 2571 /* 2572 * Validation of super block at mount time. 2573 * Some checks already done early at mount time, like csum type and incompat 2574 * flags will be skipped. 2575 */ 2576 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) 2577 { 2578 return btrfs_validate_super(fs_info, fs_info->super_copy, 0); 2579 } 2580 2581 /* 2582 * Validation of super block at write time. 2583 * Some checks like bytenr check will be skipped as their values will be 2584 * overwritten soon. 2585 * Extra checks like csum type and incompat flags will be done here. 2586 */ 2587 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, 2588 struct btrfs_super_block *sb) 2589 { 2590 int ret; 2591 2592 ret = btrfs_validate_super(fs_info, sb, -1); 2593 if (ret < 0) 2594 goto out; 2595 if (unlikely(!btrfs_supported_super_csum(btrfs_super_csum_type(sb)))) { 2596 ret = -EUCLEAN; 2597 btrfs_err(fs_info, "invalid csum type, has %u want %u", 2598 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); 2599 goto out; 2600 } 2601 if (unlikely(btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP)) { 2602 ret = -EUCLEAN; 2603 btrfs_err(fs_info, 2604 "invalid incompat flags, has 0x%llx valid mask 0x%llx", 2605 btrfs_super_incompat_flags(sb), 2606 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); 2607 goto out; 2608 } 2609 out: 2610 if (ret < 0) 2611 btrfs_err(fs_info, 2612 "super block corruption detected before writing it to disk"); 2613 return ret; 2614 } 2615 2616 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level) 2617 { 2618 struct btrfs_tree_parent_check check = { 2619 .level = level, 2620 .transid = gen, 2621 .owner_root = btrfs_root_id(root) 2622 }; 2623 int ret = 0; 2624 2625 root->node = read_tree_block(root->fs_info, bytenr, &check); 2626 if (IS_ERR(root->node)) { 2627 ret = PTR_ERR(root->node); 2628 root->node = NULL; 2629 return ret; 2630 } 2631 if (unlikely(!extent_buffer_uptodate(root->node))) { 2632 free_extent_buffer(root->node); 2633 root->node = NULL; 2634 return -EIO; 2635 } 2636 2637 btrfs_set_root_node(&root->root_item, root->node); 2638 root->commit_root = btrfs_root_node(root); 2639 btrfs_set_root_refs(&root->root_item, 1); 2640 return ret; 2641 } 2642 2643 static int load_important_roots(struct btrfs_fs_info *fs_info) 2644 { 2645 struct btrfs_super_block *sb = fs_info->super_copy; 2646 u64 gen, bytenr; 2647 int level, ret; 2648 2649 bytenr = btrfs_super_root(sb); 2650 gen = btrfs_super_generation(sb); 2651 level = btrfs_super_root_level(sb); 2652 ret = load_super_root(fs_info->tree_root, bytenr, gen, level); 2653 if (ret) { 2654 btrfs_warn(fs_info, "couldn't read tree root"); 2655 return ret; 2656 } 2657 2658 if (btrfs_fs_incompat(fs_info, REMAP_TREE)) { 2659 bytenr = btrfs_super_remap_root(sb); 2660 gen = btrfs_super_remap_root_generation(sb); 2661 level = btrfs_super_remap_root_level(sb); 2662 ret = load_super_root(fs_info->remap_root, bytenr, gen, level); 2663 if (ret) { 2664 btrfs_warn(fs_info, "couldn't read remap root"); 2665 return ret; 2666 } 2667 } 2668 2669 return 0; 2670 } 2671 2672 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info) 2673 { 2674 int backup_index = find_newest_super_backup(fs_info); 2675 struct btrfs_super_block *sb = fs_info->super_copy; 2676 struct btrfs_root *tree_root = fs_info->tree_root; 2677 bool handle_error = false; 2678 int ret = 0; 2679 int i; 2680 2681 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 2682 if (handle_error) { 2683 if (!IS_ERR(tree_root->node)) 2684 free_extent_buffer(tree_root->node); 2685 tree_root->node = NULL; 2686 2687 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 2688 break; 2689 2690 free_root_pointers(fs_info, 0); 2691 2692 /* 2693 * Don't use the log in recovery mode, it won't be 2694 * valid 2695 */ 2696 btrfs_set_super_log_root(sb, 0); 2697 2698 btrfs_warn(fs_info, "try to load backup roots slot %d", i); 2699 ret = read_backup_root(fs_info, i); 2700 backup_index = ret; 2701 if (ret < 0) 2702 return ret; 2703 } 2704 2705 ret = load_important_roots(fs_info); 2706 if (ret) { 2707 handle_error = true; 2708 continue; 2709 } 2710 2711 /* 2712 * No need to hold btrfs_root::objectid_mutex since the fs 2713 * hasn't been fully initialised and we are the only user 2714 */ 2715 ret = btrfs_init_root_free_objectid(tree_root); 2716 if (ret < 0) { 2717 handle_error = true; 2718 continue; 2719 } 2720 2721 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 2722 2723 ret = btrfs_read_roots(fs_info); 2724 if (ret < 0) { 2725 handle_error = true; 2726 continue; 2727 } 2728 2729 /* All successful */ 2730 fs_info->generation = btrfs_header_generation(tree_root->node); 2731 btrfs_set_last_trans_committed(fs_info, fs_info->generation); 2732 fs_info->last_reloc_trans = 0; 2733 2734 /* Always begin writing backup roots after the one being used */ 2735 if (backup_index < 0) { 2736 fs_info->backup_root_index = 0; 2737 } else { 2738 fs_info->backup_root_index = backup_index + 1; 2739 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS; 2740 } 2741 break; 2742 } 2743 2744 return ret; 2745 } 2746 2747 /* 2748 * Lockdep gets confused between our buffer_tree which requires IRQ locking because 2749 * we modify marks in the IRQ context, and our delayed inode xarray which doesn't 2750 * have these requirements. Use a class key so lockdep doesn't get them mixed up. 2751 */ 2752 static struct lock_class_key buffer_xa_class; 2753 2754 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info) 2755 { 2756 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2757 2758 /* Use the same flags as mapping->i_pages. */ 2759 xa_init_flags(&fs_info->buffer_tree, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT); 2760 lockdep_set_class(&fs_info->buffer_tree.xa_lock, &buffer_xa_class); 2761 2762 INIT_LIST_HEAD(&fs_info->trans_list); 2763 INIT_LIST_HEAD(&fs_info->dead_roots); 2764 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2765 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2766 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2767 spin_lock_init(&fs_info->delalloc_root_lock); 2768 spin_lock_init(&fs_info->trans_lock); 2769 spin_lock_init(&fs_info->fs_roots_radix_lock); 2770 spin_lock_init(&fs_info->delayed_iput_lock); 2771 spin_lock_init(&fs_info->defrag_inodes_lock); 2772 spin_lock_init(&fs_info->super_lock); 2773 spin_lock_init(&fs_info->unused_bgs_lock); 2774 spin_lock_init(&fs_info->treelog_bg_lock); 2775 spin_lock_init(&fs_info->zone_active_bgs_lock); 2776 spin_lock_init(&fs_info->relocation_bg_lock); 2777 rwlock_init(&fs_info->tree_mod_log_lock); 2778 rwlock_init(&fs_info->global_root_lock); 2779 mutex_init(&fs_info->unused_bg_unpin_mutex); 2780 mutex_init(&fs_info->reclaim_bgs_lock); 2781 mutex_init(&fs_info->reloc_mutex); 2782 mutex_init(&fs_info->delalloc_root_mutex); 2783 mutex_init(&fs_info->zoned_meta_io_lock); 2784 mutex_init(&fs_info->zoned_data_reloc_io_lock); 2785 seqlock_init(&fs_info->profiles_lock); 2786 2787 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers); 2788 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters); 2789 btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered); 2790 btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent); 2791 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_prep, 2792 BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 2793 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked, 2794 BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2795 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed, 2796 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 2797 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed, 2798 BTRFS_LOCKDEP_TRANS_COMPLETED); 2799 2800 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2801 INIT_LIST_HEAD(&fs_info->space_info); 2802 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2803 INIT_LIST_HEAD(&fs_info->unused_bgs); 2804 INIT_LIST_HEAD(&fs_info->reclaim_bgs); 2805 INIT_LIST_HEAD(&fs_info->fully_remapped_bgs); 2806 INIT_LIST_HEAD(&fs_info->zone_active_bgs); 2807 #ifdef CONFIG_BTRFS_DEBUG 2808 INIT_LIST_HEAD(&fs_info->allocated_roots); 2809 INIT_LIST_HEAD(&fs_info->allocated_ebs); 2810 spin_lock_init(&fs_info->eb_leak_lock); 2811 #endif 2812 fs_info->mapping_tree = RB_ROOT_CACHED; 2813 rwlock_init(&fs_info->mapping_tree_lock); 2814 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2815 BTRFS_BLOCK_RSV_GLOBAL); 2816 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2817 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2818 btrfs_init_block_rsv(&fs_info->remap_block_rsv, BTRFS_BLOCK_RSV_REMAP); 2819 btrfs_init_block_rsv(&fs_info->treelog_rsv, BTRFS_BLOCK_RSV_TREELOG); 2820 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2821 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2822 BTRFS_BLOCK_RSV_DELOPS); 2823 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv, 2824 BTRFS_BLOCK_RSV_DELREFS); 2825 2826 atomic_set(&fs_info->async_delalloc_pages, 0); 2827 atomic_set(&fs_info->defrag_running, 0); 2828 atomic_set(&fs_info->nr_delayed_iputs, 0); 2829 atomic64_set(&fs_info->tree_mod_seq, 0); 2830 fs_info->global_root_tree = RB_ROOT; 2831 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2832 fs_info->metadata_ratio = 0; 2833 fs_info->defrag_inodes = RB_ROOT; 2834 atomic64_set(&fs_info->free_chunk_space, 0); 2835 fs_info->tree_mod_log = RB_ROOT; 2836 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2837 btrfs_init_ref_verify(fs_info); 2838 2839 fs_info->thread_pool_size = min_t(unsigned long, 2840 num_online_cpus() + 2, 8); 2841 2842 INIT_LIST_HEAD(&fs_info->ordered_roots); 2843 spin_lock_init(&fs_info->ordered_root_lock); 2844 2845 btrfs_init_scrub(fs_info); 2846 btrfs_init_balance(fs_info); 2847 btrfs_init_async_reclaim_work(fs_info); 