1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/blk-cgroup.h> 9 #include <linux/file.h> 10 #include <linux/filelock.h> 11 #include <linux/fs.h> 12 #include <linux/fs_struct.h> 13 #include <linux/pagemap.h> 14 #include <linux/highmem.h> 15 #include <linux/time.h> 16 #include <linux/init.h> 17 #include <linux/string.h> 18 #include <linux/backing-dev.h> 19 #include <linux/writeback.h> 20 #include <linux/compat.h> 21 #include <linux/xattr.h> 22 #include <linux/posix_acl.h> 23 #include <linux/falloc.h> 24 #include <linux/slab.h> 25 #include <linux/ratelimit.h> 26 #include <linux/btrfs.h> 27 #include <linux/blkdev.h> 28 #include <linux/posix_acl_xattr.h> 29 #include <linux/uio.h> 30 #include <linux/magic.h> 31 #include <linux/iversion.h> 32 #include <linux/swap.h> 33 #include <linux/migrate.h> 34 #include <linux/sched/mm.h> 35 #include <linux/iomap.h> 36 #include <linux/unaligned.h> 37 #include <linux/fsverity.h> 38 #include "misc.h" 39 #include "ctree.h" 40 #include "disk-io.h" 41 #include "transaction.h" 42 #include "btrfs_inode.h" 43 #include "ordered-data.h" 44 #include "xattr.h" 45 #include "tree-log.h" 46 #include "bio.h" 47 #include "compression.h" 48 #include "locking.h" 49 #include "props.h" 50 #include "qgroup.h" 51 #include "delalloc-space.h" 52 #include "block-group.h" 53 #include "space-info.h" 54 #include "zoned.h" 55 #include "subpage.h" 56 #include "inode-item.h" 57 #include "fs.h" 58 #include "accessors.h" 59 #include "extent-tree.h" 60 #include "root-tree.h" 61 #include "defrag.h" 62 #include "dir-item.h" 63 #include "file-item.h" 64 #include "uuid-tree.h" 65 #include "ioctl.h" 66 #include "file.h" 67 #include "acl.h" 68 #include "relocation.h" 69 #include "verity.h" 70 #include "super.h" 71 #include "orphan.h" 72 #include "backref.h" 73 #include "raid-stripe-tree.h" 74 #include "fiemap.h" 75 #include "delayed-inode.h" 76 77 #define COW_FILE_RANGE_KEEP_LOCKED (1UL << 0) 78 #define COW_FILE_RANGE_NO_INLINE (1UL << 1) 79 80 struct btrfs_iget_args { 81 u64 ino; 82 struct btrfs_root *root; 83 }; 84 85 struct btrfs_rename_ctx { 86 /* Output field. Stores the index number of the old directory entry. */ 87 u64 index; 88 }; 89 90 /* 91 * Used by data_reloc_print_warning_inode() to pass needed info for filename 92 * resolution and output of error message. 93 */ 94 struct data_reloc_warn { 95 struct btrfs_path path; 96 struct btrfs_fs_info *fs_info; 97 u64 extent_item_size; 98 u64 logical; 99 int mirror_num; 100 }; 101 102 /* 103 * For the file_extent_tree, we want to hold the inode lock when we lookup and 104 * update the disk_i_size, but lockdep will complain because our io_tree we hold 105 * the tree lock and get the inode lock when setting delalloc. These two things 106 * are unrelated, so make a class for the file_extent_tree so we don't get the 107 * two locking patterns mixed up. 108 */ 109 static struct lock_class_key file_extent_tree_class; 110 111 static const struct inode_operations btrfs_dir_inode_operations; 112 static const struct inode_operations btrfs_symlink_inode_operations; 113 static const struct inode_operations btrfs_special_inode_operations; 114 static const struct inode_operations btrfs_file_inode_operations; 115 static const struct address_space_operations btrfs_aops; 116 static const struct file_operations btrfs_dir_file_operations; 117 118 static struct kmem_cache *btrfs_inode_cachep; 119 120 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 121 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback); 122 123 static noinline int run_delalloc_cow(struct btrfs_inode *inode, 124 struct folio *locked_folio, u64 start, 125 u64 end, struct writeback_control *wbc, 126 bool pages_dirty); 127 128 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes, 129 u64 root, void *warn_ctx) 130 { 131 struct data_reloc_warn *warn = warn_ctx; 132 struct btrfs_fs_info *fs_info = warn->fs_info; 133 struct extent_buffer *eb; 134 struct btrfs_inode_item *inode_item; 135 struct inode_fs_paths *ipath __free(inode_fs_paths) = NULL; 136 struct btrfs_root *local_root; 137 struct btrfs_key key; 138 unsigned int nofs_flag; 139 u32 nlink; 140 int ret; 141 142 local_root = btrfs_get_fs_root(fs_info, root, true); 143 if (IS_ERR(local_root)) { 144 ret = PTR_ERR(local_root); 145 goto err; 146 } 147 148 /* This makes the path point to (inum INODE_ITEM ioff). */ 149 key.objectid = inum; 150 key.type = BTRFS_INODE_ITEM_KEY; 151 key.offset = 0; 152 153 ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0); 154 if (ret) { 155 btrfs_put_root(local_root); 156 btrfs_release_path(&warn->path); 157 goto err; 158 } 159 160 eb = warn->path.nodes[0]; 161 inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item); 162 nlink = btrfs_inode_nlink(eb, inode_item); 163 btrfs_release_path(&warn->path); 164 165 nofs_flag = memalloc_nofs_save(); 166 ipath = init_ipath(4096, local_root, &warn->path); 167 memalloc_nofs_restore(nofs_flag); 168 if (IS_ERR(ipath)) { 169 btrfs_put_root(local_root); 170 ret = PTR_ERR(ipath); 171 ipath = NULL; 172 /* 173 * -ENOMEM, not a critical error, just output an generic error 174 * without filename. 175 */ 176 btrfs_warn(fs_info, 177 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu", 178 warn->logical, warn->mirror_num, root, inum, offset); 179 return ret; 180 } 181 ret = paths_from_inode(inum, ipath); 182 if (ret < 0) { 183 btrfs_put_root(local_root); 184 goto err; 185 } 186 187 /* 188 * We deliberately ignore the bit ipath might have been too small to 189 * hold all of the paths here 190 */ 191 for (int i = 0; i < ipath->fspath->elem_cnt; i++) { 192 btrfs_warn(fs_info, 193 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)", 194 warn->logical, warn->mirror_num, root, inum, offset, 195 fs_info->sectorsize, nlink, 196 (char *)(unsigned long)ipath->fspath->val[i]); 197 } 198 199 btrfs_put_root(local_root); 200 return 0; 201 202 err: 203 btrfs_warn(fs_info, 204 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d", 205 warn->logical, warn->mirror_num, root, inum, offset, ret); 206 207 return ret; 208 } 209 210 /* 211 * Do extra user-friendly error output (e.g. lookup all the affected files). 212 * 213 * Return true if we succeeded doing the backref lookup. 214 * Return false if such lookup failed, and has to fallback to the old error message. 215 */ 216 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off, 217 const u8 *csum, const u8 *csum_expected, 218 int mirror_num) 219 { 220 struct btrfs_fs_info *fs_info = inode->root->fs_info; 221 BTRFS_PATH_AUTO_RELEASE(path); 222 struct btrfs_key found_key = { 0 }; 223 struct extent_buffer *eb; 224 struct btrfs_extent_item *ei; 225 const u32 csum_size = fs_info->csum_size; 226 u64 logical; 227 u64 flags; 228 u32 item_size; 229 int ret; 230 231 mutex_lock(&fs_info->reloc_mutex); 232 logical = btrfs_get_reloc_bg_bytenr(fs_info); 233 mutex_unlock(&fs_info->reloc_mutex); 234 235 if (logical == U64_MAX) { 236 btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation"); 237 btrfs_warn_rl(fs_info, 238 "csum failed root %lld ino %llu off %llu csum " BTRFS_CSUM_FMT " expected csum " BTRFS_CSUM_FMT " mirror %d", 239 btrfs_root_id(inode->root), btrfs_ino(inode), file_off, 240 BTRFS_CSUM_FMT_VALUE(csum_size, csum), 241 BTRFS_CSUM_FMT_VALUE(csum_size, csum_expected), 242 mirror_num); 243 return; 244 } 245 246 logical += file_off; 247 btrfs_warn_rl(fs_info, 248 "csum failed root %lld ino %llu off %llu logical %llu csum " BTRFS_CSUM_FMT " expected csum " BTRFS_CSUM_FMT " mirror %d", 249 btrfs_root_id(inode->root), 250 btrfs_ino(inode), file_off, logical, 251 BTRFS_CSUM_FMT_VALUE(csum_size, csum), 252 BTRFS_CSUM_FMT_VALUE(csum_size, csum_expected), 253 mirror_num); 254 255 ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags); 256 if (ret < 0) { 257 btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d", 258 logical, ret); 259 return; 260 } 261 eb = path.nodes[0]; 262 ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item); 263 item_size = btrfs_item_size(eb, path.slots[0]); 264 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 265 unsigned long ptr = 0; 266 u64 ref_root; 267 u8 ref_level; 268 269 while (true) { 270 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, 271 item_size, &ref_root, 272 &ref_level); 273 if (ret < 0) { 274 btrfs_warn_rl(fs_info, 275 "failed to resolve tree backref for logical %llu: %d", 276 logical, ret); 277 break; 278 } 279 if (ret > 0) 280 break; 281 282 btrfs_warn_rl(fs_info, 283 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu", 284 logical, mirror_num, 285 (ref_level ? "node" : "leaf"), 286 ref_level, ref_root); 287 } 288 } else { 289 struct btrfs_backref_walk_ctx ctx = { 0 }; 290 struct data_reloc_warn reloc_warn = { 0 }; 291 292 /* 293 * Do not hold the path as later iterate_extent_inodes() call 294 * can be time consuming. 295 */ 296 btrfs_release_path(&path); 297 298 ctx.bytenr = found_key.objectid; 299 ctx.extent_item_pos = logical - found_key.objectid; 300 ctx.fs_info = fs_info; 301 302 reloc_warn.logical = logical; 303 reloc_warn.extent_item_size = found_key.offset; 304 reloc_warn.mirror_num = mirror_num; 305 reloc_warn.fs_info = fs_info; 306 307 iterate_extent_inodes(&ctx, true, 308 data_reloc_print_warning_inode, &reloc_warn); 309 } 310 } 311 312 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode, 313 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num) 314 { 315 struct btrfs_root *root = inode->root; 316 const u32 csum_size = root->fs_info->csum_size; 317 318 /* For data reloc tree, it's better to do a backref lookup instead. */ 319 if (btrfs_is_data_reloc_root(root)) 320 return print_data_reloc_error(inode, logical_start, csum, 321 csum_expected, mirror_num); 322 323 /* Output without objectid, which is more meaningful */ 324 if (btrfs_root_id(root) >= BTRFS_LAST_FREE_OBJECTID) { 325 btrfs_warn_rl(root->fs_info, 326 "csum failed root %lld ino %lld off %llu csum " BTRFS_CSUM_FMT " expected csum " BTRFS_CSUM_FMT " mirror %d", 327 btrfs_root_id(root), btrfs_ino(inode), 328 logical_start, 329 BTRFS_CSUM_FMT_VALUE(csum_size, csum), 330 BTRFS_CSUM_FMT_VALUE(csum_size, csum_expected), 331 mirror_num); 332 } else { 333 btrfs_warn_rl(root->fs_info, 334 "csum failed root %llu ino %llu off %llu csum " BTRFS_CSUM_FMT " expected csum " BTRFS_CSUM_FMT " mirror %d", 335 btrfs_root_id(root), btrfs_ino(inode), 336 logical_start, 337 BTRFS_CSUM_FMT_VALUE(csum_size, csum), 338 BTRFS_CSUM_FMT_VALUE(csum_size, csum_expected), 339 mirror_num); 340 } 341 } 342 343 /* 344 * Lock inode i_rwsem based on arguments passed. 345 * 346 * ilock_flags can have the following bit set: 347 * 348 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode 349 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt 350 * return -EAGAIN 351 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock 352 */ 353 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags) 354 { 355 if (ilock_flags & BTRFS_ILOCK_SHARED) { 356 if (ilock_flags & BTRFS_ILOCK_TRY) { 357 if (!inode_trylock_shared(&inode->vfs_inode)) 358 return -EAGAIN; 359 else 360 return 0; 361 } 362 inode_lock_shared(&inode->vfs_inode); 363 } else { 364 if (ilock_flags & BTRFS_ILOCK_TRY) { 365 if (!inode_trylock(&inode->vfs_inode)) 366 return -EAGAIN; 367 else 368 return 0; 369 } 370 inode_lock(&inode->vfs_inode); 371 } 372 if (ilock_flags & BTRFS_ILOCK_MMAP) 373 down_write(&inode->i_mmap_lock); 374 return 0; 375 } 376 377 /* 378 * Unlock inode i_rwsem. 379 * 380 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock() 381 * to decide whether the lock acquired is shared or exclusive. 382 */ 383 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags) 384 { 385 if (ilock_flags & BTRFS_ILOCK_MMAP) 386 up_write(&inode->i_mmap_lock); 387 if (ilock_flags & BTRFS_ILOCK_SHARED) 388 inode_unlock_shared(&inode->vfs_inode); 389 else 390 inode_unlock(&inode->vfs_inode); 391 } 392 393 /* 394 * Cleanup all submitted ordered extents in specified range to handle errors 395 * from the btrfs_run_delalloc_range() callback. 396 * 397 * NOTE: caller must ensure that when an error happens, it can not call 398 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 399 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 400 * to be released, which we want to happen only when finishing the ordered 401 * extent (btrfs_finish_ordered_io()). 402 */ 403 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode, 404 u64 offset, u64 bytes) 405 { 406 pgoff_t index = offset >> PAGE_SHIFT; 407 const pgoff_t end_index = (offset + bytes - 1) >> PAGE_SHIFT; 408 struct folio *folio; 409 410 while (index <= end_index) { 411 folio = filemap_get_folio(inode->vfs_inode.i_mapping, index); 412 if (IS_ERR(folio)) { 413 index++; 414 continue; 415 } 416 417 index = folio_next_index(folio); 418 /* 419 * Here we just clear all Ordered bits for every page in the 420 * range, then btrfs_mark_ordered_io_finished() will handle 421 * the ordered extent accounting for the range. 422 */ 423 btrfs_folio_clamp_clear_ordered(inode->root->fs_info, folio, 424 offset, bytes); 425 folio_put(folio); 426 } 427 428 return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false); 429 } 430 431 static int btrfs_dirty_inode(struct btrfs_inode *inode); 432 433 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 434 struct btrfs_new_inode_args *args) 435 { 436 int ret; 437 438 if (args->default_acl) { 439 ret = __btrfs_set_acl(trans, args->inode, args->default_acl, 440 ACL_TYPE_DEFAULT); 441 if (ret) 442 return ret; 443 } 444 if (args->acl) { 445 ret = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS); 446 if (ret) 447 return ret; 448 } 449 if (!args->default_acl && !args->acl) 450 cache_no_acl(args->inode); 451 return btrfs_xattr_security_init(trans, args->inode, args->dir, 452 &args->dentry->d_name); 453 } 454 455 /* 456 * this does all the hard work for inserting an inline extent into 457 * the btree. The caller should have done a btrfs_drop_extents so that 458 * no overlapping inline items exist in the btree 459 */ 460 static int insert_inline_extent(struct btrfs_trans_handle *trans, 461 struct btrfs_path *path, 462 struct btrfs_inode *inode, bool extent_inserted, 463 size_t size, size_t compressed_size, 464 int compress_type, 465 struct folio *compressed_folio, 466 bool update_i_size) 467 { 468 struct btrfs_root *root = inode->root; 469 struct extent_buffer *leaf; 470 const u32 sectorsize = trans->fs_info->sectorsize; 471 char *kaddr; 472 unsigned long ptr; 473 struct btrfs_file_extent_item *ei; 474 int ret; 475 size_t cur_size = size; 476 u64 i_size; 477 478 /* 479 * The decompressed size must still be no larger than a sector. Under 480 * heavy race, we can have size == 0 passed in, but that shouldn't be a 481 * big deal and we can continue the insertion. 482 */ 483 ASSERT(size <= sectorsize); 484 485 /* 486 * The compressed size also needs to be no larger than a page. 487 * That's also why we only need one folio as the parameter. 488 */ 489 if (compressed_folio) { 490 ASSERT(compressed_size <= sectorsize); 491 ASSERT(compressed_size <= PAGE_SIZE); 492 } else { 493 ASSERT(compressed_size == 0); 494 } 495 496 if (compressed_size && compressed_folio) 497 cur_size = compressed_size; 498 499 if (!extent_inserted) { 500 struct btrfs_key key; 501 size_t datasize; 502 503 key.objectid = btrfs_ino(inode); 504 key.type = BTRFS_EXTENT_DATA_KEY; 505 key.offset = 0; 506 507 datasize = btrfs_file_extent_calc_inline_size(cur_size); 508 ret = btrfs_insert_empty_item(trans, root, path, &key, 509 datasize); 510 if (ret) 511 return ret; 512 } 513 leaf = path->nodes[0]; 514 ei = btrfs_item_ptr(leaf, path->slots[0], 515 struct btrfs_file_extent_item); 516 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 517 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 518 btrfs_set_file_extent_encryption(leaf, ei, 0); 519 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 520 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 521 ptr = btrfs_file_extent_inline_start(ei); 522 523 if (compress_type != BTRFS_COMPRESS_NONE) { 524 kaddr = kmap_local_folio(compressed_folio, 0); 525 write_extent_buffer(leaf, kaddr, ptr, compressed_size); 526 kunmap_local(kaddr); 527 528 btrfs_set_file_extent_compression(leaf, ei, 529 compress_type); 530 } else { 531 struct folio *folio; 532 533 folio = filemap_get_folio(inode->vfs_inode.i_mapping, 0); 534 ASSERT(!IS_ERR(folio)); 535 btrfs_set_file_extent_compression(leaf, ei, 0); 536 kaddr = kmap_local_folio(folio, 0); 537 write_extent_buffer(leaf, kaddr, ptr, size); 538 kunmap_local(kaddr); 539 folio_put(folio); 540 } 541 btrfs_release_path(path); 542 543 /* 544 * We align size to sectorsize for inline extents just for simplicity 545 * sake. 546 */ 547 ret = btrfs_inode_set_file_extent_range(inode, 0, 548 ALIGN(size, root->fs_info->sectorsize)); 549 if (ret) 550 return ret; 551 552 /* 553 * We're an inline extent, so nobody can extend the file past i_size 554 * without locking a page we already have locked. 555 * 556 * We must do any i_size and inode updates before we unlock the pages. 557 * Otherwise we could end up racing with unlink. 558 */ 559 i_size = i_size_read(&inode->vfs_inode); 560 if (update_i_size && size > i_size) { 561 i_size_write(&inode->vfs_inode, size); 562 i_size = size; 563 } 564 inode->disk_i_size = i_size; 565 566 return 0; 567 } 568 569 static bool can_cow_file_range_inline(struct btrfs_inode *inode, 570 u64 offset, u64 size, 571 size_t compressed_size) 572 { 573 struct btrfs_fs_info *fs_info = inode->root->fs_info; 574 u64 data_len = (compressed_size ?: size); 575 576 /* Inline extents must start at offset 0. */ 577 if (offset != 0) 578 return false; 579 580 /* 581 * Even for bs > ps cases, cow_file_range_inline() can only accept a 582 * single folio. 583 * 584 * This can be problematic and cause access beyond page boundary if a 585 * page sized folio is passed into that function. 586 * And encoded write is doing exactly that. 587 * So here limits the inlined extent size to PAGE_SIZE. 588 */ 589 if (size > PAGE_SIZE || compressed_size > PAGE_SIZE) 590 return false; 591 592 /* Inline extents are limited to sectorsize. */ 593 if (size > fs_info->sectorsize) 594 return false; 595 596 /* We do not allow a non-compressed extent to be as large as block size. */ 597 if (data_len >= fs_info->sectorsize) 598 return false; 599 600 /* We cannot exceed the maximum inline data size. */ 601 if (data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 602 return false; 603 604 /* We cannot exceed the user specified max_inline size. */ 605 if (data_len > fs_info->max_inline) 606 return false; 607 608 /* Inline extents must be the entirety of the file. */ 609 if (size < i_size_read(&inode->vfs_inode)) 610 return false; 611 612 /* Encrypted file cannot be inlined. */ 613 if (IS_ENCRYPTED(&inode->vfs_inode)) 614 return false; 615 616 return true; 617 } 618 619 /* 620 * conditionally insert an inline extent into the file. This 621 * does the checks required to make sure the data is small enough 622 * to fit as an inline extent. 623 * 624 * If being used directly, you must have already checked we're allowed to cow 625 * the range by getting true from can_cow_file_range_inline(). 626 */ 627 static noinline int __cow_file_range_inline(struct btrfs_inode *inode, 628 u64 size, size_t compressed_size, 629 int compress_type, 630 struct folio *compressed_folio, 631 bool update_i_size) 632 { 633 struct btrfs_drop_extents_args drop_args = { 0 }; 634 struct btrfs_root *root = inode->root; 635 struct btrfs_fs_info *fs_info = root->fs_info; 636 struct btrfs_trans_handle *trans = NULL; 637 u64 data_len = (compressed_size ?: size); 638 int ret; 639 struct btrfs_path *path; 640 641 path = btrfs_alloc_path(); 642 if (!path) { 643 ret = -ENOMEM; 644 goto out; 645 } 646 647 trans = btrfs_join_transaction(root); 648 if (IS_ERR(trans)) { 649 ret = PTR_ERR(trans); 650 trans = NULL; 651 goto out; 652 } 653 trans->block_rsv = &inode->block_rsv; 654 655 drop_args.path = path; 656 drop_args.start = 0; 657 drop_args.end = fs_info->sectorsize; 658 drop_args.drop_cache = true; 659 drop_args.replace_extent = true; 660 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len); 661 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 662 if (unlikely(ret)) { 663 btrfs_abort_transaction(trans, ret); 664 goto out; 665 } 666 667 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted, 668 size, compressed_size, compress_type, 669 compressed_folio, update_i_size); 670 if (unlikely(ret && ret != -ENOSPC)) { 671 btrfs_abort_transaction(trans, ret); 672 goto out; 673 } else if (ret == -ENOSPC) { 674 ret = 1; 675 goto out; 676 } 677 678 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found); 679 ret = btrfs_update_inode(trans, inode); 680 if (unlikely(ret && ret != -ENOSPC)) { 681 btrfs_abort_transaction(trans, ret); 682 goto out; 683 } else if (ret == -ENOSPC) { 684 ret = 1; 685 goto out; 686 } 687 688 btrfs_set_inode_full_sync(inode); 689 out: 690 /* 691 * Don't forget to free the reserved space, as for inlined extent 692 * it won't count as data extent, free them directly here. 693 * And at reserve time, it's always aligned to sector size, so 694 * just free one sector here. 695 * 696 * If we fallback to non-inline (ret == 1) due to -ENOSPC, then we need 697 * to keep the data reservation. 698 */ 699 if (ret <= 0) 700 btrfs_qgroup_free_data(inode, NULL, 0, fs_info->sectorsize, NULL); 701 btrfs_free_path(path); 702 if (trans) 703 btrfs_end_transaction(trans); 704 return ret; 705 } 706 707 static noinline int cow_file_range_inline(struct btrfs_inode *inode, 708 struct folio *locked_folio, 709 u64 offset, u64 end, 710 size_t compressed_size, 711 int compress_type, 712 struct folio *compressed_folio, 713 bool update_i_size) 714 { 715 struct extent_state *cached = NULL; 716 unsigned long clear_flags = EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 717 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING | EXTENT_LOCKED; 718 u64 size = min_t(u64, i_size_read(&inode->vfs_inode), end + 1); 719 int ret; 720 721 if (!can_cow_file_range_inline(inode, offset, size, compressed_size)) 722 return 1; 723 724 btrfs_lock_extent(&inode->io_tree, offset, end, &cached); 725 ret = __cow_file_range_inline(inode, size, compressed_size, 726 compress_type, compressed_folio, 727 update_i_size); 728 if (ret > 0) { 729 btrfs_unlock_extent(&inode->io_tree, offset, end, &cached); 730 return ret; 731 } 732 733 /* 734 * In the successful case (ret == 0 here), cow_file_range will return 1. 735 * 736 * Quite a bit further up the callstack in extent_writepage(), ret == 1 737 * is treated as a short circuited success and does not unlock the folio, 738 * so we must do it here. 739 * 740 * In the failure case, the locked_folio does get unlocked by 741 * btrfs_folio_end_all_writers, which asserts that it is still locked 742 * at that point, so we must *not* unlock it here. 743 * 744 * The other two callsites in compress_file_range do not have a 745 * locked_folio, so they are not relevant to this logic. 746 */ 747 if (ret == 0) 748 locked_folio = NULL; 749 750 extent_clear_unlock_delalloc(inode, offset, end, locked_folio, &cached, 751 clear_flags, PAGE_UNLOCK | 752 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK); 753 return ret; 754 } 755 756 struct async_extent { 757 u64 start; 758 u64 ram_size; 759 struct compressed_bio *cb; 760 struct list_head list; 761 }; 762 763 struct async_chunk { 764 struct btrfs_inode *inode; 765 struct folio *locked_folio; 766 u64 start; 767 u64 end; 768 blk_opf_t write_flags; 769 struct list_head extents; 770 struct cgroup_subsys_state *blkcg_css; 771 struct btrfs_work work; 772 struct async_cow *async_cow; 773 }; 774 775 struct async_cow { 776 atomic_t num_chunks; 777 struct async_chunk chunks[]; 778 }; 779 780 static int add_async_extent(struct async_chunk *cow, u64 start, u64 ram_size, 781 struct compressed_bio *cb) 782 { 783 struct async_extent *async_extent; 784 785 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 786 if (!async_extent) 787 return -ENOMEM; 788 ASSERT(ram_size < U32_MAX); 789 async_extent->start = start; 790 async_extent->ram_size = ram_size; 791 async_extent->cb = cb; 792 list_add_tail(&async_extent->list, &cow->extents); 793 return 0; 794 } 795 796 /* 797 * Check if the inode needs to be submitted to compression, based on mount 798 * options, defragmentation, properties or heuristics. 799 */ 800 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start, 801 u64 end) 802 { 803 struct btrfs_fs_info *fs_info = inode->root->fs_info; 804 805 if (!btrfs_inode_can_compress(inode)) { 806 DEBUG_WARN("BTRFS: unexpected compression for ino %llu", btrfs_ino(inode)); 807 return 0; 808 } 809 810 /* 811 * If the delalloc range is only one fs block and can not be inlined, 812 * do not even bother try compression, as there will be no space saving 813 * and will always fallback to regular write later. 814 */ 815 if (start != 0 && end + 1 - start <= fs_info->sectorsize) 816 return 0; 817 /* Defrag ioctl takes precedence over mount options and properties. */ 818 if (inode->defrag_compress == BTRFS_DEFRAG_DONT_COMPRESS) 819 return 0; 820 if (BTRFS_COMPRESS_NONE < inode->defrag_compress && 821 inode->defrag_compress < BTRFS_NR_COMPRESS_TYPES) 822 return 1; 823 /* force compress */ 824 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 825 return 1; 826 /* bad compression ratios */ 827 if (inode->flags & BTRFS_INODE_NOCOMPRESS) 828 return 0; 829 if (btrfs_test_opt(fs_info, COMPRESS) || 830 inode->flags & BTRFS_INODE_COMPRESS || 831 inode->prop_compress) 832 return btrfs_compress_heuristic(inode, start, end); 833 return 0; 834 } 835 836 static inline void inode_should_defrag(struct btrfs_inode *inode, 837 u64 start, u64 end, u64 num_bytes, u32 small_write) 838 { 839 /* If this is a small write inside eof, kick off a defrag */ 840 if (num_bytes < small_write && 841 (start > 0 || end + 1 < inode->disk_i_size)) 842 btrfs_add_inode_defrag(inode, small_write); 843 } 844 845 static int extent_range_clear_dirty_for_io(struct btrfs_inode *inode, u64 start, u64 end) 846 { 847 const pgoff_t end_index = end >> PAGE_SHIFT; 848 struct folio *folio; 849 int ret = 0; 850 851 for (pgoff_t index = start >> PAGE_SHIFT; index <= end_index; index++) { 852 folio = filemap_get_folio(inode->vfs_inode.i_mapping, index); 853 if (IS_ERR(folio)) { 854 if (!ret) 855 ret = PTR_ERR(folio); 856 continue; 857 } 858 btrfs_folio_clamp_clear_dirty(inode->root->fs_info, folio, start, 859 end + 1 - start); 860 folio_put(folio); 861 } 862 return ret; 863 } 864 865 static struct folio *compressed_bio_last_folio(struct compressed_bio *cb) 866 { 867 struct bio *bio = &cb->bbio.bio; 868 struct bio_vec *bvec; 869 phys_addr_t paddr; 870 871 /* 872 * Make sure all folios have the same min_folio_size. 873 * 874 * Otherwise we cannot simply use offset_in_offset(folio, bi_size) to 875 * calculate the end of the last folio. 876 */ 877 if (IS_ENABLED(CONFIG_BTRFS_ASSERT)) { 878 struct btrfs_fs_info *fs_info = cb_to_fs_info(cb); 879 const u32 min_folio_size = btrfs_min_folio_size(fs_info); 880 struct folio_iter fi; 881 882 bio_for_each_folio_all(fi, bio) 883 ASSERT(folio_size(fi.folio) == min_folio_size); 884 } 885 886 /* The bio must not be empty. */ 887 ASSERT(bio->bi_vcnt); 888 889 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1]; 890 paddr = page_to_phys(bvec->bv_page) + bvec->bv_offset + bvec->bv_len - 1; 891 return page_folio(phys_to_page(paddr)); 892 } 893 894 static void zero_last_folio(struct compressed_bio *cb) 895 { 896 struct bio *bio = &cb->bbio.bio; 897 struct folio *last_folio = compressed_bio_last_folio(cb); 898 const u32 bio_size = bio->bi_iter.bi_size; 899 const u32 foffset = offset_in_folio(last_folio, bio_size); 900 901 folio_zero_range(last_folio, foffset, folio_size(last_folio) - foffset); 902 } 903 904 static void round_up_last_block(struct compressed_bio *cb, u32 blocksize) 905 { 906 struct bio *bio = &cb->bbio.bio; 907 struct folio *last_folio = compressed_bio_last_folio(cb); 908 const u32 bio_size = bio->bi_iter.bi_size; 909 const u32 foffset = offset_in_folio(last_folio, bio_size); 910 bool ret; 911 912 if (IS_ALIGNED(bio_size, blocksize)) 913 return; 914 915 ret = bio_add_folio(bio, last_folio, round_up(foffset, blocksize) - foffset, foffset); 916 /* The remaining part should be merged thus never fail. */ 917 ASSERT(ret); 918 } 919 920 /* 921 * Work queue call back to started compression on a file and pages. 922 * 923 * This is done inside an ordered work queue, and the compression is spread 924 * across many cpus. The actual IO submission is step two, and the ordered work 925 * queue takes care of making sure that happens in the same order things were 926 * put onto the queue by writepages and friends. 927 * 928 * If this code finds it can't get good compression, it puts an entry onto the 929 * work queue to write the uncompressed bytes. This makes sure that both 930 * compressed inodes and uncompressed inodes are written in the same order that 931 * the flusher thread sent them down. 932 */ 933 static void compress_file_range(struct btrfs_work *work) 934 { 935 struct async_chunk *async_chunk = 936 container_of(work, struct async_chunk, work); 937 struct btrfs_inode *inode = async_chunk->inode; 938 struct btrfs_fs_info *fs_info = inode->root->fs_info; 939 struct address_space *mapping = inode->vfs_inode.i_mapping; 940 struct compressed_bio *cb = NULL; 941 const u32 min_folio_size = btrfs_min_folio_size(fs_info); 942 u64 blocksize = fs_info->sectorsize; 943 u64 start = async_chunk->start; 944 u64 end = async_chunk->end; 945 u64 actual_end; 946 u64 i_size; 947 u32 cur_len; 948 int ret = 0; 949 unsigned long total_compressed = 0; 950 unsigned long total_in = 0; 951 unsigned int loff; 952 int compress_type = fs_info->compress_type; 953 int compress_level = fs_info->compress_level; 954 955 if (btrfs_is_shutdown(fs_info)) 956 goto cleanup_and_bail_uncompressed; 957 958 inode_should_defrag(inode, start, end, end - start + 1, SZ_16K); 959 960 /* 961 * We need to call clear_page_dirty_for_io on each page in the range. 962 * Otherwise applications with the file mmap'd can wander in and change 963 * the page contents while we are compressing them. 964 */ 965 ret = extent_range_clear_dirty_for_io(inode, start, end); 966 967 /* 968 * All the folios should have been locked thus no failure. 969 * 970 * And even if some folios are missing, btrfs_compress_bio() 971 * would handle them correctly, so here just do an ASSERT() check for 972 * early logic errors. 973 */ 974 ASSERT(ret == 0); 975 976 /* 977 * We need to save i_size before now because it could change in between 978 * us evaluating the size and assigning it. This is because we lock and 979 * unlock the page in truncate and fallocate, and then modify the i_size 980 * later on. 981 * 982 * The barriers are to emulate READ_ONCE, remove that once i_size_read 983 * does that for us. 984 */ 985 barrier(); 986 i_size = i_size_read(&inode->vfs_inode); 987 barrier(); 988 actual_end = min_t(u64, i_size, end + 1); 989 again: 990 total_in = 0; 991 cur_len = min(end + 1 - start, BTRFS_MAX_UNCOMPRESSED); 992 ret = 0; 993 cb = NULL; 994 995 /* 996 * we don't want to send crud past the end of i_size through 997 * compression, that's just a waste of CPU time. So, if the 998 * end of the file is before the start of our current 999 * requested range of bytes, we bail out to the uncompressed 1000 * cleanup code that can deal with all of this. 1001 * 1002 * It isn't really the fastest way to fix things, but this is a 1003 * very uncommon corner. 1004 */ 1005 if (actual_end <= start) 1006 goto cleanup_and_bail_uncompressed; 1007 1008 /* 1009 * We do compression for mount -o compress and when the inode has not 1010 * been flagged as NOCOMPRESS. This flag can change at any time if we 1011 * discover bad compression ratios. 1012 */ 1013 if (!inode_need_compress(inode, start, end)) 1014 goto cleanup_and_bail_uncompressed; 1015 1016 if (0 < inode->defrag_compress && inode->defrag_compress < BTRFS_NR_COMPRESS_TYPES) { 1017 compress_type = inode->defrag_compress; 1018 compress_level = inode->defrag_compress_level; 1019 } else if (inode->prop_compress) { 1020 compress_type = inode->prop_compress; 1021 } 1022 1023 /* Compression level is applied here. */ 1024 cb = btrfs_compress_bio(inode, start, cur_len, compress_type, 1025 compress_level, async_chunk->write_flags); 1026 if (IS_ERR(cb)) { 1027 cb = NULL; 1028 goto mark_incompressible; 1029 } 1030 1031 total_compressed = cb->bbio.bio.bi_iter.bi_size; 1032 total_in = cur_len; 1033 1034 /* 1035 * Zero the tail end of the last folio, as we might be sending it down 1036 * to disk. 1037 */ 1038 loff = (total_compressed & (min_folio_size - 1)); 1039 if (loff) 1040 zero_last_folio(cb); 1041 1042 /* 1043 * Try to create an inline extent. 1044 * 1045 * If we didn't compress the entire range, try to create an uncompressed 1046 * inline extent, else a compressed one. 1047 * 1048 * Check cow_file_range() for why we don't even try to create inline 1049 * extent for the subpage case. 1050 */ 1051 if (total_in < actual_end) 1052 ret = cow_file_range_inline(inode, NULL, start, end, 0, 1053 BTRFS_COMPRESS_NONE, NULL, false); 1054 else 1055 ret = cow_file_range_inline(inode, NULL, start, end, total_compressed, 1056 compress_type, 1057 bio_first_folio_all(&cb->bbio.bio), false); 1058 if (ret <= 0) { 1059 cleanup_compressed_bio(cb); 1060 if (ret < 0) 1061 mapping_set_error(mapping, -EIO); 1062 return; 1063 } 1064 1065 /* 1066 * We aren't doing an inline extent. Round the compressed size up to a 1067 * block size boundary so the allocator does sane things. 1068 */ 1069 total_compressed = ALIGN(total_compressed, blocksize); 1070 round_up_last_block(cb, blocksize); 1071 1072 /* 1073 * One last check to make sure the compression is really a win, compare 1074 * the page count read with the blocks on disk, compression must free at 1075 * least one sector. 1076 */ 1077 total_in = round_up(total_in, fs_info->sectorsize); 1078 if (total_compressed + blocksize > total_in) 1079 goto mark_incompressible; 1080 1081 1082 /* 1083 * The async work queues will take care of doing actual allocation on 1084 * disk for these compressed pages, and will submit the bios. 1085 */ 1086 ret = add_async_extent(async_chunk, start, total_in, cb); 1087 BUG_ON(ret); 1088 if (start + total_in < end) { 1089 start += total_in; 1090 cond_resched(); 1091 goto again; 1092 } 1093 return; 1094 1095 mark_incompressible: 1096 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress) 1097 inode->flags |= BTRFS_INODE_NOCOMPRESS; 1098 cleanup_and_bail_uncompressed: 1099 ret = add_async_extent(async_chunk, start, end - start + 1, NULL); 1100 BUG_ON(ret); 1101 if (cb) 1102 cleanup_compressed_bio(cb); 1103 } 1104 1105 static void submit_uncompressed_range(struct btrfs_inode *inode, 1106 struct async_extent *async_extent, 1107 struct folio *locked_folio) 1108 { 1109 u64 start = async_extent->start; 1110 u64 end = async_extent->start + async_extent->ram_size - 1; 1111 int ret; 1112 struct writeback_control wbc = { 1113 .sync_mode = WB_SYNC_ALL, 1114 .range_start = start, 1115 .range_end = end, 1116 .no_cgroup_owner = 1, 1117 }; 1118 1119 wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode); 1120 ret = run_delalloc_cow(inode, locked_folio, start, end, 1121 &wbc, false); 1122 wbc_detach_inode(&wbc); 1123 if (ret < 0) { 1124 if (locked_folio) 1125 btrfs_folio_end_lock(inode->root->fs_info, locked_folio, 1126 start, async_extent->ram_size); 1127 btrfs_err_rl(inode->root->fs_info, 1128 "%s failed, root=%llu inode=%llu start=%llu len=%llu: %d", 1129 __func__, btrfs_root_id(inode->root), 1130 btrfs_ino(inode), start, async_extent->ram_size, ret); 1131 } 1132 } 1133 1134 static void submit_one_async_extent(struct async_chunk *async_chunk, 1135 struct async_extent *async_extent, 1136 u64 *alloc_hint) 1137 { 1138 struct btrfs_inode *inode = async_chunk->inode; 1139 struct extent_io_tree *io_tree = &inode->io_tree; 1140 struct btrfs_root *root = inode->root; 1141 struct btrfs_fs_info *fs_info = root->fs_info; 1142 struct btrfs_ordered_extent *ordered; 1143 struct btrfs_file_extent file_extent; 1144 struct btrfs_key ins; 1145 struct folio *locked_folio = NULL; 1146 struct extent_state *cached = NULL; 1147 struct extent_map *em; 1148 int ret = 0; 1149 u32 compressed_size; 1150 u64 start = async_extent->start; 1151 u64 end = async_extent->start + async_extent->ram_size - 1; 1152 1153 if (async_chunk->blkcg_css) 1154 kthread_associate_blkcg(async_chunk->blkcg_css); 1155 1156 /* 1157 * If async_chunk->locked_folio is in the async_extent range, we need to 1158 * handle it. 1159 */ 1160 if (async_chunk->locked_folio) { 1161 u64 locked_folio_start = folio_pos(async_chunk->locked_folio); 1162 u64 locked_folio_end = locked_folio_start + 1163 folio_size(async_chunk->locked_folio) - 1; 1164 1165 if (!(start >= locked_folio_end || end <= locked_folio_start)) 1166 locked_folio = async_chunk->locked_folio; 1167 } 1168 1169 if (!async_extent->cb) { 1170 submit_uncompressed_range(inode, async_extent, locked_folio); 1171 goto done; 1172 } 1173 1174 compressed_size = async_extent->cb->bbio.bio.bi_iter.bi_size; 1175 ret = btrfs_reserve_extent(root, async_extent->ram_size, 1176 compressed_size, compressed_size, 1177 0, *alloc_hint, &ins, true, true); 1178 if (ret) { 1179 /* 1180 * We can't reserve contiguous space for the compressed size. 1181 * Unlikely, but it's possible that we could have enough 1182 * non-contiguous space for the uncompressed size instead. So 1183 * fall back to uncompressed. 1184 */ 1185 submit_uncompressed_range(inode, async_extent, locked_folio); 1186 cleanup_compressed_bio(async_extent->cb); 1187 async_extent->cb = NULL; 1188 goto done; 1189 } 1190 1191 btrfs_lock_extent(io_tree, start, end, &cached); 1192 1193 /* Here we're doing allocation and writeback of the compressed pages */ 1194 file_extent.disk_bytenr = ins.objectid; 1195 file_extent.disk_num_bytes = ins.offset; 1196 file_extent.ram_bytes = async_extent->ram_size; 1197 file_extent.num_bytes = async_extent->ram_size; 1198 file_extent.offset = 0; 1199 file_extent.compression = async_extent->cb->compress_type; 1200 1201 async_extent->cb->bbio.bio.bi_iter.bi_sector = ins.objectid >> SECTOR_SHIFT; 1202 1203 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED); 1204 if (IS_ERR(em)) { 1205 ret = PTR_ERR(em); 1206 goto out_free_reserve; 1207 } 1208 btrfs_free_extent_map(em); 1209 1210 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent, 1211 1U << BTRFS_ORDERED_COMPRESSED); 1212 if (IS_ERR(ordered)) { 1213 btrfs_drop_extent_map_range(inode, start, end, false); 1214 ret = PTR_ERR(ordered); 1215 goto out_free_reserve; 1216 } 1217 async_extent->cb->bbio.ordered = ordered; 1218 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1219 1220 /* Clear dirty, set writeback and unlock the pages. */ 1221 extent_clear_unlock_delalloc(inode, start, end, 1222 NULL, &cached, EXTENT_LOCKED | EXTENT_DELALLOC, 1223 PAGE_UNLOCK | PAGE_START_WRITEBACK); 1224 btrfs_submit_bbio(&async_extent->cb->bbio, 0); 1225 async_extent->cb = NULL; 1226 1227 *alloc_hint = ins.objectid + ins.offset; 1228 done: 1229 if (async_chunk->blkcg_css) 1230 kthread_associate_blkcg(NULL); 1231 kfree(async_extent); 1232 return; 1233 1234 out_free_reserve: 1235 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1236 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, true); 1237 mapping_set_error(inode->vfs_inode.i_mapping, -EIO); 1238 extent_clear_unlock_delalloc(inode, start, end, 1239 NULL, &cached, 1240 EXTENT_LOCKED | EXTENT_DELALLOC | 1241 EXTENT_DELALLOC_NEW | 1242 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 1243 PAGE_UNLOCK | PAGE_START_WRITEBACK | 1244 PAGE_END_WRITEBACK); 1245 if (async_extent->cb) 1246 cleanup_compressed_bio(async_extent->cb); 1247 if (async_chunk->blkcg_css) 1248 kthread_associate_blkcg(NULL); 1249 btrfs_debug(fs_info, 1250 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d", 1251 btrfs_root_id(root), btrfs_ino(inode), start, 1252 async_extent->ram_size, ret); 1253 kfree(async_extent); 1254 } 1255 1256 u64 btrfs_get_extent_allocation_hint(struct btrfs_inode *inode, u64 start, 1257 u64 num_bytes) 1258 { 1259 struct extent_map_tree *em_tree = &inode->extent_tree; 1260 struct extent_map *em; 1261 u64 alloc_hint = 0; 1262 1263 read_lock(&em_tree->lock); 1264 em = btrfs_search_extent_mapping(em_tree, start, num_bytes); 1265 if (em) { 1266 /* 1267 * if block start isn't an actual block number then find the 1268 * first block in this inode and use that as a hint. If that 1269 * block is also bogus then just don't worry about it. 1270 */ 1271 if (em->disk_bytenr >= EXTENT_MAP_LAST_BYTE) { 1272 btrfs_free_extent_map(em); 1273 em = btrfs_search_extent_mapping(em_tree, 0, 0); 1274 if (em && em->disk_bytenr < EXTENT_MAP_LAST_BYTE) 1275 alloc_hint = btrfs_extent_map_block_start(em); 1276 if (em) 1277 btrfs_free_extent_map(em); 1278 } else { 1279 alloc_hint = btrfs_extent_map_block_start(em); 1280 btrfs_free_extent_map(em); 1281 } 1282 } 1283 read_unlock(&em_tree->lock); 1284 1285 return alloc_hint; 1286 } 1287 1288 /* 1289 * Handle COW for one range. 1290 * 1291 * @ins: The key representing the allocated range. 1292 * @file_offset: The file offset of the COW range 1293 * @num_bytes: The expected length of the COW range 1294 * The actually allocated length can be smaller than it. 1295 * @min_alloc_size: The minimal extent size. 1296 * @alloc_hint: The hint for the extent allocator. 1297 * @ret_alloc_size: The COW range handles by this function. 1298 * 1299 * Return 0 if everything is fine and update @ret_alloc_size updated. The 1300 * range is still locked, and caller should unlock the range after everything 1301 * is done or for error handling. 1302 * 1303 * Return <0 for error and @is updated for where the extra cleanup should 1304 * happen. The range [file_offset, file_offset + ret_alloc_size) will be 1305 * cleaned up by this function. 1306 */ 1307 static int cow_one_range(struct btrfs_inode *inode, struct folio *locked_folio, 1308 struct btrfs_key *ins, struct extent_state **cached, 1309 u64 file_offset, u32 num_bytes, u32 min_alloc_size, 1310 u64 alloc_hint, u32 *ret_alloc_size) 1311 { 1312 struct btrfs_root *root = inode->root; 1313 struct btrfs_fs_info *fs_info = root->fs_info; 1314 struct btrfs_ordered_extent *ordered; 1315 struct btrfs_file_extent file_extent; 1316 struct extent_map *em; 1317 u32 cur_len = 0; 1318 u64 cur_end; 1319 int ret; 1320 1321 ret = btrfs_reserve_extent(root, num_bytes, num_bytes, min_alloc_size, 1322 0, alloc_hint, ins, true, true); 1323 if (ret < 0) { 1324 *ret_alloc_size = cur_len; 1325 return ret; 1326 } 1327 1328 cur_len = ins->offset; 1329 cur_end = file_offset + cur_len - 1; 1330 1331 file_extent.disk_bytenr = ins->objectid; 1332 file_extent.disk_num_bytes = ins->offset; 1333 file_extent.num_bytes = ins->offset; 1334 file_extent.ram_bytes = ins->offset; 1335 file_extent.offset = 0; 1336 file_extent.compression = BTRFS_COMPRESS_NONE; 1337 1338 /* 1339 * Locked range will be released either during error clean up (inside 1340 * this function or by the caller for previously successful ranges) or 1341 * after the whole range is finished. 