1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/sizes.h>
4 #include <linux/list_sort.h>
5 #include "misc.h"
6 #include "ctree.h"
7 #include "block-group.h"
8 #include "space-info.h"
9 #include "disk-io.h"
10 #include "free-space-cache.h"
11 #include "free-space-tree.h"
12 #include "volumes.h"
13 #include "transaction.h"
14 #include "ref-verify.h"
15 #include "sysfs.h"
16 #include "tree-log.h"
17 #include "delalloc-space.h"
18 #include "discard.h"
19 #include "raid56.h"
20 #include "zoned.h"
21 #include "fs.h"
22 #include "accessors.h"
23 #include "extent-tree.h"
24
25 #ifdef CONFIG_BTRFS_DEBUG
btrfs_should_fragment_free_space(const struct btrfs_block_group * block_group)26 int btrfs_should_fragment_free_space(const struct btrfs_block_group *block_group)
27 {
28 struct btrfs_fs_info *fs_info = block_group->fs_info;
29
30 return (btrfs_test_opt(fs_info, FRAGMENT_METADATA) &&
31 block_group->flags & BTRFS_BLOCK_GROUP_METADATA) ||
32 (btrfs_test_opt(fs_info, FRAGMENT_DATA) &&
33 block_group->flags & BTRFS_BLOCK_GROUP_DATA);
34 }
35 #endif
36
37 /*
38 * Return target flags in extended format or 0 if restripe for this chunk_type
39 * is not in progress
40 *
41 * Should be called with balance_lock held
42 */
get_restripe_target(const struct btrfs_fs_info * fs_info,u64 flags)43 static u64 get_restripe_target(const struct btrfs_fs_info *fs_info, u64 flags)
44 {
45 const struct btrfs_balance_control *bctl = fs_info->balance_ctl;
46 u64 target = 0;
47
48 if (!bctl)
49 return 0;
50
51 if (flags & BTRFS_BLOCK_GROUP_DATA &&
52 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
53 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
54 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
55 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
56 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
57 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
58 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
59 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
60 }
61
62 return target;
63 }
64
65 /*
66 * @flags: available profiles in extended format (see ctree.h)
67 *
68 * Return reduced profile in chunk format. If profile changing is in progress
69 * (either running or paused) picks the target profile (if it's already
70 * available), otherwise falls back to plain reducing.
71 */
btrfs_reduce_alloc_profile(struct btrfs_fs_info * fs_info,u64 flags)72 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
73 {
74 u64 num_devices = fs_info->fs_devices->rw_devices;
75 u64 target;
76 u64 raid_type;
77 u64 allowed = 0;
78
79 /*
80 * See if restripe for this chunk_type is in progress, if so try to
81 * reduce to the target profile
82 */
83 spin_lock(&fs_info->balance_lock);
84 target = get_restripe_target(fs_info, flags);
85 if (target) {
86 spin_unlock(&fs_info->balance_lock);
87 return extended_to_chunk(target);
88 }
89 spin_unlock(&fs_info->balance_lock);
90
91 /* First, mask out the RAID levels which aren't possible */
92 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
93 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
94 allowed |= btrfs_raid_array[raid_type].bg_flag;
95 }
96 allowed &= flags;
97
98 /* Select the highest-redundancy RAID level. */
99 if (allowed & BTRFS_BLOCK_GROUP_RAID1C4)
100 allowed = BTRFS_BLOCK_GROUP_RAID1C4;
101 else if (allowed & BTRFS_BLOCK_GROUP_RAID6)
102 allowed = BTRFS_BLOCK_GROUP_RAID6;
103 else if (allowed & BTRFS_BLOCK_GROUP_RAID1C3)
104 allowed = BTRFS_BLOCK_GROUP_RAID1C3;
105 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
106 allowed = BTRFS_BLOCK_GROUP_RAID5;
107 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
108 allowed = BTRFS_BLOCK_GROUP_RAID10;
109 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
110 allowed = BTRFS_BLOCK_GROUP_RAID1;
111 else if (allowed & BTRFS_BLOCK_GROUP_DUP)
112 allowed = BTRFS_BLOCK_GROUP_DUP;
113 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
114 allowed = BTRFS_BLOCK_GROUP_RAID0;
115
116 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
117
118 return extended_to_chunk(flags | allowed);
119 }
120
btrfs_get_alloc_profile(struct btrfs_fs_info * fs_info,u64 orig_flags)121 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
122 {
123 unsigned seq;
124 u64 flags;
125
126 do {
127 flags = orig_flags;
128 seq = read_seqbegin(&fs_info->profiles_lock);
129
130 if (flags & BTRFS_BLOCK_GROUP_DATA)
131 flags |= fs_info->avail_data_alloc_bits;
132 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
133 flags |= fs_info->avail_system_alloc_bits;
134 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
135 flags |= fs_info->avail_metadata_alloc_bits;
136 } while (read_seqretry(&fs_info->profiles_lock, seq));
137
138 return btrfs_reduce_alloc_profile(fs_info, flags);
139 }
140
btrfs_get_block_group(struct btrfs_block_group * cache)141 void btrfs_get_block_group(struct btrfs_block_group *cache)
142 {
143 refcount_inc(&cache->refs);
144 }
145
btrfs_put_block_group(struct btrfs_block_group * cache)146 void btrfs_put_block_group(struct btrfs_block_group *cache)
147 {
148 if (refcount_dec_and_test(&cache->refs)) {
149 WARN_ON(cache->pinned > 0);
150 /*
151 * If there was a failure to cleanup a log tree, very likely due
152 * to an IO failure on a writeback attempt of one or more of its
153 * extent buffers, we could not do proper (and cheap) unaccounting
154 * of their reserved space, so don't warn on reserved > 0 in that
155 * case.
156 */
157 if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) ||
158 !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info))
159 WARN_ON(cache->reserved > 0);
160
161 /*
162 * A block_group shouldn't be on the discard_list anymore.
163 * Remove the block_group from the discard_list to prevent us
164 * from causing a panic due to NULL pointer dereference.
165 */
166 if (WARN_ON(!list_empty(&cache->discard_list)))
167 btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
168 cache);
169
170 kfree(cache->free_space_ctl);
171 btrfs_free_chunk_map(cache->physical_map);
172 kfree(cache);
173 }
174 }
175
btrfs_bg_start_cmp(const struct rb_node * new,const struct rb_node * exist)176 static int btrfs_bg_start_cmp(const struct rb_node *new,
177 const struct rb_node *exist)
178 {
179 const struct btrfs_block_group *new_bg =
180 rb_entry(new, struct btrfs_block_group, cache_node);
181 const struct btrfs_block_group *exist_bg =
182 rb_entry(exist, struct btrfs_block_group, cache_node);
183
184 if (new_bg->start < exist_bg->start)
185 return -1;
186 if (new_bg->start > exist_bg->start)
187 return 1;
188 return 0;
189 }
190
191 /*
192 * This adds the block group to the fs_info rb tree for the block group cache
193 */
btrfs_add_block_group_cache(struct btrfs_block_group * block_group)194 static int btrfs_add_block_group_cache(struct btrfs_block_group *block_group)
195 {
196 struct btrfs_fs_info *fs_info = block_group->fs_info;
197 struct rb_node *exist;
198 int ret = 0;
199
200 ASSERT(block_group->length != 0);
201
202 write_lock(&fs_info->block_group_cache_lock);
203
204 exist = rb_find_add_cached(&block_group->cache_node,
205 &fs_info->block_group_cache_tree, btrfs_bg_start_cmp);
206 if (exist)
207 ret = -EEXIST;
208 write_unlock(&fs_info->block_group_cache_lock);
209
210 return ret;
211 }
212
213 /*
214 * This will return the block group at or after bytenr if contains is 0, else
215 * it will return the block group that contains the bytenr
216 */
block_group_cache_tree_search(struct btrfs_fs_info * info,u64 bytenr,int contains)217 static struct btrfs_block_group *block_group_cache_tree_search(
218 struct btrfs_fs_info *info, u64 bytenr, int contains)
219 {
220 struct btrfs_block_group *cache, *ret = NULL;
221 struct rb_node *n;
222 u64 end, start;
223
224 read_lock(&info->block_group_cache_lock);
225 n = info->block_group_cache_tree.rb_root.rb_node;
226
227 while (n) {
228 cache = rb_entry(n, struct btrfs_block_group, cache_node);
229 end = cache->start + cache->length - 1;
230 start = cache->start;
231
232 if (bytenr < start) {
233 if (!contains && (!ret || start < ret->start))
234 ret = cache;
235 n = n->rb_left;
236 } else if (bytenr > start) {
237 if (contains && bytenr <= end) {
238 ret = cache;
239 break;
240 }
241 n = n->rb_right;
242 } else {
243 ret = cache;
244 break;
245 }
246 }
247 if (ret)
248 btrfs_get_block_group(ret);
249 read_unlock(&info->block_group_cache_lock);
250
251 return ret;
252 }
253
254 /*
255 * Return the block group that starts at or after bytenr
256 */
btrfs_lookup_first_block_group(struct btrfs_fs_info * info,u64 bytenr)257 struct btrfs_block_group *btrfs_lookup_first_block_group(
258 struct btrfs_fs_info *info, u64 bytenr)
259 {
260 return block_group_cache_tree_search(info, bytenr, 0);
261 }
262
263 /*
264 * Return the block group that contains the given bytenr
265 */
btrfs_lookup_block_group(struct btrfs_fs_info * info,u64 bytenr)266 struct btrfs_block_group *btrfs_lookup_block_group(
267 struct btrfs_fs_info *info, u64 bytenr)
268 {
269 return block_group_cache_tree_search(info, bytenr, 1);
270 }
271
btrfs_next_block_group(struct btrfs_block_group * cache)272 struct btrfs_block_group *btrfs_next_block_group(
273 struct btrfs_block_group *cache)
274 {
275 struct btrfs_fs_info *fs_info = cache->fs_info;
276 struct rb_node *node;
277
278 read_lock(&fs_info->block_group_cache_lock);
279
280 /* If our block group was removed, we need a full search. */
281 if (RB_EMPTY_NODE(&cache->cache_node)) {
282 const u64 next_bytenr = cache->start + cache->length;
283
284 read_unlock(&fs_info->block_group_cache_lock);
285 btrfs_put_block_group(cache);
286 return btrfs_lookup_first_block_group(fs_info, next_bytenr);
287 }
288 node = rb_next(&cache->cache_node);
289 btrfs_put_block_group(cache);
290 if (node) {
291 cache = rb_entry(node, struct btrfs_block_group, cache_node);
292 btrfs_get_block_group(cache);
293 } else
294 cache = NULL;
295 read_unlock(&fs_info->block_group_cache_lock);
296 return cache;
297 }
298
299 /*
300 * Check if we can do a NOCOW write for a given extent.
301 *
302 * @fs_info: The filesystem information object.
303 * @bytenr: Logical start address of the extent.
304 *
305 * Check if we can do a NOCOW write for the given extent, and increments the
306 * number of NOCOW writers in the block group that contains the extent, as long
307 * as the block group exists and it's currently not in read-only mode.
308 *
309 * Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller
310 * is responsible for calling btrfs_dec_nocow_writers() later.
311 *
312 * Or NULL if we can not do a NOCOW write
313 */
btrfs_inc_nocow_writers(struct btrfs_fs_info * fs_info,u64 bytenr)314 struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info,
315 u64 bytenr)
316 {
317 struct btrfs_block_group *bg;
318 bool can_nocow = true;
319
320 bg = btrfs_lookup_block_group(fs_info, bytenr);
321 if (!bg)
322 return NULL;
323
324 spin_lock(&bg->lock);
325 if (bg->ro)
326 can_nocow = false;
327 else
328 atomic_inc(&bg->nocow_writers);
329 spin_unlock(&bg->lock);
330
331 if (!can_nocow) {
332 btrfs_put_block_group(bg);
333 return NULL;
334 }
335
336 /* No put on block group, done by btrfs_dec_nocow_writers(). */
337 return bg;
338 }
339
340 /*
341 * Decrement the number of NOCOW writers in a block group.
342 *
343 * This is meant to be called after a previous call to btrfs_inc_nocow_writers(),
344 * and on the block group returned by that call. Typically this is called after
345 * creating an ordered extent for a NOCOW write, to prevent races with scrub and
346 * relocation.
347 *
348 * After this call, the caller should not use the block group anymore. It it wants
349 * to use it, then it should get a reference on it before calling this function.
350 */
btrfs_dec_nocow_writers(struct btrfs_block_group * bg)351 void btrfs_dec_nocow_writers(struct btrfs_block_group *bg)
352 {
353 if (atomic_dec_and_test(&bg->nocow_writers))
354 wake_up_var(&bg->nocow_writers);
355
356 /* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */
357 btrfs_put_block_group(bg);
358 }
359
btrfs_wait_nocow_writers(struct btrfs_block_group * bg)360 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
361 {
362 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
363 }
364
btrfs_dec_block_group_reservations(struct btrfs_fs_info * fs_info,const u64 start)365 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
366 const u64 start)
367 {
368 struct btrfs_block_group *bg;
369
370 bg = btrfs_lookup_block_group(fs_info, start);
371 ASSERT(bg);
372 if (atomic_dec_and_test(&bg->reservations))
373 wake_up_var(&bg->reservations);
374 btrfs_put_block_group(bg);
375 }
376
btrfs_wait_block_group_reservations(struct btrfs_block_group * bg)377 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
378 {
379 struct btrfs_space_info *space_info = bg->space_info;
380
381 ASSERT(bg->ro);
382
383 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
384 return;
385
386 /*
387 * Our block group is read only but before we set it to read only,
388 * some task might have had allocated an extent from it already, but it
389 * has not yet created a respective ordered extent (and added it to a
390 * root's list of ordered extents).
391 * Therefore wait for any task currently allocating extents, since the
392 * block group's reservations counter is incremented while a read lock
393 * on the groups' semaphore is held and decremented after releasing
394 * the read access on that semaphore and creating the ordered extent.
395 */
396 down_write(&space_info->groups_sem);
397 up_write(&space_info->groups_sem);
398
399 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
400 }
401
btrfs_get_caching_control(struct btrfs_block_group * cache)402 struct btrfs_caching_control *btrfs_get_caching_control(
403 struct btrfs_block_group *cache)
404 {
405 struct btrfs_caching_control *ctl;
406
407 spin_lock(&cache->lock);
408 if (!cache->caching_ctl) {
409 spin_unlock(&cache->lock);
410 return NULL;
411 }
412
413 ctl = cache->caching_ctl;
414 refcount_inc(&ctl->count);
415 spin_unlock(&cache->lock);
416 return ctl;
417 }
418
btrfs_put_caching_control(struct btrfs_caching_control * ctl)419 static void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
420 {
421 if (refcount_dec_and_test(&ctl->count))
422 kfree(ctl);
423 }
424
425 /*
426 * When we wait for progress in the block group caching, its because our
427 * allocation attempt failed at least once. So, we must sleep and let some
428 * progress happen before we try again.
429 *
430 * This function will sleep at least once waiting for new free space to show
431 * up, and then it will check the block group free space numbers for our min
432 * num_bytes. Another option is to have it go ahead and look in the rbtree for
433 * a free extent of a given size, but this is a good start.
434 *
435 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
436 * any of the information in this block group.
437 */
btrfs_wait_block_group_cache_progress(struct btrfs_block_group * cache,u64 num_bytes)438 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
439 u64 num_bytes)
440 {
441 struct btrfs_caching_control *caching_ctl;
442 int progress;
443
444 caching_ctl = btrfs_get_caching_control(cache);
445 if (!caching_ctl)
446 return;
447
448 /*
449 * We've already failed to allocate from this block group, so even if
450 * there's enough space in the block group it isn't contiguous enough to
451 * allow for an allocation, so wait for at least the next wakeup tick,
452 * or for the thing to be done.
453 */
454 progress = atomic_read(&caching_ctl->progress);
455
456 wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
457 (progress != atomic_read(&caching_ctl->progress) &&
458 (cache->free_space_ctl->free_space >= num_bytes)));
459
460 btrfs_put_caching_control(caching_ctl);
461 }
462
btrfs_caching_ctl_wait_done(struct btrfs_block_group * cache,struct btrfs_caching_control * caching_ctl)463 static int btrfs_caching_ctl_wait_done(struct btrfs_block_group *cache,
464 struct btrfs_caching_control *caching_ctl)
465 {
466 wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
467 return cache->cached == BTRFS_CACHE_ERROR ? -EIO : 0;
468 }
469
btrfs_wait_block_group_cache_done(struct btrfs_block_group * cache)470 static int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
471 {
472 struct btrfs_caching_control *caching_ctl;
473 int ret;
474
475 caching_ctl = btrfs_get_caching_control(cache);
476 if (!caching_ctl)
477 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
478 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
479 btrfs_put_caching_control(caching_ctl);
480 return ret;
481 }
482
483 #ifdef CONFIG_BTRFS_DEBUG
fragment_free_space(struct btrfs_block_group * block_group)484 static void fragment_free_space(struct btrfs_block_group *block_group)
485 {
486 struct btrfs_fs_info *fs_info = block_group->fs_info;
487 u64 start = block_group->start;
488 u64 len = block_group->length;
489 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
490 fs_info->nodesize : fs_info->sectorsize;
491 u64 step = chunk << 1;
492
493 while (len > chunk) {
494 btrfs_remove_free_space(block_group, start, chunk);
495 start += step;
496 if (len < step)
497 len = 0;
498 else
499 len -= step;
500 }
501 }
502 #endif
503
504 /*
505 * Add a free space range to the in memory free space cache of a block group.
506 * This checks if the range contains super block locations and any such
507 * locations are not added to the free space cache.
508 *
509 * @block_group: The target block group.
510 * @start: Start offset of the range.
511 * @end: End offset of the range (exclusive).
512 * @total_added_ret: Optional pointer to return the total amount of space
513 * added to the block group's free space cache.
514 *
515 * Returns 0 on success or < 0 on error.
516 */
btrfs_add_new_free_space(struct btrfs_block_group * block_group,u64 start,u64 end,u64 * total_added_ret)517 int btrfs_add_new_free_space(struct btrfs_block_group *block_group, u64 start,
518 u64 end, u64 *total_added_ret)
519 {
520 struct btrfs_fs_info *info = block_group->fs_info;
521 u64 extent_start, extent_end, size;
522 int ret;
523
524 if (total_added_ret)
525 *total_added_ret = 0;
526
527 while (start < end) {
528 if (!find_first_extent_bit(&info->excluded_extents, start,
529 &extent_start, &extent_end,
530 EXTENT_DIRTY | EXTENT_UPTODATE,
531 NULL))
532 break;
533
534 if (extent_start <= start) {
535 start = extent_end + 1;
536 } else if (extent_start > start && extent_start < end) {
537 size = extent_start - start;
538 ret = btrfs_add_free_space_async_trimmed(block_group,
539 start, size);
540 if (ret)
541 return ret;
542 if (total_added_ret)
543 *total_added_ret += size;
544 start = extent_end + 1;
545 } else {
546 break;
547 }
548 }
549
550 if (start < end) {
551 size = end - start;
552 ret = btrfs_add_free_space_async_trimmed(block_group, start,
553 size);
554 if (ret)
555 return ret;
556 if (total_added_ret)
557 *total_added_ret += size;
558 }
559
560 return 0;
561 }
562
563 /*
564 * Get an arbitrary extent item index / max_index through the block group
565 *
566 * @block_group the block group to sample from
567 * @index: the integral step through the block group to grab from
568 * @max_index: the granularity of the sampling
569 * @key: return value parameter for the item we find
570 *
571 * Pre-conditions on indices:
572 * 0 <= index <= max_index
573 * 0 < max_index
574 *
575 * Returns: 0 on success, 1 if the search didn't yield a useful item, negative
576 * error code on error.
577 */
sample_block_group_extent_item(struct btrfs_caching_control * caching_ctl,struct btrfs_block_group * block_group,int index,int max_index,struct btrfs_key * found_key)578 static int sample_block_group_extent_item(struct btrfs_caching_control *caching_ctl,
579 struct btrfs_block_group *block_group,
580 int index, int max_index,
581 struct btrfs_key *found_key)
582 {
583 struct btrfs_fs_info *fs_info = block_group->fs_info;
584 struct btrfs_root *extent_root;
585 u64 search_offset;
586 u64 search_end = block_group->start + block_group->length;
587 BTRFS_PATH_AUTO_FREE(path);
588 struct btrfs_key search_key;
589 int ret = 0;
590
591 ASSERT(index >= 0);
592 ASSERT(index <= max_index);
593 ASSERT(max_index > 0);
594 lockdep_assert_held(&caching_ctl->mutex);
595 lockdep_assert_held_read(&fs_info->commit_root_sem);
596
597 path = btrfs_alloc_path();
598 if (!path)
599 return -ENOMEM;
600
601 extent_root = btrfs_extent_root(fs_info, max_t(u64, block_group->start,
602 BTRFS_SUPER_INFO_OFFSET));
603
604 path->skip_locking = 1;
605 path->search_commit_root = 1;
606 path->reada = READA_FORWARD;
607
608 search_offset = index * div_u64(block_group->length, max_index);
609 search_key.objectid = block_group->start + search_offset;
610 search_key.type = BTRFS_EXTENT_ITEM_KEY;
611 search_key.offset = 0;
612
613 btrfs_for_each_slot(extent_root, &search_key, found_key, path, ret) {
614 /* Success; sampled an extent item in the block group */
615 if (found_key->type == BTRFS_EXTENT_ITEM_KEY &&
616 found_key->objectid >= block_group->start &&
617 found_key->objectid + found_key->offset <= search_end)
618 break;
619
620 /* We can't possibly find a valid extent item anymore */
621 if (found_key->objectid >= search_end) {
622 ret = 1;
623 break;
624 }
625 }
626
627 lockdep_assert_held(&caching_ctl->mutex);
628 lockdep_assert_held_read(&fs_info->commit_root_sem);
629 return ret;
630 }
631
632 /*
633 * Best effort attempt to compute a block group's size class while caching it.