2848 btrfs_init_extent_map_shrinker_work(fs_info); 2849 2850 rwlock_init(&fs_info->block_group_cache_lock); 2851 fs_info->block_group_cache_tree = RB_ROOT_CACHED; 2852 2853 btrfs_extent_io_tree_init(fs_info, &fs_info->excluded_extents, 2854 IO_TREE_FS_EXCLUDED_EXTENTS); 2855 2856 mutex_init(&fs_info->ordered_operations_mutex); 2857 mutex_init(&fs_info->tree_log_mutex); 2858 mutex_init(&fs_info->chunk_mutex); 2859 mutex_init(&fs_info->transaction_kthread_mutex); 2860 mutex_init(&fs_info->cleaner_mutex); 2861 mutex_init(&fs_info->remap_mutex); 2862 mutex_init(&fs_info->ro_block_group_mutex); 2863 init_rwsem(&fs_info->commit_root_sem); 2864 init_rwsem(&fs_info->cleanup_work_sem); 2865 init_rwsem(&fs_info->subvol_sem); 2866 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2867 2868 btrfs_init_dev_replace_locks(fs_info); 2869 btrfs_init_qgroup(fs_info); 2870 btrfs_discard_init(fs_info); 2871 2872 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2873 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2874 2875 init_waitqueue_head(&fs_info->transaction_throttle); 2876 init_waitqueue_head(&fs_info->transaction_wait); 2877 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2878 init_waitqueue_head(&fs_info->async_submit_wait); 2879 init_waitqueue_head(&fs_info->delayed_iputs_wait); 2880 2881 /* Usable values until the real ones are cached from the superblock */ 2882 fs_info->nodesize = 4096; 2883 fs_info->sectorsize = 4096; 2884 fs_info->sectorsize_bits = ilog2(4096); 2885 fs_info->stripesize = 4096; 2886 2887 /* Default compress algorithm when user does -o compress */ 2888 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2889 2890 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE; 2891 2892 spin_lock_init(&fs_info->swapfile_pins_lock); 2893 fs_info->swapfile_pins = RB_ROOT; 2894 2895 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH; 2896 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work); 2897 } 2898 2899 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb) 2900 { 2901 int ret; 2902 2903 fs_info->sb = sb; 2904 /* Temporary fixed values for block size until we read the superblock. */ 2905 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 2906 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 2907 2908 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL); 2909 if (ret) 2910 return ret; 2911 2912 ret = percpu_counter_init(&fs_info->evictable_extent_maps, 0, GFP_KERNEL); 2913 if (ret) 2914 return ret; 2915 2916 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2917 if (ret) 2918 return ret; 2919 2920 ret = percpu_counter_init(&fs_info->stats_read_blocks, 0, GFP_KERNEL); 2921 if (ret) 2922 return ret; 2923 2924 fs_info->dirty_metadata_batch = PAGE_SIZE * 2925 (1 + ilog2(nr_cpu_ids)); 2926 2927 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2928 if (ret) 2929 return ret; 2930 2931 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, 2932 GFP_KERNEL); 2933 if (ret) 2934 return ret; 2935 2936 btrfs_init_delayed_root(&fs_info->delayed_root); 2937 2938 if (sb_rdonly(sb)) 2939 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state); 2940 if (btrfs_test_opt(fs_info, IGNOREMETACSUMS)) 2941 set_bit(BTRFS_FS_STATE_SKIP_META_CSUMS, &fs_info->fs_state); 2942 2943 return btrfs_alloc_stripe_hash_table(fs_info); 2944 } 2945 2946 static int btrfs_uuid_rescan_kthread(void *data) 2947 { 2948 struct btrfs_fs_info *fs_info = data; 2949 int ret; 2950 2951 /* 2952 * 1st step is to iterate through the existing UUID tree and 2953 * to delete all entries that contain outdated data. 2954 * 2nd step is to add all missing entries to the UUID tree. 2955 */ 2956 ret = btrfs_uuid_tree_iterate(fs_info); 2957 if (ret < 0) { 2958 if (ret != -EINTR) 2959 btrfs_warn(fs_info, "iterating uuid_tree failed %d", 2960 ret); 2961 up(&fs_info->uuid_tree_rescan_sem); 2962 return ret; 2963 } 2964 return btrfs_uuid_scan_kthread(data); 2965 } 2966 2967 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 2968 { 2969 struct task_struct *task; 2970 2971 down(&fs_info->uuid_tree_rescan_sem); 2972 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 2973 if (IS_ERR(task)) { 2974 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 2975 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 2976 up(&fs_info->uuid_tree_rescan_sem); 2977 return PTR_ERR(task); 2978 } 2979 2980 return 0; 2981 } 2982 2983 static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 2984 { 2985 u64 root_objectid = 0; 2986 struct btrfs_root *gang[8]; 2987 int ret = 0; 2988 2989 while (1) { 2990 unsigned int found; 2991 2992 spin_lock(&fs_info->fs_roots_radix_lock); 2993 found = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2994 (void **)gang, root_objectid, 2995 ARRAY_SIZE(gang)); 2996 if (!found) { 2997 spin_unlock(&fs_info->fs_roots_radix_lock); 2998 break; 2999 } 3000 root_objectid = btrfs_root_id(gang[found - 1]) + 1; 3001 3002 for (int i = 0; i < found; i++) { 3003 /* Avoid to grab roots in dead_roots. */ 3004 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 3005 gang[i] = NULL; 3006 continue; 3007 } 3008 /* Grab all the search result for later use. */ 3009 gang[i] = btrfs_grab_root(gang[i]); 3010 } 3011 spin_unlock(&fs_info->fs_roots_radix_lock); 3012 3013 for (int i = 0; i < found; i++) { 3014 if (!gang[i]) 3015 continue; 3016 root_objectid = btrfs_root_id(gang[i]); 3017 /* 3018 * Continue to release the remaining roots after the first 3019 * error without cleanup and preserve the first error 3020 * for the return. 3021 */ 3022 if (!ret) 3023 ret = btrfs_orphan_cleanup(gang[i]); 3024 btrfs_put_root(gang[i]); 3025 } 3026 if (ret) 3027 break; 3028 3029 root_objectid++; 3030 } 3031 return ret; 3032 } 3033 3034 /* 3035 * Mounting logic specific to read-write file systems. Shared by open_ctree 3036 * and btrfs_remount when remounting from read-only to read-write. 3037 */ 3038 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info) 3039 { 3040 int ret; 3041 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE); 3042 bool rebuild_free_space_tree = false; 3043 3044 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 3045 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3046 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 3047 btrfs_warn(fs_info, 3048 "'clear_cache' option is ignored with extent tree v2"); 3049 else if (btrfs_fs_incompat(fs_info, REMAP_TREE)) 3050 btrfs_warn(fs_info, "'clear_cache' option is ignored with remap tree"); 3051 else 3052 rebuild_free_space_tree = true; 3053 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3054 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 3055 btrfs_warn(fs_info, "free space tree is invalid"); 3056 rebuild_free_space_tree = true; 3057 } 3058 3059 if (rebuild_free_space_tree) { 3060 btrfs_info(fs_info, "rebuilding free space tree"); 3061 ret = btrfs_rebuild_free_space_tree(fs_info); 3062 if (ret) { 3063 btrfs_warn(fs_info, 3064 "failed to rebuild free space tree: %d", ret); 3065 return ret; 3066 } 3067 } 3068 3069 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3070 !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) { 3071 btrfs_info(fs_info, "disabling free space tree"); 3072 ret = btrfs_delete_free_space_tree(fs_info); 3073 if (ret) { 3074 btrfs_warn(fs_info, 3075 "failed to disable free space tree: %d", ret); 3076 return ret; 3077 } 3078 } 3079 3080 /* 3081 * Before btrfs-progs v6.16.1 mkfs.btrfs can leave free space entries 3082 * for deleted temporary chunks. Delete them if they exist. 3083 */ 3084 ret = btrfs_delete_orphan_free_space_entries(fs_info); 3085 if (ret < 0) { 3086 btrfs_err(fs_info, "failed to delete orphan free space tree entries: %d", ret); 3087 return ret; 3088 } 3089 /* 3090 * btrfs_find_orphan_roots() is responsible for finding all the dead 3091 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load 3092 * them into the fs_info->fs_roots_radix tree. This must be done before 3093 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it 3094 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan 3095 * item before the root's tree is deleted - this means that if we unmount 3096 * or crash before the deletion completes, on the next mount we will not 3097 * delete what remains of the tree because the orphan item does not 3098 * exists anymore, which is what tells us we have a pending deletion. 3099 */ 3100 ret = btrfs_find_orphan_roots(fs_info); 3101 if (ret) 3102 return ret; 3103 3104 ret = btrfs_cleanup_fs_roots(fs_info); 3105 if (ret) 3106 return ret; 3107 3108 down_read(&fs_info->cleanup_work_sem); 3109 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3110 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3111 up_read(&fs_info->cleanup_work_sem); 3112 return ret; 3113 } 3114 up_read(&fs_info->cleanup_work_sem); 3115 3116 mutex_lock(&fs_info->cleaner_mutex); 3117 ret = btrfs_recover_relocation(fs_info); 3118 mutex_unlock(&fs_info->cleaner_mutex); 3119 if (ret < 0) { 3120 btrfs_warn(fs_info, "failed to recover relocation: %d", ret); 3121 return ret; 3122 } 3123 3124 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3125 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3126 btrfs_info(fs_info, "creating free space tree"); 3127 ret = btrfs_create_free_space_tree(fs_info); 3128 if (ret) { 3129 btrfs_warn(fs_info, 3130 "failed to create free space tree: %d", ret); 3131 return ret; 3132 } 3133 } 3134 3135 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) { 3136 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt); 3137 if (ret) 3138 return ret; 3139 } 3140 3141 ret = btrfs_resume_balance_async(fs_info); 3142 if (ret) 3143 return ret; 3144 3145 ret = btrfs_resume_dev_replace_async(fs_info); 3146 if (ret) { 3147 btrfs_warn(fs_info, "failed to resume dev_replace"); 3148 return ret; 3149 } 3150 3151 btrfs_qgroup_rescan_resume(fs_info); 3152 3153 if (!fs_info->uuid_root) { 3154 btrfs_info(fs_info, "creating UUID tree"); 3155 ret = btrfs_create_uuid_tree(fs_info); 3156 if (ret) { 3157 btrfs_warn(fs_info, 3158 "failed to create the UUID tree %d", ret); 3159 return ret; 3160 } 3161 } 3162 3163 return 0; 3164 } 3165 3166 /* 3167 * Do various sanity and dependency checks of different features. 