1342 */ 1343 btrfs_lock_extent(&inode->io_tree, file_offset, cur_end, cached); 1344 em = btrfs_create_io_em(inode, file_offset, &file_extent, BTRFS_ORDERED_REGULAR); 1345 if (IS_ERR(em)) { 1346 ret = PTR_ERR(em); 1347 goto free_reserved; 1348 } 1349 btrfs_free_extent_map(em); 1350 1351 ordered = btrfs_alloc_ordered_extent(inode, file_offset, &file_extent, 1352 1U << BTRFS_ORDERED_REGULAR); 1353 if (IS_ERR(ordered)) { 1354 btrfs_drop_extent_map_range(inode, file_offset, cur_end, false); 1355 ret = PTR_ERR(ordered); 1356 goto free_reserved; 1357 } 1358 1359 if (btrfs_is_data_reloc_root(root)) { 1360 ret = btrfs_reloc_clone_csums(ordered); 1361 1362 /* 1363 * Only drop cache here, and process as normal. 1364 * 1365 * We must not allow extent_clear_unlock_delalloc() at 1366 * free_reserved label to free meta of this ordered extent, as 1367 * its meta should be freed by btrfs_finish_ordered_io(). 1368 * 1369 * So we must continue until @start is increased to 1370 * skip current ordered extent. 1371 */ 1372 if (ret) 1373 btrfs_drop_extent_map_range(inode, file_offset, 1374 cur_end, false); 1375 } 1376 btrfs_put_ordered_extent(ordered); 1377 btrfs_dec_block_group_reservations(fs_info, ins->objectid); 1378 /* 1379 * Error handling for btrfs_reloc_clone_csums(). 1380 * 1381 * Treat the range as finished, thus only clear EXTENT_LOCKED | EXTENT_DELALLOC. 1382 * The accounting will be done by ordered extents. 1383 */ 1384 if (unlikely(ret < 0)) { 1385 btrfs_cleanup_ordered_extents(inode, file_offset, cur_len); 1386 extent_clear_unlock_delalloc(inode, file_offset, cur_end, locked_folio, cached, 1387 EXTENT_LOCKED | EXTENT_DELALLOC, 1388 PAGE_UNLOCK | PAGE_START_WRITEBACK | 1389 PAGE_END_WRITEBACK); 1390 mapping_set_error(inode->vfs_inode.i_mapping, -EIO); 1391 } 1392 *ret_alloc_size = cur_len; 1393 return ret; 1394 1395 free_reserved: 1396 extent_clear_unlock_delalloc(inode, file_offset, cur_end, locked_folio, cached, 1397 EXTENT_LOCKED | EXTENT_DELALLOC | 1398 EXTENT_DELALLOC_NEW | 1399 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 1400 PAGE_UNLOCK | PAGE_START_WRITEBACK | 1401 PAGE_END_WRITEBACK); 1402 btrfs_qgroup_free_data(inode, NULL, file_offset, cur_len, NULL); 1403 btrfs_dec_block_group_reservations(fs_info, ins->objectid); 1404 btrfs_free_reserved_extent(fs_info, ins->objectid, ins->offset, true); 1405 mapping_set_error(inode->vfs_inode.i_mapping, -EIO); 1406 *ret_alloc_size = cur_len; 1407 /* 1408 * We should not return -EAGAIN where it's a special return code for 1409 * zoned to catch btrfs_reserved_extent(). 1410 */ 1411 ASSERT(ret != -EAGAIN); 1412 return ret; 1413 } 1414 1415 /* 1416 * when extent_io.c finds a delayed allocation range in the file, 1417 * the call backs end up in this code. The basic idea is to 1418 * allocate extents on disk for the range, and create ordered data structs 1419 * in ram to track those extents. 1420 * 1421 * locked_folio is the folio that writepage had locked already. We use 1422 * it to make sure we don't do extra locks or unlocks. 1423 * 1424 * When this function fails, it unlocks all folios except @locked_folio. 1425 * 1426 * When this function successfully creates an inline extent, it returns 1 and 1427 * unlocks all folios including locked_folio and starts I/O on them. 1428 * (In reality inline extents are limited to a single block, so locked_folio is 1429 * the only folio handled anyway). 1430 * 1431 * When this function succeed and creates a normal extent, the folio locking 1432 * status depends on the passed in flags: 1433 * 1434 * - If COW_FILE_RANGE_KEEP_LOCKED flag is set, all folios are kept locked. 1435 * - Else all folios except for @locked_folio are unlocked. 1436 * 1437 * When a failure happens in the second or later iteration of the 1438 * while-loop, the ordered extents created in previous iterations are cleaned up. 1439 */ 1440 static noinline int cow_file_range(struct btrfs_inode *inode, 1441 struct folio *locked_folio, u64 start, 1442 u64 end, u64 *done_offset, 1443 unsigned long flags) 1444 { 1445 struct btrfs_root *root = inode->root; 1446 struct btrfs_fs_info *fs_info = root->fs_info; 1447 struct extent_state *cached = NULL; 1448 u64 alloc_hint = 0; 1449 u64 orig_start = start; 1450 u64 num_bytes; 1451 u32 min_alloc_size; 1452 u32 blocksize = fs_info->sectorsize; 1453 u32 cur_alloc_size = 0; 1454 struct btrfs_key ins; 1455 unsigned clear_bits; 1456 unsigned long page_ops; 1457 int ret = 0; 1458 1459 if (btrfs_is_shutdown(fs_info)) { 1460 ret = -EIO; 1461 goto out_unlock; 1462 } 1463 1464 if (btrfs_is_free_space_inode(inode)) { 1465 ret = -EINVAL; 1466 goto out_unlock; 1467 } 1468 1469 num_bytes = ALIGN(end - start + 1, blocksize); 1470 num_bytes = max(blocksize, num_bytes); 1471 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 1472 1473 inode_should_defrag(inode, start, end, num_bytes, SZ_64K); 1474 1475 if (!(flags & COW_FILE_RANGE_NO_INLINE)) { 1476 /* lets try to make an inline extent */ 1477 ret = cow_file_range_inline(inode, locked_folio, start, end, 0, 1478 BTRFS_COMPRESS_NONE, NULL, false); 1479 if (ret <= 0) { 1480 /* 1481 * We succeeded, return 1 so the caller knows we're done 1482 * with this page and already handled the IO. 1483 * 1484 * If there was an error then cow_file_range_inline() has 1485 * already done the cleanup. 1486 */ 1487 if (ret == 0) 1488 ret = 1; 1489 goto done; 1490 } 1491 } 1492 1493 alloc_hint = btrfs_get_extent_allocation_hint(inode, start, num_bytes); 1494 1495 /* 1496 * We're not doing compressed IO, don't unlock the first page (which 1497 * the caller expects to stay locked), don't clear any dirty bits and 1498 * don't set any writeback bits. 1499 * 1500 * Do set the Ordered (Private2) bit so we know this page was properly 1501 * setup for writepage. 1502 */ 1503 page_ops = ((flags & COW_FILE_RANGE_KEEP_LOCKED) ? 0 : PAGE_UNLOCK); 1504 page_ops |= PAGE_SET_ORDERED; 1505 1506 /* 1507 * Relocation relies on the relocated extents to have exactly the same 1508 * size as the original extents. Normally writeback for relocation data 1509 * extents follows a NOCOW path because relocation preallocates the 1510 * extents. However, due to an operation such as scrub turning a block 1511 * group to RO mode, it may fallback to COW mode, so we must make sure 1512 * an extent allocated during COW has exactly the requested size and can 1513 * not be split into smaller extents, otherwise relocation breaks and 1514 * fails during the stage where it updates the bytenr of file extent 1515 * items. 1516 */ 1517 if (btrfs_is_data_reloc_root(root)) 1518 min_alloc_size = num_bytes; 1519 else 1520 min_alloc_size = fs_info->sectorsize; 1521 1522 while (num_bytes > 0) { 1523 ret = cow_one_range(inode, locked_folio, &ins, &cached, start, 1524 num_bytes, min_alloc_size, alloc_hint, &cur_alloc_size); 1525 1526 if (ret == -EAGAIN) { 1527 /* 1528 * cow_one_range() only returns -EAGAIN for zoned 1529 * file systems (from btrfs_reserve_extent()), which 1530 * is an indication that there are 1531 * no active zones to allocate from at the moment. 1532 * 1533 * If this is the first loop iteration, wait for at 1534 * least one zone to finish before retrying the 1535 * allocation. Otherwise ask the caller to write out 1536 * the already allocated blocks before coming back to 1537 * us, or return -ENOSPC if it can't handle retries. 1538 */ 1539 ASSERT(btrfs_is_zoned(fs_info)); 1540 if (start == orig_start) { 1541 wait_on_bit_io(&inode->root->fs_info->flags, 1542 BTRFS_FS_NEED_ZONE_FINISH, 1543 TASK_UNINTERRUPTIBLE); 1544 continue; 1545 } 1546 if (done_offset) { 1547 /* 1548 * Move @end to the end of the processed range, 1549 * and exit the loop to unlock the processed extents. 1550 */ 1551 end = start - 1; 1552 ret = 0; 1553 break; 1554 } 1555 ret = -ENOSPC; 1556 } 1557 if (ret < 0) 1558 goto out_unlock; 1559 1560 /* We should not allocate an extent larger than requested.*/ 1561 ASSERT(cur_alloc_size <= num_bytes); 1562 1563 num_bytes -= cur_alloc_size; 1564 alloc_hint = ins.objectid + ins.offset; 1565 start += cur_alloc_size; 1566 cur_alloc_size = 0; 1567 } 1568 extent_clear_unlock_delalloc(inode, orig_start, end, locked_folio, &cached, 1569 EXTENT_LOCKED | EXTENT_DELALLOC, page_ops); 1570 done: 1571 if (done_offset) 1572 *done_offset = end; 1573 return ret; 1574 1575 out_unlock: 1576 /* 1577 * Now, we have three regions to clean up: 1578 * 1579 * |-------(1)----|---(2)---|-------------(3)----------| 1580 * `- orig_start `- start `- start + cur_alloc_size `- end 1581 * 1582 * We process each region below. 1583 */ 1584 1585 /* 1586 * For the range (1). We have already instantiated the ordered extents 1587 * for this region, thus we need to cleanup those ordered extents. 1588 * EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV 1589 * are also handled by the ordered extents cleanup. 1590 * 1591 * So here we only clear EXTENT_LOCKED and EXTENT_DELALLOC flag, and 1592 * finish the writeback of the involved folios, which will be never submitted. 1593 */ 1594 if (orig_start < start) { 1595 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC; 1596 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK; 1597 1598 if (!locked_folio) 1599 mapping_set_error(inode->vfs_inode.i_mapping, ret); 1600 1601 btrfs_cleanup_ordered_extents(inode, orig_start, start - orig_start); 1602 extent_clear_unlock_delalloc(inode, orig_start, start - 1, 1603 locked_folio, NULL, clear_bits, page_ops); 1604 } 1605 1606 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1607 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1608 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK; 1609 1610 /* 1611 * For the range (2) the error handling is done by cow_one_range() itself. 1612 * Nothing needs to be done. 1613 * 1614 * For the range (3). We never touched the region. In addition to the 1615 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data 1616 * space_info's bytes_may_use counter, reserved in 1617 * btrfs_check_data_free_space(). 1618 */ 1619 if (start + cur_alloc_size < end) { 1620 clear_bits |= EXTENT_CLEAR_DATA_RESV; 1621 extent_clear_unlock_delalloc(inode, start + cur_alloc_size, 1622 end, locked_folio, 1623 &cached, clear_bits, page_ops); 1624 btrfs_qgroup_free_data(inode, NULL, start + cur_alloc_size, 1625 end - start - cur_alloc_size + 1, NULL); 1626 } 1627 btrfs_err(fs_info, 1628 "%s failed, root=%llu inode=%llu start=%llu len=%llu cur_offset=%llu cur_alloc_size=%u: %d", 1629 __func__, btrfs_root_id(inode->root), 1630 btrfs_ino(inode), orig_start, end + 1 - orig_start, 1631 start, cur_alloc_size, ret); 1632 return ret; 1633 } 1634 1635 /* 1636 * Phase two of compressed writeback. This is the ordered portion of the code, 1637 * which only gets called in the order the work was queued. We walk all the 1638 * async extents created by compress_file_range and send them down to the disk. 1639 * 1640 * If called with @do_free == true then it'll try to finish the work and free 1641 * the work struct eventually. 1642 */ 1643 static noinline void submit_compressed_extents(struct btrfs_work *work, bool do_free) 1644 { 1645 struct async_chunk *async_chunk = container_of(work, struct async_chunk, 1646 work); 1647 struct btrfs_fs_info *fs_info = btrfs_work_owner(work); 1648 struct async_extent *async_extent; 1649 unsigned long nr_pages; 1650 u64 alloc_hint = 0; 1651 1652 if (do_free) { 1653 struct async_cow *async_cow; 1654 1655 btrfs_add_delayed_iput(async_chunk->inode); 1656 if (async_chunk->blkcg_css) 1657 css_put(async_chunk->blkcg_css); 1658 1659 async_cow = async_chunk->async_cow; 1660 if (atomic_dec_and_test(&async_cow->num_chunks)) 1661 kvfree(async_cow); 1662 return; 1663 } 1664 1665 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> 1666 PAGE_SHIFT; 1667 1668 while (!list_empty(&async_chunk->extents)) { 1669 async_extent = list_first_entry(&async_chunk->extents, 1670 struct async_extent, list); 1671 list_del(&async_extent->list); 1672 submit_one_async_extent(async_chunk, async_extent, &alloc_hint); 1673 } 1674 1675 /* atomic_sub_return implies a barrier */ 1676 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1677 5 * SZ_1M) 1678 cond_wake_up_nomb(&fs_info->async_submit_wait); 1679 } 1680 1681 static bool run_delalloc_compressed(struct btrfs_inode *inode, 1682 struct folio *locked_folio, u64 start, 1683 u64 end, struct writeback_control *wbc) 1684 { 1685 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1686 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc); 1687 struct async_cow *ctx; 1688 struct async_chunk *async_chunk; 1689 unsigned long nr_pages; 1690 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); 1691 int i; 1692 unsigned nofs_flag; 1693 const blk_opf_t write_flags = wbc_to_write_flags(wbc); 1694 1695 nofs_flag = memalloc_nofs_save(); 1696 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); 1697 memalloc_nofs_restore(nofs_flag); 1698 if (!ctx) 1699 return false; 1700 1701 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags); 1702 1703 async_chunk = ctx->chunks; 1704 atomic_set(&ctx->num_chunks, num_chunks); 1705 1706 for (i = 0; i < num_chunks; i++) { 1707 u64 cur_end = min(end, start + SZ_512K - 1); 1708 1709 /* 1710 * igrab is called higher up in the call chain, take only the 1711 * lightweight reference for the callback lifetime 1712 */ 1713 ihold(&inode->vfs_inode); 1714 async_chunk[i].async_cow = ctx; 1715 async_chunk[i].inode = inode; 1716 async_chunk[i].start = start; 1717 async_chunk[i].end = cur_end; 1718 async_chunk[i].write_flags = write_flags; 1719 INIT_LIST_HEAD(&async_chunk[i].extents); 1720 1721 /* 1722 * The locked_folio comes all the way from writepage and its 1723 * the original folio we were actually given. As we spread 1724 * this large delalloc region across multiple async_chunk 1725 * structs, only the first struct needs a pointer to 1726 * locked_folio. 1727 * 1728 * This way we don't need racey decisions about who is supposed 1729 * to unlock it. 1730 */ 1731 if (locked_folio) { 1732 /* 1733 * Depending on the compressibility, the pages might or 1734 * might not go through async. We want all of them to 1735 * be accounted against wbc once. Let's do it here 1736 * before the paths diverge. wbc accounting is used 1737 * only for foreign writeback detection and doesn't 1738 * need full accuracy. Just account the whole thing 1739 * against the first page. 1740 */ 1741 wbc_account_cgroup_owner(wbc, locked_folio, 1742 cur_end - start); 1743 async_chunk[i].locked_folio = locked_folio; 1744 locked_folio = NULL; 1745 } else { 1746 async_chunk[i].locked_folio = NULL; 1747 } 1748 1749 if (blkcg_css != blkcg_root_css) { 1750 css_get(blkcg_css); 1751 async_chunk[i].blkcg_css = blkcg_css; 1752 async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT; 1753 } else { 1754 async_chunk[i].blkcg_css = NULL; 1755 } 1756 1757 btrfs_init_work(&async_chunk[i].work, compress_file_range, 1758 submit_compressed_extents); 1759 1760 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); 1761 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1762 1763 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); 1764 1765 start = cur_end + 1; 1766 } 1767 return true; 1768 } 1769 1770 /* 1771 * Run the delalloc range from start to end, and write back any dirty pages 1772 * covered by the range. 1773 */ 1774 static noinline int run_delalloc_cow(struct btrfs_inode *inode, 1775 struct folio *locked_folio, u64 start, 1776 u64 end, struct writeback_control *wbc, 1777 bool pages_dirty) 1778 { 1779 u64 done_offset = end; 1780 int ret; 1781 1782 while (start <= end) { 1783 ret = cow_file_range(inode, locked_folio, start, end, 1784 &done_offset, COW_FILE_RANGE_KEEP_LOCKED); 1785 if (ret) 1786 return ret; 1787 extent_write_locked_range(&inode->vfs_inode, locked_folio, 1788 start, done_offset, wbc, pages_dirty); 1789 start = done_offset + 1; 1790 } 1791 1792 return 1; 1793 } 1794 1795 static int fallback_to_cow(struct btrfs_inode *inode, 1796 struct folio *locked_folio, const u64 start, 1797 const u64 end) 1798 { 1799 const bool is_space_ino = btrfs_is_free_space_inode(inode); 1800 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root); 1801 const u64 range_bytes = end + 1 - start; 1802 struct extent_io_tree *io_tree = &inode->io_tree; 1803 struct extent_state *cached_state = NULL; 1804 u64 range_start = start; 1805 u64 count; 1806 int ret; 1807 1808 /* 1809 * If EXTENT_NORESERVE is set it means that when the buffered write was 1810 * made we had not enough available data space and therefore we did not 1811 * reserve data space for it, since we though we could do NOCOW for the 1812 * respective file range (either there is prealloc extent or the inode 1813 * has the NOCOW bit set). 1814 * 1815 * However when we need to fallback to COW mode (because for example the 1816 * block group for the corresponding extent was turned to RO mode by a 1817 * scrub or relocation) we need to do the following: 1818 * 1819 * 1) We increment the bytes_may_use counter of the data space info. 1820 * If COW succeeds, it allocates a new data extent and after doing 1821 * that it decrements the space info's bytes_may_use counter and 1822 * increments its bytes_reserved counter by the same amount (we do 1823 * this at btrfs_add_reserved_bytes()). So we need to increment the 1824 * bytes_may_use counter to compensate (when space is reserved at 1825 * buffered write time, the bytes_may_use counter is incremented); 1826 * 1827 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so 1828 * that if the COW path fails for any reason, it decrements (through 1829 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the 1830 * data space info, which we incremented in the step above. 1831 * 1832 * If we need to fallback to cow and the inode corresponds to a free 1833 * space cache inode or an inode of the data relocation tree, we must 1834 * also increment bytes_may_use of the data space_info for the same 1835 * reason. Space caches and relocated data extents always get a prealloc 1836 * extent for them, however scrub or balance may have set the block 1837 * group that contains that extent to RO mode and therefore force COW 1838 * when starting writeback. 1839 */ 1840 btrfs_lock_extent(io_tree, start, end, &cached_state); 1841 count = btrfs_count_range_bits(io_tree, &range_start, end, range_bytes, 1842 EXTENT_NORESERVE, 0, NULL); 1843 if (count > 0 || is_space_ino || is_reloc_ino) { 1844 u64 bytes = count; 1845 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1846 struct btrfs_space_info *sinfo = fs_info->data_sinfo; 1847 1848 if (is_space_ino || is_reloc_ino) 1849 bytes = range_bytes; 1850 1851 spin_lock(&sinfo->lock); 1852 btrfs_space_info_update_bytes_may_use(sinfo, bytes); 1853 spin_unlock(&sinfo->lock); 1854 1855 if (count > 0) 1856 btrfs_clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE, 1857 &cached_state); 1858 } 1859 btrfs_unlock_extent(io_tree, start, end, &cached_state); 1860 1861 /* 1862 * Don't try to create inline extents, as a mix of inline extent that 1863 * is written out and unlocked directly and a normal NOCOW extent 1864 * doesn't work. 1865 * 1866 * And here we do not unlock the folio after a successful run. 1867 * The folios will be unlocked after everything is finished, or by error handling. 1868 * 1869 * This is to ensure error handling won't need to clear dirty/ordered flags without 1870 * a locked folio, which can race with writeback. 1871 */ 1872 ret = cow_file_range(inode, locked_folio, start, end, NULL, 1873 COW_FILE_RANGE_NO_INLINE | COW_FILE_RANGE_KEEP_LOCKED); 1874 ASSERT(ret != 1); 1875 return ret; 1876 } 1877 1878 struct can_nocow_file_extent_args { 1879 /* Input fields. */ 1880 1881 /* Start file offset of the range we want to NOCOW. */ 1882 u64 start; 1883 /* End file offset (inclusive) of the range we want to NOCOW. */ 1884 u64 end; 1885 bool writeback_path; 1886 /* 1887 * Free the path passed to can_nocow_file_extent() once it's not needed 1888 * anymore. 1889 */ 1890 bool free_path; 1891 1892 /* 1893 * Output fields. Only set when can_nocow_file_extent() returns 1. 1894 * The expected file extent for the NOCOW write. 1895 */ 1896 struct btrfs_file_extent file_extent; 1897 }; 1898 1899 /* 1900 * Check if we can NOCOW the file extent that the path points to. 1901 * This function may return with the path released, so the caller should check 1902 * if path->nodes[0] is NULL or not if it needs to use the path afterwards. 1903 * 1904 * Returns: < 0 on error 1905 * 0 if we can not NOCOW 1906 * 1 if we can NOCOW 1907 */ 1908 static int can_nocow_file_extent(struct btrfs_path *path, 1909 struct btrfs_key *key, 1910 struct btrfs_inode *inode, 1911 struct can_nocow_file_extent_args *args) 1912 { 1913 const bool is_freespace_inode = btrfs_is_free_space_inode(inode); 1914 struct extent_buffer *leaf = path->nodes[0]; 1915 struct btrfs_root *root = inode->root; 1916 struct btrfs_file_extent_item *fi; 1917 struct btrfs_root *csum_root; 1918 u64 io_start; 1919 u64 extent_end; 1920 u8 extent_type; 1921 int can_nocow = 0; 1922 int ret = 0; 1923 bool nowait = path->nowait; 1924 1925 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 1926 extent_type = btrfs_file_extent_type(leaf, fi); 1927 1928 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 1929 goto out; 1930 1931 if (!(inode->flags & BTRFS_INODE_NODATACOW) && 1932 extent_type == BTRFS_FILE_EXTENT_REG) 1933 goto out; 1934 1935 /* 1936 * If the extent was created before the generation where the last snapshot 1937 * for its subvolume was created, then this implies the extent is shared, 1938 * hence we must COW. 1939 */ 1940 if (btrfs_file_extent_generation(leaf, fi) <= 1941 btrfs_root_last_snapshot(&root->root_item)) 1942 goto out; 1943 1944 /* An explicit hole, must COW. */ 1945 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) 1946 goto out; 1947 1948 /* Compressed/encrypted/encoded extents must be COWed. */ 1949 if (btrfs_file_extent_compression(leaf, fi) || 1950 btrfs_file_extent_encryption(leaf, fi) || 1951 btrfs_file_extent_other_encoding(leaf, fi)) 1952 goto out; 1953 1954 extent_end = btrfs_file_extent_end(path); 1955 1956 args->file_extent.disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1957 args->file_extent.disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1958 args->file_extent.ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1959 args->file_extent.offset = btrfs_file_extent_offset(leaf, fi); 1960 args->file_extent.compression = btrfs_file_extent_compression(leaf, fi); 1961 1962 /* 1963 * The following checks can be expensive, as they need to take other 1964 * locks and do btree or rbtree searches, so release the path to avoid 1965 * blocking other tasks for too long. 1966 */ 1967 btrfs_release_path(path); 1968 1969 ret = btrfs_cross_ref_exist(inode, key->offset - args->file_extent.offset, 1970 args->file_extent.disk_bytenr, path); 1971 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 1972 if (ret != 0) 1973 goto out; 1974 1975 if (args->free_path) { 1976 /* 1977 * We don't need the path anymore, plus through the 1978 * btrfs_lookup_csums_list() call below we will end up allocating 1979 * another path. So free the path to avoid unnecessary extra 1980 * memory usage. 1981 */ 1982 btrfs_free_path(path); 1983 path = NULL; 1984 } 1985 1986 /* If there are pending snapshots for this root, we must COW. */ 1987 if (args->writeback_path && !is_freespace_inode && 1988 atomic_read(&root->snapshot_force_cow)) 1989 goto out; 1990 1991 args->file_extent.num_bytes = min(args->end + 1, extent_end) - args->start; 1992 args->file_extent.offset += args->start - key->offset; 1993 io_start = args->file_extent.disk_bytenr + args->file_extent.offset; 1994 1995 /* 1996 * Force COW if csums exist in the range. This ensures that csums for a 1997 * given extent are either valid or do not exist. 1998 */ 1999 2000 csum_root = btrfs_csum_root(root->fs_info, io_start); 2001 ret = btrfs_lookup_csums_list(csum_root, io_start, 2002 io_start + args->file_extent.num_bytes - 1, 2003 NULL, nowait); 2004 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 2005 if (ret != 0) 2006 goto out; 2007 2008 can_nocow = 1; 2009 out: 2010 if (args->free_path && path) 2011 btrfs_free_path(path); 2012 2013 return ret < 0 ? ret : can_nocow; 2014 } 2015 2016 static int nocow_one_range(struct btrfs_inode *inode, struct folio *locked_folio, 2017 struct extent_state **cached, 2018 struct can_nocow_file_extent_args *nocow_args, 2019 u64 file_pos, bool is_prealloc) 2020 { 2021 struct btrfs_ordered_extent *ordered; 2022 const u64 len = nocow_args->file_extent.num_bytes; 2023 const u64 end = file_pos + len - 1; 2024 int ret = 0; 2025 2026 btrfs_lock_extent(&inode->io_tree, file_pos, end, cached); 2027 2028 if (is_prealloc) { 2029 struct extent_map *em; 2030 2031 em = btrfs_create_io_em(inode, file_pos, &nocow_args->file_extent, 2032 BTRFS_ORDERED_PREALLOC); 2033 if (IS_ERR(em)) { 2034 ret = PTR_ERR(em); 2035 goto error; 2036 } 2037 btrfs_free_extent_map(em); 2038 } 2039 2040 ordered = btrfs_alloc_ordered_extent(inode, file_pos, &nocow_args->file_extent, 2041 is_prealloc 2042 ? (1U << BTRFS_ORDERED_PREALLOC) 2043 : (1U << BTRFS_ORDERED_NOCOW)); 2044 if (IS_ERR(ordered)) { 2045 if (is_prealloc) 2046 btrfs_drop_extent_map_range(inode, file_pos, end, false); 2047 ret = PTR_ERR(ordered); 2048 goto error; 2049 } 2050 2051 if (btrfs_is_data_reloc_root(inode->root)) 2052 /* 2053 * Errors are handled later, as we must prevent 2054 * extent_clear_unlock_delalloc() in error handler from freeing 2055 * metadata of the created ordered extent. 2056 */ 2057 ret = btrfs_reloc_clone_csums(ordered); 2058 btrfs_put_ordered_extent(ordered); 2059 2060 if (ret < 0) 2061 goto error; 2062 extent_clear_unlock_delalloc(inode, file_pos, end, locked_folio, cached, 2063 EXTENT_LOCKED | EXTENT_DELALLOC | 2064 EXTENT_CLEAR_DATA_RESV, 2065 PAGE_SET_ORDERED); 2066 return ret; 2067 2068 error: 2069 btrfs_cleanup_ordered_extents(inode, file_pos, len); 2070 extent_clear_unlock_delalloc(inode, file_pos, end, locked_folio, cached, 2071 EXTENT_LOCKED | EXTENT_DELALLOC | 2072 EXTENT_CLEAR_DATA_RESV, 2073 PAGE_UNLOCK | PAGE_START_WRITEBACK | 2074 PAGE_END_WRITEBACK); 2075 btrfs_err(inode->root->fs_info, 2076 "%s failed, root=%lld inode=%llu start=%llu len=%llu: %d", 2077 __func__, btrfs_root_id(inode->root), btrfs_ino(inode), 2078 file_pos, len, ret); 2079 return ret; 2080 } 2081 2082 /* 2083 * When nocow writeback calls back. This checks for snapshots or COW copies 2084 * of the extents that exist in the file, and COWs the file as required. 2085 * 2086 * If no cow copies or snapshots exist, we write directly to the existing 2087 * blocks on disk 2088 */ 2089 static noinline int run_delalloc_nocow(struct btrfs_inode *inode, 2090 struct folio *locked_folio, 2091 const u64 start, const u64 end) 2092 { 2093 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2094 struct btrfs_root *root = inode->root; 2095 struct btrfs_path *path = NULL; 2096 u64 cow_start = (u64)-1; 2097 /* 2098 * If not 0, represents the inclusive end of the last fallback_to_cow() 2099 * range. Only for error handling. 2100 * 2101 * The same for nocow_end, it's to avoid double cleaning up the range 2102 * already cleaned by nocow_one_range(). 2103 */ 2104 u64 cow_end = 0; 2105 u64 nocow_end = 0; 2106 u64 cur_offset = start; 2107 int ret; 2108 bool check_prev = true; 2109 u64 ino = btrfs_ino(inode); 2110 struct can_nocow_file_extent_args nocow_args = { 0 }; 2111 /* The range that has ordered extent(s). */ 2112 u64 oe_cleanup_start; 2113 u64 oe_cleanup_len = 0; 2114 /* The range that is untouched. */ 2115 u64 untouched_start; 2116 u64 untouched_len = 0; 2117 2118 /* 2119 * Normally on a zoned device we're only doing COW writes, but in case 2120 * of relocation on a zoned filesystem serializes I/O so that we're only 2121 * writing sequentially and can end up here as well. 2122 */ 2123 ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root)); 2124 2125 if (btrfs_is_shutdown(fs_info)) { 2126 ret = -EIO; 2127 goto error; 2128 } 2129 path = btrfs_alloc_path(); 2130 if (!path) { 2131 ret = -ENOMEM; 2132 goto error; 2133 } 2134 2135 nocow_args.end = end; 2136 nocow_args.writeback_path = true; 2137 2138 while (cur_offset <= end) { 2139 struct btrfs_block_group *nocow_bg = NULL; 2140 struct btrfs_key found_key; 2141 struct btrfs_file_extent_item *fi; 2142 struct extent_buffer *leaf; 2143 struct extent_state *cached_state = NULL; 2144 u64 extent_end; 2145 int extent_type; 2146 2147 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 2148 cur_offset, 0); 2149 if (ret < 0) 2150 goto error; 2151 2152 /* 2153 * If there is no extent for our range when doing the initial 2154 * search, then go back to the previous slot as it will be the 2155 * one containing the search offset 2156 */ 2157 if (ret > 0 && path->slots[0] > 0 && check_prev) { 2158 leaf = path->nodes[0]; 2159 btrfs_item_key_to_cpu(leaf, &found_key, 2160 path->slots[0] - 1); 2161 if (found_key.objectid == ino && 2162 found_key.type == BTRFS_EXTENT_DATA_KEY) 2163 path->slots[0]--; 2164 } 2165 check_prev = false; 2166 next_slot: 2167 /* Go to next leaf if we have exhausted the current one */ 2168 leaf = path->nodes[0]; 2169 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2170 ret = btrfs_next_leaf(root, path); 2171 if (ret < 0) 2172 goto error; 2173 if (ret > 0) 2174 break; 2175 leaf = path->nodes[0]; 2176 } 2177 2178 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2179 2180 /* Didn't find anything for our INO */ 2181 if (found_key.objectid > ino) 2182 break; 2183 /* 2184 * Keep searching until we find an EXTENT_ITEM or there are no 2185 * more extents for this inode 2186 */ 2187 if (WARN_ON_ONCE(found_key.objectid < ino) || 2188 found_key.type < BTRFS_EXTENT_DATA_KEY) { 2189 path->slots[0]++; 2190 goto next_slot; 2191 } 2192 2193 /* Found key is not EXTENT_DATA_KEY or starts after req range */ 2194 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 2195 found_key.offset > end) 2196 break; 2197 2198 /* 2199 * If the found extent starts after requested offset, then 2200 * adjust cur_offset to be right before this extent begins. 2201 */ 2202 if (found_key.offset > cur_offset) { 2203 if (cow_start == (u64)-1) 2204 cow_start = cur_offset; 2205 cur_offset = found_key.offset; 2206 goto next_slot; 2207 } 2208 2209 /* 2210 * Found extent which begins before our range and potentially 2211 * intersect it 2212 */ 2213 fi = btrfs_item_ptr(leaf, path->slots[0], 2214 struct btrfs_file_extent_item); 2215 extent_type = btrfs_file_extent_type(leaf, fi); 2216 /* If this is triggered then we have a memory corruption. */ 2217 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES); 2218 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) { 2219 ret = -EUCLEAN; 2220 goto error; 2221 } 2222 extent_end = btrfs_file_extent_end(path); 2223 2224 /* 2225 * If the extent we got ends before our current offset, skip to 2226 * the next extent. 2227 */ 2228 if (extent_end <= cur_offset) { 2229 path->slots[0]++; 2230 goto next_slot; 2231 } 2232 2233 nocow_args.start = cur_offset; 2234 ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args); 2235 if (ret < 0) 2236 goto error; 2237 if (ret == 0) 2238 goto must_cow; 2239 2240 ret = 0; 2241 nocow_bg = btrfs_inc_nocow_writers(fs_info, 2242 nocow_args.file_extent.disk_bytenr + 2243 nocow_args.file_extent.offset); 2244 if (!nocow_bg) { 2245 must_cow: 2246 /* 2247 * If we can't perform NOCOW writeback for the range, 2248 * then record the beginning of the range that needs to 2249 * be COWed. It will be written out before the next 2250 * NOCOW range if we find one, or when exiting this 2251 * loop. 2252 */ 2253 if (cow_start == (u64)-1) 2254 cow_start = cur_offset; 2255 cur_offset = extent_end; 2256 if (cur_offset > end) 2257 break; 2258 if (!path->nodes[0]) 2259 continue; 2260 path->slots[0]++; 2261 goto next_slot; 2262 } 2263 2264 /* 2265 * COW range from cow_start to found_key.offset - 1. As the key 2266 * will contain the beginning of the first extent that can be 2267 * NOCOW, following one which needs to be COW'ed 2268 */ 2269 if (cow_start != (u64)-1) { 2270 ret = fallback_to_cow(inode, locked_folio, cow_start, 2271 found_key.offset - 1); 2272 if (ret) { 2273 cow_end = found_key.offset - 1; 2274 btrfs_dec_nocow_writers(nocow_bg); 2275 goto error; 2276 } 2277 cow_start = (u64)-1; 2278 } 2279 2280 ret = nocow_one_range(inode, locked_folio, &cached_state, 2281 &nocow_args, cur_offset, 2282 extent_type == BTRFS_FILE_EXTENT_PREALLOC); 2283 btrfs_dec_nocow_writers(nocow_bg); 2284 if (ret < 0) { 2285 nocow_end = cur_offset + nocow_args.file_extent.num_bytes - 1; 2286 goto error; 2287 } 2288 cur_offset = extent_end; 2289 } 2290 btrfs_release_path(path); 2291 2292 if (cur_offset <= end && cow_start == (u64)-1) 2293 cow_start = cur_offset; 2294 2295 if (cow_start != (u64)-1) { 2296 ret = fallback_to_cow(inode, locked_folio, cow_start, end); 2297 if (ret) { 2298 cow_end = end; 2299 goto error; 2300 } 2301 cow_start = (u64)-1; 2302 } 2303 2304 /* 2305 * Everything is finished without an error, can unlock the folios now. 2306 * 2307 * No need to touch the io tree range nor set folio ordered flag, as 2308 * fallback_to_cow() and nocow_one_range() have already handled them. 2309 */ 2310 extent_clear_unlock_delalloc(inode, start, end, locked_folio, NULL, 0, PAGE_UNLOCK); 2311 2312 btrfs_free_path(path); 2313 return 0; 2314 2315 error: 2316 if (cow_start == (u64)-1) { 2317 /* 2318 * case a) 2319 * start cur_offset end 2320 * | OE cleanup | Untouched | 2321 * 2322 * We finished a fallback_to_cow() or nocow_one_range() call, 2323 * but failed to check the next range. 2324 * 2325 * or 2326 * start cur_offset nocow_end end 2327 * | OE cleanup | Skip | Untouched | 2328 * 2329 * nocow_one_range() failed, the range [cur_offset, nocow_end] is 2330 * already cleaned up. 2331 */ 2332 oe_cleanup_start = start; 2333 oe_cleanup_len = cur_offset - start; 2334 if (nocow_end) 2335 untouched_start = nocow_end + 1; 2336 else 2337 untouched_start = cur_offset; 2338 untouched_len = end + 1 - untouched_start; 2339 } else if (cow_start != (u64)-1 && cow_end == 0) { 2340 /* 2341 * case b) 2342 * start cow_start cur_offset end 2343 * | OE cleanup | Untouched | 2344 * 2345 * We got a range that needs COW, but before we hit the next NOCOW range, 2346 * thus [cow_start, cur_offset) doesn't yet have any OE. 2347 */ 2348 oe_cleanup_start = start; 2349 oe_cleanup_len = cow_start - start; 2350 untouched_start = cow_start; 2351 untouched_len = end + 1 - untouched_start; 2352 } else { 2353 /* 2354 * case c) 2355 * start cow_start cow_end end 2356 * | OE cleanup | Skip | Untouched | 2357 * 2358 * fallback_to_cow() failed, and fallback_to_cow() will do the 2359 * cleanup for its range, we shouldn't touch the range 2360 * [cow_start, cow_end]. 2361 */ 2362 ASSERT(cow_start != (u64)-1 && cow_end != 0); 2363 oe_cleanup_start = start; 2364 oe_cleanup_len = cow_start - start; 2365 untouched_start = cow_end + 1; 2366 untouched_len = end + 1 - untouched_start; 2367 } 2368 2369 if (oe_cleanup_len) { 2370 const u64 oe_cleanup_end = oe_cleanup_start + oe_cleanup_len - 1; 2371 btrfs_cleanup_ordered_extents(inode, oe_cleanup_start, oe_cleanup_len); 2372 extent_clear_unlock_delalloc(inode, oe_cleanup_start, oe_cleanup_end, 2373 locked_folio, NULL, 2374 EXTENT_LOCKED | EXTENT_DELALLOC, 2375 PAGE_UNLOCK | PAGE_START_WRITEBACK | 2376 PAGE_END_WRITEBACK); 2377 } 2378 2379 if (untouched_len) { 2380 struct extent_state *cached = NULL; 2381 const u64 untouched_end = untouched_start + untouched_len - 1; 2382 2383 /* 2384 * We need to lock the extent here because we're clearing DELALLOC and 2385 * we're not locked at this point. 2386 */ 2387 btrfs_lock_extent(&inode->io_tree, untouched_start, untouched_end, &cached); 2388 extent_clear_unlock_delalloc(inode, untouched_start, untouched_end, 2389 locked_folio, &cached, 2390 EXTENT_LOCKED | EXTENT_DELALLOC | 2391 EXTENT_DEFRAG | 2392 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 2393 PAGE_START_WRITEBACK | 2394 PAGE_END_WRITEBACK); 2395 btrfs_qgroup_free_data(inode, NULL, untouched_start, untouched_len, NULL); 2396 } 2397 btrfs_free_path(path); 2398 btrfs_err(fs_info, 2399 "%s failed, root=%llu inode=%llu start=%llu len=%llu cur_offset=%llu oe_cleanup=%llu oe_cleanup_len=%llu untouched_start=%llu untouched_len=%llu: %d", 2400 __func__, btrfs_root_id(inode->root), btrfs_ino(inode), 2401 start, end + 1 - start, cur_offset, oe_cleanup_start, oe_cleanup_len, 2402 untouched_start, untouched_len, ret); 2403 return ret; 2404 } 2405 2406 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end) 2407 { 2408 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) { 2409 if (inode->defrag_bytes && 2410 btrfs_test_range_bit_exists(&inode->io_tree, start, end, EXTENT_DEFRAG)) 2411 return false; 2412 return true; 2413 } 2414 return false; 2415 } 2416 2417 /* 2418 * Function to process delayed allocation (create CoW) for ranges which are 2419 * being touched for the first time. 2420 */ 2421 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct folio *locked_folio, 2422 u64 start, u64 end, struct writeback_control *wbc) 2423 { 2424 const bool zoned = btrfs_is_zoned(inode->root->fs_info); 2425 2426 /* 2427 * The range must cover part of the @locked_folio, or a return of 1 2428 * can confuse the caller. 2429 */ 2430 ASSERT(!(end <= folio_pos(locked_folio) || 2431 start >= folio_next_pos(locked_folio))); 2432 2433 if (should_nocow(inode, start, end)) 2434 return run_delalloc_nocow(inode, locked_folio, start, end); 2435 2436 if (btrfs_inode_can_compress(inode) && 2437 inode_need_compress(inode, start, end) && 2438 run_delalloc_compressed(inode, locked_folio, start, end, wbc)) 2439 return 1; 2440 2441 if (zoned) 2442 return run_delalloc_cow(inode, locked_folio, start, end, wbc, true); 2443 else 2444 return cow_file_range(inode, locked_folio, start, end, NULL, 0); 2445 } 2446 2447 void btrfs_split_delalloc_extent(struct btrfs_inode *inode, 2448 struct extent_state *orig, u64 split) 2449 { 2450 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2451 u64 size; 2452 2453 lockdep_assert_held(&inode->io_tree.lock); 2454 2455 /* not delalloc, ignore it */ 2456 if (!(orig->state & EXTENT_DELALLOC)) 2457 return; 2458 2459 size = orig->end - orig->start + 1; 2460 if (size > fs_info->max_extent_size) { 2461 u32 num_extents; 2462 u64 new_size; 2463 2464 /* 2465 * See the explanation in btrfs_merge_delalloc_extent, the same 2466 * applies here, just in reverse. 2467 */ 2468 new_size = orig->end - split + 1; 2469 num_extents = count_max_extents(fs_info, new_size); 2470 new_size = split - orig->start; 2471 num_extents += count_max_extents(fs_info, new_size); 2472 if (count_max_extents(fs_info, size) >= num_extents) 2473 return; 2474 } 2475 2476 spin_lock(&inode->lock); 2477 btrfs_mod_outstanding_extents(inode, 1); 2478 spin_unlock(&inode->lock); 2479 } 2480 2481 /* 2482 * Handle merged delayed allocation extents so we can keep track of new extents 2483 * that are just merged onto old extents, such as when we are doing sequential 2484 * writes, so we can properly account for the metadata space we'll need. 2485 */ 2486 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new, 2487 struct extent_state *other) 2488 { 2489 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2490 u64 new_size, old_size; 2491 u32 num_extents; 2492 2493 lockdep_assert_held(&inode->io_tree.lock); 2494 2495 /* not delalloc, ignore it */ 2496 if (!(other->state & EXTENT_DELALLOC)) 2497 return; 2498 2499 if (new->start > other->start) 2500 new_size = new->end - other->start + 1; 2501 else 2502 new_size = other->end - new->start + 1; 2503 2504 /* we're not bigger than the max, unreserve the space and go */ 2505 if (new_size <= fs_info->max_extent_size) { 2506 spin_lock(&inode->lock); 2507 btrfs_mod_outstanding_extents(inode, -1); 2508 spin_unlock(&inode->lock); 2509 return; 2510 } 2511 2512 /* 2513 * We have to add up either side to figure out how many extents were 2514 * accounted for before we merged into one big extent. If the number of 2515 * extents we accounted for is <= the amount we need for the new range 2516 * then we can return, otherwise drop. Think of it like this 2517 * 2518 * [ 4k][MAX_SIZE] 2519 * 2520 * So we've grown the extent by a MAX_SIZE extent, this would mean we 2521 * need 2 outstanding extents, on one side we have 1 and the other side 2522 * we have 1 so they are == and we can return. But in this case 2523 * 2524 * [MAX_SIZE+4k][MAX_SIZE+4k] 2525 * 2526 * Each range on their own accounts for 2 extents, but merged together 2527 * they are only 3 extents worth of accounting, so we need to drop in 2528 * this case. 2529 */ 2530 old_size = other->end - other->start + 1; 2531 num_extents = count_max_extents(fs_info, old_size); 2532 old_size = new->end - new->start + 1; 2533 num_extents += count_max_extents(fs_info, old_size); 2534 if (count_max_extents(fs_info, new_size) >= num_extents) 2535 return; 2536 2537 spin_lock(&inode->lock); 2538 btrfs_mod_outstanding_extents(inode, -1); 2539 spin_unlock(&inode->lock); 2540 } 2541 2542 static void btrfs_add_delalloc_inode(struct btrfs_inode *inode) 2543 { 2544 struct btrfs_root *root = inode->root; 2545 struct btrfs_fs_info *fs_info = root->fs_info; 2546 2547 spin_lock(&root->delalloc_lock); 2548 ASSERT(list_empty(&inode->delalloc_inodes)); 2549 list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes); 2550 root->nr_delalloc_inodes++; 2551 if (root->nr_delalloc_inodes == 1) { 2552 spin_lock(&fs_info->delalloc_root_lock); 2553 ASSERT(list_empty(&root->delalloc_root)); 2554 list_add_tail(&root->delalloc_root, &fs_info->delalloc_roots); 2555 spin_unlock(&fs_info->delalloc_root_lock); 2556 } 2557 spin_unlock(&root->delalloc_lock); 2558 } 2559 2560 void btrfs_del_delalloc_inode(struct btrfs_inode *inode) 2561 { 2562 struct btrfs_root *root = inode->root; 2563 struct btrfs_fs_info *fs_info = root->fs_info; 2564 2565 lockdep_assert_held(&root->delalloc_lock); 2566 2567 /* 2568 * We may be called after the inode was already deleted from the list, 2569 * namely in the transaction abort path btrfs_destroy_delalloc_inodes(), 2570 * and then later through btrfs_clear_delalloc_extent() while the inode 2571 * still has ->delalloc_bytes > 0. 