1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
8 #include <linux/bio.h>
9 #include <linux/blk-cgroup.h>
10 #include <linux/file.h>
11 #include <linux/fs.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/xattr.h>
21 #include <linux/posix_acl.h>
22 #include <linux/falloc.h>
23 #include <linux/slab.h>
24 #include <linux/ratelimit.h>
25 #include <linux/btrfs.h>
26 #include <linux/blkdev.h>
27 #include <linux/posix_acl_xattr.h>
28 #include <linux/uio.h>
29 #include <linux/magic.h>
30 #include <linux/iversion.h>
31 #include <linux/swap.h>
32 #include <linux/migrate.h>
33 #include <linux/sched/mm.h>
34 #include <linux/iomap.h>
35 #include <linux/unaligned.h>
36 #include <linux/fsverity.h>
37 #include "misc.h"
38 #include "ctree.h"
39 #include "disk-io.h"
40 #include "transaction.h"
41 #include "btrfs_inode.h"
42 #include "ordered-data.h"
43 #include "xattr.h"
44 #include "tree-log.h"
45 #include "bio.h"
46 #include "compression.h"
47 #include "locking.h"
48 #include "props.h"
49 #include "qgroup.h"
50 #include "delalloc-space.h"
51 #include "block-group.h"
52 #include "space-info.h"
53 #include "zoned.h"
54 #include "subpage.h"
55 #include "inode-item.h"
56 #include "fs.h"
57 #include "accessors.h"
58 #include "extent-tree.h"
59 #include "root-tree.h"
60 #include "defrag.h"
61 #include "dir-item.h"
62 #include "file-item.h"
63 #include "uuid-tree.h"
64 #include "ioctl.h"
65 #include "file.h"
66 #include "acl.h"
67 #include "relocation.h"
68 #include "verity.h"
69 #include "super.h"
70 #include "orphan.h"
71 #include "backref.h"
72 #include "raid-stripe-tree.h"
73 #include "fiemap.h"
74
75 #define COW_FILE_RANGE_KEEP_LOCKED (1UL << 0)
76 #define COW_FILE_RANGE_NO_INLINE (1UL << 1)
77
78 struct btrfs_iget_args {
79 u64 ino;
80 struct btrfs_root *root;
81 };
82
83 struct btrfs_rename_ctx {
84 /* Output field. Stores the index number of the old directory entry. */
85 u64 index;
86 };
87
88 /*
89 * Used by data_reloc_print_warning_inode() to pass needed info for filename
90 * resolution and output of error message.
91 */
92 struct data_reloc_warn {
93 struct btrfs_path path;
94 struct btrfs_fs_info *fs_info;
95 u64 extent_item_size;
96 u64 logical;
97 int mirror_num;
98 };
99
100 /*
101 * For the file_extent_tree, we want to hold the inode lock when we lookup and
102 * update the disk_i_size, but lockdep will complain because our io_tree we hold
103 * the tree lock and get the inode lock when setting delalloc. These two things
104 * are unrelated, so make a class for the file_extent_tree so we don't get the
105 * two locking patterns mixed up.
106 */
107 static struct lock_class_key file_extent_tree_class;
108
109 static const struct inode_operations btrfs_dir_inode_operations;
110 static const struct inode_operations btrfs_symlink_inode_operations;
111 static const struct inode_operations btrfs_special_inode_operations;
112 static const struct inode_operations btrfs_file_inode_operations;
113 static const struct address_space_operations btrfs_aops;
114 static const struct file_operations btrfs_dir_file_operations;
115
116 static struct kmem_cache *btrfs_inode_cachep;
117
118 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
119 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback);
120
121 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
122 struct folio *locked_folio, u64 start,
123 u64 end, struct writeback_control *wbc,
124 bool pages_dirty);
125
data_reloc_print_warning_inode(u64 inum,u64 offset,u64 num_bytes,u64 root,void * warn_ctx)126 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
127 u64 root, void *warn_ctx)
128 {
129 struct data_reloc_warn *warn = warn_ctx;
130 struct btrfs_fs_info *fs_info = warn->fs_info;
131 struct extent_buffer *eb;
132 struct btrfs_inode_item *inode_item;
133 struct inode_fs_paths *ipath = NULL;
134 struct btrfs_root *local_root;
135 struct btrfs_key key;
136 unsigned int nofs_flag;
137 u32 nlink;
138 int ret;
139
140 local_root = btrfs_get_fs_root(fs_info, root, true);
141 if (IS_ERR(local_root)) {
142 ret = PTR_ERR(local_root);
143 goto err;
144 }
145
146 /* This makes the path point to (inum INODE_ITEM ioff). */
147 key.objectid = inum;
148 key.type = BTRFS_INODE_ITEM_KEY;
149 key.offset = 0;
150
151 ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0);
152 if (ret) {
153 btrfs_put_root(local_root);
154 btrfs_release_path(&warn->path);
155 goto err;
156 }
157
158 eb = warn->path.nodes[0];
159 inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item);
160 nlink = btrfs_inode_nlink(eb, inode_item);
161 btrfs_release_path(&warn->path);
162
163 nofs_flag = memalloc_nofs_save();
164 ipath = init_ipath(4096, local_root, &warn->path);
165 memalloc_nofs_restore(nofs_flag);
166 if (IS_ERR(ipath)) {
167 btrfs_put_root(local_root);
168 ret = PTR_ERR(ipath);
169 ipath = NULL;
170 /*
171 * -ENOMEM, not a critical error, just output an generic error
172 * without filename.
173 */
174 btrfs_warn(fs_info,
175 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu",
176 warn->logical, warn->mirror_num, root, inum, offset);
177 return ret;
178 }
179 ret = paths_from_inode(inum, ipath);
180 if (ret < 0)
181 goto err;
182
183 /*
184 * We deliberately ignore the bit ipath might have been too small to
185 * hold all of the paths here
186 */
187 for (int i = 0; i < ipath->fspath->elem_cnt; i++) {
188 btrfs_warn(fs_info,
189 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)",
190 warn->logical, warn->mirror_num, root, inum, offset,
191 fs_info->sectorsize, nlink,
192 (char *)(unsigned long)ipath->fspath->val[i]);
193 }
194
195 btrfs_put_root(local_root);
196 free_ipath(ipath);
197 return 0;
198
199 err:
200 btrfs_warn(fs_info,
201 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d",
202 warn->logical, warn->mirror_num, root, inum, offset, ret);
203
204 free_ipath(ipath);
205 return ret;
206 }
207
208 /*
209 * Do extra user-friendly error output (e.g. lookup all the affected files).
210 *
211 * Return true if we succeeded doing the backref lookup.
212 * Return false if such lookup failed, and has to fallback to the old error message.
213 */
print_data_reloc_error(const struct btrfs_inode * inode,u64 file_off,const u8 * csum,const u8 * csum_expected,int mirror_num)214 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off,
215 const u8 *csum, const u8 *csum_expected,
216 int mirror_num)
217 {
218 struct btrfs_fs_info *fs_info = inode->root->fs_info;
219 struct btrfs_path path = { 0 };
220 struct btrfs_key found_key = { 0 };
221 struct extent_buffer *eb;
222 struct btrfs_extent_item *ei;
223 const u32 csum_size = fs_info->csum_size;
224 u64 logical;
225 u64 flags;
226 u32 item_size;
227 int ret;
228
229 mutex_lock(&fs_info->reloc_mutex);
230 logical = btrfs_get_reloc_bg_bytenr(fs_info);
231 mutex_unlock(&fs_info->reloc_mutex);
232
233 if (logical == U64_MAX) {
234 btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation");
235 btrfs_warn_rl(fs_info,
236 "csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
237 btrfs_root_id(inode->root), btrfs_ino(inode), file_off,
238 CSUM_FMT_VALUE(csum_size, csum),
239 CSUM_FMT_VALUE(csum_size, csum_expected),
240 mirror_num);
241 return;
242 }
243
244 logical += file_off;
245 btrfs_warn_rl(fs_info,
246 "csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
247 btrfs_root_id(inode->root),
248 btrfs_ino(inode), file_off, logical,
249 CSUM_FMT_VALUE(csum_size, csum),
250 CSUM_FMT_VALUE(csum_size, csum_expected),
251 mirror_num);
252
253 ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags);
254 if (ret < 0) {
255 btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d",
256 logical, ret);
257 return;
258 }
259 eb = path.nodes[0];
260 ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item);
261 item_size = btrfs_item_size(eb, path.slots[0]);
262 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
263 unsigned long ptr = 0;
264 u64 ref_root;
265 u8 ref_level;
266
267 while (true) {
268 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
269 item_size, &ref_root,
270 &ref_level);
271 if (ret < 0) {
272 btrfs_warn_rl(fs_info,
273 "failed to resolve tree backref for logical %llu: %d",
274 logical, ret);
275 break;
276 }
277 if (ret > 0)
278 break;
279
280 btrfs_warn_rl(fs_info,
281 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu",
282 logical, mirror_num,
283 (ref_level ? "node" : "leaf"),
284 ref_level, ref_root);
285 }
286 btrfs_release_path(&path);
287 } else {
288 struct btrfs_backref_walk_ctx ctx = { 0 };
289 struct data_reloc_warn reloc_warn = { 0 };
290
291 btrfs_release_path(&path);
292
293 ctx.bytenr = found_key.objectid;
294 ctx.extent_item_pos = logical - found_key.objectid;
295 ctx.fs_info = fs_info;
296
297 reloc_warn.logical = logical;
298 reloc_warn.extent_item_size = found_key.offset;
299 reloc_warn.mirror_num = mirror_num;
300 reloc_warn.fs_info = fs_info;
301
302 iterate_extent_inodes(&ctx, true,
303 data_reloc_print_warning_inode, &reloc_warn);
304 }
305 }
306
btrfs_print_data_csum_error(struct btrfs_inode * inode,u64 logical_start,u8 * csum,u8 * csum_expected,int mirror_num)307 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode,
308 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
309 {
310 struct btrfs_root *root = inode->root;
311 const u32 csum_size = root->fs_info->csum_size;
312
313 /* For data reloc tree, it's better to do a backref lookup instead. */
314 if (btrfs_is_data_reloc_root(root))
315 return print_data_reloc_error(inode, logical_start, csum,
316 csum_expected, mirror_num);
317
318 /* Output without objectid, which is more meaningful */
319 if (btrfs_root_id(root) >= BTRFS_LAST_FREE_OBJECTID) {
320 btrfs_warn_rl(root->fs_info,
321 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
322 btrfs_root_id(root), btrfs_ino(inode),
323 logical_start,
324 CSUM_FMT_VALUE(csum_size, csum),
325 CSUM_FMT_VALUE(csum_size, csum_expected),
326 mirror_num);
327 } else {
328 btrfs_warn_rl(root->fs_info,
329 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
330 btrfs_root_id(root), btrfs_ino(inode),
331 logical_start,
332 CSUM_FMT_VALUE(csum_size, csum),
333 CSUM_FMT_VALUE(csum_size, csum_expected),
334 mirror_num);
335 }
336 }
337
338 /*
339 * Lock inode i_rwsem based on arguments passed.
340 *
341 * ilock_flags can have the following bit set:
342 *
343 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
344 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
345 * return -EAGAIN
346 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
347 */
btrfs_inode_lock(struct btrfs_inode * inode,unsigned int ilock_flags)348 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags)
349 {
350 if (ilock_flags & BTRFS_ILOCK_SHARED) {
351 if (ilock_flags & BTRFS_ILOCK_TRY) {
352 if (!inode_trylock_shared(&inode->vfs_inode))
353 return -EAGAIN;
354 else
355 return 0;
356 }
357 inode_lock_shared(&inode->vfs_inode);
358 } else {
359 if (ilock_flags & BTRFS_ILOCK_TRY) {
360 if (!inode_trylock(&inode->vfs_inode))
361 return -EAGAIN;
362 else
363 return 0;
364 }
365 inode_lock(&inode->vfs_inode);
366 }
367 if (ilock_flags & BTRFS_ILOCK_MMAP)
368 down_write(&inode->i_mmap_lock);
369 return 0;
370 }
371
372 /*
373 * Unlock inode i_rwsem.
374 *
375 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
376 * to decide whether the lock acquired is shared or exclusive.