634 *
635 * @block_group: the block group we are caching
636 *
637 * We cannot infer the size class while adding free space extents, because that
638 * logic doesn't care about contiguous file extents (it doesn't differentiate
639 * between a 100M extent and 100 contiguous 1M extents). So we need to read the
640 * file extent items. Reading all of them is quite wasteful, because usually
641 * only a handful are enough to give a good answer. Therefore, we just grab 5 of
642 * them at even steps through the block group and pick the smallest size class
643 * we see. Since size class is best effort, and not guaranteed in general,
644 * inaccuracy is acceptable.
645 *
646 * To be more explicit about why this algorithm makes sense:
647 *
648 * If we are caching in a block group from disk, then there are three major cases
649 * to consider:
650 * 1. the block group is well behaved and all extents in it are the same size
651 * class.
652 * 2. the block group is mostly one size class with rare exceptions for last
653 * ditch allocations
654 * 3. the block group was populated before size classes and can have a totally
655 * arbitrary mix of size classes.
656 *
657 * In case 1, looking at any extent in the block group will yield the correct
658 * result. For the mixed cases, taking the minimum size class seems like a good
659 * approximation, since gaps from frees will be usable to the size class. For
660 * 2., a small handful of file extents is likely to yield the right answer. For
661 * 3, we can either read every file extent, or admit that this is best effort
662 * anyway and try to stay fast.
663 *
664 * Returns: 0 on success, negative error code on error.
665 */
load_block_group_size_class(struct btrfs_caching_control * caching_ctl,struct btrfs_block_group * block_group)666 static int load_block_group_size_class(struct btrfs_caching_control *caching_ctl,
667 struct btrfs_block_group *block_group)
668 {
669 struct btrfs_fs_info *fs_info = block_group->fs_info;
670 struct btrfs_key key;
671 int i;
672 u64 min_size = block_group->length;
673 enum btrfs_block_group_size_class size_class = BTRFS_BG_SZ_NONE;
674 int ret;
675
676 if (!btrfs_block_group_should_use_size_class(block_group))
677 return 0;
678
679 lockdep_assert_held(&caching_ctl->mutex);
680 lockdep_assert_held_read(&fs_info->commit_root_sem);
681 for (i = 0; i < 5; ++i) {
682 ret = sample_block_group_extent_item(caching_ctl, block_group, i, 5, &key);
683 if (ret < 0)
684 goto out;
685 if (ret > 0)
686 continue;
687 min_size = min_t(u64, min_size, key.offset);
688 size_class = btrfs_calc_block_group_size_class(min_size);
689 }
690 if (size_class != BTRFS_BG_SZ_NONE) {
691 spin_lock(&block_group->lock);
692 block_group->size_class = size_class;
693 spin_unlock(&block_group->lock);
694 }
695 out:
696 return ret;
697 }
698
load_extent_tree_free(struct btrfs_caching_control * caching_ctl)699 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
700 {
701 struct btrfs_block_group *block_group = caching_ctl->block_group;
702 struct btrfs_fs_info *fs_info = block_group->fs_info;
703 struct btrfs_root *extent_root;
704 struct btrfs_path *path;
705 struct extent_buffer *leaf;
706 struct btrfs_key key;
707 u64 total_found = 0;
708 u64 last = 0;
709 u32 nritems;
710 int ret;
711 bool wakeup = true;
712
713 path = btrfs_alloc_path();
714 if (!path)
715 return -ENOMEM;
716
717 last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
718 extent_root = btrfs_extent_root(fs_info, last);
719
720 #ifdef CONFIG_BTRFS_DEBUG
721 /*
722 * If we're fragmenting we don't want to make anybody think we can
723 * allocate from this block group until we've had a chance to fragment
724 * the free space.
725 */
726 if (btrfs_should_fragment_free_space(block_group))
727 wakeup = false;
728 #endif
729 /*
730 * We don't want to deadlock with somebody trying to allocate a new
731 * extent for the extent root while also trying to search the extent
732 * root to add free space. So we skip locking and search the commit
733 * root, since its read-only
734 */
735 path->skip_locking = 1;
736 path->search_commit_root = 1;
737 path->reada = READA_FORWARD;
738
739 key.objectid = last;
740 key.type = BTRFS_EXTENT_ITEM_KEY;
741 key.offset = 0;
742
743 next:
744 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
745 if (ret < 0)
746 goto out;
747
748 leaf = path->nodes[0];
749 nritems = btrfs_header_nritems(leaf);
750
751 while (1) {
752 if (btrfs_fs_closing(fs_info) > 1) {
753 last = (u64)-1;
754 break;
755 }
756
757 if (path->slots[0] < nritems) {
758 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
759 } else {
760 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
761 if (ret)
762 break;
763
764 if (need_resched() ||
765 rwsem_is_contended(&fs_info->commit_root_sem)) {
766 btrfs_release_path(path);
767 up_read(&fs_info->commit_root_sem);
768 mutex_unlock(&caching_ctl->mutex);
769 cond_resched();
770 mutex_lock(&caching_ctl->mutex);
771 down_read(&fs_info->commit_root_sem);
772 goto next;
773 }
774
775 ret = btrfs_next_leaf(extent_root, path);
776 if (ret < 0)
777 goto out;
778 if (ret)
779 break;
780 leaf = path->nodes[0];
781 nritems = btrfs_header_nritems(leaf);
782 continue;
783 }
784
785 if (key.objectid < last) {
786 key.objectid = last;
787 key.type = BTRFS_EXTENT_ITEM_KEY;
788 key.offset = 0;
789 btrfs_release_path(path);
790 goto next;
791 }
792
793 if (key.objectid < block_group->start) {
794 path->slots[0]++;
795 continue;
796 }
797
798 if (key.objectid >= block_group->start + block_group->length)
799 break;
800
801 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
802 key.type == BTRFS_METADATA_ITEM_KEY) {
803 u64 space_added;
804
805 ret = btrfs_add_new_free_space(block_group, last,
806 key.objectid, &space_added);
807 if (ret)
808 goto out;
809 total_found += space_added;
810 if (key.type == BTRFS_METADATA_ITEM_KEY)
811 last = key.objectid +
812 fs_info->nodesize;
813 else
814 last = key.objectid + key.offset;
815
816 if (total_found > CACHING_CTL_WAKE_UP) {
817 total_found = 0;
818 if (wakeup) {
819 atomic_inc(&caching_ctl->progress);
820 wake_up(&caching_ctl->wait);
821 }
822 }
823 }
824 path->slots[0]++;
825 }
826
827 ret = btrfs_add_new_free_space(block_group, last,
828 block_group->start + block_group->length,
829 NULL);
830 out:
831 btrfs_free_path(path);
832 return ret;
833 }
834
btrfs_free_excluded_extents(const struct btrfs_block_group * bg)835 static inline void btrfs_free_excluded_extents(const struct btrfs_block_group *bg)
836 {
837 clear_extent_bits(&bg->fs_info->excluded_extents, bg->start,
838 bg->start + bg->length - 1, EXTENT_UPTODATE);
839 }
840
caching_thread(struct btrfs_work * work)841 static noinline void caching_thread(struct btrfs_work *work)
842 {
843 struct btrfs_block_group *block_group;
844 struct btrfs_fs_info *fs_info;
845 struct btrfs_caching_control *caching_ctl;
846 int ret;
847
848 caching_ctl = container_of(work, struct btrfs_caching_control, work);
849 block_group = caching_ctl->block_group;
850 fs_info = block_group->fs_info;
851
852 mutex_lock(&caching_ctl->mutex);
853 down_read(&fs_info->commit_root_sem);
854
855 load_block_group_size_class(caching_ctl, block_group);
856 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
857 ret = load_free_space_cache(block_group);
858 if (ret == 1) {
859 ret = 0;
860 goto done;
861 }
862
863 /*
864 * We failed to load the space cache, set ourselves to
865 * CACHE_STARTED and carry on.
866 */
867 spin_lock(&block_group->lock);
868 block_group->cached = BTRFS_CACHE_STARTED;
869 spin_unlock(&block_group->lock);
870 wake_up(&caching_ctl->wait);
871 }
872
873 /*
874 * If we are in the transaction that populated the free space tree we
875 * can't actually cache from the free space tree as our commit root and
876 * real root are the same, so we could change the contents of the blocks
877 * while caching. Instead do the slow caching in this case, and after
878 * the transaction has committed we will be safe.
879 */
880 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
881 !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
882 ret = load_free_space_tree(caching_ctl);
883 else
884 ret = load_extent_tree_free(caching_ctl);
885 done:
886 spin_lock(&block_group->lock);
887 block_group->caching_ctl = NULL;
888 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
889 spin_unlock(&block_group->lock);
890
891 #ifdef CONFIG_BTRFS_DEBUG
892 if (btrfs_should_fragment_free_space(block_group)) {
893 u64 bytes_used;
894
895 spin_lock(&block_group->space_info->lock);
896 spin_lock(&block_group->lock);
897 bytes_used = block_group->length - block_group->used;
898 block_group->space_info->bytes_used += bytes_used >> 1;
899 spin_unlock(&block_group->lock);
900 spin_unlock(&block_group->space_info->lock);
901 fragment_free_space(block_group);
902 }
903 #endif
904
905 up_read(&fs_info->commit_root_sem);
906 btrfs_free_excluded_extents(block_group);
907 mutex_unlock(&caching_ctl->mutex);
908
909 wake_up(&caching_ctl->wait);
910
911 btrfs_put_caching_control(caching_ctl);
912 btrfs_put_block_group(block_group);
913 }
914
btrfs_cache_block_group(struct btrfs_block_group * cache,bool wait)915 int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait)
916 {
917 struct btrfs_fs_info *fs_info = cache->fs_info;
918 struct btrfs_caching_control *caching_ctl = NULL;
919 int ret = 0;
920
921 /* Allocator for zoned filesystems does not use the cache at all */
922 if (btrfs_is_zoned(fs_info))
923 return 0;
924
925 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
926 if (!caching_ctl)
927 return -ENOMEM;
928
929 INIT_LIST_HEAD(&caching_ctl->list);
930 mutex_init(&caching_ctl->mutex);
931 init_waitqueue_head(&caching_ctl->wait);
932 caching_ctl->block_group = cache;
933 refcount_set(&caching_ctl->count, 2);
934 atomic_set(&caching_ctl->progress, 0);
935 btrfs_init_work(&caching_ctl->work, caching_thread, NULL);
936
937 spin_lock(&cache->lock);
938 if (cache->cached != BTRFS_CACHE_NO) {
939 kfree(caching_ctl);
940
941 caching_ctl = cache->caching_ctl;
942 if (caching_ctl)
943 refcount_inc(&caching_ctl->count);
944 spin_unlock(&cache->lock);
945 goto out;
946 }
947 WARN_ON(cache->caching_ctl);
948 cache->caching_ctl = caching_ctl;
949 cache->cached = BTRFS_CACHE_STARTED;
950 spin_unlock(&cache->lock);
951
952 write_lock(&fs_info->block_group_cache_lock);
953 refcount_inc(&caching_ctl->count);
954 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
955 write_unlock(&fs_info->block_group_cache_lock);
956
957 btrfs_get_block_group(cache);
958
959 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
960 out:
961 if (wait && caching_ctl)
962 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
963 if (caching_ctl)
964 btrfs_put_caching_control(caching_ctl);
965
966 return ret;
967 }
968
clear_avail_alloc_bits(struct btrfs_fs_info * fs_info,u64 flags)969 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
970 {
971 u64 extra_flags = chunk_to_extended(flags) &
972 BTRFS_EXTENDED_PROFILE_MASK;
973
974 write_seqlock(&fs_info->profiles_lock);
975 if (flags & BTRFS_BLOCK_GROUP_DATA)
976 fs_info->avail_data_alloc_bits &= ~extra_flags;
977 if (flags & BTRFS_BLOCK_GROUP_METADATA)
978 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
979 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
980 fs_info->avail_system_alloc_bits &= ~extra_flags;
981 write_sequnlock(&fs_info->profiles_lock);
982 }
983
984 /*
985 * Clear incompat bits for the following feature(s):
986 *
987 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
988 * in the whole filesystem
989 *
990 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
991 */
clear_incompat_bg_bits(struct btrfs_fs_info * fs_info,u64 flags)992 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
993 {
994 bool found_raid56 = false;
995 bool found_raid1c34 = false;
996
997 if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
998 (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
999 (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
1000 struct list_head *head = &fs_info->space_info;
1001 struct btrfs_space_info *sinfo;
1002
1003 list_for_each_entry_rcu(sinfo, head, list) {
1004 down_read(&sinfo->groups_sem);
1005 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
1006 found_raid56 = true;
1007 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
1008 found_raid56 = true;
1009 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
1010 found_raid1c34 = true;
1011 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
1012 found_raid1c34 = true;
1013 up_read(&sinfo->groups_sem);
1014 }
1015 if (!found_raid56)
1016 btrfs_clear_fs_incompat(fs_info, RAID56);
1017 if (!found_raid1c34)
1018 btrfs_clear_fs_incompat(fs_info, RAID1C34);
1019 }
1020 }
1021
btrfs_block_group_root(struct btrfs_fs_info * fs_info)1022 static struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info)
1023 {
1024 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE))
1025 return fs_info->block_group_root;
1026 return btrfs_extent_root(fs_info, 0);
1027 }
1028
remove_block_group_item(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_block_group * block_group)1029 static int remove_block_group_item(struct btrfs_trans_handle *trans,
1030 struct btrfs_path *path,
1031 struct btrfs_block_group *block_group)
1032 {
1033 struct btrfs_fs_info *fs_info = trans->fs_info;
1034 struct btrfs_root *root;
1035 struct btrfs_key key;
1036 int ret;
1037
1038 root = btrfs_block_group_root(fs_info);
1039 key.objectid = block_group->start;
1040 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
1041 key.offset = block_group->length;
1042
1043 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1044 if (ret > 0)
1045 ret = -ENOENT;
1046 if (ret < 0)
1047 return ret;
1048
1049 ret = btrfs_del_item(trans, root, path);
1050 return ret;
1051 }
1052
btrfs_remove_block_group(struct btrfs_trans_handle * trans,struct btrfs_chunk_map * map)1053 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
1054 struct btrfs_chunk_map *map)
1055 {
1056 struct btrfs_fs_info *fs_info = trans->fs_info;
1057 struct btrfs_path *path;
1058 struct btrfs_block_group *block_group;
1059 struct btrfs_free_cluster *cluster;
1060 struct inode *inode;
1061 struct kobject *kobj = NULL;
1062 int ret;
1063 int index;
1064 int factor;
1065 struct btrfs_caching_control *caching_ctl = NULL;
1066 bool remove_map;
1067 bool remove_rsv = false;
1068
1069 block_group = btrfs_lookup_block_group(fs_info, map->start);
1070 if (!block_group)
1071 return -ENOENT;
1072
1073 BUG_ON(!block_group->ro);
1074
1075 trace_btrfs_remove_block_group(block_group);
1076 /*
1077 * Free the reserved super bytes from this block group before
1078 * remove it.
1079 */
1080 btrfs_free_excluded_extents(block_group);
1081 btrfs_free_ref_tree_range(fs_info, block_group->start,
1082 block_group->length);
1083
1084 index = btrfs_bg_flags_to_raid_index(block_group->flags);
1085 factor = btrfs_bg_type_to_factor(block_group->flags);
1086
1087 /* make sure this block group isn't part of an allocation cluster */
1088 cluster = &fs_info->data_alloc_cluster;
1089 spin_lock(&cluster->refill_lock);
1090 btrfs_return_cluster_to_free_space(block_group, cluster);
1091 spin_unlock(&cluster->refill_lock);
1092
1093 /*
1094 * make sure this block group isn't part of a metadata
1095 * allocation cluster
1096 */
1097 cluster = &fs_info->meta_alloc_cluster;
1098 spin_lock(&cluster->refill_lock);
1099 btrfs_return_cluster_to_free_space(block_group, cluster);
1100 spin_unlock(&cluster->refill_lock);
1101
1102 btrfs_clear_treelog_bg(block_group);
1103 btrfs_clear_data_reloc_bg(block_group);
1104
1105 path = btrfs_alloc_path();
1106 if (!path) {
1107 ret = -ENOMEM;
1108 goto out;
1109 }
1110
1111 /*
1112 * get the inode first so any iput calls done for the io_list
1113 * aren't the final iput (no unlinks allowed now)
1114 */
1115 inode = lookup_free_space_inode(block_group, path);
1116
1117 mutex_lock(&trans->transaction->cache_write_mutex);
1118 /*
1119 * Make sure our free space cache IO is done before removing the
1120 * free space inode
1121 */
1122 spin_lock(&trans->transaction->dirty_bgs_lock);
1123 if (!list_empty(&block_group->io_list)) {
1124 list_del_init(&block_group->io_list);
1125
1126 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
1127
1128 spin_unlock(&trans->transaction->dirty_bgs_lock);
1129 btrfs_wait_cache_io(trans, block_group, path);
1130 btrfs_put_block_group(block_group);
1131 spin_lock(&trans->transaction->dirty_bgs_lock);
1132 }
1133
1134 if (!list_empty(&block_group->dirty_list)) {
1135 list_del_init(&block_group->dirty_list);
1136 remove_rsv = true;
1137 btrfs_put_block_group(block_group);
1138 }
1139 spin_unlock(&trans->transaction->dirty_bgs_lock);
1140 mutex_unlock(&trans->transaction->cache_write_mutex);
1141
1142 ret = btrfs_remove_free_space_inode(trans, inode, block_group);
1143 if (ret)
1144 goto out;
1145
1146 write_lock(&fs_info->block_group_cache_lock);
1147 rb_erase_cached(&block_group->cache_node,
1148 &fs_info->block_group_cache_tree);
1149 RB_CLEAR_NODE(&block_group->cache_node);
1150
1151 /* Once for the block groups rbtree */
1152 btrfs_put_block_group(block_group);
1153
1154 write_unlock(&fs_info->block_group_cache_lock);
1155
1156 down_write(&block_group->space_info->groups_sem);
1157 /*
1158 * we must use list_del_init so people can check to see if they
1159 * are still on the list after taking the semaphore
1160 */
1161 list_del_init(&block_group->list);
1162 if (list_empty(&block_group->space_info->block_groups[index])) {
1163 kobj = block_group->space_info->block_group_kobjs[index];
1164 block_group->space_info->block_group_kobjs[index] = NULL;
1165 clear_avail_alloc_bits(fs_info, block_group->flags);
1166 }
1167 up_write(&block_group->space_info->groups_sem);
1168 clear_incompat_bg_bits(fs_info, block_group->flags);
1169 if (kobj) {
1170 kobject_del(kobj);
1171 kobject_put(kobj);
1172 }
1173
1174 if (block_group->cached == BTRFS_CACHE_STARTED)
1175 btrfs_wait_block_group_cache_done(block_group);
1176
1177 write_lock(&fs_info->block_group_cache_lock);
1178 caching_ctl = btrfs_get_caching_control(block_group);
1179 if (!caching_ctl) {
1180 struct btrfs_caching_control *ctl;
1181
1182 list_for_each_entry(ctl, &fs_info->caching_block_groups, list) {
1183 if (ctl->block_group == block_group) {
1184 caching_ctl = ctl;
1185 refcount_inc(&caching_ctl->count);
1186 break;
1187 }
1188 }
1189 }
1190 if (caching_ctl)
1191 list_del_init(&caching_ctl->list);
1192 write_unlock(&fs_info->block_group_cache_lock);
1193
1194 if (caching_ctl) {
1195 /* Once for the caching bgs list and once for us. */
1196 btrfs_put_caching_control(caching_ctl);
1197 btrfs_put_caching_control(caching_ctl);
1198 }
1199
1200 spin_lock(&trans->transaction->dirty_bgs_lock);
1201 WARN_ON(!list_empty(&block_group->dirty_list));
1202 WARN_ON(!list_empty(&block_group->io_list));
1203 spin_unlock(&trans->transaction->dirty_bgs_lock);
1204
1205 btrfs_remove_free_space_cache(block_group);
1206
1207 spin_lock(&block_group->space_info->lock);
1208 list_del_init(&block_group->ro_list);
1209
1210 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1211 WARN_ON(block_group->space_info->total_bytes
1212 < block_group->length);
1213 WARN_ON(block_group->space_info->bytes_readonly
1214 < block_group->length - block_group->zone_unusable);
1215 WARN_ON(block_group->space_info->bytes_zone_unusable
1216 < block_group->zone_unusable);
1217 WARN_ON(block_group->space_info->disk_total
1218 < block_group->length * factor);
1219 }
1220 block_group->space_info->total_bytes -= block_group->length;
1221 block_group->space_info->bytes_readonly -=
1222 (block_group->length - block_group->zone_unusable);
1223 btrfs_space_info_update_bytes_zone_unusable(block_group->space_info,
1224 -block_group->zone_unusable);
1225 block_group->space_info->disk_total -= block_group->length * factor;
1226
1227 spin_unlock(&block_group->space_info->lock);
1228
1229 /*
1230 * Remove the free space for the block group from the free space tree
1231 * and the block group's item from the extent tree before marking the
1232 * block group as removed. This is to prevent races with tasks that
1233 * freeze and unfreeze a block group, this task and another task
1234 * allocating a new block group - the unfreeze task ends up removing
1235 * the block group's extent map before the task calling this function
1236 * deletes the block group item from the extent tree, allowing for
1237 * another task to attempt to create another block group with the same
1238 * item key (and failing with -EEXIST and a transaction abort).
