1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #ifndef BTRFS_VOLUMES_H 7 #define BTRFS_VOLUMES_H 8 9 #include <linux/blk_types.h> 10 #include <linux/blkdev.h> 11 #include <linux/sizes.h> 12 #include <linux/atomic.h> 13 #include <linux/sort.h> 14 #include <linux/list.h> 15 #include <linux/mutex.h> 16 #include <linux/log2.h> 17 #include <linux/kobject.h> 18 #include <linux/refcount.h> 19 #include <linux/completion.h> 20 #include <linux/rbtree.h> 21 #include <uapi/linux/btrfs.h> 22 #include <uapi/linux/btrfs_tree.h> 23 #include "messages.h" 24 #include "extent-io-tree.h" 25 26 struct block_device; 27 struct bdev_handle; 28 struct btrfs_fs_info; 29 struct btrfs_block_group; 30 struct btrfs_trans_handle; 31 struct btrfs_transaction; 32 struct btrfs_zoned_device_info; 33 struct btrfs_space_info; 34 35 #define BTRFS_MAX_DATA_CHUNK_SIZE (10ULL * SZ_1G) 36 37 /* 38 * Arbitrary maximum size of one discard request to limit potentially long time 39 * spent in blkdev_issue_discard(). 40 */ 41 #define BTRFS_MAX_DISCARD_CHUNK_SIZE (SZ_1G) 42 43 extern struct mutex uuid_mutex; 44 45 #define BTRFS_STRIPE_LEN SZ_64K 46 #define BTRFS_STRIPE_LEN_SHIFT (16) 47 #define BTRFS_STRIPE_LEN_MASK (BTRFS_STRIPE_LEN - 1) 48 49 static_assert(ilog2(BTRFS_STRIPE_LEN) == BTRFS_STRIPE_LEN_SHIFT); 50 51 /* Used by sanity check for btrfs_raid_types. */ 52 #define const_ffs(n) (__builtin_ctzll(n) + 1) 53 54 /* 55 * The conversion from BTRFS_BLOCK_GROUP_* bits to btrfs_raid_type requires 56 * RAID0 always to be the lowest profile bit. 57 * Although it's part of on-disk format and should never change, do extra 58 * compile-time sanity checks. 59 */ 60 static_assert(const_ffs(BTRFS_BLOCK_GROUP_RAID0) < 61 const_ffs(BTRFS_BLOCK_GROUP_PROFILE_MASK & ~BTRFS_BLOCK_GROUP_RAID0)); 62 63 /* ilog2() can handle both constants and variables */ 64 #define BTRFS_BG_FLAG_TO_INDEX(profile) \ 65 ilog2((profile) >> (ilog2(BTRFS_BLOCK_GROUP_RAID0) - 1)) 66 67 enum btrfs_raid_types { 68 /* SINGLE is the special one as it doesn't have on-disk bit. */ 69 BTRFS_RAID_SINGLE = 0, 70 71 BTRFS_RAID_RAID0 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID0), 72 BTRFS_RAID_RAID1 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID1), 73 BTRFS_RAID_DUP = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_DUP), 74 BTRFS_RAID_RAID10 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID10), 75 BTRFS_RAID_RAID5 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID5), 76 BTRFS_RAID_RAID6 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID6), 77 BTRFS_RAID_RAID1C3 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID1C3), 78 BTRFS_RAID_RAID1C4 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID1C4), 79 80 BTRFS_NR_RAID_TYPES 81 }; 82 83 static_assert(BTRFS_RAID_RAID0 == 1); 84 static_assert(BTRFS_RAID_RAID1 == 2); 85 static_assert(BTRFS_RAID_DUP == 3); 86 static_assert(BTRFS_RAID_RAID10 == 4); 87 static_assert(BTRFS_RAID_RAID5 == 5); 88 static_assert(BTRFS_RAID_RAID6 == 6); 89 static_assert(BTRFS_RAID_RAID1C3 == 7); 90 static_assert(BTRFS_RAID_RAID1C4 == 8); 91 92 /* 93 * Use sequence counter to get consistent device stat data on 94 * 32-bit processors. 95 */ 96 #if BITS_PER_LONG==32 && defined(CONFIG_SMP) 97 #include <linux/seqlock.h> 98 #define __BTRFS_NEED_DEVICE_DATA_ORDERED 99 #define btrfs_device_data_ordered_init(device) \ 100 seqcount_init(&device->data_seqcount) 101 #else 102 #define btrfs_device_data_ordered_init(device) do { } while (0) 103 #endif 104 105 #define BTRFS_DEV_STATE_WRITEABLE (0) 106 #define BTRFS_DEV_STATE_IN_FS_METADATA (1) 107 #define BTRFS_DEV_STATE_MISSING (2) 108 #define BTRFS_DEV_STATE_REPLACE_TGT (3) 109 #define BTRFS_DEV_STATE_FLUSH_SENT (4) 110 #define BTRFS_DEV_STATE_NO_READA (5) 111 #define BTRFS_DEV_STATE_FLUSH_FAILED (6) 112 113 /* Set when the device item is found in chunk tree, used to catch unexpected registered device. */ 114 #define BTRFS_DEV_STATE_ITEM_FOUND (7) 115 116 /* Special value encoding failure to write primary super block. */ 117 #define BTRFS_SUPER_PRIMARY_WRITE_ERROR (INT_MAX / 2) 118 119 struct btrfs_fs_devices; 120 121 struct btrfs_device { 122 struct list_head dev_list; /* device_list_mutex */ 123 struct list_head dev_alloc_list; /* chunk mutex */ 124 struct list_head post_commit_list; /* chunk mutex */ 125 struct btrfs_fs_devices *fs_devices; 126 struct btrfs_fs_info *fs_info; 127 128 /* Device path or NULL if missing. */ 129 const char __rcu *name; 130 131 u64 generation; 132 133 struct file *bdev_file; 134 struct block_device *bdev; 135 136 struct btrfs_zoned_device_info *zone_info; 137 138 unsigned long dev_state; 139 140 #ifdef __BTRFS_NEED_DEVICE_DATA_ORDERED 141 seqcount_t data_seqcount; 142 #endif 143 144 /* the internal btrfs device id */ 145 u64 devid; 146 147 /* size of the device in memory */ 148 u64 total_bytes; 149 150 /* size of the device on disk */ 151 u64 disk_total_bytes; 152 153 /* bytes used */ 154 u64 bytes_used; 155 156 /* optimal io alignment for this device */ 157 u32 io_align; 158 159 /* optimal io width for this device */ 160 u32 io_width; 161 /* type and info about this device */ 162 u64 type; 163 164 /* 165 * Counter of super block write errors, values larger than 166 * BTRFS_SUPER_PRIMARY_WRITE_ERROR encode primary super block write failure. 167 */ 168 atomic_t sb_write_errors; 169 170 /* minimal io size for this device */ 171 u32 sector_size; 172 173 /* physical drive uuid (or lvm uuid) */ 174 u8 uuid[BTRFS_UUID_SIZE]; 175 176 /* 177 * size of the device on the current transaction 178 * 179 * This variant is update when committing the transaction, 180 * and protected by chunk mutex 181 */ 182 u64 commit_total_bytes; 183 184 /* bytes used on the current transaction */ 185 u64 commit_bytes_used; 186 187 /* Bio used for flushing device barriers */ 188 struct bio flush_bio; 189 struct completion flush_wait; 190 191 /* per-device scrub information */ 192 struct scrub_ctx *scrub_ctx; 193 194 /* disk I/O failure stats. For detailed description refer to 195 * enum btrfs_dev_stat_values in ioctl.h */ 196 int dev_stats_valid; 197 198 /* Counter to record the change of device stats */ 199 atomic_t dev_stats_ccnt; 200 atomic_t dev_stat_values[BTRFS_DEV_STAT_VALUES_MAX]; 201 202 /* 203 * Device's major-minor number. Must be set even if the device is not 204 * opened (bdev == NULL), unless the device is missing. 205 */ 206 dev_t devt; 207 208 struct extent_io_tree alloc_state; 209 210 struct completion kobj_unregister; 211 /* For sysfs/FSID/devinfo/devid/ */ 212 struct kobject devid_kobj; 213 214 /* Bandwidth limit for scrub, in bytes */ 215 u64 scrub_speed_max; 216 }; 217 218 /* 219 * Block group or device which contains an active swapfile. Used for preventing 220 * unsafe operations while a swapfile is active. 221 * 222 * These are sorted on (ptr, inode) (note that a block group or device can 223 * contain more than one swapfile). We compare the pointer values because we 224 * don't actually care what the object is, we just need a quick check whether 225 * the object exists in the rbtree. 226 */ 227 struct btrfs_swapfile_pin { 228 struct rb_node node; 229 void *ptr; 230 struct inode *inode; 231 /* 232 * If true, ptr points to a struct btrfs_block_group. Otherwise, ptr 233 * points to a struct btrfs_device. 234 */ 235 bool is_block_group; 236 /* 237 * Only used when 'is_block_group' is true and it is the number of 238 * extents used by a swapfile for this block group ('ptr' field). 