xref: /linux/fs/btrfs/tree-log.c (revision 5ca7fe213ba3113dde19c4cd46347c16d9e69f81)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/blkdev.h>
9 #include <linux/list_sort.h>
10 #include <linux/iversion.h>
11 #include "misc.h"
12 #include "ctree.h"
13 #include "tree-log.h"
14 #include "disk-io.h"
15 #include "locking.h"
16 #include "backref.h"
17 #include "compression.h"
18 #include "qgroup.h"
19 #include "block-group.h"
20 #include "space-info.h"
21 #include "inode-item.h"
22 #include "fs.h"
23 #include "accessors.h"
24 #include "extent-tree.h"
25 #include "root-tree.h"
26 #include "dir-item.h"
27 #include "file-item.h"
28 #include "file.h"
29 #include "orphan.h"
30 #include "tree-checker.h"
31 
32 #define MAX_CONFLICT_INODES 10
33 
34 /* magic values for the inode_only field in btrfs_log_inode:
35  *
36  * LOG_INODE_ALL means to log everything
37  * LOG_INODE_EXISTS means to log just enough to recreate the inode
38  * during log replay
39  */
40 enum {
41 	LOG_INODE_ALL,
42 	LOG_INODE_EXISTS,
43 };
44 
45 /*
46  * directory trouble cases
47  *
48  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
49  * log, we must force a full commit before doing an fsync of the directory
50  * where the unlink was done.
51  * ---> record transid of last unlink/rename per directory
52  *
53  * mkdir foo/some_dir
54  * normal commit
55  * rename foo/some_dir foo2/some_dir
56  * mkdir foo/some_dir
57  * fsync foo/some_dir/some_file
58  *
59  * The fsync above will unlink the original some_dir without recording
60  * it in its new location (foo2).  After a crash, some_dir will be gone
61  * unless the fsync of some_file forces a full commit
62  *
63  * 2) we must log any new names for any file or dir that is in the fsync
64  * log. ---> check inode while renaming/linking.
65  *
66  * 2a) we must log any new names for any file or dir during rename
67  * when the directory they are being removed from was logged.
68  * ---> check inode and old parent dir during rename
69  *
70  *  2a is actually the more important variant.  With the extra logging
71  *  a crash might unlink the old name without recreating the new one
72  *
73  * 3) after a crash, we must go through any directories with a link count
74  * of zero and redo the rm -rf
75  *
76  * mkdir f1/foo
77  * normal commit
78  * rm -rf f1/foo
79  * fsync(f1)
80  *
81  * The directory f1 was fully removed from the FS, but fsync was never
82  * called on f1, only its parent dir.  After a crash the rm -rf must
83  * be replayed.  This must be able to recurse down the entire
84  * directory tree.  The inode link count fixup code takes care of the
85  * ugly details.
86  */
87 
88 /*
89  * stages for the tree walking.  The first
90  * stage (0) is to only pin down the blocks we find
91  * the second stage (1) is to make sure that all the inodes
92  * we find in the log are created in the subvolume.
93  *
94  * The last stage is to deal with directories and links and extents
95  * and all the other fun semantics
96  */
97 enum {
98 	LOG_WALK_PIN_ONLY,
99 	LOG_WALK_REPLAY_INODES,
100 	LOG_WALK_REPLAY_DIR_INDEX,
101 	LOG_WALK_REPLAY_ALL,
102 };
103 
104 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
105 			   struct btrfs_inode *inode,
106 			   int inode_only,
107 			   struct btrfs_log_ctx *ctx);
108 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
109 			     struct btrfs_root *root,
110 			     struct btrfs_path *path, u64 objectid);
111 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
112 				       struct btrfs_root *root,
113 				       struct btrfs_root *log,
114 				       struct btrfs_path *path,
115 				       u64 dirid, int del_all);
116 static void wait_log_commit(struct btrfs_root *root, int transid);
117 
118 /*
119  * tree logging is a special write ahead log used to make sure that
120  * fsyncs and O_SYNCs can happen without doing full tree commits.
121  *
122  * Full tree commits are expensive because they require commonly
123  * modified blocks to be recowed, creating many dirty pages in the
124  * extent tree an 4x-6x higher write load than ext3.
125  *
126  * Instead of doing a tree commit on every fsync, we use the
127  * key ranges and transaction ids to find items for a given file or directory
128  * that have changed in this transaction.  Those items are copied into
129  * a special tree (one per subvolume root), that tree is written to disk
130  * and then the fsync is considered complete.
131  *
132  * After a crash, items are copied out of the log-tree back into the
133  * subvolume tree.  Any file data extents found are recorded in the extent
134  * allocation tree, and the log-tree freed.
135  *
136  * The log tree is read three times, once to pin down all the extents it is
137  * using in ram and once, once to create all the inodes logged in the tree
138  * and once to do all the other items.
139  */
140 
btrfs_iget_logging(u64 objectid,struct btrfs_root * root)141 static struct btrfs_inode *btrfs_iget_logging(u64 objectid, struct btrfs_root *root)
142 {
143 	unsigned int nofs_flag;
144 	struct btrfs_inode *inode;
145 
146 	/*
147 	 * We're holding a transaction handle whether we are logging or
148 	 * replaying a log tree, so we must make sure NOFS semantics apply
149 	 * because btrfs_alloc_inode() may be triggered and it uses GFP_KERNEL
150 	 * to allocate an inode, which can recurse back into the filesystem and
151 	 * attempt a transaction commit, resulting in a deadlock.
152 	 */
153 	nofs_flag = memalloc_nofs_save();
154 	inode = btrfs_iget(objectid, root);
155 	memalloc_nofs_restore(nofs_flag);
156 
157 	return inode;
158 }
159 
160 /*
161  * start a sub transaction and setup the log tree
162  * this increments the log tree writer count to make the people
163  * syncing the tree wait for us to finish
164  */
start_log_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_log_ctx * ctx)165 static int start_log_trans(struct btrfs_trans_handle *trans,
166 			   struct btrfs_root *root,
167 			   struct btrfs_log_ctx *ctx)
168 {
169 	struct btrfs_fs_info *fs_info = root->fs_info;
170 	struct btrfs_root *tree_root = fs_info->tree_root;
171 	const bool zoned = btrfs_is_zoned(fs_info);
172 	int ret = 0;
173 	bool created = false;
174 
175 	/*
176 	 * First check if the log root tree was already created. If not, create
177 	 * it before locking the root's log_mutex, just to keep lockdep happy.
178 	 */
179 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
180 		mutex_lock(&tree_root->log_mutex);
181 		if (!fs_info->log_root_tree) {
182 			ret = btrfs_init_log_root_tree(trans, fs_info);
183 			if (!ret) {
184 				set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
185 				created = true;
186 			}
187 		}
188 		mutex_unlock(&tree_root->log_mutex);
189 		if (ret)
190 			return ret;
191 	}
192 
193 	mutex_lock(&root->log_mutex);
194 
195 again:
196 	if (root->log_root) {
197 		int index = (root->log_transid + 1) % 2;
198 
199 		if (btrfs_need_log_full_commit(trans)) {
200 			ret = BTRFS_LOG_FORCE_COMMIT;
201 			goto out;
202 		}
203 
204 		if (zoned && atomic_read(&root->log_commit[index])) {
205 			wait_log_commit(root, root->log_transid - 1);
206 			goto again;
207 		}
208 
209 		if (!root->log_start_pid) {
210 			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
211 			root->log_start_pid = current->pid;
212 		} else if (root->log_start_pid != current->pid) {
213 			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
214 		}
215 	} else {
216 		/*
217 		 * This means fs_info->log_root_tree was already created
218 		 * for some other FS trees. Do the full commit not to mix
219 		 * nodes from multiple log transactions to do sequential
220 		 * writing.
221 		 */
222 		if (zoned && !created) {
223 			ret = BTRFS_LOG_FORCE_COMMIT;
224 			goto out;
225 		}
226 
227 		ret = btrfs_add_log_tree(trans, root);
228 		if (ret)
229 			goto out;
230 
231 		set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
232 		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
233 		root->log_start_pid = current->pid;
234 	}
235 
236 	atomic_inc(&root->log_writers);
237 	if (!ctx->logging_new_name) {
238 		int index = root->log_transid % 2;
239 		list_add_tail(&ctx->list, &root->log_ctxs[index]);
240 		ctx->log_transid = root->log_transid;
241 	}
242 
243 out:
244 	mutex_unlock(&root->log_mutex);
245 	return ret;
246 }
247 
248 /*
249  * returns 0 if there was a log transaction running and we were able
250  * to join, or returns -ENOENT if there were not transactions
251  * in progress
252  */
join_running_log_trans(struct btrfs_root * root)253 static int join_running_log_trans(struct btrfs_root *root)
254 {
255 	const bool zoned = btrfs_is_zoned(root->fs_info);
256 	int ret = -ENOENT;
257 
258 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
259 		return ret;
260 
261 	mutex_lock(&root->log_mutex);
262 again:
263 	if (root->log_root) {
264 		int index = (root->log_transid + 1) % 2;
265 
266 		ret = 0;
267 		if (zoned && atomic_read(&root->log_commit[index])) {
268 			wait_log_commit(root, root->log_transid - 1);
269 			goto again;
270 		}
271 		atomic_inc(&root->log_writers);
272 	}
273 	mutex_unlock(&root->log_mutex);
274 	return ret;
275 }
276 
277 /*
278  * This either makes the current running log transaction wait
279  * until you call btrfs_end_log_trans() or it makes any future
280  * log transactions wait until you call btrfs_end_log_trans()
281  */
btrfs_pin_log_trans(struct btrfs_root * root)282 void btrfs_pin_log_trans(struct btrfs_root *root)
283 {
284 	atomic_inc(&root->log_writers);
285 }
286 
287 /*
288  * indicate we're done making changes to the log tree
289  * and wake up anyone waiting to do a sync
290  */
btrfs_end_log_trans(struct btrfs_root * root)291 void btrfs_end_log_trans(struct btrfs_root *root)
292 {
293 	if (atomic_dec_and_test(&root->log_writers)) {
294 		/* atomic_dec_and_test implies a barrier */
295 		cond_wake_up_nomb(&root->log_writer_wait);
296 	}
297 }
298 
299 /*
300  * the walk control struct is used to pass state down the chain when
301  * processing the log tree.  The stage field tells us which part
302  * of the log tree processing we are currently doing.  The others
303  * are state fields used for that specific part
304  */
305 struct walk_control {
306 	/* should we free the extent on disk when done?  This is used
307 	 * at transaction commit time while freeing a log tree
308 	 */
309 	int free;
310 
311 	/* pin only walk, we record which extents on disk belong to the
312 	 * log trees
313 	 */
314 	int pin;
315 
316 	/* what stage of the replay code we're currently in */
317 	int stage;
318 
319 	/*
320 	 * Ignore any items from the inode currently being processed. Needs
321 	 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
322 	 * the LOG_WALK_REPLAY_INODES stage.
323 	 */
324 	bool ignore_cur_inode;
325 
326 	/* the root we are currently replaying */
327 	struct btrfs_root *replay_dest;
328 
329 	/* the trans handle for the current replay */
330 	struct btrfs_trans_handle *trans;
331 
332 	/* the function that gets used to process blocks we find in the
333 	 * tree.  Note the extent_buffer might not be up to date when it is
334 	 * passed in, and it must be checked or read if you need the data
335 	 * inside it
336 	 */
337 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
338 			    struct walk_control *wc, u64 gen, int level);
339 };
340 
341 /*
342  * process_func used to pin down extents, write them or wait on them
343  */
process_one_buffer(struct btrfs_root * log,struct extent_buffer * eb,struct walk_control * wc,u64 gen,int level)344 static int process_one_buffer(struct btrfs_root *log,
345 			      struct extent_buffer *eb,
346 			      struct walk_control *wc, u64 gen, int level)
347 {
348 	struct btrfs_fs_info *fs_info = log->fs_info;
349 	int ret = 0;
350 
351 	/*
352 	 * If this fs is mixed then we need to be able to process the leaves to
353 	 * pin down any logged extents, so we have to read the block.
354 	 */
355 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
356 		struct btrfs_tree_parent_check check = {
357 			.level = level,
358 			.transid = gen
359 		};
360 
361 		ret = btrfs_read_extent_buffer(eb, &check);
362 		if (ret)
363 			return ret;
364 	}
365 
366 	if (wc->pin) {
367 		ret = btrfs_pin_extent_for_log_replay(wc->trans, eb);
368 		if (ret)
369 			return ret;
370 
371 		if (btrfs_buffer_uptodate(eb, gen, 0) &&
372 		    btrfs_header_level(eb) == 0)
373 			ret = btrfs_exclude_logged_extents(eb);
374 	}
375 	return ret;
376 }
377 
378 /*
379  * Item overwrite used by log replay. The given eb, slot and key all refer to
380  * the source data we are copying out.
381  *
382  * The given root is for the tree we are copying into, and path is a scratch
383  * path for use in this function (it should be released on entry and will be
384  * released on exit).
385  *
386  * If the key is already in the destination tree the existing item is
387  * overwritten.  If the existing item isn't big enough, it is extended.
388  * If it is too large, it is truncated.
389  *
390  * If the key isn't in the destination yet, a new item is inserted.
391  */
overwrite_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)392 static int overwrite_item(struct btrfs_trans_handle *trans,
393 			  struct btrfs_root *root,
394 			  struct btrfs_path *path,
395 			  struct extent_buffer *eb, int slot,
396 			  struct btrfs_key *key)
397 {
398 	int ret;
399 	u32 item_size;
400 	u64 saved_i_size = 0;
401 	int save_old_i_size = 0;
402 	unsigned long src_ptr;
403 	unsigned long dst_ptr;
404 	struct extent_buffer *dst_eb;
405 	int dst_slot;
406 	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
407 
408 	/*
409 	 * This is only used during log replay, so the root is always from a
410 	 * fs/subvolume tree. In case we ever need to support a log root, then
411 	 * we'll have to clone the leaf in the path, release the path and use
412 	 * the leaf before writing into the log tree. See the comments at
413 	 * copy_items() for more details.
414 	 */
415 	ASSERT(btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID);
416 
417 	item_size = btrfs_item_size(eb, slot);
418 	src_ptr = btrfs_item_ptr_offset(eb, slot);
419 
420 	/* Look for the key in the destination tree. */
421 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
422 	if (ret < 0)
423 		return ret;
424 
425 	dst_eb = path->nodes[0];
426 	dst_slot = path->slots[0];
427 
428 	if (ret == 0) {
429 		char *src_copy;
430 		const u32 dst_size = btrfs_item_size(dst_eb, dst_slot);
431 
432 		if (dst_size != item_size)
433 			goto insert;
434 
435 		if (item_size == 0) {
436 			btrfs_release_path(path);
437 			return 0;
438 		}
439 		src_copy = kmalloc(item_size, GFP_NOFS);
440 		if (!src_copy) {
441 			btrfs_release_path(path);
442 			return -ENOMEM;
443 		}
444 
445 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
446 		dst_ptr = btrfs_item_ptr_offset(dst_eb, dst_slot);
447 		ret = memcmp_extent_buffer(dst_eb, src_copy, dst_ptr, item_size);
448 
449 		kfree(src_copy);
450 		/*
451 		 * they have the same contents, just return, this saves
452 		 * us from cowing blocks in the destination tree and doing
453 		 * extra writes that may not have been done by a previous
454 		 * sync
455 		 */
456 		if (ret == 0) {
457 			btrfs_release_path(path);
458 			return 0;
459 		}
460 
461 		/*
462 		 * We need to load the old nbytes into the inode so when we
463 		 * replay the extents we've logged we get the right nbytes.
464 		 */
465 		if (inode_item) {
466 			struct btrfs_inode_item *item;
467 			u64 nbytes;
468 			u32 mode;
469 
470 			item = btrfs_item_ptr(dst_eb, dst_slot,
471 					      struct btrfs_inode_item);
472 			nbytes = btrfs_inode_nbytes(dst_eb, item);
473 			item = btrfs_item_ptr(eb, slot,
474 					      struct btrfs_inode_item);
475 			btrfs_set_inode_nbytes(eb, item, nbytes);
476 
477 			/*
478 			 * If this is a directory we need to reset the i_size to
479 			 * 0 so that we can set it up properly when replaying
480 			 * the rest of the items in this log.
481 			 */
482 			mode = btrfs_inode_mode(eb, item);
483 			if (S_ISDIR(mode))
484 				btrfs_set_inode_size(eb, item, 0);
485 		}
486 	} else if (inode_item) {
487 		struct btrfs_inode_item *item;
488 		u32 mode;
489 
490 		/*
491 		 * New inode, set nbytes to 0 so that the nbytes comes out
492 		 * properly when we replay the extents.
493 		 */
494 		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
495 		btrfs_set_inode_nbytes(eb, item, 0);
496 
497 		/*
498 		 * If this is a directory we need to reset the i_size to 0 so
499 		 * that we can set it up properly when replaying the rest of
500 		 * the items in this log.
501 		 */
502 		mode = btrfs_inode_mode(eb, item);
503 		if (S_ISDIR(mode))
504 			btrfs_set_inode_size(eb, item, 0);
505 	}
506 insert:
507 	btrfs_release_path(path);
508 	/* try to insert the key into the destination tree */
509 	path->skip_release_on_error = 1;
510 	ret = btrfs_insert_empty_item(trans, root, path,
511 				      key, item_size);
512 	path->skip_release_on_error = 0;
513 
514 	dst_eb = path->nodes[0];
515 	dst_slot = path->slots[0];
516 
517 	/* make sure any existing item is the correct size */
518 	if (ret == -EEXIST || ret == -EOVERFLOW) {
519 		const u32 found_size = btrfs_item_size(dst_eb, dst_slot);
520 
521 		if (found_size > item_size)
522 			btrfs_truncate_item(trans, path, item_size, 1);
523 		else if (found_size < item_size)
524 			btrfs_extend_item(trans, path, item_size - found_size);
525 	} else if (ret) {
526 		return ret;
527 	}
528 	dst_ptr = btrfs_item_ptr_offset(dst_eb, dst_slot);
529 
530 	/* don't overwrite an existing inode if the generation number
531 	 * was logged as zero.  This is done when the tree logging code
532 	 * is just logging an inode to make sure it exists after recovery.
533 	 *
534 	 * Also, don't overwrite i_size on directories during replay.
535 	 * log replay inserts and removes directory items based on the
536 	 * state of the tree found in the subvolume, and i_size is modified
537 	 * as it goes
538 	 */
539 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
540 		struct btrfs_inode_item *src_item;
541 		struct btrfs_inode_item *dst_item;
542 
543 		src_item = (struct btrfs_inode_item *)src_ptr;
544 		dst_item = (struct btrfs_inode_item *)dst_ptr;
545 
546 		if (btrfs_inode_generation(eb, src_item) == 0) {
547 			const u64 ino_size = btrfs_inode_size(eb, src_item);
548 
549 			/*
550 			 * For regular files an ino_size == 0 is used only when
551 			 * logging that an inode exists, as part of a directory
552 			 * fsync, and the inode wasn't fsynced before. In this
553 			 * case don't set the size of the inode in the fs/subvol
554 			 * tree, otherwise we would be throwing valid data away.
555 			 */
556 			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
557 			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
558 			    ino_size != 0)
559 				btrfs_set_inode_size(dst_eb, dst_item, ino_size);
560 			goto no_copy;
561 		}
562 
563 		if (S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
564 		    S_ISDIR(btrfs_inode_mode(dst_eb, dst_item))) {
565 			save_old_i_size = 1;
566 			saved_i_size = btrfs_inode_size(dst_eb, dst_item);
567 		}
568 	}
569 
570 	copy_extent_buffer(dst_eb, eb, dst_ptr, src_ptr, item_size);
571 
572 	if (save_old_i_size) {
573 		struct btrfs_inode_item *dst_item;
574 
575 		dst_item = (struct btrfs_inode_item *)dst_ptr;
576 		btrfs_set_inode_size(dst_eb, dst_item, saved_i_size);
577 	}
578 
579 	/* make sure the generation is filled in */
580 	if (key->type == BTRFS_INODE_ITEM_KEY) {
581 		struct btrfs_inode_item *dst_item;
582 
583 		dst_item = (struct btrfs_inode_item *)dst_ptr;
584 		if (btrfs_inode_generation(dst_eb, dst_item) == 0)
585 			btrfs_set_inode_generation(dst_eb, dst_item, trans->transid);
586 	}
587 no_copy:
588 	btrfs_release_path(path);
589 	return 0;
590 }
591 
read_alloc_one_name(struct extent_buffer * eb,void * start,int len,struct fscrypt_str * name)592 static int read_alloc_one_name(struct extent_buffer *eb, void *start, int len,
593 			       struct fscrypt_str *name)
594 {
595 	char *buf;
596 
597 	buf = kmalloc(len, GFP_NOFS);
598 	if (!buf)
599 		return -ENOMEM;
600 
601 	read_extent_buffer(eb, buf, (unsigned long)start, len);
602 	name->name = buf;
603 	name->len = len;
604 	return 0;
605 }
606 
607 /*
608  * simple helper to read an inode off the disk from a given root
609  * This can only be called for subvolume roots and not for the log
610  */
read_one_inode(struct btrfs_root * root,u64 objectid)611 static noinline struct btrfs_inode *read_one_inode(struct btrfs_root *root,
612 						   u64 objectid)
613 {
614 	struct btrfs_inode *inode;
615 
616 	inode = btrfs_iget_logging(objectid, root);
617 	if (IS_ERR(inode))
618 		return NULL;
619 	return inode;
620 }
621 
622 /* replays a single extent in 'eb' at 'slot' with 'key' into the
623  * subvolume 'root'.  path is released on entry and should be released
624  * on exit.
625  *
626  * extents in the log tree have not been allocated out of the extent
627  * tree yet.  So, this completes the allocation, taking a reference
628  * as required if the extent already exists or creating a new extent
629  * if it isn't in the extent allocation tree yet.
630  *
631  * The extent is inserted into the file, dropping any existing extents
632  * from the file that overlap the new one.
633  */
replay_one_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)634 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
635 				      struct btrfs_root *root,
636 				      struct btrfs_path *path,
637 				      struct extent_buffer *eb, int slot,
638 				      struct btrfs_key *key)
639 {
640 	struct btrfs_drop_extents_args drop_args = { 0 };
641 	struct btrfs_fs_info *fs_info = root->fs_info;
642 	int found_type;
643 	u64 extent_end;
644 	u64 start = key->offset;
645 	u64 nbytes = 0;
646 	struct btrfs_file_extent_item *item;
647 	struct btrfs_inode *inode = NULL;
648 	unsigned long size;
649 	int ret = 0;
650 
651 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
652 	found_type = btrfs_file_extent_type(eb, item);
653 
654 	if (found_type == BTRFS_FILE_EXTENT_REG ||
655 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
656 		nbytes = btrfs_file_extent_num_bytes(eb, item);
657 		extent_end = start + nbytes;
658 
659 		/*
660 		 * We don't add to the inodes nbytes if we are prealloc or a
661 		 * hole.
662 		 */
663 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
664 			nbytes = 0;
665 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
666 		size = btrfs_file_extent_ram_bytes(eb, item);
667 		nbytes = btrfs_file_extent_ram_bytes(eb, item);
668 		extent_end = ALIGN(start + size,
669 				   fs_info->sectorsize);
670 	} else {
671 		btrfs_err(fs_info,
672 		  "unexpected extent type=%d root=%llu inode=%llu offset=%llu",
673 			  found_type, btrfs_root_id(root), key->objectid, key->offset);
674 		return -EUCLEAN;
675 	}
676 
677 	inode = read_one_inode(root, key->objectid);
678 	if (!inode)
679 		return -EIO;
680 
681 	/*
682 	 * first check to see if we already have this extent in the
683 	 * file.  This must be done before the btrfs_drop_extents run
684 	 * so we don't try to drop this extent.
685 	 */
686 	ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode), start, 0);
687 
688 	if (ret == 0 &&
689 	    (found_type == BTRFS_FILE_EXTENT_REG ||
690 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
691 		struct btrfs_file_extent_item existing;
692 		unsigned long ptr;
693 
694 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
695 		read_extent_buffer(path->nodes[0], &existing, ptr, sizeof(existing));
696 
697 		/*
698 		 * we already have a pointer to this exact extent,
699 		 * we don't have to do anything
700 		 */
701 		if (memcmp_extent_buffer(eb, &existing, (unsigned long)item,
702 					 sizeof(existing)) == 0) {
703 			btrfs_release_path(path);
704 			goto out;
705 		}
706 	}
707 	btrfs_release_path(path);
708 
709 	/* drop any overlapping extents */
710 	drop_args.start = start;
711 	drop_args.end = extent_end;
712 	drop_args.drop_cache = true;
713 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
714 	if (ret)
715 		goto out;
716 
717 	if (found_type == BTRFS_FILE_EXTENT_REG ||
718 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
719 		u64 offset;
720 		unsigned long dest_offset;
721 		struct btrfs_key ins;
722 
723 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
724 		    btrfs_fs_incompat(fs_info, NO_HOLES))
725 			goto update_inode;
726 
727 		ret = btrfs_insert_empty_item(trans, root, path, key,
728 					      sizeof(*item));
729 		if (ret)
730 			goto out;
731 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
732 						    path->slots[0]);
733 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
734 				(unsigned long)item,  sizeof(*item));
735 
736 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
737 		ins.type = BTRFS_EXTENT_ITEM_KEY;
738 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
739 		offset = key->offset - btrfs_file_extent_offset(eb, item);
740 
741 		/*
742 		 * Manually record dirty extent, as here we did a shallow
743 		 * file extent item copy and skip normal backref update,
744 		 * but modifying extent tree all by ourselves.
745 		 * So need to manually record dirty extent for qgroup,
746 		 * as the owner of the file extent changed from log tree
747 		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
748 		 */
749 		ret = btrfs_qgroup_trace_extent(trans,
750 				btrfs_file_extent_disk_bytenr(eb, item),
751 				btrfs_file_extent_disk_num_bytes(eb, item));
752 		if (ret < 0)
753 			goto out;
754 
755 		if (ins.objectid > 0) {
756 			u64 csum_start;
757 			u64 csum_end;
758 			LIST_HEAD(ordered_sums);
759 
760 			/*
761 			 * is this extent already allocated in the extent
762 			 * allocation tree?  If so, just add a reference
763 			 */
764 			ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
765 						ins.offset);
766 			if (ret < 0) {
767 				goto out;
768 			} else if (ret == 0) {
769 				struct btrfs_ref ref = {
770 					.action = BTRFS_ADD_DELAYED_REF,
771 					.bytenr = ins.objectid,
772 					.num_bytes = ins.offset,
773 					.owning_root = btrfs_root_id(root),
774 					.ref_root = btrfs_root_id(root),
775 				};
776 				btrfs_init_data_ref(&ref, key->objectid, offset,
777 						    0, false);
778 				ret = btrfs_inc_extent_ref(trans, &ref);
779 				if (ret)
780 					goto out;
781 			} else {
782 				/*
783 				 * insert the extent pointer in the extent
784 				 * allocation tree
785 				 */
786 				ret = btrfs_alloc_logged_file_extent(trans,
787 						btrfs_root_id(root),
788 						key->objectid, offset, &ins);
789 				if (ret)
790 					goto out;
791 			}
792 			btrfs_release_path(path);
793 
794 			if (btrfs_file_extent_compression(eb, item)) {
795 				csum_start = ins.objectid;
796 				csum_end = csum_start + ins.offset;
797 			} else {
798 				csum_start = ins.objectid +
799 					btrfs_file_extent_offset(eb, item);
800 				csum_end = csum_start +
801 					btrfs_file_extent_num_bytes(eb, item);
802 			}
803 
804 			ret = btrfs_lookup_csums_list(root->log_root,
805 						csum_start, csum_end - 1,
806 						&ordered_sums, false);
807 			if (ret < 0)
808 				goto out;
809 			ret = 0;
810 			/*
811 			 * Now delete all existing cums in the csum root that
812 			 * cover our range. We do this because we can have an
813 			 * extent that is completely referenced by one file
814 			 * extent item and partially referenced by another
815 			 * file extent item (like after using the clone or
816 			 * extent_same ioctls). In this case if we end up doing
817 			 * the replay of the one that partially references the
818 			 * extent first, and we do not do the csum deletion
819 			 * below, we can get 2 csum items in the csum tree that
820 			 * overlap each other. For example, imagine our log has
821 			 * the two following file extent items:
822 			 *
823 			 * key (257 EXTENT_DATA 409600)
824 			 *     extent data disk byte 12845056 nr 102400
825 			 *     extent data offset 20480 nr 20480 ram 102400
826 			 *
827 			 * key (257 EXTENT_DATA 819200)
828 			 *     extent data disk byte 12845056 nr 102400
829 			 *     extent data offset 0 nr 102400 ram 102400
830 			 *
831 			 * Where the second one fully references the 100K extent
832 			 * that starts at disk byte 12845056, and the log tree
833 			 * has a single csum item that covers the entire range
834 			 * of the extent:
835 			 *
836 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
837 			 *
838 			 * After the first file extent item is replayed, the
839 			 * csum tree gets the following csum item:
840 			 *
841 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
842 			 *
843 			 * Which covers the 20K sub-range starting at offset 20K
844 			 * of our extent. Now when we replay the second file
845 			 * extent item, if we do not delete existing csum items
846 			 * that cover any of its blocks, we end up getting two
847 			 * csum items in our csum tree that overlap each other:
848 			 *
849 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
850 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
851 			 *
852 			 * Which is a problem, because after this anyone trying
853 			 * to lookup up for the checksum of any block of our
854 			 * extent starting at an offset of 40K or higher, will
855 			 * end up looking at the second csum item only, which
856 			 * does not contain the checksum for any block starting
857 			 * at offset 40K or higher of our extent.
858 			 */
859 			while (!list_empty(&ordered_sums)) {
860 				struct btrfs_ordered_sum *sums;
861 				struct btrfs_root *csum_root;
862 
863 				sums = list_first_entry(&ordered_sums,
864 							struct btrfs_ordered_sum,
865 							list);
866 				csum_root = btrfs_csum_root(fs_info,
867 							    sums->logical);
868 				if (!ret)
869 					ret = btrfs_del_csums(trans, csum_root,
870 							      sums->logical,
871 							      sums->len);
872 				if (!ret)
873 					ret = btrfs_csum_file_blocks(trans,
874 								     csum_root,
875 								     sums);
876 				list_del(&sums->list);
877 				kfree(sums);
878 			}
879 			if (ret)
880 				goto out;
881 		} else {
882 			btrfs_release_path(path);
883 		}
884 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
885 		/* inline extents are easy, we just overwrite them */
886 		ret = overwrite_item(trans, root, path, eb, slot, key);
887 		if (ret)
888 			goto out;
889 	}
890 
891 	ret = btrfs_inode_set_file_extent_range(inode, start, extent_end - start);
892 	if (ret)
893 		goto out;
894 
895 update_inode:
896 	btrfs_update_inode_bytes(inode, nbytes, drop_args.bytes_found);
897 	ret = btrfs_update_inode(trans, inode);
898 out:
899 	iput(&inode->vfs_inode);
900 	return ret;
901 }
902 
unlink_inode_for_log_replay(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_inode * inode,const struct fscrypt_str * name)903 static int unlink_inode_for_log_replay(struct btrfs_trans_handle *trans,
904 				       struct btrfs_inode *dir,
905 				       struct btrfs_inode *inode,
906 				       const struct fscrypt_str *name)
907 {
908 	int ret;
909 
910 	ret = btrfs_unlink_inode(trans, dir, inode, name);
911 	if (ret)
912 		return ret;
913 	/*
914 	 * Whenever we need to check if a name exists or not, we check the
915 	 * fs/subvolume tree. So after an unlink we must run delayed items, so
916 	 * that future checks for a name during log replay see that the name
917 	 * does not exists anymore.
918 	 */
919 	return btrfs_run_delayed_items(trans);
920 }
921 
922 /*
923  * when cleaning up conflicts between the directory names in the
924  * subvolume, directory names in the log and directory names in the
925  * inode back references, we may have to unlink inodes from directories.
926  *
927  * This is a helper function to do the unlink of a specific directory
928  * item
929  */
drop_one_dir_item(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_inode * dir,struct btrfs_dir_item * di)930 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
931 				      struct btrfs_path *path,
932 				      struct btrfs_inode *dir,
933 				      struct btrfs_dir_item *di)
934 {
935 	struct btrfs_root *root = dir->root;
936 	struct btrfs_inode *inode;
937 	struct fscrypt_str name;
938 	struct extent_buffer *leaf;
939 	struct btrfs_key location;
940 	int ret;
941 
942 	leaf = path->nodes[0];
943 
944 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
945 	ret = read_alloc_one_name(leaf, di + 1, btrfs_dir_name_len(leaf, di), &name);
946 	if (ret)
947 		return -ENOMEM;
948 
949 	btrfs_release_path(path);
950 
951 	inode = read_one_inode(root, location.objectid);
952 	if (!inode) {
953 		ret = -EIO;
954 		goto out;
955 	}
956 
957 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
958 	if (ret)
959 		goto out;
960 
961 	ret = unlink_inode_for_log_replay(trans, dir, inode, &name);
962 out:
963 	kfree(name.name);
964 	if (inode)
965 		iput(&inode->vfs_inode);
966 	return ret;
967 }
968 
969 /*
970  * See if a given name and sequence number found in an inode back reference are
971  * already in a directory and correctly point to this inode.
972  *
973  * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
974  * exists.
975  */
inode_in_dir(struct btrfs_root * root,struct btrfs_path * path,u64 dirid,u64 objectid,u64 index,struct fscrypt_str * name)976 static noinline int inode_in_dir(struct btrfs_root *root,
977 				 struct btrfs_path *path,
978 				 u64 dirid, u64 objectid, u64 index,
979 				 struct fscrypt_str *name)
980 {
981 	struct btrfs_dir_item *di;
982 	struct btrfs_key location;
983 	int ret = 0;
984 
985 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
986 					 index, name, 0);
987 	if (IS_ERR(di)) {
988 		ret = PTR_ERR(di);
989 		goto out;
990 	} else if (di) {
991 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
992 		if (location.objectid != objectid)
993 			goto out;
994 	} else {
995 		goto out;
996 	}
997 
998 	btrfs_release_path(path);
999 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, 0);
1000 	if (IS_ERR(di)) {
1001 		ret = PTR_ERR(di);
1002 		goto out;
1003 	} else if (di) {
1004 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1005 		if (location.objectid == objectid)
1006 			ret = 1;
1007 	}
1008 out:
1009 	btrfs_release_path(path);
1010 	return ret;
1011 }
1012 
1013 /*
1014  * helper function to check a log tree for a named back reference in
1015  * an inode.  This is used to decide if a back reference that is
1016  * found in the subvolume conflicts with what we find in the log.
1017  *
1018  * inode backreferences may have multiple refs in a single item,
1019  * during replay we process one reference at a time, and we don't
1020  * want to delete valid links to a file from the subvolume if that
1021  * link is also in the log.