3168 * 3169 * @is_rw_mount: If the mount is read-write. 3170 * 3171 * This is the place for less strict checks (like for subpage or artificial 3172 * feature dependencies). 3173 * 3174 * For strict checks or possible corruption detection, see 3175 * btrfs_validate_super(). 3176 * 3177 * This should be called after btrfs_parse_options(), as some mount options 3178 * (space cache related) can modify on-disk format like free space tree and 3179 * screw up certain feature dependencies. 3180 */ 3181 int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount) 3182 { 3183 struct btrfs_super_block *disk_super = fs_info->super_copy; 3184 u64 incompat = btrfs_super_incompat_flags(disk_super); 3185 const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super); 3186 const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP); 3187 3188 if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 3189 btrfs_err(fs_info, 3190 "cannot mount because of unknown incompat features (0x%llx)", 3191 incompat); 3192 return -EINVAL; 3193 } 3194 3195 /* Runtime limitation for mixed block groups. */ 3196 if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 3197 (fs_info->sectorsize != fs_info->nodesize)) { 3198 btrfs_err(fs_info, 3199 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 3200 fs_info->nodesize, fs_info->sectorsize); 3201 return -EINVAL; 3202 } 3203 3204 /* Mixed backref is an always-enabled feature. */ 3205 incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 3206 3207 /* Set compression related flags just in case. */ 3208 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 3209 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 3210 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 3211 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 3212 3213 /* 3214 * An ancient flag, which should really be marked deprecated. 3215 * Such runtime limitation doesn't really need a incompat flag. 3216 */ 3217 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) 3218 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 3219 3220 if (compat_ro_unsupp && is_rw_mount) { 3221 btrfs_err(fs_info, 3222 "cannot mount read-write because of unknown compat_ro features (0x%llx)", 3223 compat_ro); 3224 return -EINVAL; 3225 } 3226 3227 /* 3228 * We have unsupported RO compat features, although RO mounted, we 3229 * should not cause any metadata writes, including log replay. 3230 * Or we could screw up whatever the new feature requires. 3231 */ 3232 if (compat_ro_unsupp && btrfs_super_log_root(disk_super) && 3233 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3234 btrfs_err(fs_info, 3235 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay", 3236 compat_ro); 3237 return -EINVAL; 3238 } 3239 3240 /* 3241 * Artificial limitations for block group tree, to force 3242 * block-group-tree to rely on no-holes and free-space-tree. 3243 */ 3244 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 3245 (!btrfs_fs_incompat(fs_info, NO_HOLES) || 3246 !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) { 3247 btrfs_err(fs_info, 3248 "block-group-tree feature requires no-holes and free-space-tree features"); 3249 return -EINVAL; 3250 } 3251 3252 /* 3253 * Subpage/bs > ps runtime limitation on v1 cache. 3254 * 3255 * V1 space cache still has some hard coded PAGE_SIZE usage, while 3256 * we're already defaulting to v2 cache, no need to bother v1 as it's 3257 * going to be deprecated anyway. 3258 */ 3259 if (fs_info->sectorsize != PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) { 3260 btrfs_warn(fs_info, 3261 "v1 space cache is not supported for page size %lu with sectorsize %u", 3262 PAGE_SIZE, fs_info->sectorsize); 3263 return -EINVAL; 3264 } 3265 3266 /* This can be called by remount, we need to protect the super block. */ 3267 spin_lock(&fs_info->super_lock); 3268 btrfs_set_super_incompat_flags(disk_super, incompat); 3269 spin_unlock(&fs_info->super_lock); 3270 3271 return 0; 3272 } 3273 3274 static bool fs_is_full_ro(const struct btrfs_fs_info *fs_info) 3275 { 3276 if (!sb_rdonly(fs_info->sb)) 3277 return false; 3278 if (unlikely(fs_info->mount_opt & BTRFS_MOUNT_FULL_RO_MASK)) 3279 return true; 3280 return false; 3281 } 3282 3283 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices) 3284 { 3285 u32 sectorsize; 3286 u32 nodesize; 3287 u32 stripesize; 3288 u64 generation; 3289 u16 csum_type; 3290 struct btrfs_super_block *disk_super; 3291 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 3292 struct btrfs_root *tree_root; 3293 struct btrfs_root *chunk_root; 3294 struct btrfs_root *remap_root; 3295 int ret; 3296 int level; 3297 3298 ret = init_mount_fs_info(fs_info, sb); 3299 if (ret) 3300 goto fail; 3301 3302 /* These need to be init'ed before we start creating inodes and such. */ 3303 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, 3304 GFP_KERNEL); 3305 fs_info->tree_root = tree_root; 3306 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID, 3307 GFP_KERNEL); 3308 fs_info->chunk_root = chunk_root; 3309 if (!tree_root || !chunk_root) { 3310 ret = -ENOMEM; 3311 goto fail; 3312 } 3313 3314 ret = btrfs_init_btree_inode(sb); 3315 if (ret) 3316 goto fail; 3317 3318 invalidate_bdev(fs_devices->latest_dev->bdev); 3319 3320 /* 3321 * Read super block and check the signature bytes only 3322 */ 3323 disk_super = btrfs_read_disk_super(fs_devices->latest_dev->bdev, 0, false); 3324 if (IS_ERR(disk_super)) { 3325 ret = PTR_ERR(disk_super); 3326 goto fail_alloc; 3327 } 3328 3329 btrfs_info(fs_info, "first mount of filesystem %pU", disk_super->fsid); 3330 /* 3331 * Verify the type first, if that or the checksum value are 3332 * corrupted, we'll find out 3333 */ 3334 csum_type = btrfs_super_csum_type(disk_super); 3335 if (!btrfs_supported_super_csum(csum_type)) { 3336 btrfs_err(fs_info, "unsupported checksum algorithm: %u", 3337 csum_type); 3338 ret = -EINVAL; 3339 btrfs_release_disk_super(disk_super); 3340 goto fail_alloc; 3341 } 3342 3343 fs_info->csum_size = btrfs_super_csum_size(disk_super); 3344 fs_info->csum_type = csum_type; 3345 3346 btrfs_init_csum_hash(fs_info, csum_type); 3347 3348 /* 3349 * We want to check superblock checksum, the type is stored inside. 3350 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 3351 */ 3352 if (btrfs_check_super_csum(fs_info, disk_super)) { 3353 btrfs_err(fs_info, "superblock checksum mismatch"); 3354 ret = -EINVAL; 3355 btrfs_release_disk_super(disk_super); 3356 goto fail_alloc; 3357 } 3358 3359 /* 3360 * super_copy is zeroed at allocation time and we never touch the 3361 * following bytes up to INFO_SIZE, the checksum is calculated from 3362 * the whole block of INFO_SIZE 3363 */ 3364 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy)); 3365 btrfs_release_disk_super(disk_super); 3366 3367 disk_super = fs_info->super_copy; 3368 3369 memcpy(fs_info->super_for_commit, fs_info->super_copy, 3370 sizeof(*fs_info->super_for_commit)); 3371 3372 ret = btrfs_validate_mount_super(fs_info); 3373 if (ret) { 3374 btrfs_err(fs_info, "superblock contains fatal errors"); 3375 ret = -EINVAL; 3376 goto fail_alloc; 3377 } 3378 3379 if (!btrfs_super_root(disk_super)) { 3380 btrfs_err(fs_info, "invalid superblock tree root bytenr"); 3381 ret = -EINVAL; 3382 goto fail_alloc; 3383 } 3384 3385 /* check FS state, whether FS is broken. */ 3386 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 3387 WRITE_ONCE(fs_info->fs_error, -EUCLEAN); 3388 3389 /* If the fs has any rescue options, no transaction is allowed. */ 3390 if (fs_is_full_ro(fs_info)) 3391 WRITE_ONCE(fs_info->fs_error, -EROFS); 3392 3393 /* Set up fs_info before parsing mount options */ 3394 nodesize = btrfs_super_nodesize(disk_super); 3395 sectorsize = btrfs_super_sectorsize(disk_super); 3396 stripesize = sectorsize; 3397 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 3398 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 3399 3400 fs_info->nodesize = nodesize; 3401 fs_info->nodesize_bits = ilog2(nodesize); 3402 fs_info->sectorsize = sectorsize; 3403 fs_info->sectorsize_bits = ilog2(sectorsize); 3404 fs_info->block_min_order = ilog2(round_up(sectorsize, PAGE_SIZE) >> PAGE_SHIFT); 3405 fs_info->block_max_order = ilog2((BITS_PER_LONG << fs_info->sectorsize_bits) >> PAGE_SHIFT); 3406 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size; 3407 fs_info->stripesize = stripesize; 3408 fs_info->fs_devices->fs_info = fs_info; 3409 3410 if (fs_info->sectorsize > PAGE_SIZE) 3411 btrfs_warn(fs_info, 3412 "support for block size %u with page size %lu is experimental, some features may be missing", 3413 fs_info->sectorsize, PAGE_SIZE); 3414 /* 3415 * Handle the space caching options appropriately now that we have the 3416 * super block loaded and validated. 3417 */ 3418 btrfs_set_free_space_cache_settings(fs_info); 3419 3420 if (!btrfs_check_options(fs_info, &fs_info->mount_opt, sb->s_flags)) { 3421 ret = -EINVAL; 3422 goto fail_alloc; 3423 } 3424 3425 ret = btrfs_check_features(fs_info, !sb_rdonly(sb)); 3426 if (ret < 0) 3427 goto fail_alloc; 3428 3429 if (btrfs_super_incompat_flags(disk_super) & BTRFS_FEATURE_INCOMPAT_REMAP_TREE) { 3430 remap_root = btrfs_alloc_root(fs_info, BTRFS_REMAP_TREE_OBJECTID, 3431 GFP_KERNEL); 3432 fs_info->remap_root = remap_root; 3433 if (!remap_root) { 3434 ret = -ENOMEM; 3435 goto fail_alloc; 3436 } 3437 } 3438 3439 /* 3440 * At this point our mount options are validated, if we set ->max_inline 3441 * to something non-standard make sure we truncate it to sectorsize. 