239 */ 240 int bg_extent_count; 241 }; 242 243 /* 244 * If we read those variants at the context of their own lock, we needn't 245 * use the following helpers, reading them directly is safe. 246 */ 247 #if BITS_PER_LONG==32 && defined(CONFIG_SMP) 248 #define BTRFS_DEVICE_GETSET_FUNCS(name) \ 249 static inline u64 \ 250 btrfs_device_get_##name(const struct btrfs_device *dev) \ 251 { \ 252 u64 size; \ 253 unsigned int seq; \ 254 \ 255 do { \ 256 seq = read_seqcount_begin(&dev->data_seqcount); \ 257 size = dev->name; \ 258 } while (read_seqcount_retry(&dev->data_seqcount, seq)); \ 259 return size; \ 260 } \ 261 \ 262 static inline void \ 263 btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \ 264 { \ 265 preempt_disable(); \ 266 write_seqcount_begin(&dev->data_seqcount); \ 267 dev->name = size; \ 268 write_seqcount_end(&dev->data_seqcount); \ 269 preempt_enable(); \ 270 } 271 #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION) 272 #define BTRFS_DEVICE_GETSET_FUNCS(name) \ 273 static inline u64 \ 274 btrfs_device_get_##name(const struct btrfs_device *dev) \ 275 { \ 276 u64 size; \ 277 \ 278 preempt_disable(); \ 279 size = dev->name; \ 280 preempt_enable(); \ 281 return size; \ 282 } \ 283 \ 284 static inline void \ 285 btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \ 286 { \ 287 preempt_disable(); \ 288 dev->name = size; \ 289 preempt_enable(); \ 290 } 291 #else 292 #define BTRFS_DEVICE_GETSET_FUNCS(name) \ 293 static inline u64 \ 294 btrfs_device_get_##name(const struct btrfs_device *dev) \ 295 { \ 296 return dev->name; \ 297 } \ 298 \ 299 static inline void \ 300 btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \ 301 { \ 302 dev->name = size; \ 303 } 304 #endif 305 306 BTRFS_DEVICE_GETSET_FUNCS(total_bytes); 307 BTRFS_DEVICE_GETSET_FUNCS(disk_total_bytes); 308 BTRFS_DEVICE_GETSET_FUNCS(bytes_used); 309 310 enum btrfs_chunk_allocation_policy { 311 BTRFS_CHUNK_ALLOC_REGULAR, 312 BTRFS_CHUNK_ALLOC_ZONED, 313 }; 314 315 #define BTRFS_DEFAULT_RR_MIN_CONTIG_READ (SZ_256K) 316 /* Keep in sync with raid_attr table, current maximum is RAID1C4. */ 317 #define BTRFS_RAID1_MAX_MIRRORS (4) 318 /* 319 * Read policies for mirrored block group profiles, read picks the stripe based 320 * on these policies. 321 */ 322 enum btrfs_read_policy { 323 /* Use process PID to choose the stripe */ 324 BTRFS_READ_POLICY_PID, 325 #ifdef CONFIG_BTRFS_EXPERIMENTAL 326 /* Balancing RAID1 reads across all striped devices (round-robin). */ 327 BTRFS_READ_POLICY_RR, 328 /* Read from a specific device. */ 329 BTRFS_READ_POLICY_DEVID, 330 #endif 331 BTRFS_NR_READ_POLICY, 332 }; 333 334 struct btrfs_fs_devices { 335 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */ 336 337 /* 338 * UUID written into the btree blocks: 339 * 340 * - If metadata_uuid != fsid then super block must have 341 * BTRFS_FEATURE_INCOMPAT_METADATA_UUID flag set. 342 * 343 * - Following shall be true at all times: 344 * - metadata_uuid == btrfs_header::fsid 345 * - metadata_uuid == btrfs_dev_item::fsid 346 * 347 * - Relations between fsid and metadata_uuid in sb and fs_devices: 348 * - Normal: 349 * fs_devices->fsid == fs_devices->metadata_uuid == sb->fsid 350 * sb->metadata_uuid == 0 351 * 352 * - When the BTRFS_FEATURE_INCOMPAT_METADATA_UUID flag is set: 353 * fs_devices->fsid == sb->fsid 354 * fs_devices->metadata_uuid == sb->metadata_uuid 355 * 356 * - When in-memory fs_devices->temp_fsid is true 357 * fs_devices->fsid = random 358 * fs_devices->metadata_uuid == sb->fsid 359 */ 360 u8 metadata_uuid[BTRFS_FSID_SIZE]; 361 362 struct list_head fs_list; 363 364 /* 365 * Number of devices under this fsid including missing and 366 * replace-target device and excludes seed devices. 