1022  */
backref_in_log(struct btrfs_root * log,struct btrfs_key * key,u64 ref_objectid,const struct fscrypt_str * name)1023 static noinline int backref_in_log(struct btrfs_root *log,
1024 				   struct btrfs_key *key,
1025 				   u64 ref_objectid,
1026 				   const struct fscrypt_str *name)
1027 {
1028 	struct btrfs_path *path;
1029 	int ret;
1030 
1031 	path = btrfs_alloc_path();
1032 	if (!path)
1033 		return -ENOMEM;
1034 
1035 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
1036 	if (ret < 0) {
1037 		goto out;
1038 	} else if (ret == 1) {
1039 		ret = 0;
1040 		goto out;
1041 	}
1042 
1043 	if (key->type == BTRFS_INODE_EXTREF_KEY)
1044 		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1045 						       path->slots[0],
1046 						       ref_objectid, name);
1047 	else
1048 		ret = !!btrfs_find_name_in_backref(path->nodes[0],
1049 						   path->slots[0], name);
1050 out:
1051 	btrfs_free_path(path);
1052 	return ret;
1053 }
1054 
__add_inode_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_root * log_root,struct btrfs_inode * dir,struct btrfs_inode * inode,u64 inode_objectid,u64 parent_objectid,u64 ref_index,struct fscrypt_str * name)1055 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
1056 				  struct btrfs_root *root,
1057 				  struct btrfs_path *path,
1058 				  struct btrfs_root *log_root,
1059 				  struct btrfs_inode *dir,
1060 				  struct btrfs_inode *inode,
1061 				  u64 inode_objectid, u64 parent_objectid,
1062 				  u64 ref_index, struct fscrypt_str *name)
1063 {
1064 	int ret;
1065 	struct extent_buffer *leaf;
1066 	struct btrfs_dir_item *di;
1067 	struct btrfs_key search_key;
1068 	struct btrfs_inode_extref *extref;
1069 
1070 again:
1071 	/* Search old style refs */
1072 	search_key.objectid = inode_objectid;
1073 	search_key.type = BTRFS_INODE_REF_KEY;
1074 	search_key.offset = parent_objectid;
1075 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1076 	if (ret == 0) {
1077 		struct btrfs_inode_ref *victim_ref;
1078 		unsigned long ptr;
1079 		unsigned long ptr_end;
1080 
1081 		leaf = path->nodes[0];
1082 
1083 		/* are we trying to overwrite a back ref for the root directory
1084 		 * if so, just jump out, we're done
1085 		 */
1086 		if (search_key.objectid == search_key.offset)
1087 			return 1;
1088 
1089 		/* check all the names in this back reference to see
1090 		 * if they are in the log.  if so, we allow them to stay
1091 		 * otherwise they must be unlinked as a conflict
1092 		 */
1093 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1094 		ptr_end = ptr + btrfs_item_size(leaf, path->slots[0]);
1095 		while (ptr < ptr_end) {
1096 			struct fscrypt_str victim_name;
1097 
1098 			victim_ref = (struct btrfs_inode_ref *)ptr;
1099 			ret = read_alloc_one_name(leaf, (victim_ref + 1),
1100 				 btrfs_inode_ref_name_len(leaf, victim_ref),
1101 				 &victim_name);
1102 			if (ret)
1103 				return ret;
1104 
1105 			ret = backref_in_log(log_root, &search_key,
1106 					     parent_objectid, &victim_name);
1107 			if (ret < 0) {
1108 				kfree(victim_name.name);
1109 				return ret;
1110 			} else if (!ret) {
1111 				inc_nlink(&inode->vfs_inode);
1112 				btrfs_release_path(path);
1113 
1114 				ret = unlink_inode_for_log_replay(trans, dir, inode,
1115 						&victim_name);
1116 				kfree(victim_name.name);
1117 				if (ret)
1118 					return ret;
1119 				goto again;
1120 			}
1121 			kfree(victim_name.name);
1122 
1123 			ptr = (unsigned long)(victim_ref + 1) + victim_name.len;
1124 		}
1125 	}
1126 	btrfs_release_path(path);
1127 
1128 	/* Same search but for extended refs */
1129 	extref = btrfs_lookup_inode_extref(NULL, root, path, name,
1130 					   inode_objectid, parent_objectid, 0,
1131 					   0);
1132 	if (IS_ERR(extref)) {
1133 		return PTR_ERR(extref);
1134 	} else if (extref) {
1135 		u32 item_size;
1136 		u32 cur_offset = 0;
1137 		unsigned long base;
1138 		struct btrfs_inode *victim_parent;
1139 
1140 		leaf = path->nodes[0];
1141 
1142 		item_size = btrfs_item_size(leaf, path->slots[0]);
1143 		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1144 
1145 		while (cur_offset < item_size) {
1146 			struct fscrypt_str victim_name;
1147 
1148 			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1149 
1150 			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1151 				goto next;
1152 
1153 			ret = read_alloc_one_name(leaf, &extref->name,
1154 				 btrfs_inode_extref_name_len(leaf, extref),
1155 				 &victim_name);
1156 			if (ret)
1157 				return ret;
1158 
1159 			search_key.objectid = inode_objectid;
1160 			search_key.type = BTRFS_INODE_EXTREF_KEY;
1161 			search_key.offset = btrfs_extref_hash(parent_objectid,
1162 							      victim_name.name,
1163 							      victim_name.len);
1164 			ret = backref_in_log(log_root, &search_key,
1165 					     parent_objectid, &victim_name);
1166 			if (ret < 0) {
1167 				kfree(victim_name.name);
1168 				return ret;
1169 			} else if (!ret) {
1170 				ret = -ENOENT;
1171 				victim_parent = read_one_inode(root,
1172 						parent_objectid);
1173 				if (victim_parent) {
1174 					inc_nlink(&inode->vfs_inode);
1175 					btrfs_release_path(path);
1176 
1177 					ret = unlink_inode_for_log_replay(trans,
1178 							victim_parent,
1179 							inode, &victim_name);
1180 					iput(&victim_parent->vfs_inode);
1181 				}
1182 				kfree(victim_name.name);
1183 				if (ret)
1184 					return ret;
1185 				goto again;
1186 			}
1187 			kfree(victim_name.name);
1188 next:
1189 			cur_offset += victim_name.len + sizeof(*extref);
1190 		}
1191 	}
1192 	btrfs_release_path(path);
1193 
1194 	/* look for a conflicting sequence number */
1195 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1196 					 ref_index, name, 0);
1197 	if (IS_ERR(di)) {
1198 		return PTR_ERR(di);
1199 	} else if (di) {
1200 		ret = drop_one_dir_item(trans, path, dir, di);
1201 		if (ret)
1202 			return ret;
1203 	}
1204 	btrfs_release_path(path);
1205 
1206 	/* look for a conflicting name */
1207 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), name, 0);
1208 	if (IS_ERR(di)) {
1209 		return PTR_ERR(di);
1210 	} else if (di) {
1211 		ret = drop_one_dir_item(trans, path, dir, di);
1212 		if (ret)
1213 			return ret;
1214 	}
1215 	btrfs_release_path(path);
1216 
1217 	return 0;
1218 }
1219 
extref_get_fields(struct extent_buffer * eb,unsigned long ref_ptr,struct fscrypt_str * name,u64 * index,u64 * parent_objectid)1220 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1221 			     struct fscrypt_str *name, u64 *index,
1222 			     u64 *parent_objectid)
1223 {
1224 	struct btrfs_inode_extref *extref;
1225 	int ret;
1226 
1227 	extref = (struct btrfs_inode_extref *)ref_ptr;
1228 
1229 	ret = read_alloc_one_name(eb, &extref->name,
1230 				  btrfs_inode_extref_name_len(eb, extref), name);
1231 	if (ret)
1232 		return ret;
1233 
1234 	if (index)
1235 		*index = btrfs_inode_extref_index(eb, extref);
1236 	if (parent_objectid)
1237 		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1238 
1239 	return 0;
1240 }
1241 
ref_get_fields(struct extent_buffer * eb,unsigned long ref_ptr,struct fscrypt_str * name,u64 * index)1242 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1243 			  struct fscrypt_str *name, u64 *index)
1244 {
1245 	struct btrfs_inode_ref *ref;
1246 	int ret;
1247 
1248 	ref = (struct btrfs_inode_ref *)ref_ptr;
1249 
1250 	ret = read_alloc_one_name(eb, ref + 1, btrfs_inode_ref_name_len(eb, ref),
1251 				  name);
1252 	if (ret)
1253 		return ret;
1254 
1255 	if (index)
1256 		*index = btrfs_inode_ref_index(eb, ref);
1257 
1258 	return 0;
1259 }
1260 
1261 /*
1262  * Take an inode reference item from the log tree and iterate all names from the
1263  * inode reference item in the subvolume tree with the same key (if it exists).
1264  * For any name that is not in the inode reference item from the log tree, do a
1265  * proper unlink of that name (that is, remove its entry from the inode
1266  * reference item and both dir index keys).
1267  */
unlink_old_inode_refs(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_inode * inode,struct extent_buffer * log_eb,int log_slot,struct btrfs_key * key)1268 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1269 				 struct btrfs_root *root,
1270 				 struct btrfs_path *path,
1271 				 struct btrfs_inode *inode,
1272 				 struct extent_buffer *log_eb,
1273 				 int log_slot,
1274 				 struct btrfs_key *key)
1275 {
1276 	int ret;
1277 	unsigned long ref_ptr;
1278 	unsigned long ref_end;
1279 	struct extent_buffer *eb;
1280 
1281 again:
1282 	btrfs_release_path(path);
1283 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1284 	if (ret > 0) {
1285 		ret = 0;
1286 		goto out;
1287 	}
1288 	if (ret < 0)
1289 		goto out;
1290 
1291 	eb = path->nodes[0];
1292 	ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1293 	ref_end = ref_ptr + btrfs_item_size(eb, path->slots[0]);
1294 	while (ref_ptr < ref_end) {
1295 		struct fscrypt_str name;
1296 		u64 parent_id;
1297 
1298 		if (key->type == BTRFS_INODE_EXTREF_KEY) {
1299 			ret = extref_get_fields(eb, ref_ptr, &name,
1300 						NULL, &parent_id);
1301 		} else {
1302 			parent_id = key->offset;
1303 			ret = ref_get_fields(eb, ref_ptr, &name, NULL);
1304 		}
1305 		if (ret)
1306 			goto out;
1307 
1308 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1309 			ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1310 							       parent_id, &name);
1311 		else
1312 			ret = !!btrfs_find_name_in_backref(log_eb, log_slot, &name);
1313 
1314 		if (!ret) {
1315 			struct btrfs_inode *dir;
1316 
1317 			btrfs_release_path(path);
1318 			dir = read_one_inode(root, parent_id);
1319 			if (!dir) {
1320 				ret = -ENOENT;
1321 				kfree(name.name);
1322 				goto out;
1323 			}
1324 			ret = unlink_inode_for_log_replay(trans, dir, inode, &name);
1325 			kfree(name.name);
1326 			iput(&dir->vfs_inode);
1327 			if (ret)
1328 				goto out;
1329 			goto again;
1330 		}
1331 
1332 		kfree(name.name);
1333 		ref_ptr += name.len;
1334 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1335 			ref_ptr += sizeof(struct btrfs_inode_extref);
1336 		else
1337 			ref_ptr += sizeof(struct btrfs_inode_ref);
1338 	}
1339 	ret = 0;
1340  out:
1341 	btrfs_release_path(path);
1342 	return ret;
1343 }
1344 
1345 /*
1346  * replay one inode back reference item found in the log tree.
1347  * eb, slot and key refer to the buffer and key found in the log tree.
1348  * root is the destination we are replaying into, and path is for temp
1349  * use by this function.  (it should be released on return).
1350  */
add_inode_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)1351 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1352 				  struct btrfs_root *root,
1353 				  struct btrfs_root *log,
1354 				  struct btrfs_path *path,
1355 				  struct extent_buffer *eb, int slot,
1356 				  struct btrfs_key *key)
1357 {
1358 	struct btrfs_inode *dir = NULL;
1359 	struct btrfs_inode *inode = NULL;
1360 	unsigned long ref_ptr;
1361 	unsigned long ref_end;
1362 	struct fscrypt_str name = { 0 };
1363 	int ret;
1364 	int log_ref_ver = 0;
1365 	u64 parent_objectid;
1366 	u64 inode_objectid;
1367 	u64 ref_index = 0;
1368 	int ref_struct_size;
1369 
1370 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1371 	ref_end = ref_ptr + btrfs_item_size(eb, slot);
1372 
1373 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1374 		struct btrfs_inode_extref *r;
1375 
1376 		ref_struct_size = sizeof(struct btrfs_inode_extref);
1377 		log_ref_ver = 1;
1378 		r = (struct btrfs_inode_extref *)ref_ptr;
1379 		parent_objectid = btrfs_inode_extref_parent(eb, r);
1380 	} else {
1381 		ref_struct_size = sizeof(struct btrfs_inode_ref);
1382 		parent_objectid = key->offset;
1383 	}
1384 	inode_objectid = key->objectid;
1385 
1386 	/*
1387 	 * it is possible that we didn't log all the parent directories
1388 	 * for a given inode.  If we don't find the dir, just don't
1389 	 * copy the back ref in.  The link count fixup code will take
1390 	 * care of the rest
1391 	 */
1392 	dir = read_one_inode(root, parent_objectid);
1393 	if (!dir) {
1394 		ret = -ENOENT;
1395 		goto out;
1396 	}
1397 
1398 	inode = read_one_inode(root, inode_objectid);
1399 	if (!inode) {
1400 		ret = -EIO;
1401 		goto out;
1402 	}
1403 
1404 	while (ref_ptr < ref_end) {
1405 		if (log_ref_ver) {
1406 			ret = extref_get_fields(eb, ref_ptr, &name,
1407 						&ref_index, &parent_objectid);
1408 			/*
1409 			 * parent object can change from one array
1410 			 * item to another.
1411 			 */
1412 			if (!dir)
1413 				dir = read_one_inode(root, parent_objectid);
1414 			if (!dir) {
1415 				ret = -ENOENT;
1416 				goto out;
1417 			}
1418 		} else {
1419 			ret = ref_get_fields(eb, ref_ptr, &name, &ref_index);
1420 		}
1421 		if (ret)
1422 			goto out;
1423 
1424 		ret = inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
1425 				   ref_index, &name);
1426 		if (ret < 0) {
1427 			goto out;
1428 		} else if (ret == 0) {
1429 			/*
1430 			 * look for a conflicting back reference in the
1431 			 * metadata. if we find one we have to unlink that name
1432 			 * of the file before we add our new link.  Later on, we
1433 			 * overwrite any existing back reference, and we don't
1434 			 * want to create dangling pointers in the directory.
1435 			 */
1436 			ret = __add_inode_ref(trans, root, path, log, dir, inode,
1437 					      inode_objectid, parent_objectid,
1438 					      ref_index, &name);
1439 			if (ret) {
1440 				if (ret == 1)
1441 					ret = 0;
1442 				goto out;
1443 			}
1444 
1445 			/* insert our name */
1446 			ret = btrfs_add_link(trans, dir, inode, &name, 0, ref_index);
1447 			if (ret)
1448 				goto out;
1449 
1450 			ret = btrfs_update_inode(trans, inode);
1451 			if (ret)
1452 				goto out;
1453 		}
1454 		/* Else, ret == 1, we already have a perfect match, we're done. */
1455 
1456 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + name.len;
1457 		kfree(name.name);
1458 		name.name = NULL;
1459 		if (log_ref_ver) {
1460 			iput(&dir->vfs_inode);
1461 			dir = NULL;
1462 		}
1463 	}
1464 
1465 	/*
1466 	 * Before we overwrite the inode reference item in the subvolume tree
1467 	 * with the item from the log tree, we must unlink all names from the
1468 	 * parent directory that are in the subvolume's tree inode reference
1469 	 * item, otherwise we end up with an inconsistent subvolume tree where
1470 	 * dir index entries exist for a name but there is no inode reference
1471 	 * item with the same name.
1472 	 */
1473 	ret = unlink_old_inode_refs(trans, root, path, inode, eb, slot, key);
1474 	if (ret)
1475 		goto out;
1476 
1477 	/* finally write the back reference in the inode */
1478 	ret = overwrite_item(trans, root, path, eb, slot, key);
1479 out:
1480 	btrfs_release_path(path);
1481 	kfree(name.name);
1482 	if (dir)
1483 		iput(&dir->vfs_inode);
1484 	if (inode)
1485 		iput(&inode->vfs_inode);
1486 	return ret;
1487 }
1488 
count_inode_extrefs(struct btrfs_inode * inode,struct btrfs_path * path)1489 static int count_inode_extrefs(struct btrfs_inode *inode, struct btrfs_path *path)
1490 {
1491 	int ret = 0;
1492 	int name_len;
1493 	unsigned int nlink = 0;
1494 	u32 item_size;
1495 	u32 cur_offset = 0;
1496 	u64 inode_objectid = btrfs_ino(inode);
1497 	u64 offset = 0;
1498 	unsigned long ptr;
1499 	struct btrfs_inode_extref *extref;
1500 	struct extent_buffer *leaf;
1501 
1502 	while (1) {
1503 		ret = btrfs_find_one_extref(inode->root, inode_objectid, offset,
1504 					    path, &extref, &offset);
1505 		if (ret)
1506 			break;
1507 
1508 		leaf = path->nodes[0];
1509 		item_size = btrfs_item_size(leaf, path->slots[0]);
1510 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1511 		cur_offset = 0;
1512 
1513 		while (cur_offset < item_size) {
1514 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1515 			name_len = btrfs_inode_extref_name_len(leaf, extref);
1516 
1517 			nlink++;
1518 
1519 			cur_offset += name_len + sizeof(*extref);
1520 		}
1521 
1522 		offset++;
1523 		btrfs_release_path(path);
1524 	}
1525 	btrfs_release_path(path);
1526 
1527 	if (ret < 0 && ret != -ENOENT)
1528 		return ret;
1529 	return nlink;
1530 }
1531 
count_inode_refs(struct btrfs_inode * inode,struct btrfs_path * path)1532 static int count_inode_refs(struct btrfs_inode *inode, struct btrfs_path *path)
1533 {
1534 	int ret;
1535 	struct btrfs_key key;
1536 	unsigned int nlink = 0;
1537 	unsigned long ptr;
1538 	unsigned long ptr_end;
1539 	int name_len;
1540 	u64 ino = btrfs_ino(inode);
1541 
1542 	key.objectid = ino;
1543 	key.type = BTRFS_INODE_REF_KEY;
1544 	key.offset = (u64)-1;
1545 
1546 	while (1) {
1547 		ret = btrfs_search_slot(NULL, inode->root, &key, path, 0, 0);
1548 		if (ret < 0)
1549 			break;
1550 		if (ret > 0) {
1551 			if (path->slots[0] == 0)
1552 				break;
1553 			path->slots[0]--;
1554 		}
1555 process_slot:
1556 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1557 				      path->slots[0]);
1558 		if (key.objectid != ino ||
1559 		    key.type != BTRFS_INODE_REF_KEY)
1560 			break;
1561 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1562 		ptr_end = ptr + btrfs_item_size(path->nodes[0],
1563 						   path->slots[0]);
1564 		while (ptr < ptr_end) {
1565 			struct btrfs_inode_ref *ref;
1566 
1567 			ref = (struct btrfs_inode_ref *)ptr;
1568 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1569 							    ref);
1570 			ptr = (unsigned long)(ref + 1) + name_len;
1571 			nlink++;
1572 		}
1573 
1574 		if (key.offset == 0)
1575 			break;
1576 		if (path->slots[0] > 0) {
1577 			path->slots[0]--;
1578 			goto process_slot;
1579 		}
1580 		key.offset--;
1581 		btrfs_release_path(path);
1582 	}
1583 	btrfs_release_path(path);
1584 
1585 	return nlink;
1586 }
1587 
1588 /*
1589  * There are a few corners where the link count of the file can't
1590  * be properly maintained during replay.  So, instead of adding
1591  * lots of complexity to the log code, we just scan the backrefs
1592  * for any file that has been through replay.
1593  *
1594  * The scan will update the link count on the inode to reflect the
1595  * number of back refs found.  If it goes down to zero, the iput
1596  * will free the inode.
1597  */
fixup_inode_link_count(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)1598 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1599 					   struct btrfs_inode *inode)
1600 {
1601 	struct btrfs_root *root = inode->root;
1602 	struct btrfs_path *path;
1603 	int ret;
1604 	u64 nlink = 0;
1605 	const u64 ino = btrfs_ino(inode);
1606 
1607 	path = btrfs_alloc_path();
1608 	if (!path)
1609 		return -ENOMEM;
1610 
1611 	ret = count_inode_refs(inode, path);
1612 	if (ret < 0)
1613 		goto out;
1614 
1615 	nlink = ret;
1616 
1617 	ret = count_inode_extrefs(inode, path);
1618 	if (ret < 0)
1619 		goto out;
1620 
1621 	nlink += ret;
1622 
1623 	ret = 0;
1624 
1625 	if (nlink != inode->vfs_inode.i_nlink) {
1626 		set_nlink(&inode->vfs_inode, nlink);
1627 		ret = btrfs_update_inode(trans, inode);
1628 		if (ret)
1629 			goto out;
1630 	}
1631 	if (S_ISDIR(inode->vfs_inode.i_mode))
1632 		inode->index_cnt = (u64)-1;
1633 
1634 	if (inode->vfs_inode.i_nlink == 0) {
1635 		if (S_ISDIR(inode->vfs_inode.i_mode)) {
1636 			ret = replay_dir_deletes(trans, root, NULL, path,
1637 						 ino, 1);
1638 			if (ret)
1639 				goto out;
1640 		}
1641 		ret = btrfs_insert_orphan_item(trans, root, ino);
1642 		if (ret == -EEXIST)
1643 			ret = 0;
1644 	}
1645 
1646 out:
1647 	btrfs_free_path(path);
1648 	return ret;
1649 }
1650 
fixup_inode_link_counts(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path)1651 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1652 					    struct btrfs_root *root,
1653 					    struct btrfs_path *path)
1654 {
1655 	int ret;
1656 	struct btrfs_key key;
1657 
1658 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1659 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1660 	key.offset = (u64)-1;
1661 	while (1) {
1662 		struct btrfs_inode *inode;
1663 
1664 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1665 		if (ret < 0)
1666 			break;
1667 
1668 		if (ret == 1) {
1669 			ret = 0;
1670 			if (path->slots[0] == 0)
1671 				break;
1672 			path->slots[0]--;
1673 		}
1674 
1675 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1676 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1677 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1678 			break;
1679 
1680 		ret = btrfs_del_item(trans, root, path);
1681 		if (ret)
1682 			break;
1683 
1684 		btrfs_release_path(path);
1685 		inode = read_one_inode(root, key.offset);
1686 		if (!inode) {
1687 			ret = -EIO;
1688 			break;
1689 		}
1690 
1691 		ret = fixup_inode_link_count(trans, inode);
1692 		iput(&inode->vfs_inode);
1693 		if (ret)
1694 			break;
1695 
1696 		/*
1697 		 * fixup on a directory may create new entries,
1698 		 * make sure we always look for the highset possible
1699 		 * offset
1700 		 */
1701 		key.offset = (u64)-1;
1702 	}
1703 	btrfs_release_path(path);
1704 	return ret;
1705 }
1706 
1707 
1708 /*
1709  * record a given inode in the fixup dir so we can check its link
1710  * count when replay is done.  The link count is incremented here
1711  * so the inode won't go away until we check it
1712  */
link_to_fixup_dir(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 objectid)1713 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1714 				      struct btrfs_root *root,
1715 				      struct btrfs_path *path,
1716 				      u64 objectid)
1717 {
1718 	struct btrfs_key key;
1719 	int ret = 0;
1720 	struct btrfs_inode *inode;
1721 	struct inode *vfs_inode;
1722 
1723 	inode = read_one_inode(root, objectid);
1724 	if (!inode)
1725 		return -EIO;
1726 
1727 	vfs_inode = &inode->vfs_inode;
1728 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1729 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1730 	key.offset = objectid;
1731 
1732 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1733 
1734 	btrfs_release_path(path);
1735 	if (ret == 0) {
1736 		if (!vfs_inode->i_nlink)
1737 			set_nlink(vfs_inode, 1);
1738 		else
1739 			inc_nlink(vfs_inode);
1740 		ret = btrfs_update_inode(trans, inode);
1741 	} else if (ret == -EEXIST) {
1742 		ret = 0;
1743 	}
1744 	iput(vfs_inode);
1745 
1746 	return ret;
1747 }
1748 
1749 /*
1750  * when replaying the log for a directory, we only insert names
1751  * for inodes that actually exist.  This means an fsync on a directory
1752  * does not implicitly fsync all the new files in it
1753  */
insert_one_name(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 dirid,u64 index,const struct fscrypt_str * name,struct btrfs_key * location)1754 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1755 				    struct btrfs_root *root,
1756 				    u64 dirid, u64 index,
1757 				    const struct fscrypt_str *name,
1758 				    struct btrfs_key *location)
1759 {
1760 	struct btrfs_inode *inode;
1761 	struct btrfs_inode *dir;
1762 	int ret;
1763 
1764 	inode = read_one_inode(root, location->objectid);
1765 	if (!inode)
1766 		return -ENOENT;
1767 
1768 	dir = read_one_inode(root, dirid);
1769 	if (!dir) {
1770 		iput(&inode->vfs_inode);
1771 		return -EIO;
1772 	}
1773 
1774 	ret = btrfs_add_link(trans, dir, inode, name, 1, index);
1775 
1776 	/* FIXME, put inode into FIXUP list */
1777 
1778 	iput(&inode->vfs_inode);
1779 	iput(&dir->vfs_inode);
1780 	return ret;
1781 }
1782 
delete_conflicting_dir_entry(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_path * path,struct btrfs_dir_item * dst_di,const struct btrfs_key * log_key,u8 log_flags,bool exists)1783 static int delete_conflicting_dir_entry(struct btrfs_trans_handle *trans,
1784 					struct btrfs_inode *dir,
1785 					struct btrfs_path *path,
1786 					struct btrfs_dir_item *dst_di,
1787 					const struct btrfs_key *log_key,
1788 					u8 log_flags,
1789 					bool exists)
1790 {
1791 	struct btrfs_key found_key;
1792 
1793 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1794 	/* The existing dentry points to the same inode, don't delete it. */
1795 	if (found_key.objectid == log_key->objectid &&
1796 	    found_key.type == log_key->type &&
1797 	    found_key.offset == log_key->offset &&
1798 	    btrfs_dir_flags(path->nodes[0], dst_di) == log_flags)
1799 		return 1;
1800 
1801 	/*
1802 	 * Don't drop the conflicting directory entry if the inode for the new
1803 	 * entry doesn't exist.
1804 	 */
1805 	if (!exists)
1806 		return 0;
1807 
1808 	return drop_one_dir_item(trans, path, dir, dst_di);
1809 }
1810 
1811 /*
1812  * take a single entry in a log directory item and replay it into
1813  * the subvolume.
1814  *
1815  * if a conflicting item exists in the subdirectory already,
1816  * the inode it points to is unlinked and put into the link count
1817  * fix up tree.
1818  *
1819  * If a name from the log points to a file or directory that does
1820  * not exist in the FS, it is skipped.  fsyncs on directories
1821  * do not force down inodes inside that directory, just changes to the
1822  * names or unlinks in a directory.
1823  *
1824  * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1825  * non-existing inode) and 1 if the name was replayed.
1826  */
replay_one_name(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,struct btrfs_dir_item * di,struct btrfs_key * key)1827 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1828 				    struct btrfs_root *root,
1829 				    struct btrfs_path *path,
1830 				    struct extent_buffer *eb,
1831 				    struct btrfs_dir_item *di,
1832 				    struct btrfs_key *key)
1833 {
1834 	struct fscrypt_str name = { 0 };
1835 	struct btrfs_dir_item *dir_dst_di;
1836 	struct btrfs_dir_item *index_dst_di;
1837 	bool dir_dst_matches = false;
1838 	bool index_dst_matches = false;
1839 	struct btrfs_key log_key;
1840 	struct btrfs_key search_key;
1841 	struct btrfs_inode *dir;
1842 	u8 log_flags;
1843 	bool exists;
1844 	int ret;
1845 	bool update_size = true;
1846 	bool name_added = false;
1847 
1848 	dir = read_one_inode(root, key->objectid);
1849 	if (!dir)
1850 		return -EIO;
1851 
1852 	ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
1853 	if (ret)
1854 		goto out;
1855 
1856 	log_flags = btrfs_dir_flags(eb, di);
1857 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1858 	ret = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1859 	btrfs_release_path(path);
1860 	if (ret < 0)
1861 		goto out;
1862 	exists = (ret == 0);
1863 	ret = 0;
1864 
1865 	dir_dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1866 					   &name, 1);
1867 	if (IS_ERR(dir_dst_di)) {
1868 		ret = PTR_ERR(dir_dst_di);
1869 		goto out;
1870 	} else if (dir_dst_di) {
1871 		ret = delete_conflicting_dir_entry(trans, dir, path, dir_dst_di,
1872 						   &log_key, log_flags, exists);
1873 		if (ret < 0)
1874 			goto out;
1875 		dir_dst_matches = (ret == 1);
1876 	}
1877 
1878 	btrfs_release_path(path);
1879 
1880 	index_dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1881 						   key->objectid, key->offset,
1882 						   &name, 1);
1883 	if (IS_ERR(index_dst_di)) {
1884 		ret = PTR_ERR(index_dst_di);
1885 		goto out;
1886 	} else if (index_dst_di) {
1887 		ret = delete_conflicting_dir_entry(trans, dir, path, index_dst_di,
1888 						   &log_key, log_flags, exists);
1889 		if (ret < 0)
1890 			goto out;
1891 		index_dst_matches = (ret == 1);
1892 	}
1893 
1894 	btrfs_release_path(path);
1895 
1896 	if (dir_dst_matches && index_dst_matches) {
1897 		ret = 0;
1898 		update_size = false;
1899 		goto out;
1900 	}
1901 
1902 	/*
1903 	 * Check if the inode reference exists in the log for the given name,
1904 	 * inode and parent inode
1905 	 */
1906 	search_key.objectid = log_key.objectid;
1907 	search_key.type = BTRFS_INODE_REF_KEY;
1908 	search_key.offset = key->objectid;
1909 	ret = backref_in_log(root->log_root, &search_key, 0, &name);
1910 	if (ret < 0) {
1911 	        goto out;
1912 	} else if (ret) {
1913 	        /* The dentry will be added later. */
1914 	        ret = 0;
1915 	        update_size = false;
1916 	        goto out;
1917 	}
1918 
1919 	search_key.objectid = log_key.objectid;
1920 	search_key.type = BTRFS_INODE_EXTREF_KEY;
1921 	search_key.offset = key->objectid;
1922 	ret = backref_in_log(root->log_root, &search_key, key->objectid, &name);
1923 	if (ret < 0) {
1924 		goto out;
1925 	} else if (ret) {
1926 		/* The dentry will be added later. */
1927 		ret = 0;
1928 		update_size = false;
1929 		goto out;
1930 	}
1931 	btrfs_release_path(path);
1932 	ret = insert_one_name(trans, root, key->objectid, key->offset,
1933 			      &name, &log_key);
1934 	if (ret && ret != -ENOENT && ret != -EEXIST)
1935 		goto out;
1936 	if (!ret)
1937 		name_added = true;
1938 	update_size = false;
1939 	ret = 0;
1940 
1941 out:
1942 	if (!ret && update_size) {
1943 		btrfs_i_size_write(dir, dir->vfs_inode.i_size + name.len * 2);
1944 		ret = btrfs_update_inode(trans, dir);
1945 	}
1946 	kfree(name.name);
1947 	iput(&dir->vfs_inode);
1948 	if (!ret && name_added)
1949 		ret = 1;
1950 	return ret;
1951 }
1952 
1953 /* Replay one dir item from a BTRFS_DIR_INDEX_KEY key. */
replay_one_dir_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)1954 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1955 					struct btrfs_root *root,
1956 					struct btrfs_path *path,
1957 					struct extent_buffer *eb, int slot,
1958 					struct btrfs_key *key)
1959 {
1960 	int ret;
1961 	struct btrfs_dir_item *di;
1962 
1963 	/* We only log dir index keys, which only contain a single dir item. */
1964 	ASSERT(key->type == BTRFS_DIR_INDEX_KEY);
1965 
1966 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1967 	ret = replay_one_name(trans, root, path, eb, di, key);
1968 	if (ret < 0)
1969 		return ret;
1970 
1971 	/*
1972 	 * If this entry refers to a non-directory (directories can not have a
1973 	 * link count > 1) and it was added in the transaction that was not
1974 	 * committed, make sure we fixup the link count of the inode the entry
1975 	 * points to. Otherwise something like the following would result in a
1976 	 * directory pointing to an inode with a wrong link that does not account
1977 	 * for this dir entry:
1978 	 *
1979 	 * mkdir testdir
1980 	 * touch testdir/foo
1981 	 * touch testdir/bar
1982 	 * sync
1983 	 *
1984 	 * ln testdir/bar testdir/bar_link
1985 	 * ln testdir/foo testdir/foo_link
1986 	 * xfs_io -c "fsync" testdir/bar
1987 	 *
1988 	 * <power failure>
1989 	 *
1990 	 * mount fs, log replay happens
1991 	 *
1992 	 * File foo would remain with a link count of 1 when it has two entries
1993 	 * pointing to it in the directory testdir. This would make it impossible
1994 	 * to ever delete the parent directory has it would result in stale
1995 	 * dentries that can never be deleted.
1996 	 */
1997 	if (ret == 1 && btrfs_dir_ftype(eb, di) != BTRFS_FT_DIR) {
1998 		struct btrfs_path *fixup_path;
1999 		struct btrfs_key di_key;
2000 
2001 		fixup_path = btrfs_alloc_path();
2002 		if (!fixup_path)
2003 			return -ENOMEM;
2004 
2005 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2006 		ret = link_to_fixup_dir(trans, root, fixup_path, di_key.objectid);
2007 		btrfs_free_path(fixup_path);
2008 	}
2009 
2010 	return ret;
2011 }
2012 
2013 /*
2014  * directory replay has two parts.  There are the standard directory
2015  * items in the log copied from the subvolume, and range items
2016  * created in the log while the subvolume was logged.
2017  *
2018  * The range items tell us which parts of the key space the log
2019  * is authoritative for.  During replay, if a key in the subvolume
2020  * directory is in a logged range item, but not actually in the log
2021  * that means it was deleted from the directory before the fsync
2022  * and should be removed.