2572 */ 2573 if (!list_empty(&inode->delalloc_inodes)) { 2574 list_del_init(&inode->delalloc_inodes); 2575 root->nr_delalloc_inodes--; 2576 if (!root->nr_delalloc_inodes) { 2577 ASSERT(list_empty(&root->delalloc_inodes)); 2578 spin_lock(&fs_info->delalloc_root_lock); 2579 ASSERT(!list_empty(&root->delalloc_root)); 2580 list_del_init(&root->delalloc_root); 2581 spin_unlock(&fs_info->delalloc_root_lock); 2582 } 2583 } 2584 } 2585 2586 /* 2587 * Properly track delayed allocation bytes in the inode and to maintain the 2588 * list of inodes that have pending delalloc work to be done. 2589 */ 2590 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state, 2591 u32 bits) 2592 { 2593 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2594 2595 lockdep_assert_held(&inode->io_tree.lock); 2596 2597 if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC)) 2598 WARN_ON(1); 2599 /* 2600 * set_bit and clear bit hooks normally require _irqsave/restore 2601 * but in this case, we are only testing for the DELALLOC 2602 * bit, which is only set or cleared with irqs on 2603 */ 2604 if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2605 u64 len = state->end + 1 - state->start; 2606 u64 prev_delalloc_bytes; 2607 u32 num_extents = count_max_extents(fs_info, len); 2608 2609 spin_lock(&inode->lock); 2610 btrfs_mod_outstanding_extents(inode, num_extents); 2611 spin_unlock(&inode->lock); 2612 2613 /* For sanity tests */ 2614 if (btrfs_is_testing(fs_info)) 2615 return; 2616 2617 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 2618 fs_info->delalloc_batch); 2619 spin_lock(&inode->lock); 2620 prev_delalloc_bytes = inode->delalloc_bytes; 2621 inode->delalloc_bytes += len; 2622 if (bits & EXTENT_DEFRAG) 2623 inode->defrag_bytes += len; 2624 spin_unlock(&inode->lock); 2625 2626 /* 2627 * We don't need to be under the protection of the inode's lock, 2628 * because we are called while holding the inode's io_tree lock 2629 * and are therefore protected against concurrent calls of this 2630 * function and btrfs_clear_delalloc_extent(). 2631 */ 2632 if (!btrfs_is_free_space_inode(inode) && prev_delalloc_bytes == 0) 2633 btrfs_add_delalloc_inode(inode); 2634 } 2635 2636 if (!(state->state & EXTENT_DELALLOC_NEW) && 2637 (bits & EXTENT_DELALLOC_NEW)) { 2638 spin_lock(&inode->lock); 2639 inode->new_delalloc_bytes += state->end + 1 - state->start; 2640 spin_unlock(&inode->lock); 2641 } 2642 } 2643 2644 /* 2645 * Once a range is no longer delalloc this function ensures that proper 2646 * accounting happens. 2647 */ 2648 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode, 2649 struct extent_state *state, u32 bits) 2650 { 2651 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2652 u64 len = state->end + 1 - state->start; 2653 u32 num_extents = count_max_extents(fs_info, len); 2654 2655 lockdep_assert_held(&inode->io_tree.lock); 2656 2657 if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) { 2658 spin_lock(&inode->lock); 2659 inode->defrag_bytes -= len; 2660 spin_unlock(&inode->lock); 2661 } 2662 2663 /* 2664 * set_bit and clear bit hooks normally require _irqsave/restore 2665 * but in this case, we are only testing for the DELALLOC 2666 * bit, which is only set or cleared with irqs on 2667 */ 2668 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2669 struct btrfs_root *root = inode->root; 2670 u64 new_delalloc_bytes; 2671 2672 spin_lock(&inode->lock); 2673 btrfs_mod_outstanding_extents(inode, -num_extents); 2674 spin_unlock(&inode->lock); 2675 2676 /* 2677 * We don't reserve metadata space for space cache inodes so we 2678 * don't need to call delalloc_release_metadata if there is an 2679 * error. 2680 */ 2681 if (bits & EXTENT_CLEAR_META_RESV && 2682 root != fs_info->tree_root) 2683 btrfs_delalloc_release_metadata(inode, len, true); 2684 2685 /* For sanity tests. */ 2686 if (btrfs_is_testing(fs_info)) 2687 return; 2688 2689 if (!btrfs_is_data_reloc_root(root) && 2690 !btrfs_is_free_space_inode(inode) && 2691 !(state->state & EXTENT_NORESERVE) && 2692 (bits & EXTENT_CLEAR_DATA_RESV)) 2693 btrfs_free_reserved_data_space_noquota(inode, len); 2694 2695 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 2696 fs_info->delalloc_batch); 2697 spin_lock(&inode->lock); 2698 inode->delalloc_bytes -= len; 2699 new_delalloc_bytes = inode->delalloc_bytes; 2700 spin_unlock(&inode->lock); 2701 2702 /* 2703 * We don't need to be under the protection of the inode's lock, 2704 * because we are called while holding the inode's io_tree lock 2705 * and are therefore protected against concurrent calls of this 2706 * function and btrfs_set_delalloc_extent(). 2707 */ 2708 if (!btrfs_is_free_space_inode(inode) && new_delalloc_bytes == 0) { 2709 spin_lock(&root->delalloc_lock); 2710 btrfs_del_delalloc_inode(inode); 2711 spin_unlock(&root->delalloc_lock); 2712 } 2713 } 2714 2715 if ((state->state & EXTENT_DELALLOC_NEW) && 2716 (bits & EXTENT_DELALLOC_NEW)) { 2717 spin_lock(&inode->lock); 2718 ASSERT(inode->new_delalloc_bytes >= len); 2719 inode->new_delalloc_bytes -= len; 2720 if (bits & EXTENT_ADD_INODE_BYTES) 2721 inode_add_bytes(&inode->vfs_inode, len); 2722 spin_unlock(&inode->lock); 2723 } 2724 } 2725 2726 /* 2727 * given a list of ordered sums record them in the inode. This happens 2728 * at IO completion time based on sums calculated at bio submission time. 2729 */ 2730 static int add_pending_csums(struct btrfs_trans_handle *trans, 2731 struct list_head *list) 2732 { 2733 struct btrfs_ordered_sum *sum; 2734 struct btrfs_root *csum_root = NULL; 2735 int ret; 2736 2737 list_for_each_entry(sum, list, list) { 2738 trans->adding_csums = true; 2739 if (!csum_root) 2740 csum_root = btrfs_csum_root(trans->fs_info, 2741 sum->logical); 2742 ret = btrfs_csum_file_blocks(trans, csum_root, sum); 2743 trans->adding_csums = false; 2744 if (ret) 2745 return ret; 2746 } 2747 return 0; 2748 } 2749 2750 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, 2751 const u64 start, 2752 const u64 len, 2753 struct extent_state **cached_state) 2754 { 2755 u64 search_start = start; 2756 const u64 end = start + len - 1; 2757 2758 while (search_start < end) { 2759 const u64 search_len = end - search_start + 1; 2760 struct extent_map *em; 2761 u64 em_len; 2762 int ret = 0; 2763 2764 em = btrfs_get_extent(inode, NULL, search_start, search_len); 2765 if (IS_ERR(em)) 2766 return PTR_ERR(em); 2767 2768 if (em->disk_bytenr != EXTENT_MAP_HOLE) 2769 goto next; 2770 2771 em_len = em->len; 2772 if (em->start < search_start) 2773 em_len -= search_start - em->start; 2774 if (em_len > search_len) 2775 em_len = search_len; 2776 2777 ret = btrfs_set_extent_bit(&inode->io_tree, search_start, 2778 search_start + em_len - 1, 2779 EXTENT_DELALLOC_NEW, cached_state); 2780 next: 2781 search_start = btrfs_extent_map_end(em); 2782 btrfs_free_extent_map(em); 2783 if (ret) 2784 return ret; 2785 } 2786 return 0; 2787 } 2788 2789 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 2790 unsigned int extra_bits, 2791 struct extent_state **cached_state) 2792 { 2793 WARN_ON(PAGE_ALIGNED(end)); 2794 2795 if (start >= i_size_read(&inode->vfs_inode) && 2796 !(inode->flags & BTRFS_INODE_PREALLOC)) { 2797 /* 2798 * There can't be any extents following eof in this case so just 2799 * set the delalloc new bit for the range directly. 2800 */ 2801 extra_bits |= EXTENT_DELALLOC_NEW; 2802 } else { 2803 int ret; 2804 2805 ret = btrfs_find_new_delalloc_bytes(inode, start, 2806 end + 1 - start, 2807 cached_state); 2808 if (ret) 2809 return ret; 2810 } 2811 2812 return btrfs_set_extent_bit(&inode->io_tree, start, end, 2813 EXTENT_DELALLOC | extra_bits, cached_state); 2814 } 2815 2816 /* see btrfs_writepage_start_hook for details on why this is required */ 2817 struct btrfs_writepage_fixup { 2818 struct folio *folio; 2819 struct btrfs_inode *inode; 2820 struct btrfs_work work; 2821 }; 2822 2823 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2824 { 2825 struct btrfs_writepage_fixup *fixup = 2826 container_of(work, struct btrfs_writepage_fixup, work); 2827 struct btrfs_ordered_extent *ordered; 2828 struct extent_state *cached_state = NULL; 2829 struct extent_changeset *data_reserved = NULL; 2830 struct folio *folio = fixup->folio; 2831 struct btrfs_inode *inode = fixup->inode; 2832 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2833 u64 page_start = folio_pos(folio); 2834 u64 page_end = folio_next_pos(folio) - 1; 2835 int ret = 0; 2836 bool free_delalloc_space = true; 2837 2838 /* 2839 * This is similar to page_mkwrite, we need to reserve the space before 2840 * we take the folio lock. 2841 */ 2842 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2843 folio_size(folio)); 2844 again: 2845 folio_lock(folio); 2846 2847 /* 2848 * Before we queued this fixup, we took a reference on the folio. 2849 * folio->mapping may go NULL, but it shouldn't be moved to a different 2850 * address space. 2851 */ 2852 if (!folio->mapping || !folio_test_dirty(folio) || 2853 !folio_test_checked(folio)) { 2854 /* 2855 * Unfortunately this is a little tricky, either 2856 * 2857 * 1) We got here and our folio had already been dealt with and 2858 * we reserved our space, thus ret == 0, so we need to just 2859 * drop our space reservation and bail. This can happen the 2860 * first time we come into the fixup worker, or could happen 2861 * while waiting for the ordered extent. 2862 * 2) Our folio was already dealt with, but we happened to get an 2863 * ENOSPC above from the btrfs_delalloc_reserve_space. In 2864 * this case we obviously don't have anything to release, but 2865 * because the folio was already dealt with we don't want to 2866 * mark the folio with an error, so make sure we're resetting 2867 * ret to 0. This is why we have this check _before_ the ret 2868 * check, because we do not want to have a surprise ENOSPC 2869 * when the folio was already properly dealt with. 2870 */ 2871 if (!ret) { 2872 btrfs_delalloc_release_extents(inode, folio_size(folio)); 2873 btrfs_delalloc_release_space(inode, data_reserved, 2874 page_start, folio_size(folio), 2875 true); 2876 } 2877 ret = 0; 2878 goto out_page; 2879 } 2880 2881 /* 2882 * We can't mess with the folio state unless it is locked, so now that 2883 * it is locked bail if we failed to make our space reservation. 2884 */ 2885 if (ret) 2886 goto out_page; 2887 2888 btrfs_lock_extent(&inode->io_tree, page_start, page_end, &cached_state); 2889 2890 /* already ordered? We're done */ 2891 if (folio_test_ordered(folio)) 2892 goto out_reserved; 2893 2894 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); 2895 if (ordered) { 2896 btrfs_unlock_extent(&inode->io_tree, page_start, page_end, 2897 &cached_state); 2898 folio_unlock(folio); 2899 btrfs_start_ordered_extent(ordered); 2900 btrfs_put_ordered_extent(ordered); 2901 goto again; 2902 } 2903 2904 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2905 &cached_state); 2906 if (ret) 2907 goto out_reserved; 2908 2909 /* 2910 * Everything went as planned, we're now the owner of a dirty page with 2911 * delayed allocation bits set and space reserved for our COW 2912 * destination. 2913 * 2914 * The page was dirty when we started, nothing should have cleaned it. 2915 */ 2916 BUG_ON(!folio_test_dirty(folio)); 2917 free_delalloc_space = false; 2918 out_reserved: 2919 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2920 if (free_delalloc_space) 2921 btrfs_delalloc_release_space(inode, data_reserved, page_start, 2922 PAGE_SIZE, true); 2923 btrfs_unlock_extent(&inode->io_tree, page_start, page_end, &cached_state); 2924 out_page: 2925 if (ret) { 2926 /* 2927 * We hit ENOSPC or other errors. Update the mapping and page 2928 * to reflect the errors and clean the page. 2929 */ 2930 mapping_set_error(folio->mapping, ret); 2931 btrfs_mark_ordered_io_finished(inode, folio, page_start, 2932 folio_size(folio), !ret); 2933 folio_clear_dirty_for_io(folio); 2934 } 2935 btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE); 2936 folio_unlock(folio); 2937 folio_put(folio); 2938 kfree(fixup); 2939 extent_changeset_free(data_reserved); 2940 /* 2941 * As a precaution, do a delayed iput in case it would be the last iput 2942 * that could need flushing space. Recursing back to fixup worker would 2943 * deadlock. 2944 */ 2945 btrfs_add_delayed_iput(inode); 2946 } 2947 2948 /* 2949 * There are a few paths in the higher layers of the kernel that directly 2950 * set the folio dirty bit without asking the filesystem if it is a 2951 * good idea. This causes problems because we want to make sure COW 2952 * properly happens and the data=ordered rules are followed. 2953 * 2954 * In our case any range that doesn't have the ORDERED bit set 2955 * hasn't been properly setup for IO. We kick off an async process 2956 * to fix it up. The async helper will wait for ordered extents, set 2957 * the delalloc bit and make it safe to write the folio. 2958 */ 2959 int btrfs_writepage_cow_fixup(struct folio *folio) 2960 { 2961 struct inode *inode = folio->mapping->host; 2962 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2963 struct btrfs_writepage_fixup *fixup; 2964 2965 /* This folio has ordered extent covering it already */ 2966 if (folio_test_ordered(folio)) 2967 return 0; 2968 2969 /* 2970 * For experimental build, we error out instead of EAGAIN. 2971 * 2972 * We should not hit such out-of-band dirty folios anymore. 2973 */ 2974 if (IS_ENABLED(CONFIG_BTRFS_EXPERIMENTAL)) { 2975 DEBUG_WARN(); 2976 btrfs_err_rl(fs_info, 2977 "root %lld ino %llu folio %llu is marked dirty without notifying the fs", 2978 btrfs_root_id(BTRFS_I(inode)->root), 2979 btrfs_ino(BTRFS_I(inode)), 2980 folio_pos(folio)); 2981 return -EUCLEAN; 2982 } 2983 2984 /* 2985 * folio_checked is set below when we create a fixup worker for this 2986 * folio, don't try to create another one if we're already 2987 * folio_test_checked. 2988 * 2989 * The extent_io writepage code will redirty the foio if we send back 2990 * EAGAIN. 2991 */ 2992 if (folio_test_checked(folio)) 2993 return -EAGAIN; 2994 2995 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2996 if (!fixup) 2997 return -EAGAIN; 2998 2999 /* 3000 * We are already holding a reference to this inode from 3001 * write_cache_pages. We need to hold it because the space reservation 3002 * takes place outside of the folio lock, and we can't trust 3003 * folio->mapping outside of the folio lock. 3004 */ 3005 ihold(inode); 3006 btrfs_folio_set_checked(fs_info, folio, folio_pos(folio), folio_size(folio)); 3007 folio_get(folio); 3008 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL); 3009 fixup->folio = folio; 3010 fixup->inode = BTRFS_I(inode); 3011 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 3012 3013 return -EAGAIN; 3014 } 3015 3016 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 3017 struct btrfs_inode *inode, u64 file_pos, 3018 struct btrfs_file_extent_item *stack_fi, 3019 const bool update_inode_bytes, 3020 u64 qgroup_reserved) 3021 { 3022 struct btrfs_root *root = inode->root; 3023 const u64 sectorsize = root->fs_info->sectorsize; 3024 BTRFS_PATH_AUTO_FREE(path); 3025 struct extent_buffer *leaf; 3026 struct btrfs_key ins; 3027 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi); 3028 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi); 3029 u64 offset = btrfs_stack_file_extent_offset(stack_fi); 3030 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi); 3031 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi); 3032 struct btrfs_drop_extents_args drop_args = { 0 }; 3033 int ret; 3034 3035 path = btrfs_alloc_path(); 3036 if (!path) 3037 return -ENOMEM; 3038 3039 /* 3040 * we may be replacing one extent in the tree with another. 3041 * The new extent is pinned in the extent map, and we don't want 3042 * to drop it from the cache until it is completely in the btree. 3043 * 3044 * So, tell btrfs_drop_extents to leave this extent in the cache. 3045 * the caller is expected to unpin it and allow it to be merged 3046 * with the others. 3047 */ 3048 drop_args.path = path; 3049 drop_args.start = file_pos; 3050 drop_args.end = file_pos + num_bytes; 3051 drop_args.replace_extent = true; 3052 drop_args.extent_item_size = sizeof(*stack_fi); 3053 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 3054 if (ret) 3055 return ret; 3056 3057 if (!drop_args.extent_inserted) { 3058 ins.objectid = btrfs_ino(inode); 3059 ins.type = BTRFS_EXTENT_DATA_KEY; 3060 ins.offset = file_pos; 3061 3062 ret = btrfs_insert_empty_item(trans, root, path, &ins, 3063 sizeof(*stack_fi)); 3064 if (ret) 3065 return ret; 3066 } 3067 leaf = path->nodes[0]; 3068 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid); 3069 write_extent_buffer(leaf, stack_fi, 3070 btrfs_item_ptr_offset(leaf, path->slots[0]), 3071 sizeof(struct btrfs_file_extent_item)); 3072 3073 btrfs_release_path(path); 3074 3075 /* 3076 * If we dropped an inline extent here, we know the range where it is 3077 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the 3078 * number of bytes only for that range containing the inline extent. 3079 * The remaining of the range will be processed when clearing the 3080 * EXTENT_DELALLOC_BIT bit through the ordered extent completion. 3081 */ 3082 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) { 3083 u64 inline_size = round_down(drop_args.bytes_found, sectorsize); 3084 3085 inline_size = drop_args.bytes_found - inline_size; 3086 btrfs_update_inode_bytes(inode, sectorsize, inline_size); 3087 drop_args.bytes_found -= inline_size; 3088 num_bytes -= sectorsize; 3089 } 3090 3091 if (update_inode_bytes) 3092 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found); 3093 3094 ins.objectid = disk_bytenr; 3095 ins.type = BTRFS_EXTENT_ITEM_KEY; 3096 ins.offset = disk_num_bytes; 3097 3098 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes); 3099 if (ret) 3100 return ret; 3101 3102 return btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode), 3103 file_pos - offset, 3104 qgroup_reserved, &ins); 3105 } 3106 3107 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 3108 u64 start, u64 len) 3109 { 3110 struct btrfs_block_group *cache; 3111 3112 cache = btrfs_lookup_block_group(fs_info, start); 3113 ASSERT(cache); 3114 3115 spin_lock(&cache->lock); 3116 cache->delalloc_bytes -= len; 3117 spin_unlock(&cache->lock); 3118 3119 btrfs_put_block_group(cache); 3120 } 3121 3122 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans, 3123 struct btrfs_ordered_extent *oe) 3124 { 3125 struct btrfs_file_extent_item stack_fi; 3126 bool update_inode_bytes; 3127 u64 num_bytes = oe->num_bytes; 3128 u64 ram_bytes = oe->ram_bytes; 3129 3130 memset(&stack_fi, 0, sizeof(stack_fi)); 3131 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG); 3132 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr); 3133 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, 3134 oe->disk_num_bytes); 3135 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset); 3136 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) 3137 num_bytes = oe->truncated_len; 3138 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes); 3139 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes); 3140 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type); 3141 /* Encryption and other encoding is reserved and all 0 */ 3142 3143 /* 3144 * For delalloc, when completing an ordered extent we update the inode's 3145 * bytes when clearing the range in the inode's io tree, so pass false 3146 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(), 3147 * except if the ordered extent was truncated. 3148 */ 3149 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) || 3150 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) || 3151 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags); 3152 3153 return insert_reserved_file_extent(trans, oe->inode, 3154 oe->file_offset, &stack_fi, 3155 update_inode_bytes, oe->qgroup_rsv); 3156 } 3157 3158 /* 3159 * As ordered data IO finishes, this gets called so we can finish 3160 * an ordered extent if the range of bytes in the file it covers are 3161 * fully written. 3162 */ 3163 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent) 3164 { 3165 struct btrfs_inode *inode = ordered_extent->inode; 3166 struct btrfs_root *root = inode->root; 3167 struct btrfs_fs_info *fs_info = root->fs_info; 3168 struct btrfs_trans_handle *trans = NULL; 3169 struct extent_io_tree *io_tree = &inode->io_tree; 3170 struct extent_state *cached_state = NULL; 3171 u64 start, end; 3172 int compress_type = 0; 3173 int ret = 0; 3174 u64 logical_len = ordered_extent->num_bytes; 3175 bool freespace_inode; 3176 bool truncated = false; 3177 bool clear_reserved_extent = true; 3178 unsigned int clear_bits = EXTENT_DEFRAG; 3179 3180 start = ordered_extent->file_offset; 3181 end = start + ordered_extent->num_bytes - 1; 3182 3183 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3184 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 3185 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) && 3186 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags)) 3187 clear_bits |= EXTENT_DELALLOC_NEW; 3188 3189 freespace_inode = btrfs_is_free_space_inode(inode); 3190 if (!freespace_inode) 3191 btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent); 3192 3193 if (unlikely(test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags))) { 3194 ret = -EIO; 3195 goto out; 3196 } 3197 3198 ret = btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr, 3199 ordered_extent->disk_num_bytes); 3200 if (ret) 3201 goto out; 3202 3203 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 3204 truncated = true; 3205 logical_len = ordered_extent->truncated_len; 3206 /* Truncated the entire extent, don't bother adding */ 3207 if (!logical_len) 3208 goto out; 3209 } 3210 3211 /* 3212 * If it's a COW write we need to lock the extent range as we will be 3213 * inserting/replacing file extent items and unpinning an extent map. 3214 * This must be taken before joining a transaction, as it's a higher 3215 * level lock (like the inode's VFS lock), otherwise we can run into an 3216 * ABBA deadlock with other tasks (transactions work like a lock, 3217 * depending on their current state). 3218 */ 3219 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 3220 clear_bits |= EXTENT_LOCKED | EXTENT_FINISHING_ORDERED; 3221 btrfs_lock_extent_bits(io_tree, start, end, 3222 EXTENT_LOCKED | EXTENT_FINISHING_ORDERED, 3223 &cached_state); 3224 } 3225 3226 if (freespace_inode) 3227 trans = btrfs_join_transaction_spacecache(root); 3228 else 3229 trans = btrfs_join_transaction(root); 3230 if (IS_ERR(trans)) { 3231 ret = PTR_ERR(trans); 3232 trans = NULL; 3233 goto out; 3234 } 3235 3236 trans->block_rsv = &inode->block_rsv; 3237 3238 ret = btrfs_insert_raid_extent(trans, ordered_extent); 3239 if (unlikely(ret)) { 3240 btrfs_abort_transaction(trans, ret); 3241 goto out; 3242 } 3243 3244 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 3245 /* Logic error */ 3246 ASSERT(list_empty(&ordered_extent->list)); 3247 if (unlikely(!list_empty(&ordered_extent->list))) { 3248 ret = -EINVAL; 3249 btrfs_abort_transaction(trans, ret); 3250 goto out; 3251 } 3252 3253 btrfs_inode_safe_disk_i_size_write(inode, 0); 3254 ret = btrfs_update_inode_fallback(trans, inode); 3255 if (unlikely(ret)) { 3256 /* -ENOMEM or corruption */ 3257 btrfs_abort_transaction(trans, ret); 3258 } 3259 goto out; 3260 } 3261 3262 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 3263 compress_type = ordered_extent->compress_type; 3264 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3265 BUG_ON(compress_type); 3266 ret = btrfs_mark_extent_written(trans, inode, 3267 ordered_extent->file_offset, 3268 ordered_extent->file_offset + 3269 logical_len); 3270 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr, 3271 ordered_extent->disk_num_bytes); 3272 if (unlikely(ret < 0)) { 3273 btrfs_abort_transaction(trans, ret); 3274 goto out; 3275 } 3276 } else { 3277 BUG_ON(root == fs_info->tree_root); 3278 ret = insert_ordered_extent_file_extent(trans, ordered_extent); 3279 if (unlikely(ret < 0)) { 3280 btrfs_abort_transaction(trans, ret); 3281 goto out; 3282 } 3283 clear_reserved_extent = false; 3284 btrfs_release_delalloc_bytes(fs_info, 3285 ordered_extent->disk_bytenr, 3286 ordered_extent->disk_num_bytes); 3287 } 3288 3289 ret = btrfs_unpin_extent_cache(inode, ordered_extent->file_offset, 3290 ordered_extent->num_bytes, trans->transid); 3291 if (unlikely(ret < 0)) { 3292 btrfs_abort_transaction(trans, ret); 3293 goto out; 3294 } 3295 3296 ret = add_pending_csums(trans, &ordered_extent->list); 3297 if (unlikely(ret)) { 3298 btrfs_abort_transaction(trans, ret); 3299 goto out; 3300 } 3301 3302 /* 3303 * If this is a new delalloc range, clear its new delalloc flag to 3304 * update the inode's number of bytes. This needs to be done first 3305 * before updating the inode item. 3306 */ 3307 if ((clear_bits & EXTENT_DELALLOC_NEW) && 3308 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) 3309 btrfs_clear_extent_bit(&inode->io_tree, start, end, 3310 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES, 3311 &cached_state); 3312 3313 btrfs_inode_safe_disk_i_size_write(inode, 0); 3314 ret = btrfs_update_inode_fallback(trans, inode); 3315 if (unlikely(ret)) { /* -ENOMEM or corruption */ 3316 btrfs_abort_transaction(trans, ret); 3317 goto out; 3318 } 3319 out: 3320 btrfs_clear_extent_bit(&inode->io_tree, start, end, clear_bits, 3321 &cached_state); 3322 3323 if (trans) 3324 btrfs_end_transaction(trans); 3325 3326 if (ret || truncated) { 3327 /* 3328 * If we failed to finish this ordered extent for any reason we 3329 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered 3330 * extent, and mark the inode with the error if it wasn't 3331 * already set. Any error during writeback would have already 3332 * set the mapping error, so we need to set it if we're the ones 3333 * marking this ordered extent as failed. 3334 */ 3335 if (ret) 3336 btrfs_mark_ordered_extent_error(ordered_extent); 3337 3338 /* 3339 * Drop extent maps for the part of the extent we didn't write. 3340 * 3341 * We have an exception here for the free_space_inode, this is 3342 * because when we do btrfs_get_extent() on the free space inode 3343 * we will search the commit root. If this is a new block group 3344 * we won't find anything, and we will trip over the assert in 3345 * writepage where we do ASSERT(em->block_start != 3346 * EXTENT_MAP_HOLE). 3347 * 3348 * Theoretically we could also skip this for any NOCOW extent as 3349 * we don't mess with the extent map tree in the NOCOW case, but 3350 * for now simply skip this if we are the free space inode. 3351 */ 3352 if (!btrfs_is_free_space_inode(inode)) { 3353 u64 unwritten_start = start; 3354 3355 if (truncated) 3356 unwritten_start += logical_len; 3357 3358 btrfs_drop_extent_map_range(inode, unwritten_start, 3359 end, false); 3360 } 3361 3362 /* 3363 * If the ordered extent had an IOERR or something else went 3364 * wrong we need to return the space for this ordered extent 3365 * back to the allocator. We only free the extent in the 3366 * truncated case if we didn't write out the extent at all. 3367 * 3368 * If we made it past insert_reserved_file_extent before we 3369 * errored out then we don't need to do this as the accounting 3370 * has already been done. 3371 */ 3372 if ((ret || !logical_len) && 3373 clear_reserved_extent && 3374 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3375 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3376 /* 3377 * Discard the range before returning it back to the 3378 * free space pool 3379 */ 3380 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC)) 3381 btrfs_discard_extent(fs_info, 3382 ordered_extent->disk_bytenr, 3383 ordered_extent->disk_num_bytes, 3384 NULL, true); 3385 btrfs_free_reserved_extent(fs_info, 3386 ordered_extent->disk_bytenr, 3387 ordered_extent->disk_num_bytes, true); 3388 /* 3389 * Actually free the qgroup rsv which was released when 3390 * the ordered extent was created. 3391 */ 3392 btrfs_qgroup_free_refroot(fs_info, btrfs_root_id(inode->root), 3393 ordered_extent->qgroup_rsv, 3394 BTRFS_QGROUP_RSV_DATA); 3395 } 3396 } 3397 3398 /* 3399 * This needs to be done to make sure anybody waiting knows we are done 3400 * updating everything for this ordered extent. 3401 */ 3402 btrfs_remove_ordered_extent(inode, ordered_extent); 3403 3404 /* once for us */ 3405 btrfs_put_ordered_extent(ordered_extent); 3406 /* once for the tree */ 3407 btrfs_put_ordered_extent(ordered_extent); 3408 3409 return ret; 3410 } 3411 3412 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered) 3413 { 3414 if (btrfs_is_zoned(ordered->inode->root->fs_info) && 3415 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) && 3416 list_empty(&ordered->bioc_list)) 3417 btrfs_finish_ordered_zoned(ordered); 3418 return btrfs_finish_one_ordered(ordered); 3419 } 3420 3421 /* 3422 * Calculate the checksum of an fs block at physical memory address @paddr, 3423 * and save the result to @dest. 3424 * 3425 * The folio containing @paddr must be large enough to contain a full fs block. 3426 */ 3427 void btrfs_calculate_block_csum_folio(struct btrfs_fs_info *fs_info, 3428 const phys_addr_t paddr, u8 *dest) 3429 { 3430 struct folio *folio = page_folio(phys_to_page(paddr)); 3431 const u32 blocksize = fs_info->sectorsize; 3432 const u32 step = min(blocksize, PAGE_SIZE); 3433 const u32 nr_steps = blocksize / step; 3434 phys_addr_t paddrs[BTRFS_MAX_BLOCKSIZE / PAGE_SIZE]; 3435 3436 /* The full block must be inside the folio. */ 3437 ASSERT(offset_in_folio(folio, paddr) + blocksize <= folio_size(folio)); 3438 3439 for (int i = 0; i < nr_steps; i++) { 3440 u32 pindex = offset_in_folio(folio, paddr + i * step) >> PAGE_SHIFT; 3441 3442 /* 3443 * For bs <= ps cases, we will only run the loop once, so the offset 3444 * inside the page will only added to paddrs[0]. 3445 * 3446 * For bs > ps cases, the block must be page aligned, thus offset 3447 * inside the page will always be 0. 3448 */ 3449 paddrs[i] = page_to_phys(folio_page(folio, pindex)) + offset_in_page(paddr); 3450 } 3451 return btrfs_calculate_block_csum_pages(fs_info, paddrs, dest); 3452 } 3453 3454 /* 3455 * Calculate the checksum of a fs block backed by multiple noncontiguous pages 3456 * at @paddrs[] and save the result to @dest. 3457 * 3458 * The folio containing @paddr must be large enough to contain a full fs block. 3459 */ 3460 void btrfs_calculate_block_csum_pages(struct btrfs_fs_info *fs_info, 3461 const phys_addr_t paddrs[], u8 *dest) 3462 { 3463 const u32 blocksize = fs_info->sectorsize; 3464 const u32 step = min(blocksize, PAGE_SIZE); 3465 const u32 nr_steps = blocksize / step; 3466 struct btrfs_csum_ctx csum; 3467 3468 btrfs_csum_init(&csum, fs_info->csum_type); 3469 for (int i = 0; i < nr_steps; i++) { 3470 const phys_addr_t paddr = paddrs[i]; 3471 void *kaddr; 3472 3473 ASSERT(offset_in_page(paddr) + step <= PAGE_SIZE); 3474 kaddr = kmap_local_page(phys_to_page(paddr)) + offset_in_page(paddr); 3475 btrfs_csum_update(&csum, kaddr, step); 3476 kunmap_local(kaddr); 3477 } 3478 btrfs_csum_final(&csum, dest); 3479 } 3480 3481 /* 3482 * Verify the checksum for a single sector without any extra action that depend 3483 * on the type of I/O. 3484 * 3485 * @kaddr must be a properly kmapped address. 3486 */ 3487 int btrfs_check_block_csum(struct btrfs_fs_info *fs_info, phys_addr_t paddr, u8 *csum, 3488 const u8 * const csum_expected) 3489 { 3490 btrfs_calculate_block_csum_folio(fs_info, paddr, csum); 3491 if (unlikely(memcmp(csum, csum_expected, fs_info->csum_size) != 0)) 3492 return -EIO; 3493 return 0; 3494 } 3495 3496 /* 3497 * Verify the checksum of a single data sector, which can be scattered at 3498 * different noncontiguous pages. 3499 * 3500 * @bbio: btrfs_io_bio which contains the csum 3501 * @dev: device the sector is on 3502 * @bio_offset: offset to the beginning of the bio (in bytes) 3503 * @paddrs: physical addresses which back the fs block 3504 * 3505 * Check if the checksum on a data block is valid. When a checksum mismatch is 3506 * detected, report the error and fill the corrupted range with zero. 3507 * 3508 * Return %true if the sector is ok or had no checksum to start with, else %false. 3509 */ 3510 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev, 3511 u32 bio_offset, const phys_addr_t paddrs[]) 3512 { 3513 struct btrfs_inode *inode = bbio->inode; 3514 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3515 const u32 blocksize = fs_info->sectorsize; 3516 const u32 step = min(blocksize, PAGE_SIZE); 3517 const u32 nr_steps = blocksize / step; 3518 u64 file_offset = bbio->file_offset + bio_offset; 3519 u64 end = file_offset + blocksize - 1; 3520 u8 *csum_expected; 3521 u8 csum[BTRFS_CSUM_SIZE]; 3522 3523 if (!bbio->csum) 3524 return true; 3525 3526 if (btrfs_is_data_reloc_root(inode->root) && 3527 btrfs_test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM, 3528 NULL)) { 3529 /* Skip the range without csum for data reloc inode */ 3530 btrfs_clear_extent_bit(&inode->io_tree, file_offset, end, 3531 EXTENT_NODATASUM, NULL); 3532 return true; 3533 } 3534 3535 csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) * 3536 fs_info->csum_size; 3537 btrfs_calculate_block_csum_pages(fs_info, paddrs, csum); 3538 if (unlikely(memcmp(csum, csum_expected, fs_info->csum_size) != 0)) 3539 goto zeroit; 3540 return true; 3541 3542 zeroit: 3543 btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected, 3544 bbio->mirror_num); 3545 if (dev) 3546 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS); 3547 for (int i = 0; i < nr_steps; i++) 3548 memzero_page(phys_to_page(paddrs[i]), offset_in_page(paddrs[i]), step); 3549 return false; 3550 } 3551 3552 /* 3553 * Perform a delayed iput on @inode. 3554 * 3555 * @inode: The inode we want to perform iput on 3556 * 3557 * This function uses the generic vfs_inode::i_count to track whether we should 3558 * just decrement it (in case it's > 1) or if this is the last iput then link 3559 * the inode to the delayed iput machinery. Delayed iputs are processed at 3560 * transaction commit time/superblock commit/cleaner kthread. 3561 */ 3562 void btrfs_add_delayed_iput(struct btrfs_inode *inode) 3563 { 3564 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3565 unsigned long flags; 3566 3567 if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1)) 3568 return; 3569 3570 WARN_ON_ONCE(test_bit(BTRFS_FS_STATE_NO_DELAYED_IPUT, &fs_info->fs_state)); 3571 atomic_inc(&fs_info->nr_delayed_iputs); 3572 /* 3573 * Need to be irq safe here because we can be called from either an irq 3574 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq 3575 * context. 3576 */ 3577 spin_lock_irqsave(&fs_info->delayed_iput_lock, flags); 3578 ASSERT(list_empty(&inode->delayed_iput)); 3579 list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs); 3580 spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags); 3581 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) 3582 wake_up_process(fs_info->cleaner_kthread); 3583 } 3584 3585 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, 3586 struct btrfs_inode *inode) 3587 { 3588 list_del_init(&inode->delayed_iput); 3589 spin_unlock_irq(&fs_info->delayed_iput_lock); 3590 iput(&inode->vfs_inode); 3591 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) 3592 wake_up(&fs_info->delayed_iputs_wait); 3593 spin_lock_irq(&fs_info->delayed_iput_lock); 3594 } 3595 3596 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, 3597 struct btrfs_inode *inode) 3598 { 3599 if (!list_empty(&inode->delayed_iput)) { 3600 spin_lock_irq(&fs_info->delayed_iput_lock); 3601 if (!list_empty(&inode->delayed_iput)) 3602 run_delayed_iput_locked(fs_info, inode); 3603 spin_unlock_irq(&fs_info->delayed_iput_lock); 3604 } 3605 } 3606 3607 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3608 { 3609 /* 3610 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which 3611 * calls btrfs_add_delayed_iput() and that needs to lock 3612 * fs_info->delayed_iput_lock. So we need to disable irqs here to 3613 * prevent a deadlock. 3614 */ 3615 spin_lock_irq(&fs_info->delayed_iput_lock); 3616 while (!list_empty(&fs_info->delayed_iputs)) { 3617 struct btrfs_inode *inode; 3618 3619 inode = list_first_entry(&fs_info->delayed_iputs, 3620 struct btrfs_inode, delayed_iput); 3621 run_delayed_iput_locked(fs_info, inode); 3622 if (need_resched()) { 3623 spin_unlock_irq(&fs_info->delayed_iput_lock); 3624 cond_resched(); 3625 spin_lock_irq(&fs_info->delayed_iput_lock); 3626 } 3627 } 3628 spin_unlock_irq(&fs_info->delayed_iput_lock); 3629 } 3630 3631 /* 3632 * Wait for flushing all delayed iputs 3633 * 3634 * @fs_info: the filesystem 3635 * 3636 * This will wait on any delayed iputs that are currently running with KILLABLE 3637 * set. Once they are all done running we will return, unless we are killed in 3638 * which case we return EINTR. This helps in user operations like fallocate etc 3639 * that might get blocked on the iputs. 3640 * 3641 * Return EINTR if we were killed, 0 if nothing's pending 3642 */ 3643 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) 3644 { 3645 int ret = wait_event_killable(fs_info->delayed_iputs_wait, 3646 atomic_read(&fs_info->nr_delayed_iputs) == 0); 3647 if (ret) 3648 return -EINTR; 3649 return 0; 3650 } 3651 3652 /* 3653 * This creates an orphan entry for the given inode in case something goes wrong 3654 * in the middle of an unlink. 3655 */ 3656 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3657 struct btrfs_inode *inode) 3658 { 3659 int ret; 3660 3661 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 3662 if (unlikely(ret && ret != -EEXIST)) { 3663 btrfs_abort_transaction(trans, ret); 3664 return ret; 3665 } 3666 3667 return 0; 3668 } 3669 3670 /* 3671 * We have done the delete so we can go ahead and remove the orphan item for 3672 * this particular inode. 3673 */ 3674 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3675 struct btrfs_inode *inode) 3676 { 3677 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 3678 } 3679 3680 /* 3681 * this cleans up any orphans that may be left on the list from the last use 3682 * of this root. 3683 */ 3684 int btrfs_orphan_cleanup(struct btrfs_root *root) 3685 { 3686 struct btrfs_fs_info *fs_info = root->fs_info; 3687 BTRFS_PATH_AUTO_FREE(path); 3688 struct extent_buffer *leaf; 3689 struct btrfs_key key, found_key; 3690 struct btrfs_trans_handle *trans; 3691 u64 last_objectid = 0; 3692 int ret = 0, nr_unlink = 0; 3693 3694 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state)) 3695 return 0; 3696 3697 path = btrfs_alloc_path(); 3698 if (!path) { 3699 ret = -ENOMEM; 3700 goto out; 3701 } 3702 path->reada = READA_BACK; 3703 3704 key.objectid = BTRFS_ORPHAN_OBJECTID; 3705 key.type = BTRFS_ORPHAN_ITEM_KEY; 3706 key.offset = (u64)-1; 3707 3708 while (1) { 3709 struct btrfs_inode *inode; 3710 3711 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3712 if (ret < 0) 3713 goto out; 3714 3715 /* 3716 * if ret == 0 means we found what we were searching for, which 3717 * is weird, but possible, so only screw with path if we didn't 3718 * find the key and see if we have stuff that matches 3719 */ 3720 if (ret > 0) { 3721 ret = 0; 3722 if (path->slots[0] == 0) 3723 break; 3724 path->slots[0]--; 3725 } 3726 3727 /* pull out the item */ 3728 leaf = path->nodes[0]; 3729 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3730 3731 /* make sure the item matches what we want */ 3732 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3733 break; 3734 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3735 break; 3736 3737 /* release the path since we're done with it */ 3738 btrfs_release_path(path); 3739 3740 /* 3741 * this is where we are basically btrfs_lookup, without the 3742 * crossing root thing. we store the inode number in the 3743 * offset of the orphan item. 3744 */ 3745 3746 if (found_key.offset == last_objectid) { 3747 /* 3748 * We found the same inode as before. This means we were 3749 * not able to remove its items via eviction triggered 3750 * by an iput(). A transaction abort may have happened, 3751 * due to -ENOSPC for example, so try to grab the error 3752 * that lead to a transaction abort, if any. 3753 */ 3754 btrfs_err(fs_info, 3755 "Error removing orphan entry, stopping orphan cleanup"); 3756 ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL; 3757 goto out; 3758 } 3759 3760 last_objectid = found_key.offset; 3761 3762 found_key.objectid = found_key.offset; 3763 found_key.type = BTRFS_INODE_ITEM_KEY; 3764 found_key.offset = 0; 3765 inode = btrfs_iget(last_objectid, root); 3766 if (IS_ERR(inode)) { 3767 ret = PTR_ERR(inode); 3768 inode = NULL; 3769 if (ret != -ENOENT) 3770 goto out; 3771 } 3772 3773 if (!inode && root == fs_info->tree_root) { 3774 struct btrfs_root *dead_root; 3775 int is_dead_root = 0; 3776 3777 /* 3778 * This is an orphan in the tree root. Currently these 3779 * could come from 2 sources: 3780 * a) a root (snapshot/subvolume) deletion in progress 3781 * b) a free space cache inode 3782 * We need to distinguish those two, as the orphan item 3783 * for a root must not get deleted before the deletion 3784 * of the snapshot/subvolume's tree completes. 3785 * 3786 * btrfs_find_orphan_roots() ran before us, which has 3787 * found all deleted roots and loaded them into 3788 * fs_info->fs_roots_radix. So here we can find if an 3789 * orphan item corresponds to a deleted root by looking 3790 * up the root from that radix tree. 3791 */ 3792 3793 spin_lock(&fs_info->fs_roots_radix_lock); 3794 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix, 3795 (unsigned long)found_key.objectid); 3796 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0) 3797 is_dead_root = 1; 3798 spin_unlock(&fs_info->fs_roots_radix_lock); 3799 3800 if (is_dead_root) { 3801 /* prevent this orphan from being found again */ 3802 key.offset = found_key.objectid - 1; 3803 continue; 3804 } 3805 3806 } 3807 3808 /* 3809 * If we have an inode with links, there are a couple of 3810 * possibilities: 3811 * 3812 * 1. We were halfway through creating fsverity metadata for the 3813 * file. In that case, the orphan item represents incomplete 3814 * fsverity metadata which must be cleaned up with 3815 * btrfs_drop_verity_items and deleting the orphan item. 3816 3817 * 2. Old kernels (before v3.12) used to create an 3818 * orphan item for truncate indicating that there were possibly 3819 * extent items past i_size that needed to be deleted. In v3.12, 3820 * truncate was changed to update i_size in sync with the extent 3821 * items, but the (useless) orphan item was still created. Since 3822 * v4.18, we don't create the orphan item for truncate at all. 3823 * 3824 * So, this item could mean that we need to do a truncate, but 3825 * only if this filesystem was last used on a pre-v3.12 kernel 3826 * and was not cleanly unmounted. The odds of that are quite 3827 * slim, and it's a pain to do the truncate now, so just delete 3828 * the orphan item. 3829 * 3830 * It's also possible that this orphan item was supposed to be 3831 * deleted but wasn't. The inode number may have been reused, 3832 * but either way, we can delete the orphan item. 3833 */ 3834 if (!inode || inode->vfs_inode.i_nlink) { 3835 if (inode) { 3836 ret = btrfs_drop_verity_items(inode); 3837 iput(&inode->vfs_inode); 3838 inode = NULL; 3839 if (ret) 3840 goto out; 3841 } 3842 trans = btrfs_start_transaction(root, 1); 3843 if (IS_ERR(trans)) { 3844 ret = PTR_ERR(trans); 3845 goto out; 3846 } 3847 btrfs_debug(fs_info, "auto deleting %Lu", 3848 found_key.objectid); 3849 ret = btrfs_del_orphan_item(trans, root, 3850 found_key.objectid); 3851 btrfs_end_transaction(trans); 3852 if (ret) 3853 goto out; 3854 continue; 3855 } 3856 3857 nr_unlink++; 3858 3859 /* this will do delete_inode and everything for us */ 3860 iput(&inode->vfs_inode); 3861 } 3862 /* release the path since we're done with it */ 3863 btrfs_release_path(path); 3864 3865 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3866 trans = btrfs_join_transaction(root); 3867 if (!IS_ERR(trans)) 3868 btrfs_end_transaction(trans); 3869 } 3870 3871 if (nr_unlink) 3872 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3873 3874 out: 3875 if (ret) 3876 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3877 return ret; 3878 } 3879 3880 /* 3881 * Look ahead in the leaf for xattrs. If we don't find any then we know there 3882 * can't be any ACLs. 3883 * 3884 * @leaf: the eb leaf where to search 3885 * @slot: the slot the inode is in 3886 * @objectid: the objectid of the inode 3887 * 3888 * Return true if there is xattr/ACL, false otherwise. 