377 */
btrfs_inode_unlock(struct btrfs_inode * inode,unsigned int ilock_flags)378 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags)
379 {
380 if (ilock_flags & BTRFS_ILOCK_MMAP)
381 up_write(&inode->i_mmap_lock);
382 if (ilock_flags & BTRFS_ILOCK_SHARED)
383 inode_unlock_shared(&inode->vfs_inode);
384 else
385 inode_unlock(&inode->vfs_inode);
386 }
387
388 /*
389 * Cleanup all submitted ordered extents in specified range to handle errors
390 * from the btrfs_run_delalloc_range() callback.
391 *
392 * NOTE: caller must ensure that when an error happens, it can not call
393 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
394 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
395 * to be released, which we want to happen only when finishing the ordered
396 * extent (btrfs_finish_ordered_io()).
397 */
btrfs_cleanup_ordered_extents(struct btrfs_inode * inode,u64 offset,u64 bytes)398 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
399 u64 offset, u64 bytes)
400 {
401 pgoff_t index = offset >> PAGE_SHIFT;
402 const pgoff_t end_index = (offset + bytes - 1) >> PAGE_SHIFT;
403 struct folio *folio;
404
405 while (index <= end_index) {
406 folio = filemap_get_folio(inode->vfs_inode.i_mapping, index);
407 if (IS_ERR(folio)) {
408 index++;
409 continue;
410 }
411
412 index = folio_end(folio) >> PAGE_SHIFT;
413 /*
414 * Here we just clear all Ordered bits for every page in the
415 * range, then btrfs_mark_ordered_io_finished() will handle
416 * the ordered extent accounting for the range.
417 */
418 btrfs_folio_clamp_clear_ordered(inode->root->fs_info, folio,
419 offset, bytes);
420 folio_put(folio);
421 }
422
423 return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false);
424 }
425
426 static int btrfs_dirty_inode(struct btrfs_inode *inode);
427
btrfs_init_inode_security(struct btrfs_trans_handle * trans,struct btrfs_new_inode_args * args)428 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
429 struct btrfs_new_inode_args *args)
430 {
431 int ret;
432
433 if (args->default_acl) {
434 ret = __btrfs_set_acl(trans, args->inode, args->default_acl,
435 ACL_TYPE_DEFAULT);
436 if (ret)
437 return ret;
438 }
439 if (args->acl) {
440 ret = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS);
441 if (ret)
442 return ret;
443 }
444 if (!args->default_acl && !args->acl)
445 cache_no_acl(args->inode);
446 return btrfs_xattr_security_init(trans, args->inode, args->dir,
447 &args->dentry->d_name);
448 }
449
450 /*
451 * this does all the hard work for inserting an inline extent into
452 * the btree. The caller should have done a btrfs_drop_extents so that
453 * no overlapping inline items exist in the btree
454 */
insert_inline_extent(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_inode * inode,bool extent_inserted,size_t size,size_t compressed_size,int compress_type,struct folio * compressed_folio,bool update_i_size)455 static int insert_inline_extent(struct btrfs_trans_handle *trans,
456 struct btrfs_path *path,
457 struct btrfs_inode *inode, bool extent_inserted,
458 size_t size, size_t compressed_size,
459 int compress_type,
460 struct folio *compressed_folio,
461 bool update_i_size)
462 {
463 struct btrfs_root *root = inode->root;
464 struct extent_buffer *leaf;
465 const u32 sectorsize = trans->fs_info->sectorsize;
466 char *kaddr;
467 unsigned long ptr;
468 struct btrfs_file_extent_item *ei;
469 int ret;
470 size_t cur_size = size;
471 u64 i_size;
472
473 /*
474 * The decompressed size must still be no larger than a sector. Under
475 * heavy race, we can have size == 0 passed in, but that shouldn't be a
476 * big deal and we can continue the insertion.
477 */
478 ASSERT(size <= sectorsize);
479
480 /*
481 * The compressed size also needs to be no larger than a sector.
482 * That's also why we only need one page as the parameter.
483 */
484 if (compressed_folio)
485 ASSERT(compressed_size <= sectorsize);
486 else
487 ASSERT(compressed_size == 0);
488
489 if (compressed_size && compressed_folio)
490 cur_size = compressed_size;
491
492 if (!extent_inserted) {
493 struct btrfs_key key;
494 size_t datasize;
495
496 key.objectid = btrfs_ino(inode);
497 key.type = BTRFS_EXTENT_DATA_KEY;
498 key.offset = 0;
499
500 datasize = btrfs_file_extent_calc_inline_size(cur_size);
501 ret = btrfs_insert_empty_item(trans, root, path, &key,
502 datasize);
503 if (ret)
504 goto fail;
505 }
506 leaf = path->nodes[0];
507 ei = btrfs_item_ptr(leaf, path->slots[0],
508 struct btrfs_file_extent_item);
509 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
510 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
511 btrfs_set_file_extent_encryption(leaf, ei, 0);
512 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
513 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
514 ptr = btrfs_file_extent_inline_start(ei);
515
516 if (compress_type != BTRFS_COMPRESS_NONE) {
517 kaddr = kmap_local_folio(compressed_folio, 0);
518 write_extent_buffer(leaf, kaddr, ptr, compressed_size);
519 kunmap_local(kaddr);
520
521 btrfs_set_file_extent_compression(leaf, ei,
522 compress_type);
523 } else {
524 struct folio *folio;
525
526 folio = filemap_get_folio(inode->vfs_inode.i_mapping, 0);
527 ASSERT(!IS_ERR(folio));
528 btrfs_set_file_extent_compression(leaf, ei, 0);
529 kaddr = kmap_local_folio(folio, 0);
530 write_extent_buffer(leaf, kaddr, ptr, size);
531 kunmap_local(kaddr);
532 folio_put(folio);
533 }
534 btrfs_release_path(path);
535
536 /*
537 * We align size to sectorsize for inline extents just for simplicity
538 * sake.
539 */
540 ret = btrfs_inode_set_file_extent_range(inode, 0,
541 ALIGN(size, root->fs_info->sectorsize));
542 if (ret)
543 goto fail;
544
545 /*
546 * We're an inline extent, so nobody can extend the file past i_size
547 * without locking a page we already have locked.
548 *
549 * We must do any i_size and inode updates before we unlock the pages.
550 * Otherwise we could end up racing with unlink.
551 */
552 i_size = i_size_read(&inode->vfs_inode);
553 if (update_i_size && size > i_size) {
554 i_size_write(&inode->vfs_inode, size);
555 i_size = size;
556 }
557 inode->disk_i_size = i_size;
558
559 fail:
560 return ret;
561 }
562
can_cow_file_range_inline(struct btrfs_inode * inode,u64 offset,u64 size,size_t compressed_size)563 static bool can_cow_file_range_inline(struct btrfs_inode *inode,
564 u64 offset, u64 size,
565 size_t compressed_size)
566 {
567 struct btrfs_fs_info *fs_info = inode->root->fs_info;
568 u64 data_len = (compressed_size ?: size);
569
570 /* Inline extents must start at offset 0. */
571 if (offset != 0)
572 return false;
573
574 /* Inline extents are limited to sectorsize. */
575 if (size > fs_info->sectorsize)
576 return false;
577
578 /* We do not allow a non-compressed extent to be as large as block size. */
579 if (data_len >= fs_info->sectorsize)
580 return false;
581
582 /* We cannot exceed the maximum inline data size. */
583 if (data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
584 return false;
585
586 /* We cannot exceed the user specified max_inline size. */
587 if (data_len > fs_info->max_inline)
588 return false;
589
590 /* Inline extents must be the entirety of the file. */
591 if (size < i_size_read(&inode->vfs_inode))
592 return false;
593
594 return true;
595 }
596
597 /*
598 * conditionally insert an inline extent into the file. This
599 * does the checks required to make sure the data is small enough
600 * to fit as an inline extent.
601 *
602 * If being used directly, you must have already checked we're allowed to cow
603 * the range by getting true from can_cow_file_range_inline().
604 */
__cow_file_range_inline(struct btrfs_inode * inode,u64 size,size_t compressed_size,int compress_type,struct folio * compressed_folio,bool update_i_size)605 static noinline int __cow_file_range_inline(struct btrfs_inode *inode,
606 u64 size, size_t compressed_size,
607 int compress_type,
608 struct folio *compressed_folio,
609 bool update_i_size)
610 {
611 struct btrfs_drop_extents_args drop_args = { 0 };
612 struct btrfs_root *root = inode->root;
613 struct btrfs_fs_info *fs_info = root->fs_info;
614 struct btrfs_trans_handle *trans;
615 u64 data_len = (compressed_size ?: size);
616 int ret;
617 struct btrfs_path *path;
618
619 path = btrfs_alloc_path();
620 if (!path)
621 return -ENOMEM;
622
623 trans = btrfs_join_transaction(root);
624 if (IS_ERR(trans)) {
625 btrfs_free_path(path);
626 return PTR_ERR(trans);
627 }
628 trans->block_rsv = &inode->block_rsv;
629
630 drop_args.path = path;
631 drop_args.start = 0;
632 drop_args.end = fs_info->sectorsize;
633 drop_args.drop_cache = true;
634 drop_args.replace_extent = true;
635 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len);
636 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
637 if (unlikely(ret)) {
638 btrfs_abort_transaction(trans, ret);
639 goto out;
640 }
641
642 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted,
643 size, compressed_size, compress_type,
644 compressed_folio, update_i_size);
645 if (unlikely(ret && ret != -ENOSPC)) {
646 btrfs_abort_transaction(trans, ret);
647 goto out;
648 } else if (ret == -ENOSPC) {
649 ret = 1;
650 goto out;
651 }
652
653 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found);
654 ret = btrfs_update_inode(trans, inode);
655 if (unlikely(ret && ret != -ENOSPC)) {
656 btrfs_abort_transaction(trans, ret);
657 goto out;
658 } else if (ret == -ENOSPC) {
659 ret = 1;
660 goto out;
661 }
662
663 btrfs_set_inode_full_sync(inode);
664 out:
665 /*
666 * Don't forget to free the reserved space, as for inlined extent
667 * it won't count as data extent, free them directly here.
668 * And at reserve time, it's always aligned to page size, so
669 * just free one page here.
670 */
671 btrfs_qgroup_free_data(inode, NULL, 0, fs_info->sectorsize, NULL);
672 btrfs_free_path(path);
673 btrfs_end_transaction(trans);
674 return ret;
675 }
676
cow_file_range_inline(struct btrfs_inode * inode,struct folio * locked_folio,u64 offset,u64 end,size_t compressed_size,int compress_type,struct folio * compressed_folio,bool update_i_size)677 static noinline int cow_file_range_inline(struct btrfs_inode *inode,
678 struct folio *locked_folio,
679 u64 offset, u64 end,
680 size_t compressed_size,
681 int compress_type,
682 struct folio *compressed_folio,
683 bool update_i_size)
684 {
685 struct extent_state *cached = NULL;
686 unsigned long clear_flags = EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
687 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING | EXTENT_LOCKED;
688 u64 size = min_t(u64, i_size_read(&inode->vfs_inode), end + 1);
689 int ret;
690
691 if (!can_cow_file_range_inline(inode, offset, size, compressed_size))
692 return 1;
693
694 btrfs_lock_extent(&inode->io_tree, offset, end, &cached);
695 ret = __cow_file_range_inline(inode, size, compressed_size,
696 compress_type, compressed_folio,
697 update_i_size);
698 if (ret > 0) {
699 btrfs_unlock_extent(&inode->io_tree, offset, end, &cached);
700 return ret;
701 }
702
703 /*
704 * In the successful case (ret == 0 here), cow_file_range will return 1.
705 *
706 * Quite a bit further up the callstack in extent_writepage(), ret == 1
707 * is treated as a short circuited success and does not unlock the folio,
708 * so we must do it here.
709 *
710 * In the failure case, the locked_folio does get unlocked by
711 * btrfs_folio_end_all_writers, which asserts that it is still locked
712 * at that point, so we must *not* unlock it here.
713 *
714 * The other two callsites in compress_file_range do not have a
715 * locked_folio, so they are not relevant to this logic.