1239 */
1240 ret = remove_block_group_free_space(trans, block_group);
1241 if (ret)
1242 goto out;
1243
1244 ret = remove_block_group_item(trans, path, block_group);
1245 if (ret < 0)
1246 goto out;
1247
1248 spin_lock(&block_group->lock);
1249 set_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags);
1250
1251 /*
1252 * At this point trimming or scrub can't start on this block group,
1253 * because we removed the block group from the rbtree
1254 * fs_info->block_group_cache_tree so no one can't find it anymore and
1255 * even if someone already got this block group before we removed it
1256 * from the rbtree, they have already incremented block_group->frozen -
1257 * if they didn't, for the trimming case they won't find any free space
1258 * entries because we already removed them all when we called
1259 * btrfs_remove_free_space_cache().
1260 *
1261 * And we must not remove the chunk map from the fs_info->mapping_tree
1262 * to prevent the same logical address range and physical device space
1263 * ranges from being reused for a new block group. This is needed to
1264 * avoid races with trimming and scrub.
1265 *
1266 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1267 * completely transactionless, so while it is trimming a range the
1268 * currently running transaction might finish and a new one start,
1269 * allowing for new block groups to be created that can reuse the same
1270 * physical device locations unless we take this special care.
1271 *
1272 * There may also be an implicit trim operation if the file system
1273 * is mounted with -odiscard. The same protections must remain
1274 * in place until the extents have been discarded completely when
1275 * the transaction commit has completed.
1276 */
1277 remove_map = (atomic_read(&block_group->frozen) == 0);
1278 spin_unlock(&block_group->lock);
1279
1280 if (remove_map)
1281 btrfs_remove_chunk_map(fs_info, map);
1282
1283 out:
1284 /* Once for the lookup reference */
1285 btrfs_put_block_group(block_group);
1286 if (remove_rsv)
1287 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
1288 btrfs_free_path(path);
1289 return ret;
1290 }
1291
btrfs_start_trans_remove_block_group(struct btrfs_fs_info * fs_info,const u64 chunk_offset)1292 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1293 struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1294 {
1295 struct btrfs_root *root = btrfs_block_group_root(fs_info);
1296 struct btrfs_chunk_map *map;
1297 unsigned int num_items;
1298
1299 map = btrfs_find_chunk_map(fs_info, chunk_offset, 1);
1300 ASSERT(map != NULL);
1301 ASSERT(map->start == chunk_offset);
1302
1303 /*
1304 * We need to reserve 3 + N units from the metadata space info in order
1305 * to remove a block group (done at btrfs_remove_chunk() and at
1306 * btrfs_remove_block_group()), which are used for:
1307 *
1308 * 1 unit for adding the free space inode's orphan (located in the tree
1309 * of tree roots).
1310 * 1 unit for deleting the block group item (located in the extent
1311 * tree).
1312 * 1 unit for deleting the free space item (located in tree of tree
1313 * roots).
1314 * N units for deleting N device extent items corresponding to each
1315 * stripe (located in the device tree).
1316 *
1317 * In order to remove a block group we also need to reserve units in the
1318 * system space info in order to update the chunk tree (update one or
1319 * more device items and remove one chunk item), but this is done at
1320 * btrfs_remove_chunk() through a call to check_system_chunk().
1321 */
1322 num_items = 3 + map->num_stripes;
1323 btrfs_free_chunk_map(map);
1324
1325 return btrfs_start_transaction_fallback_global_rsv(root, num_items);
1326 }
1327
1328 /*
1329 * Mark block group @cache read-only, so later write won't happen to block
1330 * group @cache.
1331 *
1332 * If @force is not set, this function will only mark the block group readonly
1333 * if we have enough free space (1M) in other metadata/system block groups.
1334 * If @force is not set, this function will mark the block group readonly
1335 * without checking free space.
1336 *
1337 * NOTE: This function doesn't care if other block groups can contain all the
1338 * data in this block group. That check should be done by relocation routine,
1339 * not this function.
1340 */
inc_block_group_ro(struct btrfs_block_group * cache,int force)1341 static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1342 {
1343 struct btrfs_space_info *sinfo = cache->space_info;
1344 u64 num_bytes;
1345 int ret = -ENOSPC;
1346
1347 spin_lock(&sinfo->lock);
1348 spin_lock(&cache->lock);
1349
1350 if (cache->swap_extents) {
1351 ret = -ETXTBSY;
1352 goto out;
1353 }
1354
1355 if (cache->ro) {
1356 cache->ro++;
1357 ret = 0;
1358 goto out;
1359 }
1360
1361 num_bytes = cache->length - cache->reserved - cache->pinned -
1362 cache->bytes_super - cache->zone_unusable - cache->used;
1363
1364 /*
1365 * Data never overcommits, even in mixed mode, so do just the straight
1366 * check of left over space in how much we have allocated.
1367 */
1368 if (force) {
1369 ret = 0;
1370 } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1371 u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1372
1373 /*
1374 * Here we make sure if we mark this bg RO, we still have enough
1375 * free space as buffer.
1376 */
1377 if (sinfo_used + num_bytes <= sinfo->total_bytes)
1378 ret = 0;
1379 } else {
1380 /*
1381 * We overcommit metadata, so we need to do the
1382 * btrfs_can_overcommit check here, and we need to pass in
1383 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1384 * leeway to allow us to mark this block group as read only.
1385 */
1386 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1387 BTRFS_RESERVE_NO_FLUSH))
1388 ret = 0;
1389 }
1390
1391 if (!ret) {
1392 sinfo->bytes_readonly += num_bytes;
1393 if (btrfs_is_zoned(cache->fs_info)) {
1394 /* Migrate zone_unusable bytes to readonly */
1395 sinfo->bytes_readonly += cache->zone_unusable;
1396 btrfs_space_info_update_bytes_zone_unusable(sinfo, -cache->zone_unusable);
1397 cache->zone_unusable = 0;
1398 }
1399 cache->ro++;
1400 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1401 }
1402 out:
1403 spin_unlock(&cache->lock);
1404 spin_unlock(&sinfo->lock);
1405 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1406 btrfs_info(cache->fs_info,
1407 "unable to make block group %llu ro", cache->start);
1408 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1409 }
1410 return ret;
1411 }
1412
clean_pinned_extents(struct btrfs_trans_handle * trans,const struct btrfs_block_group * bg)1413 static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1414 const struct btrfs_block_group *bg)
1415 {
1416 struct btrfs_fs_info *fs_info = trans->fs_info;
1417 struct btrfs_transaction *prev_trans = NULL;
1418 const u64 start = bg->start;
1419 const u64 end = start + bg->length - 1;
1420 int ret;
1421
1422 spin_lock(&fs_info->trans_lock);
1423 if (trans->transaction->list.prev != &fs_info->trans_list) {
1424 prev_trans = list_last_entry(&trans->transaction->list,
1425 struct btrfs_transaction, list);
1426 refcount_inc(&prev_trans->use_count);
1427 }
1428 spin_unlock(&fs_info->trans_lock);
1429
1430 /*
1431 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1432 * btrfs_finish_extent_commit(). If we are at transaction N, another
1433 * task might be running finish_extent_commit() for the previous
1434 * transaction N - 1, and have seen a range belonging to the block
1435 * group in pinned_extents before we were able to clear the whole block
1436 * group range from pinned_extents. This means that task can lookup for
1437 * the block group after we unpinned it from pinned_extents and removed
1438 * it, leading to an error at unpin_extent_range().
1439 */
1440 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1441 if (prev_trans) {
1442 ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1443 EXTENT_DIRTY);
1444 if (ret)
1445 goto out;
1446 }
1447
1448 ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
1449 EXTENT_DIRTY);
1450 out:
1451 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1452 if (prev_trans)
1453 btrfs_put_transaction(prev_trans);
1454
1455 return ret == 0;
1456 }
1457
1458 /*
1459 * Link the block_group to a list via bg_list.
1460 *
1461 * @bg: The block_group to link to the list.
1462 * @list: The list to link it to.
1463 *
1464 * Use this rather than list_add_tail() directly to ensure proper respect
1465 * to locking and refcounting.
1466 *
1467 * Returns: true if the bg was linked with a refcount bump and false otherwise.
1468 */
btrfs_link_bg_list(struct btrfs_block_group * bg,struct list_head * list)1469 static bool btrfs_link_bg_list(struct btrfs_block_group *bg, struct list_head *list)
1470 {
1471 struct btrfs_fs_info *fs_info = bg->fs_info;
1472 bool added = false;
1473
1474 spin_lock(&fs_info->unused_bgs_lock);
1475 if (list_empty(&bg->bg_list)) {
1476 btrfs_get_block_group(bg);
1477 list_add_tail(&bg->bg_list, list);
1478 added = true;
1479 }
1480 spin_unlock(&fs_info->unused_bgs_lock);
1481 return added;
1482 }
1483
1484 /*
1485 * Process the unused_bgs list and remove any that don't have any allocated
1486 * space inside of them.
1487 */
btrfs_delete_unused_bgs(struct btrfs_fs_info * fs_info)1488 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1489 {
1490 LIST_HEAD(retry_list);
1491 struct btrfs_block_group *block_group;
1492 struct btrfs_space_info *space_info;
1493 struct btrfs_trans_handle *trans;
1494 const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1495 int ret = 0;
1496
1497 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1498 return;
1499
1500 if (btrfs_fs_closing(fs_info))
1501 return;
1502
1503 /*
1504 * Long running balances can keep us blocked here for eternity, so
1505 * simply skip deletion if we're unable to get the mutex.
1506 */
1507 if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1508 return;
1509
1510 spin_lock(&fs_info->unused_bgs_lock);
1511 while (!list_empty(&fs_info->unused_bgs)) {
1512 u64 used;
1513 int trimming;
1514
1515 block_group = list_first_entry(&fs_info->unused_bgs,
1516 struct btrfs_block_group,
1517 bg_list);
1518 list_del_init(&block_group->bg_list);
1519
1520 space_info = block_group->space_info;
1521
1522 if (ret || btrfs_mixed_space_info(space_info)) {
1523 btrfs_put_block_group(block_group);
1524 continue;
1525 }
1526 spin_unlock(&fs_info->unused_bgs_lock);
1527
1528 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1529
1530 /* Don't want to race with allocators so take the groups_sem */
1531 down_write(&space_info->groups_sem);
1532
1533 /*
1534 * Async discard moves the final block group discard to be prior
1535 * to the unused_bgs code path. Therefore, if it's not fully
1536 * trimmed, punt it back to the async discard lists.
1537 */
1538 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1539 !btrfs_is_free_space_trimmed(block_group)) {
1540 trace_btrfs_skip_unused_block_group(block_group);
1541 up_write(&space_info->groups_sem);
1542 /* Requeue if we failed because of async discard */
1543 btrfs_discard_queue_work(&fs_info->discard_ctl,
1544 block_group);
1545 goto next;
1546 }
1547
1548 spin_lock(&space_info->lock);
1549 spin_lock(&block_group->lock);
1550 if (btrfs_is_block_group_used(block_group) || block_group->ro ||
1551 list_is_singular(&block_group->list)) {
1552 /*
1553 * We want to bail if we made new allocations or have
1554 * outstanding allocations in this block group. We do
1555 * the ro check in case balance is currently acting on
1556 * this block group.
1557 *
1558 * Also bail out if this is the only block group for its
1559 * type, because otherwise we would lose profile
1560 * information from fs_info->avail_*_alloc_bits and the
1561 * next block group of this type would be created with a
1562 * "single" profile (even if we're in a raid fs) because
1563 * fs_info->avail_*_alloc_bits would be 0.
1564 */
1565 trace_btrfs_skip_unused_block_group(block_group);
1566 spin_unlock(&block_group->lock);
1567 spin_unlock(&space_info->lock);
1568 up_write(&space_info->groups_sem);
1569 goto next;
1570 }
1571
1572 /*
1573 * The block group may be unused but there may be space reserved
1574 * accounting with the existence of that block group, that is,
1575 * space_info->bytes_may_use was incremented by a task but no
1576 * space was yet allocated from the block group by the task.
1577 * That space may or may not be allocated, as we are generally
1578 * pessimistic about space reservation for metadata as well as
1579 * for data when using compression (as we reserve space based on
1580 * the worst case, when data can't be compressed, and before
1581 * actually attempting compression, before starting writeback).
1582 *
1583 * So check if the total space of the space_info minus the size
1584 * of this block group is less than the used space of the
1585 * space_info - if that's the case, then it means we have tasks
1586 * that might be relying on the block group in order to allocate
1587 * extents, and add back the block group to the unused list when
1588 * we finish, so that we retry later in case no tasks ended up
1589 * needing to allocate extents from the block group.
1590 */
1591 used = btrfs_space_info_used(space_info, true);
1592 if (space_info->total_bytes - block_group->length < used &&
1593 block_group->zone_unusable < block_group->length) {
1594 /*
1595 * Add a reference for the list, compensate for the ref
1596 * drop under the "next" label for the
1597 * fs_info->unused_bgs list.
1598 */
1599 btrfs_link_bg_list(block_group, &retry_list);
1600
1601 trace_btrfs_skip_unused_block_group(block_group);
1602 spin_unlock(&block_group->lock);
1603 spin_unlock(&space_info->lock);
1604 up_write(&space_info->groups_sem);
1605 goto next;
1606 }
1607
1608 spin_unlock(&block_group->lock);
1609 spin_unlock(&space_info->lock);
1610
1611 /* We don't want to force the issue, only flip if it's ok. */
1612 ret = inc_block_group_ro(block_group, 0);
1613 up_write(&space_info->groups_sem);
1614 if (ret < 0) {
1615 ret = 0;
1616 goto next;
1617 }
1618
1619 ret = btrfs_zone_finish(block_group);
1620 if (ret < 0) {
1621 btrfs_dec_block_group_ro(block_group);
1622 if (ret == -EAGAIN)
1623 ret = 0;
1624 goto next;
1625 }
1626
1627 /*
1628 * Want to do this before we do anything else so we can recover
1629 * properly if we fail to join the transaction.
1630 */
1631 trans = btrfs_start_trans_remove_block_group(fs_info,
1632 block_group->start);
1633 if (IS_ERR(trans)) {
1634 btrfs_dec_block_group_ro(block_group);
1635 ret = PTR_ERR(trans);
1636 goto next;
1637 }
1638
1639 /*
1640 * We could have pending pinned extents for this block group,
1641 * just delete them, we don't care about them anymore.
1642 */
1643 if (!clean_pinned_extents(trans, block_group)) {
1644 btrfs_dec_block_group_ro(block_group);
1645 goto end_trans;
1646 }
1647
1648 /*
1649 * At this point, the block_group is read only and should fail
1650 * new allocations. However, btrfs_finish_extent_commit() can
1651 * cause this block_group to be placed back on the discard
1652 * lists because now the block_group isn't fully discarded.
1653 * Bail here and try again later after discarding everything.
1654 */
1655 spin_lock(&fs_info->discard_ctl.lock);
1656 if (!list_empty(&block_group->discard_list)) {
1657 spin_unlock(&fs_info->discard_ctl.lock);
1658 btrfs_dec_block_group_ro(block_group);
1659 btrfs_discard_queue_work(&fs_info->discard_ctl,
1660 block_group);
1661 goto end_trans;
1662 }
1663 spin_unlock(&fs_info->discard_ctl.lock);
1664
1665 /* Reset pinned so btrfs_put_block_group doesn't complain */
1666 spin_lock(&space_info->lock);
1667 spin_lock(&block_group->lock);
1668
1669 btrfs_space_info_update_bytes_pinned(space_info, -block_group->pinned);
1670 space_info->bytes_readonly += block_group->pinned;
1671 block_group->pinned = 0;
1672
1673 spin_unlock(&block_group->lock);
1674 spin_unlock(&space_info->lock);
1675
1676 /*
1677 * The normal path here is an unused block group is passed here,
1678 * then trimming is handled in the transaction commit path.
1679 * Async discard interposes before this to do the trimming
1680 * before coming down the unused block group path as trimming
1681 * will no longer be done later in the transaction commit path.
1682 */
1683 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1684 goto flip_async;
1685
1686 /*
1687 * DISCARD can flip during remount. On zoned filesystems, we
1688 * need to reset sequential-required zones.
1689 */
1690 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) ||
1691 btrfs_is_zoned(fs_info);
1692
1693 /* Implicit trim during transaction commit. */
1694 if (trimming)
1695 btrfs_freeze_block_group(block_group);
1696
1697 /*
1698 * Btrfs_remove_chunk will abort the transaction if things go
1699 * horribly wrong.
1700 */
1701 ret = btrfs_remove_chunk(trans, block_group->start);
1702
1703 if (ret) {
1704 if (trimming)
1705 btrfs_unfreeze_block_group(block_group);
1706 goto end_trans;
1707 }
1708
1709 /*
1710 * If we're not mounted with -odiscard, we can just forget
1711 * about this block group. Otherwise we'll need to wait
1712 * until transaction commit to do the actual discard.
1713 */
1714 if (trimming) {
1715 spin_lock(&fs_info->unused_bgs_lock);
1716 /*
1717 * A concurrent scrub might have added us to the list
1718 * fs_info->unused_bgs, so use a list_move operation
1719 * to add the block group to the deleted_bgs list.
1720 */
1721 list_move(&block_group->bg_list,
1722 &trans->transaction->deleted_bgs);
1723 spin_unlock(&fs_info->unused_bgs_lock);
1724 btrfs_get_block_group(block_group);
1725 }
1726 end_trans:
1727 btrfs_end_transaction(trans);
1728 next:
1729 btrfs_put_block_group(block_group);
1730 spin_lock(&fs_info->unused_bgs_lock);
1731 }
1732 list_splice_tail(&retry_list, &fs_info->unused_bgs);
1733 spin_unlock(&fs_info->unused_bgs_lock);
1734 mutex_unlock(&fs_info->reclaim_bgs_lock);
1735 return;
1736
1737 flip_async:
1738 btrfs_end_transaction(trans);
1739 spin_lock(&fs_info->unused_bgs_lock);
1740 list_splice_tail(&retry_list, &fs_info->unused_bgs);
1741 spin_unlock(&fs_info->unused_bgs_lock);
1742 mutex_unlock(&fs_info->reclaim_bgs_lock);
1743 btrfs_put_block_group(block_group);
1744 btrfs_discard_punt_unused_bgs_list(fs_info);
1745 }
1746
btrfs_mark_bg_unused(struct btrfs_block_group * bg)1747 void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1748 {
1749 struct btrfs_fs_info *fs_info = bg->fs_info;
1750
1751 spin_lock(&fs_info->unused_bgs_lock);
1752 if (list_empty(&bg->bg_list)) {
1753 btrfs_get_block_group(bg);
1754 trace_btrfs_add_unused_block_group(bg);
1755 list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1756 } else if (!test_bit(BLOCK_GROUP_FLAG_NEW, &bg->runtime_flags)) {
1757 /* Pull out the block group from the reclaim_bgs list. */
1758 trace_btrfs_add_unused_block_group(bg);
1759 list_move_tail(&bg->bg_list, &fs_info->unused_bgs);
1760 }
1761 spin_unlock(&fs_info->unused_bgs_lock);
1762 }
1763
1764 /*
1765 * We want block groups with a low number of used bytes to be in the beginning
1766 * of the list, so they will get reclaimed first.
1767 */
reclaim_bgs_cmp(void * unused,const struct list_head * a,const struct list_head * b)1768 static int reclaim_bgs_cmp(void *unused, const struct list_head *a,
1769 const struct list_head *b)
1770 {
1771 const struct btrfs_block_group *bg1, *bg2;
1772
1773 bg1 = list_entry(a, struct btrfs_block_group, bg_list);
1774 bg2 = list_entry(b, struct btrfs_block_group, bg_list);
1775
1776 return bg1->used > bg2->used;
1777 }
1778
btrfs_should_reclaim(const struct btrfs_fs_info * fs_info)1779 static inline bool btrfs_should_reclaim(const struct btrfs_fs_info *fs_info)
1780 {
1781 if (btrfs_is_zoned(fs_info))
1782 return btrfs_zoned_should_reclaim(fs_info);
1783 return true;
1784 }
1785
should_reclaim_block_group(const struct btrfs_block_group * bg,u64 bytes_freed)1786 static bool should_reclaim_block_group(const struct btrfs_block_group *bg, u64 bytes_freed)
1787 {
1788 const int thresh_pct = btrfs_calc_reclaim_threshold(bg->space_info);
1789 u64 thresh_bytes = mult_perc(bg->length, thresh_pct);
1790 const u64 new_val = bg->used;
1791 const u64 old_val = new_val + bytes_freed;
1792
1793 if (thresh_bytes == 0)
1794 return false;
1795
1796 /*
1797 * If we were below the threshold before don't reclaim, we are likely a
1798 * brand new block group and we don't want to relocate new block groups.