3442 */ 3443 fs_info->max_inline = min_t(u64, fs_info->max_inline, fs_info->sectorsize); 3444 3445 ret = btrfs_alloc_compress_wsm(fs_info); 3446 if (ret) 3447 goto fail_sb_buffer; 3448 ret = btrfs_init_workqueues(fs_info); 3449 if (ret) 3450 goto fail_sb_buffer; 3451 3452 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 3453 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 3454 3455 /* Update the values for the current filesystem. */ 3456 sb->s_blocksize = sectorsize; 3457 sb->s_blocksize_bits = blksize_bits(sectorsize); 3458 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE); 3459 3460 mutex_lock(&fs_info->chunk_mutex); 3461 ret = btrfs_read_sys_array(fs_info); 3462 mutex_unlock(&fs_info->chunk_mutex); 3463 if (ret) { 3464 btrfs_err(fs_info, "failed to read the system array: %d", ret); 3465 goto fail_sb_buffer; 3466 } 3467 3468 generation = btrfs_super_chunk_root_generation(disk_super); 3469 level = btrfs_super_chunk_root_level(disk_super); 3470 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super), 3471 generation, level); 3472 if (ret) { 3473 btrfs_err(fs_info, "failed to read chunk root"); 3474 goto fail_tree_roots; 3475 } 3476 3477 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 3478 offsetof(struct btrfs_header, chunk_tree_uuid), 3479 BTRFS_UUID_SIZE); 3480 3481 ret = btrfs_read_chunk_tree(fs_info); 3482 if (ret) { 3483 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 3484 goto fail_tree_roots; 3485 } 3486 3487 /* 3488 * At this point we know all the devices that make this filesystem, 3489 * including the seed devices but we don't know yet if the replace 3490 * target is required. So free devices that are not part of this 3491 * filesystem but skip the replace target device which is checked 3492 * below in btrfs_init_dev_replace(). 3493 */ 3494 btrfs_free_extra_devids(fs_devices); 3495 if (unlikely(!fs_devices->latest_dev->bdev)) { 3496 btrfs_err(fs_info, "failed to read devices"); 3497 ret = -EIO; 3498 goto fail_tree_roots; 3499 } 3500 3501 ret = init_tree_roots(fs_info); 3502 if (ret) 3503 goto fail_tree_roots; 3504 3505 /* 3506 * Get zone type information of zoned block devices. This will also 3507 * handle emulation of a zoned filesystem if a regular device has the 3508 * zoned incompat feature flag set. 3509 */ 3510 ret = btrfs_get_dev_zone_info_all_devices(fs_info); 3511 if (ret) { 3512 btrfs_err(fs_info, 3513 "zoned: failed to read device zone info: %d", ret); 3514 goto fail_block_groups; 3515 } 3516 3517 /* 3518 * If we have a uuid root and we're not being told to rescan we need to 3519 * check the generation here so we can set the 3520 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the 3521 * transaction during a balance or the log replay without updating the 3522 * uuid generation, and then if we crash we would rescan the uuid tree, 3523 * even though it was perfectly fine. 3524 */ 3525 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) && 3526 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super)) 3527 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3528 3529 if (unlikely(btrfs_verify_dev_items(fs_info))) { 3530 ret = -EUCLEAN; 3531 goto fail_block_groups; 3532 } 3533 ret = btrfs_verify_dev_extents(fs_info); 3534 if (ret) { 3535 btrfs_err(fs_info, 3536 "failed to verify dev extents against chunks: %d", 3537 ret); 3538 goto fail_block_groups; 3539 } 3540 ret = btrfs_recover_balance(fs_info); 3541 if (ret) { 3542 btrfs_err(fs_info, "failed to recover balance: %d", ret); 3543 goto fail_block_groups; 3544 } 3545 3546 ret = btrfs_init_dev_stats(fs_info); 3547 if (ret) { 3548 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3549 goto fail_block_groups; 3550 } 3551 3552 ret = btrfs_init_dev_replace(fs_info); 3553 if (ret) { 3554 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3555 goto fail_block_groups; 3556 } 3557 3558 ret = btrfs_check_zoned_mode(fs_info); 3559 if (ret) { 3560 btrfs_err(fs_info, "failed to initialize zoned mode: %d", 3561 ret); 3562 goto fail_block_groups; 3563 } 3564 3565 ret = btrfs_sysfs_add_fsid(fs_devices); 3566 if (ret) { 3567 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3568 ret); 3569 goto fail_block_groups; 3570 } 3571 3572 ret = btrfs_sysfs_add_mounted(fs_info); 3573 if (ret) { 3574 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3575 goto fail_fsdev_sysfs; 3576 } 3577 3578 ret = btrfs_init_space_info(fs_info); 3579 if (ret) { 3580 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3581 goto fail_sysfs; 3582 } 3583 3584 ret = btrfs_read_block_groups(fs_info); 3585 if (ret) { 3586 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3587 goto fail_sysfs; 3588 } 3589 3590 if (btrfs_fs_incompat(fs_info, REMAP_TREE)) { 3591 ret = btrfs_populate_fully_remapped_bgs_list(fs_info); 3592 if (ret) { 3593 btrfs_err(fs_info, "failed to populate fully_remapped_bgs list: %d", ret); 3594 goto fail_sysfs; 3595 } 3596 } 3597 3598 btrfs_zoned_reserve_data_reloc_bg(fs_info); 3599 btrfs_free_zone_cache(fs_info); 3600 3601 btrfs_check_active_zone_reservation(fs_info); 3602 3603 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices && 3604 !btrfs_check_rw_degradable(fs_info, NULL)) { 3605 btrfs_warn(fs_info, 3606 "writable mount is not allowed due to too many missing devices"); 3607 ret = -EINVAL; 3608 goto fail_sysfs; 3609 } 3610 3611 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info, 3612 "btrfs-cleaner"); 3613 if (IS_ERR(fs_info->cleaner_kthread)) { 3614 ret = PTR_ERR(fs_info->cleaner_kthread); 3615 goto fail_sysfs; 3616 } 3617 3618 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3619 tree_root, 3620 "btrfs-transaction"); 3621 if (IS_ERR(fs_info->transaction_kthread)) { 3622 ret = PTR_ERR(fs_info->transaction_kthread); 3623 goto fail_cleaner; 3624 } 3625 3626 ret = btrfs_read_qgroup_config(fs_info); 3627 if (ret) 3628 goto fail_trans_kthread; 3629 3630 if (btrfs_build_ref_tree(fs_info)) 3631 btrfs_err(fs_info, "couldn't build ref tree"); 3632 3633 /* do not make disk changes in broken FS or nologreplay is given */ 3634 if (btrfs_super_log_root(disk_super) != 0 && 3635 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3636 btrfs_info(fs_info, "start tree-log replay"); 3637 ret = btrfs_replay_log(fs_info, fs_devices); 3638 if (ret) 3639 goto fail_qgroup; 3640 } 3641 3642 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true); 3643 if (IS_ERR(fs_info->fs_root)) { 3644 ret = PTR_ERR(fs_info->fs_root); 3645 btrfs_warn(fs_info, "failed to read fs tree: %d", ret); 3646 fs_info->fs_root = NULL; 3647 goto fail_qgroup; 3648 } 3649 3650 if (sb_rdonly(sb)) 3651 return 0; 3652 3653 ret = btrfs_start_pre_rw_mount(fs_info); 3654 if (ret) { 3655 close_ctree(fs_info); 3656 return ret; 3657 } 3658 btrfs_discard_resume(fs_info); 3659 3660 if (fs_info->uuid_root && 3661 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3662 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) { 3663 btrfs_info(fs_info, "checking UUID tree"); 3664 ret = btrfs_check_uuid_tree(fs_info); 3665 if (ret) { 3666 btrfs_warn(fs_info, 3667 "failed to check the UUID tree: %d", ret); 3668 close_ctree(fs_info); 3669 return ret; 3670 } 3671 } 3672 3673 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3674 3675 /* Kick the cleaner thread so it'll start deleting snapshots. */ 3676 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags)) 3677 wake_up_process(fs_info->cleaner_kthread); 3678 3679 return 0; 3680 3681 fail_qgroup: 3682 btrfs_free_qgroup_config(fs_info); 3683 fail_trans_kthread: 3684 kthread_stop(fs_info->transaction_kthread); 3685 btrfs_cleanup_transaction(fs_info); 3686 btrfs_free_fs_roots(fs_info); 3687 fail_cleaner: 3688 kthread_stop(fs_info->cleaner_kthread); 3689 3690 /* 3691 * make sure we're done with the btree inode before we stop our 3692 * kthreads 3693 */ 3694 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3695 3696 fail_sysfs: 3697 btrfs_sysfs_remove_mounted(fs_info); 3698 3699 fail_fsdev_sysfs: 3700 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3701 3702 fail_block_groups: 3703 btrfs_put_block_group_cache(fs_info); 3704 3705 fail_tree_roots: 3706 if (fs_info->data_reloc_root) 3707 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root); 3708 free_root_pointers(fs_info, true); 3709 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3710 3711 fail_sb_buffer: 3712 btrfs_stop_all_workers(fs_info); 3713 btrfs_free_block_groups(fs_info); 3714 fail_alloc: 3715 btrfs_mapping_tree_free(fs_info); 3716 3717 iput(fs_info->btree_inode); 3718 fail: 3719 ASSERT(ret < 0); 3720 return ret; 3721 } 3722 ALLOW_ERROR_INJECTION(open_ctree, ERRNO); 3723 3724 static void btrfs_end_super_write(struct bio *bio) 3725 { 3726 struct btrfs_device *device = bio->bi_private; 3727 struct folio_iter fi; 3728 3729 bio_for_each_folio_all(fi, bio) { 3730 if (bio->bi_status) { 3731 btrfs_warn_rl(device->fs_info, 3732 "lost super block write due to IO error on %s (%d)", 3733 btrfs_dev_name(device), 3734 blk_status_to_errno(bio->bi_status)); 3735 btrfs_dev_stat_inc_and_print(device, 3736 BTRFS_DEV_STAT_WRITE_ERRS); 3737 /* Ensure failure if the primary sb fails. */ 3738 if (bio->bi_opf & REQ_FUA) 3739 atomic_add(BTRFS_SUPER_PRIMARY_WRITE_ERROR, 3740 &device->sb_write_errors); 3741 else 3742 atomic_inc(&device->sb_write_errors); 3743 } 3744 folio_unlock(fi.folio); 3745 folio_put(fi.folio); 3746 } 3747 3748 bio_put(bio); 3749 } 3750 3751 /* 3752 * Write superblock @sb to the @device. Do not wait for completion, all the 3753 * folios we use for writing are locked. 