716 */
717 if (ret == 0)
718 locked_folio = NULL;
719
720 extent_clear_unlock_delalloc(inode, offset, end, locked_folio, &cached,
721 clear_flags, PAGE_UNLOCK |
722 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
723 return ret;
724 }
725
726 struct async_extent {
727 u64 start;
728 u64 ram_size;
729 u64 compressed_size;
730 struct folio **folios;
731 unsigned long nr_folios;
732 int compress_type;
733 struct list_head list;
734 };
735
736 struct async_chunk {
737 struct btrfs_inode *inode;
738 struct folio *locked_folio;
739 u64 start;
740 u64 end;
741 blk_opf_t write_flags;
742 struct list_head extents;
743 struct cgroup_subsys_state *blkcg_css;
744 struct btrfs_work work;
745 struct async_cow *async_cow;
746 };
747
748 struct async_cow {
749 atomic_t num_chunks;
750 struct async_chunk chunks[];
751 };
752
add_async_extent(struct async_chunk * cow,u64 start,u64 ram_size,u64 compressed_size,struct folio ** folios,unsigned long nr_folios,int compress_type)753 static noinline int add_async_extent(struct async_chunk *cow,
754 u64 start, u64 ram_size,
755 u64 compressed_size,
756 struct folio **folios,
757 unsigned long nr_folios,
758 int compress_type)
759 {
760 struct async_extent *async_extent;
761
762 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
763 if (!async_extent)
764 return -ENOMEM;
765 async_extent->start = start;
766 async_extent->ram_size = ram_size;
767 async_extent->compressed_size = compressed_size;
768 async_extent->folios = folios;
769 async_extent->nr_folios = nr_folios;
770 async_extent->compress_type = compress_type;
771 list_add_tail(&async_extent->list, &cow->extents);
772 return 0;
773 }
774
775 /*
776 * Check if the inode needs to be submitted to compression, based on mount
777 * options, defragmentation, properties or heuristics.
778 */
inode_need_compress(struct btrfs_inode * inode,u64 start,u64 end)779 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
780 u64 end)
781 {
782 struct btrfs_fs_info *fs_info = inode->root->fs_info;
783
784 if (!btrfs_inode_can_compress(inode)) {
785 DEBUG_WARN("BTRFS: unexpected compression for ino %llu", btrfs_ino(inode));
786 return 0;
787 }
788
789 /* Defrag ioctl takes precedence over mount options and properties. */
790 if (inode->defrag_compress == BTRFS_DEFRAG_DONT_COMPRESS)
791 return 0;
792 if (BTRFS_COMPRESS_NONE < inode->defrag_compress &&
793 inode->defrag_compress < BTRFS_NR_COMPRESS_TYPES)
794 return 1;
795 /* force compress */
796 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
797 return 1;
798 /* bad compression ratios */
799 if (inode->flags & BTRFS_INODE_NOCOMPRESS)
800 return 0;
801 if (btrfs_test_opt(fs_info, COMPRESS) ||
802 inode->flags & BTRFS_INODE_COMPRESS ||
803 inode->prop_compress)
804 return btrfs_compress_heuristic(inode, start, end);
805 return 0;
806 }
807
inode_should_defrag(struct btrfs_inode * inode,u64 start,u64 end,u64 num_bytes,u32 small_write)808 static inline void inode_should_defrag(struct btrfs_inode *inode,
809 u64 start, u64 end, u64 num_bytes, u32 small_write)
810 {
811 /* If this is a small write inside eof, kick off a defrag */
812 if (num_bytes < small_write &&
813 (start > 0 || end + 1 < inode->disk_i_size))
814 btrfs_add_inode_defrag(inode, small_write);
815 }
816
extent_range_clear_dirty_for_io(struct btrfs_inode * inode,u64 start,u64 end)817 static int extent_range_clear_dirty_for_io(struct btrfs_inode *inode, u64 start, u64 end)
818 {
819 const pgoff_t end_index = end >> PAGE_SHIFT;
820 struct folio *folio;
821 int ret = 0;
822
823 for (pgoff_t index = start >> PAGE_SHIFT; index <= end_index; index++) {
824 folio = filemap_get_folio(inode->vfs_inode.i_mapping, index);
825 if (IS_ERR(folio)) {
826 if (!ret)
827 ret = PTR_ERR(folio);
828 continue;
829 }
830 btrfs_folio_clamp_clear_dirty(inode->root->fs_info, folio, start,
831 end + 1 - start);
832 folio_put(folio);
833 }
834 return ret;
835 }
836
837 /*
838 * Work queue call back to started compression on a file and pages.
839 *
840 * This is done inside an ordered work queue, and the compression is spread
841 * across many cpus. The actual IO submission is step two, and the ordered work
842 * queue takes care of making sure that happens in the same order things were
843 * put onto the queue by writepages and friends.
844 *
845 * If this code finds it can't get good compression, it puts an entry onto the
846 * work queue to write the uncompressed bytes. This makes sure that both
847 * compressed inodes and uncompressed inodes are written in the same order that
848 * the flusher thread sent them down.
849 */
compress_file_range(struct btrfs_work * work)850 static void compress_file_range(struct btrfs_work *work)
851 {
852 struct async_chunk *async_chunk =
853 container_of(work, struct async_chunk, work);
854 struct btrfs_inode *inode = async_chunk->inode;
855 struct btrfs_fs_info *fs_info = inode->root->fs_info;
856 struct address_space *mapping = inode->vfs_inode.i_mapping;
857 const u32 min_folio_shift = PAGE_SHIFT + fs_info->block_min_order;
858 const u32 min_folio_size = btrfs_min_folio_size(fs_info);
859 u64 blocksize = fs_info->sectorsize;
860 u64 start = async_chunk->start;
861 u64 end = async_chunk->end;
862 u64 actual_end;
863 u64 i_size;
864 int ret = 0;
865 struct folio **folios;
866 unsigned long nr_folios;
867 unsigned long total_compressed = 0;
868 unsigned long total_in = 0;
869 unsigned int loff;
870 int i;
871 int compress_type = fs_info->compress_type;
872 int compress_level = fs_info->compress_level;
873
874 inode_should_defrag(inode, start, end, end - start + 1, SZ_16K);
875
876 /*
877 * We need to call clear_page_dirty_for_io on each page in the range.
878 * Otherwise applications with the file mmap'd can wander in and change
879 * the page contents while we are compressing them.
880 */
881 ret = extent_range_clear_dirty_for_io(inode, start, end);
882
883 /*
884 * All the folios should have been locked thus no failure.
885 *
886 * And even if some folios are missing, btrfs_compress_folios()
887 * would handle them correctly, so here just do an ASSERT() check for
888 * early logic errors.
889 */
890 ASSERT(ret == 0);
891
892 /*
893 * We need to save i_size before now because it could change in between
894 * us evaluating the size and assigning it. This is because we lock and
895 * unlock the page in truncate and fallocate, and then modify the i_size
896 * later on.
897 *
898 * The barriers are to emulate READ_ONCE, remove that once i_size_read
899 * does that for us.
900 */
901 barrier();
902 i_size = i_size_read(&inode->vfs_inode);
903 barrier();
904 actual_end = min_t(u64, i_size, end + 1);
905 again:
906 folios = NULL;
907 nr_folios = (end >> min_folio_shift) - (start >> min_folio_shift) + 1;
908 nr_folios = min_t(unsigned long, nr_folios, BTRFS_MAX_COMPRESSED >> min_folio_shift);
909
910 /*
911 * we don't want to send crud past the end of i_size through
912 * compression, that's just a waste of CPU time. So, if the
913 * end of the file is before the start of our current
914 * requested range of bytes, we bail out to the uncompressed
915 * cleanup code that can deal with all of this.
916 *
917 * It isn't really the fastest way to fix things, but this is a
918 * very uncommon corner.
919 */
920 if (actual_end <= start)
921 goto cleanup_and_bail_uncompressed;
922
923 total_compressed = actual_end - start;
924
925 /*
926 * Skip compression for a small file range(<=blocksize) that
927 * isn't an inline extent, since it doesn't save disk space at all.
928 */
929 if (total_compressed <= blocksize &&
930 (start > 0 || end + 1 < inode->disk_i_size))
931 goto cleanup_and_bail_uncompressed;
932
933 total_compressed = min_t(unsigned long, total_compressed,
934 BTRFS_MAX_UNCOMPRESSED);
935 total_in = 0;
936 ret = 0;
937
938 /*
939 * We do compression for mount -o compress and when the inode has not
940 * been flagged as NOCOMPRESS. This flag can change at any time if we
941 * discover bad compression ratios.
942 */
943 if (!inode_need_compress(inode, start, end))
944 goto cleanup_and_bail_uncompressed;
945
946 folios = kcalloc(nr_folios, sizeof(struct folio *), GFP_NOFS);
947 if (!folios) {
948 /*
949 * Memory allocation failure is not a fatal error, we can fall
950 * back to uncompressed code.
951 */
952 goto cleanup_and_bail_uncompressed;
953 }
954
955 if (0 < inode->defrag_compress && inode->defrag_compress < BTRFS_NR_COMPRESS_TYPES) {
956 compress_type = inode->defrag_compress;
957 compress_level = inode->defrag_compress_level;
958 } else if (inode->prop_compress) {
959 compress_type = inode->prop_compress;
960 }
961
962 /* Compression level is applied here. */
963 ret = btrfs_compress_folios(compress_type, compress_level,
964 inode, start, folios, &nr_folios, &total_in,
965 &total_compressed);
966 if (ret)
967 goto mark_incompressible;
968
969 /*
970 * Zero the tail end of the last folio, as we might be sending it down
971 * to disk.
972 */
973 loff = (total_compressed & (min_folio_size - 1));
974 if (loff)
975 folio_zero_range(folios[nr_folios - 1], loff, min_folio_size - loff);
976
977 /*
978 * Try to create an inline extent.
979 *
980 * If we didn't compress the entire range, try to create an uncompressed
981 * inline extent, else a compressed one.
982 *
983 * Check cow_file_range() for why we don't even try to create inline
984 * extent for the subpage case.
985 */
986 if (total_in < actual_end)
987 ret = cow_file_range_inline(inode, NULL, start, end, 0,
988 BTRFS_COMPRESS_NONE, NULL, false);
989 else
990 ret = cow_file_range_inline(inode, NULL, start, end, total_compressed,
991 compress_type, folios[0], false);
992 if (ret <= 0) {
993 if (ret < 0)
994 mapping_set_error(mapping, -EIO);
995 goto free_pages;
996 }
997
998 /*
999 * We aren't doing an inline extent. Round the compressed size up to a
1000 * block size boundary so the allocator does sane things.
1001 */
1002 total_compressed = ALIGN(total_compressed, blocksize);
1003
1004 /*
1005 * One last check to make sure the compression is really a win, compare
1006 * the page count read with the blocks on disk, compression must free at
1007 * least one sector.
1008 */
1009 total_in = round_up(total_in, fs_info->sectorsize);
1010 if (total_compressed + blocksize > total_in)
1011 goto mark_incompressible;
1012
1013 /*
1014 * The async work queues will take care of doing actual allocation on
1015 * disk for these compressed pages, and will submit the bios.
1016 */
1017 ret = add_async_extent(async_chunk, start, total_in, total_compressed, folios,
1018 nr_folios, compress_type);
1019 BUG_ON(ret);
1020 if (start + total_in < end) {
1021 start += total_in;
1022 cond_resched();
1023 goto again;
1024 }
1025 return;
1026
1027 mark_incompressible:
1028 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress)
1029 inode->flags |= BTRFS_INODE_NOCOMPRESS;
1030 cleanup_and_bail_uncompressed:
1031 ret = add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
1032 BTRFS_COMPRESS_NONE);
1033 BUG_ON(ret);
1034 free_pages:
1035 if (folios) {
1036 for (i = 0; i < nr_folios; i++) {
1037 WARN_ON(folios[i]->mapping);
1038 btrfs_free_compr_folio(folios[i]);
1039 }
1040 kfree(folios);
1041 }
1042 }
1043
free_async_extent_pages(struct async_extent * async_extent)1044 static void free_async_extent_pages(struct async_extent *async_extent)
1045 {
1046 int i;
1047
1048 if (!async_extent->folios)
1049 return;
1050
1051 for (i = 0; i < async_extent->nr_folios; i++) {
1052 WARN_ON(async_extent->folios[i]->mapping);
1053 btrfs_free_compr_folio(async_extent->folios[i]);
1054 }
1055 kfree(async_extent->folios);
1056 async_extent->nr_folios = 0;
1057 async_extent->folios = NULL;
1058 }
1059
submit_uncompressed_range(struct btrfs_inode * inode,struct async_extent * async_extent,struct folio * locked_folio)1060 static void submit_uncompressed_range(struct btrfs_inode *inode,
1061 struct async_extent *async_extent,
1062 struct folio *locked_folio)
1063 {
1064 u64 start = async_extent->start;
1065 u64 end = async_extent->start + async_extent->ram_size - 1;
1066 int ret;
1067 struct writeback_control wbc = {
1068 .sync_mode = WB_SYNC_ALL,
1069 .range_start = start,
1070 .range_end = end,
1071 .no_cgroup_owner = 1,
1072 };
1073
1074 wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode);
1075 ret = run_delalloc_cow(inode, locked_folio, start, end,
1076 &wbc, false);
1077 wbc_detach_inode(&wbc);
1078 if (ret < 0) {
1079 if (locked_folio)
1080 btrfs_folio_end_lock(inode->root->fs_info, locked_folio,
1081 start, async_extent->ram_size);
1082 btrfs_err_rl(inode->root->fs_info,
1083 "%s failed, root=%llu inode=%llu start=%llu len=%llu: %d",
1084 __func__, btrfs_root_id(inode->root),
1085 btrfs_ino(inode), start, async_extent->ram_size, ret);
1086 }
1087 }
1088
submit_one_async_extent(struct async_chunk * async_chunk,struct async_extent * async_extent,u64 * alloc_hint)1089 static void submit_one_async_extent(struct async_chunk *async_chunk,
1090 struct async_extent *async_extent,
1091 u64 *alloc_hint)
1092 {
1093 struct btrfs_inode *inode = async_chunk->inode;
1094 struct extent_io_tree *io_tree = &inode->io_tree;
1095 struct btrfs_root *root = inode->root;
1096 struct btrfs_fs_info *fs_info = root->fs_info;
1097 struct btrfs_ordered_extent *ordered;
1098 struct btrfs_file_extent file_extent;
1099 struct btrfs_key ins;
1100 struct folio *locked_folio = NULL;
1101 struct extent_state *cached = NULL;
1102 struct extent_map *em;
1103 int ret = 0;
1104 bool free_pages = false;
1105 u64 start = async_extent->start;
1106 u64 end = async_extent->start + async_extent->ram_size - 1;
1107
1108 if (async_chunk->blkcg_css)
1109 kthread_associate_blkcg(async_chunk->blkcg_css);
1110
1111 /*
1112 * If async_chunk->locked_folio is in the async_extent range, we need to
1113 * handle it.