3889 */ 3890 static noinline bool acls_after_inode_item(struct extent_buffer *leaf, 3891 int slot, u64 objectid, 3892 int *first_xattr_slot) 3893 { 3894 u32 nritems = btrfs_header_nritems(leaf); 3895 struct btrfs_key found_key; 3896 static u64 xattr_access = 0; 3897 static u64 xattr_default = 0; 3898 int scanned = 0; 3899 3900 if (!xattr_access) { 3901 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3902 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3903 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3904 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3905 } 3906 3907 slot++; 3908 *first_xattr_slot = -1; 3909 while (slot < nritems) { 3910 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3911 3912 /* We found a different objectid, there must be no ACLs. */ 3913 if (found_key.objectid != objectid) 3914 return false; 3915 3916 /* We found an xattr, assume we've got an ACL. */ 3917 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3918 if (*first_xattr_slot == -1) 3919 *first_xattr_slot = slot; 3920 if (found_key.offset == xattr_access || 3921 found_key.offset == xattr_default) 3922 return true; 3923 } 3924 3925 /* 3926 * We found a key greater than an xattr key, there can't be any 3927 * ACLs later on. 3928 */ 3929 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3930 return false; 3931 3932 slot++; 3933 scanned++; 3934 3935 /* 3936 * The item order goes like: 3937 * - inode 3938 * - inode backrefs 3939 * - xattrs 3940 * - extents, 3941 * 3942 * so if there are lots of hard links to an inode there can be 3943 * a lot of backrefs. Don't waste time searching too hard, 3944 * this is just an optimization. 3945 */ 3946 if (scanned >= 8) 3947 break; 3948 } 3949 /* 3950 * We hit the end of the leaf before we found an xattr or something 3951 * larger than an xattr. We have to assume the inode has ACLs. 3952 */ 3953 if (*first_xattr_slot == -1) 3954 *first_xattr_slot = slot; 3955 return true; 3956 } 3957 3958 static int btrfs_init_file_extent_tree(struct btrfs_inode *inode) 3959 { 3960 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3961 3962 if (WARN_ON_ONCE(inode->file_extent_tree)) 3963 return 0; 3964 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 3965 return 0; 3966 if (!S_ISREG(inode->vfs_inode.i_mode)) 3967 return 0; 3968 if (btrfs_is_free_space_inode(inode)) 3969 return 0; 3970 3971 inode->file_extent_tree = kmalloc(sizeof(struct extent_io_tree), GFP_KERNEL); 3972 if (!inode->file_extent_tree) 3973 return -ENOMEM; 3974 3975 btrfs_extent_io_tree_init(fs_info, inode->file_extent_tree, 3976 IO_TREE_INODE_FILE_EXTENT); 3977 /* Lockdep class is set only for the file extent tree. */ 3978 lockdep_set_class(&inode->file_extent_tree->lock, &file_extent_tree_class); 3979 3980 return 0; 3981 } 3982 3983 static int btrfs_add_inode_to_root(struct btrfs_inode *inode, bool prealloc) 3984 { 3985 struct btrfs_root *root = inode->root; 3986 struct btrfs_inode *existing; 3987 const u64 ino = btrfs_ino(inode); 3988 int ret; 3989 3990 if (inode_unhashed(&inode->vfs_inode)) 3991 return 0; 3992 3993 if (prealloc) { 3994 ret = xa_reserve(&root->inodes, ino, GFP_NOFS); 3995 if (ret) 3996 return ret; 3997 } 3998 3999 existing = xa_store(&root->inodes, ino, inode, GFP_ATOMIC); 4000 4001 if (xa_is_err(existing)) { 4002 ret = xa_err(existing); 4003 ASSERT(ret != -EINVAL); 4004 ASSERT(ret != -ENOMEM); 4005 return ret; 4006 } else if (existing) { 4007 WARN_ON(!(inode_state_read_once(&existing->vfs_inode) & (I_WILL_FREE | I_FREEING))); 4008 } 4009 4010 return 0; 4011 } 4012 4013 /* 4014 * Read a locked inode from the btree into the in-memory inode and add it to 4015 * its root list/tree. 4016 * 4017 * On failure clean up the inode. 4018 */ 4019 static int btrfs_read_locked_inode(struct btrfs_inode *inode, struct btrfs_path *path) 4020 { 4021 struct btrfs_root *root = inode->root; 4022 struct btrfs_fs_info *fs_info = root->fs_info; 4023 struct extent_buffer *leaf; 4024 struct btrfs_inode_item *inode_item; 4025 struct inode *vfs_inode = &inode->vfs_inode; 4026 struct btrfs_key location; 4027 unsigned long ptr; 4028 int maybe_acls; 4029 u32 rdev; 4030 int ret; 4031 bool filled = false; 4032 int first_xattr_slot; 4033 4034 ret = btrfs_fill_inode(inode, &rdev); 4035 if (!ret) 4036 filled = true; 4037 4038 ASSERT(path); 4039 4040 btrfs_get_inode_key(inode, &location); 4041 4042 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 4043 if (ret) { 4044 /* 4045 * ret > 0 can come from btrfs_search_slot called by 4046 * btrfs_lookup_inode(), this means the inode was not found. 4047 */ 4048 if (ret > 0) 4049 ret = -ENOENT; 4050 goto out; 4051 } 4052 4053 leaf = path->nodes[0]; 4054 4055 if (filled) 4056 goto cache_index; 4057 4058 inode_item = btrfs_item_ptr(leaf, path->slots[0], 4059 struct btrfs_inode_item); 4060 vfs_inode->i_mode = btrfs_inode_mode(leaf, inode_item); 4061 set_nlink(vfs_inode, btrfs_inode_nlink(leaf, inode_item)); 4062 i_uid_write(vfs_inode, btrfs_inode_uid(leaf, inode_item)); 4063 i_gid_write(vfs_inode, btrfs_inode_gid(leaf, inode_item)); 4064 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 4065 4066 inode_set_atime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->atime), 4067 btrfs_timespec_nsec(leaf, &inode_item->atime)); 4068 4069 inode_set_mtime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->mtime), 4070 btrfs_timespec_nsec(leaf, &inode_item->mtime)); 4071 4072 inode_set_ctime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->ctime), 4073 btrfs_timespec_nsec(leaf, &inode_item->ctime)); 4074 4075 inode->i_otime_sec = btrfs_timespec_sec(leaf, &inode_item->otime); 4076 inode->i_otime_nsec = btrfs_timespec_nsec(leaf, &inode_item->otime); 4077 4078 inode_set_bytes(vfs_inode, btrfs_inode_nbytes(leaf, inode_item)); 4079 inode->generation = btrfs_inode_generation(leaf, inode_item); 4080 inode->last_trans = btrfs_inode_transid(leaf, inode_item); 4081 4082 inode_set_iversion_queried(vfs_inode, btrfs_inode_sequence(leaf, inode_item)); 4083 vfs_inode->i_generation = inode->generation; 4084 vfs_inode->i_rdev = 0; 4085 rdev = btrfs_inode_rdev(leaf, inode_item); 4086 4087 if (S_ISDIR(vfs_inode->i_mode)) 4088 inode->index_cnt = (u64)-1; 4089 4090 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item), 4091 &inode->flags, &inode->ro_flags); 4092 btrfs_update_inode_mapping_flags(inode); 4093 btrfs_set_inode_mapping_order(inode); 4094 4095 cache_index: 4096 /* 4097 * If we were modified in the current generation and evicted from memory 4098 * and then re-read we need to do a full sync since we don't have any 4099 * idea about which extents were modified before we were evicted from 4100 * cache. 4101 * 4102 * This is required for both inode re-read from disk and delayed inode 4103 * in the delayed_nodes xarray. 4104 */ 4105 if (inode->last_trans == btrfs_get_fs_generation(fs_info)) 4106 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 4107 4108 /* 4109 * We don't persist the id of the transaction where an unlink operation 4110 * against the inode was last made. So here we assume the inode might 4111 * have been evicted, and therefore the exact value of last_unlink_trans 4112 * lost, and set it to last_trans to avoid metadata inconsistencies 4113 * between the inode and its parent if the inode is fsync'ed and the log 4114 * replayed. For example, in the scenario: 4115 * 4116 * touch mydir/foo 4117 * ln mydir/foo mydir/bar 4118 * sync 4119 * unlink mydir/bar 4120 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 4121 * xfs_io -c fsync mydir/foo 4122 * <power failure> 4123 * mount fs, triggers fsync log replay 4124 * 4125 * We must make sure that when we fsync our inode foo we also log its 4126 * parent inode, otherwise after log replay the parent still has the 4127 * dentry with the "bar" name but our inode foo has a link count of 1 4128 * and doesn't have an inode ref with the name "bar" anymore. 4129 * 4130 * Setting last_unlink_trans to last_trans is a pessimistic approach, 4131 * but it guarantees correctness at the expense of occasional full 4132 * transaction commits on fsync if our inode is a directory, or if our 4133 * inode is not a directory, logging its parent unnecessarily. 4134 */ 4135 inode->last_unlink_trans = inode->last_trans; 4136 4137 /* 4138 * Same logic as for last_unlink_trans. We don't persist the generation 4139 * of the last transaction where this inode was used for a reflink 4140 * operation, so after eviction and reloading the inode we must be 4141 * pessimistic and assume the last transaction that modified the inode. 4142 */ 4143 inode->last_reflink_trans = inode->last_trans; 4144 4145 path->slots[0]++; 4146 if (vfs_inode->i_nlink != 1 || 4147 path->slots[0] >= btrfs_header_nritems(leaf)) 4148 goto cache_acl; 4149 4150 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 4151 if (location.objectid != btrfs_ino(inode)) 4152 goto cache_acl; 4153 4154 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4155 if (location.type == BTRFS_INODE_REF_KEY) { 4156 struct btrfs_inode_ref *ref; 4157 4158 ref = (struct btrfs_inode_ref *)ptr; 4159 inode->dir_index = btrfs_inode_ref_index(leaf, ref); 4160 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 4161 struct btrfs_inode_extref *extref; 4162 4163 extref = (struct btrfs_inode_extref *)ptr; 4164 inode->dir_index = btrfs_inode_extref_index(leaf, extref); 4165 } 4166 cache_acl: 4167 /* 4168 * try to precache a NULL acl entry for files that don't have 4169 * any xattrs or acls 4170 */ 4171 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 4172 btrfs_ino(inode), &first_xattr_slot); 4173 if (first_xattr_slot != -1) { 4174 path->slots[0] = first_xattr_slot; 4175 ret = btrfs_load_inode_props(inode, path); 4176 if (ret) 4177 btrfs_err(fs_info, 4178 "error loading props for ino %llu (root %llu): %d", 4179 btrfs_ino(inode), btrfs_root_id(root), ret); 4180 } 4181 4182 /* 4183 * We don't need the path anymore, so release it to avoid holding a read 4184 * lock on a leaf while calling btrfs_init_file_extent_tree(), which can 4185 * allocate memory that triggers reclaim (GFP_KERNEL) and cause a locking 4186 * dependency. 4187 */ 4188 btrfs_release_path(path); 4189 4190 ret = btrfs_init_file_extent_tree(inode); 4191 if (ret) 4192 goto out; 4193 btrfs_inode_set_file_extent_range(inode, 0, 4194 round_up(i_size_read(vfs_inode), fs_info->sectorsize)); 4195 4196 if (!maybe_acls) 4197 cache_no_acl(vfs_inode); 4198 4199 switch (vfs_inode->i_mode & S_IFMT) { 4200 case S_IFREG: 4201 vfs_inode->i_mapping->a_ops = &btrfs_aops; 4202 vfs_inode->i_fop = &btrfs_file_operations; 4203 vfs_inode->i_op = &btrfs_file_inode_operations; 4204 break; 4205 case S_IFDIR: 4206 vfs_inode->i_fop = &btrfs_dir_file_operations; 4207 vfs_inode->i_op = &btrfs_dir_inode_operations; 4208 break; 4209 case S_IFLNK: 4210 vfs_inode->i_op = &btrfs_symlink_inode_operations; 4211 inode_nohighmem(vfs_inode); 4212 vfs_inode->i_mapping->a_ops = &btrfs_aops; 4213 break; 4214 default: 4215 vfs_inode->i_op = &btrfs_special_inode_operations; 4216 init_special_inode(vfs_inode, vfs_inode->i_mode, rdev); 4217 break; 4218 } 4219 4220 btrfs_sync_inode_flags_to_i_flags(inode); 4221 4222 ret = btrfs_add_inode_to_root(inode, true); 4223 if (ret) 4224 goto out; 4225 4226 return 0; 4227 out: 4228 /* 4229 * We may have a read locked leaf and iget_failed() triggers inode 4230 * eviction which needs to release the delayed inode and that needs 4231 * to lock the delayed inode's mutex. This can cause a ABBA deadlock 4232 * with a task running delayed items, as that require first locking 4233 * the delayed inode's mutex and then modifying its subvolume btree. 4234 * So release the path before iget_failed(). 4235 */ 4236 btrfs_release_path(path); 4237 iget_failed(vfs_inode); 4238 return ret; 4239 } 4240 4241 /* 4242 * given a leaf and an inode, copy the inode fields into the leaf 4243 */ 4244 static void fill_inode_item(struct btrfs_trans_handle *trans, 4245 struct extent_buffer *leaf, 4246 struct btrfs_inode_item *item, 4247 struct inode *inode) 4248 { 4249 u64 flags; 4250 4251 btrfs_set_inode_uid(leaf, item, i_uid_read(inode)); 4252 btrfs_set_inode_gid(leaf, item, i_gid_read(inode)); 4253 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size); 4254 btrfs_set_inode_mode(leaf, item, inode->i_mode); 4255 btrfs_set_inode_nlink(leaf, item, inode->i_nlink); 4256 4257 btrfs_set_timespec_sec(leaf, &item->atime, inode_get_atime_sec(inode)); 4258 btrfs_set_timespec_nsec(leaf, &item->atime, inode_get_atime_nsec(inode)); 4259 4260 btrfs_set_timespec_sec(leaf, &item->mtime, inode_get_mtime_sec(inode)); 4261 btrfs_set_timespec_nsec(leaf, &item->mtime, inode_get_mtime_nsec(inode)); 4262 4263 btrfs_set_timespec_sec(leaf, &item->ctime, inode_get_ctime_sec(inode)); 4264 btrfs_set_timespec_nsec(leaf, &item->ctime, inode_get_ctime_nsec(inode)); 4265 4266 btrfs_set_timespec_sec(leaf, &item->otime, BTRFS_I(inode)->i_otime_sec); 4267 btrfs_set_timespec_nsec(leaf, &item->otime, BTRFS_I(inode)->i_otime_nsec); 4268 4269 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode)); 4270 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation); 4271 btrfs_set_inode_sequence(leaf, item, inode_peek_iversion(inode)); 4272 btrfs_set_inode_transid(leaf, item, trans->transid); 4273 btrfs_set_inode_rdev(leaf, item, inode->i_rdev); 4274 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, 4275 BTRFS_I(inode)->ro_flags); 4276 btrfs_set_inode_flags(leaf, item, flags); 4277 btrfs_set_inode_block_group(leaf, item, 0); 4278 } 4279 4280 /* 4281 * copy everything in the in-memory inode into the btree. 4282 */ 4283 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 4284 struct btrfs_inode *inode) 4285 { 4286 struct btrfs_inode_item *inode_item; 4287 BTRFS_PATH_AUTO_FREE(path); 4288 struct extent_buffer *leaf; 4289 struct btrfs_key key; 4290 int ret; 4291 4292 path = btrfs_alloc_path(); 4293 if (!path) 4294 return -ENOMEM; 4295 4296 btrfs_get_inode_key(inode, &key); 4297 ret = btrfs_lookup_inode(trans, inode->root, path, &key, 1); 4298 if (ret) { 4299 if (ret > 0) 4300 ret = -ENOENT; 4301 return ret; 4302 } 4303 4304 leaf = path->nodes[0]; 4305 inode_item = btrfs_item_ptr(leaf, path->slots[0], 4306 struct btrfs_inode_item); 4307 4308 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode); 4309 btrfs_set_inode_last_trans(trans, inode); 4310 return 0; 4311 } 4312 4313 /* 4314 * copy everything in the in-memory inode into the btree. 4315 */ 4316 int btrfs_update_inode(struct btrfs_trans_handle *trans, 4317 struct btrfs_inode *inode) 4318 { 4319 struct btrfs_root *root = inode->root; 4320 struct btrfs_fs_info *fs_info = root->fs_info; 4321 int ret; 4322 4323 /* 4324 * If the inode is a free space inode, we can deadlock during commit 4325 * if we put it into the delayed code. 4326 * 4327 * The data relocation inode should also be directly updated 4328 * without delay 4329 */ 4330 if (!btrfs_is_free_space_inode(inode) 4331 && !btrfs_is_data_reloc_root(root) 4332 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 4333 btrfs_update_root_times(trans, root); 4334 4335 ret = btrfs_delayed_update_inode(trans, inode); 4336 if (!ret) 4337 btrfs_set_inode_last_trans(trans, inode); 4338 return ret; 4339 } 4340 4341 return btrfs_update_inode_item(trans, inode); 4342 } 4343 4344 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 4345 struct btrfs_inode *inode) 4346 { 4347 int ret; 4348 4349 ret = btrfs_update_inode(trans, inode); 4350 if (ret == -ENOSPC) 4351 return btrfs_update_inode_item(trans, inode); 4352 return ret; 4353 } 4354 4355 static void update_time_after_link_or_unlink(struct btrfs_inode *dir) 4356 { 4357 struct timespec64 now; 4358 4359 /* 4360 * If we are replaying a log tree, we do not want to update the mtime 4361 * and ctime of the parent directory with the current time, since the 4362 * log replay procedure is responsible for setting them to their correct 4363 * values (the ones it had when the fsync was done). 4364 */ 4365 if (test_bit(BTRFS_FS_LOG_RECOVERING, &dir->root->fs_info->flags)) 4366 return; 4367 4368 now = inode_set_ctime_current(&dir->vfs_inode); 4369 inode_set_mtime_to_ts(&dir->vfs_inode, now); 4370 } 4371 4372 /* 4373 * unlink helper that gets used here in inode.c and in the tree logging 4374 * recovery code. It remove a link in a directory with a given name, and 4375 * also drops the back refs in the inode to the directory 4376 */ 4377 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4378 struct btrfs_inode *dir, 4379 struct btrfs_inode *inode, 4380 const struct fscrypt_str *name, 4381 struct btrfs_rename_ctx *rename_ctx) 4382 { 4383 struct btrfs_root *root = dir->root; 4384 struct btrfs_fs_info *fs_info = root->fs_info; 4385 struct btrfs_path *path; 4386 int ret = 0; 4387 struct btrfs_dir_item *di; 4388 u64 index; 4389 u64 ino = btrfs_ino(inode); 4390 u64 dir_ino = btrfs_ino(dir); 4391 4392 path = btrfs_alloc_path(); 4393 if (!path) 4394 return -ENOMEM; 4395 4396 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1); 4397 if (IS_ERR_OR_NULL(di)) { 4398 btrfs_free_path(path); 4399 return di ? PTR_ERR(di) : -ENOENT; 4400 } 4401 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4402 /* 4403 * Down the call chains below we'll also need to allocate a path, so no 4404 * need to hold on to this one for longer than necessary. 4405 */ 4406 btrfs_free_path(path); 4407 if (ret) 4408 return ret; 4409 4410 /* 4411 * If we don't have dir index, we have to get it by looking up 4412 * the inode ref, since we get the inode ref, remove it directly, 4413 * it is unnecessary to do delayed deletion. 4414 * 4415 * But if we have dir index, needn't search inode ref to get it. 4416 * Since the inode ref is close to the inode item, it is better 4417 * that we delay to delete it, and just do this deletion when 4418 * we update the inode item. 4419 */ 4420 if (inode->dir_index) { 4421 ret = btrfs_delayed_delete_inode_ref(inode); 4422 if (!ret) { 4423 index = inode->dir_index; 4424 goto skip_backref; 4425 } 4426 } 4427 4428 ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index); 4429 if (unlikely(ret)) { 4430 btrfs_crit(fs_info, 4431 "failed to delete reference to %.*s, root %llu inode %llu parent %llu", 4432 name->len, name->name, btrfs_root_id(root), ino, dir_ino); 4433 btrfs_abort_transaction(trans, ret); 4434 return ret; 4435 } 4436 skip_backref: 4437 if (rename_ctx) 4438 rename_ctx->index = index; 4439 4440 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4441 if (unlikely(ret)) { 4442 btrfs_abort_transaction(trans, ret); 4443 return ret; 4444 } 4445 4446 /* 4447 * If we are in a rename context, we don't need to update anything in the 4448 * log. That will be done later during the rename by btrfs_log_new_name(). 4449 * Besides that, doing it here would only cause extra unnecessary btree 4450 * operations on the log tree, increasing latency for applications. 4451 */ 4452 if (!rename_ctx) { 4453 btrfs_del_inode_ref_in_log(trans, name, inode, dir); 4454 btrfs_del_dir_entries_in_log(trans, name, dir, index); 4455 } 4456 4457 /* 4458 * If we have a pending delayed iput we could end up with the final iput 4459 * being run in btrfs-cleaner context. If we have enough of these built 4460 * up we can end up burning a lot of time in btrfs-cleaner without any 4461 * way to throttle the unlinks. Since we're currently holding a ref on 4462 * the inode we can run the delayed iput here without any issues as the 4463 * final iput won't be done until after we drop the ref we're currently 4464 * holding. 4465 */ 4466 btrfs_run_delayed_iput(fs_info, inode); 4467 4468 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2); 4469 inode_inc_iversion(&inode->vfs_inode); 4470 inode_set_ctime_current(&inode->vfs_inode); 4471 inode_inc_iversion(&dir->vfs_inode); 4472 update_time_after_link_or_unlink(dir); 4473 4474 return btrfs_update_inode(trans, dir); 4475 } 4476 4477 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4478 struct btrfs_inode *dir, struct btrfs_inode *inode, 4479 const struct fscrypt_str *name) 4480 { 4481 int ret; 4482 4483 ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL); 4484 if (!ret) { 4485 drop_nlink(&inode->vfs_inode); 4486 ret = btrfs_update_inode(trans, inode); 4487 } 4488 return ret; 4489 } 4490 4491 /* 4492 * helper to start transaction for unlink and rmdir. 4493 * 4494 * unlink and rmdir are special in btrfs, they do not always free space, so 4495 * if we cannot make our reservations the normal way try and see if there is 4496 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4497 * allow the unlink to occur. 4498 */ 4499 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir) 4500 { 4501 struct btrfs_root *root = dir->root; 4502 4503 return btrfs_start_transaction_fallback_global_rsv(root, 4504 BTRFS_UNLINK_METADATA_UNITS); 4505 } 4506 4507 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4508 { 4509 struct btrfs_trans_handle *trans; 4510 struct inode *inode = d_inode(dentry); 4511 int ret; 4512 struct fscrypt_name fname; 4513 4514 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname); 4515 if (ret) 4516 return ret; 4517 4518 /* This needs to handle no-key deletions later on */ 4519 4520 trans = __unlink_start_trans(BTRFS_I(dir)); 4521 if (IS_ERR(trans)) { 4522 ret = PTR_ERR(trans); 4523 goto fscrypt_free; 4524 } 4525 4526 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4527 false); 4528 4529 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4530 &fname.disk_name); 4531 if (ret) 4532 goto end_trans; 4533 4534 if (inode->i_nlink == 0) { 4535 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4536 if (ret) 4537 goto end_trans; 4538 } 4539 4540 end_trans: 4541 btrfs_end_transaction(trans); 4542 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info); 4543 fscrypt_free: 4544 fscrypt_free_filename(&fname); 4545 return ret; 4546 } 4547 4548 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4549 struct btrfs_inode *dir, struct dentry *dentry) 4550 { 4551 struct btrfs_root *root = dir->root; 4552 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 4553 BTRFS_PATH_AUTO_FREE(path); 4554 struct extent_buffer *leaf; 4555 struct btrfs_dir_item *di; 4556 struct btrfs_key key; 4557 u64 index; 4558 int ret; 4559 u64 objectid; 4560 u64 dir_ino = btrfs_ino(dir); 4561 struct fscrypt_name fname; 4562 4563 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname); 4564 if (ret) 4565 return ret; 4566 4567 /* This needs to handle no-key deletions later on */ 4568 4569 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 4570 objectid = btrfs_root_id(inode->root); 4571 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4572 objectid = inode->ref_root_id; 4573 } else { 4574 WARN_ON(1); 4575 fscrypt_free_filename(&fname); 4576 return -EINVAL; 4577 } 4578 4579 path = btrfs_alloc_path(); 4580 if (!path) { 4581 ret = -ENOMEM; 4582 goto out; 4583 } 4584 4585 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4586 &fname.disk_name, -1); 4587 if (IS_ERR_OR_NULL(di)) { 4588 ret = di ? PTR_ERR(di) : -ENOENT; 4589 goto out; 4590 } 4591 4592 leaf = path->nodes[0]; 4593 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4594 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4595 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4596 if (unlikely(ret)) { 4597 btrfs_abort_transaction(trans, ret); 4598 goto out; 4599 } 4600 btrfs_release_path(path); 4601 4602 /* 4603 * This is a placeholder inode for a subvolume we didn't have a 4604 * reference to at the time of the snapshot creation. In the meantime 4605 * we could have renamed the real subvol link into our snapshot, so 4606 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect. 4607 * Instead simply lookup the dir_index_item for this entry so we can 4608 * remove it. Otherwise we know we have a ref to the root and we can 4609 * call btrfs_del_root_ref, and it _shouldn't_ fail. 4610 */ 4611 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4612 di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name); 4613 if (IS_ERR(di)) { 4614 ret = PTR_ERR(di); 4615 btrfs_abort_transaction(trans, ret); 4616 goto out; 4617 } 4618 4619 leaf = path->nodes[0]; 4620 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4621 index = key.offset; 4622 btrfs_release_path(path); 4623 } else { 4624 ret = btrfs_del_root_ref(trans, objectid, 4625 btrfs_root_id(root), dir_ino, 4626 &index, &fname.disk_name); 4627 if (unlikely(ret)) { 4628 btrfs_abort_transaction(trans, ret); 4629 goto out; 4630 } 4631 } 4632 4633 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4634 if (unlikely(ret)) { 4635 btrfs_abort_transaction(trans, ret); 4636 goto out; 4637 } 4638 4639 btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2); 4640 inode_inc_iversion(&dir->vfs_inode); 4641 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode)); 4642 ret = btrfs_update_inode_fallback(trans, dir); 4643 if (ret) 4644 btrfs_abort_transaction(trans, ret); 4645 out: 4646 fscrypt_free_filename(&fname); 4647 return ret; 4648 } 4649 4650 /* 4651 * Helper to check if the subvolume references other subvolumes or if it's 4652 * default. 4653 */ 4654 static noinline int may_destroy_subvol(struct btrfs_root *root) 4655 { 4656 struct btrfs_fs_info *fs_info = root->fs_info; 4657 BTRFS_PATH_AUTO_FREE(path); 4658 struct btrfs_dir_item *di; 4659 struct btrfs_key key; 4660 struct fscrypt_str name = FSTR_INIT("default", 7); 4661 u64 dir_id; 4662 int ret; 4663 4664 path = btrfs_alloc_path(); 4665 if (!path) 4666 return -ENOMEM; 4667 4668 /* Make sure this root isn't set as the default subvol */ 4669 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4670 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 4671 dir_id, &name, 0); 4672 if (di && !IS_ERR(di)) { 4673 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 4674 if (key.objectid == btrfs_root_id(root)) { 4675 ret = -EPERM; 4676 btrfs_err(fs_info, 4677 "deleting default subvolume %llu is not allowed", 4678 key.objectid); 4679 return ret; 4680 } 4681 btrfs_release_path(path); 4682 } 4683 4684 key.objectid = btrfs_root_id(root); 4685 key.type = BTRFS_ROOT_REF_KEY; 4686 key.offset = (u64)-1; 4687 4688 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4689 if (ret < 0) 4690 return ret; 4691 if (unlikely(ret == 0)) { 4692 /* 4693 * Key with offset -1 found, there would have to exist a root 4694 * with such id, but this is out of valid range. 4695 */ 4696 return -EUCLEAN; 4697 } 4698 4699 ret = 0; 4700 if (path->slots[0] > 0) { 4701 path->slots[0]--; 4702 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4703 if (key.objectid == btrfs_root_id(root) && key.type == BTRFS_ROOT_REF_KEY) 4704 ret = -ENOTEMPTY; 4705 } 4706 4707 return ret; 4708 } 4709 4710 /* Delete all dentries for inodes belonging to the root */ 4711 static void btrfs_prune_dentries(struct btrfs_root *root) 4712 { 4713 struct btrfs_fs_info *fs_info = root->fs_info; 4714 struct btrfs_inode *inode; 4715 u64 min_ino = 0; 4716 4717 if (!BTRFS_FS_ERROR(fs_info)) 4718 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4719 4720 inode = btrfs_find_first_inode(root, min_ino); 4721 while (inode) { 4722 if (icount_read(&inode->vfs_inode) > 1) 4723 d_prune_aliases(&inode->vfs_inode); 4724 4725 min_ino = btrfs_ino(inode) + 1; 4726 /* 4727 * btrfs_drop_inode() will have it removed from the inode 4728 * cache when its usage count hits zero. 4729 */ 4730 iput(&inode->vfs_inode); 4731 cond_resched(); 4732 inode = btrfs_find_first_inode(root, min_ino); 4733 } 4734 } 4735 4736 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry) 4737 { 4738 struct btrfs_root *root = dir->root; 4739 struct btrfs_fs_info *fs_info = root->fs_info; 4740 struct inode *inode = d_inode(dentry); 4741 struct btrfs_root *dest = BTRFS_I(inode)->root; 4742 struct btrfs_trans_handle *trans; 4743 struct btrfs_block_rsv block_rsv; 4744 u64 root_flags; 4745 u64 qgroup_reserved = 0; 4746 int ret; 4747 4748 down_write(&fs_info->subvol_sem); 4749 4750 /* 4751 * Don't allow to delete a subvolume with send in progress. This is 4752 * inside the inode lock so the error handling that has to drop the bit 4753 * again is not run concurrently. 4754 */ 4755 spin_lock(&dest->root_item_lock); 4756 if (dest->send_in_progress) { 4757 spin_unlock(&dest->root_item_lock); 4758 btrfs_warn(fs_info, 4759 "attempt to delete subvolume %llu during send", 4760 btrfs_root_id(dest)); 4761 ret = -EPERM; 4762 goto out_up_write; 4763 } 4764 if (atomic_read(&dest->nr_swapfiles)) { 4765 spin_unlock(&dest->root_item_lock); 4766 btrfs_warn(fs_info, 4767 "attempt to delete subvolume %llu with active swapfile", 4768 btrfs_root_id(root)); 4769 ret = -EPERM; 4770 goto out_up_write; 4771 } 4772 root_flags = btrfs_root_flags(&dest->root_item); 4773 btrfs_set_root_flags(&dest->root_item, 4774 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 4775 spin_unlock(&dest->root_item_lock); 4776 4777 ret = may_destroy_subvol(dest); 4778 if (ret) 4779 goto out_undead; 4780 4781 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 4782 /* 4783 * One for dir inode, 4784 * two for dir entries, 4785 * two for root ref/backref. 4786 */ 4787 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 4788 if (ret) 4789 goto out_undead; 4790 qgroup_reserved = block_rsv.qgroup_rsv_reserved; 4791 4792 trans = btrfs_start_transaction(root, 0); 4793 if (IS_ERR(trans)) { 4794 ret = PTR_ERR(trans); 4795 goto out_release; 4796 } 4797 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved); 4798 qgroup_reserved = 0; 4799 trans->block_rsv = &block_rsv; 4800 trans->bytes_reserved = block_rsv.size; 4801 4802 btrfs_record_snapshot_destroy(trans, dir); 4803 4804 ret = btrfs_unlink_subvol(trans, dir, dentry); 4805 if (unlikely(ret)) { 4806 btrfs_abort_transaction(trans, ret); 4807 goto out_end_trans; 4808 } 4809 4810 ret = btrfs_record_root_in_trans(trans, dest); 4811 if (unlikely(ret)) { 4812 btrfs_abort_transaction(trans, ret); 4813 goto out_end_trans; 4814 } 4815 4816 memset(&dest->root_item.drop_progress, 0, 4817 sizeof(dest->root_item.drop_progress)); 4818 btrfs_set_root_drop_level(&dest->root_item, 0); 4819 btrfs_set_root_refs(&dest->root_item, 0); 4820 4821 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 4822 ret = btrfs_insert_orphan_item(trans, 4823 fs_info->tree_root, 4824 btrfs_root_id(dest)); 4825 if (unlikely(ret)) { 4826 btrfs_abort_transaction(trans, ret); 4827 goto out_end_trans; 4828 } 4829 } 4830 4831 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4832 BTRFS_UUID_KEY_SUBVOL, btrfs_root_id(dest)); 4833 if (unlikely(ret && ret != -ENOENT)) { 4834 btrfs_abort_transaction(trans, ret); 4835 goto out_end_trans; 4836 } 4837 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4838 ret = btrfs_uuid_tree_remove(trans, 4839 dest->root_item.received_uuid, 4840 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4841 btrfs_root_id(dest)); 4842 if (unlikely(ret && ret != -ENOENT)) { 4843 btrfs_abort_transaction(trans, ret); 4844 goto out_end_trans; 4845 } 4846 } 4847 4848 free_anon_bdev(dest->anon_dev); 4849 dest->anon_dev = 0; 4850 out_end_trans: 4851 trans->block_rsv = NULL; 4852 trans->bytes_reserved = 0; 4853 ret = btrfs_end_transaction(trans); 4854 inode->i_flags |= S_DEAD; 4855 out_release: 4856 btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL); 4857 if (qgroup_reserved) 4858 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved); 4859 out_undead: 4860 if (ret) { 4861 spin_lock(&dest->root_item_lock); 4862 root_flags = btrfs_root_flags(&dest->root_item); 4863 btrfs_set_root_flags(&dest->root_item, 4864 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4865 spin_unlock(&dest->root_item_lock); 4866 } 4867 out_up_write: 4868 up_write(&fs_info->subvol_sem); 4869 if (!ret) { 4870 d_invalidate(dentry); 4871 btrfs_prune_dentries(dest); 4872 ASSERT(dest->send_in_progress == 0); 4873 } 4874 4875 return ret; 4876 } 4877 4878 static int btrfs_rmdir(struct inode *vfs_dir, struct dentry *dentry) 4879 { 4880 struct btrfs_inode *dir = BTRFS_I(vfs_dir); 4881 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 4882 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4883 int ret = 0; 4884 struct btrfs_trans_handle *trans; 4885 struct fscrypt_name fname; 4886 4887 if (inode->vfs_inode.i_size > BTRFS_EMPTY_DIR_SIZE) 4888 return -ENOTEMPTY; 4889 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 4890 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) { 4891 btrfs_err(fs_info, 4892 "extent tree v2 doesn't support snapshot deletion yet"); 4893 return -EOPNOTSUPP; 4894 } 4895 return btrfs_delete_subvolume(dir, dentry); 4896 } 4897 4898 ret = fscrypt_setup_filename(vfs_dir, &dentry->d_name, 1, &fname); 4899 if (ret) 4900 return ret; 4901 4902 /* This needs to handle no-key deletions later on */ 4903 4904 trans = __unlink_start_trans(dir); 4905 if (IS_ERR(trans)) { 4906 ret = PTR_ERR(trans); 4907 goto out_notrans; 4908 } 4909 4910 /* 4911 * Propagate the last_unlink_trans value of the deleted dir to its 4912 * parent directory. This is to prevent an unrecoverable log tree in the 4913 * case we do something like this: 4914 * 1) create dir foo 4915 * 2) create snapshot under dir foo 4916 * 3) delete the snapshot 4917 * 4) rmdir foo 4918 * 5) mkdir foo 4919 * 6) fsync foo or some file inside foo 4920 * 4921 * This is because we can't unlink other roots when replaying the dir 4922 * deletes for directory foo. 4923 */ 4924 if (inode->last_unlink_trans >= trans->transid) 4925 btrfs_record_snapshot_destroy(trans, dir); 4926 4927 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4928 ret = btrfs_unlink_subvol(trans, dir, dentry); 4929 goto out; 4930 } 4931 4932 ret = btrfs_orphan_add(trans, inode); 4933 if (ret) 4934 goto out; 4935 4936 /* now the directory is empty */ 4937 ret = btrfs_unlink_inode(trans, dir, inode, &fname.disk_name); 4938 if (!ret) 4939 btrfs_i_size_write(inode, 0); 4940 out: 4941 btrfs_end_transaction(trans); 4942 out_notrans: 4943 btrfs_btree_balance_dirty(fs_info); 4944 fscrypt_free_filename(&fname); 4945 4946 return ret; 4947 } 4948 4949 static bool is_inside_block(u64 bytenr, u64 blockstart, u32 blocksize) 4950 { 4951 ASSERT(IS_ALIGNED(blockstart, blocksize), "blockstart=%llu blocksize=%u", 4952 blockstart, blocksize); 4953 4954 if (blockstart <= bytenr && bytenr <= blockstart + blocksize - 1) 4955 return true; 4956 return false; 4957 } 4958 4959 static int truncate_block_zero_beyond_eof(struct btrfs_inode *inode, u64 start) 4960 { 4961 const pgoff_t index = (start >> PAGE_SHIFT); 4962 struct address_space *mapping = inode->vfs_inode.i_mapping; 4963 struct folio *folio; 4964 u64 zero_start; 4965 u64 zero_end; 4966 int ret = 0; 4967 4968 again: 4969 folio = filemap_lock_folio(mapping, index); 4970 /* No folio present. */ 4971 if (IS_ERR(folio)) 4972 return 0; 4973 4974 if (!folio_test_uptodate(folio)) { 4975 ret = btrfs_read_folio(NULL, folio); 4976 folio_lock(folio); 4977 if (folio->mapping != mapping) { 4978 folio_unlock(folio); 4979 folio_put(folio); 4980 goto again; 4981 } 4982 if (unlikely(!folio_test_uptodate(folio))) { 4983 ret = -EIO; 4984 goto out_unlock; 4985 } 4986 } 4987 folio_wait_writeback(folio); 4988 4989 /* 4990 * We do not need to lock extents nor wait for OE, as it's already 4991 * beyond EOF. 4992 */ 4993 4994 zero_start = max_t(u64, folio_pos(folio), start); 4995 zero_end = folio_next_pos(folio); 4996 folio_zero_range(folio, zero_start - folio_pos(folio), 4997 zero_end - zero_start); 4998 4999 out_unlock: 5000 folio_unlock(folio); 5001 folio_put(folio); 5002 return ret; 5003 } 5004 5005 /* 5006 * Handle the truncation of a fs block. 5007 * 5008 * @inode - inode that we're zeroing 5009 * @offset - the file offset of the block to truncate 5010 * The value must be inside [@start, @end], and the function will do 5011 * extra checks if the block that covers @offset needs to be zeroed. 5012 * @start - the start file offset of the range we want to zero 5013 * @end - the end (inclusive) file offset of the range we want to zero. 5014 * 5015 * If the range is not block aligned, read out the folio that covers @offset, 5016 * and if needed zero blocks that are inside the folio and covered by [@start, @end). 5017 * If @start or @end + 1 lands inside a block, that block will be marked dirty 5018 * for writeback. 5019 * 5020 * This is utilized by hole punch, zero range, file expansion. 5021 */ 5022 int btrfs_truncate_block(struct btrfs_inode *inode, u64 offset, u64 start, u64 end) 5023 { 5024 struct btrfs_fs_info *fs_info = inode->root->fs_info; 5025 struct address_space *mapping = inode->vfs_inode.i_mapping; 5026 struct extent_io_tree *io_tree = &inode->io_tree; 5027 struct btrfs_ordered_extent *ordered; 5028 struct extent_state *cached_state = NULL; 5029 struct extent_changeset *data_reserved = NULL; 5030 bool only_release_metadata = false; 5031 u32 blocksize = fs_info->sectorsize; 5032 pgoff_t index = (offset >> PAGE_SHIFT); 5033 struct folio *folio; 5034 gfp_t mask = btrfs_alloc_write_mask(mapping); 5035 int ret = 0; 5036 const bool in_head_block = is_inside_block(offset, round_down(start, blocksize), 5037 blocksize); 5038 const bool in_tail_block = is_inside_block(offset, round_down(end, blocksize), 5039 blocksize); 5040 bool need_truncate_head = false; 5041 bool need_truncate_tail = false; 5042 u64 zero_start; 5043 u64 zero_end; 5044 u64 block_start; 5045 u64 block_end; 5046 5047 /* @offset should be inside the range. */ 5048 ASSERT(start <= offset && offset <= end, "offset=%llu start=%llu end=%llu", 5049 offset, start, end); 5050 5051 /* The range is aligned at both ends. */ 5052 if (IS_ALIGNED(start, blocksize) && IS_ALIGNED(end + 1, blocksize)) { 5053 /* 5054 * For block size < page size case, we may have polluted blocks 5055 * beyond EOF. So we also need to zero them out. 5056 */ 5057 if (end == (u64)-1 && blocksize < PAGE_SIZE) 5058 ret = truncate_block_zero_beyond_eof(inode, start); 5059 goto out; 5060 } 5061 5062 /* 5063 * @offset may not be inside the head nor tail block. In that case we 5064 * don't need to do anything. 5065 */ 5066 if (!in_head_block && !in_tail_block) 5067 goto out; 5068 5069 /* 5070 * Skip the truncation if the range in the target block is already aligned. 5071 * The seemingly complex check will also handle the same block case. 5072 */ 5073 if (in_head_block && !IS_ALIGNED(start, blocksize)) 5074 need_truncate_head = true; 5075 if (in_tail_block && !IS_ALIGNED(end + 1, blocksize)) 5076 need_truncate_tail = true; 5077 if (!need_truncate_head && !need_truncate_tail) 5078 goto out; 5079 5080 block_start = round_down(offset, blocksize); 5081 block_end = block_start + blocksize - 1; 5082 5083 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start, 5084 blocksize, false); 5085 if (ret < 0) { 5086 size_t write_bytes = blocksize; 5087 5088 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) { 5089 /* For nocow case, no need to reserve data space. */ 5090 ASSERT(write_bytes == blocksize, "write_bytes=%zu blocksize=%u", 5091 write_bytes, blocksize); 5092 only_release_metadata = true; 5093 } else { 5094 goto out; 5095 } 5096 } 5097 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false); 5098 if (ret < 0) { 5099 if (!only_release_metadata) 5100 btrfs_free_reserved_data_space(inode, data_reserved, 5101 block_start, blocksize); 5102 goto out; 5103 } 5104 again: 5105 folio = __filemap_get_folio(mapping, index, 5106 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mask); 5107 if (IS_ERR(folio)) { 5108 if (only_release_metadata) 5109 btrfs_delalloc_release_metadata(inode, blocksize, true); 5110 else 5111 btrfs_delalloc_release_space(inode, data_reserved, 5112 block_start, blocksize, true); 5113 btrfs_delalloc_release_extents(inode, blocksize); 5114 ret = PTR_ERR(folio); 5115 goto out; 5116 } 5117 5118 if (!folio_test_uptodate(folio)) { 5119 ret = btrfs_read_folio(NULL, folio); 5120 folio_lock(folio); 5121 if (folio->mapping != mapping) { 5122 folio_unlock(folio); 5123 folio_put(folio); 5124 goto again; 5125 } 5126 if (unlikely(!folio_test_uptodate(folio))) { 5127 ret = -EIO; 5128 goto out_unlock; 5129 } 5130 } 5131 5132 /* 5133 * We unlock the page after the io is completed and then re-lock it 5134 * above. release_folio() could have come in between that and cleared 5135 * folio private, but left the page in the mapping. Set the page mapped 5136 * here to make sure it's properly set for the subpage stuff. 5137 */ 5138 ret = set_folio_extent_mapped(folio); 5139 if (ret < 0) 5140 goto out_unlock; 5141 5142 folio_wait_writeback(folio); 5143 5144 btrfs_lock_extent(io_tree, block_start, block_end, &cached_state); 5145 5146 ordered = btrfs_lookup_ordered_extent(inode, block_start); 5147 if (ordered) { 5148 btrfs_unlock_extent(io_tree, block_start, block_end, &cached_state); 5149 folio_unlock(folio); 5150 folio_put(folio); 5151 btrfs_start_ordered_extent(ordered); 5152 btrfs_put_ordered_extent(ordered); 5153 goto again; 5154 } 5155 5156 btrfs_clear_extent_bit(&inode->io_tree, block_start, block_end, 5157 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 5158 &cached_state); 5159 5160 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 5161 &cached_state); 5162 if (ret) { 5163 btrfs_unlock_extent(io_tree, block_start, block_end, &cached_state); 5164 goto out_unlock; 5165 } 5166 5167 if (end == (u64)-1) { 5168 /* 5169 * We're truncating beyond EOF, the remaining blocks normally are 5170 * already holes thus no need to zero again, but it's possible for 5171 * fs block size < page size cases to have memory mapped writes 5172 * to pollute ranges beyond EOF. 5173 * 5174 * In that case although such polluted blocks beyond EOF will 5175 * not reach disk, it still affects our page caches. 5176 */ 5177 zero_start = max_t(u64, folio_pos(folio), start); 5178 zero_end = min_t(u64, folio_next_pos(folio) - 1, end); 5179 } else { 5180 zero_start = max_t(u64, block_start, start); 5181 zero_end = min_t(u64, block_end, end); 5182 } 5183 folio_zero_range(folio, zero_start - folio_pos(folio), 5184 zero_end - zero_start + 1); 5185 5186 btrfs_folio_clear_checked(fs_info, folio, block_start, 5187 block_end + 1 - block_start); 5188 btrfs_folio_set_dirty(fs_info, folio, block_start, 5189 block_end + 1 - block_start); 5190 5191 if (only_release_metadata) 5192 btrfs_set_extent_bit(&inode->io_tree, block_start, block_end, 5193 EXTENT_NORESERVE, &cached_state); 5194 5195 btrfs_unlock_extent(io_tree, block_start, block_end, &cached_state); 5196 5197 out_unlock: 5198 if (ret) { 5199 if (only_release_metadata) 5200 btrfs_delalloc_release_metadata(inode, blocksize, true); 5201 else 5202 btrfs_delalloc_release_space(inode, data_reserved, 5203 block_start, blocksize, true); 5204 } 5205 btrfs_delalloc_release_extents(inode, blocksize); 5206 folio_unlock(folio); 5207 folio_put(folio); 5208 out: 5209 if (only_release_metadata) 5210 btrfs_check_nocow_unlock(inode); 5211 extent_changeset_free(data_reserved); 5212 return ret; 5213 } 5214 5215 static int maybe_insert_hole(struct btrfs_inode *inode, u64 offset, u64 len) 5216 { 5217 struct btrfs_root *root = inode->root; 5218 struct btrfs_fs_info *fs_info = root->fs_info; 5219 struct btrfs_trans_handle *trans; 5220 struct btrfs_drop_extents_args drop_args = { 0 }; 5221 int ret; 5222 5223 /* 5224 * If NO_HOLES is enabled, we don't need to do anything. 