2023  */
find_dir_range(struct btrfs_root * root,struct btrfs_path * path,u64 dirid,u64 * start_ret,u64 * end_ret)2024 static noinline int find_dir_range(struct btrfs_root *root,
2025 				   struct btrfs_path *path,
2026 				   u64 dirid,
2027 				   u64 *start_ret, u64 *end_ret)
2028 {
2029 	struct btrfs_key key;
2030 	u64 found_end;
2031 	struct btrfs_dir_log_item *item;
2032 	int ret;
2033 	int nritems;
2034 
2035 	if (*start_ret == (u64)-1)
2036 		return 1;
2037 
2038 	key.objectid = dirid;
2039 	key.type = BTRFS_DIR_LOG_INDEX_KEY;
2040 	key.offset = *start_ret;
2041 
2042 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2043 	if (ret < 0)
2044 		goto out;
2045 	if (ret > 0) {
2046 		if (path->slots[0] == 0)
2047 			goto out;
2048 		path->slots[0]--;
2049 	}
2050 	if (ret != 0)
2051 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2052 
2053 	if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2054 		ret = 1;
2055 		goto next;
2056 	}
2057 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2058 			      struct btrfs_dir_log_item);
2059 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2060 
2061 	if (*start_ret >= key.offset && *start_ret <= found_end) {
2062 		ret = 0;
2063 		*start_ret = key.offset;
2064 		*end_ret = found_end;
2065 		goto out;
2066 	}
2067 	ret = 1;
2068 next:
2069 	/* check the next slot in the tree to see if it is a valid item */
2070 	nritems = btrfs_header_nritems(path->nodes[0]);
2071 	path->slots[0]++;
2072 	if (path->slots[0] >= nritems) {
2073 		ret = btrfs_next_leaf(root, path);
2074 		if (ret)
2075 			goto out;
2076 	}
2077 
2078 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2079 
2080 	if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2081 		ret = 1;
2082 		goto out;
2083 	}
2084 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2085 			      struct btrfs_dir_log_item);
2086 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2087 	*start_ret = key.offset;
2088 	*end_ret = found_end;
2089 	ret = 0;
2090 out:
2091 	btrfs_release_path(path);
2092 	return ret;
2093 }
2094 
2095 /*
2096  * this looks for a given directory item in the log.  If the directory
2097  * item is not in the log, the item is removed and the inode it points
2098  * to is unlinked
2099  */
check_item_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,struct btrfs_path * log_path,struct btrfs_inode * dir,struct btrfs_key * dir_key)2100 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2101 				      struct btrfs_root *log,
2102 				      struct btrfs_path *path,
2103 				      struct btrfs_path *log_path,
2104 				      struct btrfs_inode *dir,
2105 				      struct btrfs_key *dir_key)
2106 {
2107 	struct btrfs_root *root = dir->root;
2108 	int ret;
2109 	struct extent_buffer *eb;
2110 	int slot;
2111 	struct btrfs_dir_item *di;
2112 	struct fscrypt_str name = { 0 };
2113 	struct btrfs_inode *inode = NULL;
2114 	struct btrfs_key location;
2115 
2116 	/*
2117 	 * Currently we only log dir index keys. Even if we replay a log created
2118 	 * by an older kernel that logged both dir index and dir item keys, all
2119 	 * we need to do is process the dir index keys, we (and our caller) can
2120 	 * safely ignore dir item keys (key type BTRFS_DIR_ITEM_KEY).
2121 	 */
2122 	ASSERT(dir_key->type == BTRFS_DIR_INDEX_KEY);
2123 
2124 	eb = path->nodes[0];
2125 	slot = path->slots[0];
2126 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2127 	ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
2128 	if (ret)
2129 		goto out;
2130 
2131 	if (log) {
2132 		struct btrfs_dir_item *log_di;
2133 
2134 		log_di = btrfs_lookup_dir_index_item(trans, log, log_path,
2135 						     dir_key->objectid,
2136 						     dir_key->offset, &name, 0);
2137 		if (IS_ERR(log_di)) {
2138 			ret = PTR_ERR(log_di);
2139 			goto out;
2140 		} else if (log_di) {
2141 			/* The dentry exists in the log, we have nothing to do. */
2142 			ret = 0;
2143 			goto out;
2144 		}
2145 	}
2146 
2147 	btrfs_dir_item_key_to_cpu(eb, di, &location);
2148 	btrfs_release_path(path);
2149 	btrfs_release_path(log_path);
2150 	inode = read_one_inode(root, location.objectid);
2151 	if (!inode) {
2152 		ret = -EIO;
2153 		goto out;
2154 	}
2155 
2156 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
2157 	if (ret)
2158 		goto out;
2159 
2160 	inc_nlink(&inode->vfs_inode);
2161 	ret = unlink_inode_for_log_replay(trans, dir, inode, &name);
2162 	/*
2163 	 * Unlike dir item keys, dir index keys can only have one name (entry) in
2164 	 * them, as there are no key collisions since each key has a unique offset
2165 	 * (an index number), so we're done.
2166 	 */
2167 out:
2168 	btrfs_release_path(path);
2169 	btrfs_release_path(log_path);
2170 	kfree(name.name);
2171 	if (inode)
2172 		iput(&inode->vfs_inode);
2173 	return ret;
2174 }
2175 
replay_xattr_deletes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,const u64 ino)2176 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2177 			      struct btrfs_root *root,
2178 			      struct btrfs_root *log,
2179 			      struct btrfs_path *path,
2180 			      const u64 ino)
2181 {
2182 	struct btrfs_key search_key;
2183 	struct btrfs_path *log_path;
2184 	int i;
2185 	int nritems;
2186 	int ret;
2187 
2188 	log_path = btrfs_alloc_path();
2189 	if (!log_path)
2190 		return -ENOMEM;
2191 
2192 	search_key.objectid = ino;
2193 	search_key.type = BTRFS_XATTR_ITEM_KEY;
2194 	search_key.offset = 0;
2195 again:
2196 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2197 	if (ret < 0)
2198 		goto out;
2199 process_leaf:
2200 	nritems = btrfs_header_nritems(path->nodes[0]);
2201 	for (i = path->slots[0]; i < nritems; i++) {
2202 		struct btrfs_key key;
2203 		struct btrfs_dir_item *di;
2204 		struct btrfs_dir_item *log_di;
2205 		u32 total_size;
2206 		u32 cur;
2207 
2208 		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2209 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2210 			ret = 0;
2211 			goto out;
2212 		}
2213 
2214 		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2215 		total_size = btrfs_item_size(path->nodes[0], i);
2216 		cur = 0;
2217 		while (cur < total_size) {
2218 			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2219 			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2220 			u32 this_len = sizeof(*di) + name_len + data_len;
2221 			char *name;
2222 
2223 			name = kmalloc(name_len, GFP_NOFS);
2224 			if (!name) {
2225 				ret = -ENOMEM;
2226 				goto out;
2227 			}
2228 			read_extent_buffer(path->nodes[0], name,
2229 					   (unsigned long)(di + 1), name_len);
2230 
2231 			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2232 						    name, name_len, 0);
2233 			btrfs_release_path(log_path);
2234 			if (!log_di) {
2235 				/* Doesn't exist in log tree, so delete it. */
2236 				btrfs_release_path(path);
2237 				di = btrfs_lookup_xattr(trans, root, path, ino,
2238 							name, name_len, -1);
2239 				kfree(name);
2240 				if (IS_ERR(di)) {
2241 					ret = PTR_ERR(di);
2242 					goto out;
2243 				}
2244 				ASSERT(di);
2245 				ret = btrfs_delete_one_dir_name(trans, root,
2246 								path, di);
2247 				if (ret)
2248 					goto out;
2249 				btrfs_release_path(path);
2250 				search_key = key;
2251 				goto again;
2252 			}
2253 			kfree(name);
2254 			if (IS_ERR(log_di)) {
2255 				ret = PTR_ERR(log_di);
2256 				goto out;
2257 			}
2258 			cur += this_len;
2259 			di = (struct btrfs_dir_item *)((char *)di + this_len);
2260 		}
2261 	}
2262 	ret = btrfs_next_leaf(root, path);
2263 	if (ret > 0)
2264 		ret = 0;
2265 	else if (ret == 0)
2266 		goto process_leaf;
2267 out:
2268 	btrfs_free_path(log_path);
2269 	btrfs_release_path(path);
2270 	return ret;
2271 }
2272 
2273 
2274 /*
2275  * deletion replay happens before we copy any new directory items
2276  * out of the log or out of backreferences from inodes.  It
2277  * scans the log to find ranges of keys that log is authoritative for,
2278  * and then scans the directory to find items in those ranges that are
2279  * not present in the log.
2280  *
2281  * Anything we don't find in the log is unlinked and removed from the
2282  * directory.
2283  */
replay_dir_deletes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,u64 dirid,int del_all)2284 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2285 				       struct btrfs_root *root,
2286 				       struct btrfs_root *log,
2287 				       struct btrfs_path *path,
2288 				       u64 dirid, int del_all)
2289 {
2290 	u64 range_start;
2291 	u64 range_end;
2292 	int ret = 0;
2293 	struct btrfs_key dir_key;
2294 	struct btrfs_key found_key;
2295 	struct btrfs_path *log_path;
2296 	struct btrfs_inode *dir;
2297 
2298 	dir_key.objectid = dirid;
2299 	dir_key.type = BTRFS_DIR_INDEX_KEY;
2300 	log_path = btrfs_alloc_path();
2301 	if (!log_path)
2302 		return -ENOMEM;
2303 
2304 	dir = read_one_inode(root, dirid);
2305 	/* it isn't an error if the inode isn't there, that can happen
2306 	 * because we replay the deletes before we copy in the inode item
2307 	 * from the log
2308 	 */
2309 	if (!dir) {
2310 		btrfs_free_path(log_path);
2311 		return 0;
2312 	}
2313 
2314 	range_start = 0;
2315 	range_end = 0;
2316 	while (1) {
2317 		if (del_all)
2318 			range_end = (u64)-1;
2319 		else {
2320 			ret = find_dir_range(log, path, dirid,
2321 					     &range_start, &range_end);
2322 			if (ret < 0)
2323 				goto out;
2324 			else if (ret > 0)
2325 				break;
2326 		}
2327 
2328 		dir_key.offset = range_start;
2329 		while (1) {
2330 			int nritems;
2331 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2332 						0, 0);
2333 			if (ret < 0)
2334 				goto out;
2335 
2336 			nritems = btrfs_header_nritems(path->nodes[0]);
2337 			if (path->slots[0] >= nritems) {
2338 				ret = btrfs_next_leaf(root, path);
2339 				if (ret == 1)
2340 					break;
2341 				else if (ret < 0)
2342 					goto out;
2343 			}
2344 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2345 					      path->slots[0]);
2346 			if (found_key.objectid != dirid ||
2347 			    found_key.type != dir_key.type) {
2348 				ret = 0;
2349 				goto out;
2350 			}
2351 
2352 			if (found_key.offset > range_end)
2353 				break;
2354 
2355 			ret = check_item_in_log(trans, log, path,
2356 						log_path, dir,
2357 						&found_key);
2358 			if (ret)
2359 				goto out;
2360 			if (found_key.offset == (u64)-1)
2361 				break;
2362 			dir_key.offset = found_key.offset + 1;
2363 		}
2364 		btrfs_release_path(path);
2365 		if (range_end == (u64)-1)
2366 			break;
2367 		range_start = range_end + 1;
2368 	}
2369 	ret = 0;
2370 out:
2371 	btrfs_release_path(path);
2372 	btrfs_free_path(log_path);
2373 	iput(&dir->vfs_inode);
2374 	return ret;
2375 }
2376 
2377 /*
2378  * the process_func used to replay items from the log tree.  This
2379  * gets called in two different stages.  The first stage just looks
2380  * for inodes and makes sure they are all copied into the subvolume.
2381  *
2382  * The second stage copies all the other item types from the log into
2383  * the subvolume.  The two stage approach is slower, but gets rid of
2384  * lots of complexity around inodes referencing other inodes that exist
2385  * only in the log (references come from either directory items or inode
2386  * back refs).
2387  */
replay_one_buffer(struct btrfs_root * log,struct extent_buffer * eb,struct walk_control * wc,u64 gen,int level)2388 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2389 			     struct walk_control *wc, u64 gen, int level)
2390 {
2391 	int nritems;
2392 	struct btrfs_tree_parent_check check = {
2393 		.transid = gen,
2394 		.level = level
2395 	};
2396 	struct btrfs_path *path;
2397 	struct btrfs_root *root = wc->replay_dest;
2398 	struct btrfs_key key;
2399 	int i;
2400 	int ret;
2401 
2402 	ret = btrfs_read_extent_buffer(eb, &check);
2403 	if (ret)
2404 		return ret;
2405 
2406 	level = btrfs_header_level(eb);
2407 
2408 	if (level != 0)
2409 		return 0;
2410 
2411 	path = btrfs_alloc_path();
2412 	if (!path)
2413 		return -ENOMEM;
2414 
2415 	nritems = btrfs_header_nritems(eb);
2416 	for (i = 0; i < nritems; i++) {
2417 		btrfs_item_key_to_cpu(eb, &key, i);
2418 
2419 		/* inode keys are done during the first stage */
2420 		if (key.type == BTRFS_INODE_ITEM_KEY &&
2421 		    wc->stage == LOG_WALK_REPLAY_INODES) {
2422 			struct btrfs_inode_item *inode_item;
2423 			u32 mode;
2424 
2425 			inode_item = btrfs_item_ptr(eb, i,
2426 					    struct btrfs_inode_item);
2427 			/*
2428 			 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2429 			 * and never got linked before the fsync, skip it, as
2430 			 * replaying it is pointless since it would be deleted
2431 			 * later. We skip logging tmpfiles, but it's always
2432 			 * possible we are replaying a log created with a kernel
2433 			 * that used to log tmpfiles.
2434 			 */
2435 			if (btrfs_inode_nlink(eb, inode_item) == 0) {
2436 				wc->ignore_cur_inode = true;
2437 				continue;
2438 			} else {
2439 				wc->ignore_cur_inode = false;
2440 			}
2441 			ret = replay_xattr_deletes(wc->trans, root, log,
2442 						   path, key.objectid);
2443 			if (ret)
2444 				break;
2445 			mode = btrfs_inode_mode(eb, inode_item);
2446 			if (S_ISDIR(mode)) {
2447 				ret = replay_dir_deletes(wc->trans,
2448 					 root, log, path, key.objectid, 0);
2449 				if (ret)
2450 					break;
2451 			}
2452 			ret = overwrite_item(wc->trans, root, path,
2453 					     eb, i, &key);
2454 			if (ret)
2455 				break;
2456 
2457 			/*
2458 			 * Before replaying extents, truncate the inode to its
2459 			 * size. We need to do it now and not after log replay
2460 			 * because before an fsync we can have prealloc extents
2461 			 * added beyond the inode's i_size. If we did it after,
2462 			 * through orphan cleanup for example, we would drop
2463 			 * those prealloc extents just after replaying them.
2464 			 */
2465 			if (S_ISREG(mode)) {
2466 				struct btrfs_drop_extents_args drop_args = { 0 };
2467 				struct btrfs_inode *inode;
2468 				u64 from;
2469 
2470 				inode = read_one_inode(root, key.objectid);
2471 				if (!inode) {
2472 					ret = -EIO;
2473 					break;
2474 				}
2475 				from = ALIGN(i_size_read(&inode->vfs_inode),
2476 					     root->fs_info->sectorsize);
2477 				drop_args.start = from;
2478 				drop_args.end = (u64)-1;
2479 				drop_args.drop_cache = true;
2480 				ret = btrfs_drop_extents(wc->trans, root, inode,
2481 							 &drop_args);
2482 				if (!ret) {
2483 					inode_sub_bytes(&inode->vfs_inode,
2484 							drop_args.bytes_found);
2485 					/* Update the inode's nbytes. */
2486 					ret = btrfs_update_inode(wc->trans, inode);
2487 				}
2488 				iput(&inode->vfs_inode);
2489 				if (ret)
2490 					break;
2491 			}
2492 
2493 			ret = link_to_fixup_dir(wc->trans, root,
2494 						path, key.objectid);
2495 			if (ret)
2496 				break;
2497 		}
2498 
2499 		if (wc->ignore_cur_inode)
2500 			continue;
2501 
2502 		if (key.type == BTRFS_DIR_INDEX_KEY &&
2503 		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2504 			ret = replay_one_dir_item(wc->trans, root, path,
2505 						  eb, i, &key);
2506 			if (ret)
2507 				break;
2508 		}
2509 
2510 		if (wc->stage < LOG_WALK_REPLAY_ALL)
2511 			continue;
2512 
2513 		/* these keys are simply copied */
2514 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2515 			ret = overwrite_item(wc->trans, root, path,
2516 					     eb, i, &key);
2517 			if (ret)
2518 				break;
2519 		} else if (key.type == BTRFS_INODE_REF_KEY ||
2520 			   key.type == BTRFS_INODE_EXTREF_KEY) {
2521 			ret = add_inode_ref(wc->trans, root, log, path,
2522 					    eb, i, &key);
2523 			if (ret && ret != -ENOENT)
2524 				break;
2525 			ret = 0;
2526 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2527 			ret = replay_one_extent(wc->trans, root, path,
2528 						eb, i, &key);
2529 			if (ret)
2530 				break;
2531 		}
2532 		/*
2533 		 * We don't log BTRFS_DIR_ITEM_KEY keys anymore, only the
2534 		 * BTRFS_DIR_INDEX_KEY items which we use to derive the
2535 		 * BTRFS_DIR_ITEM_KEY items. If we are replaying a log from an
2536 		 * older kernel with such keys, ignore them.
2537 		 */
2538 	}
2539 	btrfs_free_path(path);
2540 	return ret;
2541 }
2542 
2543 /*
2544  * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2545  */
unaccount_log_buffer(struct btrfs_fs_info * fs_info,u64 start)2546 static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2547 {
2548 	struct btrfs_block_group *cache;
2549 
2550 	cache = btrfs_lookup_block_group(fs_info, start);
2551 	if (!cache) {
2552 		btrfs_err(fs_info, "unable to find block group for %llu", start);
2553 		return;
2554 	}
2555 
2556 	spin_lock(&cache->space_info->lock);
2557 	spin_lock(&cache->lock);
2558 	cache->reserved -= fs_info->nodesize;
2559 	cache->space_info->bytes_reserved -= fs_info->nodesize;
2560 	spin_unlock(&cache->lock);
2561 	spin_unlock(&cache->space_info->lock);
2562 
2563 	btrfs_put_block_group(cache);
2564 }
2565 
clean_log_buffer(struct btrfs_trans_handle * trans,struct extent_buffer * eb)2566 static int clean_log_buffer(struct btrfs_trans_handle *trans,
2567 			    struct extent_buffer *eb)
2568 {
2569 	int ret;
2570 
2571 	btrfs_tree_lock(eb);
2572 	btrfs_clear_buffer_dirty(trans, eb);
2573 	wait_on_extent_buffer_writeback(eb);
2574 	btrfs_tree_unlock(eb);
2575 
2576 	if (trans) {
2577 		ret = btrfs_pin_reserved_extent(trans, eb);
2578 		if (ret)
2579 			return ret;
2580 	} else {
2581 		unaccount_log_buffer(eb->fs_info, eb->start);
2582 	}
2583 
2584 	return 0;
2585 }
2586 
walk_down_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int * level,struct walk_control * wc)2587 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2588 				   struct btrfs_root *root,
2589 				   struct btrfs_path *path, int *level,
2590 				   struct walk_control *wc)
2591 {
2592 	struct btrfs_fs_info *fs_info = root->fs_info;
2593 	u64 bytenr;
2594 	u64 ptr_gen;
2595 	struct extent_buffer *next;
2596 	struct extent_buffer *cur;
2597 	int ret = 0;
2598 
2599 	while (*level > 0) {
2600 		struct btrfs_tree_parent_check check = { 0 };
2601 
2602 		cur = path->nodes[*level];
2603 
2604 		WARN_ON(btrfs_header_level(cur) != *level);
2605 
2606 		if (path->slots[*level] >=
2607 		    btrfs_header_nritems(cur))
2608 			break;
2609 
2610 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2611 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2612 		check.transid = ptr_gen;
2613 		check.level = *level - 1;
2614 		check.has_first_key = true;
2615 		btrfs_node_key_to_cpu(cur, &check.first_key, path->slots[*level]);
2616 
2617 		next = btrfs_find_create_tree_block(fs_info, bytenr,
2618 						    btrfs_header_owner(cur),
2619 						    *level - 1);
2620 		if (IS_ERR(next))
2621 			return PTR_ERR(next);
2622 
2623 		if (*level == 1) {
2624 			ret = wc->process_func(root, next, wc, ptr_gen,
2625 					       *level - 1);
2626 			if (ret) {
2627 				free_extent_buffer(next);
2628 				return ret;
2629 			}
2630 
2631 			path->slots[*level]++;
2632 			if (wc->free) {
2633 				ret = btrfs_read_extent_buffer(next, &check);
2634 				if (ret) {
2635 					free_extent_buffer(next);
2636 					return ret;
2637 				}
2638 
2639 				ret = clean_log_buffer(trans, next);
2640 				if (ret) {
2641 					free_extent_buffer(next);
2642 					return ret;
2643 				}
2644 			}
2645 			free_extent_buffer(next);
2646 			continue;
2647 		}
2648 		ret = btrfs_read_extent_buffer(next, &check);
2649 		if (ret) {
2650 			free_extent_buffer(next);
2651 			return ret;
2652 		}
2653 
2654 		if (path->nodes[*level-1])
2655 			free_extent_buffer(path->nodes[*level-1]);
2656 		path->nodes[*level-1] = next;
2657 		*level = btrfs_header_level(next);
2658 		path->slots[*level] = 0;
2659 		cond_resched();
2660 	}
2661 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2662 
2663 	cond_resched();
2664 	return 0;
2665 }
2666 
walk_up_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int * level,struct walk_control * wc)2667 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2668 				 struct btrfs_root *root,
2669 				 struct btrfs_path *path, int *level,
2670 				 struct walk_control *wc)
2671 {
2672 	int i;
2673 	int slot;
2674 	int ret;
2675 
2676 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2677 		slot = path->slots[i];
2678 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2679 			path->slots[i]++;
2680 			*level = i;
2681 			WARN_ON(*level == 0);
2682 			return 0;
2683 		} else {
2684 			ret = wc->process_func(root, path->nodes[*level], wc,
2685 				 btrfs_header_generation(path->nodes[*level]),
2686 				 *level);
2687 			if (ret)
2688 				return ret;
2689 
2690 			if (wc->free) {
2691 				ret = clean_log_buffer(trans, path->nodes[*level]);
2692 				if (ret)
2693 					return ret;
2694 			}
2695 			free_extent_buffer(path->nodes[*level]);
2696 			path->nodes[*level] = NULL;
2697 			*level = i + 1;
2698 		}
2699 	}
2700 	return 1;
2701 }
2702 
2703 /*
2704  * drop the reference count on the tree rooted at 'snap'.  This traverses
2705  * the tree freeing any blocks that have a ref count of zero after being
2706  * decremented.
2707  */
walk_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct walk_control * wc)2708 static int walk_log_tree(struct btrfs_trans_handle *trans,
2709 			 struct btrfs_root *log, struct walk_control *wc)
2710 {
2711 	int ret = 0;
2712 	int wret;
2713 	int level;
2714 	struct btrfs_path *path;
2715 	int orig_level;
2716 
2717 	path = btrfs_alloc_path();
2718 	if (!path)
2719 		return -ENOMEM;
2720 
2721 	level = btrfs_header_level(log->node);
2722 	orig_level = level;
2723 	path->nodes[level] = log->node;
2724 	atomic_inc(&log->node->refs);
2725 	path->slots[level] = 0;
2726 
2727 	while (1) {
2728 		wret = walk_down_log_tree(trans, log, path, &level, wc);
2729 		if (wret > 0)
2730 			break;
2731 		if (wret < 0) {
2732 			ret = wret;
2733 			goto out;
2734 		}
2735 
2736 		wret = walk_up_log_tree(trans, log, path, &level, wc);
2737 		if (wret > 0)
2738 			break;
2739 		if (wret < 0) {
2740 			ret = wret;
2741 			goto out;
2742 		}
2743 	}
2744 
2745 	/* was the root node processed? if not, catch it here */
2746 	if (path->nodes[orig_level]) {
2747 		ret = wc->process_func(log, path->nodes[orig_level], wc,
2748 			 btrfs_header_generation(path->nodes[orig_level]),
2749 			 orig_level);
2750 		if (ret)
2751 			goto out;
2752 		if (wc->free)
2753 			ret = clean_log_buffer(trans, path->nodes[orig_level]);
2754 	}
2755 
2756 out:
2757 	btrfs_free_path(path);
2758 	return ret;
2759 }
2760 
2761 /*
2762  * helper function to update the item for a given subvolumes log root
2763  * in the tree of log roots
2764  */
update_log_root(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_root_item * root_item)2765 static int update_log_root(struct btrfs_trans_handle *trans,
2766 			   struct btrfs_root *log,
2767 			   struct btrfs_root_item *root_item)
2768 {
2769 	struct btrfs_fs_info *fs_info = log->fs_info;
2770 	int ret;
2771 
2772 	if (log->log_transid == 1) {
2773 		/* insert root item on the first sync */
2774 		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2775 				&log->root_key, root_item);
2776 	} else {
2777 		ret = btrfs_update_root(trans, fs_info->log_root_tree,
2778 				&log->root_key, root_item);
2779 	}
2780 	return ret;
2781 }
2782 
wait_log_commit(struct btrfs_root * root,int transid)2783 static void wait_log_commit(struct btrfs_root *root, int transid)
2784 {
2785 	DEFINE_WAIT(wait);
2786 	int index = transid % 2;
2787 
2788 	/*
2789 	 * we only allow two pending log transactions at a time,
2790 	 * so we know that if ours is more than 2 older than the
2791 	 * current transaction, we're done
2792 	 */
2793 	for (;;) {
2794 		prepare_to_wait(&root->log_commit_wait[index],
2795 				&wait, TASK_UNINTERRUPTIBLE);
2796 
2797 		if (!(root->log_transid_committed < transid &&
2798 		      atomic_read(&root->log_commit[index])))
2799 			break;
2800 
2801 		mutex_unlock(&root->log_mutex);
2802 		schedule();
2803 		mutex_lock(&root->log_mutex);
2804 	}
2805 	finish_wait(&root->log_commit_wait[index], &wait);
2806 }
2807 
wait_for_writer(struct btrfs_root * root)2808 static void wait_for_writer(struct btrfs_root *root)
2809 {
2810 	DEFINE_WAIT(wait);
2811 
2812 	for (;;) {
2813 		prepare_to_wait(&root->log_writer_wait, &wait,
2814 				TASK_UNINTERRUPTIBLE);
2815 		if (!atomic_read(&root->log_writers))
2816 			break;
2817 
2818 		mutex_unlock(&root->log_mutex);
2819 		schedule();
2820 		mutex_lock(&root->log_mutex);
2821 	}
2822 	finish_wait(&root->log_writer_wait, &wait);
2823 }
2824 
btrfs_init_log_ctx(struct btrfs_log_ctx * ctx,struct btrfs_inode * inode)2825 void btrfs_init_log_ctx(struct btrfs_log_ctx *ctx, struct btrfs_inode *inode)
2826 {
2827 	ctx->log_ret = 0;
2828 	ctx->log_transid = 0;
2829 	ctx->log_new_dentries = false;
2830 	ctx->logging_new_name = false;
2831 	ctx->logging_new_delayed_dentries = false;
2832 	ctx->logged_before = false;
2833 	ctx->inode = inode;
2834 	INIT_LIST_HEAD(&ctx->list);
2835 	INIT_LIST_HEAD(&ctx->ordered_extents);
2836 	INIT_LIST_HEAD(&ctx->conflict_inodes);
2837 	ctx->num_conflict_inodes = 0;
2838 	ctx->logging_conflict_inodes = false;
2839 	ctx->scratch_eb = NULL;
2840 }
2841 
btrfs_init_log_ctx_scratch_eb(struct btrfs_log_ctx * ctx)2842 void btrfs_init_log_ctx_scratch_eb(struct btrfs_log_ctx *ctx)
2843 {
2844 	struct btrfs_inode *inode = ctx->inode;
2845 
2846 	if (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
2847 	    !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
2848 		return;
2849 
2850 	/*
2851 	 * Don't care about allocation failure. This is just for optimization,
2852 	 * if we fail to allocate here, we will try again later if needed.
2853 	 */
2854 	ctx->scratch_eb = alloc_dummy_extent_buffer(inode->root->fs_info, 0);
2855 }
2856 
btrfs_release_log_ctx_extents(struct btrfs_log_ctx * ctx)2857 void btrfs_release_log_ctx_extents(struct btrfs_log_ctx *ctx)
2858 {
2859 	struct btrfs_ordered_extent *ordered;
2860 	struct btrfs_ordered_extent *tmp;
2861 
2862 	btrfs_assert_inode_locked(ctx->inode);
2863 
2864 	list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
2865 		list_del_init(&ordered->log_list);
2866 		btrfs_put_ordered_extent(ordered);
2867 	}
2868 }
2869 
2870 
btrfs_remove_log_ctx(struct btrfs_root * root,struct btrfs_log_ctx * ctx)2871 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2872 					struct btrfs_log_ctx *ctx)
2873 {
2874 	mutex_lock(&root->log_mutex);
2875 	list_del_init(&ctx->list);
2876 	mutex_unlock(&root->log_mutex);
2877 }
2878 
2879 /*
2880  * Invoked in log mutex context, or be sure there is no other task which
2881  * can access the list.
2882  */
btrfs_remove_all_log_ctxs(struct btrfs_root * root,int index,int error)2883 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2884 					     int index, int error)
2885 {
2886 	struct btrfs_log_ctx *ctx;
2887 	struct btrfs_log_ctx *safe;
2888 
2889 	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2890 		list_del_init(&ctx->list);
2891 		ctx->log_ret = error;
2892 	}
2893 }
2894 
2895 /*
2896  * Sends a given tree log down to the disk and updates the super blocks to
2897  * record it.  When this call is done, you know that any inodes previously
2898  * logged are safely on disk only if it returns 0.
2899  *
2900  * Any other return value means you need to call btrfs_commit_transaction.
2901  * Some of the edge cases for fsyncing directories that have had unlinks
2902  * or renames done in the past mean that sometimes the only safe
2903  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
2904  * that has happened.
2905  */
btrfs_sync_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_log_ctx * ctx)2906 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2907 		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2908 {
2909 	int index1;
2910 	int index2;
2911 	int mark;
2912 	int ret;
2913 	struct btrfs_fs_info *fs_info = root->fs_info;
2914 	struct btrfs_root *log = root->log_root;
2915 	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
2916 	struct btrfs_root_item new_root_item;
2917 	int log_transid = 0;
2918 	struct btrfs_log_ctx root_log_ctx;
2919 	struct blk_plug plug;
2920 	u64 log_root_start;
2921 	u64 log_root_level;
2922 
2923 	mutex_lock(&root->log_mutex);
2924 	log_transid = ctx->log_transid;
2925 	if (root->log_transid_committed >= log_transid) {
2926 		mutex_unlock(&root->log_mutex);
2927 		return ctx->log_ret;
2928 	}
2929 
2930 	index1 = log_transid % 2;
2931 	if (atomic_read(&root->log_commit[index1])) {
2932 		wait_log_commit(root, log_transid);
2933 		mutex_unlock(&root->log_mutex);
2934 		return ctx->log_ret;
2935 	}
2936 	ASSERT(log_transid == root->log_transid);
2937 	atomic_set(&root->log_commit[index1], 1);
2938 
2939 	/* wait for previous tree log sync to complete */
2940 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2941 		wait_log_commit(root, log_transid - 1);
2942 
2943 	while (1) {
2944 		int batch = atomic_read(&root->log_batch);
2945 		/* when we're on an ssd, just kick the log commit out */
2946 		if (!btrfs_test_opt(fs_info, SSD) &&
2947 		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2948 			mutex_unlock(&root->log_mutex);
2949 			schedule_timeout_uninterruptible(1);
2950 			mutex_lock(&root->log_mutex);
2951 		}
2952 		wait_for_writer(root);
2953 		if (batch == atomic_read(&root->log_batch))
2954 			break;
2955 	}
2956 
2957 	/* bail out if we need to do a full commit */
2958 	if (btrfs_need_log_full_commit(trans)) {
2959 		ret = BTRFS_LOG_FORCE_COMMIT;
2960 		mutex_unlock(&root->log_mutex);
2961 		goto out;
2962 	}
2963 
2964 	if (log_transid % 2 == 0)
2965 		mark = EXTENT_DIRTY;
2966 	else
2967 		mark = EXTENT_NEW;
2968 
2969 	/* we start IO on  all the marked extents here, but we don't actually
2970 	 * wait for them until later.
2971 	 */
2972 	blk_start_plug(&plug);
2973 	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
2974 	/*
2975 	 * -EAGAIN happens when someone, e.g., a concurrent transaction
2976 	 *  commit, writes a dirty extent in this tree-log commit. This
2977 	 *  concurrent write will create a hole writing out the extents,
2978 	 *  and we cannot proceed on a zoned filesystem, requiring
2979 	 *  sequential writing. While we can bail out to a full commit
2980 	 *  here, but we can continue hoping the concurrent writing fills
2981 	 *  the hole.
2982 	 */
2983 	if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
2984 		ret = 0;
2985 	if (ret) {
2986 		blk_finish_plug(&plug);
2987 		btrfs_set_log_full_commit(trans);
2988 		mutex_unlock(&root->log_mutex);
2989 		goto out;
2990 	}
2991 
2992 	/*
2993 	 * We _must_ update under the root->log_mutex in order to make sure we
2994 	 * have a consistent view of the log root we are trying to commit at
2995 	 * this moment.
2996 	 *
2997 	 * We _must_ copy this into a local copy, because we are not holding the
2998 	 * log_root_tree->log_mutex yet.  This is important because when we
2999 	 * commit the log_root_tree we must have a consistent view of the
3000 	 * log_root_tree when we update the super block to point at the
3001 	 * log_root_tree bytenr.  If we update the log_root_tree here we'll race
3002 	 * with the commit and possibly point at the new block which we may not
3003 	 * have written out.
3004 	 */
3005 	btrfs_set_root_node(&log->root_item, log->node);
3006 	memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3007 
3008 	btrfs_set_root_log_transid(root, root->log_transid + 1);
3009 	log->log_transid = root->log_transid;
3010 	root->log_start_pid = 0;
3011 	/*
3012 	 * IO has been started, blocks of the log tree have WRITTEN flag set
3013 	 * in their headers. new modifications of the log will be written to
3014 	 * new positions. so it's safe to allow log writers to go in.
3015 	 */
3016 	mutex_unlock(&root->log_mutex);
3017 
3018 	if (btrfs_is_zoned(fs_info)) {
3019 		mutex_lock(&fs_info->tree_root->log_mutex);
3020 		if (!log_root_tree->node) {
3021 			ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
3022 			if (ret) {
3023 				mutex_unlock(&fs_info->tree_root->log_mutex);
3024 				blk_finish_plug(&plug);
3025 				goto out;
3026 			}
3027 		}
3028 		mutex_unlock(&fs_info->tree_root->log_mutex);
3029 	}
3030 
3031 	btrfs_init_log_ctx(&root_log_ctx, NULL);
3032 
3033 	mutex_lock(&log_root_tree->log_mutex);
3034 
3035 	index2 = log_root_tree->log_transid % 2;
3036 	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3037 	root_log_ctx.log_transid = log_root_tree->log_transid;
3038 
3039 	/*
3040 	 * Now we are safe to update the log_root_tree because we're under the
3041 	 * log_mutex, and we're a current writer so we're holding the commit
3042 	 * open until we drop the log_mutex.