367 */ 368 u64 num_devices; 369 370 /* 371 * The number of devices that successfully opened, including 372 * replace-target, excludes seed devices. 373 */ 374 u64 open_devices; 375 376 /* The number of devices that are under the chunk allocation list. */ 377 u64 rw_devices; 378 379 /* Count of missing devices under this fsid excluding seed device. */ 380 u64 missing_devices; 381 u64 total_rw_bytes; 382 383 /* 384 * Count of devices from btrfs_super_block::num_devices for this fsid, 385 * which includes the seed device, excludes the transient replace-target 386 * device. 387 */ 388 u64 total_devices; 389 390 /* Highest generation number of seen devices */ 391 u64 latest_generation; 392 393 /* 394 * The mount device or a device with highest generation after removal 395 * or replace. 396 */ 397 struct btrfs_device *latest_dev; 398 399 /* 400 * All of the devices in the filesystem, protected by a mutex so we can 401 * safely walk it to write out the super blocks without worrying about 402 * adding/removing by the multi-device code. Scrubbing super block can 403 * kick off supers writing by holding this mutex lock. 404 */ 405 struct mutex device_list_mutex; 406 407 /* List of all devices, protected by device_list_mutex */ 408 struct list_head devices; 409 410 /* Devices which can satisfy space allocation. Protected by * chunk_mutex. */ 411 struct list_head alloc_list; 412 413 struct list_head seed_list; 414 415 /* Count fs-devices opened. */ 416 int opened; 417 418 /* 419 * Counter of the processes that are holding this fs_devices but not 420 * yet opened. 421 * This is for mounting handling, as we can only open the fs_devices 422 * after a super block is created. But we cannot take uuid_mutex 423 * during sget_fc(), thus we have to hold the fs_devices (meaning it 424 * cannot be released) until a super block is returned. 425 */ 426 int holding; 427 428 /* Set when we find or add a device that doesn't have the nonrot flag set. */ 429 bool rotating; 430 /* Devices support TRIM/discard commands. */ 431 bool discardable; 432 /* The filesystem is a seed filesystem. */ 433 bool seeding; 434 /* The mount needs to use a randomly generated fsid. */ 435 bool temp_fsid; 436 /* Enable/disable the filesystem stats tracking. */ 437 bool collect_fs_stats; 438 439 struct btrfs_fs_info *fs_info; 440 /* sysfs kobjects */ 441 struct kobject fsid_kobj; 442 struct kobject *devices_kobj; 443 struct kobject *devinfo_kobj; 444 struct completion kobj_unregister; 445 446 enum btrfs_chunk_allocation_policy chunk_alloc_policy; 447 448 /* Policy used to read the mirrored stripes. */ 449 enum btrfs_read_policy read_policy; 450 451 #ifdef CONFIG_BTRFS_EXPERIMENTAL 452 /* 453 * Minimum contiguous reads before switching to next device, the unit 454 * is one block/sectorsize. 455 */ 456 u32 rr_min_contig_read; 457 458 /* Device to be used for reading in case of RAID1. */ 459 u64 read_devid; 460 #endif 461 }; 462 463 #define BTRFS_MAX_DEVS(info) ((BTRFS_MAX_ITEM_SIZE(info) \ 464 - sizeof(struct btrfs_chunk)) \ 465 / sizeof(struct btrfs_stripe) + 1) 466 467 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \ 468 - 2 * sizeof(struct btrfs_disk_key) \ 469 - 2 * sizeof(struct btrfs_chunk)) \ 470 / sizeof(struct btrfs_stripe) + 1) 471 472 struct btrfs_io_stripe { 473 struct btrfs_device *dev; 474 /* Block mapping. */ 475 u64 physical; 476 bool rst_search_commit_root; 477 /* For the endio handler. */ 478 struct btrfs_io_context *bioc; 479 }; 480 481 struct btrfs_discard_stripe { 482 struct btrfs_device *dev; 483 u64 physical; 484 u64 length; 485 }; 486 487 /* 488 * Context for IO submission for device stripe. 489 * 490 * - Track the unfinished mirrors for mirror based profiles 491 * Mirror based profiles are SINGLE/DUP/RAID1/RAID10. 