1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2011 Fujitsu. All rights reserved.
4 * Written by Miao Xie <miaox@cn.fujitsu.com>
5 */
6
7 #include <linux/slab.h>
8 #include <linux/iversion.h>
9 #include "ctree.h"
10 #include "fs.h"
11 #include "messages.h"
12 #include "misc.h"
13 #include "delayed-inode.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "qgroup.h"
17 #include "locking.h"
18 #include "inode-item.h"
19 #include "space-info.h"
20 #include "accessors.h"
21 #include "file-item.h"
22
23 #define BTRFS_DELAYED_WRITEBACK 512
24 #define BTRFS_DELAYED_BACKGROUND 128
25 #define BTRFS_DELAYED_BATCH 16
26
27 static struct kmem_cache *delayed_node_cache;
28
btrfs_delayed_inode_init(void)29 int __init btrfs_delayed_inode_init(void)
30 {
31 delayed_node_cache = KMEM_CACHE(btrfs_delayed_node, 0);
32 if (!delayed_node_cache)
33 return -ENOMEM;
34 return 0;
35 }
36
btrfs_delayed_inode_exit(void)37 void __cold btrfs_delayed_inode_exit(void)
38 {
39 kmem_cache_destroy(delayed_node_cache);
40 }
41
btrfs_init_delayed_root(struct btrfs_delayed_root * delayed_root)42 void btrfs_init_delayed_root(struct btrfs_delayed_root *delayed_root)
43 {
44 atomic_set(&delayed_root->items, 0);
45 atomic_set(&delayed_root->items_seq, 0);
46 delayed_root->nodes = 0;
47 spin_lock_init(&delayed_root->lock);
48 init_waitqueue_head(&delayed_root->wait);
49 INIT_LIST_HEAD(&delayed_root->node_list);
50 INIT_LIST_HEAD(&delayed_root->prepare_list);
51 }
52
btrfs_init_delayed_node(struct btrfs_delayed_node * delayed_node,struct btrfs_root * root,u64 inode_id)53 static inline void btrfs_init_delayed_node(
54 struct btrfs_delayed_node *delayed_node,
55 struct btrfs_root *root, u64 inode_id)
56 {
57 delayed_node->root = root;
58 delayed_node->inode_id = inode_id;
59 refcount_set(&delayed_node->refs, 0);
60 btrfs_delayed_node_ref_tracker_dir_init(delayed_node);
61 delayed_node->ins_root = RB_ROOT_CACHED;
62 delayed_node->del_root = RB_ROOT_CACHED;
63 mutex_init(&delayed_node->mutex);
64 INIT_LIST_HEAD(&delayed_node->n_list);
65 INIT_LIST_HEAD(&delayed_node->p_list);
66 }
67
btrfs_get_delayed_node(struct btrfs_inode * btrfs_inode,struct btrfs_ref_tracker * tracker)68 static struct btrfs_delayed_node *btrfs_get_delayed_node(
69 struct btrfs_inode *btrfs_inode,
70 struct btrfs_ref_tracker *tracker)
71 {
72 struct btrfs_root *root = btrfs_inode->root;
73 u64 ino = btrfs_ino(btrfs_inode);
74 struct btrfs_delayed_node *node;
75
76 node = READ_ONCE(btrfs_inode->delayed_node);
77 if (node) {
78 refcount_inc(&node->refs);
79 btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_NOFS);
80 return node;
81 }
82
83 xa_lock(&root->delayed_nodes);
84 node = xa_load(&root->delayed_nodes, ino);
85
86 if (node) {
87 if (btrfs_inode->delayed_node) {
88 refcount_inc(&node->refs); /* can be accessed */
89 btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC);
90 BUG_ON(btrfs_inode->delayed_node != node);
91 xa_unlock(&root->delayed_nodes);
92 return node;
93 }
94
95 /*
96 * It's possible that we're racing into the middle of removing
97 * this node from the xarray. In this case, the refcount
98 * was zero and it should never go back to one. Just return
99 * NULL like it was never in the xarray at all; our release
100 * function is in the process of removing it.
101 *
102 * Some implementations of refcount_inc refuse to bump the
103 * refcount once it has hit zero. If we don't do this dance
104 * here, refcount_inc() may decide to just WARN_ONCE() instead
105 * of actually bumping the refcount.
106 *
107 * If this node is properly in the xarray, we want to bump the
108 * refcount twice, once for the inode and once for this get
109 * operation.
110 */
111 if (refcount_inc_not_zero(&node->refs)) {
112 refcount_inc(&node->refs);
113 btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC);
114 btrfs_delayed_node_ref_tracker_alloc(node, &node->inode_cache_tracker,
115 GFP_ATOMIC);
116 btrfs_inode->delayed_node = node;
117 } else {
118 node = NULL;
119 }
120
121 xa_unlock(&root->delayed_nodes);
122 return node;
123 }
124 xa_unlock(&root->delayed_nodes);
125
126 return NULL;
127 }
128
129 /*
130 * Look up an existing delayed node associated with @btrfs_inode or create a new
131 * one and insert it to the delayed nodes of the root.
132 *
133 * Return the delayed node, or error pointer on failure.
134 */
btrfs_get_or_create_delayed_node(struct btrfs_inode * btrfs_inode,struct btrfs_ref_tracker * tracker)135 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
136 struct btrfs_inode *btrfs_inode,
137 struct btrfs_ref_tracker *tracker)
138 {
139 struct btrfs_delayed_node *node;
140 struct btrfs_root *root = btrfs_inode->root;
141 u64 ino = btrfs_ino(btrfs_inode);
142 int ret;
143 void *ptr;
144
145 again:
146 node = btrfs_get_delayed_node(btrfs_inode, tracker);
147 if (node)
148 return node;
149
150 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
151 if (!node)
152 return ERR_PTR(-ENOMEM);
153 btrfs_init_delayed_node(node, root, ino);
154
155 /* Cached in the inode and can be accessed. */
156 refcount_set(&node->refs, 2);
157 btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_NOFS);
158 btrfs_delayed_node_ref_tracker_alloc(node, &node->inode_cache_tracker, GFP_NOFS);
159
160 /* Allocate and reserve the slot, from now it can return a NULL from xa_load(). */
161 ret = xa_reserve(&root->delayed_nodes, ino, GFP_NOFS);
162 if (ret == -ENOMEM)
163 goto cleanup;
164
165 xa_lock(&root->delayed_nodes);
166 ptr = xa_load(&root->delayed_nodes, ino);
167 if (ptr) {
168 /* Somebody inserted it, go back and read it. */
169 xa_unlock(&root->delayed_nodes);
170 goto cleanup;
171 }
172 ptr = __xa_store(&root->delayed_nodes, ino, node, GFP_ATOMIC);
173 ASSERT(xa_err(ptr) != -EINVAL);
174 ASSERT(xa_err(ptr) != -ENOMEM);
175 ASSERT(ptr == NULL);
176 btrfs_inode->delayed_node = node;
177 xa_unlock(&root->delayed_nodes);
178
179 return node;
180 cleanup:
181 btrfs_delayed_node_ref_tracker_free(node, tracker);
182 btrfs_delayed_node_ref_tracker_free(node, &node->inode_cache_tracker);
183 btrfs_delayed_node_ref_tracker_dir_exit(node);
184 kmem_cache_free(delayed_node_cache, node);
185 if (ret)
186 return ERR_PTR(ret);
187 goto again;
188 }
189
190 /*
191 * Call it when holding delayed_node->mutex
192 *
193 * If mod = 1, add this node into the prepared list.
194 */
btrfs_queue_delayed_node(struct btrfs_delayed_root * root,struct btrfs_delayed_node * node,int mod)195 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
196 struct btrfs_delayed_node *node,
197 int mod)
198 {
199 spin_lock(&root->lock);
200 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
201 if (!list_empty(&node->p_list))
202 list_move_tail(&node->p_list, &root->prepare_list);
203 else if (mod)
204 list_add_tail(&node->p_list, &root->prepare_list);
205 } else {
206 list_add_tail(&node->n_list, &root->node_list);
207 list_add_tail(&node->p_list, &root->prepare_list);
208 refcount_inc(&node->refs); /* inserted into list */
209 btrfs_delayed_node_ref_tracker_alloc(node, &node->node_list_tracker,
210 GFP_ATOMIC);
211 root->nodes++;
212 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
213 }
214 spin_unlock(&root->lock);
215 }
216
217 /* Call it when holding delayed_node->mutex */
btrfs_dequeue_delayed_node(struct btrfs_delayed_root * root,struct btrfs_delayed_node * node)218 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
219 struct btrfs_delayed_node *node)
220 {
221 spin_lock(&root->lock);
222 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
223 root->nodes--;
224 btrfs_delayed_node_ref_tracker_free(node, &node->node_list_tracker);
225 refcount_dec(&node->refs); /* not in the list */
226 list_del_init(&node->n_list);
227 if (!list_empty(&node->p_list))
228 list_del_init(&node->p_list);
229 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
230 }
231 spin_unlock(&root->lock);
232 }
233
btrfs_first_delayed_node(struct btrfs_delayed_root * delayed_root,struct btrfs_ref_tracker * tracker)234 static struct btrfs_delayed_node *btrfs_first_delayed_node(
235 struct btrfs_delayed_root *delayed_root,
236 struct btrfs_ref_tracker *tracker)
237 {
238 struct btrfs_delayed_node *node;
239
240 spin_lock(&delayed_root->lock);
241 node = list_first_entry_or_null(&delayed_root->node_list,
242 struct btrfs_delayed_node, n_list);
243 if (node) {
244 refcount_inc(&node->refs);
245 btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC);
246 }
247 spin_unlock(&delayed_root->lock);
248
249 return node;
250 }
251
btrfs_next_delayed_node(struct btrfs_delayed_node * node,struct btrfs_ref_tracker * tracker)252 static struct btrfs_delayed_node *btrfs_next_delayed_node(
253 struct btrfs_delayed_node *node,
254 struct btrfs_ref_tracker *tracker)
255 {
256 struct btrfs_delayed_root *delayed_root;
257 struct list_head *p;
258 struct btrfs_delayed_node *next = NULL;
259
260 delayed_root = node->root->fs_info->delayed_root;
261 spin_lock(&delayed_root->lock);
262 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
263 /* not in the list */
264 if (list_empty(&delayed_root->node_list))
265 goto out;
266 p = delayed_root->node_list.next;
267 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
268 goto out;
269 else
270 p = node->n_list.next;
271
272 next = list_entry(p, struct btrfs_delayed_node, n_list);
273 refcount_inc(&next->refs);
274 btrfs_delayed_node_ref_tracker_alloc(next, tracker, GFP_ATOMIC);
275 out:
276 spin_unlock(&delayed_root->lock);
277
278 return next;
279 }
280
__btrfs_release_delayed_node(struct btrfs_delayed_node * delayed_node,int mod,struct btrfs_ref_tracker * tracker)281 static void __btrfs_release_delayed_node(
282 struct btrfs_delayed_node *delayed_node,
283 int mod, struct btrfs_ref_tracker *tracker)
284 {
285 struct btrfs_delayed_root *delayed_root;
286
287 if (!delayed_node)
288 return;
289
290 delayed_root = delayed_node->root->fs_info->delayed_root;
291
292 mutex_lock(&delayed_node->mutex);
293 if (delayed_node->count)
294 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
295 else
296 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
297 mutex_unlock(&delayed_node->mutex);
298
299 btrfs_delayed_node_ref_tracker_free(delayed_node, tracker);
300 if (refcount_dec_and_test(&delayed_node->refs)) {
301 struct btrfs_root *root = delayed_node->root;
302
303 xa_erase(&root->delayed_nodes, delayed_node->inode_id);
304 /*
305 * Once our refcount goes to zero, nobody is allowed to bump it
306 * back up. We can delete it now.