1114 */
1115 if (async_chunk->locked_folio) {
1116 u64 locked_folio_start = folio_pos(async_chunk->locked_folio);
1117 u64 locked_folio_end = locked_folio_start +
1118 folio_size(async_chunk->locked_folio) - 1;
1119
1120 if (!(start >= locked_folio_end || end <= locked_folio_start))
1121 locked_folio = async_chunk->locked_folio;
1122 }
1123
1124 if (async_extent->compress_type == BTRFS_COMPRESS_NONE) {
1125 ASSERT(!async_extent->folios);
1126 ASSERT(async_extent->nr_folios == 0);
1127 submit_uncompressed_range(inode, async_extent, locked_folio);
1128 free_pages = true;
1129 goto done;
1130 }
1131
1132 ret = btrfs_reserve_extent(root, async_extent->ram_size,
1133 async_extent->compressed_size,
1134 async_extent->compressed_size,
1135 0, *alloc_hint, &ins, 1, 1);
1136 if (ret) {
1137 /*
1138 * We can't reserve contiguous space for the compressed size.
1139 * Unlikely, but it's possible that we could have enough
1140 * non-contiguous space for the uncompressed size instead. So
1141 * fall back to uncompressed.
1142 */
1143 submit_uncompressed_range(inode, async_extent, locked_folio);
1144 free_pages = true;
1145 goto done;
1146 }
1147
1148 btrfs_lock_extent(io_tree, start, end, &cached);
1149
1150 /* Here we're doing allocation and writeback of the compressed pages */
1151 file_extent.disk_bytenr = ins.objectid;
1152 file_extent.disk_num_bytes = ins.offset;
1153 file_extent.ram_bytes = async_extent->ram_size;
1154 file_extent.num_bytes = async_extent->ram_size;
1155 file_extent.offset = 0;
1156 file_extent.compression = async_extent->compress_type;
1157
1158 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED);
1159 if (IS_ERR(em)) {
1160 ret = PTR_ERR(em);
1161 goto out_free_reserve;
1162 }
1163 btrfs_free_extent_map(em);
1164
1165 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent,
1166 1U << BTRFS_ORDERED_COMPRESSED);
1167 if (IS_ERR(ordered)) {
1168 btrfs_drop_extent_map_range(inode, start, end, false);
1169 ret = PTR_ERR(ordered);
1170 goto out_free_reserve;
1171 }
1172 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1173
1174 /* Clear dirty, set writeback and unlock the pages. */
1175 extent_clear_unlock_delalloc(inode, start, end,
1176 NULL, &cached, EXTENT_LOCKED | EXTENT_DELALLOC,
1177 PAGE_UNLOCK | PAGE_START_WRITEBACK);
1178 btrfs_submit_compressed_write(ordered,
1179 async_extent->folios, /* compressed_folios */
1180 async_extent->nr_folios,
1181 async_chunk->write_flags, true);
1182 *alloc_hint = ins.objectid + ins.offset;
1183 done:
1184 if (async_chunk->blkcg_css)
1185 kthread_associate_blkcg(NULL);
1186 if (free_pages)
1187 free_async_extent_pages(async_extent);
1188 kfree(async_extent);
1189 return;
1190
1191 out_free_reserve:
1192 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1193 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, true);
1194 mapping_set_error(inode->vfs_inode.i_mapping, -EIO);
1195 extent_clear_unlock_delalloc(inode, start, end,
1196 NULL, &cached,
1197 EXTENT_LOCKED | EXTENT_DELALLOC |
1198 EXTENT_DELALLOC_NEW |
1199 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
1200 PAGE_UNLOCK | PAGE_START_WRITEBACK |
1201 PAGE_END_WRITEBACK);
1202 free_async_extent_pages(async_extent);
1203 if (async_chunk->blkcg_css)
1204 kthread_associate_blkcg(NULL);
1205 btrfs_debug(fs_info,
1206 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d",
1207 btrfs_root_id(root), btrfs_ino(inode), start,
1208 async_extent->ram_size, ret);
1209 kfree(async_extent);
1210 }
1211
btrfs_get_extent_allocation_hint(struct btrfs_inode * inode,u64 start,u64 num_bytes)1212 u64 btrfs_get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
1213 u64 num_bytes)
1214 {
1215 struct extent_map_tree *em_tree = &inode->extent_tree;
1216 struct extent_map *em;
1217 u64 alloc_hint = 0;
1218
1219 read_lock(&em_tree->lock);
1220 em = btrfs_search_extent_mapping(em_tree, start, num_bytes);
1221 if (em) {
1222 /*
1223 * if block start isn't an actual block number then find the
1224 * first block in this inode and use that as a hint. If that
1225 * block is also bogus then just don't worry about it.
1226 */
1227 if (em->disk_bytenr >= EXTENT_MAP_LAST_BYTE) {
1228 btrfs_free_extent_map(em);
1229 em = btrfs_search_extent_mapping(em_tree, 0, 0);
1230 if (em && em->disk_bytenr < EXTENT_MAP_LAST_BYTE)
1231 alloc_hint = btrfs_extent_map_block_start(em);
1232 if (em)
1233 btrfs_free_extent_map(em);
1234 } else {
1235 alloc_hint = btrfs_extent_map_block_start(em);
1236 btrfs_free_extent_map(em);
1237 }
1238 }
1239 read_unlock(&em_tree->lock);
1240
1241 return alloc_hint;
1242 }
1243
1244 /*
1245 * when extent_io.c finds a delayed allocation range in the file,
1246 * the call backs end up in this code. The basic idea is to
1247 * allocate extents on disk for the range, and create ordered data structs
1248 * in ram to track those extents.
1249 *
1250 * locked_folio is the folio that writepage had locked already. We use
1251 * it to make sure we don't do extra locks or unlocks.
1252 *
1253 * When this function fails, it unlocks all folios except @locked_folio.
1254 *
1255 * When this function successfully creates an inline extent, it returns 1 and
1256 * unlocks all folios including locked_folio and starts I/O on them.
1257 * (In reality inline extents are limited to a single block, so locked_folio is
1258 * the only folio handled anyway).
1259 *
1260 * When this function succeed and creates a normal extent, the folio locking
1261 * status depends on the passed in flags:
1262 *
1263 * - If COW_FILE_RANGE_KEEP_LOCKED flag is set, all folios are kept locked.
1264 * - Else all folios except for @locked_folio are unlocked.
1265 *
1266 * When a failure happens in the second or later iteration of the
1267 * while-loop, the ordered extents created in previous iterations are cleaned up.
1268 */
cow_file_range(struct btrfs_inode * inode,struct folio * locked_folio,u64 start,u64 end,u64 * done_offset,unsigned long flags)1269 static noinline int cow_file_range(struct btrfs_inode *inode,
1270 struct folio *locked_folio, u64 start,
1271 u64 end, u64 *done_offset,
1272 unsigned long flags)
1273 {
1274 struct btrfs_root *root = inode->root;
1275 struct btrfs_fs_info *fs_info = root->fs_info;
1276 struct extent_state *cached = NULL;
1277 u64 alloc_hint = 0;
1278 u64 orig_start = start;
1279 u64 num_bytes;
1280 u64 cur_alloc_size = 0;
1281 u64 min_alloc_size;
1282 u64 blocksize = fs_info->sectorsize;
1283 struct btrfs_key ins;
1284 struct extent_map *em;
1285 unsigned clear_bits;
1286 unsigned long page_ops;
1287 int ret = 0;
1288
1289 if (btrfs_is_free_space_inode(inode)) {
1290 ret = -EINVAL;
1291 goto out_unlock;
1292 }
1293
1294 num_bytes = ALIGN(end - start + 1, blocksize);
1295 num_bytes = max(blocksize, num_bytes);
1296 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1297
1298 inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1299
1300 if (!(flags & COW_FILE_RANGE_NO_INLINE)) {
1301 /* lets try to make an inline extent */
1302 ret = cow_file_range_inline(inode, locked_folio, start, end, 0,
1303 BTRFS_COMPRESS_NONE, NULL, false);
1304 if (ret <= 0) {
1305 /*
1306 * We succeeded, return 1 so the caller knows we're done
1307 * with this page and already handled the IO.
1308 *
1309 * If there was an error then cow_file_range_inline() has
1310 * already done the cleanup.
1311 */
1312 if (ret == 0)
1313 ret = 1;
1314 goto done;
1315 }
1316 }
1317
1318 alloc_hint = btrfs_get_extent_allocation_hint(inode, start, num_bytes);
1319
1320 /*
1321 * We're not doing compressed IO, don't unlock the first page (which
1322 * the caller expects to stay locked), don't clear any dirty bits and
1323 * don't set any writeback bits.
1324 *
1325 * Do set the Ordered (Private2) bit so we know this page was properly
1326 * setup for writepage.
1327 */
1328 page_ops = ((flags & COW_FILE_RANGE_KEEP_LOCKED) ? 0 : PAGE_UNLOCK);
1329 page_ops |= PAGE_SET_ORDERED;
1330
1331 /*
1332 * Relocation relies on the relocated extents to have exactly the same
1333 * size as the original extents. Normally writeback for relocation data
1334 * extents follows a NOCOW path because relocation preallocates the
1335 * extents. However, due to an operation such as scrub turning a block
1336 * group to RO mode, it may fallback to COW mode, so we must make sure
1337 * an extent allocated during COW has exactly the requested size and can
1338 * not be split into smaller extents, otherwise relocation breaks and
1339 * fails during the stage where it updates the bytenr of file extent
1340 * items.
1341 */
1342 if (btrfs_is_data_reloc_root(root))
1343 min_alloc_size = num_bytes;
1344 else
1345 min_alloc_size = fs_info->sectorsize;
1346
1347 while (num_bytes > 0) {
1348 struct btrfs_ordered_extent *ordered;
1349 struct btrfs_file_extent file_extent;
1350
1351 ret = btrfs_reserve_extent(root, num_bytes, num_bytes,
1352 min_alloc_size, 0, alloc_hint,
1353 &ins, 1, 1);
1354 if (ret == -EAGAIN) {
1355 /*
1356 * btrfs_reserve_extent only returns -EAGAIN for zoned
1357 * file systems, which is an indication that there are
1358 * no active zones to allocate from at the moment.
1359 *
1360 * If this is the first loop iteration, wait for at
1361 * least one zone to finish before retrying the
1362 * allocation. Otherwise ask the caller to write out
1363 * the already allocated blocks before coming back to
1364 * us, or return -ENOSPC if it can't handle retries.