3043 	 */
3044 	ret = update_log_root(trans, log, &new_root_item);
3045 	if (ret) {
3046 		list_del_init(&root_log_ctx.list);
3047 		blk_finish_plug(&plug);
3048 		btrfs_set_log_full_commit(trans);
3049 		if (ret != -ENOSPC)
3050 			btrfs_err(fs_info,
3051 				  "failed to update log for root %llu ret %d",
3052 				  btrfs_root_id(root), ret);
3053 		btrfs_wait_tree_log_extents(log, mark);
3054 		mutex_unlock(&log_root_tree->log_mutex);
3055 		goto out;
3056 	}
3057 
3058 	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3059 		blk_finish_plug(&plug);
3060 		list_del_init(&root_log_ctx.list);
3061 		mutex_unlock(&log_root_tree->log_mutex);
3062 		ret = root_log_ctx.log_ret;
3063 		goto out;
3064 	}
3065 
3066 	if (atomic_read(&log_root_tree->log_commit[index2])) {
3067 		blk_finish_plug(&plug);
3068 		ret = btrfs_wait_tree_log_extents(log, mark);
3069 		wait_log_commit(log_root_tree,
3070 				root_log_ctx.log_transid);
3071 		mutex_unlock(&log_root_tree->log_mutex);
3072 		if (!ret)
3073 			ret = root_log_ctx.log_ret;
3074 		goto out;
3075 	}
3076 	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3077 	atomic_set(&log_root_tree->log_commit[index2], 1);
3078 
3079 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3080 		wait_log_commit(log_root_tree,
3081 				root_log_ctx.log_transid - 1);
3082 	}
3083 
3084 	/*
3085 	 * now that we've moved on to the tree of log tree roots,
3086 	 * check the full commit flag again
3087 	 */
3088 	if (btrfs_need_log_full_commit(trans)) {
3089 		blk_finish_plug(&plug);
3090 		btrfs_wait_tree_log_extents(log, mark);
3091 		mutex_unlock(&log_root_tree->log_mutex);
3092 		ret = BTRFS_LOG_FORCE_COMMIT;
3093 		goto out_wake_log_root;
3094 	}
3095 
3096 	ret = btrfs_write_marked_extents(fs_info,
3097 					 &log_root_tree->dirty_log_pages,
3098 					 EXTENT_DIRTY | EXTENT_NEW);
3099 	blk_finish_plug(&plug);
3100 	/*
3101 	 * As described above, -EAGAIN indicates a hole in the extents. We
3102 	 * cannot wait for these write outs since the waiting cause a
3103 	 * deadlock. Bail out to the full commit instead.
3104 	 */
3105 	if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3106 		btrfs_set_log_full_commit(trans);
3107 		btrfs_wait_tree_log_extents(log, mark);
3108 		mutex_unlock(&log_root_tree->log_mutex);
3109 		goto out_wake_log_root;
3110 	} else if (ret) {
3111 		btrfs_set_log_full_commit(trans);
3112 		mutex_unlock(&log_root_tree->log_mutex);
3113 		goto out_wake_log_root;
3114 	}
3115 	ret = btrfs_wait_tree_log_extents(log, mark);
3116 	if (!ret)
3117 		ret = btrfs_wait_tree_log_extents(log_root_tree,
3118 						  EXTENT_NEW | EXTENT_DIRTY);
3119 	if (ret) {
3120 		btrfs_set_log_full_commit(trans);
3121 		mutex_unlock(&log_root_tree->log_mutex);
3122 		goto out_wake_log_root;
3123 	}
3124 
3125 	log_root_start = log_root_tree->node->start;
3126 	log_root_level = btrfs_header_level(log_root_tree->node);
3127 	log_root_tree->log_transid++;
3128 	mutex_unlock(&log_root_tree->log_mutex);
3129 
3130 	/*
3131 	 * Here we are guaranteed that nobody is going to write the superblock
3132 	 * for the current transaction before us and that neither we do write
3133 	 * our superblock before the previous transaction finishes its commit
3134 	 * and writes its superblock, because:
3135 	 *
3136 	 * 1) We are holding a handle on the current transaction, so no body
3137 	 *    can commit it until we release the handle;
3138 	 *
3139 	 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3140 	 *    if the previous transaction is still committing, and hasn't yet
3141 	 *    written its superblock, we wait for it to do it, because a
3142 	 *    transaction commit acquires the tree_log_mutex when the commit
3143 	 *    begins and releases it only after writing its superblock.
3144 	 */
3145 	mutex_lock(&fs_info->tree_log_mutex);
3146 
3147 	/*
3148 	 * The previous transaction writeout phase could have failed, and thus
3149 	 * marked the fs in an error state.  We must not commit here, as we
3150 	 * could have updated our generation in the super_for_commit and
3151 	 * writing the super here would result in transid mismatches.  If there
3152 	 * is an error here just bail.
3153 	 */
3154 	if (BTRFS_FS_ERROR(fs_info)) {
3155 		ret = -EIO;
3156 		btrfs_set_log_full_commit(trans);
3157 		btrfs_abort_transaction(trans, ret);
3158 		mutex_unlock(&fs_info->tree_log_mutex);
3159 		goto out_wake_log_root;
3160 	}
3161 
3162 	btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3163 	btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
3164 	ret = write_all_supers(fs_info, 1);
3165 	mutex_unlock(&fs_info->tree_log_mutex);
3166 	if (ret) {
3167 		btrfs_set_log_full_commit(trans);
3168 		btrfs_abort_transaction(trans, ret);
3169 		goto out_wake_log_root;
3170 	}
3171 
3172 	/*
3173 	 * We know there can only be one task here, since we have not yet set
3174 	 * root->log_commit[index1] to 0 and any task attempting to sync the
3175 	 * log must wait for the previous log transaction to commit if it's
3176 	 * still in progress or wait for the current log transaction commit if
3177 	 * someone else already started it. We use <= and not < because the
3178 	 * first log transaction has an ID of 0.
3179 	 */
3180 	ASSERT(btrfs_get_root_last_log_commit(root) <= log_transid);
3181 	btrfs_set_root_last_log_commit(root, log_transid);
3182 
3183 out_wake_log_root:
3184 	mutex_lock(&log_root_tree->log_mutex);
3185 	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3186 
3187 	log_root_tree->log_transid_committed++;
3188 	atomic_set(&log_root_tree->log_commit[index2], 0);
3189 	mutex_unlock(&log_root_tree->log_mutex);
3190 
3191 	/*
3192 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3193 	 * all the updates above are seen by the woken threads. It might not be
3194 	 * necessary, but proving that seems to be hard.
3195 	 */
3196 	cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3197 out:
3198 	mutex_lock(&root->log_mutex);
3199 	btrfs_remove_all_log_ctxs(root, index1, ret);
3200 	root->log_transid_committed++;
3201 	atomic_set(&root->log_commit[index1], 0);
3202 	mutex_unlock(&root->log_mutex);
3203 
3204 	/*
3205 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3206 	 * all the updates above are seen by the woken threads. It might not be
3207 	 * necessary, but proving that seems to be hard.
3208 	 */
3209 	cond_wake_up(&root->log_commit_wait[index1]);
3210 	return ret;
3211 }
3212 
free_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * log)3213 static void free_log_tree(struct btrfs_trans_handle *trans,
3214 			  struct btrfs_root *log)
3215 {
3216 	int ret;
3217 	struct walk_control wc = {
3218 		.free = 1,
3219 		.process_func = process_one_buffer
3220 	};
3221 
3222 	if (log->node) {
3223 		ret = walk_log_tree(trans, log, &wc);
3224 		if (ret) {
3225 			/*
3226 			 * We weren't able to traverse the entire log tree, the
3227 			 * typical scenario is getting an -EIO when reading an
3228 			 * extent buffer of the tree, due to a previous writeback
3229 			 * failure of it.
3230 			 */
3231 			set_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
3232 				&log->fs_info->fs_state);
3233 
3234 			/*
3235 			 * Some extent buffers of the log tree may still be dirty
3236 			 * and not yet written back to storage, because we may
3237 			 * have updates to a log tree without syncing a log tree,
3238 			 * such as during rename and link operations. So flush
3239 			 * them out and wait for their writeback to complete, so
3240 			 * that we properly cleanup their state and pages.
3241 			 */
3242 			btrfs_write_marked_extents(log->fs_info,
3243 						   &log->dirty_log_pages,
3244 						   EXTENT_DIRTY | EXTENT_NEW);
3245 			btrfs_wait_tree_log_extents(log,
3246 						    EXTENT_DIRTY | EXTENT_NEW);
3247 
3248 			if (trans)
3249 				btrfs_abort_transaction(trans, ret);
3250 			else
3251 				btrfs_handle_fs_error(log->fs_info, ret, NULL);
3252 		}
3253 	}
3254 
3255 	btrfs_extent_io_tree_release(&log->dirty_log_pages);
3256 	btrfs_extent_io_tree_release(&log->log_csum_range);
3257 
3258 	btrfs_put_root(log);
3259 }
3260 
3261 /*
3262  * free all the extents used by the tree log.  This should be called
3263  * at commit time of the full transaction
3264  */
btrfs_free_log(struct btrfs_trans_handle * trans,struct btrfs_root * root)3265 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3266 {
3267 	if (root->log_root) {
3268 		free_log_tree(trans, root->log_root);
3269 		root->log_root = NULL;
3270 		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3271 	}
3272 	return 0;
3273 }
3274 
btrfs_free_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)3275 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3276 			     struct btrfs_fs_info *fs_info)
3277 {
3278 	if (fs_info->log_root_tree) {
3279 		free_log_tree(trans, fs_info->log_root_tree);
3280 		fs_info->log_root_tree = NULL;
3281 		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
3282 	}
3283 	return 0;
3284 }
3285 
3286 /*
3287  * Check if an inode was logged in the current transaction. This correctly deals
3288  * with the case where the inode was logged but has a logged_trans of 0, which
3289  * happens if the inode is evicted and loaded again, as logged_trans is an in
3290  * memory only field (not persisted).
3291  *
3292  * Returns 1 if the inode was logged before in the transaction, 0 if it was not,
3293  * and < 0 on error.
3294  */
inode_logged(const struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path_in)3295 static int inode_logged(const struct btrfs_trans_handle *trans,
3296 			struct btrfs_inode *inode,
3297 			struct btrfs_path *path_in)
3298 {
3299 	struct btrfs_path *path = path_in;
3300 	struct btrfs_key key;
3301 	int ret;
3302 
3303 	if (inode->logged_trans == trans->transid)
3304 		return 1;
3305 
3306 	/*
3307 	 * If logged_trans is not 0, then we know the inode logged was not logged
3308 	 * in this transaction, so we can return false right away.
3309 	 */
3310 	if (inode->logged_trans > 0)
3311 		return 0;
3312 
3313 	/*
3314 	 * If no log tree was created for this root in this transaction, then
3315 	 * the inode can not have been logged in this transaction. In that case
3316 	 * set logged_trans to anything greater than 0 and less than the current
3317 	 * transaction's ID, to avoid the search below in a future call in case
3318 	 * a log tree gets created after this.
3319 	 */
3320 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state)) {
3321 		inode->logged_trans = trans->transid - 1;
3322 		return 0;
3323 	}
3324 
3325 	/*
3326 	 * We have a log tree and the inode's logged_trans is 0. We can't tell
3327 	 * for sure if the inode was logged before in this transaction by looking
3328 	 * only at logged_trans. We could be pessimistic and assume it was, but
3329 	 * that can lead to unnecessarily logging an inode during rename and link
3330 	 * operations, and then further updating the log in followup rename and
3331 	 * link operations, specially if it's a directory, which adds latency
3332 	 * visible to applications doing a series of rename or link operations.
3333 	 *
3334 	 * A logged_trans of 0 here can mean several things:
3335 	 *
3336 	 * 1) The inode was never logged since the filesystem was mounted, and may
3337 	 *    or may have not been evicted and loaded again;
3338 	 *
3339 	 * 2) The inode was logged in a previous transaction, then evicted and
3340 	 *    then loaded again;
3341 	 *
3342 	 * 3) The inode was logged in the current transaction, then evicted and
3343 	 *    then loaded again.
3344 	 *
3345 	 * For cases 1) and 2) we don't want to return true, but we need to detect
3346 	 * case 3) and return true. So we do a search in the log root for the inode
3347 	 * item.
3348 	 */
3349 	key.objectid = btrfs_ino(inode);
3350 	key.type = BTRFS_INODE_ITEM_KEY;
3351 	key.offset = 0;
3352 
3353 	if (!path) {
3354 		path = btrfs_alloc_path();
3355 		if (!path)
3356 			return -ENOMEM;
3357 	}
3358 
3359 	ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
3360 
3361 	if (path_in)
3362 		btrfs_release_path(path);
3363 	else
3364 		btrfs_free_path(path);
3365 
3366 	/*
3367 	 * Logging an inode always results in logging its inode item. So if we
3368 	 * did not find the item we know the inode was not logged for sure.
3369 	 */
3370 	if (ret < 0) {
3371 		return ret;
3372 	} else if (ret > 0) {
3373 		/*
3374 		 * Set logged_trans to a value greater than 0 and less then the
3375 		 * current transaction to avoid doing the search in future calls.
3376 		 */
3377 		inode->logged_trans = trans->transid - 1;
3378 		return 0;
3379 	}
3380 
3381 	/*
3382 	 * The inode was previously logged and then evicted, set logged_trans to
3383 	 * the current transacion's ID, to avoid future tree searches as long as
3384 	 * the inode is not evicted again.
3385 	 */
3386 	inode->logged_trans = trans->transid;
3387 
3388 	/*
3389 	 * If it's a directory, then we must set last_dir_index_offset to the
3390 	 * maximum possible value, so that the next attempt to log the inode does
3391 	 * not skip checking if dir index keys found in modified subvolume tree
3392 	 * leaves have been logged before, otherwise it would result in attempts
3393 	 * to insert duplicate dir index keys in the log tree. This must be done
3394 	 * because last_dir_index_offset is an in-memory only field, not persisted
3395 	 * in the inode item or any other on-disk structure, so its value is lost
3396 	 * once the inode is evicted.
3397 	 */
3398 	if (S_ISDIR(inode->vfs_inode.i_mode))
3399 		inode->last_dir_index_offset = (u64)-1;
3400 
3401 	return 1;
3402 }
3403 
3404 /*
3405  * Delete a directory entry from the log if it exists.
3406  *
3407  * Returns < 0 on error
3408  *           1 if the entry does not exists
3409  *           0 if the entry existed and was successfully deleted
3410  */
del_logged_dentry(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,u64 dir_ino,const struct fscrypt_str * name,u64 index)3411 static int del_logged_dentry(struct btrfs_trans_handle *trans,
3412 			     struct btrfs_root *log,
3413 			     struct btrfs_path *path,
3414 			     u64 dir_ino,
3415 			     const struct fscrypt_str *name,
3416 			     u64 index)
3417 {
3418 	struct btrfs_dir_item *di;
3419 
3420 	/*
3421 	 * We only log dir index items of a directory, so we don't need to look
3422 	 * for dir item keys.
3423 	 */
3424 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3425 					 index, name, -1);
3426 	if (IS_ERR(di))
3427 		return PTR_ERR(di);
3428 	else if (!di)
3429 		return 1;
3430 
3431 	/*
3432 	 * We do not need to update the size field of the directory's
3433 	 * inode item because on log replay we update the field to reflect
3434 	 * all existing entries in the directory (see overwrite_item()).
3435 	 */
3436 	return btrfs_delete_one_dir_name(trans, log, path, di);
3437 }
3438 
3439 /*
3440  * If both a file and directory are logged, and unlinks or renames are
3441  * mixed in, we have a few interesting corners:
3442  *
3443  * create file X in dir Y
3444  * link file X to X.link in dir Y
3445  * fsync file X
3446  * unlink file X but leave X.link
3447  * fsync dir Y
3448  *
3449  * After a crash we would expect only X.link to exist.  But file X
3450  * didn't get fsync'd again so the log has back refs for X and X.link.
3451  *
3452  * We solve this by removing directory entries and inode backrefs from the
3453  * log when a file that was logged in the current transaction is
3454  * unlinked.  Any later fsync will include the updated log entries, and
3455  * we'll be able to reconstruct the proper directory items from backrefs.
3456  *
3457  * This optimizations allows us to avoid relogging the entire inode
3458  * or the entire directory.
3459  */
btrfs_del_dir_entries_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct fscrypt_str * name,struct btrfs_inode * dir,u64 index)3460 void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3461 				  struct btrfs_root *root,
3462 				  const struct fscrypt_str *name,
3463 				  struct btrfs_inode *dir, u64 index)
3464 {
3465 	struct btrfs_path *path;
3466 	int ret;
3467 
3468 	ret = inode_logged(trans, dir, NULL);
3469 	if (ret == 0)
3470 		return;
3471 	else if (ret < 0) {
3472 		btrfs_set_log_full_commit(trans);
3473 		return;
3474 	}
3475 
3476 	ret = join_running_log_trans(root);
3477 	if (ret)
3478 		return;
3479 
3480 	mutex_lock(&dir->log_mutex);
3481 
3482 	path = btrfs_alloc_path();
3483 	if (!path) {
3484 		ret = -ENOMEM;
3485 		goto out_unlock;
3486 	}
3487 
3488 	ret = del_logged_dentry(trans, root->log_root, path, btrfs_ino(dir),
3489 				name, index);
3490 	btrfs_free_path(path);
3491 out_unlock:
3492 	mutex_unlock(&dir->log_mutex);
3493 	if (ret < 0)
3494 		btrfs_set_log_full_commit(trans);
3495 	btrfs_end_log_trans(root);
3496 }
3497 
3498 /* see comments for btrfs_del_dir_entries_in_log */
btrfs_del_inode_ref_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct fscrypt_str * name,struct btrfs_inode * inode,u64 dirid)3499 void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3500 				struct btrfs_root *root,
3501 				const struct fscrypt_str *name,
3502 				struct btrfs_inode *inode, u64 dirid)
3503 {
3504 	struct btrfs_root *log;
3505 	u64 index;
3506 	int ret;
3507 
3508 	ret = inode_logged(trans, inode, NULL);
3509 	if (ret == 0)
3510 		return;
3511 	else if (ret < 0) {
3512 		btrfs_set_log_full_commit(trans);
3513 		return;
3514 	}
3515 
3516 	ret = join_running_log_trans(root);
3517 	if (ret)
3518 		return;
3519 	log = root->log_root;
3520 	mutex_lock(&inode->log_mutex);
3521 
3522 	ret = btrfs_del_inode_ref(trans, log, name, btrfs_ino(inode),
3523 				  dirid, &index);
3524 	mutex_unlock(&inode->log_mutex);
3525 	if (ret < 0 && ret != -ENOENT)
3526 		btrfs_set_log_full_commit(trans);
3527 	btrfs_end_log_trans(root);
3528 }
3529 
3530 /*
3531  * creates a range item in the log for 'dirid'.  first_offset and
3532  * last_offset tell us which parts of the key space the log should
3533  * be considered authoritative for.
3534  */
insert_dir_log_key(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,u64 dirid,u64 first_offset,u64 last_offset)3535 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3536 				       struct btrfs_root *log,
3537 				       struct btrfs_path *path,
3538 				       u64 dirid,
3539 				       u64 first_offset, u64 last_offset)
3540 {
3541 	int ret;
3542 	struct btrfs_key key;
3543 	struct btrfs_dir_log_item *item;
3544 
3545 	key.objectid = dirid;
3546 	key.type = BTRFS_DIR_LOG_INDEX_KEY;
3547 	key.offset = first_offset;
3548 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3549 	/*
3550 	 * -EEXIST is fine and can happen sporadically when we are logging a
3551 	 * directory and have concurrent insertions in the subvolume's tree for
3552 	 * items from other inodes and that result in pushing off some dir items
3553 	 * from one leaf to another in order to accommodate for the new items.
3554 	 * This results in logging the same dir index range key.
3555 	 */
3556 	if (ret && ret != -EEXIST)
3557 		return ret;
3558 
3559 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3560 			      struct btrfs_dir_log_item);
3561 	if (ret == -EEXIST) {
3562 		const u64 curr_end = btrfs_dir_log_end(path->nodes[0], item);
3563 
3564 		/*
3565 		 * btrfs_del_dir_entries_in_log() might have been called during
3566 		 * an unlink between the initial insertion of this key and the
3567 		 * current update, or we might be logging a single entry deletion
3568 		 * during a rename, so set the new last_offset to the max value.
3569 		 */
3570 		last_offset = max(last_offset, curr_end);
3571 	}
3572 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3573 	btrfs_release_path(path);
3574 	return 0;
3575 }
3576 
flush_dir_items_batch(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct extent_buffer * src,struct btrfs_path * dst_path,int start_slot,int count)3577 static int flush_dir_items_batch(struct btrfs_trans_handle *trans,
3578 				 struct btrfs_inode *inode,
3579 				 struct extent_buffer *src,
3580 				 struct btrfs_path *dst_path,
3581 				 int start_slot,
3582 				 int count)
3583 {
3584 	struct btrfs_root *log = inode->root->log_root;
3585 	char *ins_data = NULL;
3586 	struct btrfs_item_batch batch;
3587 	struct extent_buffer *dst;
3588 	unsigned long src_offset;
3589 	unsigned long dst_offset;
3590 	u64 last_index;
3591 	struct btrfs_key key;
3592 	u32 item_size;
3593 	int ret;
3594 	int i;
3595 
3596 	ASSERT(count > 0);
3597 	batch.nr = count;
3598 
3599 	if (count == 1) {
3600 		btrfs_item_key_to_cpu(src, &key, start_slot);
3601 		item_size = btrfs_item_size(src, start_slot);
3602 		batch.keys = &key;
3603 		batch.data_sizes = &item_size;
3604 		batch.total_data_size = item_size;
3605 	} else {
3606 		struct btrfs_key *ins_keys;
3607 		u32 *ins_sizes;
3608 
3609 		ins_data = kmalloc(count * sizeof(u32) +
3610 				   count * sizeof(struct btrfs_key), GFP_NOFS);
3611 		if (!ins_data)
3612 			return -ENOMEM;
3613 
3614 		ins_sizes = (u32 *)ins_data;
3615 		ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32));
3616 		batch.keys = ins_keys;
3617 		batch.data_sizes = ins_sizes;
3618 		batch.total_data_size = 0;
3619 
3620 		for (i = 0; i < count; i++) {
3621 			const int slot = start_slot + i;
3622 
3623 			btrfs_item_key_to_cpu(src, &ins_keys[i], slot);
3624 			ins_sizes[i] = btrfs_item_size(src, slot);
3625 			batch.total_data_size += ins_sizes[i];
3626 		}
3627 	}
3628 
3629 	ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
3630 	if (ret)
3631 		goto out;
3632 
3633 	dst = dst_path->nodes[0];
3634 	/*
3635 	 * Copy all the items in bulk, in a single copy operation. Item data is
3636 	 * organized such that it's placed at the end of a leaf and from right
3637 	 * to left. For example, the data for the second item ends at an offset
3638 	 * that matches the offset where the data for the first item starts, the
3639 	 * data for the third item ends at an offset that matches the offset
3640 	 * where the data of the second items starts, and so on.
3641 	 * Therefore our source and destination start offsets for copy match the
3642 	 * offsets of the last items (highest slots).
3643 	 */
3644 	dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1);
3645 	src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1);
3646 	copy_extent_buffer(dst, src, dst_offset, src_offset, batch.total_data_size);
3647 	btrfs_release_path(dst_path);
3648 
3649 	last_index = batch.keys[count - 1].offset;
3650 	ASSERT(last_index > inode->last_dir_index_offset);
3651 
3652 	/*
3653 	 * If for some unexpected reason the last item's index is not greater
3654 	 * than the last index we logged, warn and force a transaction commit.
3655 	 */
3656 	if (WARN_ON(last_index <= inode->last_dir_index_offset))
3657 		ret = BTRFS_LOG_FORCE_COMMIT;
3658 	else
3659 		inode->last_dir_index_offset = last_index;
3660 
3661 	if (btrfs_get_first_dir_index_to_log(inode) == 0)
3662 		btrfs_set_first_dir_index_to_log(inode, batch.keys[0].offset);
3663 out:
3664 	kfree(ins_data);
3665 
3666 	return ret;
3667 }
3668 
clone_leaf(struct btrfs_path * path,struct btrfs_log_ctx * ctx)3669 static int clone_leaf(struct btrfs_path *path, struct btrfs_log_ctx *ctx)
3670 {
3671 	const int slot = path->slots[0];
3672 
3673 	if (ctx->scratch_eb) {
3674 		copy_extent_buffer_full(ctx->scratch_eb, path->nodes[0]);
3675 	} else {
3676 		ctx->scratch_eb = btrfs_clone_extent_buffer(path->nodes[0]);
3677 		if (!ctx->scratch_eb)
3678 			return -ENOMEM;
3679 	}
3680 
3681 	btrfs_release_path(path);
3682 	path->nodes[0] = ctx->scratch_eb;
3683 	path->slots[0] = slot;
3684 	/*
3685 	 * Add extra ref to scratch eb so that it is not freed when callers
3686 	 * release the path, so we can reuse it later if needed.
3687 	 */
3688 	atomic_inc(&ctx->scratch_eb->refs);
3689 
3690 	return 0;
3691 }
3692 
process_dir_items_leaf(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,struct btrfs_log_ctx * ctx,u64 * last_old_dentry_offset)3693 static int process_dir_items_leaf(struct btrfs_trans_handle *trans,
3694 				  struct btrfs_inode *inode,
3695 				  struct btrfs_path *path,
3696 				  struct btrfs_path *dst_path,
3697 				  struct btrfs_log_ctx *ctx,
3698 				  u64 *last_old_dentry_offset)
3699 {
3700 	struct btrfs_root *log = inode->root->log_root;
3701 	struct extent_buffer *src;
3702 	const int nritems = btrfs_header_nritems(path->nodes[0]);
3703 	const u64 ino = btrfs_ino(inode);
3704 	bool last_found = false;
3705 	int batch_start = 0;
3706 	int batch_size = 0;
3707 	int ret;
3708 
3709 	/*
3710 	 * We need to clone the leaf, release the read lock on it, and use the
3711 	 * clone before modifying the log tree. See the comment at copy_items()
3712 	 * about why we need to do this.
3713 	 */
3714 	ret = clone_leaf(path, ctx);
3715 	if (ret < 0)
3716 		return ret;
3717 
3718 	src = path->nodes[0];
3719 
3720 	for (int i = path->slots[0]; i < nritems; i++) {
3721 		struct btrfs_dir_item *di;
3722 		struct btrfs_key key;
3723 		int ret;
3724 
3725 		btrfs_item_key_to_cpu(src, &key, i);
3726 
3727 		if (key.objectid != ino || key.type != BTRFS_DIR_INDEX_KEY) {
3728 			last_found = true;
3729 			break;
3730 		}
3731 
3732 		di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3733 
3734 		/*
3735 		 * Skip ranges of items that consist only of dir item keys created
3736 		 * in past transactions. However if we find a gap, we must log a
3737 		 * dir index range item for that gap, so that index keys in that
3738 		 * gap are deleted during log replay.
3739 		 */
3740 		if (btrfs_dir_transid(src, di) < trans->transid) {
3741 			if (key.offset > *last_old_dentry_offset + 1) {
3742 				ret = insert_dir_log_key(trans, log, dst_path,
3743 						 ino, *last_old_dentry_offset + 1,
3744 						 key.offset - 1);
3745 				if (ret < 0)
3746 					return ret;
3747 			}
3748 
3749 			*last_old_dentry_offset = key.offset;
3750 			continue;
3751 		}
3752 
3753 		/* If we logged this dir index item before, we can skip it. */
3754 		if (key.offset <= inode->last_dir_index_offset)
3755 			continue;
3756 
3757 		/*
3758 		 * We must make sure that when we log a directory entry, the
3759 		 * corresponding inode, after log replay, has a matching link
3760 		 * count. For example:
3761 		 *
3762 		 * touch foo
3763 		 * mkdir mydir
3764 		 * sync
3765 		 * ln foo mydir/bar
3766 		 * xfs_io -c "fsync" mydir
3767 		 * <crash>
3768 		 * <mount fs and log replay>
3769 		 *
3770 		 * Would result in a fsync log that when replayed, our file inode
3771 		 * would have a link count of 1, but we get two directory entries
3772 		 * pointing to the same inode. After removing one of the names,
3773 		 * it would not be possible to remove the other name, which
3774 		 * resulted always in stale file handle errors, and would not be
3775 		 * possible to rmdir the parent directory, since its i_size could
3776 		 * never be decremented to the value BTRFS_EMPTY_DIR_SIZE,
3777 		 * resulting in -ENOTEMPTY errors.
3778 		 */
3779 		if (!ctx->log_new_dentries) {
3780 			struct btrfs_key di_key;
3781 
3782 			btrfs_dir_item_key_to_cpu(src, di, &di_key);
3783 			if (di_key.type != BTRFS_ROOT_ITEM_KEY)
3784 				ctx->log_new_dentries = true;
3785 		}
3786 
3787 		if (batch_size == 0)
3788 			batch_start = i;
3789 		batch_size++;
3790 	}
3791 
3792 	if (batch_size > 0) {
3793 		int ret;
3794 
3795 		ret = flush_dir_items_batch(trans, inode, src, dst_path,
3796 					    batch_start, batch_size);
3797 		if (ret < 0)
3798 			return ret;
3799 	}
3800 
3801 	return last_found ? 1 : 0;
3802 }
3803 
3804 /*
3805  * log all the items included in the current transaction for a given
3806  * directory.  This also creates the range items in the log tree required
3807  * to replay anything deleted before the fsync
3808  */
log_dir_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,struct btrfs_log_ctx * ctx,u64 min_offset,u64 * last_offset_ret)3809 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3810 			  struct btrfs_inode *inode,
3811 			  struct btrfs_path *path,
3812 			  struct btrfs_path *dst_path,
3813 			  struct btrfs_log_ctx *ctx,
3814 			  u64 min_offset, u64 *last_offset_ret)
3815 {
3816 	struct btrfs_key min_key;
3817 	struct btrfs_root *root = inode->root;
3818 	struct btrfs_root *log = root->log_root;
3819 	int ret;
3820 	u64 last_old_dentry_offset = min_offset - 1;
3821 	u64 last_offset = (u64)-1;
3822 	u64 ino = btrfs_ino(inode);
3823 
3824 	min_key.objectid = ino;
3825 	min_key.type = BTRFS_DIR_INDEX_KEY;
3826 	min_key.offset = min_offset;
3827 
3828 	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3829 
3830 	/*
3831 	 * we didn't find anything from this transaction, see if there
3832 	 * is anything at all
3833 	 */
3834 	if (ret != 0 || min_key.objectid != ino ||
3835 	    min_key.type != BTRFS_DIR_INDEX_KEY) {
3836 		min_key.objectid = ino;
3837 		min_key.type = BTRFS_DIR_INDEX_KEY;
3838 		min_key.offset = (u64)-1;
3839 		btrfs_release_path(path);
3840 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3841 		if (ret < 0) {
3842 			btrfs_release_path(path);
3843 			return ret;
3844 		}
3845 		ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3846 
3847 		/* if ret == 0 there are items for this type,
3848 		 * create a range to tell us the last key of this type.
3849 		 * otherwise, there are no items in this directory after
3850 		 * *min_offset, and we create a range to indicate that.
3851 		 */
3852 		if (ret == 0) {
3853 			struct btrfs_key tmp;
3854 
3855 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3856 					      path->slots[0]);
3857 			if (tmp.type == BTRFS_DIR_INDEX_KEY)
3858 				last_old_dentry_offset = tmp.offset;
3859 		} else if (ret > 0) {
3860 			ret = 0;
3861 		}
3862 
3863 		goto done;
3864 	}
3865 
3866 	/* go backward to find any previous key */
3867 	ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3868 	if (ret == 0) {
3869 		struct btrfs_key tmp;
3870 
3871 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3872 		/*
3873 		 * The dir index key before the first one we found that needs to
3874 		 * be logged might be in a previous leaf, and there might be a
3875 		 * gap between these keys, meaning that we had deletions that
3876 		 * happened. So the key range item we log (key type
3877 		 * BTRFS_DIR_LOG_INDEX_KEY) must cover a range that starts at the
3878 		 * previous key's offset plus 1, so that those deletes are replayed.
3879 		 */
3880 		if (tmp.type == BTRFS_DIR_INDEX_KEY)
3881 			last_old_dentry_offset = tmp.offset;
3882 	} else if (ret < 0) {
3883 		goto done;
3884 	}
3885 
3886 	btrfs_release_path(path);
3887 
3888 	/*
3889 	 * Find the first key from this transaction again or the one we were at
3890 	 * in the loop below in case we had to reschedule. We may be logging the
3891 	 * directory without holding its VFS lock, which happen when logging new
3892 	 * dentries (through log_new_dir_dentries()) or in some cases when we
3893 	 * need to log the parent directory of an inode. This means a dir index
3894 	 * key might be deleted from the inode's root, and therefore we may not
3895 	 * find it anymore. If we can't find it, just move to the next key. We
3896 	 * can not bail out and ignore, because if we do that we will simply
3897 	 * not log dir index keys that come after the one that was just deleted
3898 	 * and we can end up logging a dir index range that ends at (u64)-1
3899 	 * (@last_offset is initialized to that), resulting in removing dir
3900 	 * entries we should not remove at log replay time.
3901 	 */
3902 search:
3903 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3904 	if (ret > 0) {
3905 		ret = btrfs_next_item(root, path);
3906 		if (ret > 0) {
3907 			/* There are no more keys in the inode's root. */
3908 			ret = 0;
3909 			goto done;
3910 		}
3911 	}
3912 	if (ret < 0)
3913 		goto done;
3914 
3915 	/*
3916 	 * we have a block from this transaction, log every item in it
3917 	 * from our directory
3918 	 */
3919 	while (1) {
3920 		ret = process_dir_items_leaf(trans, inode, path, dst_path, ctx,
3921 					     &last_old_dentry_offset);
3922 		if (ret != 0) {
3923 			if (ret > 0)
3924 				ret = 0;
3925 			goto done;
3926 		}
3927 		path->slots[0] = btrfs_header_nritems(path->nodes[0]);
3928 
3929 		/*
3930 		 * look ahead to the next item and see if it is also
3931 		 * from this directory and from this transaction
3932 		 */
3933 		ret = btrfs_next_leaf(root, path);
3934 		if (ret) {
3935 			if (ret == 1) {
3936 				last_offset = (u64)-1;
3937 				ret = 0;
3938 			}
3939 			goto done;
3940 		}
3941 		btrfs_item_key_to_cpu(path->nodes[0], &min_key, path->slots[0]);
3942 		if (min_key.objectid != ino || min_key.type != BTRFS_DIR_INDEX_KEY) {
3943 			last_offset = (u64)-1;
3944 			goto done;
3945 		}
3946 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3947 			/*
3948 			 * The next leaf was not changed in the current transaction
3949 			 * and has at least one dir index key.
3950 			 * We check for the next key because there might have been
3951 			 * one or more deletions between the last key we logged and
3952 			 * that next key. So the key range item we log (key type
3953 			 * BTRFS_DIR_LOG_INDEX_KEY) must end at the next key's
3954 			 * offset minus 1, so that those deletes are replayed.