1799 */
1800 if (old_val < thresh_bytes)
1801 return false;
1802 if (new_val >= thresh_bytes)
1803 return false;
1804 return true;
1805 }
1806
btrfs_reclaim_bgs_work(struct work_struct * work)1807 void btrfs_reclaim_bgs_work(struct work_struct *work)
1808 {
1809 struct btrfs_fs_info *fs_info =
1810 container_of(work, struct btrfs_fs_info, reclaim_bgs_work);
1811 struct btrfs_block_group *bg;
1812 struct btrfs_space_info *space_info;
1813 LIST_HEAD(retry_list);
1814
1815 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1816 return;
1817
1818 if (btrfs_fs_closing(fs_info))
1819 return;
1820
1821 if (!btrfs_should_reclaim(fs_info))
1822 return;
1823
1824 sb_start_write(fs_info->sb);
1825
1826 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
1827 sb_end_write(fs_info->sb);
1828 return;
1829 }
1830
1831 /*
1832 * Long running balances can keep us blocked here for eternity, so
1833 * simply skip reclaim if we're unable to get the mutex.
1834 */
1835 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) {
1836 btrfs_exclop_finish(fs_info);
1837 sb_end_write(fs_info->sb);
1838 return;
1839 }
1840
1841 spin_lock(&fs_info->unused_bgs_lock);
1842 /*
1843 * Sort happens under lock because we can't simply splice it and sort.
1844 * The block groups might still be in use and reachable via bg_list,
1845 * and their presence in the reclaim_bgs list must be preserved.
1846 */
1847 list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp);
1848 while (!list_empty(&fs_info->reclaim_bgs)) {
1849 u64 zone_unusable;
1850 u64 used;
1851 u64 reserved;
1852 int ret = 0;
1853
1854 bg = list_first_entry(&fs_info->reclaim_bgs,
1855 struct btrfs_block_group,
1856 bg_list);
1857 list_del_init(&bg->bg_list);
1858
1859 space_info = bg->space_info;
1860 spin_unlock(&fs_info->unused_bgs_lock);
1861
1862 /* Don't race with allocators so take the groups_sem */
1863 down_write(&space_info->groups_sem);
1864
1865 spin_lock(&space_info->lock);
1866 spin_lock(&bg->lock);
1867 if (bg->reserved || bg->pinned || bg->ro) {
1868 /*
1869 * We want to bail if we made new allocations or have
1870 * outstanding allocations in this block group. We do
1871 * the ro check in case balance is currently acting on
1872 * this block group.
1873 */
1874 spin_unlock(&bg->lock);
1875 spin_unlock(&space_info->lock);
1876 up_write(&space_info->groups_sem);
1877 goto next;
1878 }
1879 if (bg->used == 0) {
1880 /*
1881 * It is possible that we trigger relocation on a block
1882 * group as its extents are deleted and it first goes
1883 * below the threshold, then shortly after goes empty.
1884 *
1885 * In this case, relocating it does delete it, but has
1886 * some overhead in relocation specific metadata, looking
1887 * for the non-existent extents and running some extra
1888 * transactions, which we can avoid by using one of the
1889 * other mechanisms for dealing with empty block groups.
1890 */
1891 if (!btrfs_test_opt(fs_info, DISCARD_ASYNC))
1892 btrfs_mark_bg_unused(bg);
1893 spin_unlock(&bg->lock);
1894 spin_unlock(&space_info->lock);
1895 up_write(&space_info->groups_sem);
1896 goto next;
1897
1898 }
1899 /*
1900 * The block group might no longer meet the reclaim condition by
1901 * the time we get around to reclaiming it, so to avoid
1902 * reclaiming overly full block_groups, skip reclaiming them.
1903 *
1904 * Since the decision making process also depends on the amount
1905 * being freed, pass in a fake giant value to skip that extra
1906 * check, which is more meaningful when adding to the list in
1907 * the first place.
1908 */
1909 if (!should_reclaim_block_group(bg, bg->length)) {
1910 spin_unlock(&bg->lock);
1911 spin_unlock(&space_info->lock);
1912 up_write(&space_info->groups_sem);
1913 goto next;
1914 }
1915
1916 /*
1917 * Cache the zone_unusable value before turning the block group
1918 * to read only. As soon as the block group is read only it's
1919 * zone_unusable value gets moved to the block group's read-only
1920 * bytes and isn't available for calculations anymore. We also
1921 * cache it before unlocking the block group, to prevent races
1922 * (reports from KCSAN and such tools) with tasks updating it.
1923 */
1924 zone_unusable = bg->zone_unusable;
1925
1926 spin_unlock(&bg->lock);
1927 spin_unlock(&space_info->lock);
1928
1929 /*
1930 * Get out fast, in case we're read-only or unmounting the
1931 * filesystem. It is OK to drop block groups from the list even
1932 * for the read-only case. As we did sb_start_write(),
1933 * "mount -o remount,ro" won't happen and read-only filesystem
1934 * means it is forced read-only due to a fatal error. So, it
1935 * never gets back to read-write to let us reclaim again.
1936 */
1937 if (btrfs_need_cleaner_sleep(fs_info)) {
1938 up_write(&space_info->groups_sem);
1939 goto next;
1940 }
1941
1942 ret = inc_block_group_ro(bg, 0);
1943 up_write(&space_info->groups_sem);
1944 if (ret < 0)
1945 goto next;
1946
1947 /*
1948 * The amount of bytes reclaimed corresponds to the sum of the
1949 * "used" and "reserved" counters. We have set the block group
1950 * to RO above, which prevents reservations from happening but
1951 * we may have existing reservations for which allocation has
1952 * not yet been done - btrfs_update_block_group() was not yet
1953 * called, which is where we will transfer a reserved extent's
1954 * size from the "reserved" counter to the "used" counter - this
1955 * happens when running delayed references. When we relocate the
1956 * chunk below, relocation first flushes dellaloc, waits for
1957 * ordered extent completion (which is where we create delayed
1958 * references for data extents) and commits the current
1959 * transaction (which runs delayed references), and only after
1960 * it does the actual work to move extents out of the block
1961 * group. So the reported amount of reclaimed bytes is
1962 * effectively the sum of the 'used' and 'reserved' counters.
1963 */
1964 spin_lock(&bg->lock);
1965 used = bg->used;
1966 reserved = bg->reserved;
1967 spin_unlock(&bg->lock);
1968
1969 btrfs_info(fs_info,
1970 "reclaiming chunk %llu with %llu%% used %llu%% reserved %llu%% unusable",
1971 bg->start,
1972 div64_u64(used * 100, bg->length),
1973 div64_u64(reserved * 100, bg->length),
1974 div64_u64(zone_unusable * 100, bg->length));
1975 trace_btrfs_reclaim_block_group(bg);
1976 ret = btrfs_relocate_chunk(fs_info, bg->start);
1977 if (ret) {
1978 btrfs_dec_block_group_ro(bg);
1979 btrfs_err(fs_info, "error relocating chunk %llu",
1980 bg->start);
1981 used = 0;
1982 reserved = 0;
1983 spin_lock(&space_info->lock);
1984 space_info->reclaim_errors++;
1985 if (READ_ONCE(space_info->periodic_reclaim))
1986 space_info->periodic_reclaim_ready = false;
1987 spin_unlock(&space_info->lock);
1988 }
1989 spin_lock(&space_info->lock);
1990 space_info->reclaim_count++;
1991 space_info->reclaim_bytes += used;
1992 space_info->reclaim_bytes += reserved;
1993 spin_unlock(&space_info->lock);
1994
1995 next:
1996 if (ret && !READ_ONCE(space_info->periodic_reclaim))
1997 btrfs_link_bg_list(bg, &retry_list);
1998 btrfs_put_block_group(bg);
1999
2000 mutex_unlock(&fs_info->reclaim_bgs_lock);
2001 /*
2002 * Reclaiming all the block groups in the list can take really
2003 * long. Prioritize cleaning up unused block groups.
2004 */
2005 btrfs_delete_unused_bgs(fs_info);
2006 /*
2007 * If we are interrupted by a balance, we can just bail out. The
2008 * cleaner thread restart again if necessary.
2009 */
2010 if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
2011 goto end;
2012 spin_lock(&fs_info->unused_bgs_lock);
2013 }
2014 spin_unlock(&fs_info->unused_bgs_lock);
2015 mutex_unlock(&fs_info->reclaim_bgs_lock);
2016 end:
2017 spin_lock(&fs_info->unused_bgs_lock);
2018 list_splice_tail(&retry_list, &fs_info->reclaim_bgs);
2019 spin_unlock(&fs_info->unused_bgs_lock);
2020 btrfs_exclop_finish(fs_info);
2021 sb_end_write(fs_info->sb);
2022 }
2023
btrfs_reclaim_bgs(struct btrfs_fs_info * fs_info)2024 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info)
2025 {
2026 btrfs_reclaim_sweep(fs_info);
2027 spin_lock(&fs_info->unused_bgs_lock);
2028 if (!list_empty(&fs_info->reclaim_bgs))
2029 queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work);
2030 spin_unlock(&fs_info->unused_bgs_lock);
2031 }
2032
btrfs_mark_bg_to_reclaim(struct btrfs_block_group * bg)2033 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg)
2034 {
2035 struct btrfs_fs_info *fs_info = bg->fs_info;
2036
2037 if (btrfs_link_bg_list(bg, &fs_info->reclaim_bgs))
2038 trace_btrfs_add_reclaim_block_group(bg);
2039 }
2040
read_bg_from_eb(struct btrfs_fs_info * fs_info,const struct btrfs_key * key,const struct btrfs_path * path)2041 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, const struct btrfs_key *key,
2042 const struct btrfs_path *path)
2043 {
2044 struct btrfs_chunk_map *map;
2045 struct btrfs_block_group_item bg;
2046 struct extent_buffer *leaf;
2047 int slot;
2048 u64 flags;
2049 int ret = 0;
2050
2051 slot = path->slots[0];
2052 leaf = path->nodes[0];
2053
2054 map = btrfs_find_chunk_map(fs_info, key->objectid, key->offset);
2055 if (!map) {
2056 btrfs_err(fs_info,
2057 "logical %llu len %llu found bg but no related chunk",
2058 key->objectid, key->offset);
2059 return -ENOENT;
2060 }
2061
2062 if (map->start != key->objectid || map->chunk_len != key->offset) {
2063 btrfs_err(fs_info,
2064 "block group %llu len %llu mismatch with chunk %llu len %llu",
2065 key->objectid, key->offset, map->start, map->chunk_len);
2066 ret = -EUCLEAN;
2067 goto out_free_map;
2068 }
2069
2070 read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
2071 sizeof(bg));
2072 flags = btrfs_stack_block_group_flags(&bg) &
2073 BTRFS_BLOCK_GROUP_TYPE_MASK;
2074
2075 if (flags != (map->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
2076 btrfs_err(fs_info,
2077 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
2078 key->objectid, key->offset, flags,
2079 (BTRFS_BLOCK_GROUP_TYPE_MASK & map->type));
2080 ret = -EUCLEAN;
2081 }
2082
2083 out_free_map:
2084 btrfs_free_chunk_map(map);
2085 return ret;
2086 }
2087
find_first_block_group(struct btrfs_fs_info * fs_info,struct btrfs_path * path,const struct btrfs_key * key)2088 static int find_first_block_group(struct btrfs_fs_info *fs_info,
2089 struct btrfs_path *path,
2090 const struct btrfs_key *key)
2091 {
2092 struct btrfs_root *root = btrfs_block_group_root(fs_info);
2093 int ret;
2094 struct btrfs_key found_key;
2095
2096 btrfs_for_each_slot(root, key, &found_key, path, ret) {
2097 if (found_key.objectid >= key->objectid &&
2098 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
2099 return read_bg_from_eb(fs_info, &found_key, path);
2100 }
2101 }
2102 return ret;
2103 }
2104
set_avail_alloc_bits(struct btrfs_fs_info * fs_info,u64 flags)2105 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
2106 {
2107 u64 extra_flags = chunk_to_extended(flags) &
2108 BTRFS_EXTENDED_PROFILE_MASK;
2109
2110 write_seqlock(&fs_info->profiles_lock);
2111 if (flags & BTRFS_BLOCK_GROUP_DATA)
2112 fs_info->avail_data_alloc_bits |= extra_flags;
2113 if (flags & BTRFS_BLOCK_GROUP_METADATA)
2114 fs_info->avail_metadata_alloc_bits |= extra_flags;
2115 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
2116 fs_info->avail_system_alloc_bits |= extra_flags;
2117 write_sequnlock(&fs_info->profiles_lock);
2118 }
2119
2120 /*
2121 * Map a physical disk address to a list of logical addresses.
2122 *
2123 * @fs_info: the filesystem
2124 * @chunk_start: logical address of block group
2125 * @physical: physical address to map to logical addresses
2126 * @logical: return array of logical addresses which map to @physical
2127 * @naddrs: length of @logical
2128 * @stripe_len: size of IO stripe for the given block group
2129 *
2130 * Maps a particular @physical disk address to a list of @logical addresses.
2131 * Used primarily to exclude those portions of a block group that contain super
2132 * block copies.
2133 */
btrfs_rmap_block(struct btrfs_fs_info * fs_info,u64 chunk_start,u64 physical,u64 ** logical,int * naddrs,int * stripe_len)2134 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
2135 u64 physical, u64 **logical, int *naddrs, int *stripe_len)
2136 {
2137 struct btrfs_chunk_map *map;
2138 u64 *buf;
2139 u64 bytenr;
2140 u64 data_stripe_length;
2141 u64 io_stripe_size;
2142 int i, nr = 0;
2143 int ret = 0;
2144
2145 map = btrfs_get_chunk_map(fs_info, chunk_start, 1);
2146 if (IS_ERR(map))
2147 return -EIO;
2148
2149 data_stripe_length = map->stripe_size;
2150 io_stripe_size = BTRFS_STRIPE_LEN;
2151 chunk_start = map->start;
2152
2153 /* For RAID5/6 adjust to a full IO stripe length */
2154 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2155 io_stripe_size = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
2156
2157 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
2158 if (!buf) {
2159 ret = -ENOMEM;
2160 goto out;
2161 }
2162
2163 for (i = 0; i < map->num_stripes; i++) {
2164 bool already_inserted = false;
2165 u32 stripe_nr;
2166 u32 offset;
2167 int j;
2168
2169 if (!in_range(physical, map->stripes[i].physical,
2170 data_stripe_length))
2171 continue;
2172
2173 stripe_nr = (physical - map->stripes[i].physical) >>
2174 BTRFS_STRIPE_LEN_SHIFT;
2175 offset = (physical - map->stripes[i].physical) &
2176 BTRFS_STRIPE_LEN_MASK;
2177
2178 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2179 BTRFS_BLOCK_GROUP_RAID10))
2180 stripe_nr = div_u64(stripe_nr * map->num_stripes + i,
2181 map->sub_stripes);
2182 /*
2183 * The remaining case would be for RAID56, multiply by
2184 * nr_data_stripes(). Alternatively, just use rmap_len below
2185 * instead of map->stripe_len
2186 */
2187 bytenr = chunk_start + stripe_nr * io_stripe_size + offset;
2188
2189 /* Ensure we don't add duplicate addresses */
2190 for (j = 0; j < nr; j++) {
2191 if (buf[j] == bytenr) {
2192 already_inserted = true;
2193 break;
2194 }
2195 }
2196
2197 if (!already_inserted)
2198 buf[nr++] = bytenr;
2199 }
2200
2201 *logical = buf;
2202 *naddrs = nr;
2203 *stripe_len = io_stripe_size;
2204 out:
2205 btrfs_free_chunk_map(map);
2206 return ret;
2207 }
2208
exclude_super_stripes(struct btrfs_block_group * cache)2209 static int exclude_super_stripes(struct btrfs_block_group *cache)
2210 {
2211 struct btrfs_fs_info *fs_info = cache->fs_info;
2212 const bool zoned = btrfs_is_zoned(fs_info);
2213 u64 bytenr;
2214 u64 *logical;
2215 int stripe_len;
2216 int i, nr, ret;
2217
2218 if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
2219 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
2220 cache->bytes_super += stripe_len;
2221 ret = set_extent_bit(&fs_info->excluded_extents, cache->start,
2222 cache->start + stripe_len - 1,
2223 EXTENT_UPTODATE, NULL);
2224 if (ret)
2225 return ret;
2226 }
2227
2228 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2229 bytenr = btrfs_sb_offset(i);
2230 ret = btrfs_rmap_block(fs_info, cache->start,
2231 bytenr, &logical, &nr, &stripe_len);
2232 if (ret)
2233 return ret;
2234
2235 /* Shouldn't have super stripes in sequential zones */
2236 if (zoned && nr) {
2237 kfree(logical);
2238 btrfs_err(fs_info,
2239 "zoned: block group %llu must not contain super block",
2240 cache->start);
2241 return -EUCLEAN;
2242 }
2243
2244 while (nr--) {
2245 u64 len = min_t(u64, stripe_len,
2246 cache->start + cache->length - logical[nr]);
2247
2248 cache->bytes_super += len;
2249 ret = set_extent_bit(&fs_info->excluded_extents, logical[nr],
2250 logical[nr] + len - 1,
2251 EXTENT_UPTODATE, NULL);
2252 if (ret) {
2253 kfree(logical);
2254 return ret;
2255 }
2256 }
2257
2258 kfree(logical);
2259 }
2260 return 0;
2261 }
2262
btrfs_create_block_group_cache(struct btrfs_fs_info * fs_info,u64 start)2263 static struct btrfs_block_group *btrfs_create_block_group_cache(
2264 struct btrfs_fs_info *fs_info, u64 start)
2265 {
2266 struct btrfs_block_group *cache;
2267
2268 cache = kzalloc(sizeof(*cache), GFP_NOFS);
2269 if (!cache)
2270 return NULL;
2271
2272 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
2273 GFP_NOFS);
2274 if (!cache->free_space_ctl) {
2275 kfree(cache);
2276 return NULL;
2277 }
2278
2279 cache->start = start;
2280
2281 cache->fs_info = fs_info;
2282 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
2283
2284 cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
2285
2286 refcount_set(&cache->refs, 1);
2287 spin_lock_init(&cache->lock);
2288 init_rwsem(&cache->data_rwsem);
2289 INIT_LIST_HEAD(&cache->list);
2290 INIT_LIST_HEAD(&cache->cluster_list);
2291 INIT_LIST_HEAD(&cache->bg_list);
2292 INIT_LIST_HEAD(&cache->ro_list);
2293 INIT_LIST_HEAD(&cache->discard_list);
2294 INIT_LIST_HEAD(&cache->dirty_list);
2295 INIT_LIST_HEAD(&cache->io_list);
2296 INIT_LIST_HEAD(&cache->active_bg_list);
2297 btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
2298 atomic_set(&cache->frozen, 0);
2299 mutex_init(&cache->free_space_lock);
2300
2301 return cache;
2302 }
2303
2304 /*
2305 * Iterate all chunks and verify that each of them has the corresponding block
2306 * group
2307 */
check_chunk_block_group_mappings(struct btrfs_fs_info * fs_info)2308 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
2309 {
2310 u64 start = 0;
2311 int ret = 0;
2312
2313 while (1) {
2314 struct btrfs_chunk_map *map;
2315 struct btrfs_block_group *bg;
2316
2317 /*
2318 * btrfs_find_chunk_map() will return the first chunk map
2319 * intersecting the range, so setting @length to 1 is enough to
2320 * get the first chunk.
2321 */
2322 map = btrfs_find_chunk_map(fs_info, start, 1);
2323 if (!map)
2324 break;
2325
2326 bg = btrfs_lookup_block_group(fs_info, map->start);
2327 if (!bg) {
2328 btrfs_err(fs_info,
2329 "chunk start=%llu len=%llu doesn't have corresponding block group",
2330 map->start, map->chunk_len);
2331 ret = -EUCLEAN;
2332 btrfs_free_chunk_map(map);
2333 break;
2334 }
2335 if (bg->start != map->start || bg->length != map->chunk_len ||
2336 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
2337 (map->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
2338 btrfs_err(fs_info,
2339 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
2340 map->start, map->chunk_len,
2341 map->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
2342 bg->start, bg->length,
2343 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
2344 ret = -EUCLEAN;
2345 btrfs_free_chunk_map(map);
2346 btrfs_put_block_group(bg);
2347 break;
2348 }
2349 start = map->start + map->chunk_len;
2350 btrfs_free_chunk_map(map);
2351 btrfs_put_block_group(bg);
2352 }
2353 return ret;
2354 }
2355
read_one_block_group(struct btrfs_fs_info * info,struct btrfs_block_group_item * bgi,const struct btrfs_key * key,int need_clear)2356 static int read_one_block_group(struct btrfs_fs_info *info,
2357 struct btrfs_block_group_item *bgi,
2358 const struct btrfs_key *key,
2359 int need_clear)
2360 {
2361 struct btrfs_block_group *cache;
2362 const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
2363 int ret;
2364
2365 ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
2366
2367 cache = btrfs_create_block_group_cache(info, key->objectid);
2368 if (!cache)
2369 return -ENOMEM;
2370
2371 cache->length = key->offset;
2372 cache->used = btrfs_stack_block_group_used(bgi);
2373 cache->commit_used = cache->used;
2374 cache->flags = btrfs_stack_block_group_flags(bgi);
2375 cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi);
2376
2377 set_free_space_tree_thresholds(cache);
2378
2379 if (need_clear) {
2380 /*
2381 * When we mount with old space cache, we need to
2382 * set BTRFS_DC_CLEAR and set dirty flag.