3754 * 3755 * Write @max_mirrors copies of the superblock, where 0 means default that fit 3756 * the expected device size at commit time. Note that max_mirrors must be 3757 * same for write and wait phases. 3758 * 3759 * Return number of errors when folio is not found or submission fails. 3760 */ 3761 static int write_dev_supers(struct btrfs_device *device, 3762 struct btrfs_super_block *sb, int max_mirrors) 3763 { 3764 struct btrfs_fs_info *fs_info = device->fs_info; 3765 struct address_space *mapping = device->bdev->bd_mapping; 3766 int i; 3767 int ret; 3768 u64 bytenr, bytenr_orig; 3769 3770 atomic_set(&device->sb_write_errors, 0); 3771 3772 if (max_mirrors == 0) 3773 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3774 3775 for (i = 0; i < max_mirrors; i++) { 3776 struct folio *folio; 3777 struct bio *bio; 3778 struct btrfs_super_block *disk_super; 3779 size_t offset; 3780 3781 bytenr_orig = btrfs_sb_offset(i); 3782 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr); 3783 if (ret == -ENOENT) { 3784 continue; 3785 } else if (ret < 0) { 3786 btrfs_err(device->fs_info, 3787 "couldn't get super block location for mirror %d error %d", 3788 i, ret); 3789 atomic_inc(&device->sb_write_errors); 3790 continue; 3791 } 3792 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3793 device->commit_total_bytes) 3794 break; 3795 3796 btrfs_set_super_bytenr(sb, bytenr_orig); 3797 3798 btrfs_csum(fs_info->csum_type, (const u8 *)sb + BTRFS_CSUM_SIZE, 3799 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, sb->csum); 3800 3801 folio = __filemap_get_folio(mapping, bytenr >> PAGE_SHIFT, 3802 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, 3803 GFP_NOFS); 3804 if (IS_ERR(folio)) { 3805 btrfs_err(device->fs_info, 3806 "couldn't get super block page for bytenr %llu error %ld", 3807 bytenr, PTR_ERR(folio)); 3808 atomic_inc(&device->sb_write_errors); 3809 continue; 3810 } 3811 3812 offset = offset_in_folio(folio, bytenr); 3813 disk_super = folio_address(folio) + offset; 3814 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE); 3815 3816 /* 3817 * Directly use bios here instead of relying on the page cache 3818 * to do I/O, so we don't lose the ability to do integrity 3819 * checking. 3820 */ 3821 bio = bio_alloc(device->bdev, 1, 3822 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO, 3823 GFP_NOFS); 3824 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT; 3825 bio->bi_private = device; 3826 bio->bi_end_io = btrfs_end_super_write; 3827 bio_add_folio_nofail(bio, folio, BTRFS_SUPER_INFO_SIZE, offset); 3828 3829 /* 3830 * We FUA only the first super block. The others we allow to 3831 * go down lazy and there's a short window where the on-disk 3832 * copies might still contain the older version. 3833 */ 3834 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 3835 bio->bi_opf |= REQ_FUA; 3836 submit_bio(bio); 3837 3838 if (btrfs_advance_sb_log(device, i)) 3839 atomic_inc(&device->sb_write_errors); 3840 } 3841 return atomic_read(&device->sb_write_errors) < i ? 0 : -1; 3842 } 3843 3844 /* 3845 * Wait for write completion of superblocks done by write_dev_supers, 3846 * @max_mirrors same for write and wait phases. 3847 * 3848 * Return -1 if primary super block write failed or when there were no super block 3849 * copies written. Otherwise 0. 3850 */ 3851 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 3852 { 3853 int i; 3854 int errors = 0; 3855 bool primary_failed = false; 3856 int ret; 3857 u64 bytenr; 3858 3859 if (max_mirrors == 0) 3860 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3861 3862 for (i = 0; i < max_mirrors; i++) { 3863 struct folio *folio; 3864 3865 ret = btrfs_sb_log_location(device, i, READ, &bytenr); 3866 if (ret == -ENOENT) { 3867 break; 3868 } else if (ret < 0) { 3869 errors++; 3870 if (i == 0) 3871 primary_failed = true; 3872 continue; 3873 } 3874 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3875 device->commit_total_bytes) 3876 break; 3877 3878 folio = filemap_get_folio(device->bdev->bd_mapping, 3879 bytenr >> PAGE_SHIFT); 3880 /* If the folio has been removed, then we know it completed. */ 3881 if (IS_ERR(folio)) 3882 continue; 3883 3884 /* Folio will be unlocked once the write completes. */ 3885 folio_wait_locked(folio); 3886 folio_put(folio); 3887 } 3888 3889 errors += atomic_read(&device->sb_write_errors); 3890 if (errors >= BTRFS_SUPER_PRIMARY_WRITE_ERROR) 3891 primary_failed = true; 3892 if (primary_failed) { 3893 btrfs_err(device->fs_info, "error writing primary super block to device %llu", 3894 device->devid); 3895 return -1; 3896 } 3897 3898 return errors < i ? 0 : -1; 3899 } 3900 3901 /* 3902 * endio for the write_dev_flush, this will wake anyone waiting 3903 * for the barrier when it is done 3904 */ 3905 static void btrfs_end_empty_barrier(struct bio *bio) 3906 { 3907 bio_uninit(bio); 3908 complete(bio->bi_private); 3909 } 3910 3911 /* 3912 * Submit a flush request to the device if it supports it. Error handling is 3913 * done in the waiting counterpart. 3914 */ 3915 static void write_dev_flush(struct btrfs_device *device) 3916 { 3917 struct bio *bio = &device->flush_bio; 3918 3919 clear_bit(BTRFS_DEV_STATE_FLUSH_FAILED, &device->dev_state); 3920 3921 bio_init(bio, device->bdev, NULL, 0, 3922 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH); 3923 bio->bi_end_io = btrfs_end_empty_barrier; 3924 init_completion(&device->flush_wait); 3925 bio->bi_private = &device->flush_wait; 3926 submit_bio(bio); 3927 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3928 } 3929 3930 /* 3931 * If the flush bio has been submitted by write_dev_flush, wait for it. 3932 * Return true for any error, and false otherwise. 3933 */ 3934 static bool wait_dev_flush(struct btrfs_device *device) 3935 { 3936 struct bio *bio = &device->flush_bio; 3937 3938 if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) 3939 return false; 3940 3941 wait_for_completion_io(&device->flush_wait); 3942 3943 if (bio->bi_status) { 3944 set_bit(BTRFS_DEV_STATE_FLUSH_FAILED, &device->dev_state); 3945 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS); 3946 return true; 3947 } 3948 3949 return false; 3950 } 3951 3952 /* 3953 * send an empty flush down to each device in parallel, 3954 * then wait for them 3955 */ 3956 static int barrier_all_devices(struct btrfs_fs_info *info) 3957 { 3958 struct list_head *head; 3959 struct btrfs_device *dev; 3960 int errors_wait = 0; 3961 3962 lockdep_assert_held(&info->fs_devices->device_list_mutex); 3963 /* send down all the barriers */ 3964 head = &info->fs_devices->devices; 3965 list_for_each_entry(dev, head, dev_list) { 3966 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3967 continue; 3968 if (!dev->bdev) 3969 continue; 3970 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3971 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3972 continue; 3973 3974 write_dev_flush(dev); 3975 } 3976 3977 /* wait for all the barriers */ 3978 list_for_each_entry(dev, head, dev_list) { 3979 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3980 continue; 3981 if (!dev->bdev) { 3982 errors_wait++; 3983 continue; 3984 } 3985 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3986 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3987 continue; 3988 3989 if (wait_dev_flush(dev)) 3990 errors_wait++; 3991 } 3992 3993 /* 3994 * Checks flush failure of disks in order to determine the device 3995 * state. 3996 */ 3997 if (unlikely(errors_wait && !btrfs_check_rw_degradable(info, NULL))) 3998 return -EIO; 3999 4000 return 0; 4001 } 4002 4003 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 4004 { 4005 int raid_type; 4006 int min_tolerated = INT_MAX; 4007 4008 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 4009 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 4010 min_tolerated = min_t(int, min_tolerated, 4011 btrfs_raid_array[BTRFS_RAID_SINGLE]. 4012 tolerated_failures); 4013 4014 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 4015 if (raid_type == BTRFS_RAID_SINGLE) 4016 continue; 4017 if (!(flags & btrfs_raid_array[raid_type].bg_flag)) 4018 continue; 4019 min_tolerated = min_t(int, min_tolerated, 4020 btrfs_raid_array[raid_type]. 4021 tolerated_failures); 4022 } 4023 4024 if (min_tolerated == INT_MAX) { 4025 btrfs_warn(NULL, "unknown raid flag: %llu", flags); 4026 min_tolerated = 0; 4027 } 4028 4029 return min_tolerated; 4030 } 4031 4032 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 4033 { 4034 struct list_head *head; 4035 struct btrfs_device *dev; 4036 struct btrfs_super_block *sb; 4037 struct btrfs_dev_item *dev_item; 4038 int ret; 4039 int do_barriers; 4040 int max_errors; 4041 int total_errors = 0; 4042 u64 flags; 4043 4044 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 4045 4046 /* 4047 * max_mirrors == 0 indicates we're from commit_transaction, 4048 * not from fsync where the tree roots in fs_info have not 4049 * been consistent on disk. 4050 */ 4051 if (max_mirrors == 0) 4052 backup_super_roots(fs_info); 4053 4054 sb = fs_info->super_for_commit; 4055 dev_item = &sb->dev_item; 4056 4057 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4058 head = &fs_info->fs_devices->devices; 4059 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 4060 4061 if (do_barriers) { 4062 ret = barrier_all_devices(fs_info); 4063 if (ret) { 4064 mutex_unlock( 4065 &fs_info->fs_devices->device_list_mutex); 4066 btrfs_handle_fs_error(fs_info, ret, 4067 "errors while submitting device barriers."); 4068 return ret; 4069 } 4070 } 4071 4072 list_for_each_entry(dev, head, dev_list) { 4073 if (!dev->bdev) { 4074 total_errors++; 4075 continue; 4076 } 4077 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4078 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4079 