3955 			 */
3956 			last_offset = min_key.offset - 1;
3957 			goto done;
3958 		}
3959 		if (need_resched()) {
3960 			btrfs_release_path(path);
3961 			cond_resched();
3962 			goto search;
3963 		}
3964 	}
3965 done:
3966 	btrfs_release_path(path);
3967 	btrfs_release_path(dst_path);
3968 
3969 	if (ret == 0) {
3970 		*last_offset_ret = last_offset;
3971 		/*
3972 		 * In case the leaf was changed in the current transaction but
3973 		 * all its dir items are from a past transaction, the last item
3974 		 * in the leaf is a dir item and there's no gap between that last
3975 		 * dir item and the first one on the next leaf (which did not
3976 		 * change in the current transaction), then we don't need to log
3977 		 * a range, last_old_dentry_offset is == to last_offset.
3978 		 */
3979 		ASSERT(last_old_dentry_offset <= last_offset);
3980 		if (last_old_dentry_offset < last_offset)
3981 			ret = insert_dir_log_key(trans, log, path, ino,
3982 						 last_old_dentry_offset + 1,
3983 						 last_offset);
3984 	}
3985 
3986 	return ret;
3987 }
3988 
3989 /*
3990  * If the inode was logged before and it was evicted, then its
3991  * last_dir_index_offset is (u64)-1, so we don't the value of the last index
3992  * key offset. If that's the case, search for it and update the inode. This
3993  * is to avoid lookups in the log tree every time we try to insert a dir index
3994  * key from a leaf changed in the current transaction, and to allow us to always
3995  * do batch insertions of dir index keys.
3996  */
update_last_dir_index_offset(struct btrfs_inode * inode,struct btrfs_path * path,const struct btrfs_log_ctx * ctx)3997 static int update_last_dir_index_offset(struct btrfs_inode *inode,
3998 					struct btrfs_path *path,
3999 					const struct btrfs_log_ctx *ctx)
4000 {
4001 	const u64 ino = btrfs_ino(inode);
4002 	struct btrfs_key key;
4003 	int ret;
4004 
4005 	lockdep_assert_held(&inode->log_mutex);
4006 
4007 	if (inode->last_dir_index_offset != (u64)-1)
4008 		return 0;
4009 
4010 	if (!ctx->logged_before) {
4011 		inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
4012 		return 0;
4013 	}
4014 
4015 	key.objectid = ino;
4016 	key.type = BTRFS_DIR_INDEX_KEY;
4017 	key.offset = (u64)-1;
4018 
4019 	ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
4020 	/*
4021 	 * An error happened or we actually have an index key with an offset
4022 	 * value of (u64)-1. Bail out, we're done.
4023 	 */
4024 	if (ret <= 0)
4025 		goto out;
4026 
4027 	ret = 0;
4028 	inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
4029 
4030 	/*
4031 	 * No dir index items, bail out and leave last_dir_index_offset with
4032 	 * the value right before the first valid index value.
4033 	 */
4034 	if (path->slots[0] == 0)
4035 		goto out;
4036 
4037 	/*
4038 	 * btrfs_search_slot() left us at one slot beyond the slot with the last
4039 	 * index key, or beyond the last key of the directory that is not an
4040 	 * index key. If we have an index key before, set last_dir_index_offset
4041 	 * to its offset value, otherwise leave it with a value right before the
4042 	 * first valid index value, as it means we have an empty directory.
4043 	 */
4044 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
4045 	if (key.objectid == ino && key.type == BTRFS_DIR_INDEX_KEY)
4046 		inode->last_dir_index_offset = key.offset;
4047 
4048 out:
4049 	btrfs_release_path(path);
4050 
4051 	return ret;
4052 }
4053 
4054 /*
4055  * logging directories is very similar to logging inodes, We find all the items
4056  * from the current transaction and write them to the log.
4057  *
4058  * The recovery code scans the directory in the subvolume, and if it finds a
4059  * key in the range logged that is not present in the log tree, then it means
4060  * that dir entry was unlinked during the transaction.
4061  *
4062  * In order for that scan to work, we must include one key smaller than
4063  * the smallest logged by this transaction and one key larger than the largest
4064  * key logged by this transaction.
4065  */
log_directory_changes(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,struct btrfs_log_ctx * ctx)4066 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
4067 			  struct btrfs_inode *inode,
4068 			  struct btrfs_path *path,
4069 			  struct btrfs_path *dst_path,
4070 			  struct btrfs_log_ctx *ctx)
4071 {
4072 	u64 min_key;
4073 	u64 max_key;
4074 	int ret;
4075 
4076 	ret = update_last_dir_index_offset(inode, path, ctx);
4077 	if (ret)
4078 		return ret;
4079 
4080 	min_key = BTRFS_DIR_START_INDEX;
4081 	max_key = 0;
4082 
4083 	while (1) {
4084 		ret = log_dir_items(trans, inode, path, dst_path,
4085 				ctx, min_key, &max_key);
4086 		if (ret)
4087 			return ret;
4088 		if (max_key == (u64)-1)
4089 			break;
4090 		min_key = max_key + 1;
4091 	}
4092 
4093 	return 0;
4094 }
4095 
4096 /*
4097  * a helper function to drop items from the log before we relog an
4098  * inode.  max_key_type indicates the highest item type to remove.
4099  * This cannot be run for file data extents because it does not
4100  * free the extents they point to.
4101  */
drop_inode_items(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,struct btrfs_inode * inode,int max_key_type)4102 static int drop_inode_items(struct btrfs_trans_handle *trans,
4103 				  struct btrfs_root *log,
4104 				  struct btrfs_path *path,
4105 				  struct btrfs_inode *inode,
4106 				  int max_key_type)
4107 {
4108 	int ret;
4109 	struct btrfs_key key;
4110 	struct btrfs_key found_key;
4111 	int start_slot;
4112 
4113 	key.objectid = btrfs_ino(inode);
4114 	key.type = max_key_type;
4115 	key.offset = (u64)-1;
4116 
4117 	while (1) {
4118 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
4119 		if (ret < 0) {
4120 			break;
4121 		} else if (ret > 0) {
4122 			if (path->slots[0] == 0)
4123 				break;
4124 			path->slots[0]--;
4125 		}
4126 
4127 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4128 				      path->slots[0]);
4129 
4130 		if (found_key.objectid != key.objectid)
4131 			break;
4132 
4133 		found_key.offset = 0;
4134 		found_key.type = 0;
4135 		ret = btrfs_bin_search(path->nodes[0], 0, &found_key, &start_slot);
4136 		if (ret < 0)
4137 			break;
4138 
4139 		ret = btrfs_del_items(trans, log, path, start_slot,
4140 				      path->slots[0] - start_slot + 1);
4141 		/*
4142 		 * If start slot isn't 0 then we don't need to re-search, we've
4143 		 * found the last guy with the objectid in this tree.
4144 		 */
4145 		if (ret || start_slot != 0)
4146 			break;
4147 		btrfs_release_path(path);
4148 	}
4149 	btrfs_release_path(path);
4150 	if (ret > 0)
4151 		ret = 0;
4152 	return ret;
4153 }
4154 
truncate_inode_items(struct btrfs_trans_handle * trans,struct btrfs_root * log_root,struct btrfs_inode * inode,u64 new_size,u32 min_type)4155 static int truncate_inode_items(struct btrfs_trans_handle *trans,
4156 				struct btrfs_root *log_root,
4157 				struct btrfs_inode *inode,
4158 				u64 new_size, u32 min_type)
4159 {
4160 	struct btrfs_truncate_control control = {
4161 		.new_size = new_size,
4162 		.ino = btrfs_ino(inode),
4163 		.min_type = min_type,
4164 		.skip_ref_updates = true,
4165 	};
4166 
4167 	return btrfs_truncate_inode_items(trans, log_root, &control);
4168 }
4169 
fill_inode_item(struct btrfs_trans_handle * trans,struct extent_buffer * leaf,struct btrfs_inode_item * item,struct inode * inode,int log_inode_only,u64 logged_isize)4170 static void fill_inode_item(struct btrfs_trans_handle *trans,
4171 			    struct extent_buffer *leaf,
4172 			    struct btrfs_inode_item *item,
4173 			    struct inode *inode, int log_inode_only,
4174 			    u64 logged_isize)
4175 {
4176 	struct btrfs_map_token token;
4177 	u64 flags;
4178 
4179 	btrfs_init_map_token(&token, leaf);
4180 
4181 	if (log_inode_only) {
4182 		/* set the generation to zero so the recover code
4183 		 * can tell the difference between an logging
4184 		 * just to say 'this inode exists' and a logging
4185 		 * to say 'update this inode with these values'
4186 		 */
4187 		btrfs_set_token_inode_generation(&token, item, 0);
4188 		btrfs_set_token_inode_size(&token, item, logged_isize);
4189 	} else {
4190 		btrfs_set_token_inode_generation(&token, item,
4191 						 BTRFS_I(inode)->generation);
4192 		btrfs_set_token_inode_size(&token, item, inode->i_size);
4193 	}
4194 
4195 	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4196 	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4197 	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4198 	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4199 
4200 	btrfs_set_token_timespec_sec(&token, &item->atime,
4201 				     inode_get_atime_sec(inode));
4202 	btrfs_set_token_timespec_nsec(&token, &item->atime,
4203 				      inode_get_atime_nsec(inode));
4204 
4205 	btrfs_set_token_timespec_sec(&token, &item->mtime,
4206 				     inode_get_mtime_sec(inode));
4207 	btrfs_set_token_timespec_nsec(&token, &item->mtime,
4208 				      inode_get_mtime_nsec(inode));
4209 
4210 	btrfs_set_token_timespec_sec(&token, &item->ctime,
4211 				     inode_get_ctime_sec(inode));
4212 	btrfs_set_token_timespec_nsec(&token, &item->ctime,
4213 				      inode_get_ctime_nsec(inode));
4214 
4215 	/*
4216 	 * We do not need to set the nbytes field, in fact during a fast fsync
4217 	 * its value may not even be correct, since a fast fsync does not wait
4218 	 * for ordered extent completion, which is where we update nbytes, it
4219 	 * only waits for writeback to complete. During log replay as we find
4220 	 * file extent items and replay them, we adjust the nbytes field of the
4221 	 * inode item in subvolume tree as needed (see overwrite_item()).
4222 	 */
4223 
4224 	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4225 	btrfs_set_token_inode_transid(&token, item, trans->transid);
4226 	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4227 	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4228 					  BTRFS_I(inode)->ro_flags);
4229 	btrfs_set_token_inode_flags(&token, item, flags);
4230 	btrfs_set_token_inode_block_group(&token, item, 0);
4231 }
4232 
log_inode_item(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,struct btrfs_inode * inode,bool inode_item_dropped)4233 static int log_inode_item(struct btrfs_trans_handle *trans,
4234 			  struct btrfs_root *log, struct btrfs_path *path,
4235 			  struct btrfs_inode *inode, bool inode_item_dropped)
4236 {
4237 	struct btrfs_inode_item *inode_item;
4238 	struct btrfs_key key;
4239 	int ret;
4240 
4241 	btrfs_get_inode_key(inode, &key);
4242 	/*
4243 	 * If we are doing a fast fsync and the inode was logged before in the
4244 	 * current transaction, then we know the inode was previously logged and
4245 	 * it exists in the log tree. For performance reasons, in this case use
4246 	 * btrfs_search_slot() directly with ins_len set to 0 so that we never
4247 	 * attempt a write lock on the leaf's parent, which adds unnecessary lock
4248 	 * contention in case there are concurrent fsyncs for other inodes of the
4249 	 * same subvolume. Using btrfs_insert_empty_item() when the inode item
4250 	 * already exists can also result in unnecessarily splitting a leaf.
4251 	 */
4252 	if (!inode_item_dropped && inode->logged_trans == trans->transid) {
4253 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
4254 		ASSERT(ret <= 0);
4255 		if (ret > 0)
4256 			ret = -ENOENT;
4257 	} else {
4258 		/*
4259 		 * This means it is the first fsync in the current transaction,
4260 		 * so the inode item is not in the log and we need to insert it.
4261 		 * We can never get -EEXIST because we are only called for a fast
4262 		 * fsync and in case an inode eviction happens after the inode was
4263 		 * logged before in the current transaction, when we load again
4264 		 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime
4265 		 * flags and set ->logged_trans to 0.
4266 		 */
4267 		ret = btrfs_insert_empty_item(trans, log, path, &key,
4268 					      sizeof(*inode_item));
4269 		ASSERT(ret != -EEXIST);
4270 	}
4271 	if (ret)
4272 		return ret;
4273 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4274 				    struct btrfs_inode_item);
4275 	fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
4276 			0, 0);
4277 	btrfs_release_path(path);
4278 	return 0;
4279 }
4280 
log_csums(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_root * log_root,struct btrfs_ordered_sum * sums)4281 static int log_csums(struct btrfs_trans_handle *trans,
4282 		     struct btrfs_inode *inode,
4283 		     struct btrfs_root *log_root,
4284 		     struct btrfs_ordered_sum *sums)
4285 {
4286 	const u64 lock_end = sums->logical + sums->len - 1;
4287 	struct extent_state *cached_state = NULL;
4288 	int ret;
4289 
4290 	/*
4291 	 * If this inode was not used for reflink operations in the current
4292 	 * transaction with new extents, then do the fast path, no need to
4293 	 * worry about logging checksum items with overlapping ranges.
4294 	 */
4295 	if (inode->last_reflink_trans < trans->transid)
4296 		return btrfs_csum_file_blocks(trans, log_root, sums);
4297 
4298 	/*
4299 	 * Serialize logging for checksums. This is to avoid racing with the
4300 	 * same checksum being logged by another task that is logging another
4301 	 * file which happens to refer to the same extent as well. Such races
4302 	 * can leave checksum items in the log with overlapping ranges.
4303 	 */
4304 	ret = btrfs_lock_extent(&log_root->log_csum_range, sums->logical, lock_end,
4305 				&cached_state);
4306 	if (ret)
4307 		return ret;
4308 	/*
4309 	 * Due to extent cloning, we might have logged a csum item that covers a
4310 	 * subrange of a cloned extent, and later we can end up logging a csum
4311 	 * item for a larger subrange of the same extent or the entire range.
4312 	 * This would leave csum items in the log tree that cover the same range
4313 	 * and break the searches for checksums in the log tree, resulting in
4314 	 * some checksums missing in the fs/subvolume tree. So just delete (or
4315 	 * trim and adjust) any existing csum items in the log for this range.
4316 	 */
4317 	ret = btrfs_del_csums(trans, log_root, sums->logical, sums->len);
4318 	if (!ret)
4319 		ret = btrfs_csum_file_blocks(trans, log_root, sums);
4320 
4321 	btrfs_unlock_extent(&log_root->log_csum_range, sums->logical, lock_end,
4322 			    &cached_state);
4323 
4324 	return ret;
4325 }
4326 
copy_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * dst_path,struct btrfs_path * src_path,int start_slot,int nr,int inode_only,u64 logged_isize,struct btrfs_log_ctx * ctx)4327 static noinline int copy_items(struct btrfs_trans_handle *trans,
4328 			       struct btrfs_inode *inode,
4329 			       struct btrfs_path *dst_path,
4330 			       struct btrfs_path *src_path,
4331 			       int start_slot, int nr, int inode_only,
4332 			       u64 logged_isize, struct btrfs_log_ctx *ctx)
4333 {
4334 	struct btrfs_root *log = inode->root->log_root;
4335 	struct btrfs_file_extent_item *extent;
4336 	struct extent_buffer *src;
4337 	int ret;
4338 	struct btrfs_key *ins_keys;
4339 	u32 *ins_sizes;
4340 	struct btrfs_item_batch batch;
4341 	char *ins_data;
4342 	int dst_index;
4343 	const bool skip_csum = (inode->flags & BTRFS_INODE_NODATASUM);
4344 	const u64 i_size = i_size_read(&inode->vfs_inode);
4345 
4346 	/*
4347 	 * To keep lockdep happy and avoid deadlocks, clone the source leaf and
4348 	 * use the clone. This is because otherwise we would be changing the log
4349 	 * tree, to insert items from the subvolume tree or insert csum items,
4350 	 * while holding a read lock on a leaf from the subvolume tree, which
4351 	 * creates a nasty lock dependency when COWing log tree nodes/leaves:
4352 	 *
4353 	 * 1) Modifying the log tree triggers an extent buffer allocation while
4354 	 *    holding a write lock on a parent extent buffer from the log tree.
4355 	 *    Allocating the pages for an extent buffer, or the extent buffer
4356 	 *    struct, can trigger inode eviction and finally the inode eviction
4357 	 *    will trigger a release/remove of a delayed node, which requires
4358 	 *    taking the delayed node's mutex;
4359 	 *
4360 	 * 2) Allocating a metadata extent for a log tree can trigger the async
4361 	 *    reclaim thread and make us wait for it to release enough space and
4362 	 *    unblock our reservation ticket. The reclaim thread can start
4363 	 *    flushing delayed items, and that in turn results in the need to
4364 	 *    lock delayed node mutexes and in the need to write lock extent
4365 	 *    buffers of a subvolume tree - all this while holding a write lock
4366 	 *    on the parent extent buffer in the log tree.
4367 	 *
4368 	 * So one task in scenario 1) running in parallel with another task in
4369 	 * scenario 2) could lead to a deadlock, one wanting to lock a delayed
4370 	 * node mutex while having a read lock on a leaf from the subvolume,
4371 	 * while the other is holding the delayed node's mutex and wants to
4372 	 * write lock the same subvolume leaf for flushing delayed items.
4373 	 */
4374 	ret = clone_leaf(src_path, ctx);
4375 	if (ret < 0)
4376 		return ret;
4377 
4378 	src = src_path->nodes[0];
4379 
4380 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4381 			   nr * sizeof(u32), GFP_NOFS);
4382 	if (!ins_data)
4383 		return -ENOMEM;
4384 
4385 	ins_sizes = (u32 *)ins_data;
4386 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
4387 	batch.keys = ins_keys;
4388 	batch.data_sizes = ins_sizes;
4389 	batch.total_data_size = 0;
4390 	batch.nr = 0;
4391 
4392 	dst_index = 0;
4393 	for (int i = 0; i < nr; i++) {
4394 		const int src_slot = start_slot + i;
4395 		struct btrfs_root *csum_root;
4396 		struct btrfs_ordered_sum *sums;
4397 		struct btrfs_ordered_sum *sums_next;
4398 		LIST_HEAD(ordered_sums);
4399 		u64 disk_bytenr;
4400 		u64 disk_num_bytes;
4401 		u64 extent_offset;
4402 		u64 extent_num_bytes;
4403 		bool is_old_extent;
4404 
4405 		btrfs_item_key_to_cpu(src, &ins_keys[dst_index], src_slot);
4406 
4407 		if (ins_keys[dst_index].type != BTRFS_EXTENT_DATA_KEY)
4408 			goto add_to_batch;
4409 
4410 		extent = btrfs_item_ptr(src, src_slot,
4411 					struct btrfs_file_extent_item);
4412 
4413 		is_old_extent = (btrfs_file_extent_generation(src, extent) <
4414 				 trans->transid);
4415 
4416 		/*
4417 		 * Don't copy extents from past generations. That would make us
4418 		 * log a lot more metadata for common cases like doing only a
4419 		 * few random writes into a file and then fsync it for the first
4420 		 * time or after the full sync flag is set on the inode. We can
4421 		 * get leaves full of extent items, most of which are from past
4422 		 * generations, so we can skip them - as long as the inode has
4423 		 * not been the target of a reflink operation in this transaction,
4424 		 * as in that case it might have had file extent items with old
4425 		 * generations copied into it. We also must always log prealloc
4426 		 * extents that start at or beyond eof, otherwise we would lose
4427 		 * them on log replay.
4428 		 */
4429 		if (is_old_extent &&
4430 		    ins_keys[dst_index].offset < i_size &&
4431 		    inode->last_reflink_trans < trans->transid)
4432 			continue;
4433 
4434 		if (skip_csum)
4435 			goto add_to_batch;
4436 
4437 		/* Only regular extents have checksums. */
4438 		if (btrfs_file_extent_type(src, extent) != BTRFS_FILE_EXTENT_REG)
4439 			goto add_to_batch;
4440 
4441 		/*
4442 		 * If it's an extent created in a past transaction, then its
4443 		 * checksums are already accessible from the committed csum tree,
4444 		 * no need to log them.
4445 		 */
4446 		if (is_old_extent)
4447 			goto add_to_batch;
4448 
4449 		disk_bytenr = btrfs_file_extent_disk_bytenr(src, extent);
4450 		/* If it's an explicit hole, there are no checksums. */
4451 		if (disk_bytenr == 0)
4452 			goto add_to_batch;
4453 
4454 		disk_num_bytes = btrfs_file_extent_disk_num_bytes(src, extent);
4455 
4456 		if (btrfs_file_extent_compression(src, extent)) {
4457 			extent_offset = 0;
4458 			extent_num_bytes = disk_num_bytes;
4459 		} else {
4460 			extent_offset = btrfs_file_extent_offset(src, extent);
4461 			extent_num_bytes = btrfs_file_extent_num_bytes(src, extent);
4462 		}
4463 
4464 		csum_root = btrfs_csum_root(trans->fs_info, disk_bytenr);
4465 		disk_bytenr += extent_offset;
4466 		ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4467 					      disk_bytenr + extent_num_bytes - 1,
4468 					      &ordered_sums, false);
4469 		if (ret < 0)
4470 			goto out;
4471 		ret = 0;
4472 
4473 		list_for_each_entry_safe(sums, sums_next, &ordered_sums, list) {
4474 			if (!ret)
4475 				ret = log_csums(trans, inode, log, sums);
4476 			list_del(&sums->list);
4477 			kfree(sums);
4478 		}
4479 		if (ret)
4480 			goto out;
4481 
4482 add_to_batch:
4483 		ins_sizes[dst_index] = btrfs_item_size(src, src_slot);
4484 		batch.total_data_size += ins_sizes[dst_index];
4485 		batch.nr++;
4486 		dst_index++;
4487 	}
4488 
4489 	/*
4490 	 * We have a leaf full of old extent items that don't need to be logged,
4491 	 * so we don't need to do anything.
4492 	 */
4493 	if (batch.nr == 0)
4494 		goto out;
4495 
4496 	ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
4497 	if (ret)
4498 		goto out;
4499 
4500 	dst_index = 0;
4501 	for (int i = 0; i < nr; i++) {
4502 		const int src_slot = start_slot + i;
4503 		const int dst_slot = dst_path->slots[0] + dst_index;
4504 		struct btrfs_key key;
4505 		unsigned long src_offset;
4506 		unsigned long dst_offset;
4507 
4508 		/*
4509 		 * We're done, all the remaining items in the source leaf
4510 		 * correspond to old file extent items.
4511 		 */
4512 		if (dst_index >= batch.nr)
4513 			break;
4514 
4515 		btrfs_item_key_to_cpu(src, &key, src_slot);
4516 
4517 		if (key.type != BTRFS_EXTENT_DATA_KEY)
4518 			goto copy_item;
4519 
4520 		extent = btrfs_item_ptr(src, src_slot,
4521 					struct btrfs_file_extent_item);
4522 
4523 		/* See the comment in the previous loop, same logic. */
4524 		if (btrfs_file_extent_generation(src, extent) < trans->transid &&
4525 		    key.offset < i_size &&
4526 		    inode->last_reflink_trans < trans->transid)
4527 			continue;
4528 
4529 copy_item:
4530 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], dst_slot);
4531 		src_offset = btrfs_item_ptr_offset(src, src_slot);
4532 
4533 		if (key.type == BTRFS_INODE_ITEM_KEY) {
4534 			struct btrfs_inode_item *inode_item;
4535 
4536 			inode_item = btrfs_item_ptr(dst_path->nodes[0], dst_slot,
4537 						    struct btrfs_inode_item);
4538 			fill_inode_item(trans, dst_path->nodes[0], inode_item,
4539 					&inode->vfs_inode,
4540 					inode_only == LOG_INODE_EXISTS,
4541 					logged_isize);
4542 		} else {
4543 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4544 					   src_offset, ins_sizes[dst_index]);
4545 		}
4546 
4547 		dst_index++;
4548 	}
4549 
4550 	btrfs_release_path(dst_path);
4551 out:
4552 	kfree(ins_data);
4553 
4554 	return ret;
4555 }
4556 
extent_cmp(void * priv,const struct list_head * a,const struct list_head * b)4557 static int extent_cmp(void *priv, const struct list_head *a,
4558 		      const struct list_head *b)
4559 {
4560 	const struct extent_map *em1, *em2;
4561 
4562 	em1 = list_entry(a, struct extent_map, list);
4563 	em2 = list_entry(b, struct extent_map, list);
4564 
4565 	if (em1->start < em2->start)
4566 		return -1;
4567 	else if (em1->start > em2->start)
4568 		return 1;
4569 	return 0;
4570 }
4571 
log_extent_csums(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_root * log_root,const struct extent_map * em,struct btrfs_log_ctx * ctx)4572 static int log_extent_csums(struct btrfs_trans_handle *trans,
4573 			    struct btrfs_inode *inode,
4574 			    struct btrfs_root *log_root,
4575 			    const struct extent_map *em,
4576 			    struct btrfs_log_ctx *ctx)
4577 {
4578 	struct btrfs_ordered_extent *ordered;
4579 	struct btrfs_root *csum_root;
4580 	u64 block_start;
4581 	u64 csum_offset;
4582 	u64 csum_len;
4583 	u64 mod_start = em->start;
4584 	u64 mod_len = em->len;
4585 	LIST_HEAD(ordered_sums);
4586 	int ret = 0;
4587 
4588 	if (inode->flags & BTRFS_INODE_NODATASUM ||
4589 	    (em->flags & EXTENT_FLAG_PREALLOC) ||
4590 	    em->disk_bytenr == EXTENT_MAP_HOLE)
4591 		return 0;
4592 
4593 	list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4594 		const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4595 		const u64 mod_end = mod_start + mod_len;
4596 		struct btrfs_ordered_sum *sums;
4597 
4598 		if (mod_len == 0)
4599 			break;
4600 
4601 		if (ordered_end <= mod_start)
4602 			continue;
4603 		if (mod_end <= ordered->file_offset)
4604 			break;
4605 
4606 		/*
4607 		 * We are going to copy all the csums on this ordered extent, so
4608 		 * go ahead and adjust mod_start and mod_len in case this ordered
4609 		 * extent has already been logged.
4610 		 */
4611 		if (ordered->file_offset > mod_start) {
4612 			if (ordered_end >= mod_end)
4613 				mod_len = ordered->file_offset - mod_start;
4614 			/*
4615 			 * If we have this case
4616 			 *
4617 			 * |--------- logged extent ---------|
4618 			 *       |----- ordered extent ----|
4619 			 *
4620 			 * Just don't mess with mod_start and mod_len, we'll
4621 			 * just end up logging more csums than we need and it
4622 			 * will be ok.
4623 			 */
4624 		} else {
4625 			if (ordered_end < mod_end) {
4626 				mod_len = mod_end - ordered_end;
4627 				mod_start = ordered_end;
4628 			} else {
4629 				mod_len = 0;
4630 			}
4631 		}
4632 
4633 		/*
4634 		 * To keep us from looping for the above case of an ordered
4635 		 * extent that falls inside of the logged extent.
4636 		 */
4637 		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4638 			continue;
4639 
4640 		list_for_each_entry(sums, &ordered->list, list) {
4641 			ret = log_csums(trans, inode, log_root, sums);
4642 			if (ret)
4643 				return ret;
4644 		}
4645 	}
4646 
4647 	/* We're done, found all csums in the ordered extents. */
4648 	if (mod_len == 0)
4649 		return 0;
4650 
4651 	/* If we're compressed we have to save the entire range of csums. */
4652 	if (btrfs_extent_map_is_compressed(em)) {
4653 		csum_offset = 0;
4654 		csum_len = em->disk_num_bytes;
4655 	} else {
4656 		csum_offset = mod_start - em->start;
4657 		csum_len = mod_len;
4658 	}
4659 
4660 	/* block start is already adjusted for the file extent offset. */
4661 	block_start = btrfs_extent_map_block_start(em);
4662 	csum_root = btrfs_csum_root(trans->fs_info, block_start);
4663 	ret = btrfs_lookup_csums_list(csum_root, block_start + csum_offset,
4664 				      block_start + csum_offset + csum_len - 1,
4665 				      &ordered_sums, false);
4666 	if (ret < 0)
4667 		return ret;
4668 	ret = 0;
4669 
4670 	while (!list_empty(&ordered_sums)) {
4671 		struct btrfs_ordered_sum *sums = list_first_entry(&ordered_sums,
4672 								  struct btrfs_ordered_sum,
4673 								  list);
4674 		if (!ret)
4675 			ret = log_csums(trans, inode, log_root, sums);
4676 		list_del(&sums->list);
4677 		kfree(sums);
4678 	}
4679 
4680 	return ret;
4681 }
4682 
log_one_extent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,const struct extent_map * em,struct btrfs_path * path,struct btrfs_log_ctx * ctx)4683 static int log_one_extent(struct btrfs_trans_handle *trans,
4684 			  struct btrfs_inode *inode,
4685 			  const struct extent_map *em,
4686 			  struct btrfs_path *path,
4687 			  struct btrfs_log_ctx *ctx)
4688 {
4689 	struct btrfs_drop_extents_args drop_args = { 0 };
4690 	struct btrfs_root *log = inode->root->log_root;
4691 	struct btrfs_file_extent_item fi = { 0 };
4692 	struct extent_buffer *leaf;
4693 	struct btrfs_key key;
4694 	enum btrfs_compression_type compress_type;
4695 	u64 extent_offset = em->offset;
4696 	u64 block_start = btrfs_extent_map_block_start(em);
4697 	u64 block_len;
4698 	int ret;
4699 
4700 	btrfs_set_stack_file_extent_generation(&fi, trans->transid);
4701 	if (em->flags & EXTENT_FLAG_PREALLOC)
4702 		btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_PREALLOC);
4703 	else
4704 		btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_REG);
4705 
4706 	block_len = em->disk_num_bytes;
4707 	compress_type = btrfs_extent_map_compression(em);
4708 	if (compress_type != BTRFS_COMPRESS_NONE) {
4709 		btrfs_set_stack_file_extent_disk_bytenr(&fi, block_start);
4710 		btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4711 	} else if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE) {
4712 		btrfs_set_stack_file_extent_disk_bytenr(&fi, block_start - extent_offset);
4713 		btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4714 	}
4715 
4716 	btrfs_set_stack_file_extent_offset(&fi, extent_offset);
4717 	btrfs_set_stack_file_extent_num_bytes(&fi, em->len);
4718 	btrfs_set_stack_file_extent_ram_bytes(&fi, em->ram_bytes);
4719 	btrfs_set_stack_file_extent_compression(&fi, compress_type);
4720 
4721 	ret = log_extent_csums(trans, inode, log, em, ctx);
4722 	if (ret)
4723 		return ret;
4724 
4725 	/*
4726 	 * If this is the first time we are logging the inode in the current
4727 	 * transaction, we can avoid btrfs_drop_extents(), which is expensive
4728 	 * because it does a deletion search, which always acquires write locks
4729 	 * for extent buffers at levels 2, 1 and 0. This not only wastes time
4730 	 * but also adds significant contention in a log tree, since log trees
4731 	 * are small, with a root at level 2 or 3 at most, due to their short
4732 	 * life span.
4733 	 */
4734 	if (ctx->logged_before) {
4735 		drop_args.path = path;
4736 		drop_args.start = em->start;
4737 		drop_args.end = em->start + em->len;
4738 		drop_args.replace_extent = true;
4739 		drop_args.extent_item_size = sizeof(fi);
4740 		ret = btrfs_drop_extents(trans, log, inode, &drop_args);
4741 		if (ret)
4742 			return ret;
4743 	}
4744 
4745 	if (!drop_args.extent_inserted) {
4746 		key.objectid = btrfs_ino(inode);
4747 		key.type = BTRFS_EXTENT_DATA_KEY;
4748 		key.offset = em->start;
4749 
4750 		ret = btrfs_insert_empty_item(trans, log, path, &key,
4751 					      sizeof(fi));
4752 		if (ret)
4753 			return ret;
4754 	}
4755 	leaf = path->nodes[0];
4756 	write_extent_buffer(leaf, &fi,
4757 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4758 			    sizeof(fi));
4759 
4760 	btrfs_release_path(path);
4761 
4762 	return ret;
4763 }
4764 
4765 /*
4766  * Log all prealloc extents beyond the inode's i_size to make sure we do not
4767  * lose them after doing a full/fast fsync and replaying the log. We scan the
4768  * subvolume's root instead of iterating the inode's extent map tree because
4769  * otherwise we can log incorrect extent items based on extent map conversion.
4770  * That can happen due to the fact that extent maps are merged when they
4771  * are not in the extent map tree's list of modified extents.
4772  */
btrfs_log_prealloc_extents(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_log_ctx * ctx)4773 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4774 				      struct btrfs_inode *inode,
4775 				      struct btrfs_path *path,
4776 				      struct btrfs_log_ctx *ctx)
4777 {
4778 	struct btrfs_root *root = inode->root;
4779 	struct btrfs_key key;
4780 	const u64 i_size = i_size_read(&inode->vfs_inode);
4781 	const u64 ino = btrfs_ino(inode);
4782 	struct btrfs_path *dst_path = NULL;
4783 	bool dropped_extents = false;
4784 	u64 truncate_offset = i_size;
4785 	struct extent_buffer *leaf;
4786 	int slot;
4787 	int ins_nr = 0;
4788 	int start_slot = 0;
4789 	int ret;
4790 
4791 	if (!(inode->flags & BTRFS_INODE_PREALLOC))
4792 		return 0;
4793 
4794 	key.objectid = ino;
4795 	key.type = BTRFS_EXTENT_DATA_KEY;
4796 	key.offset = i_size;
4797 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4798 	if (ret < 0)
4799 		goto out;
4800 
4801 	/*
4802 	 * We must check if there is a prealloc extent that starts before the
4803 	 * i_size and crosses the i_size boundary. This is to ensure later we
4804 	 * truncate down to the end of that extent and not to the i_size, as
4805 	 * otherwise we end up losing part of the prealloc extent after a log
4806 	 * replay and with an implicit hole if there is another prealloc extent
4807 	 * that starts at an offset beyond i_size.
4808 	 */
4809 	ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4810 	if (ret < 0)
4811 		goto out;
4812 
4813 	if (ret == 0) {
4814 		struct btrfs_file_extent_item *ei;
4815 
4816 		leaf = path->nodes[0];
4817 		slot = path->slots[0];
4818 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4819 
4820 		if (btrfs_file_extent_type(leaf, ei) ==
4821 		    BTRFS_FILE_EXTENT_PREALLOC) {
4822 			u64 extent_end;
4823 
4824 			btrfs_item_key_to_cpu(leaf, &key, slot);
4825 			extent_end = key.offset +
4826 				btrfs_file_extent_num_bytes(leaf, ei);
4827 
4828 			if (extent_end > i_size)
4829 				truncate_offset = extent_end;
4830 		}
4831 	} else {
4832 		ret = 0;
4833 	}
4834 
4835 	while (true) {
4836 		leaf = path->nodes[0];
4837 		slot = path->slots[0];
4838 
4839 		if (slot >= btrfs_header_nritems(leaf)) {
4840 			if (ins_nr > 0) {
4841 				ret = copy_items(trans, inode, dst_path, path,
4842 						 start_slot, ins_nr, 1, 0, ctx);
4843 				if (ret < 0)
4844 					goto out;
4845 				ins_nr = 0;
4846 			}
4847 			ret = btrfs_next_leaf(root, path);
4848 			if (ret < 0)
4849 				goto out;
4850 			if (ret > 0) {
4851 				ret = 0;
4852 				break;
4853 			}
4854 			continue;
4855 		}
4856 
4857 		btrfs_item_key_to_cpu(leaf, &key, slot);
4858 		if (key.objectid > ino)
4859 			break;
4860 		if (WARN_ON_ONCE(key.objectid < ino) ||
4861 		    key.type < BTRFS_EXTENT_DATA_KEY ||
4862 		    key.offset < i_size) {
4863 			path->slots[0]++;
4864 			continue;
4865 		}
4866 		/*
4867 		 * Avoid overlapping items in the log tree. The first time we
4868 		 * get here, get rid of everything from a past fsync. After
4869 		 * that, if the current extent starts before the end of the last
4870 		 * extent we copied, truncate the last one. This can happen if
4871 		 * an ordered extent completion modifies the subvolume tree
4872 		 * while btrfs_next_leaf() has the tree unlocked.