1365 */
1366 ASSERT(btrfs_is_zoned(fs_info));
1367 if (start == orig_start) {
1368 wait_on_bit_io(&inode->root->fs_info->flags,
1369 BTRFS_FS_NEED_ZONE_FINISH,
1370 TASK_UNINTERRUPTIBLE);
1371 continue;
1372 }
1373 if (done_offset) {
1374 /*
1375 * Move @end to the end of the processed range,
1376 * and exit the loop to unlock the processed extents.
1377 */
1378 end = start - 1;
1379 ret = 0;
1380 break;
1381 }
1382 ret = -ENOSPC;
1383 }
1384 if (ret < 0)
1385 goto out_unlock;
1386 cur_alloc_size = ins.offset;
1387
1388 file_extent.disk_bytenr = ins.objectid;
1389 file_extent.disk_num_bytes = ins.offset;
1390 file_extent.num_bytes = ins.offset;
1391 file_extent.ram_bytes = ins.offset;
1392 file_extent.offset = 0;
1393 file_extent.compression = BTRFS_COMPRESS_NONE;
1394
1395 /*
1396 * Locked range will be released either during error clean up or
1397 * after the whole range is finished.
1398 */
1399 btrfs_lock_extent(&inode->io_tree, start, start + cur_alloc_size - 1,
1400 &cached);
1401
1402 em = btrfs_create_io_em(inode, start, &file_extent,
1403 BTRFS_ORDERED_REGULAR);
1404 if (IS_ERR(em)) {
1405 btrfs_unlock_extent(&inode->io_tree, start,
1406 start + cur_alloc_size - 1, &cached);
1407 ret = PTR_ERR(em);
1408 goto out_reserve;
1409 }
1410 btrfs_free_extent_map(em);
1411
1412 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent,
1413 1U << BTRFS_ORDERED_REGULAR);
1414 if (IS_ERR(ordered)) {
1415 btrfs_unlock_extent(&inode->io_tree, start,
1416 start + cur_alloc_size - 1, &cached);
1417 ret = PTR_ERR(ordered);
1418 goto out_drop_extent_cache;
1419 }
1420
1421 if (btrfs_is_data_reloc_root(root)) {
1422 ret = btrfs_reloc_clone_csums(ordered);
1423
1424 /*
1425 * Only drop cache here, and process as normal.
1426 *
1427 * We must not allow extent_clear_unlock_delalloc()
1428 * at out_unlock label to free meta of this ordered
1429 * extent, as its meta should be freed by
1430 * btrfs_finish_ordered_io().
1431 *
1432 * So we must continue until @start is increased to
1433 * skip current ordered extent.
1434 */
1435 if (ret)
1436 btrfs_drop_extent_map_range(inode, start,
1437 start + cur_alloc_size - 1,
1438 false);
1439 }
1440 btrfs_put_ordered_extent(ordered);
1441
1442 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1443
1444 if (num_bytes < cur_alloc_size)
1445 num_bytes = 0;
1446 else
1447 num_bytes -= cur_alloc_size;
1448 alloc_hint = ins.objectid + ins.offset;
1449 start += cur_alloc_size;
1450 cur_alloc_size = 0;
1451
1452 /*
1453 * btrfs_reloc_clone_csums() error, since start is increased
1454 * extent_clear_unlock_delalloc() at out_unlock label won't
1455 * free metadata of current ordered extent, we're OK to exit.
1456 */
1457 if (ret)
1458 goto out_unlock;
1459 }
1460 extent_clear_unlock_delalloc(inode, orig_start, end, locked_folio, &cached,
1461 EXTENT_LOCKED | EXTENT_DELALLOC, page_ops);
1462 done:
1463 if (done_offset)
1464 *done_offset = end;
1465 return ret;
1466
1467 out_drop_extent_cache:
1468 btrfs_drop_extent_map_range(inode, start, start + cur_alloc_size - 1, false);
1469 out_reserve:
1470 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1471 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, true);
1472 out_unlock:
1473 /*
1474 * Now, we have three regions to clean up:
1475 *
1476 * |-------(1)----|---(2)---|-------------(3)----------|
1477 * `- orig_start `- start `- start + cur_alloc_size `- end
1478 *
1479 * We process each region below.
1480 */
1481
1482 /*
1483 * For the range (1). We have already instantiated the ordered extents
1484 * for this region, thus we need to cleanup those ordered extents.
1485 * EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV
1486 * are also handled by the ordered extents cleanup.
1487 *
1488 * So here we only clear EXTENT_LOCKED and EXTENT_DELALLOC flag, and
1489 * finish the writeback of the involved folios, which will be never submitted.
1490 */
1491 if (orig_start < start) {
1492 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC;
1493 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1494
1495 if (!locked_folio)
1496 mapping_set_error(inode->vfs_inode.i_mapping, ret);
1497
1498 btrfs_cleanup_ordered_extents(inode, orig_start, start - orig_start);
1499 extent_clear_unlock_delalloc(inode, orig_start, start - 1,
1500 locked_folio, NULL, clear_bits, page_ops);
1501 }
1502
1503 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1504 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1505 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1506
1507 /*
1508 * For the range (2). If we reserved an extent for our delalloc range
1509 * (or a subrange) and failed to create the respective ordered extent,
1510 * then it means that when we reserved the extent we decremented the
1511 * extent's size from the data space_info's bytes_may_use counter and
1512 * incremented the space_info's bytes_reserved counter by the same
1513 * amount. We must make sure extent_clear_unlock_delalloc() does not try
1514 * to decrement again the data space_info's bytes_may_use counter,
1515 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV.
1516 */
1517 if (cur_alloc_size) {
1518 extent_clear_unlock_delalloc(inode, start,
1519 start + cur_alloc_size - 1,
1520 locked_folio, &cached, clear_bits,
1521 page_ops);
1522 btrfs_qgroup_free_data(inode, NULL, start, cur_alloc_size, NULL);
1523 }
1524
1525 /*
1526 * For the range (3). We never touched the region. In addition to the
1527 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data
1528 * space_info's bytes_may_use counter, reserved in
1529 * btrfs_check_data_free_space().
1530 */
1531 if (start + cur_alloc_size < end) {
1532 clear_bits |= EXTENT_CLEAR_DATA_RESV;
1533 extent_clear_unlock_delalloc(inode, start + cur_alloc_size,
1534 end, locked_folio,
1535 &cached, clear_bits, page_ops);
1536 btrfs_qgroup_free_data(inode, NULL, start + cur_alloc_size,
1537 end - start - cur_alloc_size + 1, NULL);
1538 }
1539 btrfs_err(fs_info,
1540 "%s failed, root=%llu inode=%llu start=%llu len=%llu cur_offset=%llu cur_alloc_size=%llu: %d",
1541 __func__, btrfs_root_id(inode->root),
1542 btrfs_ino(inode), orig_start, end + 1 - orig_start,
1543 start, cur_alloc_size, ret);
1544 return ret;
1545 }
1546
1547 /*
1548 * Phase two of compressed writeback. This is the ordered portion of the code,
1549 * which only gets called in the order the work was queued. We walk all the
1550 * async extents created by compress_file_range and send them down to the disk.
1551 *
1552 * If called with @do_free == true then it'll try to finish the work and free
1553 * the work struct eventually.
1554 */
submit_compressed_extents(struct btrfs_work * work,bool do_free)1555 static noinline void submit_compressed_extents(struct btrfs_work *work, bool do_free)
1556 {
1557 struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1558 work);
1559 struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1560 struct async_extent *async_extent;
1561 unsigned long nr_pages;
1562 u64 alloc_hint = 0;
1563
1564 if (do_free) {
1565 struct async_cow *async_cow;
1566
1567 btrfs_add_delayed_iput(async_chunk->inode);
1568 if (async_chunk->blkcg_css)
1569 css_put(async_chunk->blkcg_css);
1570
1571 async_cow = async_chunk->async_cow;
1572 if (atomic_dec_and_test(&async_cow->num_chunks))
1573 kvfree(async_cow);
1574 return;
1575 }
1576
1577 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1578 PAGE_SHIFT;
1579
1580 while (!list_empty(&async_chunk->extents)) {
1581 async_extent = list_first_entry(&async_chunk->extents,
1582 struct async_extent, list);
1583 list_del(&async_extent->list);
1584 submit_one_async_extent(async_chunk, async_extent, &alloc_hint);
1585 }
1586
1587 /* atomic_sub_return implies a barrier */
1588 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1589 5 * SZ_1M)
1590 cond_wake_up_nomb(&fs_info->async_submit_wait);
1591 }
1592
run_delalloc_compressed(struct btrfs_inode * inode,struct folio * locked_folio,u64 start,u64 end,struct writeback_control * wbc)1593 static bool run_delalloc_compressed(struct btrfs_inode *inode,
1594 struct folio *locked_folio, u64 start,
1595 u64 end, struct writeback_control *wbc)
1596 {
1597 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1598 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1599 struct async_cow *ctx;
1600 struct async_chunk *async_chunk;
1601 unsigned long nr_pages;
1602 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1603 int i;
1604 unsigned nofs_flag;
1605 const blk_opf_t write_flags = wbc_to_write_flags(wbc);
1606
1607 nofs_flag = memalloc_nofs_save();
1608 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1609 memalloc_nofs_restore(nofs_flag);
1610 if (!ctx)
1611 return false;
1612
1613 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1614
1615 async_chunk = ctx->chunks;
1616 atomic_set(&ctx->num_chunks, num_chunks);
1617
1618 for (i = 0; i < num_chunks; i++) {
1619 u64 cur_end = min(end, start + SZ_512K - 1);
1620
1621 /*
1622 * igrab is called higher up in the call chain, take only the
1623 * lightweight reference for the callback lifetime
1624 */
1625 ihold(&inode->vfs_inode);
1626 async_chunk[i].async_cow = ctx;
1627 async_chunk[i].inode = inode;
1628 async_chunk[i].start = start;
1629 async_chunk[i].end = cur_end;
1630 async_chunk[i].write_flags = write_flags;
1631 INIT_LIST_HEAD(&async_chunk[i].extents);
1632
1633 /*
1634 * The locked_folio comes all the way from writepage and its
1635 * the original folio we were actually given. As we spread
1636 * this large delalloc region across multiple async_chunk
1637 * structs, only the first struct needs a pointer to
1638 * locked_folio.
1639 *
1640 * This way we don't need racey decisions about who is supposed
1641 * to unlock it.
1642 */
1643 if (locked_folio) {
1644 /*
1645 * Depending on the compressibility, the pages might or
1646 * might not go through async. We want all of them to
1647 * be accounted against wbc once. Let's do it here
1648 * before the paths diverge. wbc accounting is used
1649 * only for foreign writeback detection and doesn't
1650 * need full accuracy. Just account the whole thing
1651 * against the first page.
1652 */
1653 wbc_account_cgroup_owner(wbc, locked_folio,
1654 cur_end - start);
1655 async_chunk[i].locked_folio = locked_folio;
1656 locked_folio = NULL;
1657 } else {
1658 async_chunk[i].locked_folio = NULL;
1659 }
1660
1661 if (blkcg_css != blkcg_root_css) {
1662 css_get(blkcg_css);
1663 async_chunk[i].blkcg_css = blkcg_css;
1664 async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT;
1665 } else {
1666 async_chunk[i].blkcg_css = NULL;
1667 }
1668
1669 btrfs_init_work(&async_chunk[i].work, compress_file_range,
1670 submit_compressed_extents);
1671
1672 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1673 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1674
1675 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1676
1677 start = cur_end + 1;
1678 }
1679 return true;
1680 }
1681
1682 /*
1683 * Run the delalloc range from start to end, and write back any dirty pages
1684 * covered by the range.
1685 */
run_delalloc_cow(struct btrfs_inode * inode,struct folio * locked_folio,u64 start,u64 end,struct writeback_control * wbc,bool pages_dirty)1686 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
1687 struct folio *locked_folio, u64 start,
1688 u64 end, struct writeback_control *wbc,
1689 bool pages_dirty)
1690 {
1691 u64 done_offset = end;
1692 int ret;
1693
1694 while (start <= end) {
1695 ret = cow_file_range(inode, locked_folio, start, end,
1696 &done_offset, COW_FILE_RANGE_KEEP_LOCKED);
1697 if (ret)
1698 return ret;
1699 extent_write_locked_range(&inode->vfs_inode, locked_folio,
1700 start, done_offset, wbc, pages_dirty);
1701 start = done_offset + 1;
1702 }
1703
1704 return 1;
1705 }
1706
fallback_to_cow(struct btrfs_inode * inode,struct folio * locked_folio,const u64 start,const u64 end)1707 static int fallback_to_cow(struct btrfs_inode *inode,
1708 struct folio *locked_folio, const u64 start,
1709 const u64 end)
1710 {
1711 const bool is_space_ino = btrfs_is_free_space_inode(inode);
1712 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root);
1713 const u64 range_bytes = end + 1 - start;
1714 struct extent_io_tree *io_tree = &inode->io_tree;
1715 struct extent_state *cached_state = NULL;
1716 u64 range_start = start;
1717 u64 count;
1718 int ret;
1719
1720 /*
1721 * If EXTENT_NORESERVE is set it means that when the buffered write was
1722 * made we had not enough available data space and therefore we did not
1723 * reserve data space for it, since we though we could do NOCOW for the
1724 * respective file range (either there is prealloc extent or the inode
1725 * has the NOCOW bit set).