492 * 493 * - Contain the logical -> physical mapping info 494 * Used by submit_stripe_bio() for mapping logical bio 495 * into physical device address. 496 * 497 * - Contain device replace info 498 * Used by handle_ops_on_dev_replace() to copy logical bios 499 * into the new device. 500 * 501 * - Contain RAID56 full stripe logical bytenrs 502 */ 503 struct btrfs_io_context { 504 refcount_t refs; 505 struct btrfs_fs_info *fs_info; 506 /* Taken from struct btrfs_chunk_map::type. */ 507 u64 map_type; 508 struct bio *orig_bio; 509 atomic_t error; 510 u16 max_errors; 511 bool use_rst; 512 513 u64 logical; 514 u64 size; 515 /* Raid stripe tree ordered entry. */ 516 struct list_head rst_ordered_entry; 517 518 /* 519 * The total number of stripes, including the extra duplicated 520 * stripe for replace. 521 */ 522 u16 num_stripes; 523 524 /* 525 * The mirror_num of this bioc. 526 * 527 * This is for reads which use 0 as mirror_num, thus we should return a 528 * valid mirror_num (>0) for the reader. 529 */ 530 u16 mirror_num; 531 532 /* 533 * The following two members are for dev-replace case only. 534 * 535 * @replace_nr_stripes: Number of duplicated stripes which need to be 536 * written to replace target. 537 * Should be <= 2 (2 for DUP, otherwise <= 1). 538 * @replace_stripe_src: The array indicates where the duplicated stripes 539 * are from. 540 * 541 * The @replace_stripe_src[] array is mostly for RAID56 cases. 542 * As non-RAID56 stripes share the same contents of the mapped range, 543 * thus no need to bother where the duplicated ones are from. 544 * 545 * But for RAID56 case, all stripes contain different contents, thus 546 * we need a way to know the mapping. 547 * 548 * There is an example for the two members, using a RAID5 write: 549 * 550 * num_stripes: 4 (3 + 1 duplicated write) 551 * stripes[0]: dev = devid 1, physical = X 552 * stripes[1]: dev = devid 2, physical = Y 553 * stripes[2]: dev = devid 3, physical = Z 554 * stripes[3]: dev = devid 0, physical = Y 555 * 556 * replace_nr_stripes = 1 557 * replace_stripe_src = 1 <- Means stripes[1] is involved in replace. 558 * The duplicated stripe index would be 559 * (@num_stripes - 1). 560 * 561 * Note, that we can still have cases replace_nr_stripes = 2 for DUP. 562 * In that case, all stripes share the same content, thus we don't 563 * need to bother @replace_stripe_src value at all. 564 */ 565 u16 replace_nr_stripes; 566 s16 replace_stripe_src; 567 /* 568 * Logical bytenr of the full stripe start, only for RAID56 cases. 569 * 570 * When this value is set to other than (u64)-1, the stripes[] should 571 * follow this pattern: 572 * 573 * (real_stripes = num_stripes - replace_nr_stripes) 574 * (data_stripes = (is_raid6) ? (real_stripes - 2) : (real_stripes - 1)) 575 * 576 * stripes[0]: The first data stripe 577 * stripes[1]: The second data stripe 578 * ... 579 * stripes[data_stripes - 1]: The last data stripe 580 * stripes[data_stripes]: The P stripe 581 * stripes[data_stripes + 1]: The Q stripe (only for RAID6). 582 */ 583 u64 full_stripe_logical; 584 struct btrfs_io_stripe stripes[]; 585 }; 586 587 struct btrfs_device_info { 588 struct btrfs_device *dev; 589 u64 dev_offset; 590 u64 max_avail; 591 u64 total_avail; 592 }; 593 594 struct btrfs_raid_attr { 595 u8 sub_stripes; /* sub_stripes info for map */ 596 u8 dev_stripes; /* stripes per dev */ 597 u8 devs_max; /* max devs to use */ 598 u8 devs_min; /* min devs needed */ 599 u8 tolerated_failures; /* max tolerated fail devs */ 600 u8 devs_increment; /* ndevs has to be a multiple of this */ 601 u8 ncopies; /* how many copies to data has */ 602 u8 nparity; /* number of stripes worth of bytes to store 603 * parity information */ 604 u8 mindev_error; /* error code if min devs requisite is unmet */ 605 const char raid_name[8]; /* name