307 */
308 ASSERT(refcount_read(&delayed_node->refs) == 0);
309 btrfs_delayed_node_ref_tracker_dir_exit(delayed_node);
310 kmem_cache_free(delayed_node_cache, delayed_node);
311 }
312 }
313
btrfs_release_delayed_node(struct btrfs_delayed_node * node,struct btrfs_ref_tracker * tracker)314 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node,
315 struct btrfs_ref_tracker *tracker)
316 {
317 __btrfs_release_delayed_node(node, 0, tracker);
318 }
319
btrfs_first_prepared_delayed_node(struct btrfs_delayed_root * delayed_root,struct btrfs_ref_tracker * tracker)320 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
321 struct btrfs_delayed_root *delayed_root,
322 struct btrfs_ref_tracker *tracker)
323 {
324 struct btrfs_delayed_node *node;
325
326 spin_lock(&delayed_root->lock);
327 node = list_first_entry_or_null(&delayed_root->prepare_list,
328 struct btrfs_delayed_node, p_list);
329 if (node) {
330 list_del_init(&node->p_list);
331 refcount_inc(&node->refs);
332 btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC);
333 }
334 spin_unlock(&delayed_root->lock);
335
336 return node;
337 }
338
btrfs_release_prepared_delayed_node(struct btrfs_delayed_node * node,struct btrfs_ref_tracker * tracker)339 static inline void btrfs_release_prepared_delayed_node(
340 struct btrfs_delayed_node *node,
341 struct btrfs_ref_tracker *tracker)
342 {
343 __btrfs_release_delayed_node(node, 1, tracker);
344 }
345
btrfs_alloc_delayed_item(u16 data_len,struct btrfs_delayed_node * node,enum btrfs_delayed_item_type type)346 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u16 data_len,
347 struct btrfs_delayed_node *node,
348 enum btrfs_delayed_item_type type)
349 {
350 struct btrfs_delayed_item *item;
351
352 item = kmalloc(struct_size(item, data, data_len), GFP_NOFS);
353 if (item) {
354 item->data_len = data_len;
355 item->type = type;
356 item->bytes_reserved = 0;
357 item->delayed_node = node;
358 RB_CLEAR_NODE(&item->rb_node);
359 INIT_LIST_HEAD(&item->log_list);
360 item->logged = false;
361 refcount_set(&item->refs, 1);
362 }
363 return item;
364 }
365
delayed_item_index_cmp(const void * key,const struct rb_node * node)366 static int delayed_item_index_cmp(const void *key, const struct rb_node *node)
367 {
368 const u64 *index = key;
369 const struct btrfs_delayed_item *delayed_item = rb_entry(node,
370 struct btrfs_delayed_item, rb_node);
371
372 if (delayed_item->index < *index)
373 return 1;
374 else if (delayed_item->index > *index)
375 return -1;
376
377 return 0;
378 }
379
380 /*
381 * Look up the delayed item by key.
382 *
383 * @delayed_node: pointer to the delayed node
384 * @index: the dir index value to lookup (offset of a dir index key)
385 *
386 * Note: if we don't find the right item, we will return the prev item and
387 * the next item.
388 */
__btrfs_lookup_delayed_item(struct rb_root * root,u64 index)389 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
390 struct rb_root *root,
391 u64 index)
392 {
393 struct rb_node *node;
394
395 node = rb_find(&index, root, delayed_item_index_cmp);
396 return rb_entry_safe(node, struct btrfs_delayed_item, rb_node);
397 }
398
btrfs_delayed_item_cmp(const struct rb_node * new,const struct rb_node * exist)399 static int btrfs_delayed_item_cmp(const struct rb_node *new,
400 const struct rb_node *exist)
401 {
402 const struct btrfs_delayed_item *new_item =
403 rb_entry(new, struct btrfs_delayed_item, rb_node);
404
405 return delayed_item_index_cmp(&new_item->index, exist);
406 }
407
__btrfs_add_delayed_item(struct btrfs_delayed_node * delayed_node,struct btrfs_delayed_item * ins)408 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
409 struct btrfs_delayed_item *ins)
410 {
411 struct rb_root_cached *root;
412 struct rb_node *exist;
413
414 if (ins->type == BTRFS_DELAYED_INSERTION_ITEM)
415 root = &delayed_node->ins_root;
416 else
417 root = &delayed_node->del_root;
418
419 exist = rb_find_add_cached(&ins->rb_node, root, btrfs_delayed_item_cmp);
420 if (exist)
421 return -EEXIST;
422
423 if (ins->type == BTRFS_DELAYED_INSERTION_ITEM &&
424 ins->index >= delayed_node->index_cnt)
425 delayed_node->index_cnt = ins->index + 1;
426
427 delayed_node->count++;
428 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
429 return 0;
430 }
431
finish_one_item(struct btrfs_delayed_root * delayed_root)432 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
433 {
434 int seq = atomic_inc_return(&delayed_root->items_seq);
435
436 /* atomic_dec_return implies a barrier */
437 if ((atomic_dec_return(&delayed_root->items) <
438 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
439 cond_wake_up_nomb(&delayed_root->wait);
440 }
441
__btrfs_remove_delayed_item(struct btrfs_delayed_item * delayed_item)442 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
443 {
444 struct btrfs_delayed_node *delayed_node = delayed_item->delayed_node;
445 struct rb_root_cached *root;
446 struct btrfs_delayed_root *delayed_root;
447
448 /* Not inserted, ignore it. */
449 if (RB_EMPTY_NODE(&delayed_item->rb_node))
450 return;
451
452 /* If it's in a rbtree, then we need to have delayed node locked. */
453 lockdep_assert_held(&delayed_node->mutex);
454
455 delayed_root = delayed_node->root->fs_info->delayed_root;
456
457 if (delayed_item->type == BTRFS_DELAYED_INSERTION_ITEM)
458 root = &delayed_node->ins_root;
459 else
460 root = &delayed_node->del_root;
461
462 rb_erase_cached(&delayed_item->rb_node, root);
463 RB_CLEAR_NODE(&delayed_item->rb_node);
464 delayed_node->count--;
465
466 finish_one_item(delayed_root);
467 }
468
btrfs_release_delayed_item(struct btrfs_delayed_item * item)469 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
470 {
471 if (item) {
472 __btrfs_remove_delayed_item(item);
473 if (refcount_dec_and_test(&item->refs))
474 kfree(item);
475 }
476 }
477
__btrfs_first_delayed_insertion_item(struct btrfs_delayed_node * delayed_node)478 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
479 struct btrfs_delayed_node *delayed_node)
480 {
481 struct rb_node *p = rb_first_cached(&delayed_node->ins_root);
482
483 return rb_entry_safe(p, struct btrfs_delayed_item, rb_node);
484 }
485
__btrfs_first_delayed_deletion_item(struct btrfs_delayed_node * delayed_node)486 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
487 struct btrfs_delayed_node *delayed_node)
488 {
489 struct rb_node *p = rb_first_cached(&delayed_node->del_root);
490
491 return rb_entry_safe(p, struct btrfs_delayed_item, rb_node);
492 }
493
__btrfs_next_delayed_item(struct btrfs_delayed_item * item)494 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
495 struct btrfs_delayed_item *item)
496 {
497 struct rb_node *p = rb_next(&item->rb_node);
498
499 return rb_entry_safe(p, struct btrfs_delayed_item, rb_node);
500 }
501
btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle * trans,struct btrfs_delayed_item * item)502 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
503 struct btrfs_delayed_item *item)
504 {
505 struct btrfs_block_rsv *src_rsv;
506 struct btrfs_block_rsv *dst_rsv;
507 struct btrfs_fs_info *fs_info = trans->fs_info;
508 u64 num_bytes;
509 int ret;
510
511 if (!trans->bytes_reserved)
512 return 0;
513
514 src_rsv = trans->block_rsv;
515 dst_rsv = &fs_info->delayed_block_rsv;
516
517 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
518
519 /*
520 * Here we migrate space rsv from transaction rsv, since have already
521 * reserved space when starting a transaction. So no need to reserve
522 * qgroup space here.
523 */
524 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
525 if (!ret) {
526 trace_btrfs_space_reservation(fs_info, "delayed_item",
527 item->delayed_node->inode_id,
528 num_bytes, 1);
529 /*
530 * For insertions we track reserved metadata space by accounting
531 * for the number of leaves that will be used, based on the delayed
532 * node's curr_index_batch_size and index_item_leaves fields.
533 */
534 if (item->type == BTRFS_DELAYED_DELETION_ITEM)
535 item->bytes_reserved = num_bytes;
536 }
537
538 return ret;
539 }
540
btrfs_delayed_item_release_metadata(struct btrfs_root * root,struct btrfs_delayed_item * item)541 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
542 struct btrfs_delayed_item *item)
543 {
544 struct btrfs_block_rsv *rsv;
545 struct btrfs_fs_info *fs_info = root->fs_info;
546
547 if (!item->bytes_reserved)
548 return;
549
550 rsv = &fs_info->delayed_block_rsv;
551 /*
552 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
553 * to release/reserve qgroup space.