continue; 4080 4081 btrfs_set_stack_device_generation(dev_item, 0); 4082 btrfs_set_stack_device_type(dev_item, dev->type); 4083 btrfs_set_stack_device_id(dev_item, dev->devid); 4084 btrfs_set_stack_device_total_bytes(dev_item, 4085 dev->commit_total_bytes); 4086 btrfs_set_stack_device_bytes_used(dev_item, 4087 dev->commit_bytes_used); 4088 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 4089 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 4090 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 4091 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 4092 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid, 4093 BTRFS_FSID_SIZE); 4094 4095 flags = btrfs_super_flags(sb); 4096 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 4097 4098 ret = btrfs_validate_write_super(fs_info, sb); 4099 if (unlikely(ret < 0)) { 4100 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4101 btrfs_handle_fs_error(fs_info, -EUCLEAN, 4102 "unexpected superblock corruption detected"); 4103 return -EUCLEAN; 4104 } 4105 4106 ret = write_dev_supers(dev, sb, max_mirrors); 4107 if (ret) 4108 total_errors++; 4109 } 4110 if (unlikely(total_errors > max_errors)) { 4111 btrfs_err(fs_info, "%d errors while writing supers", 4112 total_errors); 4113 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4114 4115 /* FUA is masked off if unsupported and can't be the reason */ 4116 btrfs_handle_fs_error(fs_info, -EIO, 4117 "%d errors while writing supers", 4118 total_errors); 4119 return -EIO; 4120 } 4121 4122 total_errors = 0; 4123 list_for_each_entry(dev, head, dev_list) { 4124 if (!dev->bdev) 4125 continue; 4126 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4127 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4128 continue; 4129 4130 ret = wait_dev_supers(dev, max_mirrors); 4131 if (ret) 4132 total_errors++; 4133 } 4134 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4135 if (unlikely(total_errors > max_errors)) { 4136 btrfs_handle_fs_error(fs_info, -EIO, 4137 "%d errors while writing supers", 4138 total_errors); 4139 return -EIO; 4140 } 4141 return 0; 4142 } 4143 4144 /* Drop a fs root from the radix tree and free it. */ 4145 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 4146 struct btrfs_root *root) 4147 { 4148 bool drop_ref = false; 4149 4150 spin_lock(&fs_info->fs_roots_radix_lock); 4151 radix_tree_delete(&fs_info->fs_roots_radix, 4152 (unsigned long)btrfs_root_id(root)); 4153 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 4154 drop_ref = true; 4155 spin_unlock(&fs_info->fs_roots_radix_lock); 4156 4157 if (BTRFS_FS_ERROR(fs_info)) { 4158 ASSERT(root->log_root == NULL); 4159 if (root->reloc_root) { 4160 btrfs_put_root(root->reloc_root); 4161 root->reloc_root = NULL; 4162 } 4163 } 4164 4165 if (drop_ref) 4166 btrfs_put_root(root); 4167 } 4168 4169 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 4170 { 4171 mutex_lock(&fs_info->cleaner_mutex); 4172 btrfs_run_delayed_iputs(fs_info); 4173 mutex_unlock(&fs_info->cleaner_mutex); 4174 wake_up_process(fs_info->cleaner_kthread); 4175 4176 /* wait until ongoing cleanup work done */ 4177 down_write(&fs_info->cleanup_work_sem); 4178 up_write(&fs_info->cleanup_work_sem); 4179 4180 return btrfs_commit_current_transaction(fs_info->tree_root); 4181 } 4182 4183 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info) 4184 { 4185 struct btrfs_transaction *trans; 4186 struct btrfs_transaction *tmp; 4187 bool found = false; 4188 4189 /* 4190 * This function is only called at the very end of close_ctree(), 4191 * thus no other running transaction, no need to take trans_lock. 4192 */ 4193 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags)); 4194 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) { 4195 struct extent_state *cached = NULL; 4196 u64 dirty_bytes = 0; 4197 u64 cur = 0; 4198 u64 found_start; 4199 u64 found_end; 4200 4201 found = true; 4202 while (btrfs_find_first_extent_bit(&trans->dirty_pages, cur, 4203 &found_start, &found_end, 4204 EXTENT_DIRTY, &cached)) { 4205 dirty_bytes += found_end + 1 - found_start; 4206 cur = found_end + 1; 4207 } 4208 btrfs_warn(fs_info, 4209 "transaction %llu (with %llu dirty metadata bytes) is not committed", 4210 trans->transid, dirty_bytes); 4211 btrfs_cleanup_one_transaction(trans); 4212 4213 if (trans == fs_info->running_transaction) 4214 fs_info->running_transaction = NULL; 4215 list_del_init(&trans->list); 4216 4217 btrfs_put_transaction(trans); 4218 trace_btrfs_transaction_commit(fs_info); 4219 } 4220 ASSERT(!found); 4221 } 4222 4223 void __cold close_ctree(struct btrfs_fs_info *fs_info) 4224 { 4225 int ret; 4226 4227 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 4228 4229 /* 4230 * If we had UNFINISHED_DROPS we could still be processing them, so 4231 * clear that bit and wake up relocation so it can stop. 4232 * We must do this before stopping the block group reclaim task, because 4233 * at btrfs_relocate_block_group() we wait for this bit, and after the 4234 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we 4235 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will 4236 * return 1. 4237 */ 4238 btrfs_wake_unfinished_drop(fs_info); 4239 4240 /* 4241 * We may have the reclaim task running and relocating a data block group, 4242 * in which case it may create delayed iputs. So stop it before we park 4243 * the cleaner kthread otherwise we can get new delayed iputs after 4244 * parking the cleaner, and that can make the async reclaim task to hang 4245 * if it's waiting for delayed iputs to complete, since the cleaner is 4246 * parked and can not run delayed iputs - this will make us hang when 4247 * trying to stop the async reclaim task. 4248 */ 4249 cancel_work_sync(&fs_info->reclaim_bgs_work); 4250 /* 4251 * We don't want the cleaner to start new transactions, add more delayed 4252 * iputs, etc. while we're closing. We can't use kthread_stop() yet 4253 * because that frees the task_struct, and the transaction kthread might 4254 * still try to wake up the cleaner. 4255 */ 4256 kthread_park(fs_info->cleaner_kthread); 4257 4258 /* wait for the qgroup rescan worker to stop */ 4259 btrfs_qgroup_wait_for_completion(fs_info, false); 4260 4261 /* wait for the uuid_scan task to finish */ 4262 down(&fs_info->uuid_tree_rescan_sem); 4263 /* avoid complains from lockdep et al., set sem back to initial state */ 4264 up(&fs_info->uuid_tree_rescan_sem); 4265 4266 /* pause restriper - we want to resume on mount */ 4267 btrfs_pause_balance(fs_info); 4268 4269 btrfs_dev_replace_suspend_for_unmount(fs_info); 4270 4271 btrfs_scrub_cancel(fs_info); 4272 4273 /* wait for any defraggers to finish */ 4274 wait_event(fs_info->transaction_wait, 4275 (atomic_read(&fs_info->defrag_running) == 0)); 4276 4277 /* clear out the rbtree of defraggable inodes */ 4278 btrfs_cleanup_defrag_inodes(fs_info); 4279 4280 /* 4281 * Handle the error fs first, as it will flush and wait for all ordered 4282 * extents. This will generate delayed iputs, thus we want to handle 4283 * it first. 4284 */ 4285 if (unlikely(BTRFS_FS_ERROR(fs_info))) 4286 btrfs_error_commit_super(fs_info); 4287 4288 /* 4289 * Wait for any fixup workers to complete. 4290 * If we don't wait for them here and they are still running by the time 4291 * we call kthread_stop() against the cleaner kthread further below, we 4292 * get an use-after-free on the cleaner because the fixup worker adds an 4293 * inode to the list of delayed iputs and then attempts to wakeup the 4294 * cleaner kthread, which was already stopped and destroyed. We parked 4295 * already the cleaner, but below we run all pending delayed iputs. 4296 */ 4297 btrfs_flush_workqueue(fs_info->fixup_workers); 4298 /* 4299 * Similar case here, we have to wait for delalloc workers before we 4300 * proceed below and stop the cleaner kthread, otherwise we trigger a 4301 * use-after-tree on the cleaner kthread task_struct when a delalloc 4302 * worker running submit_compressed_extents() adds a delayed iput, which 4303 * does a wake up on the cleaner kthread, which was already freed below 4304 * when we call kthread_stop(). 4305 */ 4306 btrfs_flush_workqueue(fs_info->delalloc_workers); 4307 4308 /* 4309 * We can have ordered extents getting their last reference dropped from 4310 * the fs_info->workers queue because for async writes for data bios we 4311 * queue a work for that queue, at btrfs_wq_submit_bio(), that runs 4312 * run_one_async_done() which calls btrfs_bio_end_io() in case the bio 4313 * has an error, and that later function can do the final 4314 * btrfs_put_ordered_extent() on the ordered extent attached to the bio, 4315 * which adds a delayed iput for the inode. So we must flush the queue 4316 * so that we don't have delayed iputs after committing the current 4317 * transaction below and stopping the cleaner and transaction kthreads. 4318 */ 4319 btrfs_flush_workqueue(fs_info->workers); 4320 4321 /* 4322 * When finishing a compressed write bio we schedule a work queue item 4323 * to finish an ordered extent - end_bbio_compressed_write() 4324 * calls btrfs_finish_ordered_extent() which in turns does a call to 4325 * btrfs_queue_ordered_fn(), and that queues the ordered extent 4326 * completion either in the endio_write_workers work queue or in the 4327 * fs_info->endio_freespace_worker work queue. We flush those queues 4328 * below, so before we flush them we must flush this queue for the 4329 * workers of compressed writes. 4330 */ 4331 flush_workqueue(fs_info->endio_workers); 4332 4333 /* 4334 * After we parked the cleaner kthread, ordered extents may have 4335 * completed and created new delayed iputs. If one of the async reclaim 4336 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we 4337 * can hang forever trying to stop it, because if a delayed iput is 4338 * added after it ran btrfs_run_delayed_iputs() and before it called 4339 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is 4340 * no one else to run iputs. 