1726 *
1727 * However when we need to fallback to COW mode (because for example the
1728 * block group for the corresponding extent was turned to RO mode by a
1729 * scrub or relocation) we need to do the following:
1730 *
1731 * 1) We increment the bytes_may_use counter of the data space info.
1732 * If COW succeeds, it allocates a new data extent and after doing
1733 * that it decrements the space info's bytes_may_use counter and
1734 * increments its bytes_reserved counter by the same amount (we do
1735 * this at btrfs_add_reserved_bytes()). So we need to increment the
1736 * bytes_may_use counter to compensate (when space is reserved at
1737 * buffered write time, the bytes_may_use counter is incremented);
1738 *
1739 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1740 * that if the COW path fails for any reason, it decrements (through
1741 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1742 * data space info, which we incremented in the step above.
1743 *
1744 * If we need to fallback to cow and the inode corresponds to a free
1745 * space cache inode or an inode of the data relocation tree, we must
1746 * also increment bytes_may_use of the data space_info for the same
1747 * reason. Space caches and relocated data extents always get a prealloc
1748 * extent for them, however scrub or balance may have set the block
1749 * group that contains that extent to RO mode and therefore force COW
1750 * when starting writeback.
1751 */
1752 btrfs_lock_extent(io_tree, start, end, &cached_state);
1753 count = btrfs_count_range_bits(io_tree, &range_start, end, range_bytes,
1754 EXTENT_NORESERVE, 0, NULL);
1755 if (count > 0 || is_space_ino || is_reloc_ino) {
1756 u64 bytes = count;
1757 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1758 struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1759
1760 if (is_space_ino || is_reloc_ino)
1761 bytes = range_bytes;
1762
1763 spin_lock(&sinfo->lock);
1764 btrfs_space_info_update_bytes_may_use(sinfo, bytes);
1765 spin_unlock(&sinfo->lock);
1766
1767 if (count > 0)
1768 btrfs_clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1769 &cached_state);
1770 }
1771 btrfs_unlock_extent(io_tree, start, end, &cached_state);
1772
1773 /*
1774 * Don't try to create inline extents, as a mix of inline extent that
1775 * is written out and unlocked directly and a normal NOCOW extent
1776 * doesn't work.
1777 *
1778 * And here we do not unlock the folio after a successful run.
1779 * The folios will be unlocked after everything is finished, or by error handling.
1780 *
1781 * This is to ensure error handling won't need to clear dirty/ordered flags without
1782 * a locked folio, which can race with writeback.
1783 */
1784 ret = cow_file_range(inode, locked_folio, start, end, NULL,
1785 COW_FILE_RANGE_NO_INLINE | COW_FILE_RANGE_KEEP_LOCKED);
1786 ASSERT(ret != 1);
1787 return ret;
1788 }
1789
1790 struct can_nocow_file_extent_args {
1791 /* Input fields. */
1792
1793 /* Start file offset of the range we want to NOCOW. */
1794 u64 start;
1795 /* End file offset (inclusive) of the range we want to NOCOW. */
1796 u64 end;
1797 bool writeback_path;
1798 /*
1799 * Free the path passed to can_nocow_file_extent() once it's not needed
1800 * anymore.
1801 */
1802 bool free_path;
1803
1804 /*
1805 * Output fields. Only set when can_nocow_file_extent() returns 1.
1806 * The expected file extent for the NOCOW write.
1807 */
1808 struct btrfs_file_extent file_extent;
1809 };
1810
1811 /*
1812 * Check if we can NOCOW the file extent that the path points to.
1813 * This function may return with the path released, so the caller should check
1814 * if path->nodes[0] is NULL or not if it needs to use the path afterwards.
1815 *
1816 * Returns: < 0 on error
1817 * 0 if we can not NOCOW
1818 * 1 if we can NOCOW
1819 */
can_nocow_file_extent(struct btrfs_path * path,struct btrfs_key * key,struct btrfs_inode * inode,struct can_nocow_file_extent_args * args)1820 static int can_nocow_file_extent(struct btrfs_path *path,
1821 struct btrfs_key *key,
1822 struct btrfs_inode *inode,
1823 struct can_nocow_file_extent_args *args)
1824 {
1825 const bool is_freespace_inode = btrfs_is_free_space_inode(inode);
1826 struct extent_buffer *leaf = path->nodes[0];
1827 struct btrfs_root *root = inode->root;
1828 struct btrfs_file_extent_item *fi;
1829 struct btrfs_root *csum_root;
1830 u64 io_start;
1831 u64 extent_end;
1832 u8 extent_type;
1833 int can_nocow = 0;
1834 int ret = 0;
1835 bool nowait = path->nowait;
1836
1837 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
1838 extent_type = btrfs_file_extent_type(leaf, fi);
1839
1840 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1841 goto out;
1842
1843 if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1844 extent_type == BTRFS_FILE_EXTENT_REG)
1845 goto out;
1846
1847 /*
1848 * If the extent was created before the generation where the last snapshot
1849 * for its subvolume was created, then this implies the extent is shared,
1850 * hence we must COW.
1851 */
1852 if (btrfs_file_extent_generation(leaf, fi) <=
1853 btrfs_root_last_snapshot(&root->root_item))
1854 goto out;
1855
1856 /* An explicit hole, must COW. */
1857 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0)
1858 goto out;
1859
1860 /* Compressed/encrypted/encoded extents must be COWed. */
1861 if (btrfs_file_extent_compression(leaf, fi) ||
1862 btrfs_file_extent_encryption(leaf, fi) ||
1863 btrfs_file_extent_other_encoding(leaf, fi))
1864 goto out;
1865
1866 extent_end = btrfs_file_extent_end(path);
1867
1868 args->file_extent.disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1869 args->file_extent.disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1870 args->file_extent.ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1871 args->file_extent.offset = btrfs_file_extent_offset(leaf, fi);
1872 args->file_extent.compression = btrfs_file_extent_compression(leaf, fi);
1873
1874 /*
1875 * The following checks can be expensive, as they need to take other
1876 * locks and do btree or rbtree searches, so release the path to avoid
1877 * blocking other tasks for too long.
1878 */
1879 btrfs_release_path(path);
1880
1881 ret = btrfs_cross_ref_exist(inode, key->offset - args->file_extent.offset,
1882 args->file_extent.disk_bytenr, path);
1883 WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1884 if (ret != 0)
1885 goto out;
1886
1887 if (args->free_path) {
1888 /*
1889 * We don't need the path anymore, plus through the
1890 * btrfs_lookup_csums_list() call below we will end up allocating
1891 * another path. So free the path to avoid unnecessary extra
1892 * memory usage.
1893 */
1894 btrfs_free_path(path);
1895 path = NULL;
1896 }
1897
1898 /* If there are pending snapshots for this root, we must COW. */
1899 if (args->writeback_path && !is_freespace_inode &&
1900 atomic_read(&root->snapshot_force_cow))
1901 goto out;
1902
1903 args->file_extent.num_bytes = min(args->end + 1, extent_end) - args->start;
1904 args->file_extent.offset += args->start - key->offset;
1905 io_start = args->file_extent.disk_bytenr + args->file_extent.offset;
1906
1907 /*
1908 * Force COW if csums exist in the range. This ensures that csums for a
1909 * given extent are either valid or do not exist.
1910 */
1911
1912 csum_root = btrfs_csum_root(root->fs_info, io_start);
1913 ret = btrfs_lookup_csums_list(csum_root, io_start,
1914 io_start + args->file_extent.num_bytes - 1,
1915 NULL, nowait);
1916 WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1917 if (ret != 0)
1918 goto out;
1919
1920 can_nocow = 1;
1921 out:
1922 if (args->free_path && path)
1923 btrfs_free_path(path);
1924
1925 return ret < 0 ? ret : can_nocow;
1926 }
1927
nocow_one_range(struct btrfs_inode * inode,struct folio * locked_folio,struct extent_state ** cached,struct can_nocow_file_extent_args * nocow_args,u64 file_pos,bool is_prealloc)1928 static int nocow_one_range(struct btrfs_inode *inode, struct folio *locked_folio,
1929 struct extent_state **cached,
1930 struct can_nocow_file_extent_args *nocow_args,
1931 u64 file_pos, bool is_prealloc)
1932 {
1933 struct btrfs_ordered_extent *ordered;
1934 const u64 len = nocow_args->file_extent.num_bytes;
1935 const u64 end = file_pos + len - 1;
1936 int ret = 0;
1937
1938 btrfs_lock_extent(&inode->io_tree, file_pos, end, cached);
1939
1940 if (is_prealloc) {
1941 struct extent_map *em;
1942
1943 em = btrfs_create_io_em(inode, file_pos, &nocow_args->file_extent,
1944 BTRFS_ORDERED_PREALLOC);
1945 if (IS_ERR(em)) {
1946 ret = PTR_ERR(em);
1947 goto error;
1948 }
1949 btrfs_free_extent_map(em);
1950 }
1951
1952 ordered = btrfs_alloc_ordered_extent(inode, file_pos, &nocow_args->file_extent,
1953 is_prealloc
1954 ? (1U << BTRFS_ORDERED_PREALLOC)
1955 : (1U << BTRFS_ORDERED_NOCOW));
1956 if (IS_ERR(ordered)) {
1957 if (is_prealloc)
1958 btrfs_drop_extent_map_range(inode, file_pos, end, false);
1959 ret = PTR_ERR(ordered);
1960 goto error;
1961 }
1962
1963 if (btrfs_is_data_reloc_root(inode->root))
1964 /*
1965 * Errors are handled later, as we must prevent
1966 * extent_clear_unlock_delalloc() in error handler from freeing
1967 * metadata of the created ordered extent.
1968 */
1969 ret = btrfs_reloc_clone_csums(ordered);
1970 btrfs_put_ordered_extent(ordered);
1971
1972 if (ret < 0)
1973 goto error;
1974 extent_clear_unlock_delalloc(inode, file_pos, end, locked_folio, cached,
1975 EXTENT_LOCKED | EXTENT_DELALLOC |
1976 EXTENT_CLEAR_DATA_RESV,
1977 PAGE_SET_ORDERED);
1978 return ret;
1979
1980 error:
1981 btrfs_cleanup_ordered_extents(inode, file_pos, len);
1982 extent_clear_unlock_delalloc(inode, file_pos, end, locked_folio, cached,
1983 EXTENT_LOCKED | EXTENT_DELALLOC |
1984 EXTENT_CLEAR_DATA_RESV,
1985 PAGE_UNLOCK | PAGE_START_WRITEBACK |
1986 PAGE_END_WRITEBACK);
1987 btrfs_err(inode->root->fs_info,
1988 "%s failed, root=%lld inode=%llu start=%llu len=%llu: %d",
1989 __func__, btrfs_root_id(inode->root), btrfs_ino(inode),
1990 file_pos, len, ret);
1991 return ret;
1992 }
1993
1994 /*
1995 * When nocow writeback calls back. This checks for snapshots or COW copies
1996 * of the extents that exist in the file, and COWs the file as required.
1997 *
1998 * If no cow copies or snapshots exist, we write directly to the existing
1999 * blocks on disk
2000 */
run_delalloc_nocow(struct btrfs_inode * inode,struct folio * locked_folio,const u64 start,const u64 end)2001 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
2002 struct folio *locked_folio,
2003 const u64 start, const u64 end)
2004 {
2005 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2006 struct btrfs_root *root = inode->root;
2007 struct btrfs_path *path;
2008 u64 cow_start = (u64)-1;
2009 /*
2010 * If not 0, represents the inclusive end of the last fallback_to_cow()
2011 * range. Only for error handling.
2012 *
2013 * The same for nocow_end, it's to avoid double cleaning up the range
2014 * already cleaned by nocow_one_range().