554 */
555 trace_btrfs_space_reservation(fs_info, "delayed_item",
556 item->delayed_node->inode_id,
557 item->bytes_reserved, 0);
558 btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
559 }
560
btrfs_delayed_item_release_leaves(struct btrfs_delayed_node * node,unsigned int num_leaves)561 static void btrfs_delayed_item_release_leaves(struct btrfs_delayed_node *node,
562 unsigned int num_leaves)
563 {
564 struct btrfs_fs_info *fs_info = node->root->fs_info;
565 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, num_leaves);
566
567 /* There are no space reservations during log replay, bail out. */
568 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
569 return;
570
571 trace_btrfs_space_reservation(fs_info, "delayed_item", node->inode_id,
572 bytes, 0);
573 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, bytes, NULL);
574 }
575
btrfs_delayed_inode_reserve_metadata(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_delayed_node * node)576 static int btrfs_delayed_inode_reserve_metadata(
577 struct btrfs_trans_handle *trans,
578 struct btrfs_root *root,
579 struct btrfs_delayed_node *node)
580 {
581 struct btrfs_fs_info *fs_info = root->fs_info;
582 struct btrfs_block_rsv *src_rsv;
583 struct btrfs_block_rsv *dst_rsv;
584 u64 num_bytes;
585 int ret;
586
587 src_rsv = trans->block_rsv;
588 dst_rsv = &fs_info->delayed_block_rsv;
589
590 num_bytes = btrfs_calc_metadata_size(fs_info, 1);
591
592 /*
593 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
594 * which doesn't reserve space for speed. This is a problem since we
595 * still need to reserve space for this update, so try to reserve the
596 * space.
597 *
598 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
599 * we always reserve enough to update the inode item.
600 */
601 if (!src_rsv || (!trans->bytes_reserved &&
602 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
603 ret = btrfs_qgroup_reserve_meta(root, num_bytes,
604 BTRFS_QGROUP_RSV_META_PREALLOC, true);
605 if (ret < 0)
606 return ret;
607 ret = btrfs_block_rsv_add(fs_info, dst_rsv, num_bytes,
608 BTRFS_RESERVE_NO_FLUSH);
609 /* NO_FLUSH could only fail with -ENOSPC */
610 ASSERT(ret == 0 || ret == -ENOSPC);
611 if (ret)
612 btrfs_qgroup_free_meta_prealloc(root, num_bytes);
613 } else {
614 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
615 }
616
617 if (!ret) {
618 trace_btrfs_space_reservation(fs_info, "delayed_inode",
619 node->inode_id, num_bytes, 1);
620 node->bytes_reserved = num_bytes;
621 }
622
623 return ret;
624 }
625
btrfs_delayed_inode_release_metadata(struct btrfs_fs_info * fs_info,struct btrfs_delayed_node * node,bool qgroup_free)626 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
627 struct btrfs_delayed_node *node,
628 bool qgroup_free)
629 {
630 struct btrfs_block_rsv *rsv;
631
632 if (!node->bytes_reserved)
633 return;
634
635 rsv = &fs_info->delayed_block_rsv;
636 trace_btrfs_space_reservation(fs_info, "delayed_inode",
637 node->inode_id, node->bytes_reserved, 0);
638 btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
639 if (qgroup_free)
640 btrfs_qgroup_free_meta_prealloc(node->root,
641 node->bytes_reserved);
642 else
643 btrfs_qgroup_convert_reserved_meta(node->root,
644 node->bytes_reserved);
645 node->bytes_reserved = 0;
646 }
647
648 /*
649 * Insert a single delayed item or a batch of delayed items, as many as possible
650 * that fit in a leaf. The delayed items (dir index keys) are sorted by their key
651 * in the rbtree, and if there's a gap between two consecutive dir index items,
652 * then it means at some point we had delayed dir indexes to add but they got
653 * removed (by btrfs_delete_delayed_dir_index()) before we attempted to flush them
654 * into the subvolume tree. Dir index keys also have their offsets coming from a
655 * monotonically increasing counter, so we can't get new keys with an offset that
656 * fits within a gap between delayed dir index items.
657 */
btrfs_insert_delayed_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_item * first_item)658 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
659 struct btrfs_root *root,
660 struct btrfs_path *path,
661 struct btrfs_delayed_item *first_item)
662 {
663 struct btrfs_fs_info *fs_info = root->fs_info;
664 struct btrfs_delayed_node *node = first_item->delayed_node;
665 LIST_HEAD(item_list);
666 struct btrfs_delayed_item *curr;
667 struct btrfs_delayed_item *next;
668 const int max_size = BTRFS_LEAF_DATA_SIZE(fs_info);
669 struct btrfs_item_batch batch;
670 struct btrfs_key first_key;
671 const u32 first_data_size = first_item->data_len;
672 int total_size;
673 char AUTO_KFREE(ins_data);
674 int ret;
675 bool continuous_keys_only = false;
676
677 lockdep_assert_held(&node->mutex);
678
679 /*
680 * During normal operation the delayed index offset is continuously
681 * increasing, so we can batch insert all items as there will not be any
682 * overlapping keys in the tree.
683 *
684 * The exception to this is log replay, where we may have interleaved
685 * offsets in the tree, so our batch needs to be continuous keys only in
686 * order to ensure we do not end up with out of order items in our leaf.
687 */
688 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
689 continuous_keys_only = true;
690
691 /*
692 * For delayed items to insert, we track reserved metadata bytes based
693 * on the number of leaves that we will use.
694 * See btrfs_insert_delayed_dir_index() and
695 * btrfs_delayed_item_reserve_metadata()).
696 */
697 ASSERT(first_item->bytes_reserved == 0);
698
699 list_add_tail(&first_item->tree_list, &item_list);
700 batch.total_data_size = first_data_size;
701 batch.nr = 1;
702 total_size = first_data_size + sizeof(struct btrfs_item);
703 curr = first_item;
704
705 while (true) {
706 int next_size;
707
708 next = __btrfs_next_delayed_item(curr);
709 if (!next)
710 break;
711
712 /*
713 * We cannot allow gaps in the key space if we're doing log
714 * replay.
715 */
716 if (continuous_keys_only && (next->index != curr->index + 1))
717 break;
718
719 ASSERT(next->bytes_reserved == 0);
720
721 next_size = next->data_len + sizeof(struct btrfs_item);
722 if (total_size + next_size > max_size)
723 break;
724
725 list_add_tail(&next->tree_list, &item_list);
726 batch.nr++;
727 total_size += next_size;
728 batch.total_data_size += next->data_len;
729 curr = next;
730 }
731
732 if (batch.nr == 1) {
733 first_key.objectid = node->inode_id;
734 first_key.type = BTRFS_DIR_INDEX_KEY;
735 first_key.offset = first_item->index;
736 batch.keys = &first_key;
737 batch.data_sizes = &first_data_size;
738 } else {
739 struct btrfs_key *ins_keys;
740 u32 *ins_sizes;
741 int i = 0;
742
743 ins_data = kmalloc_array(batch.nr,
744 sizeof(u32) + sizeof(struct btrfs_key), GFP_NOFS);
745 if (!ins_data)
746 return -ENOMEM;
747 ins_sizes = (u32 *)ins_data;
748 ins_keys = (struct btrfs_key *)(ins_data + batch.nr * sizeof(u32));
749 batch.keys = ins_keys;
750 batch.data_sizes = ins_sizes;
751 list_for_each_entry(curr, &item_list, tree_list) {
752 ins_keys[i].objectid = node->inode_id;
753 ins_keys[i].type = BTRFS_DIR_INDEX_KEY;
754 ins_keys[i].offset = curr->index;
755 ins_sizes[i] = curr->data_len;
756 i++;
757 }
758 }
759
760 ret = btrfs_insert_empty_items(trans, root, path, &batch);
761 if (ret)
762 return ret;
763
764 list_for_each_entry(curr, &item_list, tree_list) {
765 char *data_ptr;
766
767 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
768 write_extent_buffer(path->nodes[0], &curr->data,
769 (unsigned long)data_ptr, curr->data_len);
770 path->slots[0]++;
771 }
772
773 /*
774 * Now release our path before releasing the delayed items and their
775 * metadata reservations, so that we don't block other tasks for more
776 * time than needed.
777 */
778 btrfs_release_path(path);
779
780 ASSERT(node->index_item_leaves > 0);
781
782 /*
783 * For normal operations we will batch an entire leaf's worth of delayed
784 * items, so if there are more items to process we can decrement
785 * index_item_leaves by 1 as we inserted 1 leaf's worth of items.
786 *
787 * However for log replay we may not have inserted an entire leaf's
788 * worth of items, we may have not had continuous items, so decrementing
789 * here would mess up the index_item_leaves accounting. For this case
790 * only clean up the accounting when there are no items left.
791 */
792 if (next && !continuous_keys_only) {
793 /*
794 * We inserted one batch of items into a leaf a there are more
795 * items to flush in a future batch, now release one unit of
796 * metadata space from the delayed block reserve, corresponding
797 * the leaf we just flushed to.
798 */
799 btrfs_delayed_item_release_leaves(node, 1);
800 node->index_item_leaves--;
801 } else if (!next) {
802 /*
803 * There are no more items to insert. We can have a number of
804 * reserved leaves > 1 here - this happens when many dir index
805 * items are added and then removed before they are flushed (file
806 * names with a very short life, never span a transaction). So
807 * release all remaining leaves.