5225 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans() 5226 * or btrfs_update_inode() will be called, which guarantee that the next 5227 * fsync will know this inode was changed and needs to be logged. 5228 */ 5229 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 5230 return 0; 5231 5232 /* 5233 * 1 - for the one we're dropping 5234 * 1 - for the one we're adding 5235 * 1 - for updating the inode. 5236 */ 5237 trans = btrfs_start_transaction(root, 3); 5238 if (IS_ERR(trans)) 5239 return PTR_ERR(trans); 5240 5241 drop_args.start = offset; 5242 drop_args.end = offset + len; 5243 drop_args.drop_cache = true; 5244 5245 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 5246 if (unlikely(ret)) { 5247 btrfs_abort_transaction(trans, ret); 5248 btrfs_end_transaction(trans); 5249 return ret; 5250 } 5251 5252 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len); 5253 if (ret) { 5254 btrfs_abort_transaction(trans, ret); 5255 } else { 5256 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found); 5257 btrfs_update_inode(trans, inode); 5258 } 5259 btrfs_end_transaction(trans); 5260 return ret; 5261 } 5262 5263 /* 5264 * This function puts in dummy file extents for the area we're creating a hole 5265 * for. So if we are truncating this file to a larger size we need to insert 5266 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 5267 * the range between oldsize and size 5268 */ 5269 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size) 5270 { 5271 struct btrfs_root *root = inode->root; 5272 struct btrfs_fs_info *fs_info = root->fs_info; 5273 struct extent_io_tree *io_tree = &inode->io_tree; 5274 struct extent_map *em = NULL; 5275 struct extent_state *cached_state = NULL; 5276 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 5277 u64 block_end = ALIGN(size, fs_info->sectorsize); 5278 u64 last_byte; 5279 u64 cur_offset; 5280 u64 hole_size; 5281 int ret = 0; 5282 5283 /* 5284 * If our size started in the middle of a block we need to zero out the 5285 * rest of the block before we expand the i_size, otherwise we could 5286 * expose stale data. 5287 */ 5288 ret = btrfs_truncate_block(inode, oldsize, oldsize, -1); 5289 if (ret) 5290 return ret; 5291 5292 if (size <= hole_start) 5293 return 0; 5294 5295 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1, 5296 &cached_state); 5297 cur_offset = hole_start; 5298 while (1) { 5299 em = btrfs_get_extent(inode, NULL, cur_offset, block_end - cur_offset); 5300 if (IS_ERR(em)) { 5301 ret = PTR_ERR(em); 5302 em = NULL; 5303 break; 5304 } 5305 last_byte = min(btrfs_extent_map_end(em), block_end); 5306 last_byte = ALIGN(last_byte, fs_info->sectorsize); 5307 hole_size = last_byte - cur_offset; 5308 5309 if (!(em->flags & EXTENT_FLAG_PREALLOC)) { 5310 struct extent_map *hole_em; 5311 5312 ret = maybe_insert_hole(inode, cur_offset, hole_size); 5313 if (ret) 5314 break; 5315 5316 ret = btrfs_inode_set_file_extent_range(inode, 5317 cur_offset, hole_size); 5318 if (ret) 5319 break; 5320 5321 hole_em = btrfs_alloc_extent_map(); 5322 if (!hole_em) { 5323 btrfs_drop_extent_map_range(inode, cur_offset, 5324 cur_offset + hole_size - 1, 5325 false); 5326 btrfs_set_inode_full_sync(inode); 5327 goto next; 5328 } 5329 hole_em->start = cur_offset; 5330 hole_em->len = hole_size; 5331 5332 hole_em->disk_bytenr = EXTENT_MAP_HOLE; 5333 hole_em->disk_num_bytes = 0; 5334 hole_em->ram_bytes = hole_size; 5335 hole_em->generation = btrfs_get_fs_generation(fs_info); 5336 5337 ret = btrfs_replace_extent_map_range(inode, hole_em, true); 5338 btrfs_free_extent_map(hole_em); 5339 } else { 5340 ret = btrfs_inode_set_file_extent_range(inode, 5341 cur_offset, hole_size); 5342 if (ret) 5343 break; 5344 } 5345 next: 5346 btrfs_free_extent_map(em); 5347 em = NULL; 5348 cur_offset = last_byte; 5349 if (cur_offset >= block_end) 5350 break; 5351 } 5352 btrfs_free_extent_map(em); 5353 btrfs_unlock_extent(io_tree, hole_start, block_end - 1, &cached_state); 5354 return ret; 5355 } 5356 5357 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 5358 { 5359 struct btrfs_root *root = BTRFS_I(inode)->root; 5360 struct btrfs_trans_handle *trans; 5361 loff_t oldsize = i_size_read(inode); 5362 loff_t newsize = attr->ia_size; 5363 int mask = attr->ia_valid; 5364 int ret; 5365 5366 /* 5367 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 5368 * special case where we need to update the times despite not having 5369 * these flags set. For all other operations the VFS set these flags 5370 * explicitly if it wants a timestamp update. 5371 */ 5372 if (newsize != oldsize) { 5373 inode_inc_iversion(inode); 5374 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) { 5375 inode_set_mtime_to_ts(inode, 5376 inode_set_ctime_current(inode)); 5377 } 5378 } 5379 5380 if (newsize > oldsize) { 5381 /* 5382 * Don't do an expanding truncate while snapshotting is ongoing. 5383 * This is to ensure the snapshot captures a fully consistent 5384 * state of this file - if the snapshot captures this expanding 5385 * truncation, it must capture all writes that happened before 5386 * this truncation. 5387 */ 5388 btrfs_drew_write_lock(&root->snapshot_lock); 5389 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize); 5390 if (ret) { 5391 btrfs_drew_write_unlock(&root->snapshot_lock); 5392 return ret; 5393 } 5394 5395 trans = btrfs_start_transaction(root, 1); 5396 if (IS_ERR(trans)) { 5397 btrfs_drew_write_unlock(&root->snapshot_lock); 5398 return PTR_ERR(trans); 5399 } 5400 5401 i_size_write(inode, newsize); 5402 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 5403 pagecache_isize_extended(inode, oldsize, newsize); 5404 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 5405 btrfs_drew_write_unlock(&root->snapshot_lock); 5406 btrfs_end_transaction(trans); 5407 } else { 5408 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 5409 5410 if (btrfs_is_zoned(fs_info)) { 5411 ret = btrfs_wait_ordered_range(BTRFS_I(inode), 5412 ALIGN(newsize, fs_info->sectorsize), 5413 (u64)-1); 5414 if (ret) 5415 return ret; 5416 } 5417 5418 /* 5419 * We're truncating a file that used to have good data down to 5420 * zero. Make sure any new writes to the file get on disk 5421 * on close. 5422 */ 5423 if (newsize == 0) 5424 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 5425 &BTRFS_I(inode)->runtime_flags); 5426 5427 truncate_setsize(inode, newsize); 5428 5429 inode_dio_wait(inode); 5430 5431 ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize); 5432 if (ret && inode->i_nlink) { 5433 int ret2; 5434 5435 /* 5436 * Truncate failed, so fix up the in-memory size. We 5437 * adjusted disk_i_size down as we removed extents, so 5438 * wait for disk_i_size to be stable and then update the 5439 * in-memory size to match. 5440 */ 5441 ret2 = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1); 5442 if (ret2) 5443 return ret2; 5444 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5445 } 5446 } 5447 5448 return ret; 5449 } 5450 5451 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 5452 struct iattr *attr) 5453 { 5454 struct inode *inode = d_inode(dentry); 5455 struct btrfs_root *root = BTRFS_I(inode)->root; 5456 int ret; 5457 5458 if (btrfs_root_readonly(root)) 5459 return -EROFS; 5460 5461 ret = setattr_prepare(idmap, dentry, attr); 5462 if (ret) 5463 return ret; 5464 5465 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5466 ret = btrfs_setsize(inode, attr); 5467 if (ret) 5468 return ret; 5469 } 5470 5471 if (attr->ia_valid) { 5472 setattr_copy(idmap, inode, attr); 5473 inode_inc_iversion(inode); 5474 ret = btrfs_dirty_inode(BTRFS_I(inode)); 5475 5476 if (!ret && attr->ia_valid & ATTR_MODE) 5477 ret = posix_acl_chmod(idmap, dentry, inode->i_mode); 5478 } 5479 5480 return ret; 5481 } 5482 5483 /* 5484 * While truncating the inode pages during eviction, we get the VFS 5485 * calling btrfs_invalidate_folio() against each folio of the inode. This 5486 * is slow because the calls to btrfs_invalidate_folio() result in a 5487 * huge amount of calls to lock_extent() and clear_extent_bit(), 5488 * which keep merging and splitting extent_state structures over and over, 5489 * wasting lots of time. 5490 * 5491 * Therefore if the inode is being evicted, let btrfs_invalidate_folio() 5492 * skip all those expensive operations on a per folio basis and do only 5493 * the ordered io finishing, while we release here the extent_map and 5494 * extent_state structures, without the excessive merging and splitting. 5495 */ 5496 static void evict_inode_truncate_pages(struct inode *inode) 5497 { 5498 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5499 struct rb_node *node; 5500 5501 ASSERT(inode_state_read_once(inode) & I_FREEING); 5502 truncate_inode_pages_final(&inode->i_data); 5503 5504 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); 5505 5506 /* 5507 * Keep looping until we have no more ranges in the io tree. 5508 * We can have ongoing bios started by readahead that have 5509 * their endio callback (extent_io.c:end_bio_extent_readpage) 5510 * still in progress (unlocked the pages in the bio but did not yet 5511 * unlocked the ranges in the io tree). Therefore this means some 5512 * ranges can still be locked and eviction started because before 5513 * submitting those bios, which are executed by a separate task (work 5514 * queue kthread), inode references (inode->i_count) were not taken 5515 * (which would be dropped in the end io callback of each bio). 5516 * Therefore here we effectively end up waiting for those bios and 5517 * anyone else holding locked ranges without having bumped the inode's 5518 * reference count - if we don't do it, when they access the inode's 5519 * io_tree to unlock a range it may be too late, leading to an 5520 * use-after-free issue. 5521 */ 5522 spin_lock(&io_tree->lock); 5523 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5524 struct extent_state *state; 5525 struct extent_state *cached_state = NULL; 5526 u64 start; 5527 u64 end; 5528 unsigned state_flags; 5529 5530 node = rb_first(&io_tree->state); 5531 state = rb_entry(node, struct extent_state, rb_node); 5532 start = state->start; 5533 end = state->end; 5534 state_flags = state->state; 5535 spin_unlock(&io_tree->lock); 5536 5537 btrfs_lock_extent(io_tree, start, end, &cached_state); 5538 5539 /* 5540 * If still has DELALLOC flag, the extent didn't reach disk, 5541 * and its reserved space won't be freed by delayed_ref. 5542 * So we need to free its reserved space here. 5543 * (Refer to comment in btrfs_invalidate_folio, case 2) 5544 * 5545 * Note, end is the bytenr of last byte, so we need + 1 here. 5546 */ 5547 if (state_flags & EXTENT_DELALLOC) 5548 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start, 5549 end - start + 1, NULL); 5550 5551 btrfs_clear_extent_bit(io_tree, start, end, 5552 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING, 5553 &cached_state); 5554 5555 cond_resched(); 5556 spin_lock(&io_tree->lock); 5557 } 5558 spin_unlock(&io_tree->lock); 5559 } 5560 5561 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 5562 struct btrfs_block_rsv *rsv) 5563 { 5564 struct btrfs_fs_info *fs_info = root->fs_info; 5565 struct btrfs_trans_handle *trans; 5566 u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1); 5567 int ret; 5568 5569 /* 5570 * Eviction should be taking place at some place safe because of our 5571 * delayed iputs. However the normal flushing code will run delayed 5572 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock. 5573 * 5574 * We reserve the delayed_refs_extra here again because we can't use 5575 * btrfs_start_transaction(root, 0) for the same deadlocky reason as 5576 * above. We reserve our extra bit here because we generate a ton of 5577 * delayed refs activity by truncating. 5578 * 5579 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can, 5580 * if we fail to make this reservation we can re-try without the 5581 * delayed_refs_extra so we can make some forward progress. 5582 */ 5583 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra, 5584 BTRFS_RESERVE_FLUSH_EVICT); 5585 if (ret) { 5586 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size, 5587 BTRFS_RESERVE_FLUSH_EVICT); 5588 if (ret) { 5589 btrfs_warn(fs_info, 5590 "could not allocate space for delete; will truncate on mount"); 5591 return ERR_PTR(-ENOSPC); 5592 } 5593 delayed_refs_extra = 0; 5594 } 5595 5596 trans = btrfs_join_transaction(root); 5597 if (IS_ERR(trans)) 5598 return trans; 5599 5600 if (delayed_refs_extra) { 5601 trans->block_rsv = &fs_info->trans_block_rsv; 5602 trans->bytes_reserved = delayed_refs_extra; 5603 btrfs_block_rsv_migrate(rsv, trans->block_rsv, 5604 delayed_refs_extra, true); 5605 } 5606 return trans; 5607 } 5608 5609 void btrfs_evict_inode(struct inode *inode) 5610 { 5611 struct btrfs_fs_info *fs_info; 5612 struct btrfs_trans_handle *trans; 5613 struct btrfs_root *root = BTRFS_I(inode)->root; 5614 struct btrfs_block_rsv rsv; 5615 int ret; 5616 5617 trace_btrfs_inode_evict(inode); 5618 5619 if (!root) { 5620 fsverity_cleanup_inode(inode); 5621 clear_inode(inode); 5622 return; 5623 } 5624 5625 fs_info = inode_to_fs_info(inode); 5626 evict_inode_truncate_pages(inode); 5627 5628 if (inode->i_nlink && 5629 ((btrfs_root_refs(&root->root_item) != 0 && 5630 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID) || 5631 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5632 goto out; 5633 5634 if (is_bad_inode(inode)) 5635 goto out; 5636 5637 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5638 goto out; 5639 5640 if (inode->i_nlink > 0) { 5641 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5642 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID); 5643 goto out; 5644 } 5645 5646 /* 5647 * This makes sure the inode item in tree is uptodate and the space for 5648 * the inode update is released. 5649 */ 5650 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5651 if (ret) 5652 goto out; 5653 5654 /* 5655 * This drops any pending insert or delete operations we have for this 5656 * inode. We could have a delayed dir index deletion queued up, but 5657 * we're removing the inode completely so that'll be taken care of in 5658 * the truncate. 5659 */ 5660 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 5661 5662 btrfs_init_metadata_block_rsv(fs_info, &rsv, BTRFS_BLOCK_RSV_TEMP); 5663 rsv.size = btrfs_calc_metadata_size(fs_info, 1); 5664 rsv.failfast = true; 5665 5666 btrfs_i_size_write(BTRFS_I(inode), 0); 5667 5668 while (1) { 5669 struct btrfs_truncate_control control = { 5670 .inode = BTRFS_I(inode), 5671 .ino = btrfs_ino(BTRFS_I(inode)), 5672 .new_size = 0, 5673 .min_type = 0, 5674 }; 5675 5676 trans = evict_refill_and_join(root, &rsv); 5677 if (IS_ERR(trans)) 5678 goto out_release; 5679 5680 trans->block_rsv = &rsv; 5681 5682 ret = btrfs_truncate_inode_items(trans, root, &control); 5683 trans->block_rsv = &fs_info->trans_block_rsv; 5684 btrfs_end_transaction(trans); 5685 /* 5686 * We have not added new delayed items for our inode after we 5687 * have flushed its delayed items, so no need to throttle on 5688 * delayed items. However we have modified extent buffers. 5689 */ 5690 btrfs_btree_balance_dirty_nodelay(fs_info); 5691 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5692 goto out_release; 5693 else if (!ret) 5694 break; 5695 } 5696 5697 /* 5698 * Errors here aren't a big deal, it just means we leave orphan items in 5699 * the tree. They will be cleaned up on the next mount. If the inode 5700 * number gets reused, cleanup deletes the orphan item without doing 5701 * anything, and unlink reuses the existing orphan item. 5702 * 5703 * If it turns out that we are dropping too many of these, we might want 5704 * to add a mechanism for retrying these after a commit. 5705 */ 5706 trans = evict_refill_and_join(root, &rsv); 5707 if (!IS_ERR(trans)) { 5708 trans->block_rsv = &rsv; 5709 btrfs_orphan_del(trans, BTRFS_I(inode)); 5710 trans->block_rsv = &fs_info->trans_block_rsv; 5711 btrfs_end_transaction(trans); 5712 } 5713 5714 out_release: 5715 btrfs_block_rsv_release(fs_info, &rsv, (u64)-1, NULL); 5716 out: 5717 /* 5718 * If we didn't successfully delete, the orphan item will still be in 5719 * the tree and we'll retry on the next mount. Again, we might also want 5720 * to retry these periodically in the future. 5721 */ 5722 btrfs_remove_delayed_node(BTRFS_I(inode)); 5723 fsverity_cleanup_inode(inode); 5724 clear_inode(inode); 5725 } 5726 5727 /* 5728 * Return the key found in the dir entry in the location pointer, fill @type 5729 * with BTRFS_FT_*, and return 0. 5730 * 5731 * If no dir entries were found, returns -ENOENT. 5732 * If found a corrupted location in dir entry, returns -EUCLEAN. 5733 */ 5734 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry, 5735 struct btrfs_key *location, u8 *type) 5736 { 5737 struct btrfs_dir_item *di; 5738 BTRFS_PATH_AUTO_FREE(path); 5739 struct btrfs_root *root = dir->root; 5740 int ret = 0; 5741 struct fscrypt_name fname; 5742 5743 path = btrfs_alloc_path(); 5744 if (!path) 5745 return -ENOMEM; 5746 5747 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname); 5748 if (ret < 0) 5749 return ret; 5750 /* 5751 * fscrypt_setup_filename() should never return a positive value, but 5752 * gcc on sparc/parisc thinks it can, so assert that doesn't happen. 5753 */ 5754 ASSERT(ret == 0); 5755 5756 /* This needs to handle no-key deletions later on */ 5757 5758 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), 5759 &fname.disk_name, 0); 5760 if (IS_ERR_OR_NULL(di)) { 5761 ret = di ? PTR_ERR(di) : -ENOENT; 5762 goto out; 5763 } 5764 5765 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5766 if (unlikely(location->type != BTRFS_INODE_ITEM_KEY && 5767 location->type != BTRFS_ROOT_ITEM_KEY)) { 5768 ret = -EUCLEAN; 5769 btrfs_warn(root->fs_info, 5770 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location " BTRFS_KEY_FMT ")", 5771 __func__, fname.disk_name.name, btrfs_ino(dir), 5772 BTRFS_KEY_FMT_VALUE(location)); 5773 } 5774 if (!ret) 5775 *type = btrfs_dir_ftype(path->nodes[0], di); 5776 out: 5777 fscrypt_free_filename(&fname); 5778 return ret; 5779 } 5780 5781 /* 5782 * when we hit a tree root in a directory, the btrfs part of the inode 5783 * needs to be changed to reflect the root directory of the tree root. This 5784 * is kind of like crossing a mount point. 5785 */ 5786 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5787 struct btrfs_inode *dir, 5788 struct dentry *dentry, 5789 struct btrfs_key *location, 5790 struct btrfs_root **sub_root) 5791 { 5792 BTRFS_PATH_AUTO_FREE(path); 5793 struct btrfs_root *new_root; 5794 struct btrfs_root_ref *ref; 5795 struct extent_buffer *leaf; 5796 struct btrfs_key key; 5797 int ret; 5798 int err = 0; 5799 struct fscrypt_name fname; 5800 5801 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname); 5802 if (ret) 5803 return ret; 5804 5805 path = btrfs_alloc_path(); 5806 if (!path) { 5807 err = -ENOMEM; 5808 goto out; 5809 } 5810 5811 err = -ENOENT; 5812 key.objectid = btrfs_root_id(dir->root); 5813 key.type = BTRFS_ROOT_REF_KEY; 5814 key.offset = location->objectid; 5815 5816 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5817 if (ret) { 5818 if (ret < 0) 5819 err = ret; 5820 goto out; 5821 } 5822 5823 leaf = path->nodes[0]; 5824 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5825 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 5826 btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len) 5827 goto out; 5828 5829 ret = memcmp_extent_buffer(leaf, fname.disk_name.name, 5830 (unsigned long)(ref + 1), fname.disk_name.len); 5831 if (ret) 5832 goto out; 5833 5834 btrfs_release_path(path); 5835 5836 new_root = btrfs_get_fs_root(fs_info, location->objectid, true); 5837 if (IS_ERR(new_root)) { 5838 err = PTR_ERR(new_root); 5839 goto out; 5840 } 5841 5842 *sub_root = new_root; 5843 location->objectid = btrfs_root_dirid(&new_root->root_item); 5844 location->type = BTRFS_INODE_ITEM_KEY; 5845 location->offset = 0; 5846 err = 0; 5847 out: 5848 fscrypt_free_filename(&fname); 5849 return err; 5850 } 5851 5852 5853 5854 static void btrfs_del_inode_from_root(struct btrfs_inode *inode) 5855 { 5856 struct btrfs_root *root = inode->root; 5857 struct btrfs_inode *entry; 5858 bool empty = false; 5859 5860 xa_lock(&root->inodes); 5861 /* 5862 * This btrfs_inode is being freed and has already been unhashed at this 5863 * point. It's possible that another btrfs_inode has already been 5864 * allocated for the same inode and inserted itself into the root, so 5865 * don't delete it in that case. 5866 * 5867 * Note that this shouldn't need to allocate memory, so the gfp flags 5868 * don't really matter. 5869 */ 5870 entry = __xa_cmpxchg(&root->inodes, btrfs_ino(inode), inode, NULL, 5871 GFP_ATOMIC); 5872 if (entry == inode) 5873 empty = xa_empty(&root->inodes); 5874 xa_unlock(&root->inodes); 5875 5876 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5877 xa_lock(&root->inodes); 5878 empty = xa_empty(&root->inodes); 5879 xa_unlock(&root->inodes); 5880 if (empty) 5881 btrfs_add_dead_root(root); 5882 } 5883 } 5884 5885 5886 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5887 { 5888 struct btrfs_iget_args *args = p; 5889 5890 btrfs_set_inode_number(BTRFS_I(inode), args->ino); 5891 BTRFS_I(inode)->root = btrfs_grab_root(args->root); 5892 5893 if (args->root && args->root == args->root->fs_info->tree_root && 5894 args->ino != BTRFS_BTREE_INODE_OBJECTID) 5895 set_bit(BTRFS_INODE_FREE_SPACE_INODE, 5896 &BTRFS_I(inode)->runtime_flags); 5897 return 0; 5898 } 5899 5900 static int btrfs_find_actor(struct inode *inode, void *opaque) 5901 { 5902 struct btrfs_iget_args *args = opaque; 5903 5904 return args->ino == btrfs_ino(BTRFS_I(inode)) && 5905 args->root == BTRFS_I(inode)->root; 5906 } 5907 5908 static struct btrfs_inode *btrfs_iget_locked(u64 ino, struct btrfs_root *root) 5909 { 5910 struct inode *inode; 5911 struct btrfs_iget_args args; 5912 unsigned long hashval = btrfs_inode_hash(ino, root); 5913 5914 args.ino = ino; 5915 args.root = root; 5916 5917 inode = iget5_locked_rcu(root->fs_info->sb, hashval, btrfs_find_actor, 5918 btrfs_init_locked_inode, 5919 (void *)&args); 5920 if (!inode) 5921 return NULL; 5922 return BTRFS_I(inode); 5923 } 5924 5925 /* 5926 * Get an inode object given its inode number and corresponding root. Path is 5927 * preallocated to prevent recursing back to iget through allocator. 5928 */ 5929 struct btrfs_inode *btrfs_iget_path(u64 ino, struct btrfs_root *root, 5930 struct btrfs_path *path) 5931 { 5932 struct btrfs_inode *inode; 5933 int ret; 5934 5935 inode = btrfs_iget_locked(ino, root); 5936 if (!inode) 5937 return ERR_PTR(-ENOMEM); 5938 5939 if (!(inode_state_read_once(&inode->vfs_inode) & I_NEW)) 5940 return inode; 5941 5942 ret = btrfs_read_locked_inode(inode, path); 5943 if (ret) 5944 return ERR_PTR(ret); 5945 5946 unlock_new_inode(&inode->vfs_inode); 5947 return inode; 5948 } 5949 5950 /* 5951 * Get an inode object given its inode number and corresponding root. 5952 */ 5953 struct btrfs_inode *btrfs_iget(u64 ino, struct btrfs_root *root) 5954 { 5955 struct btrfs_inode *inode; 5956 struct btrfs_path *path; 5957 int ret; 5958 5959 inode = btrfs_iget_locked(ino, root); 5960 if (!inode) 5961 return ERR_PTR(-ENOMEM); 5962 5963 if (!(inode_state_read_once(&inode->vfs_inode) & I_NEW)) 5964 return inode; 5965 5966 path = btrfs_alloc_path(); 5967 if (!path) { 5968 iget_failed(&inode->vfs_inode); 5969 return ERR_PTR(-ENOMEM); 5970 } 5971 5972 ret = btrfs_read_locked_inode(inode, path); 5973 btrfs_free_path(path); 5974 if (ret) 5975 return ERR_PTR(ret); 5976 5977 if (S_ISDIR(inode->vfs_inode.i_mode)) 5978 inode->vfs_inode.i_opflags |= IOP_FASTPERM_MAY_EXEC; 5979 unlock_new_inode(&inode->vfs_inode); 5980 return inode; 5981 } 5982 5983 static struct btrfs_inode *new_simple_dir(struct inode *dir, 5984 struct btrfs_key *key, 5985 struct btrfs_root *root) 5986 { 5987 struct timespec64 ts; 5988 struct inode *vfs_inode; 5989 struct btrfs_inode *inode; 5990 5991 vfs_inode = new_inode(dir->i_sb); 5992 if (!vfs_inode) 5993 return ERR_PTR(-ENOMEM); 5994 5995 inode = BTRFS_I(vfs_inode); 5996 inode->root = btrfs_grab_root(root); 5997 inode->ref_root_id = key->objectid; 5998 set_bit(BTRFS_INODE_ROOT_STUB, &inode->runtime_flags); 5999 set_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags); 6000 6001 btrfs_set_inode_number(inode, BTRFS_EMPTY_SUBVOL_DIR_OBJECTID); 6002 /* 6003 * We only need lookup, the rest is read-only and there's no inode 6004 * associated with the dentry 6005 */ 6006 vfs_inode->i_op = &simple_dir_inode_operations; 6007 vfs_inode->i_opflags &= ~IOP_XATTR; 6008 vfs_inode->i_fop = &simple_dir_operations; 6009 vfs_inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 6010 6011 ts = inode_set_ctime_current(vfs_inode); 6012 inode_set_mtime_to_ts(vfs_inode, ts); 6013 inode_set_atime_to_ts(vfs_inode, inode_get_atime(dir)); 6014 inode->i_otime_sec = ts.tv_sec; 6015 inode->i_otime_nsec = ts.tv_nsec; 6016 6017 vfs_inode->i_uid = dir->i_uid; 6018 vfs_inode->i_gid = dir->i_gid; 6019 6020 return inode; 6021 } 6022 6023 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN); 6024 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE); 6025 static_assert(BTRFS_FT_DIR == FT_DIR); 6026 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV); 6027 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV); 6028 static_assert(BTRFS_FT_FIFO == FT_FIFO); 6029 static_assert(BTRFS_FT_SOCK == FT_SOCK); 6030 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK); 6031 6032 static inline u8 btrfs_inode_type(const struct btrfs_inode *inode) 6033 { 6034 return fs_umode_to_ftype(inode->vfs_inode.i_mode); 6035 } 6036 6037 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 6038 { 6039 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 6040 struct btrfs_inode *inode; 6041 struct btrfs_root *root = BTRFS_I(dir)->root; 6042 struct btrfs_root *sub_root = root; 6043 struct btrfs_key location = { 0 }; 6044 u8 di_type = 0; 6045 int ret = 0; 6046 6047 if (dentry->d_name.len > BTRFS_NAME_LEN) 6048 return ERR_PTR(-ENAMETOOLONG); 6049 6050 ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type); 6051 if (ret < 0) 6052 return ERR_PTR(ret); 6053 6054 if (location.type == BTRFS_INODE_ITEM_KEY) { 6055 inode = btrfs_iget(location.objectid, root); 6056 if (IS_ERR(inode)) 6057 return ERR_CAST(inode); 6058 6059 /* Do extra check against inode mode with di_type */ 6060 if (unlikely(btrfs_inode_type(inode) != di_type)) { 6061 btrfs_crit(fs_info, 6062 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", 6063 inode->vfs_inode.i_mode, btrfs_inode_type(inode), 6064 di_type); 6065 iput(&inode->vfs_inode); 6066 return ERR_PTR(-EUCLEAN); 6067 } 6068 return &inode->vfs_inode; 6069 } 6070 6071 ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry, 6072 &location, &sub_root); 6073 if (ret < 0) { 6074 if (ret != -ENOENT) 6075 inode = ERR_PTR(ret); 6076 else 6077 inode = new_simple_dir(dir, &location, root); 6078 } else { 6079 inode = btrfs_iget(location.objectid, sub_root); 6080 btrfs_put_root(sub_root); 6081 6082 if (IS_ERR(inode)) 6083 return ERR_CAST(inode); 6084 6085 down_read(&fs_info->cleanup_work_sem); 6086 if (!sb_rdonly(inode->vfs_inode.i_sb)) 6087 ret = btrfs_orphan_cleanup(sub_root); 6088 up_read(&fs_info->cleanup_work_sem); 6089 if (ret) { 6090 iput(&inode->vfs_inode); 6091 inode = ERR_PTR(ret); 6092 } 6093 } 6094 6095 if (IS_ERR(inode)) 6096 return ERR_CAST(inode); 6097 6098 return &inode->vfs_inode; 6099 } 6100 6101 static int btrfs_dentry_delete(const struct dentry *dentry) 6102 { 6103 struct btrfs_root *root; 6104 struct inode *inode = d_inode(dentry); 6105 6106 if (!inode && !IS_ROOT(dentry)) 6107 inode = d_inode(dentry->d_parent); 6108 6109 if (inode) { 6110 root = BTRFS_I(inode)->root; 6111 if (btrfs_root_refs(&root->root_item) == 0) 6112 return 1; 6113 6114 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 6115 return 1; 6116 } 6117 return 0; 6118 } 6119 6120 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 6121 unsigned int flags) 6122 { 6123 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 6124 6125 if (inode == ERR_PTR(-ENOENT)) 6126 inode = NULL; 6127 return d_splice_alias(inode, dentry); 6128 } 6129 6130 /* 6131 * Find the highest existing sequence number in a directory and then set the 6132 * in-memory index_cnt variable to the first free sequence number. 6133 */ 6134 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 6135 { 6136 struct btrfs_root *root = inode->root; 6137 struct btrfs_key key, found_key; 6138 BTRFS_PATH_AUTO_FREE(path); 6139 struct extent_buffer *leaf; 6140 int ret; 6141 6142 key.objectid = btrfs_ino(inode); 6143 key.type = BTRFS_DIR_INDEX_KEY; 6144 key.offset = (u64)-1; 6145 6146 path = btrfs_alloc_path(); 6147 if (!path) 6148 return -ENOMEM; 6149 6150 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6151 if (ret < 0) 6152 return ret; 6153 /* FIXME: we should be able to handle this */ 6154 if (ret == 0) 6155 return ret; 6156 6157 if (path->slots[0] == 0) { 6158 inode->index_cnt = BTRFS_DIR_START_INDEX; 6159 return 0; 6160 } 6161 6162 path->slots[0]--; 6163 6164 leaf = path->nodes[0]; 6165 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6166 6167 if (found_key.objectid != btrfs_ino(inode) || 6168 found_key.type != BTRFS_DIR_INDEX_KEY) { 6169 inode->index_cnt = BTRFS_DIR_START_INDEX; 6170 return 0; 6171 } 6172 6173 inode->index_cnt = found_key.offset + 1; 6174 6175 return 0; 6176 } 6177 6178 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index) 6179 { 6180 int ret = 0; 6181 6182 btrfs_inode_lock(dir, 0); 6183 if (dir->index_cnt == (u64)-1) { 6184 ret = btrfs_inode_delayed_dir_index_count(dir); 6185 if (ret) { 6186 ret = btrfs_set_inode_index_count(dir); 6187 if (ret) 6188 goto out; 6189 } 6190 } 6191 6192 /* index_cnt is the index number of next new entry, so decrement it. */ 6193 *index = dir->index_cnt - 1; 6194 out: 6195 btrfs_inode_unlock(dir, 0); 6196 6197 return ret; 6198 } 6199 6200 /* 6201 * All this infrastructure exists because dir_emit can fault, and we are holding 6202 * the tree lock when doing readdir. For now just allocate a buffer and copy 6203 * our information into that, and then dir_emit from the buffer. This is 6204 * similar to what NFS does, only we don't keep the buffer around in pagecache 6205 * because I'm afraid I'll mess that up. Long term we need to make filldir do 6206 * copy_to_user_inatomic so we don't have to worry about page faulting under the 6207 * tree lock. 6208 */ 6209 static int btrfs_opendir(struct inode *inode, struct file *file) 6210 { 6211 struct btrfs_file_private *private; 6212 u64 last_index; 6213 int ret; 6214 6215 ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index); 6216 if (ret) 6217 return ret; 6218 6219 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 6220 if (!private) 6221 return -ENOMEM; 6222 private->last_index = last_index; 6223 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 6224 if (!private->filldir_buf) { 6225 kfree(private); 6226 return -ENOMEM; 6227 } 6228 file->private_data = private; 6229 return 0; 6230 } 6231 6232 static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence) 6233 { 6234 struct btrfs_file_private *private = file->private_data; 6235 int ret; 6236 6237 ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)), 6238 &private->last_index); 6239 if (ret) 6240 return ret; 6241 6242 return generic_file_llseek(file, offset, whence); 6243 } 6244 6245 struct dir_entry { 6246 u64 ino; 6247 u64 offset; 6248 unsigned type; 6249 int name_len; 6250 }; 6251 6252 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 6253 { 6254 while (entries--) { 6255 struct dir_entry *entry = addr; 6256 char *name = (char *)(entry + 1); 6257 6258 ctx->pos = get_unaligned(&entry->offset); 6259 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 6260 get_unaligned(&entry->ino), 6261 get_unaligned(&entry->type))) 6262 return 1; 6263 addr += sizeof(struct dir_entry) + 6264 get_unaligned(&entry->name_len); 6265 ctx->pos++; 6266 } 6267 return 0; 6268 } 6269 6270 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 6271 { 6272 struct inode *inode = file_inode(file); 6273 struct btrfs_root *root = BTRFS_I(inode)->root; 6274 struct btrfs_file_private *private = file->private_data; 6275 struct btrfs_dir_item *di; 6276 struct btrfs_key key; 6277 struct btrfs_key found_key; 6278 BTRFS_PATH_AUTO_FREE(path); 6279 void *addr; 6280 LIST_HEAD(ins_list); 6281 LIST_HEAD(del_list); 6282 int ret; 6283 char *name_ptr; 6284 int name_len; 6285 int entries = 0; 6286 int total_len = 0; 6287 bool put = false; 6288 struct btrfs_key location; 6289 6290 if (!dir_emit_dots(file, ctx)) 6291 return 0; 6292 6293 path = btrfs_alloc_path(); 6294 if (!path) 6295 return -ENOMEM; 6296 6297 addr = private->filldir_buf; 6298 path->reada = READA_FORWARD; 6299 6300 put = btrfs_readdir_get_delayed_items(BTRFS_I(inode), private->last_index, 6301 &ins_list, &del_list); 6302 6303 again: 6304 key.type = BTRFS_DIR_INDEX_KEY; 6305 key.offset = ctx->pos; 6306 key.objectid = btrfs_ino(BTRFS_I(inode)); 6307 6308 btrfs_for_each_slot(root, &key, &found_key, path, ret) { 6309 struct dir_entry *entry; 6310 struct extent_buffer *leaf = path->nodes[0]; 6311 u8 ftype; 6312 6313 if (found_key.objectid != key.objectid) 6314 break; 6315 if (found_key.type != BTRFS_DIR_INDEX_KEY) 6316 break; 6317 if (found_key.offset < ctx->pos) 6318 continue; 6319 if (found_key.offset > private->last_index) 6320 break; 6321 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 6322 continue; 6323 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item); 6324 name_len = btrfs_dir_name_len(leaf, di); 6325 if ((total_len + sizeof(struct dir_entry) + name_len) >= 6326 PAGE_SIZE) { 6327 btrfs_release_path(path); 6328 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6329 if (ret) 6330 goto nopos; 6331 addr = private->filldir_buf; 6332 entries = 0; 6333 total_len = 0; 6334 goto again; 6335 } 6336 6337 ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di)); 6338 entry = addr; 6339 name_ptr = (char *)(entry + 1); 6340 read_extent_buffer(leaf, name_ptr, 6341 (unsigned long)(di + 1), name_len); 6342 put_unaligned(name_len, &entry->name_len); 6343 put_unaligned(fs_ftype_to_dtype(ftype), &entry->type); 6344 btrfs_dir_item_key_to_cpu(leaf, di, &location); 6345 put_unaligned(location.objectid, &entry->ino); 6346 put_unaligned(found_key.offset, &entry->offset); 6347 entries++; 6348 addr += sizeof(struct dir_entry) + name_len; 6349 total_len += sizeof(struct dir_entry) + name_len; 6350 } 6351 /* Catch error encountered during iteration */ 6352 if (ret < 0) 6353 goto err; 6354 6355 btrfs_release_path(path); 6356 6357 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6358 if (ret) 6359 goto nopos; 6360 6361 if (btrfs_readdir_delayed_dir_index(ctx, &ins_list)) 6362 goto nopos; 6363 6364 /* 6365 * Stop new entries from being returned after we return the last 6366 * entry. 6367 * 6368 * New directory entries are assigned a strictly increasing 6369 * offset. This means that new entries created during readdir 6370 * are *guaranteed* to be seen in the future by that readdir. 6371 * This has broken buggy programs which operate on names as 6372 * they're returned by readdir. Until we reuse freed offsets 6373 * we have this hack to stop new entries from being returned 6374 * under the assumption that they'll never reach this huge 6375 * offset. 6376 * 6377 * This is being careful not to overflow 32bit loff_t unless the 6378 * last entry requires it because doing so has broken 32bit apps 6379 * in the past. 6380 */ 6381 if (ctx->pos >= INT_MAX) 6382 ctx->pos = LLONG_MAX; 6383 else 6384 ctx->pos = INT_MAX; 6385 nopos: 6386 ret = 0; 6387 err: 6388 if (put) 6389 btrfs_readdir_put_delayed_items(BTRFS_I(inode), &ins_list, &del_list); 6390 return ret; 6391 } 6392 6393 /* 6394 * This is somewhat expensive, updating the tree every time the 6395 * inode changes. But, it is most likely to find the inode in cache. 6396 * FIXME, needs more benchmarking...there are no reasons other than performance 6397 * to keep or drop this code. 6398 */ 6399 static int btrfs_dirty_inode(struct btrfs_inode *inode) 6400 { 6401 struct btrfs_root *root = inode->root; 6402 struct btrfs_fs_info *fs_info = root->fs_info; 6403 struct btrfs_trans_handle *trans; 6404 int ret; 6405 6406 if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags)) 6407 return 0; 6408 6409 trans = btrfs_join_transaction(root); 6410 if (IS_ERR(trans)) 6411 return PTR_ERR(trans); 6412 6413 ret = btrfs_update_inode(trans, inode); 6414 if (ret == -ENOSPC || ret == -EDQUOT) { 6415 /* whoops, lets try again with the full transaction */ 6416 btrfs_end_transaction(trans); 6417 trans = btrfs_start_transaction(root, 1); 6418 if (IS_ERR(trans)) 6419 return PTR_ERR(trans); 6420 6421 ret = btrfs_update_inode(trans, inode); 6422 } 6423 btrfs_end_transaction(trans); 6424 if (inode->delayed_node) 6425 btrfs_balance_delayed_items(fs_info); 6426 6427 return ret; 6428 } 6429 6430 /* 6431 * We need our own ->update_time so that we can return error on ENOSPC for 6432 * updating the inode in the case of file write and mmap writes. 6433 */ 6434 static int btrfs_update_time(struct inode *inode, enum fs_update_time type, 6435 unsigned int flags) 6436 { 6437 struct btrfs_root *root = BTRFS_I(inode)->root; 6438 int dirty; 6439 6440 if (btrfs_root_readonly(root)) 6441 return -EROFS; 6442 if (flags & IOCB_NOWAIT) 6443 return -EAGAIN; 6444 6445 dirty = inode_update_time(inode, type, flags); 6446 if (dirty <= 0) 6447 return dirty; 6448 return btrfs_dirty_inode(BTRFS_I(inode)); 6449 } 6450 6451 /* 6452 * helper to find a free sequence number in a given directory. This current 6453 * code is very simple, later versions will do smarter things in the btree 6454 */ 6455 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6456 { 6457 int ret = 0; 6458 6459 if (dir->index_cnt == (u64)-1) { 6460 ret = btrfs_inode_delayed_dir_index_count(dir); 6461 if (ret) { 6462 ret = btrfs_set_inode_index_count(dir); 6463 if (ret) 6464 return ret; 6465 } 6466 } 6467 6468 *index = dir->index_cnt; 6469 dir->index_cnt++; 6470 6471 return ret; 6472 } 6473 6474 static int btrfs_insert_inode_locked(struct inode *inode) 6475 { 6476 struct btrfs_iget_args args; 6477 6478 args.ino = btrfs_ino(BTRFS_I(inode)); 6479 args.root = BTRFS_I(inode)->root; 6480 6481 return insert_inode_locked4(inode, 6482 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6483 btrfs_find_actor, &args); 6484 } 6485 6486 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args, 6487 unsigned int *trans_num_items) 6488 { 6489 struct inode *dir = args->dir; 6490 struct inode *inode = args->inode; 6491 int ret; 6492 6493 if (!args->orphan) { 6494 ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0, 6495 &args->fname); 6496 if (ret) 6497 return ret; 6498 } 6499 6500 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl); 6501 if (ret) { 6502 fscrypt_free_filename(&args->fname); 6503 return ret; 6504 } 6505 6506 /* 1 to add inode item */ 6507 *trans_num_items = 1; 6508 /* 1 to add compression property */ 6509 if (BTRFS_I(dir)->prop_compress) 6510 (*trans_num_items)++; 6511 /* 1 to add default ACL xattr */ 6512 if (args->default_acl) 6513 (*trans_num_items)++; 6514 /* 1 to add access ACL xattr */ 6515 if (args->acl) 6516 (*trans_num_items)++; 6517 #ifdef CONFIG_SECURITY 6518 /* 1 to add LSM xattr */ 6519 if (dir->i_security) 6520 (*trans_num_items)++; 6521 #endif 6522 if (args->orphan) { 6523 /* 1 to add orphan item */ 6524 (*trans_num_items)++; 6525 } else { 6526 /* 6527 * 1 to add dir item 6528 * 1 to add dir index 6529 * 1 to update parent inode item 6530 * 6531 * No need for 1 unit for the inode ref item because it is 6532 * inserted in a batch together with the inode item at 6533 * btrfs_create_new_inode(). 6534 */ 6535 *trans_num_items += 3; 6536 } 6537 return 0; 6538 } 6539 6540 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args) 6541 { 6542 posix_acl_release(args->acl); 6543 posix_acl_release(args->default_acl); 6544 fscrypt_free_filename(&args->fname); 6545 } 6546 6547 /* 6548 * Inherit flags from the parent inode. 6549 * 6550 * Currently only the compression flags and the cow flags are inherited. 6551 */ 6552 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir) 6553 { 6554 unsigned int flags; 6555 6556 flags = dir->flags; 6557 6558 if (flags & BTRFS_INODE_NOCOMPRESS) { 6559 inode->flags &= ~BTRFS_INODE_COMPRESS; 6560 inode->flags |= BTRFS_INODE_NOCOMPRESS; 6561 } else if (flags & BTRFS_INODE_COMPRESS) { 6562 inode->flags &= ~BTRFS_INODE_NOCOMPRESS; 6563 inode->flags |= BTRFS_INODE_COMPRESS; 6564 } 6565 6566 if (flags & BTRFS_INODE_NODATACOW) { 6567 inode->flags |= BTRFS_INODE_NODATACOW; 6568 if (S_ISREG(inode->vfs_inode.i_mode)) 6569 inode->flags |= BTRFS_INODE_NODATASUM; 6570 } 6571 6572 btrfs_sync_inode_flags_to_i_flags(inode); 6573 } 6574 6575 int btrfs_create_new_inode(struct btrfs_trans_handle *trans, 6576 struct btrfs_new_inode_args *args) 6577 { 6578 struct timespec64 ts; 6579 struct inode *dir = args->dir; 6580 struct inode *inode = args->inode; 6581 const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name; 6582 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 6583 struct btrfs_root *root; 6584 struct btrfs_inode_item *inode_item; 6585 struct btrfs_path *path; 6586 u64 objectid; 6587 struct btrfs_inode_ref *ref; 6588 struct btrfs_key key[2]; 6589 u32 sizes[2]; 6590 struct btrfs_item_batch batch; 6591 unsigned long ptr; 6592 int ret; 6593 bool xa_reserved = false; 6594 6595 path = btrfs_alloc_path(); 6596 if (!path) 6597 return -ENOMEM; 6598 6599 if (!args->subvol) 6600 BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root); 6601 root = BTRFS_I(inode)->root; 6602 6603 ret = btrfs_init_file_extent_tree(BTRFS_I(inode)); 6604 if (ret) 6605 goto out; 6606 6607 ret = btrfs_get_free_objectid(root, &objectid); 6608 if (ret) 6609 goto out; 6610 btrfs_set_inode_number(BTRFS_I(inode), objectid); 6611 6612 ret = xa_reserve(&root->inodes, objectid, GFP_NOFS); 6613 if (ret) 6614 goto out; 6615 xa_reserved = true; 6616 6617 if (args->orphan) { 6618 /* 6619 * O_TMPFILE, set link count to 0, so that after this point, we 6620 * fill in an inode item with the correct link count. 