2015 */
2016 u64 cow_end = 0;
2017 u64 nocow_end = 0;
2018 u64 cur_offset = start;
2019 int ret;
2020 bool check_prev = true;
2021 u64 ino = btrfs_ino(inode);
2022 struct can_nocow_file_extent_args nocow_args = { 0 };
2023 /* The range that has ordered extent(s). */
2024 u64 oe_cleanup_start;
2025 u64 oe_cleanup_len = 0;
2026 /* The range that is untouched. */
2027 u64 untouched_start;
2028 u64 untouched_len = 0;
2029
2030 /*
2031 * Normally on a zoned device we're only doing COW writes, but in case
2032 * of relocation on a zoned filesystem serializes I/O so that we're only
2033 * writing sequentially and can end up here as well.
2034 */
2035 ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root));
2036
2037 path = btrfs_alloc_path();
2038 if (!path) {
2039 ret = -ENOMEM;
2040 goto error;
2041 }
2042
2043 nocow_args.end = end;
2044 nocow_args.writeback_path = true;
2045
2046 while (cur_offset <= end) {
2047 struct btrfs_block_group *nocow_bg = NULL;
2048 struct btrfs_key found_key;
2049 struct btrfs_file_extent_item *fi;
2050 struct extent_buffer *leaf;
2051 struct extent_state *cached_state = NULL;
2052 u64 extent_end;
2053 int extent_type;
2054
2055 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
2056 cur_offset, 0);
2057 if (ret < 0)
2058 goto error;
2059
2060 /*
2061 * If there is no extent for our range when doing the initial
2062 * search, then go back to the previous slot as it will be the
2063 * one containing the search offset
2064 */
2065 if (ret > 0 && path->slots[0] > 0 && check_prev) {
2066 leaf = path->nodes[0];
2067 btrfs_item_key_to_cpu(leaf, &found_key,
2068 path->slots[0] - 1);
2069 if (found_key.objectid == ino &&
2070 found_key.type == BTRFS_EXTENT_DATA_KEY)
2071 path->slots[0]--;
2072 }
2073 check_prev = false;
2074 next_slot:
2075 /* Go to next leaf if we have exhausted the current one */
2076 leaf = path->nodes[0];
2077 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2078 ret = btrfs_next_leaf(root, path);
2079 if (ret < 0)
2080 goto error;
2081 if (ret > 0)
2082 break;
2083 leaf = path->nodes[0];
2084 }
2085
2086 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2087
2088 /* Didn't find anything for our INO */
2089 if (found_key.objectid > ino)
2090 break;
2091 /*
2092 * Keep searching until we find an EXTENT_ITEM or there are no
2093 * more extents for this inode
2094 */
2095 if (WARN_ON_ONCE(found_key.objectid < ino) ||
2096 found_key.type < BTRFS_EXTENT_DATA_KEY) {
2097 path->slots[0]++;
2098 goto next_slot;
2099 }
2100
2101 /* Found key is not EXTENT_DATA_KEY or starts after req range */
2102 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
2103 found_key.offset > end)
2104 break;
2105
2106 /*
2107 * If the found extent starts after requested offset, then
2108 * adjust cur_offset to be right before this extent begins.
2109 */
2110 if (found_key.offset > cur_offset) {
2111 if (cow_start == (u64)-1)
2112 cow_start = cur_offset;
2113 cur_offset = found_key.offset;
2114 goto next_slot;
2115 }
2116
2117 /*
2118 * Found extent which begins before our range and potentially
2119 * intersect it
2120 */
2121 fi = btrfs_item_ptr(leaf, path->slots[0],
2122 struct btrfs_file_extent_item);
2123 extent_type = btrfs_file_extent_type(leaf, fi);
2124 /* If this is triggered then we have a memory corruption. */
2125 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES);
2126 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) {
2127 ret = -EUCLEAN;
2128 goto error;
2129 }
2130 extent_end = btrfs_file_extent_end(path);
2131
2132 /*
2133 * If the extent we got ends before our current offset, skip to
2134 * the next extent.
2135 */
2136 if (extent_end <= cur_offset) {
2137 path->slots[0]++;
2138 goto next_slot;
2139 }
2140
2141 nocow_args.start = cur_offset;
2142 ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args);
2143 if (ret < 0)
2144 goto error;
2145 if (ret == 0)
2146 goto must_cow;
2147
2148 ret = 0;
2149 nocow_bg = btrfs_inc_nocow_writers(fs_info,
2150 nocow_args.file_extent.disk_bytenr +
2151 nocow_args.file_extent.offset);
2152 if (!nocow_bg) {
2153 must_cow:
2154 /*
2155 * If we can't perform NOCOW writeback for the range,
2156 * then record the beginning of the range that needs to
2157 * be COWed. It will be written out before the next
2158 * NOCOW range if we find one, or when exiting this
2159 * loop.
2160 */
2161 if (cow_start == (u64)-1)
2162 cow_start = cur_offset;
2163 cur_offset = extent_end;
2164 if (cur_offset > end)
2165 break;
2166 if (!path->nodes[0])
2167 continue;
2168 path->slots[0]++;
2169 goto next_slot;
2170 }
2171
2172 /*
2173 * COW range from cow_start to found_key.offset - 1. As the key
2174 * will contain the beginning of the first extent that can be
2175 * NOCOW, following one which needs to be COW'ed
2176 */
2177 if (cow_start != (u64)-1) {
2178 ret = fallback_to_cow(inode, locked_folio, cow_start,
2179 found_key.offset - 1);
2180 if (ret) {
2181 cow_end = found_key.offset - 1;
2182 btrfs_dec_nocow_writers(nocow_bg);
2183 goto error;
2184 }
2185 cow_start = (u64)-1;
2186 }
2187
2188 ret = nocow_one_range(inode, locked_folio, &cached_state,
2189 &nocow_args, cur_offset,
2190 extent_type == BTRFS_FILE_EXTENT_PREALLOC);
2191 btrfs_dec_nocow_writers(nocow_bg);
2192 if (ret < 0) {
2193 nocow_end = cur_offset + nocow_args.file_extent.num_bytes - 1;
2194 goto error;
2195 }
2196 cur_offset = extent_end;
2197 }
2198 btrfs_release_path(path);
2199
2200 if (cur_offset <= end && cow_start == (u64)-1)
2201 cow_start = cur_offset;
2202
2203 if (cow_start != (u64)-1) {
2204 ret = fallback_to_cow(inode, locked_folio, cow_start, end);
2205 if (ret) {
2206 cow_end = end;
2207 goto error;
2208 }
2209 cow_start = (u64)-1;
2210 }
2211
2212 /*
2213 * Everything is finished without an error, can unlock the folios now.
2214 *
2215 * No need to touch the io tree range nor set folio ordered flag, as
2216 * fallback_to_cow() and nocow_one_range() have already handled them.
2217 */
2218 extent_clear_unlock_delalloc(inode, start, end, locked_folio, NULL, 0, PAGE_UNLOCK);
2219
2220 btrfs_free_path(path);
2221 return 0;
2222
2223 error:
2224 if (cow_start == (u64)-1) {
2225 /*
2226 * case a)
2227 * start cur_offset end
2228 * | OE cleanup | Untouched |
2229 *
2230 * We finished a fallback_to_cow() or nocow_one_range() call,
2231 * but failed to check the next range.
2232 *
2233 * or
2234 * start cur_offset nocow_end end
2235 * | OE cleanup | Skip | Untouched |
2236 *
2237 * nocow_one_range() failed, the range [cur_offset, nocow_end] is
2238 * already cleaned up.
2239 */
2240 oe_cleanup_start = start;
2241 oe_cleanup_len = cur_offset - start;
2242 if (nocow_end)
2243 untouched_start = nocow_end + 1;
2244 else
2245 untouched_start = cur_offset;
2246 untouched_len = end + 1 - untouched_start;
2247 } else if (cow_start != (u64)-1 && cow_end == 0) {
2248 /*
2249 * case b)
2250 * start cow_start cur_offset end
2251 * | OE cleanup | Untouched |
2252 *
2253 * We got a range that needs COW, but before we hit the next NOCOW range,
2254 * thus [cow_start, cur_offset) doesn't yet have any OE.
2255 */
2256 oe_cleanup_start = start;
2257 oe_cleanup_len = cow_start - start;
2258 untouched_start = cow_start;
2259 untouched_len = end + 1 - untouched_start;
2260 } else {
2261 /*
2262 * case c)
2263 * start cow_start cow_end end
2264 * | OE cleanup | Skip | Untouched |
2265 *
2266 * fallback_to_cow() failed, and fallback_to_cow() will do the
2267 * cleanup for its range, we shouldn't touch the range
2268 * [cow_start, cow_end].
2269 */
2270 ASSERT(cow_start != (u64)-1 && cow_end != 0);
2271 oe_cleanup_start = start;
2272 oe_cleanup_len = cow_start - start;
2273 untouched_start = cow_end + 1;
2274 untouched_len = end + 1 - untouched_start;
2275 }
2276
2277 if (oe_cleanup_len) {
2278 const u64 oe_cleanup_end = oe_cleanup_start + oe_cleanup_len - 1;
2279 btrfs_cleanup_ordered_extents(inode, oe_cleanup_start, oe_cleanup_len);
2280 extent_clear_unlock_delalloc(inode, oe_cleanup_start, oe_cleanup_end,
2281 locked_folio, NULL,
2282 EXTENT_LOCKED | EXTENT_DELALLOC,
2283 PAGE_UNLOCK | PAGE_START_WRITEBACK |
2284 PAGE_END_WRITEBACK);
2285 }
2286
2287 if (untouched_len) {
2288 struct extent_state *cached = NULL;
2289 const u64 untouched_end = untouched_start + untouched_len - 1;
2290
2291 /*
2292 * We need to lock the extent here because we're clearing DELALLOC and
2293 * we're not locked at this point.
2294 */
2295 btrfs_lock_extent(&inode->io_tree, untouched_start, untouched_end, &cached);
2296 extent_clear_unlock_delalloc(inode, untouched_start, untouched_end,
2297 locked_folio, &cached,
2298 EXTENT_LOCKED | EXTENT_DELALLOC |
2299 EXTENT_DEFRAG |
2300 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
2301 PAGE_START_WRITEBACK |
2302 PAGE_END_WRITEBACK);
2303 btrfs_qgroup_free_data(inode, NULL, untouched_start, untouched_len, NULL);
2304 }
2305 btrfs_free_path(path);
2306 btrfs_err(fs_info,
2307 "%s failed, root=%llu inode=%llu start=%llu len=%llu cur_offset=%llu oe_cleanup=%llu oe_cleanup_len=%llu untouched_start=%llu untouched_len=%llu: %d",
2308 __func__, btrfs_root_id(inode->root), btrfs_ino(inode),
2309 start, end + 1 - start, cur_offset, oe_cleanup_start, oe_cleanup_len,
2310 untouched_start, untouched_len, ret);
2311 return ret;
2312 }
2313
should_nocow(struct btrfs_inode * inode,u64 start,u64 end)2314 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
2315 {
2316 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
2317 if (inode->defrag_bytes &&
2318 btrfs_test_range_bit_exists(&inode->io_tree, start, end, EXTENT_DEFRAG))
2319 return false;
2320 return true;
2321 }
2322 return false;
2323 }
2324
2325 /*
2326 * Function to process delayed allocation (create CoW) for ranges which are
2327 * being touched for the first time.
2328 */
btrfs_run_delalloc_range(struct btrfs_inode * inode,struct folio * locked_folio,u64 start,u64 end,struct writeback_control * wbc)2329 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct folio *locked_folio,
2330 u64 start, u64 end, struct writeback_control *wbc)
2331 {
2332 const bool zoned = btrfs_is_zoned(inode->root->fs_info);
2333 int ret;
2334
2335 /*
2336 * The range must cover part of the @locked_folio, or a return of 1
2337 * can confuse the caller.