808 */
809 btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
810 node->index_item_leaves = 0;
811 }
812
813 list_for_each_entry_safe(curr, next, &item_list, tree_list) {
814 list_del(&curr->tree_list);
815 btrfs_release_delayed_item(curr);
816 }
817
818 return 0;
819 }
820
btrfs_insert_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_root * root,struct btrfs_delayed_node * node)821 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
822 struct btrfs_path *path,
823 struct btrfs_root *root,
824 struct btrfs_delayed_node *node)
825 {
826 int ret = 0;
827
828 while (ret == 0) {
829 struct btrfs_delayed_item *curr;
830
831 mutex_lock(&node->mutex);
832 curr = __btrfs_first_delayed_insertion_item(node);
833 if (!curr) {
834 mutex_unlock(&node->mutex);
835 break;
836 }
837 ret = btrfs_insert_delayed_item(trans, root, path, curr);
838 mutex_unlock(&node->mutex);
839 }
840
841 return ret;
842 }
843
btrfs_batch_delete_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_item * item)844 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
845 struct btrfs_root *root,
846 struct btrfs_path *path,
847 struct btrfs_delayed_item *item)
848 {
849 const u64 ino = item->delayed_node->inode_id;
850 struct btrfs_fs_info *fs_info = root->fs_info;
851 struct btrfs_delayed_item *curr, *next;
852 struct extent_buffer *leaf = path->nodes[0];
853 LIST_HEAD(batch_list);
854 int nitems, slot, last_slot;
855 int ret;
856 u64 total_reserved_size = item->bytes_reserved;
857
858 ASSERT(leaf != NULL);
859
860 slot = path->slots[0];
861 last_slot = btrfs_header_nritems(leaf) - 1;
862 /*
863 * Our caller always gives us a path pointing to an existing item, so
864 * this can not happen.
865 */
866 ASSERT(slot <= last_slot);
867 if (WARN_ON(slot > last_slot))
868 return -ENOENT;
869
870 nitems = 1;
871 curr = item;
872 list_add_tail(&curr->tree_list, &batch_list);
873
874 /*
875 * Keep checking if the next delayed item matches the next item in the
876 * leaf - if so, we can add it to the batch of items to delete from the
877 * leaf.
878 */
879 while (slot < last_slot) {
880 struct btrfs_key key;
881
882 next = __btrfs_next_delayed_item(curr);
883 if (!next)
884 break;
885
886 slot++;
887 btrfs_item_key_to_cpu(leaf, &key, slot);
888 if (key.objectid != ino ||
889 key.type != BTRFS_DIR_INDEX_KEY ||
890 key.offset != next->index)
891 break;
892 nitems++;
893 curr = next;
894 list_add_tail(&curr->tree_list, &batch_list);
895 total_reserved_size += curr->bytes_reserved;
896 }
897
898 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
899 if (ret)
900 return ret;
901
902 /* In case of BTRFS_FS_LOG_RECOVERING items won't have reserved space */
903 if (total_reserved_size > 0) {
904 /*
905 * Check btrfs_delayed_item_reserve_metadata() to see why we
906 * don't need to release/reserve qgroup space.
907 */
908 trace_btrfs_space_reservation(fs_info, "delayed_item", ino,
909 total_reserved_size, 0);
910 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv,
911 total_reserved_size, NULL);
912 }
913
914 list_for_each_entry_safe(curr, next, &batch_list, tree_list) {
915 list_del(&curr->tree_list);
916 btrfs_release_delayed_item(curr);
917 }
918
919 return 0;
920 }
921
btrfs_delete_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_root * root,struct btrfs_delayed_node * node)922 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
923 struct btrfs_path *path,
924 struct btrfs_root *root,
925 struct btrfs_delayed_node *node)
926 {
927 struct btrfs_key key;
928 int ret = 0;
929
930 key.objectid = node->inode_id;
931 key.type = BTRFS_DIR_INDEX_KEY;
932
933 while (ret == 0) {
934 struct btrfs_delayed_item *item;
935
936 mutex_lock(&node->mutex);
937 item = __btrfs_first_delayed_deletion_item(node);
938 if (!item) {
939 mutex_unlock(&node->mutex);
940 break;
941 }
942
943 key.offset = item->index;
944 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
945 if (ret > 0) {
946 /*
947 * There's no matching item in the leaf. This means we
948 * have already deleted this item in a past run of the
949 * delayed items. We ignore errors when running delayed
950 * items from an async context, through a work queue job
951 * running btrfs_async_run_delayed_root(), and don't
952 * release delayed items that failed to complete. This
953 * is because we will retry later, and at transaction
954 * commit time we always run delayed items and will
955 * then deal with errors if they fail to run again.
956 *
957 * So just release delayed items for which we can't find
958 * an item in the tree, and move to the next item.
959 */
960 btrfs_release_path(path);
961 btrfs_release_delayed_item(item);
962 ret = 0;
963 } else if (ret == 0) {
964 ret = btrfs_batch_delete_items(trans, root, path, item);
965 btrfs_release_path(path);
966 }
967
968 /*
969 * We unlock and relock on each iteration, this is to prevent
970 * blocking other tasks for too long while we are being run from
971 * the async context (work queue job). Those tasks are typically
972 * running system calls like creat/mkdir/rename/unlink/etc which
973 * need to add delayed items to this delayed node.
974 */
975 mutex_unlock(&node->mutex);
976 }
977
978 return ret;
979 }
980
btrfs_release_delayed_inode(struct btrfs_delayed_node * delayed_node)981 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
982 {
983 struct btrfs_delayed_root *delayed_root;
984
985 if (delayed_node &&
986 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
987 ASSERT(delayed_node->root);
988 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
989 delayed_node->count--;
990
991 delayed_root = delayed_node->root->fs_info->delayed_root;
992 finish_one_item(delayed_root);
993 }
994 }
995
btrfs_release_delayed_iref(struct btrfs_delayed_node * delayed_node)996 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
997 {
998
999 if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) {
1000 struct btrfs_delayed_root *delayed_root;
1001
1002 ASSERT(delayed_node->root);
1003 delayed_node->count--;
1004
1005 delayed_root = delayed_node->root->fs_info->delayed_root;
1006 finish_one_item(delayed_root);
1007 }
1008 }
1009
__btrfs_update_delayed_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_node * node)1010 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1011 struct btrfs_root *root,
1012 struct btrfs_path *path,
1013 struct btrfs_delayed_node *node)
1014 {
1015 struct btrfs_fs_info *fs_info = root->fs_info;
1016 struct btrfs_key key;
1017 struct btrfs_inode_item *inode_item;
1018 struct extent_buffer *leaf;
1019 int mod;
1020 int ret;
1021
1022 key.objectid = node->inode_id;
1023 key.type = BTRFS_INODE_ITEM_KEY;
1024 key.offset = 0;
1025
1026 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1027 mod = -1;
1028 else
1029 mod = 1;
1030
1031 ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1032 if (ret > 0)
1033 ret = -ENOENT;
1034 if (ret < 0) {
1035 /*
1036 * If we fail to update the delayed inode we need to abort the
1037 * transaction, because we could leave the inode with the
1038 * improper counts behind.
1039 */
1040 if (unlikely(ret != -ENOENT))
1041 btrfs_abort_transaction(trans, ret);
1042 goto out;
1043 }
1044
1045 leaf = path->nodes[0];
1046 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1047 struct btrfs_inode_item);
1048 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1049 sizeof(struct btrfs_inode_item));
1050
1051 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1052 goto out;
1053
1054 /*
1055 * Now we're going to delete the INODE_REF/EXTREF, which should be the
1056 * only one ref left. Check if the next item is an INODE_REF/EXTREF.
1057 *
1058 * But if we're the last item already, release and search for the last
1059 * INODE_REF/EXTREF.
1060 */
1061 if (path->slots[0] + 1 >= btrfs_header_nritems(leaf)) {
1062 key.objectid = node->inode_id;
1063 key.type = BTRFS_INODE_EXTREF_KEY;
1064 key.offset = (u64)-1;
1065
1066 btrfs_release_path(path);
1067 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1068 if (unlikely(ret < 0)) {
1069 btrfs_abort_transaction(trans, ret);
1070 goto err_out;
1071 }
1072 ASSERT(ret > 0);
1073 ASSERT(path->slots[0] > 0);
1074 ret = 0;
1075 path->slots[0]--;
1076 leaf = path->nodes[0];
1077 } else {
1078 path->slots[0]++;
1079 }
1080 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1081 if (key.objectid != node->inode_id)
1082 goto out;
1083 if (key.type != BTRFS_INODE_REF_KEY &&
1084 key.type != BTRFS_INODE_EXTREF_KEY)
1085 goto out;
1086
1087 /*
1088 * Delayed iref deletion is for the inode who has only one link,
1089 * so there is only one iref. The case that several irefs are
1090 * in the same item doesn't exist.
1091 */
1092 ret = btrfs_del_item(trans, root, path);
1093 if (ret < 0)
1094 btrfs_abort_transaction(trans, ret);
1095 out:
1096 btrfs_release_delayed_iref(node);
1097 btrfs_release_path(path);
1098 err_out:
1099 btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1100 btrfs_release_delayed_inode(node);
1101 return ret;
1102 }
1103
btrfs_update_delayed_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_node * node)1104 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1105 struct btrfs_root *root,
1106 struct btrfs_path *path,
1107 struct btrfs_delayed_node *node)
1108 {
1109 int ret;
1110
1111 mutex_lock(&node->mutex);
1112 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1113 mutex_unlock(&node->mutex);
1114 return 0;
1115 }
1116
1117 ret = __btrfs_update_delayed_inode(trans, root, path, node);
1118 mutex_unlock(&node->mutex);
1119 return ret;
1120 }
1121
1122 static inline int
__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_delayed_node * node)1123 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1124 struct btrfs_path *path,
1125 struct btrfs_delayed_node *node)
1126 {
1127 int ret;
1128
1129 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1130 if (ret)
1131 return ret;
1132
1133 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1134 if (ret)
1135 return ret;
1136
1137 ret = btrfs_record_root_in_trans(trans, node->root);
1138 if (ret)
1139 return ret;
1140 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1141 return ret;
1142 }
1143
1144 /*
1145 * Called when committing the transaction.
1146 * Returns 0 on success.
1147 * Returns < 0 on error and returns with an aborted transaction with any
1148 * outstanding delayed items cleaned up.