2383 *
2384 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
2385 * truncate the old free space cache inode and
2386 * setup a new one.
2387 * b) Setting 'dirty flag' makes sure that we flush
2388 * the new space cache info onto disk.
2389 */
2390 if (btrfs_test_opt(info, SPACE_CACHE))
2391 cache->disk_cache_state = BTRFS_DC_CLEAR;
2392 }
2393 if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
2394 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
2395 btrfs_err(info,
2396 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
2397 cache->start);
2398 ret = -EINVAL;
2399 goto error;
2400 }
2401
2402 ret = btrfs_load_block_group_zone_info(cache, false);
2403 if (ret) {
2404 btrfs_err(info, "zoned: failed to load zone info of bg %llu",
2405 cache->start);
2406 goto error;
2407 }
2408
2409 /*
2410 * We need to exclude the super stripes now so that the space info has
2411 * super bytes accounted for, otherwise we'll think we have more space
2412 * than we actually do.
2413 */
2414 ret = exclude_super_stripes(cache);
2415 if (ret) {
2416 /* We may have excluded something, so call this just in case. */
2417 btrfs_free_excluded_extents(cache);
2418 goto error;
2419 }
2420
2421 /*
2422 * For zoned filesystem, space after the allocation offset is the only
2423 * free space for a block group. So, we don't need any caching work.
2424 * btrfs_calc_zone_unusable() will set the amount of free space and
2425 * zone_unusable space.
2426 *
2427 * For regular filesystem, check for two cases, either we are full, and
2428 * therefore don't need to bother with the caching work since we won't
2429 * find any space, or we are empty, and we can just add all the space
2430 * in and be done with it. This saves us _a_lot_ of time, particularly
2431 * in the full case.
2432 */
2433 if (btrfs_is_zoned(info)) {
2434 btrfs_calc_zone_unusable(cache);
2435 /* Should not have any excluded extents. Just in case, though. */
2436 btrfs_free_excluded_extents(cache);
2437 } else if (cache->length == cache->used) {
2438 cache->cached = BTRFS_CACHE_FINISHED;
2439 btrfs_free_excluded_extents(cache);
2440 } else if (cache->used == 0) {
2441 cache->cached = BTRFS_CACHE_FINISHED;
2442 ret = btrfs_add_new_free_space(cache, cache->start,
2443 cache->start + cache->length, NULL);
2444 btrfs_free_excluded_extents(cache);
2445 if (ret)
2446 goto error;
2447 }
2448
2449 ret = btrfs_add_block_group_cache(cache);
2450 if (ret) {
2451 btrfs_remove_free_space_cache(cache);
2452 goto error;
2453 }
2454 trace_btrfs_add_block_group(info, cache, 0);
2455 btrfs_add_bg_to_space_info(info, cache);
2456
2457 set_avail_alloc_bits(info, cache->flags);
2458 if (btrfs_chunk_writeable(info, cache->start)) {
2459 if (cache->used == 0) {
2460 ASSERT(list_empty(&cache->bg_list));
2461 if (btrfs_test_opt(info, DISCARD_ASYNC))
2462 btrfs_discard_queue_work(&info->discard_ctl, cache);
2463 else
2464 btrfs_mark_bg_unused(cache);
2465 }
2466 } else {
2467 inc_block_group_ro(cache, 1);
2468 }
2469
2470 return 0;
2471 error:
2472 btrfs_put_block_group(cache);
2473 return ret;
2474 }
2475
fill_dummy_bgs(struct btrfs_fs_info * fs_info)2476 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
2477 {
2478 struct rb_node *node;
2479 int ret = 0;
2480
2481 for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) {
2482 struct btrfs_chunk_map *map;
2483 struct btrfs_block_group *bg;
2484
2485 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
2486 bg = btrfs_create_block_group_cache(fs_info, map->start);
2487 if (!bg) {
2488 ret = -ENOMEM;
2489 break;
2490 }
2491
2492 /* Fill dummy cache as FULL */
2493 bg->length = map->chunk_len;
2494 bg->flags = map->type;
2495 bg->cached = BTRFS_CACHE_FINISHED;
2496 bg->used = map->chunk_len;
2497 bg->flags = map->type;
2498 ret = btrfs_add_block_group_cache(bg);
2499 /*
2500 * We may have some valid block group cache added already, in
2501 * that case we skip to the next one.
2502 */
2503 if (ret == -EEXIST) {
2504 ret = 0;
2505 btrfs_put_block_group(bg);
2506 continue;
2507 }
2508
2509 if (ret) {
2510 btrfs_remove_free_space_cache(bg);
2511 btrfs_put_block_group(bg);
2512 break;
2513 }
2514
2515 btrfs_add_bg_to_space_info(fs_info, bg);
2516
2517 set_avail_alloc_bits(fs_info, bg->flags);
2518 }
2519 if (!ret)
2520 btrfs_init_global_block_rsv(fs_info);
2521 return ret;
2522 }
2523
btrfs_read_block_groups(struct btrfs_fs_info * info)2524 int btrfs_read_block_groups(struct btrfs_fs_info *info)
2525 {
2526 struct btrfs_root *root = btrfs_block_group_root(info);
2527 struct btrfs_path *path;
2528 int ret;
2529 struct btrfs_block_group *cache;
2530 struct btrfs_space_info *space_info;
2531 struct btrfs_key key;
2532 int need_clear = 0;
2533 u64 cache_gen;
2534
2535 /*
2536 * Either no extent root (with ibadroots rescue option) or we have
2537 * unsupported RO options. The fs can never be mounted read-write, so no
2538 * need to waste time searching block group items.
2539 *
2540 * This also allows new extent tree related changes to be RO compat,
2541 * no need for a full incompat flag.
2542 */
2543 if (!root || (btrfs_super_compat_ro_flags(info->super_copy) &
2544 ~BTRFS_FEATURE_COMPAT_RO_SUPP))
2545 return fill_dummy_bgs(info);
2546
2547 key.objectid = 0;
2548 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2549 key.offset = 0;
2550 path = btrfs_alloc_path();
2551 if (!path)
2552 return -ENOMEM;
2553
2554 cache_gen = btrfs_super_cache_generation(info->super_copy);
2555 if (btrfs_test_opt(info, SPACE_CACHE) &&
2556 btrfs_super_generation(info->super_copy) != cache_gen)
2557 need_clear = 1;
2558 if (btrfs_test_opt(info, CLEAR_CACHE))
2559 need_clear = 1;
2560
2561 while (1) {
2562 struct btrfs_block_group_item bgi;
2563 struct extent_buffer *leaf;
2564 int slot;
2565
2566 ret = find_first_block_group(info, path, &key);
2567 if (ret > 0)
2568 break;
2569 if (ret != 0)
2570 goto error;
2571
2572 leaf = path->nodes[0];
2573 slot = path->slots[0];
2574
2575 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
2576 sizeof(bgi));
2577
2578 btrfs_item_key_to_cpu(leaf, &key, slot);
2579 btrfs_release_path(path);
2580 ret = read_one_block_group(info, &bgi, &key, need_clear);
2581 if (ret < 0)
2582 goto error;
2583 key.objectid += key.offset;
2584 key.offset = 0;
2585 }
2586 btrfs_release_path(path);
2587
2588 list_for_each_entry(space_info, &info->space_info, list) {
2589 int i;
2590
2591 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2592 if (list_empty(&space_info->block_groups[i]))
2593 continue;
2594 cache = list_first_entry(&space_info->block_groups[i],
2595 struct btrfs_block_group,
2596 list);
2597 btrfs_sysfs_add_block_group_type(cache);
2598 }
2599
2600 if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2601 (BTRFS_BLOCK_GROUP_RAID10 |
2602 BTRFS_BLOCK_GROUP_RAID1_MASK |
2603 BTRFS_BLOCK_GROUP_RAID56_MASK |
2604 BTRFS_BLOCK_GROUP_DUP)))
2605 continue;
2606 /*
2607 * Avoid allocating from un-mirrored block group if there are
2608 * mirrored block groups.
2609 */
2610 list_for_each_entry(cache,
2611 &space_info->block_groups[BTRFS_RAID_RAID0],
2612 list)
2613 inc_block_group_ro(cache, 1);
2614 list_for_each_entry(cache,
2615 &space_info->block_groups[BTRFS_RAID_SINGLE],
2616 list)
2617 inc_block_group_ro(cache, 1);
2618 }
2619
2620 btrfs_init_global_block_rsv(info);
2621 ret = check_chunk_block_group_mappings(info);
2622 error:
2623 btrfs_free_path(path);
2624 /*
2625 * We've hit some error while reading the extent tree, and have
2626 * rescue=ibadroots mount option.
2627 * Try to fill the tree using dummy block groups so that the user can
2628 * continue to mount and grab their data.
2629 */
2630 if (ret && btrfs_test_opt(info, IGNOREBADROOTS))
2631 ret = fill_dummy_bgs(info);
2632 return ret;
2633 }
2634
2635 /*
2636 * This function, insert_block_group_item(), belongs to the phase 2 of chunk
2637 * allocation.
2638 *
2639 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2640 * phases.
2641 */
insert_block_group_item(struct btrfs_trans_handle * trans,struct btrfs_block_group * block_group)2642 static int insert_block_group_item(struct btrfs_trans_handle *trans,
2643 struct btrfs_block_group *block_group)
2644 {
2645 struct btrfs_fs_info *fs_info = trans->fs_info;
2646 struct btrfs_block_group_item bgi;
2647 struct btrfs_root *root = btrfs_block_group_root(fs_info);
2648 struct btrfs_key key;
2649 u64 old_commit_used;
2650 int ret;
2651
2652 spin_lock(&block_group->lock);
2653 btrfs_set_stack_block_group_used(&bgi, block_group->used);
2654 btrfs_set_stack_block_group_chunk_objectid(&bgi,
2655 block_group->global_root_id);
2656 btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2657 old_commit_used = block_group->commit_used;
2658 block_group->commit_used = block_group->used;
2659 key.objectid = block_group->start;
2660 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2661 key.offset = block_group->length;
2662 spin_unlock(&block_group->lock);
2663
2664 ret = btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2665 if (ret < 0) {
2666 spin_lock(&block_group->lock);
2667 block_group->commit_used = old_commit_used;
2668 spin_unlock(&block_group->lock);
2669 }
2670
2671 return ret;
2672 }
2673
insert_dev_extent(struct btrfs_trans_handle * trans,const struct btrfs_device * device,u64 chunk_offset,u64 start,u64 num_bytes)2674 static int insert_dev_extent(struct btrfs_trans_handle *trans,
2675 const struct btrfs_device *device, u64 chunk_offset,
2676 u64 start, u64 num_bytes)
2677 {
2678 struct btrfs_fs_info *fs_info = device->fs_info;
2679 struct btrfs_root *root = fs_info->dev_root;
2680 BTRFS_PATH_AUTO_FREE(path);
2681 struct btrfs_dev_extent *extent;
2682 struct extent_buffer *leaf;
2683 struct btrfs_key key;
2684 int ret;
2685
2686 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
2687 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
2688 path = btrfs_alloc_path();
2689 if (!path)
2690 return -ENOMEM;
2691
2692 key.objectid = device->devid;
2693 key.type = BTRFS_DEV_EXTENT_KEY;
2694 key.offset = start;
2695 ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent));
2696 if (ret)
2697 return ret;
2698
2699 leaf = path->nodes[0];
2700 extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
2701 btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID);
2702 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
2703 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2704 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
2705 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
2706
2707 return ret;
2708 }
2709
2710 /*
2711 * This function belongs to phase 2.
2712 *
2713 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2714 * phases.
2715 */
insert_dev_extents(struct btrfs_trans_handle * trans,u64 chunk_offset,u64 chunk_size)2716 static int insert_dev_extents(struct btrfs_trans_handle *trans,
2717 u64 chunk_offset, u64 chunk_size)
2718 {
2719 struct btrfs_fs_info *fs_info = trans->fs_info;
2720 struct btrfs_device *device;
2721 struct btrfs_chunk_map *map;
2722 u64 dev_offset;
2723 int i;
2724 int ret = 0;
2725
2726 map = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
2727 if (IS_ERR(map))
2728 return PTR_ERR(map);
2729
2730 /*
2731 * Take the device list mutex to prevent races with the final phase of
2732 * a device replace operation that replaces the device object associated
2733 * with the map's stripes, because the device object's id can change
2734 * at any time during that final phase of the device replace operation
2735 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
2736 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
2737 * resulting in persisting a device extent item with such ID.
2738 */
2739 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2740 for (i = 0; i < map->num_stripes; i++) {
2741 device = map->stripes[i].dev;
2742 dev_offset = map->stripes[i].physical;
2743
2744 ret = insert_dev_extent(trans, device, chunk_offset, dev_offset,
2745 map->stripe_size);
2746 if (ret)
2747 break;
2748 }
2749 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2750
2751 btrfs_free_chunk_map(map);
2752 return ret;
2753 }
2754
2755 /*
2756 * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of
2757 * chunk allocation.
2758 *
2759 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2760 * phases.
2761 */
btrfs_create_pending_block_groups(struct btrfs_trans_handle * trans)2762 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2763 {
2764 struct btrfs_fs_info *fs_info = trans->fs_info;
2765 struct btrfs_block_group *block_group;
2766 int ret = 0;
2767
2768 while (!list_empty(&trans->new_bgs)) {
2769 int index;
2770
2771 block_group = list_first_entry(&trans->new_bgs,
2772 struct btrfs_block_group,
2773 bg_list);
2774 if (ret)
2775 goto next;
2776
2777 index = btrfs_bg_flags_to_raid_index(block_group->flags);
2778
2779 ret = insert_block_group_item(trans, block_group);
2780 if (ret)
2781 btrfs_abort_transaction(trans, ret);
2782 if (!test_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED,
2783 &block_group->runtime_flags)) {
2784 mutex_lock(&fs_info->chunk_mutex);
2785 ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group);
2786 mutex_unlock(&fs_info->chunk_mutex);
2787 if (ret)
2788 btrfs_abort_transaction(trans, ret);
2789 }
2790 ret = insert_dev_extents(trans, block_group->start,
2791 block_group->length);
2792 if (ret)
2793 btrfs_abort_transaction(trans, ret);
2794 add_block_group_free_space(trans, block_group);
2795
2796 /*
2797 * If we restriped during balance, we may have added a new raid
2798 * type, so now add the sysfs entries when it is safe to do so.
2799 * We don't have to worry about locking here as it's handled in
2800 * btrfs_sysfs_add_block_group_type.
2801 */
2802 if (block_group->space_info->block_group_kobjs[index] == NULL)
2803 btrfs_sysfs_add_block_group_type(block_group);
2804
2805 /* Already aborted the transaction if it failed. */
2806 next:
2807 btrfs_dec_delayed_refs_rsv_bg_inserts(fs_info);
2808
2809 spin_lock(&fs_info->unused_bgs_lock);
2810 list_del_init(&block_group->bg_list);
2811 clear_bit(BLOCK_GROUP_FLAG_NEW, &block_group->runtime_flags);
2812 btrfs_put_block_group(block_group);
2813 spin_unlock(&fs_info->unused_bgs_lock);
2814
2815 /*
2816 * If the block group is still unused, add it to the list of
2817 * unused block groups. The block group may have been created in
2818 * order to satisfy a space reservation, in which case the
2819 * extent allocation only happens later. But often we don't
2820 * actually need to allocate space that we previously reserved,
2821 * so the block group may become unused for a long time. For
2822 * example for metadata we generally reserve space for a worst
2823 * possible scenario, but then don't end up allocating all that
2824 * space or none at all (due to no need to COW, extent buffers
2825 * were already COWed in the current transaction and still
2826 * unwritten, tree heights lower than the maximum possible
2827 * height, etc). For data we generally reserve the axact amount
2828 * of space we are going to allocate later, the exception is
2829 * when using compression, as we must reserve space based on the
2830 * uncompressed data size, because the compression is only done
2831 * when writeback triggered and we don't know how much space we
2832 * are actually going to need, so we reserve the uncompressed
2833 * size because the data may be incompressible in the worst case.
2834 */
2835 if (ret == 0) {
2836 bool used;
2837
2838 spin_lock(&block_group->lock);
2839 used = btrfs_is_block_group_used(block_group);
2840 spin_unlock(&block_group->lock);
2841
2842 if (!used)
2843 btrfs_mark_bg_unused(block_group);
2844 }
2845 }
2846 btrfs_trans_release_chunk_metadata(trans);
2847 }
2848
2849 /*
2850 * For extent tree v2 we use the block_group_item->chunk_offset to point at our
2851 * global root id. For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID.
2852 */
calculate_global_root_id(const struct btrfs_fs_info * fs_info,u64 offset)2853 static u64 calculate_global_root_id(const struct btrfs_fs_info *fs_info, u64 offset)
2854 {
2855 u64 div = SZ_1G;
2856 u64 index;
2857
2858 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2859 return BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2860
2861 /* If we have a smaller fs index based on 128MiB. */
2862 if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL))
2863 div = SZ_128M;
2864
2865 offset = div64_u64(offset, div);
2866 div64_u64_rem(offset, fs_info->nr_global_roots, &index);
2867 return index;
2868 }
2869
btrfs_make_block_group(struct btrfs_trans_handle * trans,u64 type,u64 chunk_offset,u64 size)2870 struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
2871 u64 type,
2872 u64 chunk_offset, u64 size)
2873 {
2874 struct btrfs_fs_info *fs_info = trans->fs_info;
2875 struct btrfs_block_group *cache;
2876 int ret;
2877
2878 btrfs_set_log_full_commit(trans);
2879
2880 cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
2881 if (!cache)
2882 return ERR_PTR(-ENOMEM);
2883
2884 /*
2885 * Mark it as new before adding it to the rbtree of block groups or any
2886 * list, so that no other task finds it and calls btrfs_mark_bg_unused()
2887 * before the new flag is set.
2888 */
2889 set_bit(BLOCK_GROUP_FLAG_NEW, &cache->runtime_flags);
2890
2891 cache->length = size;
2892 set_free_space_tree_thresholds(cache);
2893 cache->flags = type;
2894 cache->cached = BTRFS_CACHE_FINISHED;
2895 cache->global_root_id = calculate_global_root_id(fs_info, cache->start);
2896
2897 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
2898 set_bit(BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE, &cache->runtime_flags);
2899
2900 ret = btrfs_load_block_group_zone_info(cache, true);
2901 if (ret) {
2902 btrfs_put_block_group(cache);
2903 return ERR_PTR(ret);
2904 }
2905
2906 ret = exclude_super_stripes(cache);
2907 if (ret) {
2908 /* We may have excluded something, so call this just in case */
2909 btrfs_free_excluded_extents(cache);
2910 btrfs_put_block_group(cache);
2911 return ERR_PTR(ret);
2912 }
2913
2914 ret = btrfs_add_new_free_space(cache, chunk_offset, chunk_offset + size, NULL);
2915 btrfs_free_excluded_extents(cache);
2916 if (ret) {
2917 btrfs_put_block_group(cache);
2918 return ERR_PTR(ret);
2919 }
2920
2921 /*
2922 * Ensure the corresponding space_info object is created and
2923 * assigned to our block group. We want our bg to be added to the rbtree
2924 * with its ->space_info set.
2925 */
2926 cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2927 ASSERT(cache->space_info);
2928
2929 ret = btrfs_add_block_group_cache(cache);
2930 if (ret) {
2931 btrfs_remove_free_space_cache(cache);
2932 btrfs_put_block_group(cache);
2933 return ERR_PTR(ret);
2934 }
2935
2936 /*
2937 * Now that our block group has its ->space_info set and is inserted in
2938 * the rbtree, update the space info's counters.
2939 */
2940 trace_btrfs_add_block_group(fs_info, cache, 1);
2941 btrfs_add_bg_to_space_info(fs_info, cache);
2942 btrfs_update_global_block_rsv(fs_info);
2943
2944 #ifdef CONFIG_BTRFS_DEBUG
2945 if (btrfs_should_fragment_free_space(cache)) {
2946 cache->space_info->bytes_used += size >> 1;
2947 fragment_free_space(cache);
2948 }
2949 #endif
2950
2951 btrfs_link_bg_list(cache, &trans->new_bgs);
2952 btrfs_inc_delayed_refs_rsv_bg_inserts(fs_info);
2953
2954 set_avail_alloc_bits(fs_info, type);
2955 return cache;
2956 }
2957
2958 /*
2959 * Mark one block group RO, can be called several times for the same block
2960 * group.
2961 *
2962 * @cache: the destination block group
2963 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to
2964 * ensure we still have some free space after marking this
2965 * block group RO.
2966 */
btrfs_inc_block_group_ro(struct btrfs_block_group * cache,bool do_chunk_alloc)2967 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2968 bool do_chunk_alloc)
2969 {
2970 struct btrfs_fs_info *fs_info = cache->fs_info;
2971 struct btrfs_trans_handle *trans;
2972 struct btrfs_root *root = btrfs_block_group_root(fs_info);
2973 u64 alloc_flags;
2974 int ret;
2975 bool dirty_bg_running;
2976
2977 /*
2978 * This can only happen when we are doing read-only scrub on read-only
2979 * mount.
2980 * In that case we should not start a new transaction on read-only fs.