4873 		 */
4874 		if (!dropped_extents || key.offset < truncate_offset) {
4875 			ret = truncate_inode_items(trans, root->log_root, inode,
4876 						   min(key.offset, truncate_offset),
4877 						   BTRFS_EXTENT_DATA_KEY);
4878 			if (ret)
4879 				goto out;
4880 			dropped_extents = true;
4881 		}
4882 		truncate_offset = btrfs_file_extent_end(path);
4883 		if (ins_nr == 0)
4884 			start_slot = slot;
4885 		ins_nr++;
4886 		path->slots[0]++;
4887 		if (!dst_path) {
4888 			dst_path = btrfs_alloc_path();
4889 			if (!dst_path) {
4890 				ret = -ENOMEM;
4891 				goto out;
4892 			}
4893 		}
4894 	}
4895 	if (ins_nr > 0)
4896 		ret = copy_items(trans, inode, dst_path, path,
4897 				 start_slot, ins_nr, 1, 0, ctx);
4898 out:
4899 	btrfs_release_path(path);
4900 	btrfs_free_path(dst_path);
4901 	return ret;
4902 }
4903 
btrfs_log_changed_extents(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_log_ctx * ctx)4904 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4905 				     struct btrfs_inode *inode,
4906 				     struct btrfs_path *path,
4907 				     struct btrfs_log_ctx *ctx)
4908 {
4909 	struct btrfs_ordered_extent *ordered;
4910 	struct btrfs_ordered_extent *tmp;
4911 	struct extent_map *em, *n;
4912 	LIST_HEAD(extents);
4913 	struct extent_map_tree *tree = &inode->extent_tree;
4914 	int ret = 0;
4915 	int num = 0;
4916 
4917 	write_lock(&tree->lock);
4918 
4919 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4920 		list_del_init(&em->list);
4921 		/*
4922 		 * Just an arbitrary number, this can be really CPU intensive
4923 		 * once we start getting a lot of extents, and really once we
4924 		 * have a bunch of extents we just want to commit since it will
4925 		 * be faster.
4926 		 */
4927 		if (++num > 32768) {
4928 			list_del_init(&tree->modified_extents);
4929 			ret = -EFBIG;
4930 			goto process;
4931 		}
4932 
4933 		if (em->generation < trans->transid)
4934 			continue;
4935 
4936 		/* We log prealloc extents beyond eof later. */
4937 		if ((em->flags & EXTENT_FLAG_PREALLOC) &&
4938 		    em->start >= i_size_read(&inode->vfs_inode))
4939 			continue;
4940 
4941 		/* Need a ref to keep it from getting evicted from cache */
4942 		refcount_inc(&em->refs);
4943 		em->flags |= EXTENT_FLAG_LOGGING;
4944 		list_add_tail(&em->list, &extents);
4945 		num++;
4946 	}
4947 
4948 	list_sort(NULL, &extents, extent_cmp);
4949 process:
4950 	while (!list_empty(&extents)) {
4951 		em = list_first_entry(&extents, struct extent_map, list);
4952 
4953 		list_del_init(&em->list);
4954 
4955 		/*
4956 		 * If we had an error we just need to delete everybody from our
4957 		 * private list.
4958 		 */
4959 		if (ret) {
4960 			btrfs_clear_em_logging(inode, em);
4961 			btrfs_free_extent_map(em);
4962 			continue;
4963 		}
4964 
4965 		write_unlock(&tree->lock);
4966 
4967 		ret = log_one_extent(trans, inode, em, path, ctx);
4968 		write_lock(&tree->lock);
4969 		btrfs_clear_em_logging(inode, em);
4970 		btrfs_free_extent_map(em);
4971 	}
4972 	WARN_ON(!list_empty(&extents));
4973 	write_unlock(&tree->lock);
4974 
4975 	if (!ret)
4976 		ret = btrfs_log_prealloc_extents(trans, inode, path, ctx);
4977 	if (ret)
4978 		return ret;
4979 
4980 	/*
4981 	 * We have logged all extents successfully, now make sure the commit of
4982 	 * the current transaction waits for the ordered extents to complete
4983 	 * before it commits and wipes out the log trees, otherwise we would
4984 	 * lose data if an ordered extents completes after the transaction
4985 	 * commits and a power failure happens after the transaction commit.
4986 	 */
4987 	list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
4988 		list_del_init(&ordered->log_list);
4989 		set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
4990 
4991 		if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4992 			spin_lock_irq(&inode->ordered_tree_lock);
4993 			if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4994 				set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
4995 				atomic_inc(&trans->transaction->pending_ordered);
4996 			}
4997 			spin_unlock_irq(&inode->ordered_tree_lock);
4998 		}
4999 		btrfs_put_ordered_extent(ordered);
5000 	}
5001 
5002 	return 0;
5003 }
5004 
logged_inode_size(struct btrfs_root * log,struct btrfs_inode * inode,struct btrfs_path * path,u64 * size_ret)5005 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
5006 			     struct btrfs_path *path, u64 *size_ret)
5007 {
5008 	struct btrfs_key key;
5009 	int ret;
5010 
5011 	key.objectid = btrfs_ino(inode);
5012 	key.type = BTRFS_INODE_ITEM_KEY;
5013 	key.offset = 0;
5014 
5015 	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
5016 	if (ret < 0) {
5017 		return ret;
5018 	} else if (ret > 0) {
5019 		*size_ret = 0;
5020 	} else {
5021 		struct btrfs_inode_item *item;
5022 
5023 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5024 				      struct btrfs_inode_item);
5025 		*size_ret = btrfs_inode_size(path->nodes[0], item);
5026 		/*
5027 		 * If the in-memory inode's i_size is smaller then the inode
5028 		 * size stored in the btree, return the inode's i_size, so
5029 		 * that we get a correct inode size after replaying the log
5030 		 * when before a power failure we had a shrinking truncate
5031 		 * followed by addition of a new name (rename / new hard link).
5032 		 * Otherwise return the inode size from the btree, to avoid
5033 		 * data loss when replaying a log due to previously doing a
5034 		 * write that expands the inode's size and logging a new name
5035 		 * immediately after.
5036 		 */
5037 		if (*size_ret > inode->vfs_inode.i_size)
5038 			*size_ret = inode->vfs_inode.i_size;
5039 	}
5040 
5041 	btrfs_release_path(path);
5042 	return 0;
5043 }
5044 
5045 /*
5046  * At the moment we always log all xattrs. This is to figure out at log replay
5047  * time which xattrs must have their deletion replayed. If a xattr is missing
5048  * in the log tree and exists in the fs/subvol tree, we delete it. This is
5049  * because if a xattr is deleted, the inode is fsynced and a power failure
5050  * happens, causing the log to be replayed the next time the fs is mounted,
5051  * we want the xattr to not exist anymore (same behaviour as other filesystems
5052  * with a journal, ext3/4, xfs, f2fs, etc).
5053  */
btrfs_log_all_xattrs(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,struct btrfs_log_ctx * ctx)5054 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
5055 				struct btrfs_inode *inode,
5056 				struct btrfs_path *path,
5057 				struct btrfs_path *dst_path,
5058 				struct btrfs_log_ctx *ctx)
5059 {
5060 	struct btrfs_root *root = inode->root;
5061 	int ret;
5062 	struct btrfs_key key;
5063 	const u64 ino = btrfs_ino(inode);
5064 	int ins_nr = 0;
5065 	int start_slot = 0;
5066 	bool found_xattrs = false;
5067 
5068 	if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
5069 		return 0;
5070 
5071 	key.objectid = ino;
5072 	key.type = BTRFS_XATTR_ITEM_KEY;
5073 	key.offset = 0;
5074 
5075 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5076 	if (ret < 0)
5077 		return ret;
5078 
5079 	while (true) {
5080 		int slot = path->slots[0];
5081 		struct extent_buffer *leaf = path->nodes[0];
5082 		int nritems = btrfs_header_nritems(leaf);
5083 
5084 		if (slot >= nritems) {
5085 			if (ins_nr > 0) {
5086 				ret = copy_items(trans, inode, dst_path, path,
5087 						 start_slot, ins_nr, 1, 0, ctx);
5088 				if (ret < 0)
5089 					return ret;
5090 				ins_nr = 0;
5091 			}
5092 			ret = btrfs_next_leaf(root, path);
5093 			if (ret < 0)
5094 				return ret;
5095 			else if (ret > 0)
5096 				break;
5097 			continue;
5098 		}
5099 
5100 		btrfs_item_key_to_cpu(leaf, &key, slot);
5101 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
5102 			break;
5103 
5104 		if (ins_nr == 0)
5105 			start_slot = slot;
5106 		ins_nr++;
5107 		path->slots[0]++;
5108 		found_xattrs = true;
5109 		cond_resched();
5110 	}
5111 	if (ins_nr > 0) {
5112 		ret = copy_items(trans, inode, dst_path, path,
5113 				 start_slot, ins_nr, 1, 0, ctx);
5114 		if (ret < 0)
5115 			return ret;
5116 	}
5117 
5118 	if (!found_xattrs)
5119 		set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
5120 
5121 	return 0;
5122 }
5123 
5124 /*
5125  * When using the NO_HOLES feature if we punched a hole that causes the
5126  * deletion of entire leafs or all the extent items of the first leaf (the one
5127  * that contains the inode item and references) we may end up not processing
5128  * any extents, because there are no leafs with a generation matching the
5129  * current transaction that have extent items for our inode. So we need to find
5130  * if any holes exist and then log them. We also need to log holes after any
5131  * truncate operation that changes the inode's size.
5132  */
btrfs_log_holes(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path)5133 static int btrfs_log_holes(struct btrfs_trans_handle *trans,
5134 			   struct btrfs_inode *inode,
5135 			   struct btrfs_path *path)
5136 {
5137 	struct btrfs_root *root = inode->root;
5138 	struct btrfs_fs_info *fs_info = root->fs_info;
5139 	struct btrfs_key key;
5140 	const u64 ino = btrfs_ino(inode);
5141 	const u64 i_size = i_size_read(&inode->vfs_inode);
5142 	u64 prev_extent_end = 0;
5143 	int ret;
5144 
5145 	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
5146 		return 0;
5147 
5148 	key.objectid = ino;
5149 	key.type = BTRFS_EXTENT_DATA_KEY;
5150 	key.offset = 0;
5151 
5152 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5153 	if (ret < 0)
5154 		return ret;
5155 
5156 	while (true) {
5157 		struct extent_buffer *leaf = path->nodes[0];
5158 
5159 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
5160 			ret = btrfs_next_leaf(root, path);
5161 			if (ret < 0)
5162 				return ret;
5163 			if (ret > 0) {
5164 				ret = 0;
5165 				break;
5166 			}
5167 			leaf = path->nodes[0];
5168 		}
5169 
5170 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5171 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
5172 			break;
5173 
5174 		/* We have a hole, log it. */
5175 		if (prev_extent_end < key.offset) {
5176 			const u64 hole_len = key.offset - prev_extent_end;
5177 
5178 			/*
5179 			 * Release the path to avoid deadlocks with other code
5180 			 * paths that search the root while holding locks on
5181 			 * leafs from the log root.
5182 			 */
5183 			btrfs_release_path(path);
5184 			ret = btrfs_insert_hole_extent(trans, root->log_root,
5185 						       ino, prev_extent_end,
5186 						       hole_len);
5187 			if (ret < 0)
5188 				return ret;
5189 
5190 			/*
5191 			 * Search for the same key again in the root. Since it's
5192 			 * an extent item and we are holding the inode lock, the
5193 			 * key must still exist. If it doesn't just emit warning
5194 			 * and return an error to fall back to a transaction
5195 			 * commit.
5196 			 */
5197 			ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5198 			if (ret < 0)
5199 				return ret;
5200 			if (WARN_ON(ret > 0))
5201 				return -ENOENT;
5202 			leaf = path->nodes[0];
5203 		}
5204 
5205 		prev_extent_end = btrfs_file_extent_end(path);
5206 		path->slots[0]++;
5207 		cond_resched();
5208 	}
5209 
5210 	if (prev_extent_end < i_size) {
5211 		u64 hole_len;
5212 
5213 		btrfs_release_path(path);
5214 		hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
5215 		ret = btrfs_insert_hole_extent(trans, root->log_root, ino,
5216 					       prev_extent_end, hole_len);
5217 		if (ret < 0)
5218 			return ret;
5219 	}
5220 
5221 	return 0;
5222 }
5223 
5224 /*
5225  * When we are logging a new inode X, check if it doesn't have a reference that
5226  * matches the reference from some other inode Y created in a past transaction
5227  * and that was renamed in the current transaction. If we don't do this, then at
5228  * log replay time we can lose inode Y (and all its files if it's a directory):
5229  *
5230  * mkdir /mnt/x
5231  * echo "hello world" > /mnt/x/foobar
5232  * sync
5233  * mv /mnt/x /mnt/y
5234  * mkdir /mnt/x                 # or touch /mnt/x
5235  * xfs_io -c fsync /mnt/x
5236  * <power fail>
5237  * mount fs, trigger log replay
5238  *
5239  * After the log replay procedure, we would lose the first directory and all its
5240  * files (file foobar).
5241  * For the case where inode Y is not a directory we simply end up losing it:
5242  *
5243  * echo "123" > /mnt/foo
5244  * sync
5245  * mv /mnt/foo /mnt/bar
5246  * echo "abc" > /mnt/foo
5247  * xfs_io -c fsync /mnt/foo
5248  * <power fail>
5249  *
5250  * We also need this for cases where a snapshot entry is replaced by some other
5251  * entry (file or directory) otherwise we end up with an unreplayable log due to
5252  * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
5253  * if it were a regular entry:
5254  *
5255  * mkdir /mnt/x
5256  * btrfs subvolume snapshot /mnt /mnt/x/snap
5257  * btrfs subvolume delete /mnt/x/snap
5258  * rmdir /mnt/x
5259  * mkdir /mnt/x
5260  * fsync /mnt/x or fsync some new file inside it
5261  * <power fail>
5262  *
5263  * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
5264  * the same transaction.
5265  */
btrfs_check_ref_name_override(struct extent_buffer * eb,const int slot,const struct btrfs_key * key,struct btrfs_inode * inode,u64 * other_ino,u64 * other_parent)5266 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
5267 					 const int slot,
5268 					 const struct btrfs_key *key,
5269 					 struct btrfs_inode *inode,
5270 					 u64 *other_ino, u64 *other_parent)
5271 {
5272 	int ret;
5273 	struct btrfs_path *search_path;
5274 	char *name = NULL;
5275 	u32 name_len = 0;
5276 	u32 item_size = btrfs_item_size(eb, slot);
5277 	u32 cur_offset = 0;
5278 	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
5279 
5280 	search_path = btrfs_alloc_path();
5281 	if (!search_path)
5282 		return -ENOMEM;
5283 	search_path->search_commit_root = 1;
5284 	search_path->skip_locking = 1;
5285 
5286 	while (cur_offset < item_size) {
5287 		u64 parent;
5288 		u32 this_name_len;
5289 		u32 this_len;
5290 		unsigned long name_ptr;
5291 		struct btrfs_dir_item *di;
5292 		struct fscrypt_str name_str;
5293 
5294 		if (key->type == BTRFS_INODE_REF_KEY) {
5295 			struct btrfs_inode_ref *iref;
5296 
5297 			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
5298 			parent = key->offset;
5299 			this_name_len = btrfs_inode_ref_name_len(eb, iref);
5300 			name_ptr = (unsigned long)(iref + 1);
5301 			this_len = sizeof(*iref) + this_name_len;
5302 		} else {
5303 			struct btrfs_inode_extref *extref;
5304 
5305 			extref = (struct btrfs_inode_extref *)(ptr +
5306 							       cur_offset);
5307 			parent = btrfs_inode_extref_parent(eb, extref);
5308 			this_name_len = btrfs_inode_extref_name_len(eb, extref);
5309 			name_ptr = (unsigned long)&extref->name;
5310 			this_len = sizeof(*extref) + this_name_len;
5311 		}
5312 
5313 		if (this_name_len > name_len) {
5314 			char *new_name;
5315 
5316 			new_name = krealloc(name, this_name_len, GFP_NOFS);
5317 			if (!new_name) {
5318 				ret = -ENOMEM;
5319 				goto out;
5320 			}
5321 			name_len = this_name_len;
5322 			name = new_name;
5323 		}
5324 
5325 		read_extent_buffer(eb, name, name_ptr, this_name_len);
5326 
5327 		name_str.name = name;
5328 		name_str.len = this_name_len;
5329 		di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
5330 				parent, &name_str, 0);
5331 		if (di && !IS_ERR(di)) {
5332 			struct btrfs_key di_key;
5333 
5334 			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
5335 						  di, &di_key);
5336 			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
5337 				if (di_key.objectid != key->objectid) {
5338 					ret = 1;
5339 					*other_ino = di_key.objectid;
5340 					*other_parent = parent;
5341 				} else {
5342 					ret = 0;
5343 				}
5344 			} else {
5345 				ret = -EAGAIN;
5346 			}
5347 			goto out;
5348 		} else if (IS_ERR(di)) {
5349 			ret = PTR_ERR(di);
5350 			goto out;
5351 		}
5352 		btrfs_release_path(search_path);
5353 
5354 		cur_offset += this_len;
5355 	}
5356 	ret = 0;
5357 out:
5358 	btrfs_free_path(search_path);
5359 	kfree(name);
5360 	return ret;
5361 }
5362 
5363 /*
5364  * Check if we need to log an inode. This is used in contexts where while
5365  * logging an inode we need to log another inode (either that it exists or in
5366  * full mode). This is used instead of btrfs_inode_in_log() because the later
5367  * requires the inode to be in the log and have the log transaction committed,
5368  * while here we do not care if the log transaction was already committed - our
5369  * caller will commit the log later - and we want to avoid logging an inode
5370  * multiple times when multiple tasks have joined the same log transaction.
5371  */
need_log_inode(const struct btrfs_trans_handle * trans,struct btrfs_inode * inode)5372 static bool need_log_inode(const struct btrfs_trans_handle *trans,
5373 			   struct btrfs_inode *inode)
5374 {
5375 	/*
5376 	 * If a directory was not modified, no dentries added or removed, we can
5377 	 * and should avoid logging it.
5378 	 */
5379 	if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid)
5380 		return false;
5381 
5382 	/*
5383 	 * If this inode does not have new/updated/deleted xattrs since the last
5384 	 * time it was logged and is flagged as logged in the current transaction,
5385 	 * we can skip logging it. As for new/deleted names, those are updated in
5386 	 * the log by link/unlink/rename operations.
5387 	 * In case the inode was logged and then evicted and reloaded, its
5388 	 * logged_trans will be 0, in which case we have to fully log it since
5389 	 * logged_trans is a transient field, not persisted.
5390 	 */
5391 	if (inode_logged(trans, inode, NULL) == 1 &&
5392 	    !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
5393 		return false;
5394 
5395 	return true;
5396 }
5397 
5398 struct btrfs_dir_list {
5399 	u64 ino;
5400 	struct list_head list;
5401 };
5402 
5403 /*
5404  * Log the inodes of the new dentries of a directory.
5405  * See process_dir_items_leaf() for details about why it is needed.
5406  * This is a recursive operation - if an existing dentry corresponds to a
5407  * directory, that directory's new entries are logged too (same behaviour as
5408  * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5409  * the dentries point to we do not acquire their VFS lock, otherwise lockdep
5410  * complains about the following circular lock dependency / possible deadlock:
5411  *
5412  *        CPU0                                        CPU1
5413  *        ----                                        ----
5414  * lock(&type->i_mutex_dir_key#3/2);
5415  *                                            lock(sb_internal#2);
5416  *                                            lock(&type->i_mutex_dir_key#3/2);
5417  * lock(&sb->s_type->i_mutex_key#14);
5418  *
5419  * Where sb_internal is the lock (a counter that works as a lock) acquired by
5420  * sb_start_intwrite() in btrfs_start_transaction().
5421  * Not acquiring the VFS lock of the inodes is still safe because:
5422  *
5423  * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5424  *    that while logging the inode new references (names) are added or removed
5425  *    from the inode, leaving the logged inode item with a link count that does
5426  *    not match the number of logged inode reference items. This is fine because
5427  *    at log replay time we compute the real number of links and correct the
5428  *    link count in the inode item (see replay_one_buffer() and
5429  *    link_to_fixup_dir());
5430  *
5431  * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5432  *    while logging the inode's items new index items (key type
5433  *    BTRFS_DIR_INDEX_KEY) are added to fs/subvol tree and the logged inode item
5434  *    has a size that doesn't match the sum of the lengths of all the logged
5435  *    names - this is ok, not a problem, because at log replay time we set the
5436  *    directory's i_size to the correct value (see replay_one_name() and
5437  *    overwrite_item()).
5438  */
log_new_dir_dentries(struct btrfs_trans_handle * trans,struct btrfs_inode * start_inode,struct btrfs_log_ctx * ctx)5439 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5440 				struct btrfs_inode *start_inode,
5441 				struct btrfs_log_ctx *ctx)
5442 {
5443 	struct btrfs_root *root = start_inode->root;
5444 	struct btrfs_path *path;
5445 	LIST_HEAD(dir_list);
5446 	struct btrfs_dir_list *dir_elem;
5447 	u64 ino = btrfs_ino(start_inode);
5448 	struct btrfs_inode *curr_inode = start_inode;
5449 	int ret = 0;
5450 
5451 	/*
5452 	 * If we are logging a new name, as part of a link or rename operation,
5453 	 * don't bother logging new dentries, as we just want to log the names
5454 	 * of an inode and that any new parents exist.
5455 	 */
5456 	if (ctx->logging_new_name)
5457 		return 0;
5458 
5459 	path = btrfs_alloc_path();
5460 	if (!path)
5461 		return -ENOMEM;
5462 
5463 	/* Pairs with btrfs_add_delayed_iput below. */
5464 	ihold(&curr_inode->vfs_inode);
5465 
5466 	while (true) {
5467 		struct btrfs_key key;
5468 		struct btrfs_key found_key;
5469 		u64 next_index;
5470 		bool continue_curr_inode = true;
5471 		int iter_ret;
5472 
5473 		key.objectid = ino;
5474 		key.type = BTRFS_DIR_INDEX_KEY;
5475 		key.offset = btrfs_get_first_dir_index_to_log(curr_inode);
5476 		next_index = key.offset;
5477 again:
5478 		btrfs_for_each_slot(root->log_root, &key, &found_key, path, iter_ret) {
5479 			struct extent_buffer *leaf = path->nodes[0];
5480 			struct btrfs_dir_item *di;
5481 			struct btrfs_key di_key;
5482 			struct btrfs_inode *di_inode;
5483 			int log_mode = LOG_INODE_EXISTS;
5484 			int type;
5485 
5486 			if (found_key.objectid != ino ||
5487 			    found_key.type != BTRFS_DIR_INDEX_KEY) {
5488 				continue_curr_inode = false;
5489 				break;
5490 			}
5491 
5492 			next_index = found_key.offset + 1;
5493 
5494 			di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
5495 			type = btrfs_dir_ftype(leaf, di);
5496 			if (btrfs_dir_transid(leaf, di) < trans->transid)
5497 				continue;
5498 			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5499 			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5500 				continue;
5501 
5502 			btrfs_release_path(path);
5503 			di_inode = btrfs_iget_logging(di_key.objectid, root);
5504 			if (IS_ERR(di_inode)) {
5505 				ret = PTR_ERR(di_inode);
5506 				goto out;
5507 			}
5508 
5509 			if (!need_log_inode(trans, di_inode)) {
5510 				btrfs_add_delayed_iput(di_inode);
5511 				break;
5512 			}
5513 
5514 			ctx->log_new_dentries = false;
5515 			if (type == BTRFS_FT_DIR)
5516 				log_mode = LOG_INODE_ALL;
5517 			ret = btrfs_log_inode(trans, di_inode, log_mode, ctx);
5518 			btrfs_add_delayed_iput(di_inode);
5519 			if (ret)
5520 				goto out;
5521 			if (ctx->log_new_dentries) {
5522 				dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5523 				if (!dir_elem) {
5524 					ret = -ENOMEM;
5525 					goto out;
5526 				}
5527 				dir_elem->ino = di_key.objectid;
5528 				list_add_tail(&dir_elem->list, &dir_list);
5529 			}
5530 			break;
5531 		}
5532 
5533 		btrfs_release_path(path);
5534 
5535 		if (iter_ret < 0) {
5536 			ret = iter_ret;
5537 			goto out;
5538 		} else if (iter_ret > 0) {
5539 			continue_curr_inode = false;
5540 		} else {
5541 			key = found_key;
5542 		}
5543 
5544 		if (continue_curr_inode && key.offset < (u64)-1) {
5545 			key.offset++;
5546 			goto again;
5547 		}
5548 
5549 		btrfs_set_first_dir_index_to_log(curr_inode, next_index);
5550 
5551 		if (list_empty(&dir_list))
5552 			break;
5553 
5554 		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, list);
5555 		ino = dir_elem->ino;
5556 		list_del(&dir_elem->list);
5557 		kfree(dir_elem);
5558 
5559 		btrfs_add_delayed_iput(curr_inode);
5560 
5561 		curr_inode = btrfs_iget_logging(ino, root);
5562 		if (IS_ERR(curr_inode)) {
5563 			ret = PTR_ERR(curr_inode);
5564 			curr_inode = NULL;
5565 			break;
5566 		}
5567 	}
5568 out:
5569 	btrfs_free_path(path);
5570 	if (curr_inode)
5571 		btrfs_add_delayed_iput(curr_inode);
5572 
5573 	if (ret) {
5574 		struct btrfs_dir_list *next;
5575 
5576 		list_for_each_entry_safe(dir_elem, next, &dir_list, list)
5577 			kfree(dir_elem);
5578 	}
5579 
5580 	return ret;
5581 }
5582 
5583 struct btrfs_ino_list {
5584 	u64 ino;
5585 	u64 parent;
5586 	struct list_head list;
5587 };
5588 
free_conflicting_inodes(struct btrfs_log_ctx * ctx)5589 static void free_conflicting_inodes(struct btrfs_log_ctx *ctx)
5590 {
5591 	struct btrfs_ino_list *curr;
5592 	struct btrfs_ino_list *next;
5593 
5594 	list_for_each_entry_safe(curr, next, &ctx->conflict_inodes, list) {
5595 		list_del(&curr->list);
5596 		kfree(curr);
5597 	}
5598 }
5599 
conflicting_inode_is_dir(struct btrfs_root * root,u64 ino,struct btrfs_path * path)5600 static int conflicting_inode_is_dir(struct btrfs_root *root, u64 ino,
5601 				    struct btrfs_path *path)
5602 {
5603 	struct btrfs_key key;
5604 	int ret;
5605 
5606 	key.objectid = ino;
5607 	key.type = BTRFS_INODE_ITEM_KEY;
5608 	key.offset = 0;
5609 
5610 	path->search_commit_root = 1;
5611 	path->skip_locking = 1;
5612 
5613 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5614 	if (WARN_ON_ONCE(ret > 0)) {
5615 		/*
5616 		 * We have previously found the inode through the commit root
5617 		 * so this should not happen. If it does, just error out and
5618 		 * fallback to a transaction commit.
5619 		 */
5620 		ret = -ENOENT;
5621 	} else if (ret == 0) {
5622 		struct btrfs_inode_item *item;
5623 
5624 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5625 				      struct btrfs_inode_item);
5626 		if (S_ISDIR(btrfs_inode_mode(path->nodes[0], item)))
5627 			ret = 1;
5628 	}
5629 
5630 	btrfs_release_path(path);
5631 	path->search_commit_root = 0;
5632 	path->skip_locking = 0;
5633 
5634 	return ret;
5635 }
5636 
add_conflicting_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 ino,u64 parent,struct btrfs_log_ctx * ctx)5637 static int add_conflicting_inode(struct btrfs_trans_handle *trans,
5638 				 struct btrfs_root *root,
5639 				 struct btrfs_path *path,
5640 				 u64 ino, u64 parent,
5641 				 struct btrfs_log_ctx *ctx)
5642 {
5643 	struct btrfs_ino_list *ino_elem;
5644 	struct btrfs_inode *inode;
5645 
5646 	/*
5647 	 * It's rare to have a lot of conflicting inodes, in practice it is not
5648 	 * common to have more than 1 or 2. We don't want to collect too many,
5649 	 * as we could end up logging too many inodes (even if only in
5650 	 * LOG_INODE_EXISTS mode) and slow down other fsyncs or transaction
5651 	 * commits.
5652 	 */
5653 	if (ctx->num_conflict_inodes >= MAX_CONFLICT_INODES)
5654 		return BTRFS_LOG_FORCE_COMMIT;
5655 
5656 	inode = btrfs_iget_logging(ino, root);
5657 	/*
5658 	 * If the other inode that had a conflicting dir entry was deleted in
5659 	 * the current transaction then we either:
5660 	 *
5661 	 * 1) Log the parent directory (later after adding it to the list) if
5662 	 *    the inode is a directory. This is because it may be a deleted
5663 	 *    subvolume/snapshot or it may be a regular directory that had
5664 	 *    deleted subvolumes/snapshots (or subdirectories that had them),
5665 	 *    and at the moment we can't deal with dropping subvolumes/snapshots
5666 	 *    during log replay. So we just log the parent, which will result in
5667 	 *    a fallback to a transaction commit if we are dealing with those
5668 	 *    cases (last_unlink_trans will match the current transaction);
5669 	 *
5670 	 * 2) Do nothing if it's not a directory. During log replay we simply
5671 	 *    unlink the conflicting dentry from the parent directory and then
5672 	 *    add the dentry for our inode. Like this we can avoid logging the
5673 	 *    parent directory (and maybe fallback to a transaction commit in
5674 	 *    case it has a last_unlink_trans == trans->transid, due to moving
5675 	 *    some inode from it to some other directory).
5676 	 */
5677 	if (IS_ERR(inode)) {
5678 		int ret = PTR_ERR(inode);
5679 
5680 		if (ret != -ENOENT)
5681 			return ret;
5682 
5683 		ret = conflicting_inode_is_dir(root, ino, path);
5684 		/* Not a directory or we got an error. */
5685 		if (ret <= 0)
5686 			return ret;
5687 
5688 		/* Conflicting inode is a directory, so we'll log its parent. */
5689 		ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5690 		if (!ino_elem)
5691 			return -ENOMEM;
5692 		ino_elem->ino = ino;
5693 		ino_elem->parent = parent;
5694 		list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5695 		ctx->num_conflict_inodes++;
5696 
5697 		return 0;
5698 	}
5699 
5700 	/*
5701 	 * If the inode was already logged skip it - otherwise we can hit an
5702 	 * infinite loop. Example:
5703 	 *
5704 	 * From the commit root (previous transaction) we have the following
5705 	 * inodes:
5706 	 *
5707 	 * inode 257 a directory
5708 	 * inode 258 with references "zz" and "zz_link" on inode 257
5709 	 * inode 259 with reference "a" on inode 257
5710 	 *
5711 	 * And in the current (uncommitted) transaction we have:
5712 	 *
5713 	 * inode 257 a directory, unchanged
5714 	 * inode 258 with references "a" and "a2" on inode 257
5715 	 * inode 259 with reference "zz_link" on inode 257
5716 	 * inode 261 with reference "zz" on inode 257
5717 	 *
5718 	 * When logging inode 261 the following infinite loop could
5719 	 * happen if we don't skip already logged inodes:
5720 	 *
5721 	 * - we detect inode 258 as a conflicting inode, with inode 261
5722 	 *   on reference "zz", and log it;
5723 	 *
5724 	 * - we detect inode 259 as a conflicting inode, with inode 258
5725 	 *   on reference "a", and log it;
5726 	 *
5727 	 * - we detect inode 258 as a conflicting inode, with inode 259
5728 	 *   on reference "zz_link", and log it - again! After this we
5729 	 *   repeat the above steps forever.
5730 	 *
5731 	 * Here we can use need_log_inode() because we only need to log the
5732 	 * inode in LOG_INODE_EXISTS mode and rename operations update the log,
5733 	 * so that the log ends up with the new name and without the old name.
5734 	 */
5735 	if (!need_log_inode(trans, inode)) {
5736 		btrfs_add_delayed_iput(inode);
5737 		return 0;
5738 	}
5739 
5740 	btrfs_add_delayed_iput(inode);
5741 
5742 	ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5743 	if (!ino_elem)
5744 		return -ENOMEM;
5745 	ino_elem->ino = ino;
5746 	ino_elem->parent = parent;
5747 	list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5748 	ctx->num_conflict_inodes++;
5749 
5750 	return 0;
5751 }
5752 
log_conflicting_inodes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_log_ctx * ctx)5753 static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
5754 				  struct btrfs_root *root,
5755 				  struct btrfs_log_ctx *ctx)
5756 {
5757 	int ret = 0;
5758 
5759 	/*
5760 	 * Conflicting inodes are logged by the first call to btrfs_log_inode(),
5761 	 * otherwise we could have unbounded recursion of btrfs_log_inode()
5762 	 * calls. This check guarantees we can have only 1 level of recursion.
5763 	 */
5764 	if (ctx->logging_conflict_inodes)
5765 		return 0;
5766 
5767 	ctx->logging_conflict_inodes = true;
5768 
5769 	/*
5770 	 * New conflicting inodes may be found and added to the list while we
5771 	 * are logging a conflicting inode, so keep iterating while the list is
5772 	 * not empty.
5773 	 */
5774 	while (!list_empty(&ctx->conflict_inodes)) {
5775 		struct btrfs_ino_list *curr;
5776 		struct btrfs_inode *inode;
5777 		u64 ino;
5778 		u64 parent;
5779 
5780 		curr = list_first_entry(&ctx->conflict_inodes,
5781 					struct btrfs_ino_list, list);
5782 		ino = curr->ino;
5783 		parent = curr->parent;
5784 		list_del(&curr->list);
5785 		kfree(curr);
5786 
5787 		inode = btrfs_iget_logging(ino, root);
5788 		/*
5789 		 * If the other inode that had a conflicting dir entry was
5790 		 * deleted in the current transaction, we need to log its parent
5791 		 * directory. See the comment at add_conflicting_inode().