1149 */
__btrfs_run_delayed_items(struct btrfs_trans_handle * trans,int nr)1150 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1151 {
1152 struct btrfs_fs_info *fs_info = trans->fs_info;
1153 struct btrfs_delayed_root *delayed_root;
1154 struct btrfs_delayed_node *curr_node, *prev_node;
1155 struct btrfs_ref_tracker curr_delayed_node_tracker, prev_delayed_node_tracker;
1156 struct btrfs_path *path;
1157 struct btrfs_block_rsv *block_rsv;
1158 int ret = 0;
1159 bool count = (nr > 0);
1160
1161 if (TRANS_ABORTED(trans))
1162 return -EIO;
1163
1164 path = btrfs_alloc_path();
1165 if (!path)
1166 return -ENOMEM;
1167
1168 block_rsv = trans->block_rsv;
1169 trans->block_rsv = &fs_info->delayed_block_rsv;
1170
1171 delayed_root = fs_info->delayed_root;
1172
1173 curr_node = btrfs_first_delayed_node(delayed_root, &curr_delayed_node_tracker);
1174 while (curr_node && (!count || nr--)) {
1175 ret = __btrfs_commit_inode_delayed_items(trans, path,
1176 curr_node);
1177 if (unlikely(ret)) {
1178 btrfs_abort_transaction(trans, ret);
1179 break;
1180 }
1181
1182 prev_node = curr_node;
1183 prev_delayed_node_tracker = curr_delayed_node_tracker;
1184 curr_node = btrfs_next_delayed_node(curr_node, &curr_delayed_node_tracker);
1185 /*
1186 * See the comment below about releasing path before releasing
1187 * node. If the commit of delayed items was successful the path
1188 * should always be released, but in case of an error, it may
1189 * point to locked extent buffers (a leaf at the very least).
1190 */
1191 ASSERT(path->nodes[0] == NULL);
1192 btrfs_release_delayed_node(prev_node, &prev_delayed_node_tracker);
1193 }
1194
1195 /*
1196 * Release the path to avoid a potential deadlock and lockdep splat when
1197 * releasing the delayed node, as that requires taking the delayed node's
1198 * mutex. If another task starts running delayed items before we take
1199 * the mutex, it will first lock the mutex and then it may try to lock
1200 * the same btree path (leaf).
1201 */
1202 btrfs_free_path(path);
1203
1204 if (curr_node)
1205 btrfs_release_delayed_node(curr_node, &curr_delayed_node_tracker);
1206 trans->block_rsv = block_rsv;
1207
1208 return ret;
1209 }
1210
btrfs_run_delayed_items(struct btrfs_trans_handle * trans)1211 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1212 {
1213 return __btrfs_run_delayed_items(trans, -1);
1214 }
1215
btrfs_run_delayed_items_nr(struct btrfs_trans_handle * trans,int nr)1216 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1217 {
1218 return __btrfs_run_delayed_items(trans, nr);
1219 }
1220
btrfs_commit_inode_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)1221 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1222 struct btrfs_inode *inode)
1223 {
1224 struct btrfs_ref_tracker delayed_node_tracker;
1225 struct btrfs_delayed_node *delayed_node =
1226 btrfs_get_delayed_node(inode, &delayed_node_tracker);
1227 BTRFS_PATH_AUTO_FREE(path);
1228 struct btrfs_block_rsv *block_rsv;
1229 int ret;
1230
1231 if (!delayed_node)
1232 return 0;
1233
1234 mutex_lock(&delayed_node->mutex);
1235 if (!delayed_node->count) {
1236 mutex_unlock(&delayed_node->mutex);
1237 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1238 return 0;
1239 }
1240 mutex_unlock(&delayed_node->mutex);
1241
1242 path = btrfs_alloc_path();
1243 if (!path) {
1244 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1245 return -ENOMEM;
1246 }
1247
1248 block_rsv = trans->block_rsv;
1249 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1250
1251 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1252
1253 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1254 trans->block_rsv = block_rsv;
1255
1256 return ret;
1257 }
1258
btrfs_commit_inode_delayed_inode(struct btrfs_inode * inode)1259 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1260 {
1261 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1262 struct btrfs_trans_handle *trans;
1263 struct btrfs_ref_tracker delayed_node_tracker;
1264 struct btrfs_delayed_node *delayed_node;
1265 struct btrfs_path *path;
1266 struct btrfs_block_rsv *block_rsv;
1267 int ret;
1268
1269 delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
1270 if (!delayed_node)
1271 return 0;
1272
1273 mutex_lock(&delayed_node->mutex);
1274 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1275 mutex_unlock(&delayed_node->mutex);
1276 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1277 return 0;
1278 }
1279 mutex_unlock(&delayed_node->mutex);
1280
1281 trans = btrfs_join_transaction(delayed_node->root);
1282 if (IS_ERR(trans)) {
1283 ret = PTR_ERR(trans);
1284 goto out;
1285 }
1286
1287 path = btrfs_alloc_path();
1288 if (!path) {
1289 ret = -ENOMEM;
1290 goto trans_out;
1291 }
1292
1293 block_rsv = trans->block_rsv;
1294 trans->block_rsv = &fs_info->delayed_block_rsv;
1295
1296 mutex_lock(&delayed_node->mutex);
1297 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1298 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1299 path, delayed_node);
1300 else
1301 ret = 0;
1302 mutex_unlock(&delayed_node->mutex);
1303
1304 btrfs_free_path(path);
1305 trans->block_rsv = block_rsv;
1306 trans_out:
1307 btrfs_end_transaction(trans);
1308 btrfs_btree_balance_dirty(fs_info);
1309 out:
1310 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1311
1312 return ret;
1313 }
1314
btrfs_remove_delayed_node(struct btrfs_inode * inode)1315 void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1316 {
1317 struct btrfs_delayed_node *delayed_node;
1318
1319 delayed_node = READ_ONCE(inode->delayed_node);
1320 if (!delayed_node)
1321 return;
1322
1323 inode->delayed_node = NULL;
1324
1325 btrfs_release_delayed_node(delayed_node, &delayed_node->inode_cache_tracker);
1326 }
1327
1328 struct btrfs_async_delayed_work {
1329 struct btrfs_delayed_root *delayed_root;
1330 int nr;
1331 struct btrfs_work work;
1332 };
1333
btrfs_async_run_delayed_root(struct btrfs_work * work)1334 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1335 {
1336 struct btrfs_async_delayed_work *async_work;
1337 struct btrfs_delayed_root *delayed_root;
1338 struct btrfs_trans_handle *trans;
1339 struct btrfs_path *path;
1340 struct btrfs_delayed_node *delayed_node = NULL;
1341 struct btrfs_ref_tracker delayed_node_tracker;
1342 struct btrfs_root *root;
1343 struct btrfs_block_rsv *block_rsv;
1344 int total_done = 0;
1345
1346 async_work = container_of(work, struct btrfs_async_delayed_work, work);
1347 delayed_root = async_work->delayed_root;
1348
1349 path = btrfs_alloc_path();
1350 if (!path)
1351 goto out;
1352
1353 do {
1354 if (atomic_read(&delayed_root->items) <
1355 BTRFS_DELAYED_BACKGROUND / 2)
1356 break;
1357
1358 delayed_node = btrfs_first_prepared_delayed_node(delayed_root,
1359 &delayed_node_tracker);
1360 if (!delayed_node)
1361 break;
1362
1363 root = delayed_node->root;
1364
1365 trans = btrfs_join_transaction(root);
1366 if (IS_ERR(trans)) {
1367 btrfs_release_path(path);
1368 btrfs_release_prepared_delayed_node(delayed_node,
1369 &delayed_node_tracker);
1370 total_done++;
1371 continue;
1372 }
1373
1374 block_rsv = trans->block_rsv;
1375 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1376
1377 __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1378
1379 trans->block_rsv = block_rsv;
1380 btrfs_end_transaction(trans);
1381 btrfs_btree_balance_dirty_nodelay(root->fs_info);
1382
1383 btrfs_release_path(path);
1384 btrfs_release_prepared_delayed_node(delayed_node,
1385 &delayed_node_tracker);
1386 total_done++;
1387
1388 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1389 || total_done < async_work->nr);
1390
1391 btrfs_free_path(path);
1392 out:
1393 wake_up(&delayed_root->wait);
1394 kfree(async_work);
1395 }
1396
1397
btrfs_wq_run_delayed_node(struct btrfs_delayed_root * delayed_root,struct btrfs_fs_info * fs_info,int nr)1398 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1399 struct btrfs_fs_info *fs_info, int nr)
1400 {
1401 struct btrfs_async_delayed_work *async_work;
1402
1403 async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1404 if (!async_work)
1405 return -ENOMEM;
1406
1407 async_work->delayed_root = delayed_root;
1408 btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL);
1409 async_work->nr = nr;
1410
1411 btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1412 return 0;
1413 }
1414
btrfs_assert_delayed_root_empty(struct btrfs_fs_info * fs_info)1415 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1416 {
1417 struct btrfs_ref_tracker delayed_node_tracker;
1418 struct btrfs_delayed_node *node;
1419
1420 node = btrfs_first_delayed_node( fs_info->delayed_root, &delayed_node_tracker);
1421 if (WARN_ON(node)) {
1422 btrfs_delayed_node_ref_tracker_free(node,
1423 &delayed_node_tracker);
1424 refcount_dec(&node->refs);
1425 }
1426 }
1427
could_end_wait(struct btrfs_delayed_root * delayed_root,int seq)1428 static bool could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1429 {
1430 int val = atomic_read(&delayed_root->items_seq);
1431
1432 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1433 return true;
1434
1435 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1436 return true;
1437
1438 return false;
1439 }
1440
btrfs_balance_delayed_items(struct btrfs_fs_info * fs_info)1441 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1442 {
1443 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1444
1445 if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1446 btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1447 return;
1448
1449 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1450 int seq;
1451 int ret;
1452
1453 seq = atomic_read(&delayed_root->items_seq);
1454
1455 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1456 if (ret)
1457 return;
1458
1459 wait_event_interruptible(delayed_root->wait,
1460 could_end_wait(delayed_root, seq));
1461 return;
1462 }
1463
1464 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1465 }
1466
btrfs_release_dir_index_item_space(struct btrfs_trans_handle * trans)1467 static void btrfs_release_dir_index_item_space(struct btrfs_trans_handle *trans)
1468 {
1469 struct btrfs_fs_info *fs_info = trans->fs_info;
1470 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
1471
1472 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1473 return;
1474
1475 /*
1476 * Adding the new dir index item does not require touching another
1477 * leaf, so we can release 1 unit of metadata that was previously
1478 * reserved when starting the transaction. This applies only to
1479 * the case where we had a transaction start and excludes the
1480 * transaction join case (when replaying log trees).