2981 * Thus here we skip all chunk allocations.
2982 */
2983 if (sb_rdonly(fs_info->sb)) {
2984 mutex_lock(&fs_info->ro_block_group_mutex);
2985 ret = inc_block_group_ro(cache, 0);
2986 mutex_unlock(&fs_info->ro_block_group_mutex);
2987 return ret;
2988 }
2989
2990 do {
2991 trans = btrfs_join_transaction(root);
2992 if (IS_ERR(trans))
2993 return PTR_ERR(trans);
2994
2995 dirty_bg_running = false;
2996
2997 /*
2998 * We're not allowed to set block groups readonly after the dirty
2999 * block group cache has started writing. If it already started,
3000 * back off and let this transaction commit.
3001 */
3002 mutex_lock(&fs_info->ro_block_group_mutex);
3003 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
3004 u64 transid = trans->transid;
3005
3006 mutex_unlock(&fs_info->ro_block_group_mutex);
3007 btrfs_end_transaction(trans);
3008
3009 ret = btrfs_wait_for_commit(fs_info, transid);
3010 if (ret)
3011 return ret;
3012 dirty_bg_running = true;
3013 }
3014 } while (dirty_bg_running);
3015
3016 if (do_chunk_alloc) {
3017 /*
3018 * If we are changing raid levels, try to allocate a
3019 * corresponding block group with the new raid level.
3020 */
3021 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
3022 if (alloc_flags != cache->flags) {
3023 ret = btrfs_chunk_alloc(trans, alloc_flags,
3024 CHUNK_ALLOC_FORCE);
3025 /*
3026 * ENOSPC is allowed here, we may have enough space
3027 * already allocated at the new raid level to carry on
3028 */
3029 if (ret == -ENOSPC)
3030 ret = 0;
3031 if (ret < 0)
3032 goto out;
3033 }
3034 }
3035
3036 ret = inc_block_group_ro(cache, 0);
3037 if (!ret)
3038 goto out;
3039 if (ret == -ETXTBSY)
3040 goto unlock_out;
3041
3042 /*
3043 * Skip chunk allocation if the bg is SYSTEM, this is to avoid system
3044 * chunk allocation storm to exhaust the system chunk array. Otherwise
3045 * we still want to try our best to mark the block group read-only.
3046 */
3047 if (!do_chunk_alloc && ret == -ENOSPC &&
3048 (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM))
3049 goto unlock_out;
3050
3051 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
3052 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3053 if (ret < 0)
3054 goto out;
3055 /*
3056 * We have allocated a new chunk. We also need to activate that chunk to
3057 * grant metadata tickets for zoned filesystem.
3058 */
3059 ret = btrfs_zoned_activate_one_bg(fs_info, cache->space_info, true);
3060 if (ret < 0)
3061 goto out;
3062
3063 ret = inc_block_group_ro(cache, 0);
3064 if (ret == -ETXTBSY)
3065 goto unlock_out;
3066 out:
3067 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
3068 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
3069 mutex_lock(&fs_info->chunk_mutex);
3070 check_system_chunk(trans, alloc_flags);
3071 mutex_unlock(&fs_info->chunk_mutex);
3072 }
3073 unlock_out:
3074 mutex_unlock(&fs_info->ro_block_group_mutex);
3075
3076 btrfs_end_transaction(trans);
3077 return ret;
3078 }
3079
btrfs_dec_block_group_ro(struct btrfs_block_group * cache)3080 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
3081 {
3082 struct btrfs_space_info *sinfo = cache->space_info;
3083 u64 num_bytes;
3084
3085 BUG_ON(!cache->ro);
3086
3087 spin_lock(&sinfo->lock);
3088 spin_lock(&cache->lock);
3089 if (!--cache->ro) {
3090 if (btrfs_is_zoned(cache->fs_info)) {
3091 /* Migrate zone_unusable bytes back */
3092 cache->zone_unusable =
3093 (cache->alloc_offset - cache->used - cache->pinned -
3094 cache->reserved) +
3095 (cache->length - cache->zone_capacity);
3096 btrfs_space_info_update_bytes_zone_unusable(sinfo, cache->zone_unusable);
3097 sinfo->bytes_readonly -= cache->zone_unusable;
3098 }
3099 num_bytes = cache->length - cache->reserved -
3100 cache->pinned - cache->bytes_super -
3101 cache->zone_unusable - cache->used;
3102 sinfo->bytes_readonly -= num_bytes;
3103 list_del_init(&cache->ro_list);
3104 }
3105 spin_unlock(&cache->lock);
3106 spin_unlock(&sinfo->lock);
3107 }
3108
update_block_group_item(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_block_group * cache)3109 static int update_block_group_item(struct btrfs_trans_handle *trans,
3110 struct btrfs_path *path,
3111 struct btrfs_block_group *cache)
3112 {
3113 struct btrfs_fs_info *fs_info = trans->fs_info;
3114 int ret;
3115 struct btrfs_root *root = btrfs_block_group_root(fs_info);
3116 unsigned long bi;
3117 struct extent_buffer *leaf;
3118 struct btrfs_block_group_item bgi;
3119 struct btrfs_key key;
3120 u64 old_commit_used;
3121 u64 used;
3122
3123 /*
3124 * Block group items update can be triggered out of commit transaction
3125 * critical section, thus we need a consistent view of used bytes.
3126 * We cannot use cache->used directly outside of the spin lock, as it
3127 * may be changed.
3128 */
3129 spin_lock(&cache->lock);
3130 old_commit_used = cache->commit_used;
3131 used = cache->used;
3132 /* No change in used bytes, can safely skip it. */
3133 if (cache->commit_used == used) {
3134 spin_unlock(&cache->lock);
3135 return 0;
3136 }
3137 cache->commit_used = used;
3138 spin_unlock(&cache->lock);
3139
3140 key.objectid = cache->start;
3141 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
3142 key.offset = cache->length;
3143
3144 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3145 if (ret) {
3146 if (ret > 0)
3147 ret = -ENOENT;
3148 goto fail;
3149 }
3150
3151 leaf = path->nodes[0];
3152 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3153 btrfs_set_stack_block_group_used(&bgi, used);
3154 btrfs_set_stack_block_group_chunk_objectid(&bgi,
3155 cache->global_root_id);
3156 btrfs_set_stack_block_group_flags(&bgi, cache->flags);
3157 write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
3158 fail:
3159 btrfs_release_path(path);
3160 /*
3161 * We didn't update the block group item, need to revert commit_used
3162 * unless the block group item didn't exist yet - this is to prevent a
3163 * race with a concurrent insertion of the block group item, with
3164 * insert_block_group_item(), that happened just after we attempted to
3165 * update. In that case we would reset commit_used to 0 just after the
3166 * insertion set it to a value greater than 0 - if the block group later
3167 * becomes with 0 used bytes, we would incorrectly skip its update.
3168 */
3169 if (ret < 0 && ret != -ENOENT) {
3170 spin_lock(&cache->lock);
3171 cache->commit_used = old_commit_used;
3172 spin_unlock(&cache->lock);
3173 }
3174 return ret;
3175
3176 }
3177
cache_save_setup(struct btrfs_block_group * block_group,struct btrfs_trans_handle * trans,struct btrfs_path * path)3178 static int cache_save_setup(struct btrfs_block_group *block_group,
3179 struct btrfs_trans_handle *trans,
3180 struct btrfs_path *path)
3181 {
3182 struct btrfs_fs_info *fs_info = block_group->fs_info;
3183 struct inode *inode = NULL;
3184 struct extent_changeset *data_reserved = NULL;
3185 u64 alloc_hint = 0;
3186 int dcs = BTRFS_DC_ERROR;
3187 u64 cache_size = 0;
3188 int retries = 0;
3189 int ret = 0;
3190
3191 if (!btrfs_test_opt(fs_info, SPACE_CACHE))
3192 return 0;
3193
3194 /*
3195 * If this block group is smaller than 100 megs don't bother caching the
3196 * block group.
3197 */
3198 if (block_group->length < (100 * SZ_1M)) {
3199 spin_lock(&block_group->lock);
3200 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3201 spin_unlock(&block_group->lock);
3202 return 0;
3203 }
3204
3205 if (TRANS_ABORTED(trans))
3206 return 0;
3207 again:
3208 inode = lookup_free_space_inode(block_group, path);
3209 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3210 ret = PTR_ERR(inode);
3211 btrfs_release_path(path);
3212 goto out;
3213 }
3214
3215 if (IS_ERR(inode)) {
3216 BUG_ON(retries);
3217 retries++;
3218
3219 if (block_group->ro)
3220 goto out_free;
3221
3222 ret = create_free_space_inode(trans, block_group, path);
3223 if (ret)
3224 goto out_free;
3225 goto again;
3226 }
3227
3228 /*
3229 * We want to set the generation to 0, that way if anything goes wrong
3230 * from here on out we know not to trust this cache when we load up next
3231 * time.
3232 */
3233 BTRFS_I(inode)->generation = 0;
3234 ret = btrfs_update_inode(trans, BTRFS_I(inode));
3235 if (ret) {
3236 /*
3237 * So theoretically we could recover from this, simply set the
3238 * super cache generation to 0 so we know to invalidate the
3239 * cache, but then we'd have to keep track of the block groups
3240 * that fail this way so we know we _have_ to reset this cache
3241 * before the next commit or risk reading stale cache. So to
3242 * limit our exposure to horrible edge cases lets just abort the
3243 * transaction, this only happens in really bad situations
3244 * anyway.
3245 */
3246 btrfs_abort_transaction(trans, ret);
3247 goto out_put;
3248 }
3249 WARN_ON(ret);
3250
3251 /* We've already setup this transaction, go ahead and exit */
3252 if (block_group->cache_generation == trans->transid &&
3253 i_size_read(inode)) {
3254 dcs = BTRFS_DC_SETUP;
3255 goto out_put;
3256 }
3257
3258 if (i_size_read(inode) > 0) {
3259 ret = btrfs_check_trunc_cache_free_space(fs_info,
3260 &fs_info->global_block_rsv);
3261 if (ret)
3262 goto out_put;
3263
3264 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3265 if (ret)
3266 goto out_put;
3267 }
3268
3269 spin_lock(&block_group->lock);
3270 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3271 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3272 /*
3273 * don't bother trying to write stuff out _if_
3274 * a) we're not cached,
3275 * b) we're with nospace_cache mount option,
3276 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3277 */
3278 dcs = BTRFS_DC_WRITTEN;
3279 spin_unlock(&block_group->lock);
3280 goto out_put;
3281 }
3282 spin_unlock(&block_group->lock);
3283
3284 /*
3285 * We hit an ENOSPC when setting up the cache in this transaction, just
3286 * skip doing the setup, we've already cleared the cache so we're safe.
3287 */
3288 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3289 ret = -ENOSPC;
3290 goto out_put;
3291 }
3292
3293 /*
3294 * Try to preallocate enough space based on how big the block group is.
3295 * Keep in mind this has to include any pinned space which could end up
3296 * taking up quite a bit since it's not folded into the other space
3297 * cache.
3298 */
3299 cache_size = div_u64(block_group->length, SZ_256M);
3300 if (!cache_size)
3301 cache_size = 1;
3302
3303 cache_size *= 16;
3304 cache_size *= fs_info->sectorsize;
3305
3306 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
3307 cache_size, false);
3308 if (ret)
3309 goto out_put;
3310
3311 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size,
3312 cache_size, cache_size,
3313 &alloc_hint);
3314 /*
3315 * Our cache requires contiguous chunks so that we don't modify a bunch
3316 * of metadata or split extents when writing the cache out, which means
3317 * we can enospc if we are heavily fragmented in addition to just normal
3318 * out of space conditions. So if we hit this just skip setting up any
3319 * other block groups for this transaction, maybe we'll unpin enough
3320 * space the next time around.
3321 */
3322 if (!ret)
3323 dcs = BTRFS_DC_SETUP;
3324 else if (ret == -ENOSPC)
3325 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3326
3327 out_put:
3328 iput(inode);
3329 out_free:
3330 btrfs_release_path(path);
3331 out:
3332 spin_lock(&block_group->lock);
3333 if (!ret && dcs == BTRFS_DC_SETUP)
3334 block_group->cache_generation = trans->transid;
3335 block_group->disk_cache_state = dcs;
3336 spin_unlock(&block_group->lock);
3337
3338 extent_changeset_free(data_reserved);
3339 return ret;
3340 }
3341
btrfs_setup_space_cache(struct btrfs_trans_handle * trans)3342 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
3343 {
3344 struct btrfs_fs_info *fs_info = trans->fs_info;
3345 struct btrfs_block_group *cache, *tmp;
3346 struct btrfs_transaction *cur_trans = trans->transaction;
3347 BTRFS_PATH_AUTO_FREE(path);
3348
3349 if (list_empty(&cur_trans->dirty_bgs) ||
3350 !btrfs_test_opt(fs_info, SPACE_CACHE))
3351 return 0;
3352
3353 path = btrfs_alloc_path();
3354 if (!path)
3355 return -ENOMEM;
3356
3357 /* Could add new block groups, use _safe just in case */
3358 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3359 dirty_list) {
3360 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3361 cache_save_setup(cache, trans, path);
3362 }
3363
3364 return 0;
3365 }
3366
3367 /*
3368 * Transaction commit does final block group cache writeback during a critical
3369 * section where nothing is allowed to change the FS. This is required in
3370 * order for the cache to actually match the block group, but can introduce a
3371 * lot of latency into the commit.
3372 *
3373 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
3374 * There's a chance we'll have to redo some of it if the block group changes
3375 * again during the commit, but it greatly reduces the commit latency by
3376 * getting rid of the easy block groups while we're still allowing others to
3377 * join the commit.
3378 */
btrfs_start_dirty_block_groups(struct btrfs_trans_handle * trans)3379 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
3380 {
3381 struct btrfs_fs_info *fs_info = trans->fs_info;
3382 struct btrfs_block_group *cache;
3383 struct btrfs_transaction *cur_trans = trans->transaction;
3384 int ret = 0;
3385 int should_put;
3386 BTRFS_PATH_AUTO_FREE(path);
3387 LIST_HEAD(dirty);
3388 struct list_head *io = &cur_trans->io_bgs;
3389 int loops = 0;
3390
3391 spin_lock(&cur_trans->dirty_bgs_lock);
3392 if (list_empty(&cur_trans->dirty_bgs)) {
3393 spin_unlock(&cur_trans->dirty_bgs_lock);
3394 return 0;
3395 }
3396 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3397 spin_unlock(&cur_trans->dirty_bgs_lock);
3398
3399 again:
3400 /* Make sure all the block groups on our dirty list actually exist */
3401 btrfs_create_pending_block_groups(trans);
3402
3403 if (!path) {
3404 path = btrfs_alloc_path();
3405 if (!path) {
3406 ret = -ENOMEM;
3407 goto out;
3408 }
3409 }
3410
3411 /*
3412 * cache_write_mutex is here only to save us from balance or automatic
3413 * removal of empty block groups deleting this block group while we are
3414 * writing out the cache
3415 */
3416 mutex_lock(&trans->transaction->cache_write_mutex);
3417 while (!list_empty(&dirty)) {
3418 bool drop_reserve = true;
3419
3420 cache = list_first_entry(&dirty, struct btrfs_block_group,
3421 dirty_list);
3422 /*
3423 * This can happen if something re-dirties a block group that
3424 * is already under IO. Just wait for it to finish and then do
3425 * it all again
3426 */
3427 if (!list_empty(&cache->io_list)) {
3428 list_del_init(&cache->io_list);
3429 btrfs_wait_cache_io(trans, cache, path);
3430 btrfs_put_block_group(cache);
3431 }
3432
3433
3434 /*
3435 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
3436 * it should update the cache_state. Don't delete until after
3437 * we wait.
3438 *
3439 * Since we're not running in the commit critical section
3440 * we need the dirty_bgs_lock to protect from update_block_group
3441 */
3442 spin_lock(&cur_trans->dirty_bgs_lock);
3443 list_del_init(&cache->dirty_list);
3444 spin_unlock(&cur_trans->dirty_bgs_lock);
3445
3446 should_put = 1;
3447
3448 cache_save_setup(cache, trans, path);
3449
3450 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3451 cache->io_ctl.inode = NULL;
3452 ret = btrfs_write_out_cache(trans, cache, path);
3453 if (ret == 0 && cache->io_ctl.inode) {
3454 should_put = 0;
3455
3456 /*
3457 * The cache_write_mutex is protecting the
3458 * io_list, also refer to the definition of
3459 * btrfs_transaction::io_bgs for more details
3460 */
3461 list_add_tail(&cache->io_list, io);
3462 } else {
3463 /*
3464 * If we failed to write the cache, the
3465 * generation will be bad and life goes on
3466 */
3467 ret = 0;
3468 }
3469 }
3470 if (!ret) {
3471 ret = update_block_group_item(trans, path, cache);
3472 /*
3473 * Our block group might still be attached to the list
3474 * of new block groups in the transaction handle of some
3475 * other task (struct btrfs_trans_handle->new_bgs). This
3476 * means its block group item isn't yet in the extent
3477 * tree. If this happens ignore the error, as we will
3478 * try again later in the critical section of the
3479 * transaction commit.
3480 */
3481 if (ret == -ENOENT) {
3482 ret = 0;
3483 spin_lock(&cur_trans->dirty_bgs_lock);
3484 if (list_empty(&cache->dirty_list)) {
3485 list_add_tail(&cache->dirty_list,
3486 &cur_trans->dirty_bgs);
3487 btrfs_get_block_group(cache);
3488 drop_reserve = false;
3489 }
3490 spin_unlock(&cur_trans->dirty_bgs_lock);
3491 } else if (ret) {
3492 btrfs_abort_transaction(trans, ret);
3493 }
3494 }
3495
3496 /* If it's not on the io list, we need to put the block group */
3497 if (should_put)
3498 btrfs_put_block_group(cache);
3499 if (drop_reserve)
3500 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
3501 /*
3502 * Avoid blocking other tasks for too long. It might even save
3503 * us from writing caches for block groups that are going to be
3504 * removed.
3505 */
3506 mutex_unlock(&trans->transaction->cache_write_mutex);
3507 if (ret)
3508 goto out;
3509 mutex_lock(&trans->transaction->cache_write_mutex);
3510 }
3511 mutex_unlock(&trans->transaction->cache_write_mutex);
3512
3513 /*
3514 * Go through delayed refs for all the stuff we've just kicked off
3515 * and then loop back (just once)
3516 */
3517 if (!ret)
3518 ret = btrfs_run_delayed_refs(trans, 0);
3519 if (!ret && loops == 0) {
3520 loops++;
3521 spin_lock(&cur_trans->dirty_bgs_lock);
3522 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3523 /*
3524 * dirty_bgs_lock protects us from concurrent block group
3525 * deletes too (not just cache_write_mutex).
3526 */
3527 if (!list_empty(&dirty)) {
3528 spin_unlock(&cur_trans->dirty_bgs_lock);
3529 goto again;
3530 }
3531 spin_unlock(&cur_trans->dirty_bgs_lock);
3532 }
3533 out:
3534 if (ret < 0) {
3535 spin_lock(&cur_trans->dirty_bgs_lock);
3536 list_splice_init(&dirty, &cur_trans->dirty_bgs);
3537 spin_unlock(&cur_trans->dirty_bgs_lock);
3538 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3539 }
3540
3541 return ret;
3542 }
3543
btrfs_write_dirty_block_groups(struct btrfs_trans_handle * trans)3544 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
3545 {
3546 struct btrfs_fs_info *fs_info = trans->fs_info;
3547 struct btrfs_block_group *cache;
3548 struct btrfs_transaction *cur_trans = trans->transaction;
3549 int ret = 0;
3550 int should_put;
3551 BTRFS_PATH_AUTO_FREE(path);
3552 struct list_head *io = &cur_trans->io_bgs;
3553
3554 path = btrfs_alloc_path();
3555 if (!path)
3556 return -ENOMEM;
3557
3558 /*
3559 * Even though we are in the critical section of the transaction commit,
3560 * we can still have concurrent tasks adding elements to this
3561 * transaction's list of dirty block groups. These tasks correspond to
3562 * endio free space workers started when writeback finishes for a
3563 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3564 * allocate new block groups as a result of COWing nodes of the root
3565 * tree when updating the free space inode. The writeback for the space
3566 * caches is triggered by an earlier call to
3567 * btrfs_start_dirty_block_groups() and iterations of the following
3568 * loop.
3569 * Also we want to do the cache_save_setup first and then run the
3570 * delayed refs to make sure we have the best chance at doing this all
3571 * in one shot.