6621 */ 6622 set_nlink(inode, 0); 6623 } else { 6624 trace_btrfs_inode_request(dir); 6625 6626 ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index); 6627 if (ret) 6628 goto out; 6629 } 6630 6631 if (S_ISDIR(inode->i_mode)) 6632 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX; 6633 6634 BTRFS_I(inode)->generation = trans->transid; 6635 inode->i_generation = BTRFS_I(inode)->generation; 6636 6637 /* 6638 * We don't have any capability xattrs set here yet, shortcut any 6639 * queries for the xattrs here. If we add them later via the inode 6640 * security init path or any other path this flag will be cleared. 6641 */ 6642 set_bit(BTRFS_INODE_NO_CAP_XATTR, &BTRFS_I(inode)->runtime_flags); 6643 6644 /* 6645 * Subvolumes don't inherit flags from their parent directory. 6646 * Originally this was probably by accident, but we probably can't 6647 * change it now without compatibility issues. 6648 */ 6649 if (!args->subvol) 6650 btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir)); 6651 6652 btrfs_set_inode_mapping_order(BTRFS_I(inode)); 6653 if (S_ISREG(inode->i_mode)) { 6654 if (btrfs_test_opt(fs_info, NODATASUM)) 6655 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6656 if (btrfs_test_opt(fs_info, NODATACOW)) 6657 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6658 BTRFS_INODE_NODATASUM; 6659 btrfs_update_inode_mapping_flags(BTRFS_I(inode)); 6660 } 6661 6662 ret = btrfs_insert_inode_locked(inode); 6663 if (ret < 0) { 6664 if (!args->orphan) 6665 BTRFS_I(dir)->index_cnt--; 6666 goto out; 6667 } 6668 6669 /* 6670 * We could have gotten an inode number from somebody who was fsynced 6671 * and then removed in this same transaction, so let's just set full 6672 * sync since it will be a full sync anyway and this will blow away the 6673 * old info in the log. 6674 */ 6675 btrfs_set_inode_full_sync(BTRFS_I(inode)); 6676 6677 key[0].objectid = objectid; 6678 key[0].type = BTRFS_INODE_ITEM_KEY; 6679 key[0].offset = 0; 6680 6681 sizes[0] = sizeof(struct btrfs_inode_item); 6682 6683 if (!args->orphan) { 6684 /* 6685 * Start new inodes with an inode_ref. This is slightly more 6686 * efficient for small numbers of hard links since they will 6687 * be packed into one item. Extended refs will kick in if we 6688 * add more hard links than can fit in the ref item. 6689 */ 6690 key[1].objectid = objectid; 6691 key[1].type = BTRFS_INODE_REF_KEY; 6692 if (args->subvol) { 6693 key[1].offset = objectid; 6694 sizes[1] = 2 + sizeof(*ref); 6695 } else { 6696 key[1].offset = btrfs_ino(BTRFS_I(dir)); 6697 sizes[1] = name->len + sizeof(*ref); 6698 } 6699 } 6700 6701 batch.keys = &key[0]; 6702 batch.data_sizes = &sizes[0]; 6703 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]); 6704 batch.nr = args->orphan ? 1 : 2; 6705 ret = btrfs_insert_empty_items(trans, root, path, &batch); 6706 if (unlikely(ret != 0)) { 6707 btrfs_abort_transaction(trans, ret); 6708 goto discard; 6709 } 6710 6711 ts = simple_inode_init_ts(inode); 6712 BTRFS_I(inode)->i_otime_sec = ts.tv_sec; 6713 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec; 6714 6715 /* 6716 * We're going to fill the inode item now, so at this point the inode 6717 * must be fully initialized. 6718 */ 6719 6720 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6721 struct btrfs_inode_item); 6722 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6723 sizeof(*inode_item)); 6724 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6725 6726 if (!args->orphan) { 6727 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6728 struct btrfs_inode_ref); 6729 ptr = (unsigned long)(ref + 1); 6730 if (args->subvol) { 6731 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2); 6732 btrfs_set_inode_ref_index(path->nodes[0], ref, 0); 6733 write_extent_buffer(path->nodes[0], "..", ptr, 2); 6734 } else { 6735 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 6736 name->len); 6737 btrfs_set_inode_ref_index(path->nodes[0], ref, 6738 BTRFS_I(inode)->dir_index); 6739 write_extent_buffer(path->nodes[0], name->name, ptr, 6740 name->len); 6741 } 6742 } 6743 6744 /* 6745 * We don't need the path anymore, plus inheriting properties, adding 6746 * ACLs, security xattrs, orphan item or adding the link, will result in 6747 * allocating yet another path. So just free our path. 6748 */ 6749 btrfs_free_path(path); 6750 path = NULL; 6751 6752 if (args->subvol) { 6753 struct btrfs_inode *parent; 6754 6755 /* 6756 * Subvolumes inherit properties from their parent subvolume, 6757 * not the directory they were created in. 6758 */ 6759 parent = btrfs_iget(BTRFS_FIRST_FREE_OBJECTID, BTRFS_I(dir)->root); 6760 if (IS_ERR(parent)) { 6761 ret = PTR_ERR(parent); 6762 } else { 6763 ret = btrfs_inode_inherit_props(trans, BTRFS_I(inode), 6764 parent); 6765 iput(&parent->vfs_inode); 6766 } 6767 } else { 6768 ret = btrfs_inode_inherit_props(trans, BTRFS_I(inode), 6769 BTRFS_I(dir)); 6770 } 6771 if (ret) { 6772 btrfs_err(fs_info, 6773 "error inheriting props for ino %llu (root %llu): %d", 6774 btrfs_ino(BTRFS_I(inode)), btrfs_root_id(root), ret); 6775 } 6776 6777 /* 6778 * Subvolumes don't inherit ACLs or get passed to the LSM. This is 6779 * probably a bug. 6780 */ 6781 if (!args->subvol) { 6782 ret = btrfs_init_inode_security(trans, args); 6783 if (unlikely(ret)) { 6784 btrfs_abort_transaction(trans, ret); 6785 goto discard; 6786 } 6787 } 6788 6789 ret = btrfs_add_inode_to_root(BTRFS_I(inode), false); 6790 if (WARN_ON(ret)) { 6791 /* Shouldn't happen, we used xa_reserve() before. */ 6792 btrfs_abort_transaction(trans, ret); 6793 goto discard; 6794 } 6795 6796 trace_btrfs_inode_new(inode); 6797 btrfs_set_inode_last_trans(trans, BTRFS_I(inode)); 6798 6799 btrfs_update_root_times(trans, root); 6800 6801 if (args->orphan) { 6802 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 6803 if (unlikely(ret)) { 6804 btrfs_abort_transaction(trans, ret); 6805 goto discard; 6806 } 6807 } else { 6808 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name, 6809 0, BTRFS_I(inode)->dir_index); 6810 if (unlikely(ret)) { 6811 btrfs_abort_transaction(trans, ret); 6812 goto discard; 6813 } 6814 } 6815 6816 return 0; 6817 6818 discard: 6819 /* 6820 * discard_new_inode() calls iput(), but the caller owns the reference 6821 * to the inode. 6822 */ 6823 ihold(inode); 6824 discard_new_inode(inode); 6825 out: 6826 if (xa_reserved) 6827 xa_release(&root->inodes, objectid); 6828 6829 btrfs_free_path(path); 6830 return ret; 6831 } 6832 6833 /* 6834 * utility function to add 'inode' into 'parent_inode' with 6835 * a give name and a given sequence number. 6836 * if 'add_backref' is true, also insert a backref from the 6837 * inode to the parent directory. 6838 */ 6839 int btrfs_add_link(struct btrfs_trans_handle *trans, 6840 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6841 const struct fscrypt_str *name, bool add_backref, u64 index) 6842 { 6843 int ret = 0; 6844 struct btrfs_key key; 6845 struct btrfs_root *root = parent_inode->root; 6846 u64 ino = btrfs_ino(inode); 6847 u64 parent_ino = btrfs_ino(parent_inode); 6848 6849 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6850 memcpy(&key, &inode->root->root_key, sizeof(key)); 6851 } else { 6852 key.objectid = ino; 6853 key.type = BTRFS_INODE_ITEM_KEY; 6854 key.offset = 0; 6855 } 6856 6857 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6858 ret = btrfs_add_root_ref(trans, key.objectid, 6859 btrfs_root_id(root), parent_ino, 6860 index, name); 6861 } else if (add_backref) { 6862 ret = btrfs_insert_inode_ref(trans, root, name, 6863 ino, parent_ino, index); 6864 } 6865 6866 /* Nothing to clean up yet */ 6867 if (ret) 6868 return ret; 6869 6870 ret = btrfs_insert_dir_item(trans, name, parent_inode, &key, 6871 btrfs_inode_type(inode), index); 6872 if (ret == -EEXIST || ret == -EOVERFLOW) 6873 goto fail_dir_item; 6874 else if (unlikely(ret)) { 6875 btrfs_abort_transaction(trans, ret); 6876 return ret; 6877 } 6878 6879 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6880 name->len * 2); 6881 inode_inc_iversion(&parent_inode->vfs_inode); 6882 update_time_after_link_or_unlink(parent_inode); 6883 6884 ret = btrfs_update_inode(trans, parent_inode); 6885 if (ret) 6886 btrfs_abort_transaction(trans, ret); 6887 return ret; 6888 6889 fail_dir_item: 6890 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6891 u64 local_index; 6892 int ret2; 6893 6894 ret2 = btrfs_del_root_ref(trans, key.objectid, btrfs_root_id(root), 6895 parent_ino, &local_index, name); 6896 if (ret2) 6897 btrfs_abort_transaction(trans, ret2); 6898 } else if (add_backref) { 6899 int ret2; 6900 6901 ret2 = btrfs_del_inode_ref(trans, root, name, ino, parent_ino, NULL); 6902 if (ret2) 6903 btrfs_abort_transaction(trans, ret2); 6904 } 6905 6906 /* Return the original error code */ 6907 return ret; 6908 } 6909 6910 static int btrfs_create_common(struct inode *dir, struct dentry *dentry, 6911 struct inode *inode) 6912 { 6913 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 6914 struct btrfs_root *root = BTRFS_I(dir)->root; 6915 struct btrfs_new_inode_args new_inode_args = { 6916 .dir = dir, 6917 .dentry = dentry, 6918 .inode = inode, 6919 }; 6920 unsigned int trans_num_items; 6921 struct btrfs_trans_handle *trans; 6922 int ret; 6923 6924 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 6925 if (ret) 6926 goto out_inode; 6927 6928 trans = btrfs_start_transaction(root, trans_num_items); 6929 if (IS_ERR(trans)) { 6930 ret = PTR_ERR(trans); 6931 goto out_new_inode_args; 6932 } 6933 6934 ret = btrfs_create_new_inode(trans, &new_inode_args); 6935 if (!ret) { 6936 if (S_ISDIR(inode->i_mode)) 6937 inode->i_opflags |= IOP_FASTPERM_MAY_EXEC; 6938 d_instantiate_new(dentry, inode); 6939 } 6940 6941 btrfs_end_transaction(trans); 6942 btrfs_btree_balance_dirty(fs_info); 6943 out_new_inode_args: 6944 btrfs_new_inode_args_destroy(&new_inode_args); 6945 out_inode: 6946 if (ret) 6947 iput(inode); 6948 return ret; 6949 } 6950 6951 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 6952 struct dentry *dentry, umode_t mode, dev_t rdev) 6953 { 6954 struct inode *inode; 6955 6956 inode = new_inode(dir->i_sb); 6957 if (!inode) 6958 return -ENOMEM; 6959 inode_init_owner(idmap, inode, dir, mode); 6960 inode->i_op = &btrfs_special_inode_operations; 6961 init_special_inode(inode, inode->i_mode, rdev); 6962 return btrfs_create_common(dir, dentry, inode); 6963 } 6964 6965 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir, 6966 struct dentry *dentry, umode_t mode, bool excl) 6967 { 6968 struct inode *inode; 6969 6970 inode = new_inode(dir->i_sb); 6971 if (!inode) 6972 return -ENOMEM; 6973 inode_init_owner(idmap, inode, dir, mode); 6974 inode->i_fop = &btrfs_file_operations; 6975 inode->i_op = &btrfs_file_inode_operations; 6976 inode->i_mapping->a_ops = &btrfs_aops; 6977 return btrfs_create_common(dir, dentry, inode); 6978 } 6979 6980 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6981 struct dentry *dentry) 6982 { 6983 struct btrfs_trans_handle *trans = NULL; 6984 struct btrfs_root *root = BTRFS_I(dir)->root; 6985 struct inode *inode = d_inode(old_dentry); 6986 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 6987 struct fscrypt_name fname; 6988 u64 index; 6989 int ret; 6990 6991 /* do not allow sys_link's with other subvols of the same device */ 6992 if (btrfs_root_id(root) != btrfs_root_id(BTRFS_I(inode)->root)) 6993 return -EXDEV; 6994 6995 if (inode->i_nlink >= BTRFS_LINK_MAX) 6996 return -EMLINK; 6997 6998 ret = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname); 6999 if (ret) 7000 goto fail; 7001 7002 ret = btrfs_set_inode_index(BTRFS_I(dir), &index); 7003 if (ret) 7004 goto fail; 7005 7006 /* 7007 * 2 items for inode and inode ref 7008 * 2 items for dir items 7009 * 1 item for parent inode 7010 * 1 item for orphan item deletion if O_TMPFILE 7011 */ 7012 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 7013 if (IS_ERR(trans)) { 7014 ret = PTR_ERR(trans); 7015 trans = NULL; 7016 goto fail; 7017 } 7018 7019 /* There are several dir indexes for this inode, clear the cache. */ 7020 BTRFS_I(inode)->dir_index = 0ULL; 7021 inode_inc_iversion(inode); 7022 inode_set_ctime_current(inode); 7023 7024 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 7025 &fname.disk_name, 1, index); 7026 if (ret) 7027 goto fail; 7028 7029 /* Link added now we update the inode item with the new link count. */ 7030 inc_nlink(inode); 7031 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 7032 if (unlikely(ret)) { 7033 btrfs_abort_transaction(trans, ret); 7034 goto fail; 7035 } 7036 7037 if (inode->i_nlink == 1) { 7038 /* 7039 * If the new hard link count is 1, it's a file created with the 7040 * open(2) O_TMPFILE flag. 7041 */ 7042 ret = btrfs_orphan_del(trans, BTRFS_I(inode)); 7043 if (unlikely(ret)) { 7044 btrfs_abort_transaction(trans, ret); 7045 goto fail; 7046 } 7047 } 7048 7049 /* Grab reference for the new dentry passed to d_instantiate(). */ 7050 ihold(inode); 7051 d_instantiate(dentry, inode); 7052 btrfs_log_new_name(trans, old_dentry, NULL, 0, dentry->d_parent); 7053 7054 fail: 7055 fscrypt_free_filename(&fname); 7056 if (trans) 7057 btrfs_end_transaction(trans); 7058 btrfs_btree_balance_dirty(fs_info); 7059 return ret; 7060 } 7061 7062 static struct dentry *btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 7063 struct dentry *dentry, umode_t mode) 7064 { 7065 struct inode *inode; 7066 7067 inode = new_inode(dir->i_sb); 7068 if (!inode) 7069 return ERR_PTR(-ENOMEM); 7070 inode_init_owner(idmap, inode, dir, S_IFDIR | mode); 7071 inode->i_op = &btrfs_dir_inode_operations; 7072 inode->i_fop = &btrfs_dir_file_operations; 7073 return ERR_PTR(btrfs_create_common(dir, dentry, inode)); 7074 } 7075 7076 static noinline int uncompress_inline(struct btrfs_path *path, 7077 struct folio *folio, 7078 struct btrfs_file_extent_item *item) 7079 { 7080 int ret; 7081 struct extent_buffer *leaf = path->nodes[0]; 7082 const u32 blocksize = leaf->fs_info->sectorsize; 7083 char *tmp; 7084 size_t max_size; 7085 unsigned long inline_size; 7086 unsigned long ptr; 7087 int compress_type; 7088 7089 compress_type = btrfs_file_extent_compression(leaf, item); 7090 max_size = btrfs_file_extent_ram_bytes(leaf, item); 7091 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]); 7092 tmp = kmalloc(inline_size, GFP_NOFS); 7093 if (!tmp) 7094 return -ENOMEM; 7095 ptr = btrfs_file_extent_inline_start(item); 7096 7097 read_extent_buffer(leaf, tmp, ptr, inline_size); 7098 7099 max_size = min_t(unsigned long, blocksize, max_size); 7100 ret = btrfs_decompress(compress_type, tmp, folio, 0, inline_size, 7101 max_size); 7102 7103 /* 7104 * decompression code contains a memset to fill in any space between the end 7105 * of the uncompressed data and the end of max_size in case the decompressed 7106 * data ends up shorter than ram_bytes. That doesn't cover the hole between 7107 * the end of an inline extent and the beginning of the next block, so we 7108 * cover that region here. 7109 */ 7110 7111 if (max_size < blocksize) 7112 folio_zero_range(folio, max_size, blocksize - max_size); 7113 kfree(tmp); 7114 return ret; 7115 } 7116 7117 static int read_inline_extent(struct btrfs_path *path, struct folio *folio) 7118 { 7119 const u32 blocksize = path->nodes[0]->fs_info->sectorsize; 7120 struct btrfs_file_extent_item *fi; 7121 void *kaddr; 7122 size_t copy_size; 7123 7124 if (!folio || folio_test_uptodate(folio)) 7125 return 0; 7126 7127 ASSERT(folio_pos(folio) == 0); 7128 7129 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 7130 struct btrfs_file_extent_item); 7131 if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE) 7132 return uncompress_inline(path, folio, fi); 7133 7134 copy_size = min_t(u64, blocksize, 7135 btrfs_file_extent_ram_bytes(path->nodes[0], fi)); 7136 kaddr = kmap_local_folio(folio, 0); 7137 read_extent_buffer(path->nodes[0], kaddr, 7138 btrfs_file_extent_inline_start(fi), copy_size); 7139 kunmap_local(kaddr); 7140 if (copy_size < blocksize) 7141 folio_zero_range(folio, copy_size, blocksize - copy_size); 7142 return 0; 7143 } 7144 7145 /* 7146 * Lookup the first extent overlapping a range in a file. 7147 * 7148 * @inode: file to search in 7149 * @page: page to read extent data into if the extent is inline 7150 * @start: file offset 7151 * @len: length of range starting at @start 7152 * 7153 * Return the first &struct extent_map which overlaps the given range, reading 7154 * it from the B-tree and caching it if necessary. Note that there may be more 7155 * extents which overlap the given range after the returned extent_map. 7156 * 7157 * If @page is not NULL and the extent is inline, this also reads the extent 7158 * data directly into the page and marks the extent up to date in the io_tree. 7159 * 7160 * Return: ERR_PTR on error, non-NULL extent_map on success. 7161 */ 7162 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 7163 struct folio *folio, u64 start, u64 len) 7164 { 7165 struct btrfs_fs_info *fs_info = inode->root->fs_info; 7166 int ret = 0; 7167 u64 extent_start = 0; 7168 u64 extent_end = 0; 7169 u64 objectid = btrfs_ino(inode); 7170 int extent_type = -1; 7171 struct btrfs_path *path = NULL; 7172 struct btrfs_root *root = inode->root; 7173 struct btrfs_file_extent_item *item; 7174 struct extent_buffer *leaf; 7175 struct btrfs_key found_key; 7176 struct extent_map *em = NULL; 7177 struct extent_map_tree *em_tree = &inode->extent_tree; 7178 7179 read_lock(&em_tree->lock); 7180 em = btrfs_lookup_extent_mapping(em_tree, start, len); 7181 read_unlock(&em_tree->lock); 7182 7183 if (em) { 7184 if (em->start > start || btrfs_extent_map_end(em) <= start) 7185 btrfs_free_extent_map(em); 7186 else if (em->disk_bytenr == EXTENT_MAP_INLINE && folio) 7187 btrfs_free_extent_map(em); 7188 else 7189 goto out; 7190 } 7191 em = btrfs_alloc_extent_map(); 7192 if (!em) { 7193 ret = -ENOMEM; 7194 goto out; 7195 } 7196 em->start = EXTENT_MAP_HOLE; 7197 em->disk_bytenr = EXTENT_MAP_HOLE; 7198 em->len = (u64)-1; 7199 7200 path = btrfs_alloc_path(); 7201 if (!path) { 7202 ret = -ENOMEM; 7203 goto out; 7204 } 7205 7206 /* Chances are we'll be called again, so go ahead and do readahead */ 7207 path->reada = READA_FORWARD; 7208 7209 /* 7210 * The same explanation in load_free_space_cache applies here as well, 7211 * we only read when we're loading the free space cache, and at that 7212 * point the commit_root has everything we need. 7213 */ 7214 if (btrfs_is_free_space_inode(inode)) { 7215 path->search_commit_root = true; 7216 path->skip_locking = true; 7217 } 7218 7219 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 7220 if (ret < 0) { 7221 goto out; 7222 } else if (ret > 0) { 7223 if (path->slots[0] == 0) 7224 goto not_found; 7225 path->slots[0]--; 7226 ret = 0; 7227 } 7228 7229 leaf = path->nodes[0]; 7230 item = btrfs_item_ptr(leaf, path->slots[0], 7231 struct btrfs_file_extent_item); 7232 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 7233 if (found_key.objectid != objectid || 7234 found_key.type != BTRFS_EXTENT_DATA_KEY) { 7235 /* 7236 * If we backup past the first extent we want to move forward 7237 * and see if there is an extent in front of us, otherwise we'll 7238 * say there is a hole for our whole search range which can 7239 * cause problems. 7240 */ 7241 extent_end = start; 7242 goto next; 7243 } 7244 7245 extent_type = btrfs_file_extent_type(leaf, item); 7246 extent_start = found_key.offset; 7247 extent_end = btrfs_file_extent_end(path); 7248 if (extent_type == BTRFS_FILE_EXTENT_REG || 7249 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 7250 /* Only regular file could have regular/prealloc extent */ 7251 if (unlikely(!S_ISREG(inode->vfs_inode.i_mode))) { 7252 ret = -EUCLEAN; 7253 btrfs_crit(fs_info, 7254 "regular/prealloc extent found for non-regular inode %llu", 7255 btrfs_ino(inode)); 7256 goto out; 7257 } 7258 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 7259 extent_start); 7260 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 7261 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 7262 path->slots[0], 7263 extent_start); 7264 } 7265 next: 7266 if (start >= extent_end) { 7267 path->slots[0]++; 7268 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 7269 ret = btrfs_next_leaf(root, path); 7270 if (ret < 0) 7271 goto out; 7272 else if (ret > 0) 7273 goto not_found; 7274 7275 leaf = path->nodes[0]; 7276 } 7277 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 7278 if (found_key.objectid != objectid || 7279 found_key.type != BTRFS_EXTENT_DATA_KEY) 7280 goto not_found; 7281 if (start + len <= found_key.offset) 7282 goto not_found; 7283 if (start > found_key.offset) 7284 goto next; 7285 7286 /* New extent overlaps with existing one */ 7287 em->start = start; 7288 em->len = found_key.offset - start; 7289 em->disk_bytenr = EXTENT_MAP_HOLE; 7290 goto insert; 7291 } 7292 7293 btrfs_extent_item_to_extent_map(inode, path, item, em); 7294 7295 if (extent_type == BTRFS_FILE_EXTENT_REG || 7296 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 7297 goto insert; 7298 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 7299 /* 7300 * Inline extent can only exist at file offset 0. This is 7301 * ensured by tree-checker and inline extent creation path. 7302 * Thus all members representing file offsets should be zero. 7303 */ 7304 ASSERT(extent_start == 0); 7305 ASSERT(em->start == 0); 7306 7307 /* 7308 * btrfs_extent_item_to_extent_map() should have properly 7309 * initialized em members already. 7310 * 7311 * Other members are not utilized for inline extents. 7312 */ 7313 ASSERT(em->disk_bytenr == EXTENT_MAP_INLINE); 7314 ASSERT(em->len == fs_info->sectorsize); 7315 7316 ret = read_inline_extent(path, folio); 7317 if (ret < 0) 7318 goto out; 7319 goto insert; 7320 } 7321 not_found: 7322 em->start = start; 7323 em->len = len; 7324 em->disk_bytenr = EXTENT_MAP_HOLE; 7325 insert: 7326 ret = 0; 7327 btrfs_release_path(path); 7328 if (unlikely(em->start > start || btrfs_extent_map_end(em) <= start)) { 7329 btrfs_err(fs_info, 7330 "bad extent! em: [%llu %llu] passed [%llu %llu]", 7331 em->start, em->len, start, len); 7332 ret = -EIO; 7333 goto out; 7334 } 7335 7336 write_lock(&em_tree->lock); 7337 ret = btrfs_add_extent_mapping(inode, &em, start, len); 7338 write_unlock(&em_tree->lock); 7339 out: 7340 btrfs_free_path(path); 7341 7342 trace_btrfs_get_extent(root, inode, em); 7343 7344 if (ret) { 7345 btrfs_free_extent_map(em); 7346 return ERR_PTR(ret); 7347 } 7348 return em; 7349 } 7350 7351 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 7352 { 7353 struct btrfs_block_group *block_group; 7354 bool readonly = false; 7355 7356 block_group = btrfs_lookup_block_group(fs_info, bytenr); 7357 if (!block_group || block_group->ro) 7358 readonly = true; 7359 if (block_group) 7360 btrfs_put_block_group(block_group); 7361 return readonly; 7362 } 7363 7364 /* 7365 * Check if we can do nocow write into the range [@offset, @offset + @len) 7366 * 7367 * @offset: File offset 7368 * @len: The length to write, will be updated to the nocow writeable 7369 * range 7370 * @orig_start: (optional) Return the original file offset of the file extent 7371 * @orig_len: (optional) Return the original on-disk length of the file extent 7372 * @ram_bytes: (optional) Return the ram_bytes of the file extent 7373 * 7374 * Return: 7375 * >0 and update @len if we can do nocow write 7376 * 0 if we can't do nocow write 7377 * <0 if error happened 7378 * 7379 * NOTE: This only checks the file extents, caller is responsible to wait for 7380 * any ordered extents. 7381 */ 7382 noinline int can_nocow_extent(struct btrfs_inode *inode, u64 offset, u64 *len, 7383 struct btrfs_file_extent *file_extent, 7384 bool nowait) 7385 { 7386 struct btrfs_root *root = inode->root; 7387 struct btrfs_fs_info *fs_info = root->fs_info; 7388 struct can_nocow_file_extent_args nocow_args = { 0 }; 7389 BTRFS_PATH_AUTO_FREE(path); 7390 int ret; 7391 struct extent_buffer *leaf; 7392 struct extent_io_tree *io_tree = &inode->io_tree; 7393 struct btrfs_file_extent_item *fi; 7394 struct btrfs_key key; 7395 int found_type; 7396 7397 path = btrfs_alloc_path(); 7398 if (!path) 7399 return -ENOMEM; 7400 path->nowait = nowait; 7401 7402 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 7403 offset, 0); 7404 if (ret < 0) 7405 return ret; 7406 7407 if (ret == 1) { 7408 if (path->slots[0] == 0) { 7409 /* Can't find the item, must COW. */ 7410 return 0; 7411 } 7412 path->slots[0]--; 7413 } 7414 ret = 0; 7415 leaf = path->nodes[0]; 7416 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 7417 if (key.objectid != btrfs_ino(inode) || 7418 key.type != BTRFS_EXTENT_DATA_KEY) { 7419 /* Not our file or wrong item type, must COW. */ 7420 return 0; 7421 } 7422 7423 if (key.offset > offset) { 7424 /* Wrong offset, must COW. */ 7425 return 0; 7426 } 7427 7428 if (btrfs_file_extent_end(path) <= offset) 7429 return 0; 7430 7431 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 7432 found_type = btrfs_file_extent_type(leaf, fi); 7433 7434 nocow_args.start = offset; 7435 nocow_args.end = offset + *len - 1; 7436 nocow_args.free_path = true; 7437 7438 ret = can_nocow_file_extent(path, &key, inode, &nocow_args); 7439 /* can_nocow_file_extent() has freed the path. */ 7440 path = NULL; 7441 7442 if (ret != 1) { 7443 /* Treat errors as not being able to NOCOW. */ 7444 return 0; 7445 } 7446 7447 if (btrfs_extent_readonly(fs_info, 7448 nocow_args.file_extent.disk_bytenr + 7449 nocow_args.file_extent.offset)) 7450 return 0; 7451 7452 if (!(inode->flags & BTRFS_INODE_NODATACOW) && 7453 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7454 u64 range_end; 7455 7456 range_end = round_up(offset + nocow_args.file_extent.num_bytes, 7457 root->fs_info->sectorsize) - 1; 7458 ret = btrfs_test_range_bit_exists(io_tree, offset, range_end, 7459 EXTENT_DELALLOC); 7460 if (ret) 7461 return -EAGAIN; 7462 } 7463 7464 if (file_extent) 7465 memcpy(file_extent, &nocow_args.file_extent, sizeof(*file_extent)); 7466 7467 *len = nocow_args.file_extent.num_bytes; 7468 7469 return 1; 7470 } 7471 7472 /* The callers of this must take lock_extent() */ 7473 struct extent_map *btrfs_create_io_em(struct btrfs_inode *inode, u64 start, 7474 const struct btrfs_file_extent *file_extent, 7475 int type) 7476 { 7477 struct extent_map *em; 7478 int ret; 7479 7480 /* 7481 * Note the missing NOCOW type. 7482 * 7483 * For pure NOCOW writes, we should not create an io extent map, but 7484 * just reusing the existing one. 7485 * Only PREALLOC writes (NOCOW write into preallocated range) can 7486 * create an io extent map. 7487 */ 7488 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7489 type == BTRFS_ORDERED_COMPRESSED || 7490 type == BTRFS_ORDERED_REGULAR); 7491 7492 switch (type) { 7493 case BTRFS_ORDERED_PREALLOC: 7494 /* We're only referring part of a larger preallocated extent. */ 7495 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes); 7496 break; 7497 case BTRFS_ORDERED_REGULAR: 7498 /* COW results a new extent matching our file extent size. */ 7499 ASSERT(file_extent->disk_num_bytes == file_extent->num_bytes); 7500 ASSERT(file_extent->ram_bytes == file_extent->num_bytes); 7501 7502 /* Since it's a new extent, we should not have any offset. */ 7503 ASSERT(file_extent->offset == 0); 7504 break; 7505 case BTRFS_ORDERED_COMPRESSED: 7506 /* Must be compressed. */ 7507 ASSERT(file_extent->compression != BTRFS_COMPRESS_NONE); 7508 7509 /* 7510 * Encoded write can make us to refer to part of the 7511 * uncompressed extent. 7512 */ 7513 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes); 7514 break; 7515 } 7516 7517 em = btrfs_alloc_extent_map(); 7518 if (!em) 7519 return ERR_PTR(-ENOMEM); 7520 7521 em->start = start; 7522 em->len = file_extent->num_bytes; 7523 em->disk_bytenr = file_extent->disk_bytenr; 7524 em->disk_num_bytes = file_extent->disk_num_bytes; 7525 em->ram_bytes = file_extent->ram_bytes; 7526 em->generation = -1; 7527 em->offset = file_extent->offset; 7528 em->flags |= EXTENT_FLAG_PINNED; 7529 if (type == BTRFS_ORDERED_COMPRESSED) 7530 btrfs_extent_map_set_compression(em, file_extent->compression); 7531 7532 ret = btrfs_replace_extent_map_range(inode, em, true); 7533 if (ret) { 7534 btrfs_free_extent_map(em); 7535 return ERR_PTR(ret); 7536 } 7537 7538 /* em got 2 refs now, callers needs to do btrfs_free_extent_map once. */ 7539 return em; 7540 } 7541 7542 /* 7543 * For release_folio() and invalidate_folio() we have a race window where 7544 * folio_end_writeback() is called but the subpage spinlock is not yet released. 7545 * If we continue to release/invalidate the page, we could cause use-after-free 7546 * for subpage spinlock. So this function is to spin and wait for subpage 7547 * spinlock. 7548 */ 7549 static void wait_subpage_spinlock(struct folio *folio) 7550 { 7551 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 7552 struct btrfs_folio_state *bfs; 7553 7554 if (!btrfs_is_subpage(fs_info, folio)) 7555 return; 7556 7557 ASSERT(folio_test_private(folio) && folio_get_private(folio)); 7558 bfs = folio_get_private(folio); 7559 7560 /* 7561 * This may look insane as we just acquire the spinlock and release it, 7562 * without doing anything. But we just want to make sure no one is 7563 * still holding the subpage spinlock. 7564 * And since the page is not dirty nor writeback, and we have page 7565 * locked, the only possible way to hold a spinlock is from the endio 7566 * function to clear page writeback. 7567 * 7568 * Here we just acquire the spinlock so that all existing callers 7569 * should exit and we're safe to release/invalidate the page. 7570 */ 7571 spin_lock_irq(&bfs->lock); 7572 spin_unlock_irq(&bfs->lock); 7573 } 7574 7575 static int btrfs_launder_folio(struct folio *folio) 7576 { 7577 return btrfs_qgroup_free_data(folio_to_inode(folio), NULL, folio_pos(folio), 7578 folio_size(folio), NULL); 7579 } 7580 7581 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 7582 { 7583 if (try_release_extent_mapping(folio, gfp_flags)) { 7584 wait_subpage_spinlock(folio); 7585 clear_folio_extent_mapped(folio); 7586 return true; 7587 } 7588 return false; 7589 } 7590 7591 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 7592 { 7593 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 7594 return false; 7595 return __btrfs_release_folio(folio, gfp_flags); 7596 } 7597 7598 #ifdef CONFIG_MIGRATION 7599 static int btrfs_migrate_folio(struct address_space *mapping, 7600 struct folio *dst, struct folio *src, 7601 enum migrate_mode mode) 7602 { 7603 int ret = filemap_migrate_folio(mapping, dst, src, mode); 7604 7605 if (ret) 7606 return ret; 7607 7608 if (folio_test_ordered(src)) { 7609 folio_clear_ordered(src); 7610 folio_set_ordered(dst); 7611 } 7612 7613 return 0; 7614 } 7615 #else 7616 #define btrfs_migrate_folio NULL 7617 #endif 7618 7619 static void btrfs_invalidate_folio(struct folio *folio, size_t offset, 7620 size_t length) 7621 { 7622 struct btrfs_inode *inode = folio_to_inode(folio); 7623 struct btrfs_fs_info *fs_info = inode->root->fs_info; 7624 struct extent_io_tree *tree = &inode->io_tree; 7625 struct extent_state *cached_state = NULL; 7626 u64 page_start = folio_pos(folio); 7627 u64 page_end = page_start + folio_size(folio) - 1; 7628 u64 cur; 7629 int inode_evicting = inode_state_read_once(&inode->vfs_inode) & I_FREEING; 7630 7631 /* 7632 * We have folio locked so no new ordered extent can be created on this 7633 * page, nor bio can be submitted for this folio. 7634 * 7635 * But already submitted bio can still be finished on this folio. 7636 * Furthermore, endio function won't skip folio which has Ordered 7637 * already cleared, so it's possible for endio and 7638 * invalidate_folio to do the same ordered extent accounting twice 7639 * on one folio. 7640 * 7641 * So here we wait for any submitted bios to finish, so that we won't 7642 * do double ordered extent accounting on the same folio. 7643 */ 7644 folio_wait_writeback(folio); 7645 wait_subpage_spinlock(folio); 7646 7647 /* 7648 * For subpage case, we have call sites like 7649 * btrfs_punch_hole_lock_range() which passes range not aligned to 7650 * sectorsize. 7651 * If the range doesn't cover the full folio, we don't need to and 7652 * shouldn't clear page extent mapped, as folio->private can still 7653 * record subpage dirty bits for other part of the range. 7654 * 7655 * For cases that invalidate the full folio even the range doesn't 7656 * cover the full folio, like invalidating the last folio, we're 7657 * still safe to wait for ordered extent to finish. 7658 */ 7659 if (!(offset == 0 && length == folio_size(folio))) { 7660 btrfs_release_folio(folio, GFP_NOFS); 7661 return; 7662 } 7663 7664 if (!inode_evicting) 7665 btrfs_lock_extent(tree, page_start, page_end, &cached_state); 7666 7667 cur = page_start; 7668 while (cur < page_end) { 7669 struct btrfs_ordered_extent *ordered; 7670 u64 range_end; 7671 u32 range_len; 7672 u32 extra_flags = 0; 7673 7674 ordered = btrfs_lookup_first_ordered_range(inode, cur, 7675 page_end + 1 - cur); 7676 if (!ordered) { 7677 range_end = page_end; 7678 /* 7679 * No ordered extent covering this range, we are safe 7680 * to delete all extent states in the range. 7681 */ 7682 extra_flags = EXTENT_CLEAR_ALL_BITS; 7683 goto next; 7684 } 7685 if (ordered->file_offset > cur) { 7686 /* 7687 * There is a range between [cur, oe->file_offset) not 7688 * covered by any ordered extent. 7689 * We are safe to delete all extent states, and handle 7690 * the ordered extent in the next iteration. 7691 */ 7692 range_end = ordered->file_offset - 1; 7693 extra_flags = EXTENT_CLEAR_ALL_BITS; 7694 goto next; 7695 } 7696 7697 range_end = min(ordered->file_offset + ordered->num_bytes - 1, 7698 page_end); 7699 ASSERT(range_end + 1 - cur < U32_MAX); 7700 range_len = range_end + 1 - cur; 7701 if (!btrfs_folio_test_ordered(fs_info, folio, cur, range_len)) { 7702 /* 7703 * If Ordered is cleared, it means endio has 7704 * already been executed for the range. 7705 * We can't delete the extent states as 7706 * btrfs_finish_ordered_io() may still use some of them. 7707 */ 7708 goto next; 7709 } 7710 btrfs_folio_clear_ordered(fs_info, folio, cur, range_len); 7711 7712 /* 7713 * IO on this page will never be started, so we need to account 7714 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW 7715 * here, must leave that up for the ordered extent completion. 7716 * 7717 * This will also unlock the range for incoming 7718 * btrfs_finish_ordered_io(). 7719 */ 7720 if (!inode_evicting) 7721 btrfs_clear_extent_bit(tree, cur, range_end, 7722 EXTENT_DELALLOC | 7723 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 7724 EXTENT_DEFRAG, &cached_state); 7725 7726 spin_lock(&inode->ordered_tree_lock); 7727 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 7728 ordered->truncated_len = min(ordered->truncated_len, 7729 cur - ordered->file_offset); 7730 spin_unlock(&inode->ordered_tree_lock); 7731 7732 /* 7733 * If the ordered extent has finished, we're safe to delete all 7734 * the extent states of the range, otherwise 7735 * btrfs_finish_ordered_io() will get executed by endio for 7736 * other pages, so we can't delete extent states. 7737 */ 7738 if (btrfs_dec_test_ordered_pending(inode, &ordered, 7739 cur, range_end + 1 - cur)) { 7740 btrfs_finish_ordered_io(ordered); 7741 /* 7742 * The ordered extent has finished, now we're again 7743 * safe to delete all extent states of the range. 7744 */ 7745 extra_flags = EXTENT_CLEAR_ALL_BITS; 7746 } 7747 next: 7748 if (ordered) 7749 btrfs_put_ordered_extent(ordered); 7750 /* 7751 * Qgroup reserved space handler 7752 * Sector(s) here will be either: 7753 * 7754 * 1) Already written to disk or bio already finished 7755 * Then its QGROUP_RESERVED bit in io_tree is already cleared. 7756 * Qgroup will be handled by its qgroup_record then. 7757 * btrfs_qgroup_free_data() call will do nothing here. 7758 * 7759 * 2) Not written to disk yet 7760 * Then btrfs_qgroup_free_data() call will clear the 7761 * QGROUP_RESERVED bit of its io_tree, and free the qgroup 7762 * reserved data space. 7763 * Since the IO will never happen for this page. 7764 */ 7765 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur, NULL); 7766 if (!inode_evicting) 7767 btrfs_clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED | 7768 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 7769 EXTENT_DEFRAG | extra_flags, 7770 &cached_state); 7771 cur = range_end + 1; 7772 } 7773 /* 7774 * We have iterated through all ordered extents of the page, the page 7775 * should not have Ordered anymore, or the above iteration 7776 * did something wrong. 7777 */ 7778 ASSERT(!folio_test_ordered(folio)); 7779 btrfs_folio_clear_checked(fs_info, folio, folio_pos(folio), folio_size(folio)); 7780 if (!inode_evicting) 7781 __btrfs_release_folio(folio, GFP_NOFS); 7782 clear_folio_extent_mapped(folio); 7783 } 7784 7785 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback) 7786 { 7787 struct btrfs_truncate_control control = { 7788 .inode = inode, 7789 .ino = btrfs_ino(inode), 7790 .min_type = BTRFS_EXTENT_DATA_KEY, 7791 .clear_extent_range = true, 7792 .new_size = inode->vfs_inode.i_size, 7793 }; 7794 struct btrfs_root *root = inode->root; 7795 struct btrfs_fs_info *fs_info = root->fs_info; 7796 struct btrfs_block_rsv rsv; 7797 int ret; 7798 struct btrfs_trans_handle *trans; 7799 const u64 min_size = btrfs_calc_metadata_size(fs_info, 1); 7800 const u64 lock_start = round_down(inode->vfs_inode.i_size, fs_info->sectorsize); 7801 const u64 i_size_up = round_up(inode->vfs_inode.i_size, fs_info->sectorsize); 7802 7803 /* Our inode is locked and the i_size can't be changed concurrently. */ 7804 btrfs_assert_inode_locked(inode); 7805 7806 if (!skip_writeback) { 7807 ret = btrfs_wait_ordered_range(inode, lock_start, (u64)-1); 7808 if (ret) 7809 return ret; 7810 } 7811 7812 /* 7813 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 7814 * things going on here: 7815 * 7816 * 1) We need to reserve space to update our inode. 7817 * 7818 * 2) We need to have something to cache all the space that is going to 7819 * be free'd up by the truncate operation, but also have some slack 7820 * space reserved in case it uses space during the truncate (thank you 7821 * very much snapshotting). 7822 * 7823 * And we need these to be separate. The fact is we can use a lot of 7824 * space doing the truncate, and we have no earthly idea how much space 7825 * we will use, so we need the truncate reservation to be separate so it 7826 * doesn't end up using space reserved for updating the inode. We also 7827 * need to be able to stop the transaction and start a new one, which 7828 * means we need to be able to update the inode several times, and we 7829 * have no idea of knowing how many times that will be, so we can't just 7830 * reserve 1 item for the entirety of the operation, so that has to be 7831 * done separately as well. 7832 * 7833 * So that leaves us with 7834 * 7835 * 1) rsv - for the truncate reservation, which we will steal from the 7836 * transaction reservation. 7837 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 7838 * updating the inode. 7839 */ 7840 btrfs_init_metadata_block_rsv(fs_info, &rsv, BTRFS_BLOCK_RSV_TEMP); 7841 rsv.size = min_size; 7842 rsv.failfast = true; 7843 7844 /* 7845 * 1 for the truncate slack space 7846 * 1 for updating the inode. 7847 */ 7848 trans = btrfs_start_transaction(root, 2); 7849 if (IS_ERR(trans)) { 7850 ret = PTR_ERR(trans); 7851 goto out; 7852 } 7853 7854 /* Migrate the slack space for the truncate to our reserve */ 7855 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, &rsv, 7856 min_size, false); 7857 /* 7858 * We have reserved 2 metadata units when we started the transaction and 7859 * min_size matches 1 unit, so this should never fail, but if it does, 7860 * it's not critical we just fail truncation. 7861 */ 7862 if (WARN_ON(ret)) { 7863 btrfs_end_transaction(trans); 7864 goto out; 7865 } 7866 7867 trans->block_rsv = &rsv; 7868 7869 while (1) { 7870 struct extent_state *cached_state = NULL; 7871 7872 btrfs_lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state); 7873 /* 7874 * We want to drop from the next block forward in case this new 7875 * size is not block aligned since we will be keeping the last 7876 * block of the extent just the way it is. 7877 */ 7878 btrfs_drop_extent_map_range(inode, i_size_up, (u64)-1, false); 7879 7880 ret = btrfs_truncate_inode_items(trans, root, &control); 7881 7882 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes); 7883 btrfs_inode_safe_disk_i_size_write(inode, control.last_size); 7884 7885 btrfs_unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state); 7886 7887 trans->block_rsv = &fs_info->trans_block_rsv; 7888 if (ret != -ENOSPC && ret != -EAGAIN) 7889 break; 7890 7891 ret = btrfs_update_inode(trans, inode); 7892 if (ret) 7893 break; 7894 7895 btrfs_end_transaction(trans); 7896 btrfs_btree_balance_dirty(fs_info); 7897 7898 trans = btrfs_start_transaction(root, 2); 7899 if (IS_ERR(trans)) { 7900 ret = PTR_ERR(trans); 7901 trans = NULL; 7902 break; 7903 } 7904 7905 btrfs_block_rsv_release(fs_info, &rsv, -1, NULL); 7906 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 7907 &rsv, min_size, false); 7908 /* 7909 * We have reserved 2 metadata units when we started the 7910 * transaction and min_size matches 1 unit, so this should never 7911 * fail, but if it does, it's not critical we just fail truncation. 7912 */ 7913 if (WARN_ON(ret)) 7914 break; 7915 7916 trans->block_rsv = &rsv; 7917 } 7918 7919 /* 7920 * We can't call btrfs_truncate_block inside a trans handle as we could 7921 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we 7922 * know we've truncated everything except the last little bit, and can 7923 * do btrfs_truncate_block and then update the disk_i_size. 7924 */ 7925 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) { 7926 btrfs_end_transaction(trans); 7927 btrfs_btree_balance_dirty(fs_info); 7928 7929 ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 7930 inode->vfs_inode.i_size, (u64)-1); 7931 if (ret) 7932 goto out; 7933 trans = btrfs_start_transaction(root, 1); 7934 if (IS_ERR(trans)) { 7935 ret = PTR_ERR(trans); 7936 goto out; 7937 } 7938 btrfs_inode_safe_disk_i_size_write(inode, 0); 7939 } 7940 7941 if (trans) { 7942 int ret2; 7943 7944 trans->block_rsv = &fs_info->trans_block_rsv; 7945 ret2 = btrfs_update_inode(trans, inode); 7946 if (ret2 && !ret) 7947 ret = ret2; 7948 7949 ret2 = btrfs_end_transaction(trans); 7950 if (ret2 && !ret) 7951 ret = ret2; 7952 btrfs_btree_balance_dirty(fs_info); 7953 } 7954 out: 7955 btrfs_block_rsv_release(fs_info, &rsv, (u64)-1, NULL); 7956 /* 7957 * So if we truncate and then write and fsync we normally would just 7958 * write the extents that changed, which is a problem if we need to 7959 * first truncate that entire inode. So set this flag so we write out 7960 * all of the extents in the inode to the sync log so we're completely 7961 * safe. 7962 * 7963 * If no extents were dropped or trimmed we don't need to force the next 7964 * fsync to truncate all the inode's items from the log and re-log them 7965 * all. This means the truncate operation did not change the file size, 7966 * or changed it to a smaller size but there was only an implicit hole 7967 * between the old i_size and the new i_size, and there were no prealloc 7968 * extents beyond i_size to drop. 7969 */ 7970 if (control.extents_found > 0) 7971 btrfs_set_inode_full_sync(inode); 7972 7973 return ret; 7974 } 7975 7976 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap, 7977 struct inode *dir) 7978 { 7979 struct inode *inode; 7980 7981 inode = new_inode(dir->i_sb); 7982 if (inode) { 7983 /* 7984 * Subvolumes don't inherit the sgid bit or the parent's gid if 7985 * the parent's sgid bit is set. This is probably a bug. 7986 */ 7987 inode_init_owner(idmap, inode, NULL, 7988 S_IFDIR | (~current_umask() & S_IRWXUGO)); 7989 inode->i_op = &btrfs_dir_inode_operations; 7990 inode->i_fop = &btrfs_dir_file_operations; 7991 } 7992 return inode; 7993 } 7994 7995 struct inode *btrfs_alloc_inode(struct super_block *sb) 7996 { 7997 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 7998 struct btrfs_inode *ei; 7999 struct inode *inode; 8000 8001 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL); 8002 if (!ei) 8003 return NULL; 8004 8005 ei->root = NULL; 8006 ei->generation = 0; 8007 ei->last_trans = 0; 8008 ei->last_sub_trans = 0; 8009 ei->logged_trans = 0; 8010 ei->delalloc_bytes = 0; 8011 /* new_delalloc_bytes and last_dir_index_offset are in a union. */ 8012 ei->new_delalloc_bytes = 0; 8013 ei->defrag_bytes = 0; 8014 ei->disk_i_size = 0; 8015 ei->flags = 0; 8016 ei->ro_flags = 0; 8017 /* 8018 * ->index_cnt will be properly initialized later when creating a new 8019 * inode (btrfs_create_new_inode()) or when reading an existing inode 8020 * from disk (btrfs_read_locked_inode()). 