1481 */
1482 trace_btrfs_space_reservation(fs_info, "transaction",
1483 trans->transid, bytes, 0);
1484 btrfs_block_rsv_release(fs_info, trans->block_rsv, bytes, NULL);
1485 ASSERT(trans->bytes_reserved >= bytes);
1486 trans->bytes_reserved -= bytes;
1487 }
1488
1489 /* Will return 0, -ENOMEM or -EEXIST (index number collision, unexpected). */
btrfs_insert_delayed_dir_index(struct btrfs_trans_handle * trans,const char * name,int name_len,struct btrfs_inode * dir,const struct btrfs_disk_key * disk_key,u8 flags,u64 index)1490 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1491 const char *name, int name_len,
1492 struct btrfs_inode *dir,
1493 const struct btrfs_disk_key *disk_key, u8 flags,
1494 u64 index)
1495 {
1496 struct btrfs_fs_info *fs_info = trans->fs_info;
1497 const unsigned int leaf_data_size = BTRFS_LEAF_DATA_SIZE(fs_info);
1498 struct btrfs_delayed_node *delayed_node;
1499 struct btrfs_ref_tracker delayed_node_tracker;
1500 struct btrfs_delayed_item *delayed_item;
1501 struct btrfs_dir_item *dir_item;
1502 bool reserve_leaf_space;
1503 u32 data_len;
1504 int ret;
1505
1506 delayed_node = btrfs_get_or_create_delayed_node(dir, &delayed_node_tracker);
1507 if (IS_ERR(delayed_node))
1508 return PTR_ERR(delayed_node);
1509
1510 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len,
1511 delayed_node,
1512 BTRFS_DELAYED_INSERTION_ITEM);
1513 if (!delayed_item) {
1514 ret = -ENOMEM;
1515 goto release_node;
1516 }
1517
1518 delayed_item->index = index;
1519
1520 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1521 dir_item->location = *disk_key;
1522 btrfs_set_stack_dir_transid(dir_item, trans->transid);
1523 btrfs_set_stack_dir_data_len(dir_item, 0);
1524 btrfs_set_stack_dir_name_len(dir_item, name_len);
1525 btrfs_set_stack_dir_flags(dir_item, flags);
1526 memcpy((char *)(dir_item + 1), name, name_len);
1527
1528 data_len = delayed_item->data_len + sizeof(struct btrfs_item);
1529
1530 mutex_lock(&delayed_node->mutex);
1531
1532 /*
1533 * First attempt to insert the delayed item. This is to make the error
1534 * handling path simpler in case we fail (-EEXIST). There's no risk of
1535 * any other task coming in and running the delayed item before we do
1536 * the metadata space reservation below, because we are holding the
1537 * delayed node's mutex and that mutex must also be locked before the
1538 * node's delayed items can be run.
1539 */
1540 ret = __btrfs_add_delayed_item(delayed_node, delayed_item);
1541 if (unlikely(ret)) {
1542 btrfs_err(trans->fs_info,
1543 "error adding delayed dir index item, name: %.*s, index: %llu, root: %llu, dir: %llu, dir->index_cnt: %llu, delayed_node->index_cnt: %llu, error: %d",
1544 name_len, name, index, btrfs_root_id(delayed_node->root),
1545 delayed_node->inode_id, dir->index_cnt,
1546 delayed_node->index_cnt, ret);
1547 btrfs_release_delayed_item(delayed_item);
1548 btrfs_release_dir_index_item_space(trans);
1549 mutex_unlock(&delayed_node->mutex);
1550 goto release_node;
1551 }
1552
1553 if (delayed_node->index_item_leaves == 0 ||
1554 delayed_node->curr_index_batch_size + data_len > leaf_data_size) {
1555 delayed_node->curr_index_batch_size = data_len;
1556 reserve_leaf_space = true;
1557 } else {
1558 delayed_node->curr_index_batch_size += data_len;
1559 reserve_leaf_space = false;
1560 }
1561
1562 if (reserve_leaf_space) {
1563 ret = btrfs_delayed_item_reserve_metadata(trans, delayed_item);
1564 /*
1565 * Space was reserved for a dir index item insertion when we
1566 * started the transaction, so getting a failure here should be
1567 * impossible.
1568 */
1569 if (WARN_ON(ret)) {
1570 btrfs_release_delayed_item(delayed_item);
1571 mutex_unlock(&delayed_node->mutex);
1572 goto release_node;
1573 }
1574
1575 delayed_node->index_item_leaves++;
1576 } else {
1577 btrfs_release_dir_index_item_space(trans);
1578 }
1579 mutex_unlock(&delayed_node->mutex);
1580
1581 release_node:
1582 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1583 return ret;
1584 }
1585
btrfs_delete_delayed_insertion_item(struct btrfs_delayed_node * node,u64 index)1586 static bool btrfs_delete_delayed_insertion_item(struct btrfs_delayed_node *node,
1587 u64 index)
1588 {
1589 struct btrfs_delayed_item *item;
1590
1591 mutex_lock(&node->mutex);
1592 item = __btrfs_lookup_delayed_item(&node->ins_root.rb_root, index);
1593 if (!item) {
1594 mutex_unlock(&node->mutex);
1595 return false;
1596 }
1597
1598 /*
1599 * For delayed items to insert, we track reserved metadata bytes based
1600 * on the number of leaves that we will use.
1601 * See btrfs_insert_delayed_dir_index() and
1602 * btrfs_delayed_item_reserve_metadata()).
1603 */
1604 ASSERT(item->bytes_reserved == 0);
1605 ASSERT(node->index_item_leaves > 0);
1606
1607 /*
1608 * If there's only one leaf reserved, we can decrement this item from the
1609 * current batch, otherwise we can not because we don't know which leaf
1610 * it belongs to. With the current limit on delayed items, we rarely
1611 * accumulate enough dir index items to fill more than one leaf (even
1612 * when using a leaf size of 4K).
1613 */
1614 if (node->index_item_leaves == 1) {
1615 const u32 data_len = item->data_len + sizeof(struct btrfs_item);
1616
1617 ASSERT(node->curr_index_batch_size >= data_len);
1618 node->curr_index_batch_size -= data_len;
1619 }
1620
1621 btrfs_release_delayed_item(item);
1622
1623 /* If we now have no more dir index items, we can release all leaves. */
1624 if (RB_EMPTY_ROOT(&node->ins_root.rb_root)) {
1625 btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
1626 node->index_item_leaves = 0;
1627 }
1628
1629 mutex_unlock(&node->mutex);
1630 return true;
1631 }
1632
btrfs_delete_delayed_dir_index(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,u64 index)1633 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1634 struct btrfs_inode *dir, u64 index)
1635 {
1636 struct btrfs_delayed_node *node;
1637 struct btrfs_ref_tracker delayed_node_tracker;
1638 struct btrfs_delayed_item *item;
1639 int ret;
1640
1641 node = btrfs_get_or_create_delayed_node(dir, &delayed_node_tracker);
1642 if (IS_ERR(node))
1643 return PTR_ERR(node);
1644
1645 if (btrfs_delete_delayed_insertion_item(node, index)) {
1646 ret = 0;
1647 goto end;
1648 }
1649
1650 item = btrfs_alloc_delayed_item(0, node, BTRFS_DELAYED_DELETION_ITEM);
1651 if (!item) {
1652 ret = -ENOMEM;
1653 goto end;
1654 }
1655
1656 item->index = index;
1657
1658 ret = btrfs_delayed_item_reserve_metadata(trans, item);
1659 /*
1660 * we have reserved enough space when we start a new transaction,
1661 * so reserving metadata failure is impossible.
1662 */
1663 if (ret < 0) {
1664 btrfs_err(trans->fs_info,
1665 "metadata reservation failed for delayed dir item deletion, index: %llu, root: %llu, inode: %llu, error: %d",
1666 index, btrfs_root_id(node->root), node->inode_id, ret);
1667 btrfs_release_delayed_item(item);
1668 goto end;
1669 }
1670
1671 mutex_lock(&node->mutex);
1672 ret = __btrfs_add_delayed_item(node, item);
1673 if (unlikely(ret)) {
1674 btrfs_err(trans->fs_info,
1675 "failed to add delayed dir index item, root: %llu, inode: %llu, index: %llu, error: %d",
1676 index, btrfs_root_id(node->root), node->inode_id, ret);
1677 btrfs_delayed_item_release_metadata(dir->root, item);
1678 btrfs_release_delayed_item(item);
1679 }
1680 mutex_unlock(&node->mutex);
1681 end:
1682 btrfs_release_delayed_node(node, &delayed_node_tracker);
1683 return ret;
1684 }
1685
btrfs_inode_delayed_dir_index_count(struct btrfs_inode * inode)1686 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1687 {
1688 struct btrfs_ref_tracker delayed_node_tracker;
1689 struct btrfs_delayed_node *delayed_node;
1690
1691 delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
1692 if (!delayed_node)
1693 return -ENOENT;
1694
1695 /*
1696 * Since we have held i_mutex of this directory, it is impossible that
1697 * a new directory index is added into the delayed node and index_cnt
1698 * is updated now. So we needn't lock the delayed node.
1699 */
1700 if (!delayed_node->index_cnt) {
1701 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1702 return -EINVAL;
1703 }
1704
1705 inode->index_cnt = delayed_node->index_cnt;
1706 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1707 return 0;
1708 }
1709
btrfs_readdir_get_delayed_items(struct btrfs_inode * inode,u64 last_index,struct list_head * ins_list,struct list_head * del_list)1710 bool btrfs_readdir_get_delayed_items(struct btrfs_inode *inode,
1711 u64 last_index,
1712 struct list_head *ins_list,
1713 struct list_head *del_list)
1714 {
1715 struct btrfs_delayed_node *delayed_node;
1716 struct btrfs_delayed_item *item;
1717 struct btrfs_ref_tracker delayed_node_tracker;
1718
1719 delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
1720 if (!delayed_node)
1721 return false;
1722
1723 /*
1724 * We can only do one readdir with delayed items at a time because of
1725 * item->readdir_list.