of the raid */ 606 u64 bg_flag; /* block group flag of the raid */ 607 }; 608 609 extern const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES]; 610 611 struct btrfs_chunk_map { 612 struct rb_node rb_node; 613 /* For mount time dev extent verification. */ 614 int verified_stripes; 615 refcount_t refs; 616 u64 start; 617 u64 chunk_len; 618 u64 stripe_size; 619 u64 type; 620 int io_align; 621 int io_width; 622 int num_stripes; 623 int sub_stripes; 624 struct btrfs_io_stripe stripes[]; 625 }; 626 627 #define btrfs_chunk_map_size(n) (sizeof(struct btrfs_chunk_map) + \ 628 (sizeof(struct btrfs_io_stripe) * (n))) 629 630 static inline void btrfs_free_chunk_map(struct btrfs_chunk_map *map) 631 { 632 if (map && refcount_dec_and_test(&map->refs)) { 633 ASSERT(RB_EMPTY_NODE(&map->rb_node)); 634 kfree(map); 635 } 636 } 637 DEFINE_FREE(btrfs_free_chunk_map, struct btrfs_chunk_map *, btrfs_free_chunk_map(_T)) 638 639 struct btrfs_balance_control { 640 struct btrfs_balance_args data; 641 struct btrfs_balance_args meta; 642 struct btrfs_balance_args sys; 643 644 u64 flags; 645 646 struct btrfs_balance_progress stat; 647 }; 648 649 /* 650 * Search for a given device by the set parameters 651 */ 652 struct btrfs_dev_lookup_args { 653 u64 devid; 654 u8 *uuid; 655 u8 *fsid; 656 /* 657 * If devt is specified, all other members will be ignored as it is 658 * enough to uniquely locate a device. 659 */ 660 dev_t devt; 661 bool missing; 662 }; 663 664 /* We have to initialize to -1 because BTRFS_DEV_REPLACE_DEVID is 0 */ 665 #define BTRFS_DEV_LOOKUP_ARGS_INIT { .devid = (u64)-1 } 666 667 #define BTRFS_DEV_LOOKUP_ARGS(name) \ 668 struct btrfs_dev_lookup_args name = BTRFS_DEV_LOOKUP_ARGS_INIT 669 670 enum btrfs_map_op { 671 BTRFS_MAP_READ, 672 BTRFS_MAP_WRITE, 673 BTRFS_MAP_GET_READ_MIRRORS, 674 }; 675 676 static inline enum btrfs_map_op btrfs_op(const struct bio *bio) 677 { 678 switch (bio_op(bio)) { 679 case REQ_OP_WRITE: 680 case REQ_OP_ZONE_APPEND: 681 return BTRFS_MAP_WRITE; 682 default: 683 WARN_ON_ONCE(1); 684 fallthrough; 685 case REQ_OP_READ: 686 return BTRFS_MAP_READ; 687 } 688 } 689 690 static inline unsigned long btrfs_chunk_item_size(int num_stripes) 691 { 692 ASSERT(num_stripes); 693 return sizeof(struct btrfs_chunk) + 694 sizeof(struct btrfs_stripe) * (num_stripes - 1); 695 } 696 697 /* 698 * Do the type safe conversion from stripe_nr to offset inside the chunk. 699 * 700 * @stripe_nr is u32, with left shift it can overflow u32 for chunks larger 701 * than 4G. This does the proper type cast to avoid overflow. 702 */ 703 static inline u64 btrfs_stripe_nr_to_offset(u32 stripe_nr) 704 { 705 return (u64)stripe_nr << BTRFS_STRIPE_LEN_SHIFT; 706 } 707 708 void btrfs_get_bioc(struct btrfs_io_context *bioc); 709 void btrfs_put_bioc(struct btrfs_io_context *bioc); 710 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 711 u64 logical, u64 *length, 712 struct btrfs_io_context **bioc_ret, 713 struct btrfs_io_stripe *smap, int *mirror_num_ret); 714 int btrfs_map_repair_block(struct btrfs_fs_info *fs_info, 715 struct btrfs_io_stripe *smap, u64 logical, 716 u32 length, int mirror_num); 717 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info, 718 u64 logical, u64 *length_ret, 719 u32 *num_stripes, bool do_remap); 720 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info); 721 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info); 722 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans, 723 struct btrfs_space_info *space_info, 724 u64 type); 725 void btrfs_mapping_tree_free(struct btrfs_fs_info *fs_info); 726 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 727 blk_mode_t flags, void *holder); 728 struct btrfs_device *btrfs_scan_one_device(const char *path, bool