4341 * 4342 * So wait for all ongoing ordered extents to complete and then run 4343 * delayed iputs. This works because once we reach this point no one 4344 * can create new ordered extents, but delayed iputs can still be added 4345 * by a reclaim worker (see comments further below). 4346 * 4347 * Also note that btrfs_wait_ordered_roots() is not safe here, because 4348 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent, 4349 * but the delayed iput for the respective inode is made only when doing 4350 * the final btrfs_put_ordered_extent() (which must happen at 4351 * btrfs_finish_ordered_io() when we are unmounting). 4352 */ 4353 btrfs_flush_workqueue(fs_info->endio_write_workers); 4354 /* Ordered extents for free space inodes. */ 4355 btrfs_flush_workqueue(fs_info->endio_freespace_worker); 4356 /* 4357 * Run delayed iputs in case an async reclaim worker is waiting for them 4358 * to be run as mentioned above. 4359 */ 4360 btrfs_run_delayed_iputs(fs_info); 4361 4362 cancel_work_sync(&fs_info->async_reclaim_work); 4363 cancel_work_sync(&fs_info->async_data_reclaim_work); 4364 cancel_work_sync(&fs_info->preempt_reclaim_work); 4365 cancel_work_sync(&fs_info->em_shrinker_work); 4366 4367 /* 4368 * Run delayed iputs again because an async reclaim worker may have 4369 * added new ones if it was flushing delalloc: 4370 * 4371 * shrink_delalloc() -> btrfs_start_delalloc_roots() -> 4372 * start_delalloc_inodes() -> btrfs_add_delayed_iput() 4373 */ 4374 btrfs_run_delayed_iputs(fs_info); 4375 4376 /* There should be no more workload to generate new delayed iputs. */ 4377 set_bit(BTRFS_FS_STATE_NO_DELAYED_IPUT, &fs_info->fs_state); 4378 4379 /* Cancel or finish ongoing discard work */ 4380 btrfs_discard_cleanup(fs_info); 4381 4382 if (!sb_rdonly(fs_info->sb)) { 4383 /* 4384 * The cleaner kthread is stopped, so do one final pass over 4385 * unused block groups. 4386 */ 4387 btrfs_delete_unused_bgs(fs_info); 4388 4389 /* 4390 * There might be existing delayed inode workers still running 4391 * and holding an empty delayed inode item. We must wait for 4392 * them to complete first because they can create a transaction. 4393 * This happens when someone calls btrfs_balance_delayed_items() 4394 * and then a transaction commit runs the same delayed nodes 4395 * before any delayed worker has done something with the nodes. 4396 * We must wait for any worker here and not at transaction 4397 * commit time since that could cause a deadlock. 4398 * This is a very rare case. 4399 */ 4400 btrfs_flush_workqueue(fs_info->delayed_workers); 4401 4402 ret = btrfs_commit_super(fs_info); 4403 if (ret) 4404 btrfs_err(fs_info, "commit super ret %d", ret); 4405 } 4406 4407 kthread_stop(fs_info->transaction_kthread); 4408 kthread_stop(fs_info->cleaner_kthread); 4409 4410 ASSERT(list_empty(&fs_info->delayed_iputs)); 4411 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 4412 4413 if (btrfs_check_quota_leak(fs_info)) { 4414 DEBUG_WARN("qgroup reserved space leaked"); 4415 btrfs_err(fs_info, "qgroup reserved space leaked"); 4416 } 4417 4418 btrfs_free_qgroup_config(fs_info); 4419 ASSERT(list_empty(&fs_info->delalloc_roots)); 4420 4421 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 4422 btrfs_info(fs_info, "at unmount delalloc count %lld", 4423 percpu_counter_sum(&fs_info->delalloc_bytes)); 4424 } 4425 4426 if (percpu_counter_sum(&fs_info->ordered_bytes)) 4427 btrfs_info(fs_info, "at unmount dio bytes count %lld", 4428 percpu_counter_sum(&fs_info->ordered_bytes)); 4429 4430 btrfs_sysfs_remove_mounted(fs_info); 4431 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 4432 4433 btrfs_put_block_group_cache(fs_info); 4434 4435 /* 4436 * we must make sure there is not any read request to 4437 * submit after we stopping all workers. 4438 */ 4439 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 4440 btrfs_stop_all_workers(fs_info); 4441 4442 /* We shouldn't have any transaction open at this point */ 4443 warn_about_uncommitted_trans(fs_info); 4444 4445 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 4446 free_root_pointers(fs_info, true); 4447 btrfs_free_fs_roots(fs_info); 4448 4449 /* 4450 * We must free the block groups after dropping the fs_roots as we could 4451 * have had an IO error and have left over tree log blocks that aren't 4452 * cleaned up until the fs roots are freed. This makes the block group 4453 * accounting appear to be wrong because there's pending reserved bytes, 4454 * so make sure we do the block group cleanup afterwards. 4455 */ 4456 btrfs_free_block_groups(fs_info); 4457 4458 iput(fs_info->btree_inode); 4459 4460 btrfs_mapping_tree_free(fs_info); 4461 } 4462 4463 void btrfs_mark_buffer_dirty(struct btrfs_trans_handle *trans, 4464 struct extent_buffer *buf) 4465 { 4466 struct btrfs_fs_info *fs_info = buf->fs_info; 4467 u64 transid = btrfs_header_generation(buf); 4468 4469 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4470 /* 4471 * This is a fast path so only do this check if we have sanity tests 4472 * enabled. Normal people shouldn't be using unmapped buffers as dirty 4473 * outside of the sanity tests. 4474 */ 4475 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) 4476 return; 4477 #endif 4478 /* This is an active transaction (its state < TRANS_STATE_UNBLOCKED). */ 4479 ASSERT(trans->transid == fs_info->generation); 4480 btrfs_assert_tree_write_locked(buf); 4481 if (unlikely(transid != fs_info->generation)) { 4482 btrfs_abort_transaction(trans, -EUCLEAN); 4483 btrfs_crit(fs_info, 4484 "dirty buffer transid mismatch, logical %llu found transid %llu running transid %llu", 4485 buf->start, transid, fs_info->generation); 4486 } 4487 set_extent_buffer_dirty(buf); 4488 } 4489 4490 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4491 int flush_delayed) 4492 { 4493 /* 4494 * looks as though older kernels can get into trouble with 4495 * this code, they end up stuck in balance_dirty_pages forever 4496 */ 4497 int ret; 4498 4499 if (current->flags & PF_MEMALLOC) 4500 return; 4501 4502 if (flush_delayed) 4503 btrfs_balance_delayed_items(fs_info); 4504 4505 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4506 BTRFS_DIRTY_METADATA_THRESH, 4507 fs_info->dirty_metadata_batch); 4508 if (ret > 0) { 4509 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4510 } 4511 } 4512 4513 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4514 { 4515 __btrfs_btree_balance_dirty(fs_info, 1); 4516 } 4517 4518 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4519 { 4520 __btrfs_btree_balance_dirty(fs_info, 0); 4521 } 4522 4523 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4524 { 4525 /* cleanup FS via transaction */ 4526 btrfs_cleanup_transaction(fs_info); 4527 4528 down_write(&fs_info->cleanup_work_sem); 4529 up_write(&fs_info->cleanup_work_sem); 4530 } 4531 4532 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info) 4533 { 4534 struct btrfs_root *gang[8]; 4535 u64 root_objectid = 0; 4536 int ret; 4537 4538 spin_lock(&fs_info->fs_roots_radix_lock); 4539 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4540 (void **)gang, root_objectid, 4541 ARRAY_SIZE(gang))) != 0) { 4542 int i; 4543 4544 for (i = 0; i < ret; i++) 4545 gang[i] = btrfs_grab_root(gang[i]); 4546 spin_unlock(&fs_info->fs_roots_radix_lock); 4547 4548 for (i = 0; i < ret; i++) { 4549 if (!gang[i]) 4550 continue; 4551 root_objectid = btrfs_root_id(gang[i]); 4552 btrfs_free_log(NULL, gang[i]); 4553 btrfs_put_root(gang[i]); 4554 } 4555 root_objectid++; 4556 spin_lock(&fs_info->fs_roots_radix_lock); 4557 } 4558 spin_unlock(&fs_info->fs_roots_radix_lock); 4559 btrfs_free_log_root_tree(NULL, fs_info); 4560 } 4561 4562 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4563 { 4564 struct btrfs_ordered_extent *ordered; 4565 4566 spin_lock(&root->ordered_extent_lock); 4567 /* 4568 * This will just short circuit the ordered completion stuff which will 4569 * make sure the ordered extent gets properly cleaned up. 4570 */ 4571 list_for_each_entry(ordered, &root->ordered_extents, 4572 root_extent_list) 4573 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4574 spin_unlock(&root->ordered_extent_lock); 4575 } 4576 4577 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4578 { 4579 struct btrfs_root *root; 4580 LIST_HEAD(splice); 4581 4582 spin_lock(&fs_info->ordered_root_lock); 4583 list_splice_init(&fs_info->ordered_roots, &splice); 4584 while (!list_empty(&splice)) { 4585 root = list_first_entry(&splice, struct btrfs_root, 4586 ordered_root); 4587 list_move_tail(&root->ordered_root, 4588 &fs_info->ordered_roots); 4589 4590 spin_unlock(&fs_info->ordered_root_lock); 4591 btrfs_destroy_ordered_extents(root); 4592 4593 cond_resched(); 4594 spin_lock(&fs_info->ordered_root_lock); 4595 } 4596 spin_unlock(&fs_info->ordered_root_lock); 4597 4598 /* 4599 * We need this here because if we've been flipped read-only we won't 4600 * get sync() from the umount, so we need to make sure any ordered 4601 * extents that haven't had their dirty pages IO start writeout yet 4602 * actually get run and error out properly. 4603 */ 4604 btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL); 4605 } 4606 4607 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4608 { 4609 struct btrfs_inode *btrfs_inode; 4610 LIST_HEAD(splice); 4611 4612 spin_lock(&root->delalloc_lock); 4613 list_splice_init(&root->delalloc_inodes, &splice); 4614 4615 while (!list_empty(&splice)) { 4616 struct inode *inode = NULL; 4617 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4618 delalloc_inodes); 4619 btrfs_del_delalloc_inode(btrfs_inode); 4620 spin_unlock(&root->delalloc_lock); 4621 4622 /* 4623 * Make sure we get a live inode and that it'll not disappear 4624 * meanwhile. 