1726 */
1727 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
1728 btrfs_inode_lock(inode, 0);
1729
1730 mutex_lock(&delayed_node->mutex);
1731 item = __btrfs_first_delayed_insertion_item(delayed_node);
1732 while (item && item->index <= last_index) {
1733 refcount_inc(&item->refs);
1734 list_add_tail(&item->readdir_list, ins_list);
1735 item = __btrfs_next_delayed_item(item);
1736 }
1737
1738 item = __btrfs_first_delayed_deletion_item(delayed_node);
1739 while (item && item->index <= last_index) {
1740 refcount_inc(&item->refs);
1741 list_add_tail(&item->readdir_list, del_list);
1742 item = __btrfs_next_delayed_item(item);
1743 }
1744 mutex_unlock(&delayed_node->mutex);
1745 /*
1746 * This delayed node is still cached in the btrfs inode, so refs
1747 * must be > 1 now, and we needn't check it is going to be freed
1748 * or not.
1749 *
1750 * Besides that, this function is used to read dir, we do not
1751 * insert/delete delayed items in this period. So we also needn't
1752 * requeue or dequeue this delayed node.
1753 */
1754 btrfs_delayed_node_ref_tracker_free(delayed_node, &delayed_node_tracker);
1755 refcount_dec(&delayed_node->refs);
1756
1757 return true;
1758 }
1759
btrfs_readdir_put_delayed_items(struct btrfs_inode * inode,struct list_head * ins_list,struct list_head * del_list)1760 void btrfs_readdir_put_delayed_items(struct btrfs_inode *inode,
1761 struct list_head *ins_list,
1762 struct list_head *del_list)
1763 {
1764 struct btrfs_delayed_item *curr, *next;
1765
1766 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1767 list_del(&curr->readdir_list);
1768 if (refcount_dec_and_test(&curr->refs))
1769 kfree(curr);
1770 }
1771
1772 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1773 list_del(&curr->readdir_list);
1774 if (refcount_dec_and_test(&curr->refs))
1775 kfree(curr);
1776 }
1777
1778 /*
1779 * The VFS is going to do up_read(), so we need to downgrade back to a
1780 * read lock.
1781 */
1782 downgrade_write(&inode->vfs_inode.i_rwsem);
1783 }
1784
btrfs_should_delete_dir_index(const struct list_head * del_list,u64 index)1785 bool btrfs_should_delete_dir_index(const struct list_head *del_list, u64 index)
1786 {
1787 struct btrfs_delayed_item *curr;
1788 bool ret = false;
1789
1790 list_for_each_entry(curr, del_list, readdir_list) {
1791 if (curr->index > index)
1792 break;
1793 if (curr->index == index) {
1794 ret = true;
1795 break;
1796 }
1797 }
1798 return ret;
1799 }
1800
1801 /*
1802 * Read dir info stored in the delayed tree.
1803 */
btrfs_readdir_delayed_dir_index(struct dir_context * ctx,const struct list_head * ins_list)1804 bool btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1805 const struct list_head *ins_list)
1806 {
1807 struct btrfs_dir_item *di;
1808 struct btrfs_delayed_item *curr, *next;
1809 struct btrfs_key location;
1810 char *name;
1811 int name_len;
1812 unsigned char d_type;
1813
1814 /*
1815 * Changing the data of the delayed item is impossible. So
1816 * we needn't lock them. And we have held i_mutex of the
1817 * directory, nobody can delete any directory indexes now.
1818 */
1819 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1820 bool over;
1821
1822 list_del(&curr->readdir_list);
1823
1824 if (curr->index < ctx->pos) {
1825 if (refcount_dec_and_test(&curr->refs))
1826 kfree(curr);
1827 continue;
1828 }
1829
1830 ctx->pos = curr->index;
1831
1832 di = (struct btrfs_dir_item *)curr->data;
1833 name = (char *)(di + 1);
1834 name_len = btrfs_stack_dir_name_len(di);
1835
1836 d_type = fs_ftype_to_dtype(btrfs_dir_flags_to_ftype(di->type));
1837 btrfs_disk_key_to_cpu(&location, &di->location);
1838
1839 over = !dir_emit(ctx, name, name_len, location.objectid, d_type);
1840
1841 if (refcount_dec_and_test(&curr->refs))
1842 kfree(curr);
1843
1844 if (over)
1845 return true;
1846 ctx->pos++;
1847 }
1848 return false;
1849 }
1850
fill_stack_inode_item(struct btrfs_trans_handle * trans,struct btrfs_inode_item * inode_item,struct btrfs_inode * inode)1851 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1852 struct btrfs_inode_item *inode_item,
1853 struct btrfs_inode *inode)
1854 {
1855 struct inode *vfs_inode = &inode->vfs_inode;
1856 u64 flags;
1857
1858 btrfs_set_stack_inode_uid(inode_item, i_uid_read(vfs_inode));
1859 btrfs_set_stack_inode_gid(inode_item, i_gid_read(vfs_inode));
1860 btrfs_set_stack_inode_size(inode_item, inode->disk_i_size);
1861 btrfs_set_stack_inode_mode(inode_item, vfs_inode->i_mode);
1862 btrfs_set_stack_inode_nlink(inode_item, vfs_inode->i_nlink);
1863 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(vfs_inode));
1864 btrfs_set_stack_inode_generation(inode_item, inode->generation);
1865 btrfs_set_stack_inode_sequence(inode_item,
1866 inode_peek_iversion(vfs_inode));
1867 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1868 btrfs_set_stack_inode_rdev(inode_item, vfs_inode->i_rdev);
1869 flags = btrfs_inode_combine_flags(inode->flags, inode->ro_flags);
1870 btrfs_set_stack_inode_flags(inode_item, flags);
1871 btrfs_set_stack_inode_block_group(inode_item, 0);
1872
1873 btrfs_set_stack_timespec_sec(&inode_item->atime,
1874 inode_get_atime_sec(vfs_inode));
1875 btrfs_set_stack_timespec_nsec(&inode_item->atime,
1876 inode_get_atime_nsec(vfs_inode));
1877
1878 btrfs_set_stack_timespec_sec(&inode_item->mtime,
1879 inode_get_mtime_sec(vfs_inode));
1880 btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1881 inode_get_mtime_nsec(vfs_inode));
1882
1883 btrfs_set_stack_timespec_sec(&inode_item->ctime,
1884 inode_get_ctime_sec(vfs_inode));
1885 btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1886 inode_get_ctime_nsec(vfs_inode));
1887
1888 btrfs_set_stack_timespec_sec(&inode_item->otime, inode->i_otime_sec);
1889 btrfs_set_stack_timespec_nsec(&inode_item->otime, inode->i_otime_nsec);
1890 }
1891
btrfs_fill_inode(struct btrfs_inode * inode,u32 * rdev)1892 int btrfs_fill_inode(struct btrfs_inode *inode, u32 *rdev)
1893 {
1894 struct btrfs_delayed_node *delayed_node;
1895 struct btrfs_ref_tracker delayed_node_tracker;
1896 struct btrfs_inode_item *inode_item;
1897 struct inode *vfs_inode = &inode->vfs_inode;
1898
1899 delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
1900 if (!delayed_node)
1901 return -ENOENT;
1902
1903 mutex_lock(&delayed_node->mutex);
1904 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1905 mutex_unlock(&delayed_node->mutex);
1906 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1907 return -ENOENT;
1908 }
1909
1910 inode_item = &delayed_node->inode_item;
1911
1912 i_uid_write(vfs_inode, btrfs_stack_inode_uid(inode_item));
1913 i_gid_write(vfs_inode, btrfs_stack_inode_gid(inode_item));
1914 btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
1915 vfs_inode->i_mode = btrfs_stack_inode_mode(inode_item);
1916 set_nlink(vfs_inode, btrfs_stack_inode_nlink(inode_item));
1917 inode_set_bytes(vfs_inode, btrfs_stack_inode_nbytes(inode_item));
1918 inode->generation = btrfs_stack_inode_generation(inode_item);
1919 inode->last_trans = btrfs_stack_inode_transid(inode_item);
1920
1921 inode_set_iversion_queried(vfs_inode, btrfs_stack_inode_sequence(inode_item));
1922 vfs_inode->i_rdev = 0;
1923 *rdev = btrfs_stack_inode_rdev(inode_item);
1924 btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item),
1925 &inode->flags, &inode->ro_flags);
1926
1927 inode_set_atime(vfs_inode, btrfs_stack_timespec_sec(&inode_item->atime),
1928 btrfs_stack_timespec_nsec(&inode_item->atime));
1929
1930 inode_set_mtime(vfs_inode, btrfs_stack_timespec_sec(&inode_item->mtime),
1931 btrfs_stack_timespec_nsec(&inode_item->mtime));
1932
1933 inode_set_ctime(vfs_inode, btrfs_stack_timespec_sec(&inode_item->ctime),
1934 btrfs_stack_timespec_nsec(&inode_item->ctime));
1935
1936 inode->i_otime_sec = btrfs_stack_timespec_sec(&inode_item->otime);
1937 inode->i_otime_nsec = btrfs_stack_timespec_nsec(&inode_item->otime);
1938
1939 vfs_inode->i_generation = inode->generation;
1940 if (S_ISDIR(vfs_inode->i_mode))
1941 inode->index_cnt = (u64)-1;
1942
1943 mutex_unlock(&delayed_node->mutex);
1944 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1945 return 0;
1946 }
1947
btrfs_delayed_update_inode(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)1948 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1949 struct btrfs_inode *inode)
1950 {
1951 struct btrfs_root *root = inode->root;
1952 struct btrfs_delayed_node *delayed_node;
1953 struct btrfs_ref_tracker delayed_node_tracker;
1954 int ret = 0;
1955
1956 delayed_node = btrfs_get_or_create_delayed_node(inode, &delayed_node_tracker);
1957 if (IS_ERR(delayed_node))
1958 return PTR_ERR(delayed_node);
1959
1960 mutex_lock(&delayed_node->mutex);
1961 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1962 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1963 goto release_node;
1964 }
1965
1966 ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
1967 if (ret)
1968 goto release_node;
1969
1970 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1971 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1972 delayed_node->count++;
1973 atomic_inc(&root->fs_info->delayed_root->items);
1974 release_node:
1975 mutex_unlock(&delayed_node->mutex);
1976 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1977 return ret;
1978 }
1979
btrfs_delayed_delete_inode_ref(struct btrfs_inode * inode)1980 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1981 {
1982 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1983 struct btrfs_delayed_node *delayed_node;
1984 struct btrfs_ref_tracker delayed_node_tracker;
1985
1986 /*
1987 * we don't do delayed inode updates during log recovery because it
1988 * leads to enospc problems. This means we also can't do
1989 * delayed inode refs
1990 */
1991 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1992 return -EAGAIN;
1993
1994 delayed_node = btrfs_get_or_create_delayed_node(inode, &delayed_node_tracker);
1995 if (IS_ERR(delayed_node))
1996 return PTR_ERR(delayed_node);
1997
1998 /*
1999 * We don't reserve space for inode ref deletion is because:
2000 * - We ONLY do async inode ref deletion for the inode who has only
2001 * one link(i_nlink == 1), it means there is only one inode ref.