mount_arg_dev); 729 int btrfs_forget_devices(dev_t devt); 730 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices); 731 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices); 732 void btrfs_assign_next_active_device(struct btrfs_device *device, 733 struct btrfs_device *this_dev); 734 struct btrfs_device *btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, 735 u64 devid, 736 const char *devpath); 737 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info, 738 struct btrfs_dev_lookup_args *args, 739 const char *path); 740 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 741 const u64 *devid, const u8 *uuid, 742 const char *path); 743 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args); 744 int btrfs_rm_device(struct btrfs_fs_info *fs_info, 745 struct btrfs_dev_lookup_args *args, 746 struct file **bdev_file); 747 void __exit btrfs_cleanup_fs_uuids(void); 748 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len); 749 int btrfs_grow_device(struct btrfs_trans_handle *trans, 750 struct btrfs_device *device, u64 new_size); 751 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices, 752 const struct btrfs_dev_lookup_args *args); 753 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size); 754 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *path); 755 int btrfs_balance(struct btrfs_fs_info *fs_info, 756 struct btrfs_balance_control *bctl, 757 struct btrfs_ioctl_balance_args *bargs); 758 void btrfs_describe_block_groups(u64 flags, char *buf, u32 size_buf); 759 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info); 760 int btrfs_recover_balance(struct btrfs_fs_info *fs_info); 761 int btrfs_pause_balance(struct btrfs_fs_info *fs_info); 762 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset, 763 bool verbose); 764 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info); 765 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset); 766 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index); 767 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, 768 struct btrfs_ioctl_get_dev_stats *stats); 769 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info); 770 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info); 771 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans); 772 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev); 773 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev); 774 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev); 775 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, 776 u64 logical); 777 u64 btrfs_calc_stripe_length(const struct btrfs_chunk_map *map); 778 int btrfs_nr_parity_stripes(u64 type); 779 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans, 780 struct btrfs_block_group *bg); 781 int btrfs_remove_dev_extents(struct btrfs_trans_handle *trans, struct btrfs_chunk_map *map); 782 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset); 783 784 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 785 struct btrfs_chunk_map *btrfs_alloc_chunk_map(int num_stripes, gfp_t gfp); 786 int btrfs_add_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map); 787 #endif 788 789 struct btrfs_chunk_map *btrfs_find_chunk_map(struct btrfs_fs_info *fs_info, 790 u64 logical, u64 length); 791 struct btrfs_chunk_map *btrfs_find_chunk_map_nolock(struct btrfs_fs_info *fs_info, 792 u64 logical, u64 length); 793 struct btrfs_chunk_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info, 794 u64 logical, u64 length); 795 void btrfs_remove_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map); 796 struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev, 797 int copy_num, bool drop_cache); 798 void btrfs_release_disk_super(struct btrfs_super_block *super); 799 800 static inline void btrfs_dev_stat_inc(struct btrfs_device *dev, 801 int index) 802 { 803 atomic_inc(dev->dev_stat_values + index); 804 /* 805 * This memory barrier orders stores updating statistics before stores 806 * updating dev_stats_ccnt. 807 * 808 * It pairs with smp_rmb() in btrfs_run_dev_stats(). 