8021 */ 8022 ei->csum_bytes = 0; 8023 ei->dir_index = 0; 8024 ei->last_unlink_trans = 0; 8025 ei->last_reflink_trans = 0; 8026 ei->last_log_commit = 0; 8027 8028 spin_lock_init(&ei->lock); 8029 ei->outstanding_extents = 0; 8030 if (sb->s_magic != BTRFS_TEST_MAGIC) 8031 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 8032 BTRFS_BLOCK_RSV_DELALLOC); 8033 ei->runtime_flags = 0; 8034 ei->prop_compress = BTRFS_COMPRESS_NONE; 8035 ei->defrag_compress = BTRFS_COMPRESS_NONE; 8036 8037 ei->delayed_node = NULL; 8038 8039 ei->i_otime_sec = 0; 8040 ei->i_otime_nsec = 0; 8041 8042 inode = &ei->vfs_inode; 8043 btrfs_extent_map_tree_init(&ei->extent_tree); 8044 8045 /* This io tree sets the valid inode. */ 8046 btrfs_extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO); 8047 ei->io_tree.inode = ei; 8048 8049 ei->file_extent_tree = NULL; 8050 8051 mutex_init(&ei->log_mutex); 8052 spin_lock_init(&ei->ordered_tree_lock); 8053 ei->ordered_tree = RB_ROOT; 8054 ei->ordered_tree_last = NULL; 8055 INIT_LIST_HEAD(&ei->delalloc_inodes); 8056 INIT_LIST_HEAD(&ei->delayed_iput); 8057 init_rwsem(&ei->i_mmap_lock); 8058 8059 return inode; 8060 } 8061 8062 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 8063 void btrfs_test_destroy_inode(struct inode *inode) 8064 { 8065 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); 8066 kfree(BTRFS_I(inode)->file_extent_tree); 8067 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8068 } 8069 #endif 8070 8071 void btrfs_free_inode(struct inode *inode) 8072 { 8073 kfree(BTRFS_I(inode)->file_extent_tree); 8074 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8075 } 8076 8077 void btrfs_destroy_inode(struct inode *vfs_inode) 8078 { 8079 struct btrfs_ordered_extent *ordered; 8080 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 8081 struct btrfs_root *root = inode->root; 8082 bool freespace_inode; 8083 8084 WARN_ON(!hlist_empty(&vfs_inode->i_dentry)); 8085 WARN_ON(vfs_inode->i_data.nrpages); 8086 WARN_ON(inode->block_rsv.reserved); 8087 WARN_ON(inode->block_rsv.size); 8088 WARN_ON(inode->outstanding_extents); 8089 if (!S_ISDIR(vfs_inode->i_mode)) { 8090 WARN_ON(inode->delalloc_bytes); 8091 WARN_ON(inode->new_delalloc_bytes); 8092 WARN_ON(inode->csum_bytes); 8093 } 8094 if (!root || !btrfs_is_data_reloc_root(root)) 8095 WARN_ON(inode->defrag_bytes); 8096 8097 /* 8098 * This can happen where we create an inode, but somebody else also 8099 * created the same inode and we need to destroy the one we already 8100 * created. 8101 */ 8102 if (!root) 8103 return; 8104 8105 /* 8106 * If this is a free space inode do not take the ordered extents lockdep 8107 * map. 8108 */ 8109 freespace_inode = btrfs_is_free_space_inode(inode); 8110 8111 while (1) { 8112 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 8113 if (!ordered) 8114 break; 8115 else { 8116 btrfs_err(root->fs_info, 8117 "found ordered extent %llu %llu on inode cleanup", 8118 ordered->file_offset, ordered->num_bytes); 8119 8120 if (!freespace_inode) 8121 btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent); 8122 8123 btrfs_remove_ordered_extent(inode, ordered); 8124 btrfs_put_ordered_extent(ordered); 8125 btrfs_put_ordered_extent(ordered); 8126 } 8127 } 8128 btrfs_qgroup_check_reserved_leak(inode); 8129 btrfs_del_inode_from_root(inode); 8130 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false); 8131 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1); 8132 btrfs_put_root(inode->root); 8133 } 8134 8135 int btrfs_drop_inode(struct inode *inode) 8136 { 8137 struct btrfs_root *root = BTRFS_I(inode)->root; 8138 8139 if (root == NULL) 8140 return 1; 8141 8142 /* the snap/subvol tree is on deleting */ 8143 if (btrfs_root_refs(&root->root_item) == 0) 8144 return 1; 8145 else 8146 return inode_generic_drop(inode); 8147 } 8148 8149 static void init_once(void *foo) 8150 { 8151 struct btrfs_inode *ei = foo; 8152 8153 inode_init_once(&ei->vfs_inode); 8154 #ifdef CONFIG_FS_VERITY 8155 ei->i_verity_info = NULL; 8156 #endif 8157 } 8158 8159 void __cold btrfs_destroy_cachep(void) 8160 { 8161 /* 8162 * Make sure all delayed rcu free inodes are flushed before we 8163 * destroy cache. 8164 */ 8165 rcu_barrier(); 8166 kmem_cache_destroy(btrfs_inode_cachep); 8167 } 8168 8169 int __init btrfs_init_cachep(void) 8170 { 8171 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 8172 sizeof(struct btrfs_inode), 0, 8173 SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT, 8174 init_once); 8175 if (!btrfs_inode_cachep) 8176 return -ENOMEM; 8177 8178 return 0; 8179 } 8180 8181 static int btrfs_getattr(struct mnt_idmap *idmap, 8182 const struct path *path, struct kstat *stat, 8183 u32 request_mask, unsigned int flags) 8184 { 8185 u64 delalloc_bytes; 8186 u64 inode_bytes; 8187 struct inode *inode = d_inode(path->dentry); 8188 u32 blocksize = btrfs_sb(inode->i_sb)->sectorsize; 8189 u32 bi_flags = BTRFS_I(inode)->flags; 8190 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags; 8191 8192 stat->result_mask |= STATX_BTIME; 8193 stat->btime.tv_sec = BTRFS_I(inode)->i_otime_sec; 8194 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime_nsec; 8195 if (bi_flags & BTRFS_INODE_APPEND) 8196 stat->attributes |= STATX_ATTR_APPEND; 8197 if (bi_flags & BTRFS_INODE_COMPRESS) 8198 stat->attributes |= STATX_ATTR_COMPRESSED; 8199 if (bi_flags & BTRFS_INODE_IMMUTABLE) 8200 stat->attributes |= STATX_ATTR_IMMUTABLE; 8201 if (bi_flags & BTRFS_INODE_NODUMP) 8202 stat->attributes |= STATX_ATTR_NODUMP; 8203 if (bi_ro_flags & BTRFS_INODE_RO_VERITY) 8204 stat->attributes |= STATX_ATTR_VERITY; 8205 8206 stat->attributes_mask |= (STATX_ATTR_APPEND | 8207 STATX_ATTR_COMPRESSED | 8208 STATX_ATTR_IMMUTABLE | 8209 STATX_ATTR_NODUMP); 8210 8211 generic_fillattr(idmap, request_mask, inode, stat); 8212 stat->dev = BTRFS_I(inode)->root->anon_dev; 8213 8214 stat->subvol = btrfs_root_id(BTRFS_I(inode)->root); 8215 stat->result_mask |= STATX_SUBVOL; 8216 8217 spin_lock(&BTRFS_I(inode)->lock); 8218 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 8219 inode_bytes = inode_get_bytes(inode); 8220 spin_unlock(&BTRFS_I(inode)->lock); 8221 stat->blocks = (ALIGN(inode_bytes, blocksize) + 8222 ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT; 8223 return 0; 8224 } 8225 8226 static int btrfs_rename_exchange(struct inode *old_dir, 8227 struct dentry *old_dentry, 8228 struct inode *new_dir, 8229 struct dentry *new_dentry) 8230 { 8231 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir); 8232 struct btrfs_trans_handle *trans; 8233 unsigned int trans_num_items; 8234 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8235 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8236 struct inode *new_inode = new_dentry->d_inode; 8237 struct inode *old_inode = old_dentry->d_inode; 8238 struct btrfs_rename_ctx old_rename_ctx; 8239 struct btrfs_rename_ctx new_rename_ctx; 8240 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 8241 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 8242 u64 old_idx = 0; 8243 u64 new_idx = 0; 8244 int ret; 8245 int ret2; 8246 bool need_abort = false; 8247 bool logs_pinned = false; 8248 struct fscrypt_name old_fname, new_fname; 8249 struct fscrypt_str *old_name, *new_name; 8250 8251 /* 8252 * For non-subvolumes allow exchange only within one subvolume, in the 8253 * same inode namespace. Two subvolumes (represented as directory) can 8254 * be exchanged as they're a logical link and have a fixed inode number. 8255 */ 8256 if (root != dest && 8257 (old_ino != BTRFS_FIRST_FREE_OBJECTID || 8258 new_ino != BTRFS_FIRST_FREE_OBJECTID)) 8259 return -EXDEV; 8260 8261 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname); 8262 if (ret) 8263 return ret; 8264 8265 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname); 8266 if (ret) { 8267 fscrypt_free_filename(&old_fname); 8268 return ret; 8269 } 8270 8271 old_name = &old_fname.disk_name; 8272 new_name = &new_fname.disk_name; 8273 8274 /* close the race window with snapshot create/destroy ioctl */ 8275 if (old_ino == BTRFS_FIRST_FREE_OBJECTID || 8276 new_ino == BTRFS_FIRST_FREE_OBJECTID) 8277 down_read(&fs_info->subvol_sem); 8278 8279 /* 8280 * For each inode: 8281 * 1 to remove old dir item 8282 * 1 to remove old dir index 8283 * 1 to add new dir item 8284 * 1 to add new dir index 8285 * 1 to update parent inode 8286 * 8287 * If the parents are the same, we only need to account for one 8288 */ 8289 trans_num_items = (old_dir == new_dir ? 9 : 10); 8290 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8291 /* 8292 * 1 to remove old root ref 8293 * 1 to remove old root backref 8294 * 1 to add new root ref 8295 * 1 to add new root backref 8296 */ 8297 trans_num_items += 4; 8298 } else { 8299 /* 8300 * 1 to update inode item 8301 * 1 to remove old inode ref 8302 * 1 to add new inode ref 8303 */ 8304 trans_num_items += 3; 8305 } 8306 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 8307 trans_num_items += 4; 8308 else 8309 trans_num_items += 3; 8310 trans = btrfs_start_transaction(root, trans_num_items); 8311 if (IS_ERR(trans)) { 8312 ret = PTR_ERR(trans); 8313 goto out_notrans; 8314 } 8315 8316 if (dest != root) { 8317 ret = btrfs_record_root_in_trans(trans, dest); 8318 if (ret) 8319 goto out_fail; 8320 } 8321 8322 /* 8323 * We need to find a free sequence number both in the source and 8324 * in the destination directory for the exchange. 8325 */ 8326 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 8327 if (ret) 8328 goto out_fail; 8329 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 8330 if (ret) 8331 goto out_fail; 8332 8333 BTRFS_I(old_inode)->dir_index = 0ULL; 8334 BTRFS_I(new_inode)->dir_index = 0ULL; 8335 8336 /* Reference for the source. */ 8337 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8338 /* force full log commit if subvolume involved. */ 8339 btrfs_set_log_full_commit(trans); 8340 } else { 8341 ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino, 8342 btrfs_ino(BTRFS_I(new_dir)), 8343 old_idx); 8344 if (ret) 8345 goto out_fail; 8346 need_abort = true; 8347 } 8348 8349 /* And now for the dest. */ 8350 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8351 /* force full log commit if subvolume involved. */ 8352 btrfs_set_log_full_commit(trans); 8353 } else { 8354 ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino, 8355 btrfs_ino(BTRFS_I(old_dir)), 8356 new_idx); 8357 if (ret) { 8358 if (unlikely(need_abort)) 8359 btrfs_abort_transaction(trans, ret); 8360 goto out_fail; 8361 } 8362 } 8363 8364 /* Update inode version and ctime/mtime. */ 8365 inode_inc_iversion(old_dir); 8366 inode_inc_iversion(new_dir); 8367 inode_inc_iversion(old_inode); 8368 inode_inc_iversion(new_inode); 8369 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 8370 8371 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && 8372 new_ino != BTRFS_FIRST_FREE_OBJECTID) { 8373 /* 8374 * If we are renaming in the same directory (and it's not for 8375 * root entries) pin the log early to prevent any concurrent 8376 * task from logging the directory after we removed the old 8377 * entries and before we add the new entries, otherwise that 8378 * task can sync a log without any entry for the inodes we are 8379 * renaming and therefore replaying that log, if a power failure 8380 * happens after syncing the log, would result in deleting the 8381 * inodes. 8382 * 8383 * If the rename affects two different directories, we want to 8384 * make sure the that there's no log commit that contains 8385 * updates for only one of the directories but not for the 8386 * other. 8387 * 8388 * If we are renaming an entry for a root, we don't care about 8389 * log updates since we called btrfs_set_log_full_commit(). 8390 */ 8391 btrfs_pin_log_trans(root); 8392 btrfs_pin_log_trans(dest); 8393 logs_pinned = true; 8394 } 8395 8396 if (old_dentry->d_parent != new_dentry->d_parent) { 8397 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 8398 BTRFS_I(old_inode), true); 8399 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 8400 BTRFS_I(new_inode), true); 8401 } 8402 8403 /* src is a subvolume */ 8404 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8405 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry); 8406 if (unlikely(ret)) { 8407 btrfs_abort_transaction(trans, ret); 8408 goto out_fail; 8409 } 8410 } else { /* src is an inode */ 8411 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 8412 BTRFS_I(old_dentry->d_inode), 8413 old_name, &old_rename_ctx); 8414 if (unlikely(ret)) { 8415 btrfs_abort_transaction(trans, ret); 8416 goto out_fail; 8417 } 8418 ret = btrfs_update_inode(trans, BTRFS_I(old_inode)); 8419 if (unlikely(ret)) { 8420 btrfs_abort_transaction(trans, ret); 8421 goto out_fail; 8422 } 8423 } 8424 8425 /* dest is a subvolume */ 8426 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8427 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry); 8428 if (unlikely(ret)) { 8429 btrfs_abort_transaction(trans, ret); 8430 goto out_fail; 8431 } 8432 } else { /* dest is an inode */ 8433 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir), 8434 BTRFS_I(new_dentry->d_inode), 8435 new_name, &new_rename_ctx); 8436 if (unlikely(ret)) { 8437 btrfs_abort_transaction(trans, ret); 8438 goto out_fail; 8439 } 8440 ret = btrfs_update_inode(trans, BTRFS_I(new_inode)); 8441 if (unlikely(ret)) { 8442 btrfs_abort_transaction(trans, ret); 8443 goto out_fail; 8444 } 8445 } 8446 8447 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 8448 new_name, 0, old_idx); 8449 if (unlikely(ret)) { 8450 btrfs_abort_transaction(trans, ret); 8451 goto out_fail; 8452 } 8453 8454 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 8455 old_name, 0, new_idx); 8456 if (unlikely(ret)) { 8457 btrfs_abort_transaction(trans, ret); 8458 goto out_fail; 8459 } 8460 8461 if (old_inode->i_nlink == 1) 8462 BTRFS_I(old_inode)->dir_index = old_idx; 8463 if (new_inode->i_nlink == 1) 8464 BTRFS_I(new_inode)->dir_index = new_idx; 8465 8466 /* 8467 * Do the log updates for all inodes. 8468 * 8469 * If either entry is for a root we don't need to update the logs since 8470 * we've called btrfs_set_log_full_commit() before. 8471 */ 8472 if (logs_pinned) { 8473 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 8474 old_rename_ctx.index, new_dentry->d_parent); 8475 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir), 8476 new_rename_ctx.index, old_dentry->d_parent); 8477 } 8478 8479 out_fail: 8480 if (logs_pinned) { 8481 btrfs_end_log_trans(root); 8482 btrfs_end_log_trans(dest); 8483 } 8484 ret2 = btrfs_end_transaction(trans); 8485 ret = ret ? ret : ret2; 8486 out_notrans: 8487 if (new_ino == BTRFS_FIRST_FREE_OBJECTID || 8488 old_ino == BTRFS_FIRST_FREE_OBJECTID) 8489 up_read(&fs_info->subvol_sem); 8490 8491 fscrypt_free_filename(&new_fname); 8492 fscrypt_free_filename(&old_fname); 8493 return ret; 8494 } 8495 8496 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap, 8497 struct inode *dir) 8498 { 8499 struct inode *inode; 8500 8501 inode = new_inode(dir->i_sb); 8502 if (inode) { 8503 inode_init_owner(idmap, inode, dir, 8504 S_IFCHR | WHITEOUT_MODE); 8505 inode->i_op = &btrfs_special_inode_operations; 8506 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV); 8507 } 8508 return inode; 8509 } 8510 8511 static int btrfs_rename(struct mnt_idmap *idmap, 8512 struct inode *old_dir, struct dentry *old_dentry, 8513 struct inode *new_dir, struct dentry *new_dentry, 8514 unsigned int flags) 8515 { 8516 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir); 8517 struct btrfs_new_inode_args whiteout_args = { 8518 .dir = old_dir, 8519 .dentry = old_dentry, 8520 }; 8521 struct btrfs_trans_handle *trans; 8522 unsigned int trans_num_items; 8523 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8524 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8525 struct inode *new_inode = d_inode(new_dentry); 8526 struct inode *old_inode = d_inode(old_dentry); 8527 struct btrfs_rename_ctx rename_ctx; 8528 u64 index = 0; 8529 int ret; 8530 int ret2; 8531 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 8532 struct fscrypt_name old_fname, new_fname; 8533 bool logs_pinned = false; 8534 8535 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 8536 return -EPERM; 8537 8538 /* we only allow rename subvolume link between subvolumes */ 8539 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 8540 return -EXDEV; 8541 8542 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 8543 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 8544 return -ENOTEMPTY; 8545 8546 if (S_ISDIR(old_inode->i_mode) && new_inode && 8547 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 8548 return -ENOTEMPTY; 8549 8550 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname); 8551 if (ret) 8552 return ret; 8553 8554 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname); 8555 if (ret) { 8556 fscrypt_free_filename(&old_fname); 8557 return ret; 8558 } 8559 8560 /* check for collisions, even if the name isn't there */ 8561 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name); 8562 if (ret) { 8563 if (ret == -EEXIST) { 8564 /* we shouldn't get 8565 * eexist without a new_inode */ 8566 if (WARN_ON(!new_inode)) { 8567 goto out_fscrypt_names; 8568 } 8569 } else { 8570 /* maybe -EOVERFLOW */ 8571 goto out_fscrypt_names; 8572 } 8573 } 8574 ret = 0; 8575 8576 /* 8577 * we're using rename to replace one file with another. Start IO on it 8578 * now so we don't add too much work to the end of the transaction 8579 */ 8580 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 8581 filemap_flush(old_inode->i_mapping); 8582 8583 if (flags & RENAME_WHITEOUT) { 8584 whiteout_args.inode = new_whiteout_inode(idmap, old_dir); 8585 if (!whiteout_args.inode) { 8586 ret = -ENOMEM; 8587 goto out_fscrypt_names; 8588 } 8589 ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items); 8590 if (ret) 8591 goto out_whiteout_inode; 8592 } else { 8593 /* 1 to update the old parent inode. */ 8594 trans_num_items = 1; 8595 } 8596 8597 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8598 /* Close the race window with snapshot create/destroy ioctl */ 8599 down_read(&fs_info->subvol_sem); 8600 /* 8601 * 1 to remove old root ref 8602 * 1 to remove old root backref 8603 * 1 to add new root ref 8604 * 1 to add new root backref 8605 */ 8606 trans_num_items += 4; 8607 } else { 8608 /* 8609 * 1 to update inode 8610 * 1 to remove old inode ref 8611 * 1 to add new inode ref 8612 */ 8613 trans_num_items += 3; 8614 } 8615 /* 8616 * 1 to remove old dir item 8617 * 1 to remove old dir index 8618 * 1 to add new dir item 8619 * 1 to add new dir index 8620 */ 8621 trans_num_items += 4; 8622 /* 1 to update new parent inode if it's not the same as the old parent */ 8623 if (new_dir != old_dir) 8624 trans_num_items++; 8625 if (new_inode) { 8626 /* 8627 * 1 to update inode 8628 * 1 to remove inode ref 8629 * 1 to remove dir item 8630 * 1 to remove dir index 8631 * 1 to possibly add orphan item 8632 */ 8633 trans_num_items += 5; 8634 } 8635 trans = btrfs_start_transaction(root, trans_num_items); 8636 if (IS_ERR(trans)) { 8637 ret = PTR_ERR(trans); 8638 goto out_notrans; 8639 } 8640 8641 if (dest != root) { 8642 ret = btrfs_record_root_in_trans(trans, dest); 8643 if (ret) 8644 goto out_fail; 8645 } 8646 8647 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 8648 if (ret) 8649 goto out_fail; 8650 8651 BTRFS_I(old_inode)->dir_index = 0ULL; 8652 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8653 /* force full log commit if subvolume involved. */ 8654 btrfs_set_log_full_commit(trans); 8655 } else { 8656 ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name, 8657 old_ino, btrfs_ino(BTRFS_I(new_dir)), 8658 index); 8659 if (ret) 8660 goto out_fail; 8661 } 8662 8663 inode_inc_iversion(old_dir); 8664 inode_inc_iversion(new_dir); 8665 inode_inc_iversion(old_inode); 8666 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 8667 8668 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) { 8669 /* 8670 * If we are renaming in the same directory (and it's not a 8671 * root entry) pin the log to prevent any concurrent task from 8672 * logging the directory after we removed the old entry and 8673 * before we add the new entry, otherwise that task can sync 8674 * a log without any entry for the inode we are renaming and 8675 * therefore replaying that log, if a power failure happens 8676 * after syncing the log, would result in deleting the inode. 8677 * 8678 * If the rename affects two different directories, we want to 8679 * make sure the that there's no log commit that contains 8680 * updates for only one of the directories but not for the 8681 * other. 8682 * 8683 * If we are renaming an entry for a root, we don't care about 8684 * log updates since we called btrfs_set_log_full_commit(). 8685 */ 8686 btrfs_pin_log_trans(root); 8687 btrfs_pin_log_trans(dest); 8688 logs_pinned = true; 8689 } 8690 8691 if (old_dentry->d_parent != new_dentry->d_parent) 8692 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 8693 BTRFS_I(old_inode), true); 8694 8695 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8696 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry); 8697 if (unlikely(ret)) { 8698 btrfs_abort_transaction(trans, ret); 8699 goto out_fail; 8700 } 8701 } else { 8702 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 8703 BTRFS_I(d_inode(old_dentry)), 8704 &old_fname.disk_name, &rename_ctx); 8705 if (unlikely(ret)) { 8706 btrfs_abort_transaction(trans, ret); 8707 goto out_fail; 8708 } 8709 ret = btrfs_update_inode(trans, BTRFS_I(old_inode)); 8710 if (unlikely(ret)) { 8711 btrfs_abort_transaction(trans, ret); 8712 goto out_fail; 8713 } 8714 } 8715 8716 if (new_inode) { 8717 inode_inc_iversion(new_inode); 8718 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 8719 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 8720 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry); 8721 if (unlikely(ret)) { 8722 btrfs_abort_transaction(trans, ret); 8723 goto out_fail; 8724 } 8725 BUG_ON(new_inode->i_nlink == 0); 8726 } else { 8727 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir), 8728 BTRFS_I(d_inode(new_dentry)), 8729 &new_fname.disk_name); 8730 if (unlikely(ret)) { 8731 btrfs_abort_transaction(trans, ret); 8732 goto out_fail; 8733 } 8734 } 8735 if (new_inode->i_nlink == 0) { 8736 ret = btrfs_orphan_add(trans, 8737 BTRFS_I(d_inode(new_dentry))); 8738 if (unlikely(ret)) { 8739 btrfs_abort_transaction(trans, ret); 8740 goto out_fail; 8741 } 8742 } 8743 } 8744 8745 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 8746 &new_fname.disk_name, 0, index); 8747 if (unlikely(ret)) { 8748 btrfs_abort_transaction(trans, ret); 8749 goto out_fail; 8750 } 8751 8752 if (old_inode->i_nlink == 1) 8753 BTRFS_I(old_inode)->dir_index = index; 8754 8755 if (logs_pinned) 8756 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 8757 rename_ctx.index, new_dentry->d_parent); 8758 8759 if (flags & RENAME_WHITEOUT) { 8760 ret = btrfs_create_new_inode(trans, &whiteout_args); 8761 if (unlikely(ret)) { 8762 btrfs_abort_transaction(trans, ret); 8763 goto out_fail; 8764 } else { 8765 unlock_new_inode(whiteout_args.inode); 8766 iput(whiteout_args.inode); 8767 whiteout_args.inode = NULL; 8768 } 8769 } 8770 out_fail: 8771 if (logs_pinned) { 8772 btrfs_end_log_trans(root); 8773 btrfs_end_log_trans(dest); 8774 } 8775 ret2 = btrfs_end_transaction(trans); 8776 ret = ret ? ret : ret2; 8777 out_notrans: 8778 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 8779 up_read(&fs_info->subvol_sem); 8780 if (flags & RENAME_WHITEOUT) 8781 btrfs_new_inode_args_destroy(&whiteout_args); 8782 out_whiteout_inode: 8783 if (flags & RENAME_WHITEOUT) 8784 iput(whiteout_args.inode); 8785 out_fscrypt_names: 8786 fscrypt_free_filename(&old_fname); 8787 fscrypt_free_filename(&new_fname); 8788 return ret; 8789 } 8790 8791 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir, 8792 struct dentry *old_dentry, struct inode *new_dir, 8793 struct dentry *new_dentry, unsigned int flags) 8794 { 8795 int ret; 8796 8797 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 8798 return -EINVAL; 8799 8800 if (flags & RENAME_EXCHANGE) 8801 ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir, 8802 new_dentry); 8803 else 8804 ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir, 8805 new_dentry, flags); 8806 8807 btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info); 8808 8809 return ret; 8810 } 8811 8812 struct btrfs_delalloc_work { 8813 struct inode *inode; 8814 struct completion completion; 8815 struct list_head list; 8816 struct btrfs_work work; 8817 }; 8818 8819 static void btrfs_run_delalloc_work(struct btrfs_work *work) 8820 { 8821 struct btrfs_delalloc_work *delalloc_work; 8822 struct inode *inode; 8823 8824 delalloc_work = container_of(work, struct btrfs_delalloc_work, 8825 work); 8826 inode = delalloc_work->inode; 8827 filemap_flush(inode->i_mapping); 8828 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8829 &BTRFS_I(inode)->runtime_flags)) 8830 filemap_flush(inode->i_mapping); 8831 8832 iput(inode); 8833 complete(&delalloc_work->completion); 8834 } 8835 8836 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 8837 { 8838 struct btrfs_delalloc_work *work; 8839 8840 work = kmalloc(sizeof(*work), GFP_NOFS); 8841 if (!work) 8842 return NULL; 8843 8844 init_completion(&work->completion); 8845 INIT_LIST_HEAD(&work->list); 8846 work->inode = inode; 8847 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL); 8848 8849 return work; 8850 } 8851 8852 /* 8853 * some fairly slow code that needs optimization. This walks the list 8854 * of all the inodes with pending delalloc and forces them to disk. 8855 */ 8856 static int start_delalloc_inodes(struct btrfs_root *root, long *nr_to_write, 8857 bool snapshot, bool in_reclaim_context) 8858 { 8859 struct btrfs_delalloc_work *work, *next; 8860 LIST_HEAD(works); 8861 LIST_HEAD(splice); 8862 int ret = 0; 8863 8864 mutex_lock(&root->delalloc_mutex); 8865 spin_lock(&root->delalloc_lock); 8866 list_splice_init(&root->delalloc_inodes, &splice); 8867 while (!list_empty(&splice)) { 8868 struct btrfs_inode *inode; 8869 struct inode *tmp_inode; 8870 8871 inode = list_first_entry(&splice, struct btrfs_inode, delalloc_inodes); 8872 8873 list_move_tail(&inode->delalloc_inodes, &root->delalloc_inodes); 8874 8875 if (in_reclaim_context && 8876 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &inode->runtime_flags)) 8877 continue; 8878 8879 tmp_inode = igrab(&inode->vfs_inode); 8880 if (!tmp_inode) { 8881 cond_resched_lock(&root->delalloc_lock); 8882 continue; 8883 } 8884 spin_unlock(&root->delalloc_lock); 8885 8886 if (snapshot) 8887 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, &inode->runtime_flags); 8888 if (nr_to_write == NULL) { 8889 work = btrfs_alloc_delalloc_work(tmp_inode); 8890 if (!work) { 8891 iput(tmp_inode); 8892 ret = -ENOMEM; 8893 goto out; 8894 } 8895 list_add_tail(&work->list, &works); 8896 btrfs_queue_work(root->fs_info->flush_workers, 8897 &work->work); 8898 } else { 8899 ret = filemap_flush_nr(tmp_inode->i_mapping, 8900 nr_to_write); 8901 btrfs_add_delayed_iput(inode); 8902 8903 if (ret || *nr_to_write <= 0) 8904 goto out; 8905 } 8906 cond_resched(); 8907 spin_lock(&root->delalloc_lock); 8908 } 8909 spin_unlock(&root->delalloc_lock); 8910 8911 out: 8912 list_for_each_entry_safe(work, next, &works, list) { 8913 list_del_init(&work->list); 8914 wait_for_completion(&work->completion); 8915 kfree(work); 8916 } 8917 8918 if (!list_empty(&splice)) { 8919 spin_lock(&root->delalloc_lock); 8920 list_splice_tail(&splice, &root->delalloc_inodes); 8921 spin_unlock(&root->delalloc_lock); 8922 } 8923 mutex_unlock(&root->delalloc_mutex); 8924 return ret; 8925 } 8926 8927 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context) 8928 { 8929 struct btrfs_fs_info *fs_info = root->fs_info; 8930 8931 if (BTRFS_FS_ERROR(fs_info)) 8932 return -EROFS; 8933 return start_delalloc_inodes(root, NULL, true, in_reclaim_context); 8934 } 8935 8936 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 8937 bool in_reclaim_context) 8938 { 8939 long *nr_to_write = nr == LONG_MAX ? NULL : &nr; 8940 struct btrfs_root *root; 8941 LIST_HEAD(splice); 8942 int ret; 8943 8944 if (BTRFS_FS_ERROR(fs_info)) 8945 return -EROFS; 8946 8947 mutex_lock(&fs_info->delalloc_root_mutex); 8948 spin_lock(&fs_info->delalloc_root_lock); 8949 list_splice_init(&fs_info->delalloc_roots, &splice); 8950 while (!list_empty(&splice)) { 8951 root = list_first_entry(&splice, struct btrfs_root, 8952 delalloc_root); 8953 root = btrfs_grab_root(root); 8954 BUG_ON(!root); 8955 list_move_tail(&root->delalloc_root, 8956 &fs_info->delalloc_roots); 8957 spin_unlock(&fs_info->delalloc_root_lock); 8958 8959 ret = start_delalloc_inodes(root, nr_to_write, false, 8960 in_reclaim_context); 8961 btrfs_put_root(root); 8962 if (ret < 0 || nr <= 0) 8963 goto out; 8964 spin_lock(&fs_info->delalloc_root_lock); 8965 } 8966 spin_unlock(&fs_info->delalloc_root_lock); 8967 8968 ret = 0; 8969 out: 8970 if (!list_empty(&splice)) { 8971 spin_lock(&fs_info->delalloc_root_lock); 8972 list_splice_tail(&splice, &fs_info->delalloc_roots); 8973 spin_unlock(&fs_info->delalloc_root_lock); 8974 } 8975 mutex_unlock(&fs_info->delalloc_root_mutex); 8976 return ret; 8977 } 8978 8979 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir, 8980 struct dentry *dentry, const char *symname) 8981 { 8982 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 8983 struct btrfs_trans_handle *trans; 8984 struct btrfs_root *root = BTRFS_I(dir)->root; 8985 struct btrfs_path *path; 8986 struct btrfs_key key; 8987 struct inode *inode; 8988 struct btrfs_new_inode_args new_inode_args = { 8989 .dir = dir, 8990 .dentry = dentry, 8991 }; 8992 unsigned int trans_num_items; 8993 int ret; 8994 int name_len; 8995 int datasize; 8996 unsigned long ptr; 8997 struct btrfs_file_extent_item *ei; 8998 struct extent_buffer *leaf; 8999 9000 name_len = strlen(symname); 9001 /* 9002 * Symlinks utilize uncompressed inline extent data, which should not 9003 * reach block size. 9004 */ 9005 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 9006 name_len >= fs_info->sectorsize) 9007 return -ENAMETOOLONG; 9008 9009 inode = new_inode(dir->i_sb); 9010 if (!inode) 9011 return -ENOMEM; 9012 inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO); 9013 inode->i_op = &btrfs_symlink_inode_operations; 9014 inode_nohighmem(inode); 9015 inode->i_mapping->a_ops = &btrfs_aops; 9016 btrfs_i_size_write(BTRFS_I(inode), name_len); 9017 inode_set_bytes(inode, name_len); 9018 9019 new_inode_args.inode = inode; 9020 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 9021 if (ret) 9022 goto out_inode; 9023 /* 1 additional item for the inline extent */ 9024 trans_num_items++; 9025 9026 trans = btrfs_start_transaction(root, trans_num_items); 9027 if (IS_ERR(trans)) { 9028 ret = PTR_ERR(trans); 9029 goto out_new_inode_args; 9030 } 9031 9032 ret = btrfs_create_new_inode(trans, &new_inode_args); 9033 if (ret) 9034 goto out; 9035 9036 path = btrfs_alloc_path(); 9037 if (unlikely(!path)) { 9038 ret = -ENOMEM; 9039 btrfs_abort_transaction(trans, ret); 9040 discard_new_inode(inode); 9041 inode = NULL; 9042 goto out; 9043 } 9044 key.objectid = btrfs_ino(BTRFS_I(inode)); 9045 key.type = BTRFS_EXTENT_DATA_KEY; 9046 key.offset = 0; 9047 datasize = btrfs_file_extent_calc_inline_size(name_len); 9048 ret = btrfs_insert_empty_item(trans, root, path, &key, datasize); 9049 if (unlikely(ret)) { 9050 btrfs_abort_transaction(trans, ret); 9051 btrfs_free_path(path); 9052 discard_new_inode(inode); 9053 inode = NULL; 9054 goto out; 9055 } 9056 leaf = path->nodes[0]; 9057 ei = btrfs_item_ptr(leaf, path->slots[0], 9058 struct btrfs_file_extent_item); 9059 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 9060 btrfs_set_file_extent_type(leaf, ei, 9061 BTRFS_FILE_EXTENT_INLINE); 9062 btrfs_set_file_extent_encryption(leaf, ei, 0); 9063 btrfs_set_file_extent_compression(leaf, ei, 0); 9064 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 9065 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 9066 9067 ptr = btrfs_file_extent_inline_start(ei); 9068 write_extent_buffer(leaf, symname, ptr, name_len); 9069 btrfs_free_path(path); 9070 9071 d_instantiate_new(dentry, inode); 9072 ret = 0; 9073 out: 9074 btrfs_end_transaction(trans); 9075 btrfs_btree_balance_dirty(fs_info); 9076 out_new_inode_args: 9077 btrfs_new_inode_args_destroy(&new_inode_args); 9078 out_inode: 9079 if (ret) 9080 iput(inode); 9081 return ret; 9082 } 9083 9084 static struct btrfs_trans_handle *insert_prealloc_file_extent( 9085 struct btrfs_trans_handle *trans_in, 9086 struct btrfs_inode *inode, 9087 struct btrfs_key *ins, 9088 u64 file_offset) 9089 { 9090 struct btrfs_file_extent_item stack_fi; 9091 struct btrfs_replace_extent_info extent_info; 9092 struct btrfs_trans_handle *trans = trans_in; 9093 struct btrfs_path *path; 9094 u64 start = ins->objectid; 9095 u64 len = ins->offset; 9096 u64 qgroup_released = 0; 9097 int ret; 9098 9099 memset(&stack_fi, 0, sizeof(stack_fi)); 9100 9101 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC); 9102 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start); 9103 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len); 9104 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len); 9105 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len); 9106 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE); 9107 /* Encryption and other encoding is reserved and all 0 */ 9108 9109 ret = btrfs_qgroup_release_data(inode, file_offset, len, &qgroup_released); 9110 if (ret < 0) 9111 return ERR_PTR(ret); 9112 9113 if (trans) { 9114 ret = insert_reserved_file_extent(trans, inode, 9115 file_offset, &stack_fi, 9116 true, qgroup_released); 9117 if (ret) 9118 goto free_qgroup; 9119 return trans; 9120 } 9121 9122 extent_info.disk_offset = start; 9123 extent_info.disk_len = len; 9124 extent_info.data_offset = 0; 9125 extent_info.data_len = len; 9126 extent_info.file_offset = file_offset; 9127 extent_info.extent_buf = (char *)&stack_fi; 9128 extent_info.is_new_extent = true; 9129 extent_info.update_times = true; 9130 extent_info.qgroup_reserved = qgroup_released; 9131 extent_info.insertions = 0; 9132 9133 path = btrfs_alloc_path(); 9134 if (!path) { 9135 ret = -ENOMEM; 9136 goto free_qgroup; 9137 } 9138 9139 ret = btrfs_replace_file_extents(inode, path, file_offset, 9140 file_offset + len - 1, &extent_info, 9141 &trans); 9142 btrfs_free_path(path); 9143 if (ret) 9144 goto free_qgroup; 9145 return trans; 9146 9147 free_qgroup: 9148 /* 9149 * We have released qgroup data range at the beginning of the function, 9150 * and normally qgroup_released bytes will be freed when committing 9151 * transaction. 9152 * But if we error out early, we have to free what we have released 9153 * or we leak qgroup data reservation. 9154 */ 9155 btrfs_qgroup_free_refroot(inode->root->fs_info, 9156 btrfs_root_id(inode->root), qgroup_released, 9157 BTRFS_QGROUP_RSV_DATA); 9158 return ERR_PTR(ret); 9159 } 9160 9161 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 9162 u64 start, u64 num_bytes, u64 min_size, 9163 loff_t actual_len, u64 *alloc_hint, 9164 struct btrfs_trans_handle *trans) 9165 { 9166 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 9167 struct extent_map *em; 9168 struct btrfs_root *root = BTRFS_I(inode)->root; 9169 struct btrfs_key ins; 9170 u64 cur_offset = start; 9171 u64 clear_offset = start; 9172 u64 i_size; 9173 u64 cur_bytes; 9174 u64 last_alloc = (u64)-1; 9175 int ret = 0; 9176 bool own_trans = true; 9177 u64 end = start + num_bytes - 1; 9178 9179 if (trans) 9180 own_trans = false; 9181 while (num_bytes > 0) { 9182 cur_bytes = min_t(u64, num_bytes, SZ_256M); 9183 cur_bytes = max(cur_bytes, min_size); 9184 /* 9185 * If we are severely fragmented we could end up with really 9186 * small allocations, so if the allocator is returning small 9187 * chunks lets make its job easier by only searching for those 9188 * sized chunks. 9189 */ 9190 cur_bytes = min(cur_bytes, last_alloc); 9191 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 9192 min_size, 0, *alloc_hint, &ins, true, false); 9193 if (ret) 9194 break; 9195 9196 /* 9197 * We've reserved this space, and thus converted it from 9198 * ->bytes_may_use to ->bytes_reserved. Any error that happens 9199 * from here on out we will only need to clear our reservation 9200 * for the remaining unreserved area, so advance our 9201 * clear_offset by our extent size. 9202 */ 9203 clear_offset += ins.offset; 9204 9205 last_alloc = ins.offset; 9206 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode), 9207 &ins, cur_offset); 9208 /* 9209 * Now that we inserted the prealloc extent we can finally 9210 * decrement the number of reservations in the block group. 9211 * If we did it before, we could race with relocation and have 9212 * relocation miss the reserved extent, making it fail later. 9213 */ 9214 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9215 if (IS_ERR(trans)) { 9216 ret = PTR_ERR(trans); 9217 btrfs_free_reserved_extent(fs_info, ins.objectid, 9218 ins.offset, false); 9219 break; 9220 } 9221 9222 em = btrfs_alloc_extent_map(); 9223 if (!em) { 9224 btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset, 9225 cur_offset + ins.offset - 1, false); 9226 btrfs_set_inode_full_sync(BTRFS_I(inode)); 9227 goto next; 9228 } 9229 9230 em->start = cur_offset; 9231 em->len = ins.offset; 9232 em->disk_bytenr = ins.objectid; 9233 em->offset = 0; 9234 em->disk_num_bytes = ins.offset; 9235 em->ram_bytes = ins.offset; 9236 em->flags |= EXTENT_FLAG_PREALLOC; 9237 em->generation = trans->transid; 9238 9239 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true); 9240 btrfs_free_extent_map(em); 9241 next: 9242 num_bytes -= ins.offset; 9243 cur_offset += ins.offset; 9244 *alloc_hint = ins.objectid + ins.offset; 9245 9246 inode_inc_iversion(inode); 9247 inode_set_ctime_current(inode); 9248 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 9249 if (!(mode & FALLOC_FL_KEEP_SIZE) && 9250 (actual_len > inode->i_size) && 9251 (cur_offset > inode->i_size)) { 9252 if (cur_offset > actual_len) 9253 i_size = actual_len; 9254 else 9255 i_size = cur_offset; 9256 i_size_write(inode, i_size); 9257 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 9258 } 9259 9260 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 9261 9262 if (unlikely(ret)) { 9263 btrfs_abort_transaction(trans, ret); 9264 if (own_trans) 9265 btrfs_end_transaction(trans); 9266 break; 9267 } 9268 9269 if (own_trans) { 9270 btrfs_end_transaction(trans); 9271 trans = NULL; 9272 } 9273 } 9274 if (clear_offset < end) 9275 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset, 9276 end - clear_offset + 1); 9277 return ret; 9278 } 9279 9280 int btrfs_prealloc_file_range(struct inode *inode, int mode, 9281 u64 start, u64 num_bytes, u64 min_size, 9282 loff_t actual_len, u64 *alloc_hint) 9283 { 9284 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9285 min_size, actual_len, alloc_hint, 9286 NULL); 9287 } 9288 9289 int btrfs_prealloc_file_range_trans(struct inode *inode, 9290 struct btrfs_trans_handle *trans, int mode, 9291 u64 start, u64 num_bytes, u64 min_size, 9292 loff_t actual_len, u64 *alloc_hint) 9293 { 9294 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9295 min_size, actual_len, alloc_hint, trans); 9296 } 9297 9298 /* 9299 * NOTE: in case you are adding MAY_EXEC check for directories: 9300 * we are marking them with IOP_FASTPERM_MAY_EXEC, allowing path lookup to 9301 * elide calls here. 9302 */ 9303 static int btrfs_permission(struct mnt_idmap *idmap, 9304 struct inode *inode, int mask) 9305 { 9306 struct btrfs_root *root = BTRFS_I(inode)->root; 9307 umode_t mode = inode->i_mode; 9308 9309 if (mask & MAY_WRITE && 9310 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 9311 if (btrfs_root_readonly(root)) 9312 return -EROFS; 9313 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 9314 return -EACCES; 9315 } 9316 return generic_permission(idmap, inode, mask); 9317 } 9318 9319 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 9320 struct file *file, umode_t mode) 9321 { 9322 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 9323 struct btrfs_trans_handle *trans; 9324 struct btrfs_root *root = BTRFS_I(dir)->root; 9325 struct inode *inode; 9326 struct btrfs_new_inode_args new_inode_args = { 9327 .dir = dir, 9328 .dentry = file->f_path.dentry, 9329 .orphan = true, 9330 }; 9331 unsigned int trans_num_items; 9332 int ret; 9333 9334 inode = new_inode(dir->i_sb); 9335 if (!inode) 9336 return -ENOMEM; 9337 inode_init_owner(idmap, inode, dir, mode); 9338 inode->i_fop = &btrfs_file_operations; 9339 inode->i_op = &btrfs_file_inode_operations; 9340 inode->i_mapping->a_ops = &btrfs_aops; 9341 9342 new_inode_args.inode = inode; 9343 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 9344 if (ret) 9345 goto out_inode; 9346 9347 trans = btrfs_start_transaction(root, trans_num_items); 9348 if (IS_ERR(trans)) { 9349 ret = PTR_ERR(trans); 9350 goto out_new_inode_args; 9351 } 9352 9353 ret = btrfs_create_new_inode(trans, &new_inode_args); 9354 9355 /* 9356 * We set number of links to 0 in btrfs_create_new_inode(), and here we 9357 * set it to 1 because d_tmpfile() will issue a warning if the count is 9358 * 0, through: 9359 * 9360 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 9361 */ 9362 set_nlink(inode, 1); 9363 9364 if (!ret) { 9365 d_tmpfile(file, inode); 9366 unlock_new_inode(inode); 9367 mark_inode_dirty(inode); 9368 } 9369 9370 btrfs_end_transaction(trans); 9371 btrfs_btree_balance_dirty(fs_info); 9372 out_new_inode_args: 9373 btrfs_new_inode_args_destroy(&new_inode_args); 9374 out_inode: 9375 if (ret) 9376 iput(inode); 9377 return finish_open_simple(file, ret); 9378 } 9379 9380 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info, 9381 int compress_type) 9382 { 9383 switch (compress_type) { 9384 case BTRFS_COMPRESS_NONE: 9385 return BTRFS_ENCODED_IO_COMPRESSION_NONE; 9386 case BTRFS_COMPRESS_ZLIB: 9387 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB; 9388 case BTRFS_COMPRESS_LZO: 9389 /* 9390 * The LZO format depends on the sector size. 64K is the maximum 9391 * sector size that we support. 