2002 * And in most case, the inode ref and the inode item are in the
2003 * same leaf, and we will deal with them at the same time.
2004 * Since we are sure we will reserve the space for the inode item,
2005 * it is unnecessary to reserve space for inode ref deletion.
2006 * - If the inode ref and the inode item are not in the same leaf,
2007 * We also needn't worry about enospc problem, because we reserve
2008 * much more space for the inode update than it needs.
2009 * - At the worst, we can steal some space from the global reservation.
2010 * It is very rare.
2011 */
2012 mutex_lock(&delayed_node->mutex);
2013 if (!test_and_set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) {
2014 delayed_node->count++;
2015 atomic_inc(&fs_info->delayed_root->items);
2016 }
2017 mutex_unlock(&delayed_node->mutex);
2018 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
2019 return 0;
2020 }
2021
__btrfs_kill_delayed_node(struct btrfs_delayed_node * delayed_node)2022 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
2023 {
2024 struct btrfs_root *root = delayed_node->root;
2025 struct btrfs_fs_info *fs_info = root->fs_info;
2026 struct btrfs_delayed_item *curr_item, *prev_item;
2027
2028 mutex_lock(&delayed_node->mutex);
2029 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
2030 while (curr_item) {
2031 prev_item = curr_item;
2032 curr_item = __btrfs_next_delayed_item(prev_item);
2033 btrfs_release_delayed_item(prev_item);
2034 }
2035
2036 if (delayed_node->index_item_leaves > 0) {
2037 btrfs_delayed_item_release_leaves(delayed_node,
2038 delayed_node->index_item_leaves);
2039 delayed_node->index_item_leaves = 0;
2040 }
2041
2042 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
2043 while (curr_item) {
2044 btrfs_delayed_item_release_metadata(root, curr_item);
2045 prev_item = curr_item;
2046 curr_item = __btrfs_next_delayed_item(prev_item);
2047 btrfs_release_delayed_item(prev_item);
2048 }
2049
2050 btrfs_release_delayed_iref(delayed_node);
2051
2052 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
2053 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
2054 btrfs_release_delayed_inode(delayed_node);
2055 }
2056 mutex_unlock(&delayed_node->mutex);
2057 }
2058
btrfs_kill_delayed_inode_items(struct btrfs_inode * inode)2059 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
2060 {
2061 struct btrfs_delayed_node *delayed_node;
2062 struct btrfs_ref_tracker delayed_node_tracker;
2063
2064 delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
2065 if (!delayed_node)
2066 return;
2067
2068 __btrfs_kill_delayed_node(delayed_node);
2069 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
2070 }
2071
btrfs_kill_all_delayed_nodes(struct btrfs_root * root)2072 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
2073 {
2074 unsigned long index = 0;
2075 struct btrfs_delayed_node *delayed_nodes[8];
2076 struct btrfs_ref_tracker delayed_node_trackers[8];
2077
2078 while (1) {
2079 struct btrfs_delayed_node *node;
2080 int count;
2081
2082 xa_lock(&root->delayed_nodes);
2083 if (xa_empty(&root->delayed_nodes)) {
2084 xa_unlock(&root->delayed_nodes);
2085 return;
2086 }
2087
2088 count = 0;
2089 xa_for_each_start(&root->delayed_nodes, index, node, index) {
2090 /*
2091 * Don't increase refs in case the node is dead and
2092 * about to be removed from the tree in the loop below
2093 */
2094 if (refcount_inc_not_zero(&node->refs)) {
2095 btrfs_delayed_node_ref_tracker_alloc(node,
2096 &delayed_node_trackers[count],
2097 GFP_ATOMIC);
2098 delayed_nodes[count] = node;
2099 count++;
2100 }
2101 if (count >= ARRAY_SIZE(delayed_nodes))
2102 break;
2103 }
2104 xa_unlock(&root->delayed_nodes);
2105 index++;
2106
2107 for (int i = 0; i < count; i++) {
2108 __btrfs_kill_delayed_node(delayed_nodes[i]);
2109 btrfs_delayed_node_ref_tracker_dir_print(delayed_nodes[i]);
2110 btrfs_release_delayed_node(delayed_nodes[i],
2111 &delayed_node_trackers[i]);
2112 }
2113 }
2114 }
2115
btrfs_destroy_delayed_inodes(struct btrfs_fs_info * fs_info)2116 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
2117 {
2118 struct btrfs_delayed_node *curr_node, *prev_node;
2119 struct btrfs_ref_tracker curr_delayed_node_tracker, prev_delayed_node_tracker;
2120
2121 curr_node = btrfs_first_delayed_node(fs_info->delayed_root,
2122 &curr_delayed_node_tracker);
2123 while (curr_node) {
2124 __btrfs_kill_delayed_node(curr_node);
2125
2126 prev_node = curr_node;
2127 prev_delayed_node_tracker = curr_delayed_node_tracker;
2128 curr_node = btrfs_next_delayed_node(curr_node, &curr_delayed_node_tracker);
2129 btrfs_release_delayed_node(prev_node, &prev_delayed_node_tracker);
2130 }
2131 }
2132
btrfs_log_get_delayed_items(struct btrfs_inode * inode,struct list_head * ins_list,struct list_head * del_list)2133 void btrfs_log_get_delayed_items(struct btrfs_inode *inode,
2134 struct list_head *ins_list,
2135 struct list_head *del_list)
2136 {
2137 struct btrfs_delayed_node *node;
2138 struct btrfs_delayed_item *item;
2139 struct btrfs_ref_tracker delayed_node_tracker;
2140
2141 node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
2142 if (!node)
2143 return;
2144
2145 mutex_lock(&node->mutex);
2146 item = __btrfs_first_delayed_insertion_item(node);
2147 while (item) {
2148 /*
2149 * It's possible that the item is already in a log list. This
2150 * can happen in case two tasks are trying to log the same
2151 * directory. For example if we have tasks A and task B:
2152 *
2153 * Task A collected the delayed items into a log list while
2154 * under the inode's log_mutex (at btrfs_log_inode()), but it
2155 * only releases the items after logging the inodes they point
2156 * to (if they are new inodes), which happens after unlocking
2157 * the log mutex;
2158 *
2159 * Task B enters btrfs_log_inode() and acquires the log_mutex
2160 * of the same directory inode, before task B releases the
2161 * delayed items. This can happen for example when logging some
2162 * inode we need to trigger logging of its parent directory, so
2163 * logging two files that have the same parent directory can
2164 * lead to this.
2165 *
2166 * If this happens, just ignore delayed items already in a log
2167 * list. All the tasks logging the directory are under a log
2168 * transaction and whichever finishes first can not sync the log
2169 * before the other completes and leaves the log transaction.
2170 */
2171 if (!item->logged && list_empty(&item->log_list)) {
2172 refcount_inc(&item->refs);
2173 list_add_tail(&item->log_list, ins_list);
2174 }
2175 item = __btrfs_next_delayed_item(item);
2176 }
2177
2178 item = __btrfs_first_delayed_deletion_item(node);
2179 while (item) {
2180 /* It may be non-empty, for the same reason mentioned above. */
2181 if (!item->logged && list_empty(&item->log_list)) {
2182 refcount_inc(&item->refs);
2183 list_add_tail(&item->log_list, del_list);
2184 }
2185 item = __btrfs_next_delayed_item(item);
2186 }
2187 mutex_unlock(&node->mutex);
2188
2189 /*
2190 * We are called during inode logging, which means the inode is in use
2191 * and can not be evicted before we finish logging the inode. So we never
2192 * have the last reference on the delayed inode.
2193 * Also, we don't use btrfs_release_delayed_node() because that would
2194 * requeue the delayed inode (change its order in the list of prepared
2195 * nodes) and we don't want to do such change because we don't create or
2196 * delete delayed items.
2197 */
2198 ASSERT(refcount_read(&node->refs) > 1);
2199 btrfs_delayed_node_ref_tracker_free(node, &delayed_node_tracker);
2200 refcount_dec(&node->refs);
2201 }
2202
btrfs_log_put_delayed_items(struct btrfs_inode * inode,struct list_head * ins_list,struct list_head * del_list)2203 void btrfs_log_put_delayed_items(struct btrfs_inode *inode,
2204 struct list_head *ins_list,
2205 struct list_head *del_list)
2206 {
2207 struct btrfs_delayed_node *node;
2208 struct btrfs_delayed_item *item;
2209 struct btrfs_delayed_item *next;
2210 struct btrfs_ref_tracker delayed_node_tracker;
2211
2212 node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
2213 if (!node)
2214 return;
2215
2216 mutex_lock(&node->mutex);
2217
2218 list_for_each_entry_safe(item, next, ins_list, log_list) {
2219 item->logged = true;
2220 list_del_init(&item->log_list);
2221 if (refcount_dec_and_test(&item->refs))
2222 kfree(item);
2223 }
2224
2225 list_for_each_entry_safe(item, next, del_list, log_list) {
2226 item->logged = true;
2227 list_del_init(&item->log_list);
2228 if (refcount_dec_and_test(&item->refs))
2229 kfree(item);
2230 }
2231
2232 mutex_unlock(&node->mutex);
2233
2234 /*
2235 * We are called during inode logging, which means the inode is in use
2236 * and can not be evicted before we finish logging the inode. So we never
2237 * have the last reference on the delayed inode.
2238 * Also, we don't use btrfs_release_delayed_node() because that would
2239 * requeue the delayed inode (change its order in the list of prepared
2240 * nodes) and we don't want to do such change because we don't create or
2241 * delete delayed items.
2242 */
2243 ASSERT(refcount_read(&node->refs) > 1);
2244 btrfs_delayed_node_ref_tracker_free(node, &delayed_node_tracker);
2245 refcount_dec(&node->refs);
2246 }
2247