3572 */
3573 spin_lock(&cur_trans->dirty_bgs_lock);
3574 while (!list_empty(&cur_trans->dirty_bgs)) {
3575 cache = list_first_entry(&cur_trans->dirty_bgs,
3576 struct btrfs_block_group,
3577 dirty_list);
3578
3579 /*
3580 * This can happen if cache_save_setup re-dirties a block group
3581 * that is already under IO. Just wait for it to finish and
3582 * then do it all again
3583 */
3584 if (!list_empty(&cache->io_list)) {
3585 spin_unlock(&cur_trans->dirty_bgs_lock);
3586 list_del_init(&cache->io_list);
3587 btrfs_wait_cache_io(trans, cache, path);
3588 btrfs_put_block_group(cache);
3589 spin_lock(&cur_trans->dirty_bgs_lock);
3590 }
3591
3592 /*
3593 * Don't remove from the dirty list until after we've waited on
3594 * any pending IO
3595 */
3596 list_del_init(&cache->dirty_list);
3597 spin_unlock(&cur_trans->dirty_bgs_lock);
3598 should_put = 1;
3599
3600 cache_save_setup(cache, trans, path);
3601
3602 if (!ret)
3603 ret = btrfs_run_delayed_refs(trans, U64_MAX);
3604
3605 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3606 cache->io_ctl.inode = NULL;
3607 ret = btrfs_write_out_cache(trans, cache, path);
3608 if (ret == 0 && cache->io_ctl.inode) {
3609 should_put = 0;
3610 list_add_tail(&cache->io_list, io);
3611 } else {
3612 /*
3613 * If we failed to write the cache, the
3614 * generation will be bad and life goes on
3615 */
3616 ret = 0;
3617 }
3618 }
3619 if (!ret) {
3620 ret = update_block_group_item(trans, path, cache);
3621 /*
3622 * One of the free space endio workers might have
3623 * created a new block group while updating a free space
3624 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3625 * and hasn't released its transaction handle yet, in
3626 * which case the new block group is still attached to
3627 * its transaction handle and its creation has not
3628 * finished yet (no block group item in the extent tree
3629 * yet, etc). If this is the case, wait for all free
3630 * space endio workers to finish and retry. This is a
3631 * very rare case so no need for a more efficient and
3632 * complex approach.
3633 */
3634 if (ret == -ENOENT) {
3635 wait_event(cur_trans->writer_wait,
3636 atomic_read(&cur_trans->num_writers) == 1);
3637 ret = update_block_group_item(trans, path, cache);
3638 }
3639 if (ret)
3640 btrfs_abort_transaction(trans, ret);
3641 }
3642
3643 /* If its not on the io list, we need to put the block group */
3644 if (should_put)
3645 btrfs_put_block_group(cache);
3646 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
3647 spin_lock(&cur_trans->dirty_bgs_lock);
3648 }
3649 spin_unlock(&cur_trans->dirty_bgs_lock);
3650
3651 /*
3652 * Refer to the definition of io_bgs member for details why it's safe
3653 * to use it without any locking
3654 */
3655 while (!list_empty(io)) {
3656 cache = list_first_entry(io, struct btrfs_block_group,
3657 io_list);
3658 list_del_init(&cache->io_list);
3659 btrfs_wait_cache_io(trans, cache, path);
3660 btrfs_put_block_group(cache);
3661 }
3662
3663 return ret;
3664 }
3665
btrfs_update_block_group(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes,bool alloc)3666 int btrfs_update_block_group(struct btrfs_trans_handle *trans,
3667 u64 bytenr, u64 num_bytes, bool alloc)
3668 {
3669 struct btrfs_fs_info *info = trans->fs_info;
3670 struct btrfs_space_info *space_info;
3671 struct btrfs_block_group *cache;
3672 u64 old_val;
3673 bool reclaim = false;
3674 bool bg_already_dirty = true;
3675 int factor;
3676
3677 /* Block accounting for super block */
3678 spin_lock(&info->delalloc_root_lock);
3679 old_val = btrfs_super_bytes_used(info->super_copy);
3680 if (alloc)
3681 old_val += num_bytes;
3682 else
3683 old_val -= num_bytes;
3684 btrfs_set_super_bytes_used(info->super_copy, old_val);
3685 spin_unlock(&info->delalloc_root_lock);
3686
3687 cache = btrfs_lookup_block_group(info, bytenr);
3688 if (!cache)
3689 return -ENOENT;
3690
3691 /* An extent can not span multiple block groups. */
3692 ASSERT(bytenr + num_bytes <= cache->start + cache->length);
3693
3694 space_info = cache->space_info;
3695 factor = btrfs_bg_type_to_factor(cache->flags);
3696
3697 /*
3698 * If this block group has free space cache written out, we need to make
3699 * sure to load it if we are removing space. This is because we need
3700 * the unpinning stage to actually add the space back to the block group,
3701 * otherwise we will leak space.
3702 */
3703 if (!alloc && !btrfs_block_group_done(cache))
3704 btrfs_cache_block_group(cache, true);
3705
3706 spin_lock(&space_info->lock);
3707 spin_lock(&cache->lock);
3708
3709 if (btrfs_test_opt(info, SPACE_CACHE) &&
3710 cache->disk_cache_state < BTRFS_DC_CLEAR)
3711 cache->disk_cache_state = BTRFS_DC_CLEAR;
3712
3713 old_val = cache->used;
3714 if (alloc) {
3715 old_val += num_bytes;
3716 cache->used = old_val;
3717 cache->reserved -= num_bytes;
3718 cache->reclaim_mark = 0;
3719 space_info->bytes_reserved -= num_bytes;
3720 space_info->bytes_used += num_bytes;
3721 space_info->disk_used += num_bytes * factor;
3722 if (READ_ONCE(space_info->periodic_reclaim))
3723 btrfs_space_info_update_reclaimable(space_info, -num_bytes);
3724 spin_unlock(&cache->lock);
3725 spin_unlock(&space_info->lock);
3726 } else {
3727 old_val -= num_bytes;
3728 cache->used = old_val;
3729 cache->pinned += num_bytes;
3730 btrfs_space_info_update_bytes_pinned(space_info, num_bytes);
3731 space_info->bytes_used -= num_bytes;
3732 space_info->disk_used -= num_bytes * factor;
3733 if (READ_ONCE(space_info->periodic_reclaim))
3734 btrfs_space_info_update_reclaimable(space_info, num_bytes);
3735 else
3736 reclaim = should_reclaim_block_group(cache, num_bytes);
3737
3738 spin_unlock(&cache->lock);
3739 spin_unlock(&space_info->lock);
3740
3741 set_extent_bit(&trans->transaction->pinned_extents, bytenr,
3742 bytenr + num_bytes - 1, EXTENT_DIRTY, NULL);
3743 }
3744
3745 spin_lock(&trans->transaction->dirty_bgs_lock);
3746 if (list_empty(&cache->dirty_list)) {
3747 list_add_tail(&cache->dirty_list, &trans->transaction->dirty_bgs);
3748 bg_already_dirty = false;
3749 btrfs_get_block_group(cache);
3750 }
3751 spin_unlock(&trans->transaction->dirty_bgs_lock);
3752
3753 /*
3754 * No longer have used bytes in this block group, queue it for deletion.
3755 * We do this after adding the block group to the dirty list to avoid
3756 * races between cleaner kthread and space cache writeout.
3757 */
3758 if (!alloc && old_val == 0) {
3759 if (!btrfs_test_opt(info, DISCARD_ASYNC))
3760 btrfs_mark_bg_unused(cache);
3761 } else if (!alloc && reclaim) {
3762 btrfs_mark_bg_to_reclaim(cache);
3763 }
3764
3765 btrfs_put_block_group(cache);
3766
3767 /* Modified block groups are accounted for in the delayed_refs_rsv. */
3768 if (!bg_already_dirty)
3769 btrfs_inc_delayed_refs_rsv_bg_updates(info);
3770
3771 return 0;
3772 }
3773
3774 /*
3775 * Update the block_group and space info counters.
3776 *
3777 * @cache: The cache we are manipulating
3778 * @ram_bytes: The number of bytes of file content, and will be same to
3779 * @num_bytes except for the compress path.
3780 * @num_bytes: The number of bytes in question
3781 * @delalloc: The blocks are allocated for the delalloc write
3782 *
3783 * This is called by the allocator when it reserves space. If this is a
3784 * reservation and the block group has become read only we cannot make the
3785 * reservation and return -EAGAIN, otherwise this function always succeeds.
3786 */
btrfs_add_reserved_bytes(struct btrfs_block_group * cache,u64 ram_bytes,u64 num_bytes,int delalloc,bool force_wrong_size_class)3787 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
3788 u64 ram_bytes, u64 num_bytes, int delalloc,
3789 bool force_wrong_size_class)
3790 {
3791 struct btrfs_space_info *space_info = cache->space_info;
3792 enum btrfs_block_group_size_class size_class;
3793 int ret = 0;
3794
3795 spin_lock(&space_info->lock);
3796 spin_lock(&cache->lock);
3797 if (cache->ro) {
3798 ret = -EAGAIN;
3799 goto out;
3800 }
3801
3802 if (btrfs_block_group_should_use_size_class(cache)) {
3803 size_class = btrfs_calc_block_group_size_class(num_bytes);
3804 ret = btrfs_use_block_group_size_class(cache, size_class, force_wrong_size_class);
3805 if (ret)
3806 goto out;
3807 }
3808 cache->reserved += num_bytes;
3809 space_info->bytes_reserved += num_bytes;
3810 trace_btrfs_space_reservation(cache->fs_info, "space_info",
3811 space_info->flags, num_bytes, 1);
3812 btrfs_space_info_update_bytes_may_use(space_info, -ram_bytes);
3813 if (delalloc)
3814 cache->delalloc_bytes += num_bytes;
3815
3816 /*
3817 * Compression can use less space than we reserved, so wake tickets if
3818 * that happens.
3819 */
3820 if (num_bytes < ram_bytes)
3821 btrfs_try_granting_tickets(cache->fs_info, space_info);
3822 out:
3823 spin_unlock(&cache->lock);
3824 spin_unlock(&space_info->lock);
3825 return ret;
3826 }
3827
3828 /*
3829 * Update the block_group and space info counters.
3830 *
3831 * @cache: The cache we are manipulating
3832 * @num_bytes: The number of bytes in question
3833 * @delalloc: The blocks are allocated for the delalloc write
3834 *
3835 * This is called by somebody who is freeing space that was never actually used
3836 * on disk. For example if you reserve some space for a new leaf in transaction
3837 * A and before transaction A commits you free that leaf, you call this with
3838 * reserve set to 0 in order to clear the reservation.
3839 */
btrfs_free_reserved_bytes(struct btrfs_block_group * cache,u64 num_bytes,int delalloc)3840 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
3841 u64 num_bytes, int delalloc)
3842 {
3843 struct btrfs_space_info *space_info = cache->space_info;
3844
3845 spin_lock(&space_info->lock);
3846 spin_lock(&cache->lock);
3847 if (cache->ro)
3848 space_info->bytes_readonly += num_bytes;
3849 else if (btrfs_is_zoned(cache->fs_info))
3850 space_info->bytes_zone_unusable += num_bytes;
3851 cache->reserved -= num_bytes;
3852 space_info->bytes_reserved -= num_bytes;
3853 space_info->max_extent_size = 0;
3854
3855 if (delalloc)
3856 cache->delalloc_bytes -= num_bytes;
3857 spin_unlock(&cache->lock);
3858
3859 btrfs_try_granting_tickets(cache->fs_info, space_info);
3860 spin_unlock(&space_info->lock);
3861 }
3862
force_metadata_allocation(struct btrfs_fs_info * info)3863 static void force_metadata_allocation(struct btrfs_fs_info *info)
3864 {
3865 struct list_head *head = &info->space_info;
3866 struct btrfs_space_info *found;
3867
3868 list_for_each_entry(found, head, list) {
3869 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3870 found->force_alloc = CHUNK_ALLOC_FORCE;
3871 }
3872 }
3873
should_alloc_chunk(const struct btrfs_fs_info * fs_info,const struct btrfs_space_info * sinfo,int force)3874 static int should_alloc_chunk(const struct btrfs_fs_info *fs_info,
3875 const struct btrfs_space_info *sinfo, int force)
3876 {
3877 u64 bytes_used = btrfs_space_info_used(sinfo, false);
3878 u64 thresh;
3879
3880 if (force == CHUNK_ALLOC_FORCE)
3881 return 1;
3882
3883 /*
3884 * in limited mode, we want to have some free space up to
3885 * about 1% of the FS size.
3886 */
3887 if (force == CHUNK_ALLOC_LIMITED) {
3888 thresh = btrfs_super_total_bytes(fs_info->super_copy);
3889 thresh = max_t(u64, SZ_64M, mult_perc(thresh, 1));
3890
3891 if (sinfo->total_bytes - bytes_used < thresh)
3892 return 1;
3893 }
3894
3895 if (bytes_used + SZ_2M < mult_perc(sinfo->total_bytes, 80))
3896 return 0;
3897 return 1;
3898 }
3899
btrfs_force_chunk_alloc(struct btrfs_trans_handle * trans,u64 type)3900 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3901 {
3902 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3903
3904 return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3905 }
3906
do_chunk_alloc(struct btrfs_trans_handle * trans,u64 flags)3907 static struct btrfs_block_group *do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags)
3908 {
3909 struct btrfs_block_group *bg;
3910 int ret;
3911
3912 /*
3913 * Check if we have enough space in the system space info because we
3914 * will need to update device items in the chunk btree and insert a new
3915 * chunk item in the chunk btree as well. This will allocate a new
3916 * system block group if needed.
3917 */
3918 check_system_chunk(trans, flags);
3919
3920 bg = btrfs_create_chunk(trans, flags);
3921 if (IS_ERR(bg)) {
3922 ret = PTR_ERR(bg);
3923 goto out;
3924 }
3925
3926 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3927 /*
3928 * Normally we are not expected to fail with -ENOSPC here, since we have
3929 * previously reserved space in the system space_info and allocated one
3930 * new system chunk if necessary. However there are three exceptions:
3931 *
3932 * 1) We may have enough free space in the system space_info but all the
3933 * existing system block groups have a profile which can not be used
3934 * for extent allocation.
3935 *
3936 * This happens when mounting in degraded mode. For example we have a
3937 * RAID1 filesystem with 2 devices, lose one device and mount the fs
3938 * using the other device in degraded mode. If we then allocate a chunk,
3939 * we may have enough free space in the existing system space_info, but
3940 * none of the block groups can be used for extent allocation since they
3941 * have a RAID1 profile, and because we are in degraded mode with a
3942 * single device, we are forced to allocate a new system chunk with a
3943 * SINGLE profile. Making check_system_chunk() iterate over all system
3944 * block groups and check if they have a usable profile and enough space
3945 * can be slow on very large filesystems, so we tolerate the -ENOSPC and
3946 * try again after forcing allocation of a new system chunk. Like this
3947 * we avoid paying the cost of that search in normal circumstances, when
3948 * we were not mounted in degraded mode;
3949 *
3950 * 2) We had enough free space info the system space_info, and one suitable
3951 * block group to allocate from when we called check_system_chunk()
3952 * above. However right after we called it, the only system block group
3953 * with enough free space got turned into RO mode by a running scrub,
3954 * and in this case we have to allocate a new one and retry. We only
3955 * need do this allocate and retry once, since we have a transaction
3956 * handle and scrub uses the commit root to search for block groups;
3957 *
3958 * 3) We had one system block group with enough free space when we called
3959 * check_system_chunk(), but after that, right before we tried to
3960 * allocate the last extent buffer we needed, a discard operation came
3961 * in and it temporarily removed the last free space entry from the
3962 * block group (discard removes a free space entry, discards it, and
3963 * then adds back the entry to the block group cache).
3964 */
3965 if (ret == -ENOSPC) {
3966 const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info);
3967 struct btrfs_block_group *sys_bg;
3968
3969 sys_bg = btrfs_create_chunk(trans, sys_flags);
3970 if (IS_ERR(sys_bg)) {
3971 ret = PTR_ERR(sys_bg);
3972 btrfs_abort_transaction(trans, ret);
3973 goto out;
3974 }
3975
3976 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3977 if (ret) {
3978 btrfs_abort_transaction(trans, ret);
3979 goto out;
3980 }
3981
3982 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3983 if (ret) {
3984 btrfs_abort_transaction(trans, ret);
3985 goto out;
3986 }
3987 } else if (ret) {
3988 btrfs_abort_transaction(trans, ret);
3989 goto out;
3990 }
3991 out:
3992 btrfs_trans_release_chunk_metadata(trans);
3993
3994 if (ret)
3995 return ERR_PTR(ret);
3996
3997 btrfs_get_block_group(bg);
3998 return bg;
3999 }
4000
4001 /*
4002 * Chunk allocation is done in 2 phases:
4003 *
4004 * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for
4005 * the chunk, the chunk mapping, create its block group and add the items
4006 * that belong in the chunk btree to it - more specifically, we need to
4007 * update device items in the chunk btree and add a new chunk item to it.
4008 *
4009 * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block
4010 * group item to the extent btree and the device extent items to the devices
4011 * btree.
4012 *
4013 * This is done to prevent deadlocks. For example when COWing a node from the
4014 * extent btree we are holding a write lock on the node's parent and if we
4015 * trigger chunk allocation and attempted to insert the new block group item
4016 * in the extent btree right way, we could deadlock because the path for the
4017 * insertion can include that parent node. At first glance it seems impossible
4018 * to trigger chunk allocation after starting a transaction since tasks should
4019 * reserve enough transaction units (metadata space), however while that is true
4020 * most of the time, chunk allocation may still be triggered for several reasons:
4021 *
4022 * 1) When reserving metadata, we check if there is enough free space in the
4023 * metadata space_info and therefore don't trigger allocation of a new chunk.
4024 * However later when the task actually tries to COW an extent buffer from
4025 * the extent btree or from the device btree for example, it is forced to
4026 * allocate a new block group (chunk) because the only one that had enough
4027 * free space was just turned to RO mode by a running scrub for example (or
4028 * device replace, block group reclaim thread, etc), so we can not use it
4029 * for allocating an extent and end up being forced to allocate a new one;
4030 *
4031 * 2) Because we only check that the metadata space_info has enough free bytes,
4032 * we end up not allocating a new metadata chunk in that case. However if
4033 * the filesystem was mounted in degraded mode, none of the existing block
4034 * groups might be suitable for extent allocation due to their incompatible
4035 * profile (for e.g. mounting a 2 devices filesystem, where all block groups
4036 * use a RAID1 profile, in degraded mode using a single device). In this case
4037 * when the task attempts to COW some extent buffer of the extent btree for
4038 * example, it will trigger allocation of a new metadata block group with a
4039 * suitable profile (SINGLE profile in the example of the degraded mount of
4040 * the RAID1 filesystem);
4041 *
4042 * 3) The task has reserved enough transaction units / metadata space, but when
4043 * it attempts to COW an extent buffer from the extent or device btree for
4044 * example, it does not find any free extent in any metadata block group,
4045 * therefore forced to try to allocate a new metadata block group.
4046 * This is because some other task allocated all available extents in the
4047 * meanwhile - this typically happens with tasks that don't reserve space
4048 * properly, either intentionally or as a bug. One example where this is
4049 * done intentionally is fsync, as it does not reserve any transaction units
4050 * and ends up allocating a variable number of metadata extents for log
4051 * tree extent buffers;
4052 *
4053 * 4) The task has reserved enough transaction units / metadata space, but right
4054 * before it tries to allocate the last extent buffer it needs, a discard
4055 * operation comes in and, temporarily, removes the last free space entry from
4056 * the only metadata block group that had free space (discard starts by
4057 * removing a free space entry from a block group, then does the discard
4058 * operation and, once it's done, it adds back the free space entry to the
4059 * block group).
4060 *
4061 * We also need this 2 phases setup when adding a device to a filesystem with
4062 * a seed device - we must create new metadata and system chunks without adding
4063 * any of the block group items to the chunk, extent and device btrees. If we
4064 * did not do it this way, we would get ENOSPC when attempting to update those
4065 * btrees, since all the chunks from the seed device are read-only.
4066 *
4067 * Phase 1 does the updates and insertions to the chunk btree because if we had
4068 * it done in phase 2 and have a thundering herd of tasks allocating chunks in
4069 * parallel, we risk having too many system chunks allocated by many tasks if
4070 * many tasks reach phase 1 without the previous ones completing phase 2. In the
4071 * extreme case this leads to exhaustion of the system chunk array in the
4072 * superblock. This is easier to trigger if using a btree node/leaf size of 64K
4073 * and with RAID filesystems (so we have more device items in the chunk btree).
4074 * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of
4075 * the system chunk array due to concurrent allocations") provides more details.
4076 *
4077 * Allocation of system chunks does not happen through this function. A task that
4078 * needs to update the chunk btree (the only btree that uses system chunks), must
4079 * preallocate chunk space by calling either check_system_chunk() or
4080 * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or
4081 * metadata chunk or when removing a chunk, while the later is used before doing
4082 * a modification to the chunk btree - use cases for the later are adding,
4083 * removing and resizing a device as well as relocation of a system chunk.
4084 * See the comment below for more details.
4085 *
4086 * The reservation of system space, done through check_system_chunk(), as well
4087 * as all the updates and insertions into the chunk btree must be done while
4088 * holding fs_info->chunk_mutex. This is important to guarantee that while COWing
4089 * an extent buffer from the chunks btree we never trigger allocation of a new
4090 * system chunk, which would result in a deadlock (trying to lock twice an
4091 * extent buffer of the chunk btree, first time before triggering the chunk
4092 * allocation and the second time during chunk allocation while attempting to
4093 * update the chunks btree). The system chunk array is also updated while holding
4094 * that mutex. The same logic applies to removing chunks - we must reserve system
4095 * space, update the chunk btree and the system chunk array in the superblock
4096 * while holding fs_info->chunk_mutex.
4097 *
4098 * This function, btrfs_chunk_alloc(), belongs to phase 1.
4099 *
4100 * If @force is CHUNK_ALLOC_FORCE:
4101 * - return 1 if it successfully allocates a chunk,
4102 * - return errors including -ENOSPC otherwise.