9392 */ 9393 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K) 9394 return -EINVAL; 9395 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 9396 (fs_info->sectorsize_bits - 12); 9397 case BTRFS_COMPRESS_ZSTD: 9398 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD; 9399 default: 9400 return -EUCLEAN; 9401 } 9402 } 9403 9404 static ssize_t btrfs_encoded_read_inline( 9405 struct kiocb *iocb, 9406 struct iov_iter *iter, u64 start, 9407 u64 lockend, 9408 struct extent_state **cached_state, 9409 u64 extent_start, size_t count, 9410 struct btrfs_ioctl_encoded_io_args *encoded, 9411 bool *unlocked) 9412 { 9413 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9414 struct btrfs_root *root = inode->root; 9415 struct btrfs_fs_info *fs_info = root->fs_info; 9416 struct extent_io_tree *io_tree = &inode->io_tree; 9417 BTRFS_PATH_AUTO_FREE(path); 9418 struct extent_buffer *leaf; 9419 struct btrfs_file_extent_item *item; 9420 u64 ram_bytes; 9421 unsigned long ptr; 9422 void *tmp; 9423 ssize_t ret; 9424 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT); 9425 9426 path = btrfs_alloc_path(); 9427 if (!path) 9428 return -ENOMEM; 9429 9430 path->nowait = nowait; 9431 9432 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 9433 extent_start, 0); 9434 if (ret) { 9435 if (unlikely(ret > 0)) { 9436 /* The extent item disappeared? */ 9437 return -EIO; 9438 } 9439 return ret; 9440 } 9441 leaf = path->nodes[0]; 9442 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 9443 9444 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item); 9445 ptr = btrfs_file_extent_inline_start(item); 9446 9447 encoded->len = min_t(u64, extent_start + ram_bytes, 9448 inode->vfs_inode.i_size) - iocb->ki_pos; 9449 ret = btrfs_encoded_io_compression_from_extent(fs_info, 9450 btrfs_file_extent_compression(leaf, item)); 9451 if (ret < 0) 9452 return ret; 9453 encoded->compression = ret; 9454 if (encoded->compression) { 9455 size_t inline_size; 9456 9457 inline_size = btrfs_file_extent_inline_item_len(leaf, 9458 path->slots[0]); 9459 if (inline_size > count) 9460 return -ENOBUFS; 9461 9462 count = inline_size; 9463 encoded->unencoded_len = ram_bytes; 9464 encoded->unencoded_offset = iocb->ki_pos - extent_start; 9465 } else { 9466 count = min_t(u64, count, encoded->len); 9467 encoded->len = count; 9468 encoded->unencoded_len = count; 9469 ptr += iocb->ki_pos - extent_start; 9470 } 9471 9472 tmp = kmalloc(count, GFP_NOFS); 9473 if (!tmp) 9474 return -ENOMEM; 9475 9476 read_extent_buffer(leaf, tmp, ptr, count); 9477 btrfs_release_path(path); 9478 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9479 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9480 *unlocked = true; 9481 9482 ret = copy_to_iter(tmp, count, iter); 9483 if (ret != count) 9484 ret = -EFAULT; 9485 kfree(tmp); 9486 9487 return ret; 9488 } 9489 9490 struct btrfs_encoded_read_private { 9491 struct completion *sync_reads; 9492 void *uring_ctx; 9493 refcount_t pending_refs; 9494 blk_status_t status; 9495 }; 9496 9497 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio) 9498 { 9499 struct btrfs_encoded_read_private *priv = bbio->private; 9500 9501 if (bbio->bio.bi_status) { 9502 /* 9503 * The memory barrier implied by the refcount_dec_and_test() here 9504 * pairs with the memory barrier implied by the refcount_dec_and_test() 9505 * in btrfs_encoded_read_regular_fill_pages() to ensure that 9506 * this write is observed before the load of status in 9507 * btrfs_encoded_read_regular_fill_pages(). 9508 */ 9509 WRITE_ONCE(priv->status, bbio->bio.bi_status); 9510 } 9511 if (refcount_dec_and_test(&priv->pending_refs)) { 9512 int err = blk_status_to_errno(READ_ONCE(priv->status)); 9513 9514 if (priv->uring_ctx) { 9515 btrfs_uring_read_extent_endio(priv->uring_ctx, err); 9516 kfree(priv); 9517 } else { 9518 complete(priv->sync_reads); 9519 } 9520 } 9521 bio_put(&bbio->bio); 9522 } 9523 9524 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode, 9525 u64 disk_bytenr, u64 disk_io_size, 9526 struct page **pages, void *uring_ctx) 9527 { 9528 struct btrfs_encoded_read_private *priv, sync_priv; 9529 struct completion sync_reads; 9530 unsigned long i = 0; 9531 struct btrfs_bio *bbio; 9532 int ret; 9533 9534 /* 9535 * Fast path for synchronous reads which completes in this call, io_uring 9536 * needs longer time span. 9537 */ 9538 if (uring_ctx) { 9539 priv = kmalloc(sizeof(struct btrfs_encoded_read_private), GFP_NOFS); 9540 if (!priv) 9541 return -ENOMEM; 9542 } else { 9543 priv = &sync_priv; 9544 init_completion(&sync_reads); 9545 priv->sync_reads = &sync_reads; 9546 } 9547 9548 refcount_set(&priv->pending_refs, 1); 9549 priv->status = 0; 9550 priv->uring_ctx = uring_ctx; 9551 9552 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, inode, 0, 9553 btrfs_encoded_read_endio, priv); 9554 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 9555 9556 do { 9557 size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE); 9558 9559 if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) { 9560 refcount_inc(&priv->pending_refs); 9561 btrfs_submit_bbio(bbio, 0); 9562 9563 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, inode, 0, 9564 btrfs_encoded_read_endio, priv); 9565 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 9566 continue; 9567 } 9568 9569 i++; 9570 disk_bytenr += bytes; 9571 disk_io_size -= bytes; 9572 } while (disk_io_size); 9573 9574 refcount_inc(&priv->pending_refs); 9575 btrfs_submit_bbio(bbio, 0); 9576 9577 if (uring_ctx) { 9578 if (refcount_dec_and_test(&priv->pending_refs)) { 9579 ret = blk_status_to_errno(READ_ONCE(priv->status)); 9580 btrfs_uring_read_extent_endio(uring_ctx, ret); 9581 kfree(priv); 9582 return ret; 9583 } 9584 9585 return -EIOCBQUEUED; 9586 } else { 9587 if (!refcount_dec_and_test(&priv->pending_refs)) 9588 wait_for_completion_io(&sync_reads); 9589 /* See btrfs_encoded_read_endio() for ordering. */ 9590 return blk_status_to_errno(READ_ONCE(priv->status)); 9591 } 9592 } 9593 9594 ssize_t btrfs_encoded_read_regular(struct kiocb *iocb, struct iov_iter *iter, 9595 u64 start, u64 lockend, 9596 struct extent_state **cached_state, 9597 u64 disk_bytenr, u64 disk_io_size, 9598 size_t count, bool compressed, bool *unlocked) 9599 { 9600 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9601 struct extent_io_tree *io_tree = &inode->io_tree; 9602 struct page **pages; 9603 unsigned long nr_pages, i; 9604 u64 cur; 9605 size_t page_offset; 9606 ssize_t ret; 9607 9608 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE); 9609 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 9610 if (!pages) 9611 return -ENOMEM; 9612 ret = btrfs_alloc_page_array(nr_pages, pages, false); 9613 if (ret) { 9614 ret = -ENOMEM; 9615 goto out; 9616 } 9617 9618 ret = btrfs_encoded_read_regular_fill_pages(inode, disk_bytenr, 9619 disk_io_size, pages, NULL); 9620 if (ret) 9621 goto out; 9622 9623 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9624 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9625 *unlocked = true; 9626 9627 if (compressed) { 9628 i = 0; 9629 page_offset = 0; 9630 } else { 9631 i = (iocb->ki_pos - start) >> PAGE_SHIFT; 9632 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1); 9633 } 9634 cur = 0; 9635 while (cur < count) { 9636 size_t bytes = min_t(size_t, count - cur, 9637 PAGE_SIZE - page_offset); 9638 9639 if (copy_page_to_iter(pages[i], page_offset, bytes, 9640 iter) != bytes) { 9641 ret = -EFAULT; 9642 goto out; 9643 } 9644 i++; 9645 cur += bytes; 9646 page_offset = 0; 9647 } 9648 ret = count; 9649 out: 9650 for (i = 0; i < nr_pages; i++) { 9651 if (pages[i]) 9652 __free_page(pages[i]); 9653 } 9654 kfree(pages); 9655 return ret; 9656 } 9657 9658 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter, 9659 struct btrfs_ioctl_encoded_io_args *encoded, 9660 struct extent_state **cached_state, 9661 u64 *disk_bytenr, u64 *disk_io_size) 9662 { 9663 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9664 struct btrfs_fs_info *fs_info = inode->root->fs_info; 9665 struct extent_io_tree *io_tree = &inode->io_tree; 9666 ssize_t ret; 9667 size_t count = iov_iter_count(iter); 9668 u64 start, lockend; 9669 struct extent_map *em; 9670 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT); 9671 bool unlocked = false; 9672 9673 file_accessed(iocb->ki_filp); 9674 9675 ret = btrfs_inode_lock(inode, 9676 BTRFS_ILOCK_SHARED | (nowait ? BTRFS_ILOCK_TRY : 0)); 9677 if (ret) 9678 return ret; 9679 9680 if (iocb->ki_pos >= inode->vfs_inode.i_size) { 9681 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9682 return 0; 9683 } 9684 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize); 9685 /* 9686 * We don't know how long the extent containing iocb->ki_pos is, but if 9687 * it's compressed we know that it won't be longer than this. 9688 */ 9689 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1; 9690 9691 if (nowait) { 9692 struct btrfs_ordered_extent *ordered; 9693 9694 if (filemap_range_needs_writeback(inode->vfs_inode.i_mapping, 9695 start, lockend)) { 9696 ret = -EAGAIN; 9697 goto out_unlock_inode; 9698 } 9699 9700 if (!btrfs_try_lock_extent(io_tree, start, lockend, cached_state)) { 9701 ret = -EAGAIN; 9702 goto out_unlock_inode; 9703 } 9704 9705 ordered = btrfs_lookup_ordered_range(inode, start, 9706 lockend - start + 1); 9707 if (ordered) { 9708 btrfs_put_ordered_extent(ordered); 9709 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9710 ret = -EAGAIN; 9711 goto out_unlock_inode; 9712 } 9713 } else { 9714 for (;;) { 9715 struct btrfs_ordered_extent *ordered; 9716 9717 ret = btrfs_wait_ordered_range(inode, start, 9718 lockend - start + 1); 9719 if (ret) 9720 goto out_unlock_inode; 9721 9722 btrfs_lock_extent(io_tree, start, lockend, cached_state); 9723 ordered = btrfs_lookup_ordered_range(inode, start, 9724 lockend - start + 1); 9725 if (!ordered) 9726 break; 9727 btrfs_put_ordered_extent(ordered); 9728 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9729 cond_resched(); 9730 } 9731 } 9732 9733 em = btrfs_get_extent(inode, NULL, start, lockend - start + 1); 9734 if (IS_ERR(em)) { 9735 ret = PTR_ERR(em); 9736 goto out_unlock_extent; 9737 } 9738 9739 if (em->disk_bytenr == EXTENT_MAP_INLINE) { 9740 u64 extent_start = em->start; 9741 9742 /* 9743 * For inline extents we get everything we need out of the 9744 * extent item. 9745 */ 9746 btrfs_free_extent_map(em); 9747 em = NULL; 9748 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend, 9749 cached_state, extent_start, 9750 count, encoded, &unlocked); 9751 goto out_unlock_extent; 9752 } 9753 9754 /* 9755 * We only want to return up to EOF even if the extent extends beyond 9756 * that. 9757 */ 9758 encoded->len = min_t(u64, btrfs_extent_map_end(em), 9759 inode->vfs_inode.i_size) - iocb->ki_pos; 9760 if (em->disk_bytenr == EXTENT_MAP_HOLE || 9761 (em->flags & EXTENT_FLAG_PREALLOC)) { 9762 *disk_bytenr = EXTENT_MAP_HOLE; 9763 count = min_t(u64, count, encoded->len); 9764 encoded->len = count; 9765 encoded->unencoded_len = count; 9766 } else if (btrfs_extent_map_is_compressed(em)) { 9767 *disk_bytenr = em->disk_bytenr; 9768 /* 9769 * Bail if the buffer isn't large enough to return the whole 9770 * compressed extent. 9771 */ 9772 if (em->disk_num_bytes > count) { 9773 ret = -ENOBUFS; 9774 goto out_em; 9775 } 9776 *disk_io_size = em->disk_num_bytes; 9777 count = em->disk_num_bytes; 9778 encoded->unencoded_len = em->ram_bytes; 9779 encoded->unencoded_offset = iocb->ki_pos - (em->start - em->offset); 9780 ret = btrfs_encoded_io_compression_from_extent(fs_info, 9781 btrfs_extent_map_compression(em)); 9782 if (ret < 0) 9783 goto out_em; 9784 encoded->compression = ret; 9785 } else { 9786 *disk_bytenr = btrfs_extent_map_block_start(em) + (start - em->start); 9787 if (encoded->len > count) 9788 encoded->len = count; 9789 /* 9790 * Don't read beyond what we locked. This also limits the page 9791 * allocations that we'll do. 9792 */ 9793 *disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start; 9794 count = start + *disk_io_size - iocb->ki_pos; 9795 encoded->len = count; 9796 encoded->unencoded_len = count; 9797 *disk_io_size = ALIGN(*disk_io_size, fs_info->sectorsize); 9798 } 9799 btrfs_free_extent_map(em); 9800 em = NULL; 9801 9802 if (*disk_bytenr == EXTENT_MAP_HOLE) { 9803 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9804 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9805 unlocked = true; 9806 ret = iov_iter_zero(count, iter); 9807 if (ret != count) 9808 ret = -EFAULT; 9809 } else { 9810 ret = -EIOCBQUEUED; 9811 goto out_unlock_extent; 9812 } 9813 9814 out_em: 9815 btrfs_free_extent_map(em); 9816 out_unlock_extent: 9817 /* Leave inode and extent locked if we need to do a read. */ 9818 if (!unlocked && ret != -EIOCBQUEUED) 9819 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9820 out_unlock_inode: 9821 if (!unlocked && ret != -EIOCBQUEUED) 9822 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9823 return ret; 9824 } 9825 9826 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from, 9827 const struct btrfs_ioctl_encoded_io_args *encoded) 9828 { 9829 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9830 struct btrfs_root *root = inode->root; 9831 struct btrfs_fs_info *fs_info = root->fs_info; 9832 struct extent_io_tree *io_tree = &inode->io_tree; 9833 struct extent_changeset *data_reserved = NULL; 9834 struct extent_state *cached_state = NULL; 9835 struct btrfs_ordered_extent *ordered; 9836 struct btrfs_file_extent file_extent; 9837 struct compressed_bio *cb = NULL; 9838 int compression; 9839 size_t orig_count; 9840 const u32 min_folio_size = btrfs_min_folio_size(fs_info); 9841 u64 start, end; 9842 u64 num_bytes, ram_bytes, disk_num_bytes; 9843 struct btrfs_key ins; 9844 bool extent_reserved = false; 9845 struct extent_map *em; 9846 ssize_t ret; 9847 9848 switch (encoded->compression) { 9849 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB: 9850 compression = BTRFS_COMPRESS_ZLIB; 9851 break; 9852 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD: 9853 compression = BTRFS_COMPRESS_ZSTD; 9854 break; 9855 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K: 9856 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K: 9857 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K: 9858 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K: 9859 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K: 9860 /* The sector size must match for LZO. */ 9861 if (encoded->compression - 9862 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 != 9863 fs_info->sectorsize_bits) 9864 return -EINVAL; 9865 compression = BTRFS_COMPRESS_LZO; 9866 break; 9867 default: 9868 return -EINVAL; 9869 } 9870 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE) 9871 return -EINVAL; 9872 9873 /* 9874 * Compressed extents should always have checksums, so error out if we 9875 * have a NOCOW file or inode was created while mounted with NODATASUM. 9876 */ 9877 if (inode->flags & BTRFS_INODE_NODATASUM) 9878 return -EINVAL; 9879 9880 orig_count = iov_iter_count(from); 9881 9882 /* The extent size must be sane. */ 9883 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED || 9884 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0) 9885 return -EINVAL; 9886 9887 /* 9888 * The compressed data must be smaller than the decompressed data. 9889 * 9890 * It's of course possible for data to compress to larger or the same 9891 * size, but the buffered I/O path falls back to no compression for such 9892 * data, and we don't want to break any assumptions by creating these 9893 * extents. 9894 * 9895 * Note that this is less strict than the current check we have that the 9896 * compressed data must be at least one sector smaller than the 9897 * decompressed data. We only want to enforce the weaker requirement 9898 * from old kernels that it is at least one byte smaller. 9899 */ 9900 if (orig_count >= encoded->unencoded_len) 9901 return -EINVAL; 9902 9903 /* The extent must start on a sector boundary. */ 9904 start = iocb->ki_pos; 9905 if (!IS_ALIGNED(start, fs_info->sectorsize)) 9906 return -EINVAL; 9907 9908 /* 9909 * The extent must end on a sector boundary. However, we allow a write 9910 * which ends at or extends i_size to have an unaligned length; we round 9911 * up the extent size and set i_size to the unaligned end. 9912 */ 9913 if (start + encoded->len < inode->vfs_inode.i_size && 9914 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize)) 9915 return -EINVAL; 9916 9917 /* Finally, the offset in the unencoded data must be sector-aligned. */ 9918 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize)) 9919 return -EINVAL; 9920 9921 num_bytes = ALIGN(encoded->len, fs_info->sectorsize); 9922 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize); 9923 end = start + num_bytes - 1; 9924 9925 /* 9926 * If the extent cannot be inline, the compressed data on disk must be 9927 * sector-aligned. For convenience, we extend it with zeroes if it 9928 * isn't. 9929 */ 9930 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize); 9931 9932 cb = btrfs_alloc_compressed_write(inode, start, num_bytes); 9933 for (int i = 0; i * min_folio_size < disk_num_bytes; i++) { 9934 struct folio *folio; 9935 size_t bytes = min(min_folio_size, iov_iter_count(from)); 9936 char *kaddr; 9937 9938 folio = btrfs_alloc_compr_folio(fs_info); 9939 if (!folio) { 9940 ret = -ENOMEM; 9941 goto out_cb; 9942 } 9943 kaddr = kmap_local_folio(folio, 0); 9944 ret = copy_from_iter(kaddr, bytes, from); 9945 kunmap_local(kaddr); 9946 if (ret != bytes) { 9947 folio_put(folio); 9948 ret = -EFAULT; 9949 goto out_cb; 9950 } 9951 if (bytes < min_folio_size) 9952 folio_zero_range(folio, bytes, min_folio_size - bytes); 9953 ret = bio_add_folio(&cb->bbio.bio, folio, folio_size(folio), 0); 9954 if (unlikely(!ret)) { 9955 folio_put(folio); 9956 ret = -EINVAL; 9957 goto out_cb; 9958 } 9959 } 9960 ASSERT(cb->bbio.bio.bi_iter.bi_size == disk_num_bytes); 9961 9962 for (;;) { 9963 ret = btrfs_wait_ordered_range(inode, start, num_bytes); 9964 if (ret) 9965 goto out_cb; 9966 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping, 9967 start >> PAGE_SHIFT, 9968 end >> PAGE_SHIFT); 9969 if (ret) 9970 goto out_cb; 9971 btrfs_lock_extent(io_tree, start, end, &cached_state); 9972 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes); 9973 if (!ordered && 9974 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end)) 9975 break; 9976 if (ordered) 9977 btrfs_put_ordered_extent(ordered); 9978 btrfs_unlock_extent(io_tree, start, end, &cached_state); 9979 cond_resched(); 9980 } 9981 9982 /* 9983 * We don't use the higher-level delalloc space functions because our 9984 * num_bytes and disk_num_bytes are different. 9985 */ 9986 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes); 9987 if (ret) 9988 goto out_unlock; 9989 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes); 9990 if (ret) 9991 goto out_free_data_space; 9992 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes, 9993 false); 9994 if (ret) 9995 goto out_qgroup_free_data; 9996 9997 /* Try an inline extent first. */ 9998 if (encoded->unencoded_len == encoded->len && 9999 encoded->unencoded_offset == 0 && 10000 can_cow_file_range_inline(inode, start, encoded->len, orig_count)) { 10001 ret = __cow_file_range_inline(inode, encoded->len, 10002 orig_count, compression, 10003 bio_first_folio_all(&cb->bbio.bio), 10004 true); 10005 if (ret <= 0) { 10006 if (ret == 0) 10007 ret = orig_count; 10008 goto out_delalloc_release; 10009 } 10010 } 10011 10012 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes, 10013 disk_num_bytes, 0, 0, &ins, true, true); 10014 if (ret) 10015 goto out_delalloc_release; 10016 extent_reserved = true; 10017 10018 file_extent.disk_bytenr = ins.objectid; 10019 file_extent.disk_num_bytes = ins.offset; 10020 file_extent.num_bytes = num_bytes; 10021 file_extent.ram_bytes = ram_bytes; 10022 file_extent.offset = encoded->unencoded_offset; 10023 file_extent.compression = compression; 10024 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED); 10025 if (IS_ERR(em)) { 10026 ret = PTR_ERR(em); 10027 goto out_free_reserved; 10028 } 10029 btrfs_free_extent_map(em); 10030 10031 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent, 10032 (1U << BTRFS_ORDERED_ENCODED) | 10033 (1U << BTRFS_ORDERED_COMPRESSED)); 10034 if (IS_ERR(ordered)) { 10035 btrfs_drop_extent_map_range(inode, start, end, false); 10036 ret = PTR_ERR(ordered); 10037 goto out_free_reserved; 10038 } 10039 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10040 10041 if (start + encoded->len > inode->vfs_inode.i_size) 10042 i_size_write(&inode->vfs_inode, start + encoded->len); 10043 10044 btrfs_unlock_extent(io_tree, start, end, &cached_state); 10045 10046 btrfs_delalloc_release_extents(inode, num_bytes); 10047 10048 btrfs_submit_compressed_write(ordered, cb); 10049 ret = orig_count; 10050 goto out; 10051 10052 out_free_reserved: 10053 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10054 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, true); 10055 out_delalloc_release: 10056 btrfs_delalloc_release_extents(inode, num_bytes); 10057 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0); 10058 out_qgroup_free_data: 10059 if (ret < 0) 10060 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes, NULL); 10061 out_free_data_space: 10062 /* 10063 * If btrfs_reserve_extent() succeeded, then we already decremented 10064 * bytes_may_use. 10065 */ 10066 if (!extent_reserved) 10067 btrfs_free_reserved_data_space_noquota(inode, disk_num_bytes); 10068 out_unlock: 10069 btrfs_unlock_extent(io_tree, start, end, &cached_state); 10070 out_cb: 10071 if (cb) 10072 cleanup_compressed_bio(cb); 10073 out: 10074 if (ret >= 0) 10075 iocb->ki_pos += encoded->len; 10076 return ret; 10077 } 10078 10079 #ifdef CONFIG_SWAP 10080 /* 10081 * Add an entry indicating a block group or device which is pinned by a 10082 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 10083 * negative errno on failure. 10084 */ 10085 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 10086 bool is_block_group) 10087 { 10088 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10089 struct btrfs_swapfile_pin *sp, *entry; 10090 struct rb_node **p; 10091 struct rb_node *parent = NULL; 10092 10093 sp = kmalloc(sizeof(*sp), GFP_NOFS); 10094 if (!sp) 10095 return -ENOMEM; 10096 sp->ptr = ptr; 10097 sp->inode = inode; 10098 sp->is_block_group = is_block_group; 10099 sp->bg_extent_count = 1; 10100 10101 spin_lock(&fs_info->swapfile_pins_lock); 10102 p = &fs_info->swapfile_pins.rb_node; 10103 while (*p) { 10104 parent = *p; 10105 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 10106 if (sp->ptr < entry->ptr || 10107 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 10108 p = &(*p)->rb_left; 10109 } else if (sp->ptr > entry->ptr || 10110 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 10111 p = &(*p)->rb_right; 10112 } else { 10113 if (is_block_group) 10114 entry->bg_extent_count++; 10115 spin_unlock(&fs_info->swapfile_pins_lock); 10116 kfree(sp); 10117 return 1; 10118 } 10119 } 10120 rb_link_node(&sp->node, parent, p); 10121 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 10122 spin_unlock(&fs_info->swapfile_pins_lock); 10123 return 0; 10124 } 10125 10126 /* Free all of the entries pinned by this swapfile. */ 10127 static void btrfs_free_swapfile_pins(struct inode *inode) 10128 { 10129 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10130 struct btrfs_swapfile_pin *sp; 10131 struct rb_node *node, *next; 10132 10133 spin_lock(&fs_info->swapfile_pins_lock); 10134 node = rb_first(&fs_info->swapfile_pins); 10135 while (node) { 10136 next = rb_next(node); 10137 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 10138 if (sp->inode == inode) { 10139 rb_erase(&sp->node, &fs_info->swapfile_pins); 10140 if (sp->is_block_group) { 10141 btrfs_dec_block_group_swap_extents(sp->ptr, 10142 sp->bg_extent_count); 10143 btrfs_put_block_group(sp->ptr); 10144 } 10145 kfree(sp); 10146 } 10147 node = next; 10148 } 10149 spin_unlock(&fs_info->swapfile_pins_lock); 10150 } 10151 10152 struct btrfs_swap_info { 10153 u64 start; 10154 u64 block_start; 10155 u64 block_len; 10156 u64 lowest_ppage; 10157 u64 highest_ppage; 10158 unsigned long nr_pages; 10159 int nr_extents; 10160 }; 10161 10162 static int btrfs_add_swap_extent(struct swap_info_struct *sis, 10163 struct btrfs_swap_info *bsi) 10164 { 10165 unsigned long nr_pages; 10166 unsigned long max_pages; 10167 u64 first_ppage, first_ppage_reported, next_ppage; 10168 int ret; 10169 10170 /* 10171 * Our swapfile may have had its size extended after the swap header was 10172 * written. In that case activating the swapfile should not go beyond 10173 * the max size set in the swap header. 10174 */ 10175 if (bsi->nr_pages >= sis->max) 10176 return 0; 10177 10178 max_pages = sis->max - bsi->nr_pages; 10179 first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT; 10180 next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT; 10181 10182 if (first_ppage >= next_ppage) 10183 return 0; 10184 nr_pages = next_ppage - first_ppage; 10185 nr_pages = min(nr_pages, max_pages); 10186 10187 first_ppage_reported = first_ppage; 10188 if (bsi->start == 0) 10189 first_ppage_reported++; 10190 if (bsi->lowest_ppage > first_ppage_reported) 10191 bsi->lowest_ppage = first_ppage_reported; 10192 if (bsi->highest_ppage < (next_ppage - 1)) 10193 bsi->highest_ppage = next_ppage - 1; 10194 10195 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 10196 if (ret < 0) 10197 return ret; 10198 bsi->nr_extents += ret; 10199 bsi->nr_pages += nr_pages; 10200 return 0; 10201 } 10202 10203 static void btrfs_swap_deactivate(struct file *file) 10204 { 10205 struct inode *inode = file_inode(file); 10206 10207 btrfs_free_swapfile_pins(inode); 10208 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 10209 } 10210 10211 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10212 sector_t *span) 10213 { 10214 struct inode *inode = file_inode(file); 10215 struct btrfs_root *root = BTRFS_I(inode)->root; 10216 struct btrfs_fs_info *fs_info = root->fs_info; 10217 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 10218 struct extent_state *cached_state = NULL; 10219 struct btrfs_chunk_map *map = NULL; 10220 struct btrfs_device *device = NULL; 10221 struct btrfs_swap_info bsi = { 10222 .lowest_ppage = (sector_t)-1ULL, 10223 }; 10224 struct btrfs_backref_share_check_ctx *backref_ctx = NULL; 10225 struct btrfs_path *path = NULL; 10226 int ret = 0; 10227 u64 isize; 10228 u64 prev_extent_end = 0; 10229 10230 /* 10231 * Acquire the inode's mmap lock to prevent races with memory mapped 10232 * writes, as they could happen after we flush delalloc below and before 10233 * we lock the extent range further below. The inode was already locked 10234 * up in the call chain. 10235 */ 10236 btrfs_assert_inode_locked(BTRFS_I(inode)); 10237 down_write(&BTRFS_I(inode)->i_mmap_lock); 10238 10239 /* 10240 * If the swap file was just created, make sure delalloc is done. If the 10241 * file changes again after this, the user is doing something stupid and 10242 * we don't really care. 10243 */ 10244 ret = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1); 10245 if (ret) 10246 goto out_unlock_mmap; 10247 10248 /* 10249 * The inode is locked, so these flags won't change after we check them. 10250 */ 10251 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 10252 btrfs_warn(fs_info, "swapfile must not be compressed"); 10253 ret = -EINVAL; 10254 goto out_unlock_mmap; 10255 } 10256 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 10257 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 10258 ret = -EINVAL; 10259 goto out_unlock_mmap; 10260 } 10261 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 10262 btrfs_warn(fs_info, "swapfile must not be checksummed"); 10263 ret = -EINVAL; 10264 goto out_unlock_mmap; 10265 } 10266 10267 path = btrfs_alloc_path(); 10268 backref_ctx = btrfs_alloc_backref_share_check_ctx(); 10269 if (!path || !backref_ctx) { 10270 ret = -ENOMEM; 10271 goto out_unlock_mmap; 10272 } 10273 10274 /* 10275 * Balance or device remove/replace/resize can move stuff around from 10276 * under us. The exclop protection makes sure they aren't running/won't 10277 * run concurrently while we are mapping the swap extents, and 10278 * fs_info->swapfile_pins prevents them from running while the swap 10279 * file is active and moving the extents. Note that this also prevents 10280 * a concurrent device add which isn't actually necessary, but it's not 10281 * really worth the trouble to allow it. 10282 */ 10283 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) { 10284 btrfs_warn(fs_info, 10285 "cannot activate swapfile while exclusive operation is running"); 10286 ret = -EBUSY; 10287 goto out_unlock_mmap; 10288 } 10289 10290 /* 10291 * Prevent snapshot creation while we are activating the swap file. 10292 * We do not want to race with snapshot creation. If snapshot creation 10293 * already started before we bumped nr_swapfiles from 0 to 1 and 10294 * completes before the first write into the swap file after it is 10295 * activated, than that write would fallback to COW. 10296 */ 10297 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) { 10298 btrfs_exclop_finish(fs_info); 10299 btrfs_warn(fs_info, 10300 "cannot activate swapfile because snapshot creation is in progress"); 10301 ret = -EINVAL; 10302 goto out_unlock_mmap; 10303 } 10304 /* 10305 * Snapshots can create extents which require COW even if NODATACOW is 10306 * set. We use this counter to prevent snapshots. We must increment it 10307 * before walking the extents because we don't want a concurrent 10308 * snapshot to run after we've already checked the extents. 10309 * 10310 * It is possible that subvolume is marked for deletion but still not 10311 * removed yet. To prevent this race, we check the root status before 10312 * activating the swapfile. 10313 */ 10314 spin_lock(&root->root_item_lock); 10315 if (btrfs_root_dead(root)) { 10316 spin_unlock(&root->root_item_lock); 10317 10318 btrfs_drew_write_unlock(&root->snapshot_lock); 10319 btrfs_exclop_finish(fs_info); 10320 btrfs_warn(fs_info, 10321 "cannot activate swapfile because subvolume %llu is being deleted", 10322 btrfs_root_id(root)); 10323 ret = -EPERM; 10324 goto out_unlock_mmap; 10325 } 10326 atomic_inc(&root->nr_swapfiles); 10327 spin_unlock(&root->root_item_lock); 10328 10329 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 10330 10331 btrfs_lock_extent(io_tree, 0, isize - 1, &cached_state); 10332 while (prev_extent_end < isize) { 10333 struct btrfs_key key; 10334 struct extent_buffer *leaf; 10335 struct btrfs_file_extent_item *ei; 10336 struct btrfs_block_group *bg; 10337 u64 logical_block_start; 10338 u64 physical_block_start; 10339 u64 extent_gen; 10340 u64 disk_bytenr; 10341 u64 len; 10342 10343 key.objectid = btrfs_ino(BTRFS_I(inode)); 10344 key.type = BTRFS_EXTENT_DATA_KEY; 10345 key.offset = prev_extent_end; 10346 10347 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 10348 if (ret < 0) 10349 goto out; 10350 10351 /* 10352 * If key not found it means we have an implicit hole (NO_HOLES 10353 * is enabled). 10354 */ 10355 if (ret > 0) { 10356 btrfs_warn(fs_info, "swapfile must not have holes"); 10357 ret = -EINVAL; 10358 goto out; 10359 } 10360 10361 leaf = path->nodes[0]; 10362 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 10363 10364 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) { 10365 /* 10366 * It's unlikely we'll ever actually find ourselves 10367 * here, as a file small enough to fit inline won't be 10368 * big enough to store more than the swap header, but in 10369 * case something changes in the future, let's catch it 10370 * here rather than later. 10371 */ 10372 btrfs_warn(fs_info, "swapfile must not be inline"); 10373 ret = -EINVAL; 10374 goto out; 10375 } 10376 10377 if (btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) { 10378 btrfs_warn(fs_info, "swapfile must not be compressed"); 10379 ret = -EINVAL; 10380 goto out; 10381 } 10382 10383 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 10384 if (disk_bytenr == 0) { 10385 btrfs_warn(fs_info, "swapfile must not have holes"); 10386 ret = -EINVAL; 10387 goto out; 10388 } 10389 10390 logical_block_start = disk_bytenr + btrfs_file_extent_offset(leaf, ei); 10391 extent_gen = btrfs_file_extent_generation(leaf, ei); 10392 prev_extent_end = btrfs_file_extent_end(path); 10393 10394 if (prev_extent_end > isize) 10395 len = isize - key.offset; 10396 else 10397 len = btrfs_file_extent_num_bytes(leaf, ei); 10398 10399 backref_ctx->curr_leaf_bytenr = leaf->start; 10400 10401 /* 10402 * Don't need the path anymore, release to avoid deadlocks when 10403 * calling btrfs_is_data_extent_shared() because when joining a 10404 * transaction it can block waiting for the current one's commit 10405 * which in turn may be trying to lock the same leaf to flush 10406 * delayed items for example. 10407 */ 10408 btrfs_release_path(path); 10409 10410 ret = btrfs_is_data_extent_shared(BTRFS_I(inode), disk_bytenr, 10411 extent_gen, backref_ctx); 10412 if (ret < 0) { 10413 goto out; 10414 } else if (ret > 0) { 10415 btrfs_warn(fs_info, 10416 "swapfile must not be copy-on-write"); 10417 ret = -EINVAL; 10418 goto out; 10419 } 10420 10421 map = btrfs_get_chunk_map(fs_info, logical_block_start, len); 10422 if (IS_ERR(map)) { 10423 ret = PTR_ERR(map); 10424 goto out; 10425 } 10426 10427 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 10428 btrfs_warn(fs_info, 10429 "swapfile must have single data profile"); 10430 ret = -EINVAL; 10431 goto out; 10432 } 10433 10434 if (device == NULL) { 10435 device = map->stripes[0].dev; 10436 ret = btrfs_add_swapfile_pin(inode, device, false); 10437 if (ret == 1) 10438 ret = 0; 10439 else if (ret) 10440 goto out; 10441 } else if (device != map->stripes[0].dev) { 10442 btrfs_warn(fs_info, "swapfile must be on one device"); 10443 ret = -EINVAL; 10444 goto out; 10445 } 10446 10447 physical_block_start = (map->stripes[0].physical + 10448 (logical_block_start - map->start)); 10449 btrfs_free_chunk_map(map); 10450 map = NULL; 10451 10452 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 10453 if (!bg) { 10454 btrfs_warn(fs_info, 10455 "could not find block group containing swapfile"); 10456 ret = -EINVAL; 10457 goto out; 10458 } 10459 10460 if (!btrfs_inc_block_group_swap_extents(bg)) { 10461 btrfs_warn(fs_info, 10462 "block group for swapfile at %llu is read-only%s", 10463 bg->start, 10464 atomic_read(&fs_info->scrubs_running) ? 10465 " (scrub running)" : ""); 10466 btrfs_put_block_group(bg); 10467 ret = -EINVAL; 10468 goto out; 10469 } 10470 10471 ret = btrfs_add_swapfile_pin(inode, bg, true); 10472 if (ret) { 10473 btrfs_put_block_group(bg); 10474 if (ret == 1) 10475 ret = 0; 10476 else 10477 goto out; 10478 } 10479 10480 if (bsi.block_len && 10481 bsi.block_start + bsi.block_len == physical_block_start) { 10482 bsi.block_len += len; 10483 } else { 10484 if (bsi.block_len) { 10485 ret = btrfs_add_swap_extent(sis, &bsi); 10486 if (ret) 10487 goto out; 10488 } 10489 bsi.start = key.offset; 10490 bsi.block_start = physical_block_start; 10491 bsi.block_len = len; 10492 } 10493 10494 if (fatal_signal_pending(current)) { 10495 ret = -EINTR; 10496 goto out; 10497 } 10498 10499 cond_resched(); 10500 } 10501 10502 if (bsi.block_len) 10503 ret = btrfs_add_swap_extent(sis, &bsi); 10504 10505 out: 10506 if (!IS_ERR_OR_NULL(map)) 10507 btrfs_free_chunk_map(map); 10508 10509 btrfs_unlock_extent(io_tree, 0, isize - 1, &cached_state); 10510 10511 if (ret) 10512 btrfs_swap_deactivate(file); 10513 10514 btrfs_drew_write_unlock(&root->snapshot_lock); 10515 10516 btrfs_exclop_finish(fs_info); 10517 10518 out_unlock_mmap: 10519 up_write(&BTRFS_I(inode)->i_mmap_lock); 10520 btrfs_free_backref_share_ctx(backref_ctx); 10521 btrfs_free_path(path); 10522 if (ret) 10523 return ret; 10524 10525 if (device) 10526 sis->bdev = device->bdev; 10527 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 10528 sis->max = bsi.nr_pages; 10529 sis->pages = bsi.nr_pages - 1; 10530 return bsi.nr_extents; 10531 } 10532 #else 10533 static void btrfs_swap_deactivate(struct file *file) 10534 { 10535 } 10536 10537 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10538 sector_t *span) 10539 { 10540 return -EOPNOTSUPP; 10541 } 10542 #endif 10543 10544 /* 10545 * Update the number of bytes used in the VFS' inode. When we replace extents in 10546 * a range (clone, dedupe, fallocate's zero range), we must update the number of 10547 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls 10548 * always get a correct value. 10549 */ 10550 void btrfs_update_inode_bytes(struct btrfs_inode *inode, 10551 const u64 add_bytes, 10552 const u64 del_bytes) 10553 { 10554 if (add_bytes == del_bytes) 10555 return; 10556 10557 spin_lock(&inode->lock); 10558 if (del_bytes > 0) 10559 inode_sub_bytes(&inode->vfs_inode, del_bytes); 10560 if (add_bytes > 0) 10561 inode_add_bytes(&inode->vfs_inode, add_bytes); 10562 spin_unlock(&inode->lock); 10563 } 10564 10565 /* 10566 * Verify that there are no ordered extents for a given file range. 10567 * 10568 * @inode: The target inode. 10569 * @start: Start offset of the file range, should be sector size aligned. 10570 * @end: End offset (inclusive) of the file range, its value +1 should be 10571 * sector size aligned. 10572 * 10573 * This should typically be used for cases where we locked an inode's VFS lock in 10574 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode, 10575 * we have flushed all delalloc in the range, we have waited for all ordered 10576 * extents in the range to complete and finally we have locked the file range in 10577 * the inode's io_tree. 10578 */ 10579 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end) 10580 { 10581 struct btrfs_root *root = inode->root; 10582 struct btrfs_ordered_extent *ordered; 10583 10584 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT)) 10585 return; 10586 10587 ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start); 10588 if (ordered) { 10589 btrfs_err(root->fs_info, 10590 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])", 10591 start, end, btrfs_ino(inode), btrfs_root_id(root), 10592 ordered->file_offset, 10593 ordered->file_offset + ordered->num_bytes - 1); 10594 btrfs_put_ordered_extent(ordered); 10595 } 10596 10597 ASSERT(ordered == NULL); 10598 } 10599 10600 /* 10601 * Find the first inode with a minimum number. 10602 * 10603 * @root: The root to search for. 10604 * @min_ino: The minimum inode number. 10605 * 10606 * Find the first inode in the @root with a number >= @min_ino and return it. 10607 * Returns NULL if no such inode found. 10608 */ 10609 struct btrfs_inode *btrfs_find_first_inode(struct btrfs_root *root, u64 min_ino) 10610 { 10611 struct btrfs_inode *inode; 10612 unsigned long from = min_ino; 10613 10614 xa_lock(&root->inodes); 10615 while (true) { 10616 inode = xa_find(&root->inodes, &from, ULONG_MAX, XA_PRESENT); 10617 if (!inode) 10618 break; 10619 if (igrab(&inode->vfs_inode)) 10620 break; 10621 10622 from = btrfs_ino(inode) + 1; 10623 cond_resched_lock(&root->inodes.xa_lock); 10624 } 10625 xa_unlock(&root->inodes); 10626 10627 return inode; 10628 } 10629 10630 static const struct inode_operations btrfs_dir_inode_operations = { 10631 .getattr = btrfs_getattr, 10632 .lookup = btrfs_lookup, 10633 .create = btrfs_create, 10634 .unlink = btrfs_unlink, 10635 .link = btrfs_link, 10636 .mkdir = btrfs_mkdir, 10637 .rmdir = btrfs_rmdir, 10638 .rename = btrfs_rename2, 10639 .symlink = btrfs_symlink, 10640 .setattr = btrfs_setattr, 10641 .mknod = btrfs_mknod, 10642 .listxattr = btrfs_listxattr, 10643 .permission = btrfs_permission, 10644 .get_inode_acl = btrfs_get_acl, 10645 .set_acl = btrfs_set_acl, 10646 .update_time = btrfs_update_time, 10647 .tmpfile = btrfs_tmpfile, 10648 .fileattr_get = btrfs_fileattr_get, 10649 .fileattr_set = btrfs_fileattr_set, 10650 }; 10651 10652 static const struct file_operations btrfs_dir_file_operations = { 10653 .llseek = btrfs_dir_llseek, 10654 .read = generic_read_dir, 10655 .iterate_shared = btrfs_real_readdir, 10656 .open = btrfs_opendir, 10657 .unlocked_ioctl = btrfs_ioctl, 10658 #ifdef CONFIG_COMPAT 10659 .compat_ioctl = btrfs_compat_ioctl, 10660 #endif 10661 .release = btrfs_release_file, 10662 .fsync = btrfs_sync_file, 10663 .setlease = generic_setlease, 10664 }; 10665 10666 /* 10667 * btrfs doesn't support the bmap operation because swapfiles 10668 * use bmap to make a mapping of extents in the file. They assume 10669 * these extents won't change over the life of the file and they 10670 * use the bmap result to do IO directly to the drive. 10671 * 10672 * the btrfs bmap call would return logical addresses that aren't 10673 * suitable for IO and they also will change frequently as COW 10674 * operations happen. So, swapfile + btrfs == corruption. 10675 * 10676 * For now we're avoiding this by dropping bmap. 10677 */ 10678 static const struct address_space_operations btrfs_aops = { 10679 .read_folio = btrfs_read_folio, 10680 .writepages = btrfs_writepages, 10681 .readahead = btrfs_readahead, 10682 .invalidate_folio = btrfs_invalidate_folio, 10683 .launder_folio = btrfs_launder_folio, 10684 .release_folio = btrfs_release_folio, 10685 .migrate_folio = btrfs_migrate_folio, 10686 .dirty_folio = filemap_dirty_folio, 10687 .error_remove_folio = generic_error_remove_folio, 10688 .swap_activate = btrfs_swap_activate, 10689 .swap_deactivate = btrfs_swap_deactivate, 10690 }; 10691 10692 static const struct inode_operations btrfs_file_inode_operations = { 10693 .getattr = btrfs_getattr, 10694 .setattr = btrfs_setattr, 10695 .listxattr = btrfs_listxattr, 10696 .permission = btrfs_permission, 10697 .fiemap = btrfs_fiemap, 10698 .get_inode_acl = btrfs_get_acl, 10699 .set_acl = btrfs_set_acl, 10700 .update_time = btrfs_update_time, 10701 .fileattr_get = btrfs_fileattr_get, 10702 .fileattr_set = btrfs_fileattr_set, 10703 }; 10704 static const struct inode_operations btrfs_special_inode_operations = { 10705 .getattr = btrfs_getattr, 10706 .setattr = btrfs_setattr, 10707 .permission = btrfs_permission, 10708 .listxattr = btrfs_listxattr, 10709 .get_inode_acl = btrfs_get_acl, 10710 .set_acl = btrfs_set_acl, 10711 .update_time = btrfs_update_time, 10712 }; 10713 static const struct inode_operations btrfs_symlink_inode_operations = { 10714 .get_link = page_get_link, 10715 .getattr = btrfs_getattr, 10716 .setattr = btrfs_setattr, 10717 .permission = btrfs_permission, 10718 .listxattr = btrfs_listxattr, 10719 .update_time = btrfs_update_time, 10720 }; 10721 10722 const struct dentry_operations btrfs_dentry_operations = { 10723 .d_delete = btrfs_dentry_delete, 10724 }; 10725