4625 */ 4626 inode = igrab(&btrfs_inode->vfs_inode); 4627 if (inode) { 4628 unsigned int nofs_flag; 4629 4630 nofs_flag = memalloc_nofs_save(); 4631 invalidate_inode_pages2(inode->i_mapping); 4632 memalloc_nofs_restore(nofs_flag); 4633 iput(inode); 4634 } 4635 spin_lock(&root->delalloc_lock); 4636 } 4637 spin_unlock(&root->delalloc_lock); 4638 } 4639 4640 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4641 { 4642 struct btrfs_root *root; 4643 LIST_HEAD(splice); 4644 4645 spin_lock(&fs_info->delalloc_root_lock); 4646 list_splice_init(&fs_info->delalloc_roots, &splice); 4647 while (!list_empty(&splice)) { 4648 root = list_first_entry(&splice, struct btrfs_root, 4649 delalloc_root); 4650 root = btrfs_grab_root(root); 4651 BUG_ON(!root); 4652 spin_unlock(&fs_info->delalloc_root_lock); 4653 4654 btrfs_destroy_delalloc_inodes(root); 4655 btrfs_put_root(root); 4656 4657 spin_lock(&fs_info->delalloc_root_lock); 4658 } 4659 spin_unlock(&fs_info->delalloc_root_lock); 4660 } 4661 4662 static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 4663 struct extent_io_tree *dirty_pages, 4664 int mark) 4665 { 4666 struct extent_buffer *eb; 4667 u64 start = 0; 4668 u64 end; 4669 4670 while (btrfs_find_first_extent_bit(dirty_pages, start, &start, &end, 4671 mark, NULL)) { 4672 btrfs_clear_extent_bit(dirty_pages, start, end, mark, NULL); 4673 while (start <= end) { 4674 eb = find_extent_buffer(fs_info, start); 4675 start += fs_info->nodesize; 4676 if (!eb) 4677 continue; 4678 4679 btrfs_tree_lock(eb); 4680 wait_on_extent_buffer_writeback(eb); 4681 btrfs_clear_buffer_dirty(NULL, eb); 4682 btrfs_tree_unlock(eb); 4683 4684 free_extent_buffer_stale(eb); 4685 } 4686 } 4687 } 4688 4689 static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 4690 struct extent_io_tree *unpin) 4691 { 4692 u64 start; 4693 u64 end; 4694 4695 while (1) { 4696 struct extent_state *cached_state = NULL; 4697 4698 /* 4699 * The btrfs_finish_extent_commit() may get the same range as 4700 * ours between find_first_extent_bit and clear_extent_dirty. 4701 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin 4702 * the same extent range. 4703 */ 4704 mutex_lock(&fs_info->unused_bg_unpin_mutex); 4705 if (!btrfs_find_first_extent_bit(unpin, 0, &start, &end, 4706 EXTENT_DIRTY, &cached_state)) { 4707 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4708 break; 4709 } 4710 4711 btrfs_clear_extent_dirty(unpin, start, end, &cached_state); 4712 btrfs_free_extent_state(cached_state); 4713 btrfs_error_unpin_extent_range(fs_info, start, end); 4714 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4715 cond_resched(); 4716 } 4717 } 4718 4719 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache) 4720 { 4721 struct inode *inode; 4722 4723 inode = cache->io_ctl.inode; 4724 if (inode) { 4725 unsigned int nofs_flag; 4726 4727 nofs_flag = memalloc_nofs_save(); 4728 invalidate_inode_pages2(inode->i_mapping); 4729 memalloc_nofs_restore(nofs_flag); 4730 4731 BTRFS_I(inode)->generation = 0; 4732 cache->io_ctl.inode = NULL; 4733 iput(inode); 4734 } 4735 ASSERT(cache->io_ctl.pages == NULL); 4736 btrfs_put_block_group(cache); 4737 } 4738 4739 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 4740 struct btrfs_fs_info *fs_info) 4741 { 4742 struct btrfs_block_group *cache; 4743 4744 spin_lock(&cur_trans->dirty_bgs_lock); 4745 while (!list_empty(&cur_trans->dirty_bgs)) { 4746 cache = list_first_entry(&cur_trans->dirty_bgs, 4747 struct btrfs_block_group, 4748 dirty_list); 4749 4750 if (!list_empty(&cache->io_list)) { 4751 spin_unlock(&cur_trans->dirty_bgs_lock); 4752 list_del_init(&cache->io_list); 4753 btrfs_cleanup_bg_io(cache); 4754 spin_lock(&cur_trans->dirty_bgs_lock); 4755 } 4756 4757 list_del_init(&cache->dirty_list); 4758 spin_lock(&cache->lock); 4759 cache->disk_cache_state = BTRFS_DC_ERROR; 4760 spin_unlock(&cache->lock); 4761 4762 spin_unlock(&cur_trans->dirty_bgs_lock); 4763 btrfs_put_block_group(cache); 4764 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info); 4765 spin_lock(&cur_trans->dirty_bgs_lock); 4766 } 4767 spin_unlock(&cur_trans->dirty_bgs_lock); 4768 4769 /* 4770 * Refer to the definition of io_bgs member for details why it's safe 4771 * to use it without any locking 4772 */ 4773 while (!list_empty(&cur_trans->io_bgs)) { 4774 cache = list_first_entry(&cur_trans->io_bgs, 4775 struct btrfs_block_group, 4776 io_list); 4777 4778 list_del_init(&cache->io_list); 4779 spin_lock(&cache->lock); 4780 cache->disk_cache_state = BTRFS_DC_ERROR; 4781 spin_unlock(&cache->lock); 4782 btrfs_cleanup_bg_io(cache); 4783 } 4784 } 4785 4786 static void btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info *fs_info) 4787 { 4788 struct btrfs_root *gang[8]; 4789 int i; 4790 int ret; 4791 4792 spin_lock(&fs_info->fs_roots_radix_lock); 4793 while (1) { 4794 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 4795 (void **)gang, 0, 4796 ARRAY_SIZE(gang), 4797 BTRFS_ROOT_TRANS_TAG); 4798 if (ret == 0) 4799 break; 4800 for (i = 0; i < ret; i++) { 4801 struct btrfs_root *root = gang[i]; 4802 4803 btrfs_qgroup_free_meta_all_pertrans(root); 4804 radix_tree_tag_clear(&fs_info->fs_roots_radix, 4805 (unsigned long)btrfs_root_id(root), 4806 BTRFS_ROOT_TRANS_TAG); 4807 } 4808 } 4809 spin_unlock(&fs_info->fs_roots_radix_lock); 4810 } 4811 4812 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans) 4813 { 4814 struct btrfs_fs_info *fs_info = cur_trans->fs_info; 4815 struct btrfs_device *dev, *tmp; 4816 4817 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 4818 ASSERT(list_empty(&cur_trans->dirty_bgs)); 4819 ASSERT(list_empty(&cur_trans->io_bgs)); 4820 4821 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list, 4822 post_commit_list) { 4823 list_del_init(&dev->post_commit_list); 4824 } 4825 4826 btrfs_destroy_delayed_refs(cur_trans); 4827 4828 cur_trans->state = TRANS_STATE_COMMIT_START; 4829 wake_up(&fs_info->transaction_blocked_wait); 4830 4831 cur_trans->state = TRANS_STATE_UNBLOCKED; 4832 wake_up(&fs_info->transaction_wait); 4833 4834 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 4835 EXTENT_DIRTY); 4836 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents); 4837 4838 cur_trans->state =TRANS_STATE_COMPLETED; 4839 wake_up(&cur_trans->commit_wait); 4840 } 4841 4842 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 4843 { 4844 struct btrfs_transaction *t; 4845 4846 mutex_lock(&fs_info->transaction_kthread_mutex); 4847 4848 spin_lock(&fs_info->trans_lock); 4849 while (!list_empty(&fs_info->trans_list)) { 4850 t = list_first_entry(&fs_info->trans_list, 4851 struct btrfs_transaction, list); 4852 if (t->state >= TRANS_STATE_COMMIT_PREP) { 4853 refcount_inc(&t->use_count); 4854 spin_unlock(&fs_info->trans_lock); 4855 btrfs_wait_for_commit(fs_info, t->transid); 4856 btrfs_put_transaction(t); 4857 spin_lock(&fs_info->trans_lock); 4858 continue; 4859 } 4860 if (t == fs_info->running_transaction) { 4861 t->state = TRANS_STATE_COMMIT_DOING; 4862 spin_unlock(&fs_info->trans_lock); 4863 /* 4864 * We wait for 0 num_writers since we don't hold a trans 4865 * handle open currently for this transaction. 4866 */ 4867 wait_event(t->writer_wait, 4868 atomic_read(&t->num_writers) == 0); 4869 } else { 4870 spin_unlock(&fs_info->trans_lock); 4871 } 4872 btrfs_cleanup_one_transaction(t); 4873 4874 spin_lock(&fs_info->trans_lock); 4875 if (t == fs_info->running_transaction) 4876 fs_info->running_transaction = NULL; 4877 list_del_init(&t->list); 4878 spin_unlock(&fs_info->trans_lock); 4879 4880 btrfs_put_transaction(t); 4881 trace_btrfs_transaction_commit(fs_info); 4882 spin_lock(&fs_info->trans_lock); 4883 } 4884 spin_unlock(&fs_info->trans_lock); 4885 btrfs_destroy_all_ordered_extents(fs_info); 4886 btrfs_destroy_delayed_inodes(fs_info); 4887 btrfs_assert_delayed_root_empty(fs_info); 4888 btrfs_destroy_all_delalloc_inodes(fs_info); 4889 btrfs_drop_all_logs(fs_info); 4890 btrfs_free_all_qgroup_pertrans(fs_info); 4891 mutex_unlock(&fs_info->transaction_kthread_mutex); 4892 4893 return 0; 4894 } 4895 4896 int btrfs_init_root_free_objectid(struct btrfs_root *root) 4897 { 4898 BTRFS_PATH_AUTO_FREE(path); 4899 int ret; 4900 struct extent_buffer *l; 4901 struct btrfs_key search_key; 4902 struct btrfs_key found_key; 4903 int slot; 4904 4905 path = btrfs_alloc_path(); 4906 if (!path) 4907 return -ENOMEM; 4908 4909 search_key.objectid = BTRFS_LAST_FREE_OBJECTID; 4910 search_key.type = -1; 4911 search_key.offset = (u64)-1; 4912 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 4913 if (ret < 0) 4914 return ret; 4915 if (unlikely(ret == 0)) { 4916 /* 4917 * Key with offset -1 found, there would have to exist a root 4918 * with such id, but this is out of valid range. 4919 */ 4920 return -EUCLEAN; 4921 } 4922 if (path->slots[0] > 0) { 4923 slot = path->slots[0] - 1; 4924 l = path->nodes[0]; 4925 btrfs_item_key_to_cpu(l, &found_key, slot); 4926 root->free_objectid = max_t(u64, found_key.objectid + 1, 4927 BTRFS_FIRST_FREE_OBJECTID); 4928 } else { 4929 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID; 4930 } 4931 4932 return 0; 4933 } 4934 4935 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid) 4936 { 4937 int ret; 4938 mutex_lock(&root->objectid_mutex); 4939 4940 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) { 4941 btrfs_warn(root->fs_info, 4942 "the objectid of root %llu reaches its highest value", 4943 btrfs_root_id(root)); 4944 ret = -ENOSPC; 4945 goto out; 4946 } 4947 4948 *objectid = root->free_objectid++; 4949 ret = 0; 4950 out: 4951 mutex_unlock(&root->objectid_mutex); 4952 return ret; 4953 } 4954