5792 		 */
5793 		if (IS_ERR(inode)) {
5794 			ret = PTR_ERR(inode);
5795 			if (ret != -ENOENT)
5796 				break;
5797 
5798 			inode = btrfs_iget_logging(parent, root);
5799 			if (IS_ERR(inode)) {
5800 				ret = PTR_ERR(inode);
5801 				break;
5802 			}
5803 
5804 			/*
5805 			 * Always log the directory, we cannot make this
5806 			 * conditional on need_log_inode() because the directory
5807 			 * might have been logged in LOG_INODE_EXISTS mode or
5808 			 * the dir index of the conflicting inode is not in a
5809 			 * dir index key range logged for the directory. So we
5810 			 * must make sure the deletion is recorded.
5811 			 */
5812 			ret = btrfs_log_inode(trans, inode, LOG_INODE_ALL, ctx);
5813 			btrfs_add_delayed_iput(inode);
5814 			if (ret)
5815 				break;
5816 			continue;
5817 		}
5818 
5819 		/*
5820 		 * Here we can use need_log_inode() because we only need to log
5821 		 * the inode in LOG_INODE_EXISTS mode and rename operations
5822 		 * update the log, so that the log ends up with the new name and
5823 		 * without the old name.
5824 		 *
5825 		 * We did this check at add_conflicting_inode(), but here we do
5826 		 * it again because if some other task logged the inode after
5827 		 * that, we can avoid doing it again.
5828 		 */
5829 		if (!need_log_inode(trans, inode)) {
5830 			btrfs_add_delayed_iput(inode);
5831 			continue;
5832 		}
5833 
5834 		/*
5835 		 * We are safe logging the other inode without acquiring its
5836 		 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5837 		 * are safe against concurrent renames of the other inode as
5838 		 * well because during a rename we pin the log and update the
5839 		 * log with the new name before we unpin it.
5840 		 */
5841 		ret = btrfs_log_inode(trans, inode, LOG_INODE_EXISTS, ctx);
5842 		btrfs_add_delayed_iput(inode);
5843 		if (ret)
5844 			break;
5845 	}
5846 
5847 	ctx->logging_conflict_inodes = false;
5848 	if (ret)
5849 		free_conflicting_inodes(ctx);
5850 
5851 	return ret;
5852 }
5853 
copy_inode_items_to_log(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_key * min_key,const struct btrfs_key * max_key,struct btrfs_path * path,struct btrfs_path * dst_path,const u64 logged_isize,const int inode_only,struct btrfs_log_ctx * ctx,bool * need_log_inode_item)5854 static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5855 				   struct btrfs_inode *inode,
5856 				   struct btrfs_key *min_key,
5857 				   const struct btrfs_key *max_key,
5858 				   struct btrfs_path *path,
5859 				   struct btrfs_path *dst_path,
5860 				   const u64 logged_isize,
5861 				   const int inode_only,
5862 				   struct btrfs_log_ctx *ctx,
5863 				   bool *need_log_inode_item)
5864 {
5865 	const u64 i_size = i_size_read(&inode->vfs_inode);
5866 	struct btrfs_root *root = inode->root;
5867 	int ins_start_slot = 0;
5868 	int ins_nr = 0;
5869 	int ret;
5870 
5871 	while (1) {
5872 		ret = btrfs_search_forward(root, min_key, path, trans->transid);
5873 		if (ret < 0)
5874 			return ret;
5875 		if (ret > 0) {
5876 			ret = 0;
5877 			break;
5878 		}
5879 again:
5880 		/* Note, ins_nr might be > 0 here, cleanup outside the loop */
5881 		if (min_key->objectid != max_key->objectid)
5882 			break;
5883 		if (min_key->type > max_key->type)
5884 			break;
5885 
5886 		if (min_key->type == BTRFS_INODE_ITEM_KEY) {
5887 			*need_log_inode_item = false;
5888 		} else if (min_key->type == BTRFS_EXTENT_DATA_KEY &&
5889 			   min_key->offset >= i_size) {
5890 			/*
5891 			 * Extents at and beyond eof are logged with
5892 			 * btrfs_log_prealloc_extents().
5893 			 * Only regular files have BTRFS_EXTENT_DATA_KEY keys,
5894 			 * and no keys greater than that, so bail out.
5895 			 */
5896 			break;
5897 		} else if ((min_key->type == BTRFS_INODE_REF_KEY ||
5898 			    min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5899 			   (inode->generation == trans->transid ||
5900 			    ctx->logging_conflict_inodes)) {
5901 			u64 other_ino = 0;
5902 			u64 other_parent = 0;
5903 
5904 			ret = btrfs_check_ref_name_override(path->nodes[0],
5905 					path->slots[0], min_key, inode,
5906 					&other_ino, &other_parent);
5907 			if (ret < 0) {
5908 				return ret;
5909 			} else if (ret > 0 &&
5910 				   other_ino != btrfs_ino(ctx->inode)) {
5911 				if (ins_nr > 0) {
5912 					ins_nr++;
5913 				} else {
5914 					ins_nr = 1;
5915 					ins_start_slot = path->slots[0];
5916 				}
5917 				ret = copy_items(trans, inode, dst_path, path,
5918 						 ins_start_slot, ins_nr,
5919 						 inode_only, logged_isize, ctx);
5920 				if (ret < 0)
5921 					return ret;
5922 				ins_nr = 0;
5923 
5924 				btrfs_release_path(path);
5925 				ret = add_conflicting_inode(trans, root, path,
5926 							    other_ino,
5927 							    other_parent, ctx);
5928 				if (ret)
5929 					return ret;
5930 				goto next_key;
5931 			}
5932 		} else if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5933 			/* Skip xattrs, logged later with btrfs_log_all_xattrs() */
5934 			if (ins_nr == 0)
5935 				goto next_slot;
5936 			ret = copy_items(trans, inode, dst_path, path,
5937 					 ins_start_slot,
5938 					 ins_nr, inode_only, logged_isize, ctx);
5939 			if (ret < 0)
5940 				return ret;
5941 			ins_nr = 0;
5942 			goto next_slot;
5943 		}
5944 
5945 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5946 			ins_nr++;
5947 			goto next_slot;
5948 		} else if (!ins_nr) {
5949 			ins_start_slot = path->slots[0];
5950 			ins_nr = 1;
5951 			goto next_slot;
5952 		}
5953 
5954 		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5955 				 ins_nr, inode_only, logged_isize, ctx);
5956 		if (ret < 0)
5957 			return ret;
5958 		ins_nr = 1;
5959 		ins_start_slot = path->slots[0];
5960 next_slot:
5961 		path->slots[0]++;
5962 		if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5963 			btrfs_item_key_to_cpu(path->nodes[0], min_key,
5964 					      path->slots[0]);
5965 			goto again;
5966 		}
5967 		if (ins_nr) {
5968 			ret = copy_items(trans, inode, dst_path, path,
5969 					 ins_start_slot, ins_nr, inode_only,
5970 					 logged_isize, ctx);
5971 			if (ret < 0)
5972 				return ret;
5973 			ins_nr = 0;
5974 		}
5975 		btrfs_release_path(path);
5976 next_key:
5977 		if (min_key->offset < (u64)-1) {
5978 			min_key->offset++;
5979 		} else if (min_key->type < max_key->type) {
5980 			min_key->type++;
5981 			min_key->offset = 0;
5982 		} else {
5983 			break;
5984 		}
5985 
5986 		/*
5987 		 * We may process many leaves full of items for our inode, so
5988 		 * avoid monopolizing a cpu for too long by rescheduling while
5989 		 * not holding locks on any tree.
5990 		 */
5991 		cond_resched();
5992 	}
5993 	if (ins_nr) {
5994 		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5995 				 ins_nr, inode_only, logged_isize, ctx);
5996 		if (ret)
5997 			return ret;
5998 	}
5999 
6000 	if (inode_only == LOG_INODE_ALL && S_ISREG(inode->vfs_inode.i_mode)) {
6001 		/*
6002 		 * Release the path because otherwise we might attempt to double
6003 		 * lock the same leaf with btrfs_log_prealloc_extents() below.
6004 		 */
6005 		btrfs_release_path(path);
6006 		ret = btrfs_log_prealloc_extents(trans, inode, dst_path, ctx);
6007 	}
6008 
6009 	return ret;
6010 }
6011 
insert_delayed_items_batch(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,const struct btrfs_item_batch * batch,const struct btrfs_delayed_item * first_item)6012 static int insert_delayed_items_batch(struct btrfs_trans_handle *trans,
6013 				      struct btrfs_root *log,
6014 				      struct btrfs_path *path,
6015 				      const struct btrfs_item_batch *batch,
6016 				      const struct btrfs_delayed_item *first_item)
6017 {
6018 	const struct btrfs_delayed_item *curr = first_item;
6019 	int ret;
6020 
6021 	ret = btrfs_insert_empty_items(trans, log, path, batch);
6022 	if (ret)
6023 		return ret;
6024 
6025 	for (int i = 0; i < batch->nr; i++) {
6026 		char *data_ptr;
6027 
6028 		data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
6029 		write_extent_buffer(path->nodes[0], &curr->data,
6030 				    (unsigned long)data_ptr, curr->data_len);
6031 		curr = list_next_entry(curr, log_list);
6032 		path->slots[0]++;
6033 	}
6034 
6035 	btrfs_release_path(path);
6036 
6037 	return 0;
6038 }
6039 
log_delayed_insertion_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,const struct list_head * delayed_ins_list,struct btrfs_log_ctx * ctx)6040 static int log_delayed_insertion_items(struct btrfs_trans_handle *trans,
6041 				       struct btrfs_inode *inode,
6042 				       struct btrfs_path *path,
6043 				       const struct list_head *delayed_ins_list,
6044 				       struct btrfs_log_ctx *ctx)
6045 {
6046 	/* 195 (4095 bytes of keys and sizes) fits in a single 4K page. */
6047 	const int max_batch_size = 195;
6048 	const int leaf_data_size = BTRFS_LEAF_DATA_SIZE(trans->fs_info);
6049 	const u64 ino = btrfs_ino(inode);
6050 	struct btrfs_root *log = inode->root->log_root;
6051 	struct btrfs_item_batch batch = {
6052 		.nr = 0,
6053 		.total_data_size = 0,
6054 	};
6055 	const struct btrfs_delayed_item *first = NULL;
6056 	const struct btrfs_delayed_item *curr;
6057 	char *ins_data;
6058 	struct btrfs_key *ins_keys;
6059 	u32 *ins_sizes;
6060 	u64 curr_batch_size = 0;
6061 	int batch_idx = 0;
6062 	int ret;
6063 
6064 	/* We are adding dir index items to the log tree. */
6065 	lockdep_assert_held(&inode->log_mutex);
6066 
6067 	/*
6068 	 * We collect delayed items before copying index keys from the subvolume
6069 	 * to the log tree. However just after we collected them, they may have
6070 	 * been flushed (all of them or just some of them), and therefore we
6071 	 * could have copied them from the subvolume tree to the log tree.
6072 	 * So find the first delayed item that was not yet logged (they are
6073 	 * sorted by index number).
6074 	 */
6075 	list_for_each_entry(curr, delayed_ins_list, log_list) {
6076 		if (curr->index > inode->last_dir_index_offset) {
6077 			first = curr;
6078 			break;
6079 		}
6080 	}
6081 
6082 	/* Empty list or all delayed items were already logged. */
6083 	if (!first)
6084 		return 0;
6085 
6086 	ins_data = kmalloc(max_batch_size * sizeof(u32) +
6087 			   max_batch_size * sizeof(struct btrfs_key), GFP_NOFS);
6088 	if (!ins_data)
6089 		return -ENOMEM;
6090 	ins_sizes = (u32 *)ins_data;
6091 	batch.data_sizes = ins_sizes;
6092 	ins_keys = (struct btrfs_key *)(ins_data + max_batch_size * sizeof(u32));
6093 	batch.keys = ins_keys;
6094 
6095 	curr = first;
6096 	while (!list_entry_is_head(curr, delayed_ins_list, log_list)) {
6097 		const u32 curr_size = curr->data_len + sizeof(struct btrfs_item);
6098 
6099 		if (curr_batch_size + curr_size > leaf_data_size ||
6100 		    batch.nr == max_batch_size) {
6101 			ret = insert_delayed_items_batch(trans, log, path,
6102 							 &batch, first);
6103 			if (ret)
6104 				goto out;
6105 			batch_idx = 0;
6106 			batch.nr = 0;
6107 			batch.total_data_size = 0;
6108 			curr_batch_size = 0;
6109 			first = curr;
6110 		}
6111 
6112 		ins_sizes[batch_idx] = curr->data_len;
6113 		ins_keys[batch_idx].objectid = ino;
6114 		ins_keys[batch_idx].type = BTRFS_DIR_INDEX_KEY;
6115 		ins_keys[batch_idx].offset = curr->index;
6116 		curr_batch_size += curr_size;
6117 		batch.total_data_size += curr->data_len;
6118 		batch.nr++;
6119 		batch_idx++;
6120 		curr = list_next_entry(curr, log_list);
6121 	}
6122 
6123 	ASSERT(batch.nr >= 1);
6124 	ret = insert_delayed_items_batch(trans, log, path, &batch, first);
6125 
6126 	curr = list_last_entry(delayed_ins_list, struct btrfs_delayed_item,
6127 			       log_list);
6128 	inode->last_dir_index_offset = curr->index;
6129 out:
6130 	kfree(ins_data);
6131 
6132 	return ret;
6133 }
6134 
log_delayed_deletions_full(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,const struct list_head * delayed_del_list,struct btrfs_log_ctx * ctx)6135 static int log_delayed_deletions_full(struct btrfs_trans_handle *trans,
6136 				      struct btrfs_inode *inode,
6137 				      struct btrfs_path *path,
6138 				      const struct list_head *delayed_del_list,
6139 				      struct btrfs_log_ctx *ctx)
6140 {
6141 	const u64 ino = btrfs_ino(inode);
6142 	const struct btrfs_delayed_item *curr;
6143 
6144 	curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6145 				log_list);
6146 
6147 	while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6148 		u64 first_dir_index = curr->index;
6149 		u64 last_dir_index;
6150 		const struct btrfs_delayed_item *next;
6151 		int ret;
6152 
6153 		/*
6154 		 * Find a range of consecutive dir index items to delete. Like
6155 		 * this we log a single dir range item spanning several contiguous
6156 		 * dir items instead of logging one range item per dir index item.
6157 		 */
6158 		next = list_next_entry(curr, log_list);
6159 		while (!list_entry_is_head(next, delayed_del_list, log_list)) {
6160 			if (next->index != curr->index + 1)
6161 				break;
6162 			curr = next;
6163 			next = list_next_entry(next, log_list);
6164 		}
6165 
6166 		last_dir_index = curr->index;
6167 		ASSERT(last_dir_index >= first_dir_index);
6168 
6169 		ret = insert_dir_log_key(trans, inode->root->log_root, path,
6170 					 ino, first_dir_index, last_dir_index);
6171 		if (ret)
6172 			return ret;
6173 		curr = list_next_entry(curr, log_list);
6174 	}
6175 
6176 	return 0;
6177 }
6178 
batch_delete_dir_index_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,const struct list_head * delayed_del_list,const struct btrfs_delayed_item * first,const struct btrfs_delayed_item ** last_ret)6179 static int batch_delete_dir_index_items(struct btrfs_trans_handle *trans,
6180 					struct btrfs_inode *inode,
6181 					struct btrfs_path *path,
6182 					const struct list_head *delayed_del_list,
6183 					const struct btrfs_delayed_item *first,
6184 					const struct btrfs_delayed_item **last_ret)
6185 {
6186 	const struct btrfs_delayed_item *next;
6187 	struct extent_buffer *leaf = path->nodes[0];
6188 	const int last_slot = btrfs_header_nritems(leaf) - 1;
6189 	int slot = path->slots[0] + 1;
6190 	const u64 ino = btrfs_ino(inode);
6191 
6192 	next = list_next_entry(first, log_list);
6193 
6194 	while (slot < last_slot &&
6195 	       !list_entry_is_head(next, delayed_del_list, log_list)) {
6196 		struct btrfs_key key;
6197 
6198 		btrfs_item_key_to_cpu(leaf, &key, slot);
6199 		if (key.objectid != ino ||
6200 		    key.type != BTRFS_DIR_INDEX_KEY ||
6201 		    key.offset != next->index)
6202 			break;
6203 
6204 		slot++;
6205 		*last_ret = next;
6206 		next = list_next_entry(next, log_list);
6207 	}
6208 
6209 	return btrfs_del_items(trans, inode->root->log_root, path,
6210 			       path->slots[0], slot - path->slots[0]);
6211 }
6212 
log_delayed_deletions_incremental(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,const struct list_head * delayed_del_list,struct btrfs_log_ctx * ctx)6213 static int log_delayed_deletions_incremental(struct btrfs_trans_handle *trans,
6214 					     struct btrfs_inode *inode,
6215 					     struct btrfs_path *path,
6216 					     const struct list_head *delayed_del_list,
6217 					     struct btrfs_log_ctx *ctx)
6218 {
6219 	struct btrfs_root *log = inode->root->log_root;
6220 	const struct btrfs_delayed_item *curr;
6221 	u64 last_range_start = 0;
6222 	u64 last_range_end = 0;
6223 	struct btrfs_key key;
6224 
6225 	key.objectid = btrfs_ino(inode);
6226 	key.type = BTRFS_DIR_INDEX_KEY;
6227 	curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6228 				log_list);
6229 
6230 	while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6231 		const struct btrfs_delayed_item *last = curr;
6232 		u64 first_dir_index = curr->index;
6233 		u64 last_dir_index;
6234 		bool deleted_items = false;
6235 		int ret;
6236 
6237 		key.offset = curr->index;
6238 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
6239 		if (ret < 0) {
6240 			return ret;
6241 		} else if (ret == 0) {
6242 			ret = batch_delete_dir_index_items(trans, inode, path,
6243 							   delayed_del_list, curr,
6244 							   &last);
6245 			if (ret)
6246 				return ret;
6247 			deleted_items = true;
6248 		}
6249 
6250 		btrfs_release_path(path);
6251 
6252 		/*
6253 		 * If we deleted items from the leaf, it means we have a range
6254 		 * item logging their range, so no need to add one or update an
6255 		 * existing one. Otherwise we have to log a dir range item.
6256 		 */
6257 		if (deleted_items)
6258 			goto next_batch;
6259 
6260 		last_dir_index = last->index;
6261 		ASSERT(last_dir_index >= first_dir_index);
6262 		/*
6263 		 * If this range starts right after where the previous one ends,
6264 		 * then we want to reuse the previous range item and change its
6265 		 * end offset to the end of this range. This is just to minimize
6266 		 * leaf space usage, by avoiding adding a new range item.
6267 		 */
6268 		if (last_range_end != 0 && first_dir_index == last_range_end + 1)
6269 			first_dir_index = last_range_start;
6270 
6271 		ret = insert_dir_log_key(trans, log, path, key.objectid,
6272 					 first_dir_index, last_dir_index);
6273 		if (ret)
6274 			return ret;
6275 
6276 		last_range_start = first_dir_index;
6277 		last_range_end = last_dir_index;
6278 next_batch:
6279 		curr = list_next_entry(last, log_list);
6280 	}
6281 
6282 	return 0;
6283 }
6284 
log_delayed_deletion_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,const struct list_head * delayed_del_list,struct btrfs_log_ctx * ctx)6285 static int log_delayed_deletion_items(struct btrfs_trans_handle *trans,
6286 				      struct btrfs_inode *inode,
6287 				      struct btrfs_path *path,
6288 				      const struct list_head *delayed_del_list,
6289 				      struct btrfs_log_ctx *ctx)
6290 {
6291 	/*
6292 	 * We are deleting dir index items from the log tree or adding range
6293 	 * items to it.
6294 	 */
6295 	lockdep_assert_held(&inode->log_mutex);
6296 
6297 	if (list_empty(delayed_del_list))
6298 		return 0;
6299 
6300 	if (ctx->logged_before)
6301 		return log_delayed_deletions_incremental(trans, inode, path,
6302 							 delayed_del_list, ctx);
6303 
6304 	return log_delayed_deletions_full(trans, inode, path, delayed_del_list,
6305 					  ctx);
6306 }
6307 
6308 /*
6309  * Similar logic as for log_new_dir_dentries(), but it iterates over the delayed
6310  * items instead of the subvolume tree.
6311  */
log_new_delayed_dentries(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,const struct list_head * delayed_ins_list,struct btrfs_log_ctx * ctx)6312 static int log_new_delayed_dentries(struct btrfs_trans_handle *trans,
6313 				    struct btrfs_inode *inode,
6314 				    const struct list_head *delayed_ins_list,
6315 				    struct btrfs_log_ctx *ctx)
6316 {
6317 	const bool orig_log_new_dentries = ctx->log_new_dentries;
6318 	struct btrfs_delayed_item *item;
6319 	int ret = 0;
6320 
6321 	/*
6322 	 * No need for the log mutex, plus to avoid potential deadlocks or
6323 	 * lockdep annotations due to nesting of delayed inode mutexes and log
6324 	 * mutexes.
6325 	 */
6326 	lockdep_assert_not_held(&inode->log_mutex);
6327 
6328 	ASSERT(!ctx->logging_new_delayed_dentries);
6329 	ctx->logging_new_delayed_dentries = true;
6330 
6331 	list_for_each_entry(item, delayed_ins_list, log_list) {
6332 		struct btrfs_dir_item *dir_item;
6333 		struct btrfs_inode *di_inode;
6334 		struct btrfs_key key;
6335 		int log_mode = LOG_INODE_EXISTS;
6336 
6337 		dir_item = (struct btrfs_dir_item *)item->data;
6338 		btrfs_disk_key_to_cpu(&key, &dir_item->location);
6339 
6340 		if (key.type == BTRFS_ROOT_ITEM_KEY)
6341 			continue;
6342 
6343 		di_inode = btrfs_iget_logging(key.objectid, inode->root);
6344 		if (IS_ERR(di_inode)) {
6345 			ret = PTR_ERR(di_inode);
6346 			break;
6347 		}
6348 
6349 		if (!need_log_inode(trans, di_inode)) {
6350 			btrfs_add_delayed_iput(di_inode);
6351 			continue;
6352 		}
6353 
6354 		if (btrfs_stack_dir_ftype(dir_item) == BTRFS_FT_DIR)
6355 			log_mode = LOG_INODE_ALL;
6356 
6357 		ctx->log_new_dentries = false;
6358 		ret = btrfs_log_inode(trans, di_inode, log_mode, ctx);
6359 
6360 		if (!ret && ctx->log_new_dentries)
6361 			ret = log_new_dir_dentries(trans, di_inode, ctx);
6362 
6363 		btrfs_add_delayed_iput(di_inode);
6364 
6365 		if (ret)
6366 			break;
6367 	}
6368 
6369 	ctx->log_new_dentries = orig_log_new_dentries;
6370 	ctx->logging_new_delayed_dentries = false;
6371 
6372 	return ret;
6373 }
6374 
6375 /* log a single inode in the tree log.
6376  * At least one parent directory for this inode must exist in the tree
6377  * or be logged already.
6378  *
6379  * Any items from this inode changed by the current transaction are copied
6380  * to the log tree.  An extra reference is taken on any extents in this
6381  * file, allowing us to avoid a whole pile of corner cases around logging
6382  * blocks that have been removed from the tree.
6383  *
6384  * See LOG_INODE_ALL and related defines for a description of what inode_only
6385  * does.
6386  *
6387  * This handles both files and directories.
6388  */
btrfs_log_inode(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,int inode_only,struct btrfs_log_ctx * ctx)6389 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
6390 			   struct btrfs_inode *inode,
6391 			   int inode_only,
6392 			   struct btrfs_log_ctx *ctx)
6393 {
6394 	struct btrfs_path *path;
6395 	struct btrfs_path *dst_path;
6396 	struct btrfs_key min_key;
6397 	struct btrfs_key max_key;
6398 	struct btrfs_root *log = inode->root->log_root;
6399 	int ret;
6400 	bool fast_search = false;
6401 	u64 ino = btrfs_ino(inode);
6402 	struct extent_map_tree *em_tree = &inode->extent_tree;
6403 	u64 logged_isize = 0;
6404 	bool need_log_inode_item = true;
6405 	bool xattrs_logged = false;
6406 	bool inode_item_dropped = true;
6407 	bool full_dir_logging = false;
6408 	LIST_HEAD(delayed_ins_list);
6409 	LIST_HEAD(delayed_del_list);
6410 
6411 	path = btrfs_alloc_path();
6412 	if (!path)
6413 		return -ENOMEM;
6414 	dst_path = btrfs_alloc_path();
6415 	if (!dst_path) {
6416 		btrfs_free_path(path);
6417 		return -ENOMEM;
6418 	}
6419 
6420 	min_key.objectid = ino;
6421 	min_key.type = BTRFS_INODE_ITEM_KEY;
6422 	min_key.offset = 0;
6423 
6424 	max_key.objectid = ino;
6425 
6426 
6427 	/* today the code can only do partial logging of directories */
6428 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
6429 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6430 		       &inode->runtime_flags) &&
6431 	     inode_only >= LOG_INODE_EXISTS))
6432 		max_key.type = BTRFS_XATTR_ITEM_KEY;
6433 	else
6434 		max_key.type = (u8)-1;
6435 	max_key.offset = (u64)-1;
6436 
6437 	if (S_ISDIR(inode->vfs_inode.i_mode) && inode_only == LOG_INODE_ALL)
6438 		full_dir_logging = true;
6439 
6440 	/*
6441 	 * If we are logging a directory while we are logging dentries of the
6442 	 * delayed items of some other inode, then we need to flush the delayed
6443 	 * items of this directory and not log the delayed items directly. This
6444 	 * is to prevent more than one level of recursion into btrfs_log_inode()
6445 	 * by having something like this:
6446 	 *
6447 	 *     $ mkdir -p a/b/c/d/e/f/g/h/...
6448 	 *     $ xfs_io -c "fsync" a
6449 	 *
6450 	 * Where all directories in the path did not exist before and are
6451 	 * created in the current transaction.
6452 	 * So in such a case we directly log the delayed items of the main
6453 	 * directory ("a") without flushing them first, while for each of its
6454 	 * subdirectories we flush their delayed items before logging them.
6455 	 * This prevents a potential unbounded recursion like this:
6456 	 *
6457 	 * btrfs_log_inode()
6458 	 *   log_new_delayed_dentries()
6459 	 *      btrfs_log_inode()
6460 	 *        log_new_delayed_dentries()
6461 	 *          btrfs_log_inode()
6462 	 *            log_new_delayed_dentries()
6463 	 *              (...)
6464 	 *
6465 	 * We have thresholds for the maximum number of delayed items to have in
6466 	 * memory, and once they are hit, the items are flushed asynchronously.
6467 	 * However the limit is quite high, so lets prevent deep levels of
6468 	 * recursion to happen by limiting the maximum depth to be 1.
6469 	 */
6470 	if (full_dir_logging && ctx->logging_new_delayed_dentries) {
6471 		ret = btrfs_commit_inode_delayed_items(trans, inode);
6472 		if (ret)
6473 			goto out;
6474 	}
6475 
6476 	mutex_lock(&inode->log_mutex);
6477 
6478 	/*
6479 	 * For symlinks, we must always log their content, which is stored in an
6480 	 * inline extent, otherwise we could end up with an empty symlink after
6481 	 * log replay, which is invalid on linux (symlink(2) returns -ENOENT if
6482 	 * one attempts to create an empty symlink).
6483 	 * We don't need to worry about flushing delalloc, because when we create
6484 	 * the inline extent when the symlink is created (we never have delalloc
6485 	 * for symlinks).
6486 	 */
6487 	if (S_ISLNK(inode->vfs_inode.i_mode))
6488 		inode_only = LOG_INODE_ALL;
6489 
6490 	/*
6491 	 * Before logging the inode item, cache the value returned by
6492 	 * inode_logged(), because after that we have the need to figure out if
6493 	 * the inode was previously logged in this transaction.
6494 	 */
6495 	ret = inode_logged(trans, inode, path);
6496 	if (ret < 0)
6497 		goto out_unlock;
6498 	ctx->logged_before = (ret == 1);
6499 	ret = 0;
6500 
6501 	/*
6502 	 * This is for cases where logging a directory could result in losing a
6503 	 * a file after replaying the log. For example, if we move a file from a
6504 	 * directory A to a directory B, then fsync directory A, we have no way
6505 	 * to known the file was moved from A to B, so logging just A would
6506 	 * result in losing the file after a log replay.
6507 	 */
6508 	if (full_dir_logging && inode->last_unlink_trans >= trans->transid) {
6509 		ret = BTRFS_LOG_FORCE_COMMIT;
6510 		goto out_unlock;
6511 	}
6512 
6513 	/*
6514 	 * a brute force approach to making sure we get the most uptodate
6515 	 * copies of everything.
6516 	 */
6517 	if (S_ISDIR(inode->vfs_inode.i_mode)) {
6518 		clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
6519 		if (ctx->logged_before)
6520 			ret = drop_inode_items(trans, log, path, inode,
6521 					       BTRFS_XATTR_ITEM_KEY);
6522 	} else {
6523 		if (inode_only == LOG_INODE_EXISTS && ctx->logged_before) {
6524 			/*
6525 			 * Make sure the new inode item we write to the log has
6526 			 * the same isize as the current one (if it exists).
6527 			 * This is necessary to prevent data loss after log
6528 			 * replay, and also to prevent doing a wrong expanding
6529 			 * truncate - for e.g. create file, write 4K into offset
6530 			 * 0, fsync, write 4K into offset 4096, add hard link,
6531 			 * fsync some other file (to sync log), power fail - if
6532 			 * we use the inode's current i_size, after log replay
6533 			 * we get a 8Kb file, with the last 4Kb extent as a hole
6534 			 * (zeroes), as if an expanding truncate happened,
6535 			 * instead of getting a file of 4Kb only.
6536 			 */
6537 			ret = logged_inode_size(log, inode, path, &logged_isize);
6538 			if (ret)
6539 				goto out_unlock;
6540 		}
6541 		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6542 			     &inode->runtime_flags)) {
6543 			if (inode_only == LOG_INODE_EXISTS) {
6544 				max_key.type = BTRFS_XATTR_ITEM_KEY;
6545 				if (ctx->logged_before)
6546 					ret = drop_inode_items(trans, log, path,
6547 							       inode, max_key.type);
6548 			} else {
6549 				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6550 					  &inode->runtime_flags);
6551 				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6552 					  &inode->runtime_flags);
6553 				if (ctx->logged_before)
6554 					ret = truncate_inode_items(trans, log,
6555 								   inode, 0, 0);
6556 			}
6557 		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6558 					      &inode->runtime_flags) ||
6559 			   inode_only == LOG_INODE_EXISTS) {
6560 			if (inode_only == LOG_INODE_ALL)
6561 				fast_search = true;
6562 			max_key.type = BTRFS_XATTR_ITEM_KEY;
6563 			if (ctx->logged_before)
6564 				ret = drop_inode_items(trans, log, path, inode,
6565 						       max_key.type);
6566 		} else {
6567 			if (inode_only == LOG_INODE_ALL)
6568 				fast_search = true;
6569 			inode_item_dropped = false;
6570 			goto log_extents;
6571 		}
6572 
6573 	}
6574 	if (ret)
6575 		goto out_unlock;
6576 
6577 	/*
6578 	 * If we are logging a directory in full mode, collect the delayed items
6579 	 * before iterating the subvolume tree, so that we don't miss any new
6580 	 * dir index items in case they get flushed while or right after we are
6581 	 * iterating the subvolume tree.
6582 	 */
6583 	if (full_dir_logging && !ctx->logging_new_delayed_dentries)
6584 		btrfs_log_get_delayed_items(inode, &delayed_ins_list,
6585 					    &delayed_del_list);
6586 
6587 	/*
6588 	 * If we are fsyncing a file with 0 hard links, then commit the delayed
6589 	 * inode because the last inode ref (or extref) item may still be in the
6590 	 * subvolume tree and if we log it the file will still exist after a log
6591 	 * replay. So commit the delayed inode to delete that last ref and we
6592 	 * skip logging it.
6593 	 */
6594 	if (inode->vfs_inode.i_nlink == 0) {
6595 		ret = btrfs_commit_inode_delayed_inode(inode);
6596 		if (ret)
6597 			goto out_unlock;
6598 	}
6599 
6600 	ret = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
6601 				      path, dst_path, logged_isize,
6602 				      inode_only, ctx,
6603 				      &need_log_inode_item);
6604 	if (ret)
6605 		goto out_unlock;
6606 
6607 	btrfs_release_path(path);
6608 	btrfs_release_path(dst_path);
6609 	ret = btrfs_log_all_xattrs(trans, inode, path, dst_path, ctx);
6610 	if (ret)
6611 		goto out_unlock;
6612 	xattrs_logged = true;
6613 	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
6614 		btrfs_release_path(path);
6615 		btrfs_release_path(dst_path);
6616 		ret = btrfs_log_holes(trans, inode, path);
6617 		if (ret)
6618 			goto out_unlock;
6619 	}
6620 log_extents:
6621 	btrfs_release_path(path);
6622 	btrfs_release_path(dst_path);
6623 	if (need_log_inode_item) {
6624 		ret = log_inode_item(trans, log, dst_path, inode, inode_item_dropped);
6625 		if (ret)
6626 			goto out_unlock;
6627 		/*
6628 		 * If we are doing a fast fsync and the inode was logged before
6629 		 * in this transaction, we don't need to log the xattrs because
6630 		 * they were logged before. If xattrs were added, changed or
6631 		 * deleted since the last time we logged the inode, then we have
6632 		 * already logged them because the inode had the runtime flag
6633 		 * BTRFS_INODE_COPY_EVERYTHING set.
6634 		 */
6635 		if (!xattrs_logged && inode->logged_trans < trans->transid) {
6636 			ret = btrfs_log_all_xattrs(trans, inode, path, dst_path, ctx);
6637 			if (ret)
6638 				goto out_unlock;
6639 			btrfs_release_path(path);
6640 		}
6641 	}
6642 	if (fast_search) {
6643 		ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx);
6644 		if (ret)
6645 			goto out_unlock;
6646 	} else if (inode_only == LOG_INODE_ALL) {
6647 		struct extent_map *em, *n;
6648 
6649 		write_lock(&em_tree->lock);
6650 		list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
6651 			list_del_init(&em->list);
6652 		write_unlock(&em_tree->lock);
6653 	}
6654 
6655 	if (full_dir_logging) {
6656 		ret = log_directory_changes(trans, inode, path, dst_path, ctx);
6657 		if (ret)
6658 			goto out_unlock;
6659 		ret = log_delayed_insertion_items(trans, inode, path,
6660 						  &delayed_ins_list, ctx);
6661 		if (ret)
6662 			goto out_unlock;
6663 		ret = log_delayed_deletion_items(trans, inode, path,
6664 						 &delayed_del_list, ctx);
6665 		if (ret)
6666 			goto out_unlock;
6667 	}
6668 
6669 	spin_lock(&inode->lock);
6670 	inode->logged_trans = trans->transid;
6671 	/*
6672 	 * Don't update last_log_commit if we logged that an inode exists.