4103 * If @force is NOT CHUNK_ALLOC_FORCE:
4104 * - return 0 if it doesn't need to allocate a new chunk,
4105 * - return 1 if it successfully allocates a chunk,
4106 * - return errors including -ENOSPC otherwise.
4107 */
btrfs_chunk_alloc(struct btrfs_trans_handle * trans,u64 flags,enum btrfs_chunk_alloc_enum force)4108 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
4109 enum btrfs_chunk_alloc_enum force)
4110 {
4111 struct btrfs_fs_info *fs_info = trans->fs_info;
4112 struct btrfs_space_info *space_info;
4113 struct btrfs_block_group *ret_bg;
4114 bool wait_for_alloc = false;
4115 bool should_alloc = false;
4116 bool from_extent_allocation = false;
4117 int ret = 0;
4118
4119 if (force == CHUNK_ALLOC_FORCE_FOR_EXTENT) {
4120 from_extent_allocation = true;
4121 force = CHUNK_ALLOC_FORCE;
4122 }
4123
4124 /* Don't re-enter if we're already allocating a chunk */
4125 if (trans->allocating_chunk)
4126 return -ENOSPC;
4127 /*
4128 * Allocation of system chunks can not happen through this path, as we
4129 * could end up in a deadlock if we are allocating a data or metadata
4130 * chunk and there is another task modifying the chunk btree.
4131 *
4132 * This is because while we are holding the chunk mutex, we will attempt
4133 * to add the new chunk item to the chunk btree or update an existing
4134 * device item in the chunk btree, while the other task that is modifying
4135 * the chunk btree is attempting to COW an extent buffer while holding a
4136 * lock on it and on its parent - if the COW operation triggers a system
4137 * chunk allocation, then we can deadlock because we are holding the
4138 * chunk mutex and we may need to access that extent buffer or its parent
4139 * in order to add the chunk item or update a device item.
4140 *
4141 * Tasks that want to modify the chunk tree should reserve system space
4142 * before updating the chunk btree, by calling either
4143 * btrfs_reserve_chunk_metadata() or check_system_chunk().
4144 * It's possible that after a task reserves the space, it still ends up
4145 * here - this happens in the cases described above at do_chunk_alloc().
4146 * The task will have to either retry or fail.
4147 */
4148 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4149 return -ENOSPC;
4150
4151 space_info = btrfs_find_space_info(fs_info, flags);
4152 ASSERT(space_info);
4153
4154 do {
4155 spin_lock(&space_info->lock);
4156 if (force < space_info->force_alloc)
4157 force = space_info->force_alloc;
4158 should_alloc = should_alloc_chunk(fs_info, space_info, force);
4159 if (space_info->full) {
4160 /* No more free physical space */
4161 if (should_alloc)
4162 ret = -ENOSPC;
4163 else
4164 ret = 0;
4165 spin_unlock(&space_info->lock);
4166 return ret;
4167 } else if (!should_alloc) {
4168 spin_unlock(&space_info->lock);
4169 return 0;
4170 } else if (space_info->chunk_alloc) {
4171 /*
4172 * Someone is already allocating, so we need to block
4173 * until this someone is finished and then loop to
4174 * recheck if we should continue with our allocation
4175 * attempt.
4176 */
4177 wait_for_alloc = true;
4178 force = CHUNK_ALLOC_NO_FORCE;
4179 spin_unlock(&space_info->lock);
4180 mutex_lock(&fs_info->chunk_mutex);
4181 mutex_unlock(&fs_info->chunk_mutex);
4182 } else {
4183 /* Proceed with allocation */
4184 space_info->chunk_alloc = 1;
4185 wait_for_alloc = false;
4186 spin_unlock(&space_info->lock);
4187 }
4188
4189 cond_resched();
4190 } while (wait_for_alloc);
4191
4192 mutex_lock(&fs_info->chunk_mutex);
4193 trans->allocating_chunk = true;
4194
4195 /*
4196 * If we have mixed data/metadata chunks we want to make sure we keep
4197 * allocating mixed chunks instead of individual chunks.
4198 */
4199 if (btrfs_mixed_space_info(space_info))
4200 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4201
4202 /*
4203 * if we're doing a data chunk, go ahead and make sure that
4204 * we keep a reasonable number of metadata chunks allocated in the
4205 * FS as well.
4206 */
4207 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4208 fs_info->data_chunk_allocations++;
4209 if (!(fs_info->data_chunk_allocations %
4210 fs_info->metadata_ratio))
4211 force_metadata_allocation(fs_info);
4212 }
4213
4214 ret_bg = do_chunk_alloc(trans, flags);
4215 trans->allocating_chunk = false;
4216
4217 if (IS_ERR(ret_bg)) {
4218 ret = PTR_ERR(ret_bg);
4219 } else if (from_extent_allocation && (flags & BTRFS_BLOCK_GROUP_DATA)) {
4220 /*
4221 * New block group is likely to be used soon. Try to activate
4222 * it now. Failure is OK for now.
4223 */
4224 btrfs_zone_activate(ret_bg);
4225 }
4226
4227 if (!ret)
4228 btrfs_put_block_group(ret_bg);
4229
4230 spin_lock(&space_info->lock);
4231 if (ret < 0) {
4232 if (ret == -ENOSPC)
4233 space_info->full = 1;
4234 else
4235 goto out;
4236 } else {
4237 ret = 1;
4238 space_info->max_extent_size = 0;
4239 }
4240
4241 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4242 out:
4243 space_info->chunk_alloc = 0;
4244 spin_unlock(&space_info->lock);
4245 mutex_unlock(&fs_info->chunk_mutex);
4246
4247 return ret;
4248 }
4249
get_profile_num_devs(const struct btrfs_fs_info * fs_info,u64 type)4250 static u64 get_profile_num_devs(const struct btrfs_fs_info *fs_info, u64 type)
4251 {
4252 u64 num_dev;
4253
4254 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
4255 if (!num_dev)
4256 num_dev = fs_info->fs_devices->rw_devices;
4257
4258 return num_dev;
4259 }
4260
reserve_chunk_space(struct btrfs_trans_handle * trans,u64 bytes,u64 type)4261 static void reserve_chunk_space(struct btrfs_trans_handle *trans,
4262 u64 bytes,
4263 u64 type)
4264 {
4265 struct btrfs_fs_info *fs_info = trans->fs_info;
4266 struct btrfs_space_info *info;
4267 u64 left;
4268 int ret = 0;
4269
4270 /*
4271 * Needed because we can end up allocating a system chunk and for an
4272 * atomic and race free space reservation in the chunk block reserve.
4273 */
4274 lockdep_assert_held(&fs_info->chunk_mutex);
4275
4276 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4277 spin_lock(&info->lock);
4278 left = info->total_bytes - btrfs_space_info_used(info, true);
4279 spin_unlock(&info->lock);
4280
4281 if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4282 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4283 left, bytes, type);
4284 btrfs_dump_space_info(fs_info, info, 0, 0);
4285 }
4286
4287 if (left < bytes) {
4288 u64 flags = btrfs_system_alloc_profile(fs_info);
4289 struct btrfs_block_group *bg;
4290
4291 /*
4292 * Ignore failure to create system chunk. We might end up not
4293 * needing it, as we might not need to COW all nodes/leafs from
4294 * the paths we visit in the chunk tree (they were already COWed
4295 * or created in the current transaction for example).
4296 */
4297 bg = btrfs_create_chunk(trans, flags);
4298 if (IS_ERR(bg)) {
4299 ret = PTR_ERR(bg);
4300 } else {
4301 /*
4302 * We have a new chunk. We also need to activate it for
4303 * zoned filesystem.
4304 */
4305 ret = btrfs_zoned_activate_one_bg(fs_info, info, true);
4306 if (ret < 0)
4307 return;
4308
4309 /*
4310 * If we fail to add the chunk item here, we end up
4311 * trying again at phase 2 of chunk allocation, at
4312 * btrfs_create_pending_block_groups(). So ignore
4313 * any error here. An ENOSPC here could happen, due to
4314 * the cases described at do_chunk_alloc() - the system
4315 * block group we just created was just turned into RO
4316 * mode by a scrub for example, or a running discard
4317 * temporarily removed its free space entries, etc.
4318 */
4319 btrfs_chunk_alloc_add_chunk_item(trans, bg);
4320 }
4321 }
4322
4323 if (!ret) {
4324 ret = btrfs_block_rsv_add(fs_info,
4325 &fs_info->chunk_block_rsv,
4326 bytes, BTRFS_RESERVE_NO_FLUSH);
4327 if (!ret)
4328 trans->chunk_bytes_reserved += bytes;
4329 }
4330 }
4331
4332 /*
4333 * Reserve space in the system space for allocating or removing a chunk.
4334 * The caller must be holding fs_info->chunk_mutex.
4335 */
check_system_chunk(struct btrfs_trans_handle * trans,u64 type)4336 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
4337 {
4338 struct btrfs_fs_info *fs_info = trans->fs_info;
4339 const u64 num_devs = get_profile_num_devs(fs_info, type);
4340 u64 bytes;
4341
4342 /* num_devs device items to update and 1 chunk item to add or remove. */
4343 bytes = btrfs_calc_metadata_size(fs_info, num_devs) +
4344 btrfs_calc_insert_metadata_size(fs_info, 1);
4345
4346 reserve_chunk_space(trans, bytes, type);
4347 }
4348
4349 /*
4350 * Reserve space in the system space, if needed, for doing a modification to the
4351 * chunk btree.
4352 *
4353 * @trans: A transaction handle.
4354 * @is_item_insertion: Indicate if the modification is for inserting a new item
4355 * in the chunk btree or if it's for the deletion or update
4356 * of an existing item.
4357 *
4358 * This is used in a context where we need to update the chunk btree outside
4359 * block group allocation and removal, to avoid a deadlock with a concurrent
4360 * task that is allocating a metadata or data block group and therefore needs to
4361 * update the chunk btree while holding the chunk mutex. After the update to the
4362 * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called.
4363 *
4364 */
btrfs_reserve_chunk_metadata(struct btrfs_trans_handle * trans,bool is_item_insertion)4365 void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans,
4366 bool is_item_insertion)
4367 {
4368 struct btrfs_fs_info *fs_info = trans->fs_info;
4369 u64 bytes;
4370
4371 if (is_item_insertion)
4372 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
4373 else
4374 bytes = btrfs_calc_metadata_size(fs_info, 1);
4375
4376 mutex_lock(&fs_info->chunk_mutex);
4377 reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM);
4378 mutex_unlock(&fs_info->chunk_mutex);
4379 }
4380
btrfs_put_block_group_cache(struct btrfs_fs_info * info)4381 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
4382 {
4383 struct btrfs_block_group *block_group;
4384
4385 block_group = btrfs_lookup_first_block_group(info, 0);
4386 while (block_group) {
4387 btrfs_wait_block_group_cache_done(block_group);
4388 spin_lock(&block_group->lock);
4389 if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF,
4390 &block_group->runtime_flags)) {
4391 struct btrfs_inode *inode = block_group->inode;
4392
4393 block_group->inode = NULL;
4394 spin_unlock(&block_group->lock);
4395
4396 ASSERT(block_group->io_ctl.inode == NULL);
4397 iput(&inode->vfs_inode);
4398 } else {
4399 spin_unlock(&block_group->lock);
4400 }
4401 block_group = btrfs_next_block_group(block_group);
4402 }
4403 }
4404
4405 /*
4406 * Must be called only after stopping all workers, since we could have block
4407 * group caching kthreads running, and therefore they could race with us if we
4408 * freed the block groups before stopping them.
4409 */
btrfs_free_block_groups(struct btrfs_fs_info * info)4410 int btrfs_free_block_groups(struct btrfs_fs_info *info)
4411 {
4412 struct btrfs_block_group *block_group;
4413 struct btrfs_space_info *space_info;
4414 struct btrfs_caching_control *caching_ctl;
4415 struct rb_node *n;
4416
4417 if (btrfs_is_zoned(info)) {
4418 if (info->active_meta_bg) {
4419 btrfs_put_block_group(info->active_meta_bg);
4420 info->active_meta_bg = NULL;
4421 }
4422 if (info->active_system_bg) {
4423 btrfs_put_block_group(info->active_system_bg);
4424 info->active_system_bg = NULL;
4425 }
4426 }
4427
4428 write_lock(&info->block_group_cache_lock);
4429 while (!list_empty(&info->caching_block_groups)) {
4430 caching_ctl = list_entry(info->caching_block_groups.next,
4431 struct btrfs_caching_control, list);
4432 list_del(&caching_ctl->list);
4433 btrfs_put_caching_control(caching_ctl);
4434 }
4435 write_unlock(&info->block_group_cache_lock);
4436
4437 spin_lock(&info->unused_bgs_lock);
4438 while (!list_empty(&info->unused_bgs)) {
4439 block_group = list_first_entry(&info->unused_bgs,
4440 struct btrfs_block_group,
4441 bg_list);
4442 list_del_init(&block_group->bg_list);
4443 btrfs_put_block_group(block_group);
4444 }
4445
4446 while (!list_empty(&info->reclaim_bgs)) {
4447 block_group = list_first_entry(&info->reclaim_bgs,
4448 struct btrfs_block_group,
4449 bg_list);
4450 list_del_init(&block_group->bg_list);
4451 btrfs_put_block_group(block_group);
4452 }
4453 spin_unlock(&info->unused_bgs_lock);
4454
4455 spin_lock(&info->zone_active_bgs_lock);
4456 while (!list_empty(&info->zone_active_bgs)) {
4457 block_group = list_first_entry(&info->zone_active_bgs,
4458 struct btrfs_block_group,
4459 active_bg_list);
4460 list_del_init(&block_group->active_bg_list);
4461 btrfs_put_block_group(block_group);
4462 }
4463 spin_unlock(&info->zone_active_bgs_lock);
4464
4465 write_lock(&info->block_group_cache_lock);
4466 while ((n = rb_last(&info->block_group_cache_tree.rb_root)) != NULL) {
4467 block_group = rb_entry(n, struct btrfs_block_group,
4468 cache_node);
4469 rb_erase_cached(&block_group->cache_node,
4470 &info->block_group_cache_tree);
4471 RB_CLEAR_NODE(&block_group->cache_node);
4472 write_unlock(&info->block_group_cache_lock);
4473
4474 down_write(&block_group->space_info->groups_sem);
4475 list_del(&block_group->list);
4476 up_write(&block_group->space_info->groups_sem);
4477
4478 /*
4479 * We haven't cached this block group, which means we could
4480 * possibly have excluded extents on this block group.
4481 */
4482 if (block_group->cached == BTRFS_CACHE_NO ||
4483 block_group->cached == BTRFS_CACHE_ERROR)
4484 btrfs_free_excluded_extents(block_group);
4485
4486 btrfs_remove_free_space_cache(block_group);
4487 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
4488 ASSERT(list_empty(&block_group->dirty_list));
4489 ASSERT(list_empty(&block_group->io_list));
4490 ASSERT(list_empty(&block_group->bg_list));
4491 ASSERT(refcount_read(&block_group->refs) == 1);
4492 ASSERT(block_group->swap_extents == 0);
4493 btrfs_put_block_group(block_group);
4494
4495 write_lock(&info->block_group_cache_lock);
4496 }
4497 write_unlock(&info->block_group_cache_lock);
4498
4499 btrfs_release_global_block_rsv(info);
4500
4501 while (!list_empty(&info->space_info)) {
4502 space_info = list_entry(info->space_info.next,
4503 struct btrfs_space_info,
4504 list);
4505
4506 /*
4507 * Do not hide this behind enospc_debug, this is actually
4508 * important and indicates a real bug if this happens.
4509 */
4510 if (WARN_ON(space_info->bytes_pinned > 0 ||
4511 space_info->bytes_may_use > 0))
4512 btrfs_dump_space_info(info, space_info, 0, 0);
4513
4514 /*
4515 * If there was a failure to cleanup a log tree, very likely due
4516 * to an IO failure on a writeback attempt of one or more of its
4517 * extent buffers, we could not do proper (and cheap) unaccounting
4518 * of their reserved space, so don't warn on bytes_reserved > 0 in
4519 * that case.
4520 */
4521 if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) ||
4522 !BTRFS_FS_LOG_CLEANUP_ERROR(info)) {
4523 if (WARN_ON(space_info->bytes_reserved > 0))
4524 btrfs_dump_space_info(info, space_info, 0, 0);
4525 }
4526
4527 WARN_ON(space_info->reclaim_size > 0);
4528 list_del(&space_info->list);
4529 btrfs_sysfs_remove_space_info(space_info);
4530 }
4531 return 0;
4532 }
4533
btrfs_freeze_block_group(struct btrfs_block_group * cache)4534 void btrfs_freeze_block_group(struct btrfs_block_group *cache)
4535 {
4536 atomic_inc(&cache->frozen);
4537 }
4538
btrfs_unfreeze_block_group(struct btrfs_block_group * block_group)4539 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
4540 {
4541 struct btrfs_fs_info *fs_info = block_group->fs_info;
4542 bool cleanup;
4543
4544 spin_lock(&block_group->lock);
4545 cleanup = (atomic_dec_and_test(&block_group->frozen) &&
4546 test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags));
4547 spin_unlock(&block_group->lock);
4548
4549 if (cleanup) {
4550 struct btrfs_chunk_map *map;
4551
4552 map = btrfs_find_chunk_map(fs_info, block_group->start, 1);
4553 /* Logic error, can't happen. */
4554 ASSERT(map);
4555
4556 btrfs_remove_chunk_map(fs_info, map);
4557
4558 /* Once for our lookup reference. */
4559 btrfs_free_chunk_map(map);
4560
4561 /*
4562 * We may have left one free space entry and other possible
4563 * tasks trimming this block group have left 1 entry each one.
4564 * Free them if any.
4565 */
4566 btrfs_remove_free_space_cache(block_group);
4567 }
4568 }
4569
btrfs_inc_block_group_swap_extents(struct btrfs_block_group * bg)4570 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg)
4571 {
4572 bool ret = true;
4573
4574 spin_lock(&bg->lock);
4575 if (bg->ro)
4576 ret = false;
4577 else
4578 bg->swap_extents++;
4579 spin_unlock(&bg->lock);
4580
4581 return ret;
4582 }
4583
btrfs_dec_block_group_swap_extents(struct btrfs_block_group * bg,int amount)4584 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount)
4585 {
4586 spin_lock(&bg->lock);
4587 ASSERT(!bg->ro);
4588 ASSERT(bg->swap_extents >= amount);
4589 bg->swap_extents -= amount;
4590 spin_unlock(&bg->lock);
4591 }
4592
btrfs_calc_block_group_size_class(u64 size)4593 enum btrfs_block_group_size_class btrfs_calc_block_group_size_class(u64 size)
4594 {
4595 if (size <= SZ_128K)
4596 return BTRFS_BG_SZ_SMALL;
4597 if (size <= SZ_8M)
4598 return BTRFS_BG_SZ_MEDIUM;
4599 return BTRFS_BG_SZ_LARGE;
4600 }
4601
4602 /*
4603 * Handle a block group allocating an extent in a size class
4604 *
4605 * @bg: The block group we allocated in.
4606 * @size_class: The size class of the allocation.
4607 * @force_wrong_size_class: Whether we are desperate enough to allow
4608 * mismatched size classes.
4609 *
4610 * Returns: 0 if the size class was valid for this block_group, -EAGAIN in the
4611 * case of a race that leads to the wrong size class without
4612 * force_wrong_size_class set.
4613 *
4614 * find_free_extent will skip block groups with a mismatched size class until
4615 * it really needs to avoid ENOSPC. In that case it will set
4616 * force_wrong_size_class. However, if a block group is newly allocated and
4617 * doesn't yet have a size class, then it is possible for two allocations of
4618 * different sizes to race and both try to use it. The loser is caught here and
4619 * has to retry.
4620 */
btrfs_use_block_group_size_class(struct btrfs_block_group * bg,enum btrfs_block_group_size_class size_class,bool force_wrong_size_class)4621 int btrfs_use_block_group_size_class(struct btrfs_block_group *bg,
4622 enum btrfs_block_group_size_class size_class,
4623 bool force_wrong_size_class)
4624 {
4625 ASSERT(size_class != BTRFS_BG_SZ_NONE);
4626
4627 /* The new allocation is in the right size class, do nothing */
4628 if (bg->size_class == size_class)
4629 return 0;
4630 /*
4631 * The new allocation is in a mismatched size class.
4632 * This means one of two things:
4633 *
4634 * 1. Two tasks in find_free_extent for different size_classes raced
4635 * and hit the same empty block_group. Make the loser try again.
4636 * 2. A call to find_free_extent got desperate enough to set
4637 * 'force_wrong_slab'. Don't change the size_class, but allow the
4638 * allocation.
4639 */
4640 if (bg->size_class != BTRFS_BG_SZ_NONE) {
4641 if (force_wrong_size_class)
4642 return 0;
4643 return -EAGAIN;
4644 }
4645 /*
4646 * The happy new block group case: the new allocation is the first
4647 * one in the block_group so we set size_class.
4648 */
4649 bg->size_class = size_class;
4650
4651 return 0;
4652 }
4653
btrfs_block_group_should_use_size_class(const struct btrfs_block_group * bg)4654 bool btrfs_block_group_should_use_size_class(const struct btrfs_block_group *bg)
4655 {
4656 if (btrfs_is_zoned(bg->fs_info))
4657 return false;
4658 if (!btrfs_is_block_group_data_only(bg))
4659 return false;
4660 return true;
4661 }
4662