809 */ 810 smp_mb__before_atomic(); 811 atomic_inc(&dev->dev_stats_ccnt); 812 } 813 814 static inline int btrfs_dev_stat_read(struct btrfs_device *dev, 815 int index) 816 { 817 return atomic_read(dev->dev_stat_values + index); 818 } 819 820 static inline int btrfs_dev_stat_read_and_reset(struct btrfs_device *dev, 821 int index) 822 { 823 int ret; 824 825 ret = atomic_xchg(dev->dev_stat_values + index, 0); 826 /* 827 * atomic_xchg implies a full memory barriers as per atomic_t.txt: 828 * - RMW operations that have a return value are fully ordered; 829 * 830 * This implicit memory barriers is paired with the smp_rmb in 831 * btrfs_run_dev_stats 832 */ 833 atomic_inc(&dev->dev_stats_ccnt); 834 return ret; 835 } 836 837 static inline void btrfs_dev_stat_set(struct btrfs_device *dev, 838 int index, unsigned long val) 839 { 840 atomic_set(dev->dev_stat_values + index, val); 841 /* 842 * This memory barrier orders stores updating statistics before stores 843 * updating dev_stats_ccnt. 844 * 845 * It pairs with smp_rmb() in btrfs_run_dev_stats(). 846 */ 847 smp_mb__before_atomic(); 848 atomic_inc(&dev->dev_stats_ccnt); 849 } 850 851 static inline const char *btrfs_dev_name(const struct btrfs_device *device) 852 { 853 if (!device || test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 854 return "<missing disk>"; 855 else 856 return rcu_dereference(device->name); 857 } 858 859 static inline void btrfs_warn_unknown_chunk_allocation(enum btrfs_chunk_allocation_policy pol) 860 { 861 WARN_ONCE(1, "unknown allocation policy %d, fallback to regular", pol); 862 } 863 864 static inline void btrfs_fs_devices_inc_holding(struct btrfs_fs_devices *fs_devices) 865 { 866 lockdep_assert_held(&uuid_mutex); 867 ASSERT(fs_devices->holding >= 0); 868 fs_devices->holding++; 869 } 870 871 static inline void btrfs_fs_devices_dec_holding(struct btrfs_fs_devices *fs_devices) 872 { 873 lockdep_assert_held(&uuid_mutex); 874 ASSERT(fs_devices->holding > 0); 875 fs_devices->holding--; 876 } 877 878 void btrfs_commit_device_sizes(struct btrfs_transaction *trans); 879 880 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void); 881 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info, 882 struct btrfs_device *failing_dev); 883 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, struct btrfs_device *device); 884 885 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags); 886 int btrfs_bg_type_to_factor(u64 flags); 887 const char *btrfs_bg_type_to_raid_name(u64 flags); 888 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info); 889 bool btrfs_verify_dev_items(const struct btrfs_fs_info *fs_info); 890 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical); 891 892 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr); 893 const u8 *btrfs_sb_fsid_ptr(const struct btrfs_super_block *sb); 894 int btrfs_update_device(struct btrfs_trans_handle *trans, struct btrfs_device *device); 895 void btrfs_chunk_map_device_clear_bits(struct btrfs_chunk_map *map, unsigned int bits); 896 897 bool btrfs_first_pending_extent(struct btrfs_device *device, u64 start, u64 len, 898 u64 *pending_start, u64 *pending_end); 899 bool btrfs_find_hole_in_pending_extents(struct btrfs_device *device, 900 u64 *start, u64 *len, u64 min_hole_size); 901 902 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 903 struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info, 904 u64 logical, u16 total_stripes); 905 #endif 906 907 #endif 908