6673 	 * We do this for three reasons:
6674 	 *
6675 	 * 1) We might have had buffered writes to this inode that were
6676 	 *    flushed and had their ordered extents completed in this
6677 	 *    transaction, but we did not previously log the inode with
6678 	 *    LOG_INODE_ALL. Later the inode was evicted and after that
6679 	 *    it was loaded again and this LOG_INODE_EXISTS log operation
6680 	 *    happened. We must make sure that if an explicit fsync against
6681 	 *    the inode is performed later, it logs the new extents, an
6682 	 *    updated inode item, etc, and syncs the log. The same logic
6683 	 *    applies to direct IO writes instead of buffered writes.
6684 	 *
6685 	 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
6686 	 *    is logged with an i_size of 0 or whatever value was logged
6687 	 *    before. If later the i_size of the inode is increased by a
6688 	 *    truncate operation, the log is synced through an fsync of
6689 	 *    some other inode and then finally an explicit fsync against
6690 	 *    this inode is made, we must make sure this fsync logs the
6691 	 *    inode with the new i_size, the hole between old i_size and
6692 	 *    the new i_size, and syncs the log.
6693 	 *
6694 	 * 3) If we are logging that an ancestor inode exists as part of
6695 	 *    logging a new name from a link or rename operation, don't update
6696 	 *    its last_log_commit - otherwise if an explicit fsync is made
6697 	 *    against an ancestor, the fsync considers the inode in the log
6698 	 *    and doesn't sync the log, resulting in the ancestor missing after
6699 	 *    a power failure unless the log was synced as part of an fsync
6700 	 *    against any other unrelated inode.
6701 	 */
6702 	if (inode_only != LOG_INODE_EXISTS)
6703 		inode->last_log_commit = inode->last_sub_trans;
6704 	spin_unlock(&inode->lock);
6705 
6706 	/*
6707 	 * Reset the last_reflink_trans so that the next fsync does not need to
6708 	 * go through the slower path when logging extents and their checksums.
6709 	 */
6710 	if (inode_only == LOG_INODE_ALL)
6711 		inode->last_reflink_trans = 0;
6712 
6713 out_unlock:
6714 	mutex_unlock(&inode->log_mutex);
6715 out:
6716 	btrfs_free_path(path);
6717 	btrfs_free_path(dst_path);
6718 
6719 	if (ret)
6720 		free_conflicting_inodes(ctx);
6721 	else
6722 		ret = log_conflicting_inodes(trans, inode->root, ctx);
6723 
6724 	if (full_dir_logging && !ctx->logging_new_delayed_dentries) {
6725 		if (!ret)
6726 			ret = log_new_delayed_dentries(trans, inode,
6727 						       &delayed_ins_list, ctx);
6728 
6729 		btrfs_log_put_delayed_items(inode, &delayed_ins_list,
6730 					    &delayed_del_list);
6731 	}
6732 
6733 	return ret;
6734 }
6735 
btrfs_log_all_parents(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_log_ctx * ctx)6736 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
6737 				 struct btrfs_inode *inode,
6738 				 struct btrfs_log_ctx *ctx)
6739 {
6740 	int ret;
6741 	struct btrfs_path *path;
6742 	struct btrfs_key key;
6743 	struct btrfs_root *root = inode->root;
6744 	const u64 ino = btrfs_ino(inode);
6745 
6746 	path = btrfs_alloc_path();
6747 	if (!path)
6748 		return -ENOMEM;
6749 	path->skip_locking = 1;
6750 	path->search_commit_root = 1;
6751 
6752 	key.objectid = ino;
6753 	key.type = BTRFS_INODE_REF_KEY;
6754 	key.offset = 0;
6755 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6756 	if (ret < 0)
6757 		goto out;
6758 
6759 	while (true) {
6760 		struct extent_buffer *leaf = path->nodes[0];
6761 		int slot = path->slots[0];
6762 		u32 cur_offset = 0;
6763 		u32 item_size;
6764 		unsigned long ptr;
6765 
6766 		if (slot >= btrfs_header_nritems(leaf)) {
6767 			ret = btrfs_next_leaf(root, path);
6768 			if (ret < 0)
6769 				goto out;
6770 			else if (ret > 0)
6771 				break;
6772 			continue;
6773 		}
6774 
6775 		btrfs_item_key_to_cpu(leaf, &key, slot);
6776 		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
6777 		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
6778 			break;
6779 
6780 		item_size = btrfs_item_size(leaf, slot);
6781 		ptr = btrfs_item_ptr_offset(leaf, slot);
6782 		while (cur_offset < item_size) {
6783 			struct btrfs_key inode_key;
6784 			struct btrfs_inode *dir_inode;
6785 
6786 			inode_key.type = BTRFS_INODE_ITEM_KEY;
6787 			inode_key.offset = 0;
6788 
6789 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
6790 				struct btrfs_inode_extref *extref;
6791 
6792 				extref = (struct btrfs_inode_extref *)
6793 					(ptr + cur_offset);
6794 				inode_key.objectid = btrfs_inode_extref_parent(
6795 					leaf, extref);
6796 				cur_offset += sizeof(*extref);
6797 				cur_offset += btrfs_inode_extref_name_len(leaf,
6798 					extref);
6799 			} else {
6800 				inode_key.objectid = key.offset;
6801 				cur_offset = item_size;
6802 			}
6803 
6804 			dir_inode = btrfs_iget_logging(inode_key.objectid, root);
6805 			/*
6806 			 * If the parent inode was deleted, return an error to
6807 			 * fallback to a transaction commit. This is to prevent
6808 			 * getting an inode that was moved from one parent A to
6809 			 * a parent B, got its former parent A deleted and then
6810 			 * it got fsync'ed, from existing at both parents after
6811 			 * a log replay (and the old parent still existing).
6812 			 * Example:
6813 			 *
6814 			 * mkdir /mnt/A
6815 			 * mkdir /mnt/B
6816 			 * touch /mnt/B/bar
6817 			 * sync
6818 			 * mv /mnt/B/bar /mnt/A/bar
6819 			 * mv -T /mnt/A /mnt/B
6820 			 * fsync /mnt/B/bar
6821 			 * <power fail>
6822 			 *
6823 			 * If we ignore the old parent B which got deleted,
6824 			 * after a log replay we would have file bar linked
6825 			 * at both parents and the old parent B would still
6826 			 * exist.
6827 			 */
6828 			if (IS_ERR(dir_inode)) {
6829 				ret = PTR_ERR(dir_inode);
6830 				goto out;
6831 			}
6832 
6833 			if (!need_log_inode(trans, dir_inode)) {
6834 				btrfs_add_delayed_iput(dir_inode);
6835 				continue;
6836 			}
6837 
6838 			ctx->log_new_dentries = false;
6839 			ret = btrfs_log_inode(trans, dir_inode, LOG_INODE_ALL, ctx);
6840 			if (!ret && ctx->log_new_dentries)
6841 				ret = log_new_dir_dentries(trans, dir_inode, ctx);
6842 			btrfs_add_delayed_iput(dir_inode);
6843 			if (ret)
6844 				goto out;
6845 		}
6846 		path->slots[0]++;
6847 	}
6848 	ret = 0;
6849 out:
6850 	btrfs_free_path(path);
6851 	return ret;
6852 }
6853 
log_new_ancestors(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_log_ctx * ctx)6854 static int log_new_ancestors(struct btrfs_trans_handle *trans,
6855 			     struct btrfs_root *root,
6856 			     struct btrfs_path *path,
6857 			     struct btrfs_log_ctx *ctx)
6858 {
6859 	struct btrfs_key found_key;
6860 
6861 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
6862 
6863 	while (true) {
6864 		struct extent_buffer *leaf;
6865 		int slot;
6866 		struct btrfs_key search_key;
6867 		struct btrfs_inode *inode;
6868 		u64 ino;
6869 		int ret = 0;
6870 
6871 		btrfs_release_path(path);
6872 
6873 		ino = found_key.offset;
6874 
6875 		search_key.objectid = found_key.offset;
6876 		search_key.type = BTRFS_INODE_ITEM_KEY;
6877 		search_key.offset = 0;
6878 		inode = btrfs_iget_logging(ino, root);
6879 		if (IS_ERR(inode))
6880 			return PTR_ERR(inode);
6881 
6882 		if (inode->generation >= trans->transid &&
6883 		    need_log_inode(trans, inode))
6884 			ret = btrfs_log_inode(trans, inode, LOG_INODE_EXISTS, ctx);
6885 		btrfs_add_delayed_iput(inode);
6886 		if (ret)
6887 			return ret;
6888 
6889 		if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
6890 			break;
6891 
6892 		search_key.type = BTRFS_INODE_REF_KEY;
6893 		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6894 		if (ret < 0)
6895 			return ret;
6896 
6897 		leaf = path->nodes[0];
6898 		slot = path->slots[0];
6899 		if (slot >= btrfs_header_nritems(leaf)) {
6900 			ret = btrfs_next_leaf(root, path);
6901 			if (ret < 0)
6902 				return ret;
6903 			else if (ret > 0)
6904 				return -ENOENT;
6905 			leaf = path->nodes[0];
6906 			slot = path->slots[0];
6907 		}
6908 
6909 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6910 		if (found_key.objectid != search_key.objectid ||
6911 		    found_key.type != BTRFS_INODE_REF_KEY)
6912 			return -ENOENT;
6913 	}
6914 	return 0;
6915 }
6916 
log_new_ancestors_fast(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,struct btrfs_log_ctx * ctx)6917 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
6918 				  struct btrfs_inode *inode,
6919 				  struct dentry *parent,
6920 				  struct btrfs_log_ctx *ctx)
6921 {
6922 	struct btrfs_root *root = inode->root;
6923 	struct dentry *old_parent = NULL;
6924 	struct super_block *sb = inode->vfs_inode.i_sb;
6925 	int ret = 0;
6926 
6927 	while (true) {
6928 		if (!parent || d_really_is_negative(parent) ||
6929 		    sb != parent->d_sb)
6930 			break;
6931 
6932 		inode = BTRFS_I(d_inode(parent));
6933 		if (root != inode->root)
6934 			break;
6935 
6936 		if (inode->generation >= trans->transid &&
6937 		    need_log_inode(trans, inode)) {
6938 			ret = btrfs_log_inode(trans, inode,
6939 					      LOG_INODE_EXISTS, ctx);
6940 			if (ret)
6941 				break;
6942 		}
6943 		if (IS_ROOT(parent))
6944 			break;
6945 
6946 		parent = dget_parent(parent);
6947 		dput(old_parent);
6948 		old_parent = parent;
6949 	}
6950 	dput(old_parent);
6951 
6952 	return ret;
6953 }
6954 
log_all_new_ancestors(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,struct btrfs_log_ctx * ctx)6955 static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
6956 				 struct btrfs_inode *inode,
6957 				 struct dentry *parent,
6958 				 struct btrfs_log_ctx *ctx)
6959 {
6960 	struct btrfs_root *root = inode->root;
6961 	const u64 ino = btrfs_ino(inode);
6962 	struct btrfs_path *path;
6963 	struct btrfs_key search_key;
6964 	int ret;
6965 
6966 	/*
6967 	 * For a single hard link case, go through a fast path that does not
6968 	 * need to iterate the fs/subvolume tree.
6969 	 */
6970 	if (inode->vfs_inode.i_nlink < 2)
6971 		return log_new_ancestors_fast(trans, inode, parent, ctx);
6972 
6973 	path = btrfs_alloc_path();
6974 	if (!path)
6975 		return -ENOMEM;
6976 
6977 	search_key.objectid = ino;
6978 	search_key.type = BTRFS_INODE_REF_KEY;
6979 	search_key.offset = 0;
6980 again:
6981 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6982 	if (ret < 0)
6983 		goto out;
6984 	if (ret == 0)
6985 		path->slots[0]++;
6986 
6987 	while (true) {
6988 		struct extent_buffer *leaf = path->nodes[0];
6989 		int slot = path->slots[0];
6990 		struct btrfs_key found_key;
6991 
6992 		if (slot >= btrfs_header_nritems(leaf)) {
6993 			ret = btrfs_next_leaf(root, path);
6994 			if (ret < 0)
6995 				goto out;
6996 			else if (ret > 0)
6997 				break;
6998 			continue;
6999 		}
7000 
7001 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
7002 		if (found_key.objectid != ino ||
7003 		    found_key.type > BTRFS_INODE_EXTREF_KEY)
7004 			break;
7005 
7006 		/*
7007 		 * Don't deal with extended references because they are rare
7008 		 * cases and too complex to deal with (we would need to keep
7009 		 * track of which subitem we are processing for each item in
7010 		 * this loop, etc). So just return some error to fallback to
7011 		 * a transaction commit.
7012 		 */
7013 		if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
7014 			ret = -EMLINK;
7015 			goto out;
7016 		}
7017 
7018 		/*
7019 		 * Logging ancestors needs to do more searches on the fs/subvol
7020 		 * tree, so it releases the path as needed to avoid deadlocks.
7021 		 * Keep track of the last inode ref key and resume from that key
7022 		 * after logging all new ancestors for the current hard link.
7023 		 */
7024 		memcpy(&search_key, &found_key, sizeof(search_key));
7025 
7026 		ret = log_new_ancestors(trans, root, path, ctx);
7027 		if (ret)
7028 			goto out;
7029 		btrfs_release_path(path);
7030 		goto again;
7031 	}
7032 	ret = 0;
7033 out:
7034 	btrfs_free_path(path);
7035 	return ret;
7036 }
7037 
7038 /*
7039  * helper function around btrfs_log_inode to make sure newly created
7040  * parent directories also end up in the log.  A minimal inode and backref
7041  * only logging is done of any parent directories that are older than
7042  * the last committed transaction
7043  */
btrfs_log_inode_parent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,int inode_only,struct btrfs_log_ctx * ctx)7044 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
7045 				  struct btrfs_inode *inode,
7046 				  struct dentry *parent,
7047 				  int inode_only,
7048 				  struct btrfs_log_ctx *ctx)
7049 {
7050 	struct btrfs_root *root = inode->root;
7051 	struct btrfs_fs_info *fs_info = root->fs_info;
7052 	int ret = 0;
7053 	bool log_dentries;
7054 
7055 	if (btrfs_test_opt(fs_info, NOTREELOG))
7056 		return BTRFS_LOG_FORCE_COMMIT;
7057 
7058 	if (btrfs_root_refs(&root->root_item) == 0)
7059 		return BTRFS_LOG_FORCE_COMMIT;
7060 
7061 	/*
7062 	 * If we're logging an inode from a subvolume created in the current
7063 	 * transaction we must force a commit since the root is not persisted.
7064 	 */
7065 	if (btrfs_root_generation(&root->root_item) == trans->transid)
7066 		return BTRFS_LOG_FORCE_COMMIT;
7067 
7068 	/* Skip already logged inodes and without new extents. */
7069 	if (btrfs_inode_in_log(inode, trans->transid) &&
7070 	    list_empty(&ctx->ordered_extents))
7071 		return BTRFS_NO_LOG_SYNC;
7072 
7073 	ret = start_log_trans(trans, root, ctx);
7074 	if (ret)
7075 		return ret;
7076 
7077 	ret = btrfs_log_inode(trans, inode, inode_only, ctx);
7078 	if (ret)
7079 		goto end_trans;
7080 
7081 	/*
7082 	 * for regular files, if its inode is already on disk, we don't
7083 	 * have to worry about the parents at all.  This is because
7084 	 * we can use the last_unlink_trans field to record renames
7085 	 * and other fun in this file.
7086 	 */
7087 	if (S_ISREG(inode->vfs_inode.i_mode) &&
7088 	    inode->generation < trans->transid &&
7089 	    inode->last_unlink_trans < trans->transid) {
7090 		ret = 0;
7091 		goto end_trans;
7092 	}
7093 
7094 	/*
7095 	 * Track if we need to log dentries because ctx->log_new_dentries can
7096 	 * be modified in the call chains below.
7097 	 */
7098 	log_dentries = ctx->log_new_dentries;
7099 
7100 	/*
7101 	 * On unlink we must make sure all our current and old parent directory
7102 	 * inodes are fully logged. This is to prevent leaving dangling
7103 	 * directory index entries in directories that were our parents but are
7104 	 * not anymore. Not doing this results in old parent directory being
7105 	 * impossible to delete after log replay (rmdir will always fail with
7106 	 * error -ENOTEMPTY).
7107 	 *
7108 	 * Example 1:
7109 	 *
7110 	 * mkdir testdir
7111 	 * touch testdir/foo
7112 	 * ln testdir/foo testdir/bar
7113 	 * sync
7114 	 * unlink testdir/bar
7115 	 * xfs_io -c fsync testdir/foo
7116 	 * <power failure>
7117 	 * mount fs, triggers log replay
7118 	 *
7119 	 * If we don't log the parent directory (testdir), after log replay the
7120 	 * directory still has an entry pointing to the file inode using the bar
7121 	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
7122 	 * the file inode has a link count of 1.
7123 	 *
7124 	 * Example 2:
7125 	 *
7126 	 * mkdir testdir
7127 	 * touch foo
7128 	 * ln foo testdir/foo2
7129 	 * ln foo testdir/foo3
7130 	 * sync
7131 	 * unlink testdir/foo3
7132 	 * xfs_io -c fsync foo
7133 	 * <power failure>
7134 	 * mount fs, triggers log replay
7135 	 *
7136 	 * Similar as the first example, after log replay the parent directory
7137 	 * testdir still has an entry pointing to the inode file with name foo3
7138 	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
7139 	 * and has a link count of 2.
7140 	 */
7141 	if (inode->last_unlink_trans >= trans->transid) {
7142 		ret = btrfs_log_all_parents(trans, inode, ctx);
7143 		if (ret)
7144 			goto end_trans;
7145 	}
7146 
7147 	ret = log_all_new_ancestors(trans, inode, parent, ctx);
7148 	if (ret)
7149 		goto end_trans;
7150 
7151 	if (log_dentries)
7152 		ret = log_new_dir_dentries(trans, inode, ctx);
7153 end_trans:
7154 	if (ret < 0) {
7155 		btrfs_set_log_full_commit(trans);
7156 		ret = BTRFS_LOG_FORCE_COMMIT;
7157 	}
7158 
7159 	if (ret)
7160 		btrfs_remove_log_ctx(root, ctx);
7161 	btrfs_end_log_trans(root);
7162 
7163 	return ret;
7164 }
7165 
7166 /*
7167  * it is not safe to log dentry if the chunk root has added new
7168  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
7169  * If this returns 1, you must commit the transaction to safely get your
7170  * data on disk.
7171  */
btrfs_log_dentry_safe(struct btrfs_trans_handle * trans,struct dentry * dentry,struct btrfs_log_ctx * ctx)7172 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
7173 			  struct dentry *dentry,
7174 			  struct btrfs_log_ctx *ctx)
7175 {
7176 	struct dentry *parent = dget_parent(dentry);
7177 	int ret;
7178 
7179 	ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
7180 				     LOG_INODE_ALL, ctx);
7181 	dput(parent);
7182 
7183 	return ret;
7184 }
7185 
7186 /*
7187  * should be called during mount to recover any replay any log trees
7188  * from the FS
7189  */
btrfs_recover_log_trees(struct btrfs_root * log_root_tree)7190 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
7191 {
7192 	int ret;
7193 	struct btrfs_path *path;
7194 	struct btrfs_trans_handle *trans;
7195 	struct btrfs_key key;
7196 	struct btrfs_key found_key;
7197 	struct btrfs_root *log;
7198 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
7199 	struct walk_control wc = {
7200 		.process_func = process_one_buffer,
7201 		.stage = LOG_WALK_PIN_ONLY,
7202 	};
7203 
7204 	path = btrfs_alloc_path();
7205 	if (!path)
7206 		return -ENOMEM;
7207 
7208 	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7209 
7210 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
7211 	if (IS_ERR(trans)) {
7212 		ret = PTR_ERR(trans);
7213 		goto error;
7214 	}
7215 
7216 	wc.trans = trans;
7217 	wc.pin = 1;
7218 
7219 	ret = walk_log_tree(trans, log_root_tree, &wc);
7220 	if (ret) {
7221 		btrfs_abort_transaction(trans, ret);
7222 		goto error;
7223 	}
7224 
7225 again:
7226 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
7227 	key.type = BTRFS_ROOT_ITEM_KEY;
7228 	key.offset = (u64)-1;
7229 
7230 	while (1) {
7231 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
7232 
7233 		if (ret < 0) {
7234 			btrfs_abort_transaction(trans, ret);
7235 			goto error;
7236 		}
7237 		if (ret > 0) {
7238 			if (path->slots[0] == 0)
7239 				break;
7240 			path->slots[0]--;
7241 		}
7242 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
7243 				      path->slots[0]);
7244 		btrfs_release_path(path);
7245 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7246 			break;
7247 
7248 		log = btrfs_read_tree_root(log_root_tree, &found_key);
7249 		if (IS_ERR(log)) {
7250 			ret = PTR_ERR(log);
7251 			btrfs_abort_transaction(trans, ret);
7252 			goto error;
7253 		}
7254 
7255 		wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
7256 						   true);
7257 		if (IS_ERR(wc.replay_dest)) {
7258 			ret = PTR_ERR(wc.replay_dest);
7259 
7260 			/*
7261 			 * We didn't find the subvol, likely because it was
7262 			 * deleted.  This is ok, simply skip this log and go to
7263 			 * the next one.
7264 			 *
7265 			 * We need to exclude the root because we can't have
7266 			 * other log replays overwriting this log as we'll read
7267 			 * it back in a few more times.  This will keep our
7268 			 * block from being modified, and we'll just bail for
7269 			 * each subsequent pass.
7270 			 */
7271 			if (ret == -ENOENT)
7272 				ret = btrfs_pin_extent_for_log_replay(trans, log->node);
7273 			btrfs_put_root(log);
7274 
7275 			if (!ret)
7276 				goto next;
7277 			btrfs_abort_transaction(trans, ret);
7278 			goto error;
7279 		}
7280 
7281 		wc.replay_dest->log_root = log;
7282 		ret = btrfs_record_root_in_trans(trans, wc.replay_dest);
7283 		if (ret)
7284 			/* The loop needs to continue due to the root refs */
7285 			btrfs_abort_transaction(trans, ret);
7286 		else
7287 			ret = walk_log_tree(trans, log, &wc);
7288 
7289 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7290 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
7291 						      path);
7292 			if (ret)
7293 				btrfs_abort_transaction(trans, ret);
7294 		}
7295 
7296 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7297 			struct btrfs_root *root = wc.replay_dest;
7298 
7299 			btrfs_release_path(path);
7300 
7301 			/*
7302 			 * We have just replayed everything, and the highest
7303 			 * objectid of fs roots probably has changed in case
7304 			 * some inode_item's got replayed.
7305 			 *
7306 			 * root->objectid_mutex is not acquired as log replay
7307 			 * could only happen during mount.
7308 			 */
7309 			ret = btrfs_init_root_free_objectid(root);
7310 			if (ret)
7311 				btrfs_abort_transaction(trans, ret);
7312 		}
7313 
7314 		wc.replay_dest->log_root = NULL;
7315 		btrfs_put_root(wc.replay_dest);
7316 		btrfs_put_root(log);
7317 
7318 		if (ret)
7319 			goto error;
7320 next:
7321 		if (found_key.offset == 0)
7322 			break;
7323 		key.offset = found_key.offset - 1;
7324 	}
7325 	btrfs_release_path(path);
7326 
7327 	/* step one is to pin it all, step two is to replay just inodes */
7328 	if (wc.pin) {
7329 		wc.pin = 0;
7330 		wc.process_func = replay_one_buffer;
7331 		wc.stage = LOG_WALK_REPLAY_INODES;
7332 		goto again;
7333 	}
7334 	/* step three is to replay everything */
7335 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
7336 		wc.stage++;
7337 		goto again;
7338 	}
7339 
7340 	btrfs_free_path(path);
7341 
7342 	/* step 4: commit the transaction, which also unpins the blocks */
7343 	ret = btrfs_commit_transaction(trans);
7344 	if (ret)
7345 		return ret;
7346 
7347 	log_root_tree->log_root = NULL;
7348 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7349 	btrfs_put_root(log_root_tree);
7350 
7351 	return 0;
7352 error:
7353 	if (wc.trans)
7354 		btrfs_end_transaction(wc.trans);
7355 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7356 	btrfs_free_path(path);
7357 	return ret;
7358 }
7359 
7360 /*
7361  * there are some corner cases where we want to force a full
7362  * commit instead of allowing a directory to be logged.
7363  *
7364  * They revolve around files there were unlinked from the directory, and
7365  * this function updates the parent directory so that a full commit is
7366  * properly done if it is fsync'd later after the unlinks are done.
7367  *
7368  * Must be called before the unlink operations (updates to the subvolume tree,
7369  * inodes, etc) are done.
7370  */
btrfs_record_unlink_dir(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_inode * inode,bool for_rename)7371 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
7372 			     struct btrfs_inode *dir, struct btrfs_inode *inode,
7373 			     bool for_rename)
7374 {
7375 	/*
7376 	 * when we're logging a file, if it hasn't been renamed
7377 	 * or unlinked, and its inode is fully committed on disk,
7378 	 * we don't have to worry about walking up the directory chain
7379 	 * to log its parents.
7380 	 *
7381 	 * So, we use the last_unlink_trans field to put this transid
7382 	 * into the file.  When the file is logged we check it and
7383 	 * don't log the parents if the file is fully on disk.
7384 	 */
7385 	mutex_lock(&inode->log_mutex);
7386 	inode->last_unlink_trans = trans->transid;
7387 	mutex_unlock(&inode->log_mutex);
7388 
7389 	if (!for_rename)
7390 		return;
7391 
7392 	/*
7393 	 * If this directory was already logged, any new names will be logged
7394 	 * with btrfs_log_new_name() and old names will be deleted from the log
7395 	 * tree with btrfs_del_dir_entries_in_log() or with
7396 	 * btrfs_del_inode_ref_in_log().
7397 	 */
7398 	if (inode_logged(trans, dir, NULL) == 1)
7399 		return;
7400 
7401 	/*
7402 	 * If the inode we're about to unlink was logged before, the log will be
7403 	 * properly updated with the new name with btrfs_log_new_name() and the
7404 	 * old name removed with btrfs_del_dir_entries_in_log() or with
7405 	 * btrfs_del_inode_ref_in_log().
7406 	 */
7407 	if (inode_logged(trans, inode, NULL) == 1)
7408 		return;
7409 
7410 	/*
7411 	 * when renaming files across directories, if the directory
7412 	 * there we're unlinking from gets fsync'd later on, there's
7413 	 * no way to find the destination directory later and fsync it
7414 	 * properly.  So, we have to be conservative and force commits
7415 	 * so the new name gets discovered.
7416 	 */
7417 	mutex_lock(&dir->log_mutex);
7418 	dir->last_unlink_trans = trans->transid;
7419 	mutex_unlock(&dir->log_mutex);
7420 }
7421 
7422 /*
7423  * Make sure that if someone attempts to fsync the parent directory of a deleted
7424  * snapshot, it ends up triggering a transaction commit. This is to guarantee
7425  * that after replaying the log tree of the parent directory's root we will not
7426  * see the snapshot anymore and at log replay time we will not see any log tree
7427  * corresponding to the deleted snapshot's root, which could lead to replaying
7428  * it after replaying the log tree of the parent directory (which would replay
7429  * the snapshot delete operation).
7430  *
7431  * Must be called before the actual snapshot destroy operation (updates to the
7432  * parent root and tree of tree roots trees, etc) are done.
7433  */
btrfs_record_snapshot_destroy(struct btrfs_trans_handle * trans,struct btrfs_inode * dir)7434 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
7435 				   struct btrfs_inode *dir)
7436 {
7437 	mutex_lock(&dir->log_mutex);
7438 	dir->last_unlink_trans = trans->transid;
7439 	mutex_unlock(&dir->log_mutex);
7440 }
7441 
7442 /*
7443  * Call this when creating a subvolume in a directory.
7444  * Because we don't commit a transaction when creating a subvolume, we can't
7445  * allow the directory pointing to the subvolume to be logged with an entry that
7446  * points to an unpersisted root if we are still in the transaction used to
7447  * create the subvolume, so make any attempt to log the directory to result in a
7448  * full log sync.
7449  * Also we don't need to worry with renames, since btrfs_rename() marks the log
7450  * for full commit when renaming a subvolume.
7451  */
btrfs_record_new_subvolume(const struct btrfs_trans_handle * trans,struct btrfs_inode * dir)7452 void btrfs_record_new_subvolume(const struct btrfs_trans_handle *trans,
7453 				struct btrfs_inode *dir)
7454 {
7455 	mutex_lock(&dir->log_mutex);
7456 	dir->last_unlink_trans = trans->transid;
7457 	mutex_unlock(&dir->log_mutex);
7458 }
7459 
7460 /*
7461  * Update the log after adding a new name for an inode.
7462  *
7463  * @trans:              Transaction handle.
7464  * @old_dentry:         The dentry associated with the old name and the old
7465  *                      parent directory.
7466  * @old_dir:            The inode of the previous parent directory for the case
7467  *                      of a rename. For a link operation, it must be NULL.
7468  * @old_dir_index:      The index number associated with the old name, meaningful
7469  *                      only for rename operations (when @old_dir is not NULL).
7470  *                      Ignored for link operations.
7471  * @parent:             The dentry associated with the directory under which the
7472  *                      new name is located.
7473  *
7474  * Call this after adding a new name for an inode, as a result of a link or
7475  * rename operation, and it will properly update the log to reflect the new name.
7476  */
btrfs_log_new_name(struct btrfs_trans_handle * trans,struct dentry * old_dentry,struct btrfs_inode * old_dir,u64 old_dir_index,struct dentry * parent)7477 void btrfs_log_new_name(struct btrfs_trans_handle *trans,
7478 			struct dentry *old_dentry, struct btrfs_inode *old_dir,
7479 			u64 old_dir_index, struct dentry *parent)
7480 {
7481 	struct btrfs_inode *inode = BTRFS_I(d_inode(old_dentry));
7482 	struct btrfs_root *root = inode->root;
7483 	struct btrfs_log_ctx ctx;
7484 	bool log_pinned = false;
7485 	int ret;
7486 
7487 	/*
7488 	 * this will force the logging code to walk the dentry chain
7489 	 * up for the file
7490 	 */
7491 	if (!S_ISDIR(inode->vfs_inode.i_mode))
7492 		inode->last_unlink_trans = trans->transid;
7493 
7494 	/*
7495 	 * if this inode hasn't been logged and directory we're renaming it
7496 	 * from hasn't been logged, we don't need to log it
7497 	 */
7498 	ret = inode_logged(trans, inode, NULL);
7499 	if (ret < 0) {
7500 		goto out;
7501 	} else if (ret == 0) {
7502 		if (!old_dir)
7503 			return;
7504 		/*
7505 		 * If the inode was not logged and we are doing a rename (old_dir is not
7506 		 * NULL), check if old_dir was logged - if it was not we can return and
7507 		 * do nothing.
7508 		 */
7509 		ret = inode_logged(trans, old_dir, NULL);
7510 		if (ret < 0)
7511 			goto out;
7512 		else if (ret == 0)
7513 			return;
7514 	}
7515 	ret = 0;
7516 
7517 	/*
7518 	 * If we are doing a rename (old_dir is not NULL) from a directory that
7519 	 * was previously logged, make sure that on log replay we get the old
7520 	 * dir entry deleted. This is needed because we will also log the new
7521 	 * name of the renamed inode, so we need to make sure that after log
7522 	 * replay we don't end up with both the new and old dir entries existing.
7523 	 */
7524 	if (old_dir && old_dir->logged_trans == trans->transid) {
7525 		struct btrfs_root *log = old_dir->root->log_root;
7526 		struct btrfs_path *path;
7527 		struct fscrypt_name fname;
7528 
7529 		ASSERT(old_dir_index >= BTRFS_DIR_START_INDEX);
7530 
7531 		ret = fscrypt_setup_filename(&old_dir->vfs_inode,
7532 					     &old_dentry->d_name, 0, &fname);
7533 		if (ret)
7534 			goto out;
7535 		/*
7536 		 * We have two inodes to update in the log, the old directory and
7537 		 * the inode that got renamed, so we must pin the log to prevent
7538 		 * anyone from syncing the log until we have updated both inodes
7539 		 * in the log.
7540 		 */
7541 		ret = join_running_log_trans(root);
7542 		/*
7543 		 * At least one of the inodes was logged before, so this should
7544 		 * not fail, but if it does, it's not serious, just bail out and
7545 		 * mark the log for a full commit.
7546 		 */
7547 		if (WARN_ON_ONCE(ret < 0)) {
7548 			fscrypt_free_filename(&fname);
7549 			goto out;
7550 		}
7551 
7552 		log_pinned = true;
7553 
7554 		path = btrfs_alloc_path();
7555 		if (!path) {
7556 			ret = -ENOMEM;
7557 			fscrypt_free_filename(&fname);
7558 			goto out;
7559 		}
7560 
7561 		/*
7562 		 * Other concurrent task might be logging the old directory,
7563 		 * as it can be triggered when logging other inode that had or
7564 		 * still has a dentry in the old directory. We lock the old
7565 		 * directory's log_mutex to ensure the deletion of the old
7566 		 * name is persisted, because during directory logging we
7567 		 * delete all BTRFS_DIR_LOG_INDEX_KEY keys and the deletion of
7568 		 * the old name's dir index item is in the delayed items, so
7569 		 * it could be missed by an in progress directory logging.
7570 		 */
7571 		mutex_lock(&old_dir->log_mutex);
7572 		ret = del_logged_dentry(trans, log, path, btrfs_ino(old_dir),
7573 					&fname.disk_name, old_dir_index);
7574 		if (ret > 0) {
7575 			/*
7576 			 * The dentry does not exist in the log, so record its
7577 			 * deletion.
7578 			 */
7579 			btrfs_release_path(path);
7580 			ret = insert_dir_log_key(trans, log, path,
7581 						 btrfs_ino(old_dir),
7582 						 old_dir_index, old_dir_index);
7583 		}
7584 		mutex_unlock(&old_dir->log_mutex);
7585 
7586 		btrfs_free_path(path);
7587 		fscrypt_free_filename(&fname);
7588 		if (ret < 0)
7589 			goto out;
7590 	}
7591 
7592 	btrfs_init_log_ctx(&ctx, inode);
7593 	ctx.logging_new_name = true;
7594 	btrfs_init_log_ctx_scratch_eb(&ctx);
7595 	/*
7596 	 * We don't care about the return value. If we fail to log the new name
7597 	 * then we know the next attempt to sync the log will fallback to a full
7598 	 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
7599 	 * we don't need to worry about getting a log committed that has an
7600 	 * inconsistent state after a rename operation.
7601 	 */
7602 	btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
7603 	free_extent_buffer(ctx.scratch_eb);
7604 	ASSERT(list_empty(&ctx.conflict_inodes));
7605 out:
7606 	/*
7607 	 * If an error happened mark the log for a full commit because it's not
7608 	 * consistent and up to date or we couldn't find out if one of the
7609 	 * inodes was logged before in this transaction. Do it before unpinning
7610 	 * the log, to avoid any races with someone else trying to commit it.
7611 	 */
7612 	if (ret < 0)
7613 		btrfs_set_log_full_commit(trans);
7614 	if (log_pinned)
7615 		btrfs_end_log_trans(root);
7616 }
7617 
7618