2338 */
2339 ASSERT(!(end <= folio_pos(locked_folio) || start >= folio_end(locked_folio)));
2340
2341 if (should_nocow(inode, start, end)) {
2342 ret = run_delalloc_nocow(inode, locked_folio, start, end);
2343 return ret;
2344 }
2345
2346 if (btrfs_inode_can_compress(inode) &&
2347 inode_need_compress(inode, start, end) &&
2348 run_delalloc_compressed(inode, locked_folio, start, end, wbc))
2349 return 1;
2350
2351 if (zoned)
2352 ret = run_delalloc_cow(inode, locked_folio, start, end, wbc,
2353 true);
2354 else
2355 ret = cow_file_range(inode, locked_folio, start, end, NULL, 0);
2356 return ret;
2357 }
2358
btrfs_split_delalloc_extent(struct btrfs_inode * inode,struct extent_state * orig,u64 split)2359 void btrfs_split_delalloc_extent(struct btrfs_inode *inode,
2360 struct extent_state *orig, u64 split)
2361 {
2362 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2363 u64 size;
2364
2365 lockdep_assert_held(&inode->io_tree.lock);
2366
2367 /* not delalloc, ignore it */
2368 if (!(orig->state & EXTENT_DELALLOC))
2369 return;
2370
2371 size = orig->end - orig->start + 1;
2372 if (size > fs_info->max_extent_size) {
2373 u32 num_extents;
2374 u64 new_size;
2375
2376 /*
2377 * See the explanation in btrfs_merge_delalloc_extent, the same
2378 * applies here, just in reverse.
2379 */
2380 new_size = orig->end - split + 1;
2381 num_extents = count_max_extents(fs_info, new_size);
2382 new_size = split - orig->start;
2383 num_extents += count_max_extents(fs_info, new_size);
2384 if (count_max_extents(fs_info, size) >= num_extents)
2385 return;
2386 }
2387
2388 spin_lock(&inode->lock);
2389 btrfs_mod_outstanding_extents(inode, 1);
2390 spin_unlock(&inode->lock);
2391 }
2392
2393 /*
2394 * Handle merged delayed allocation extents so we can keep track of new extents
2395 * that are just merged onto old extents, such as when we are doing sequential
2396 * writes, so we can properly account for the metadata space we'll need.
2397 */
btrfs_merge_delalloc_extent(struct btrfs_inode * inode,struct extent_state * new,struct extent_state * other)2398 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new,
2399 struct extent_state *other)
2400 {
2401 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2402 u64 new_size, old_size;
2403 u32 num_extents;
2404
2405 lockdep_assert_held(&inode->io_tree.lock);
2406
2407 /* not delalloc, ignore it */
2408 if (!(other->state & EXTENT_DELALLOC))
2409 return;
2410
2411 if (new->start > other->start)
2412 new_size = new->end - other->start + 1;
2413 else
2414 new_size = other->end - new->start + 1;
2415
2416 /* we're not bigger than the max, unreserve the space and go */
2417 if (new_size <= fs_info->max_extent_size) {
2418 spin_lock(&inode->lock);
2419 btrfs_mod_outstanding_extents(inode, -1);
2420 spin_unlock(&inode->lock);
2421 return;
2422 }
2423
2424 /*
2425 * We have to add up either side to figure out how many extents were
2426 * accounted for before we merged into one big extent. If the number of
2427 * extents we accounted for is <= the amount we need for the new range
2428 * then we can return, otherwise drop. Think of it like this
2429 *
2430 * [ 4k][MAX_SIZE]
2431 *
2432 * So we've grown the extent by a MAX_SIZE extent, this would mean we
2433 * need 2 outstanding extents, on one side we have 1 and the other side
2434 * we have 1 so they are == and we can return. But in this case
2435 *
2436 * [MAX_SIZE+4k][MAX_SIZE+4k]
2437 *
2438 * Each range on their own accounts for 2 extents, but merged together
2439 * they are only 3 extents worth of accounting, so we need to drop in
2440 * this case.
2441 */
2442 old_size = other->end - other->start + 1;
2443 num_extents = count_max_extents(fs_info, old_size);
2444 old_size = new->end - new->start + 1;
2445 num_extents += count_max_extents(fs_info, old_size);
2446 if (count_max_extents(fs_info, new_size) >= num_extents)
2447 return;
2448
2449 spin_lock(&inode->lock);
2450 btrfs_mod_outstanding_extents(inode, -1);
2451 spin_unlock(&inode->lock);
2452 }
2453
btrfs_add_delalloc_inode(struct btrfs_inode * inode)2454 static void btrfs_add_delalloc_inode(struct btrfs_inode *inode)
2455 {
2456 struct btrfs_root *root = inode->root;
2457 struct btrfs_fs_info *fs_info = root->fs_info;
2458
2459 spin_lock(&root->delalloc_lock);
2460 ASSERT(list_empty(&inode->delalloc_inodes));
2461 list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes);
2462 root->nr_delalloc_inodes++;
2463 if (root->nr_delalloc_inodes == 1) {
2464 spin_lock(&fs_info->delalloc_root_lock);
2465 ASSERT(list_empty(&root->delalloc_root));
2466 list_add_tail(&root->delalloc_root, &fs_info->delalloc_roots);
2467 spin_unlock(&fs_info->delalloc_root_lock);
2468 }
2469 spin_unlock(&root->delalloc_lock);
2470 }
2471
btrfs_del_delalloc_inode(struct btrfs_inode * inode)2472 void btrfs_del_delalloc_inode(struct btrfs_inode *inode)
2473 {
2474 struct btrfs_root *root = inode->root;
2475 struct btrfs_fs_info *fs_info = root->fs_info;
2476
2477 lockdep_assert_held(&root->delalloc_lock);
2478
2479 /*
2480 * We may be called after the inode was already deleted from the list,
2481 * namely in the transaction abort path btrfs_destroy_delalloc_inodes(),
2482 * and then later through btrfs_clear_delalloc_extent() while the inode
2483 * still has ->delalloc_bytes > 0.
2484 */
2485 if (!list_empty(&inode->delalloc_inodes)) {
2486 list_del_init(&inode->delalloc_inodes);
2487 root->nr_delalloc_inodes--;
2488 if (!root->nr_delalloc_inodes) {
2489 ASSERT(list_empty(&root->delalloc_inodes));
2490 spin_lock(&fs_info->delalloc_root_lock);
2491 ASSERT(!list_empty(&root->delalloc_root));
2492 list_del_init(&root->delalloc_root);
2493 spin_unlock(&fs_info->delalloc_root_lock);
2494 }
2495 }
2496 }
2497
2498 /*
2499 * Properly track delayed allocation bytes in the inode and to maintain the
2500 * list of inodes that have pending delalloc work to be done.
2501 */
btrfs_set_delalloc_extent(struct btrfs_inode * inode,struct extent_state * state,u32 bits)2502 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state,
2503 u32 bits)
2504 {
2505 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2506
2507 lockdep_assert_held(&inode->io_tree.lock);
2508
2509 if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC))
2510 WARN_ON(1);
2511 /*
2512 * set_bit and clear bit hooks normally require _irqsave/restore
2513 * but in this case, we are only testing for the DELALLOC
2514 * bit, which is only set or cleared with irqs on
2515 */
2516 if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2517 u64 len = state->end + 1 - state->start;
2518 u64 prev_delalloc_bytes;
2519 u32 num_extents = count_max_extents(fs_info, len);
2520
2521 spin_lock(&inode->lock);
2522 btrfs_mod_outstanding_extents(inode, num_extents);
2523 spin_unlock(&inode->lock);
2524
2525 /* For sanity tests */
2526 if (btrfs_is_testing(fs_info))
2527 return;
2528
2529 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2530 fs_info->delalloc_batch);
2531 spin_lock(&inode->lock);
2532 prev_delalloc_bytes = inode->delalloc_bytes;
2533 inode->delalloc_bytes += len;
2534 if (bits & EXTENT_DEFRAG)
2535 inode->defrag_bytes += len;
2536 spin_unlock(&inode->lock);
2537
2538 /*
2539 * We don't need to be under the protection of the inode's lock,
2540 * because we are called while holding the inode's io_tree lock
2541 * and are therefore protected against concurrent calls of this
2542 * function and btrfs_clear_delalloc_extent().
2543 */
2544 if (!btrfs_is_free_space_inode(inode) && prev_delalloc_bytes == 0)
2545 btrfs_add_delalloc_inode(inode);
2546 }
2547
2548 if (!(state->state & EXTENT_DELALLOC_NEW) &&
2549 (bits & EXTENT_DELALLOC_NEW)) {
2550 spin_lock(&inode->lock);
2551 inode->new_delalloc_bytes += state->end + 1 - state->start;
2552 spin_unlock(&inode->lock);
2553 }
2554 }
2555
2556 /*
2557 * Once a range is no longer delalloc this function ensures that proper
2558 * accounting happens.
2559 */
btrfs_clear_delalloc_extent(struct btrfs_inode * inode,struct extent_state * state,u32 bits)2560 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode,
2561 struct extent_state *state, u32 bits)
2562 {
2563 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2564 u64 len = state->end + 1 - state->start;
2565 u32 num_extents = count_max_extents(fs_info, len);
2566
2567 lockdep_assert_held(&inode->io_tree.lock);
2568
2569 if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) {
2570 spin_lock(&inode->lock);
2571 inode->defrag_bytes -= len;
2572 spin_unlock(&inode->lock);
2573 }
2574
2575 /*
2576 * set_bit and clear bit hooks normally require _irqsave/restore
2577 * but in this case, we are only testing for the DELALLOC
2578 * bit, which is only set or cleared with irqs on
2579 */
2580 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2581 struct btrfs_root *root = inode->root;
2582 u64 new_delalloc_bytes;
2583
2584 spin_lock(&inode->lock);
2585 btrfs_mod_outstanding_extents(inode, -num_extents);
2586 spin_unlock(&inode->lock);
2587
2588 /*
2589 * We don't reserve metadata space for space cache inodes so we
2590 * don't need to call delalloc_release_metadata if there is an
2591 * error.
2592 */
2593 if (bits & EXTENT_CLEAR_META_RESV &&
2594 root != fs_info->tree_root)
2595 btrfs_delalloc_release_metadata(inode, len, true);
2596
2597 /* For sanity tests. */
2598 if (btrfs_is_testing(fs_info))
2599 return;
2600
2601 if (!btrfs_is_data_reloc_root(root) &&
2602 !btrfs_is_free_space_inode(inode) &&
2603 !(state->state & EXTENT_NORESERVE) &&
2604 (bits & EXTENT_CLEAR_DATA_RESV))
2605 btrfs_free_reserved_data_space_noquota(inode, len);
2606
2607 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2608 fs_info->delalloc_batch);
2609 spin_lock(&inode->lock);
2610 inode->delalloc_bytes -= len;
2611 new_delalloc_bytes = inode->delalloc_bytes;
2612 spin_unlock(&inode->lock);
2613
2614 /*
2615 * We don't need to be under the protection of the inode's lock,
2616 * because we are called while holding the inode's io_tree lock
2617 * and are therefore protected against concurrent calls of this
2618 * function and btrfs_set_delalloc_extent().
2619 */
2620 if (!btrfs_is_free_space_inode(inode) && new_delalloc_bytes == 0) {
2621 spin_lock(&root->delalloc_lock);
2622 btrfs_del_delalloc_inode(inode);
2623 spin_unlock(&root->delalloc_lock);
2624 }
2625 }
2626
2627 if ((state->state & EXTENT_DELALLOC_NEW) &&
2628 (bits & EXTENT_DELALLOC_NEW)) {
2629 spin_lock(&inode->lock);
2630 ASSERT(inode->new_delalloc_bytes >= len);
2631 inode->new_delalloc_bytes -= len;
2632 if (bits & EXTENT_ADD_INODE_BYTES)
2633 inode_add_bytes(&inode->vfs_inode, len);
2634 spin_unlock(&inode->lock);
2635 }
2636 }
2637
2638 /*
2639 * given a list of ordered sums record them in the inode. This happens
2640 * at IO completion time based on sums calculated at bio submission time.
2641 */
add_pending_csums(struct btrfs_trans_handle * trans,struct list_head * list)2642 static int add_pending_csums(struct btrfs_trans_handle *trans,
2643 struct list_head *list)
2644 {
2645 struct btrfs_ordered_sum *sum;
2646 struct btrfs_root *csum_root = NULL;
2647 int ret;
2648
2649 list_for_each_entry(sum, list, list) {
2650 trans->adding_csums = true;
2651 if (!csum_root)
2652 csum_root = btrfs_csum_root(trans->fs_info,
2653 sum->logical);
2654 ret = btrfs_csum_file_blocks(trans, csum_root, sum);
2655 trans->adding_csums = false;
2656 if (ret)
2657 return ret;
2658 }
2659 return 0;
2660 }
2661
btrfs_find_new_delalloc_bytes(struct btrfs_inode * inode,const u64 start,const u64 len,struct extent_state ** cached_state)2662 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2663 const u64 start,
2664 const u64 len,
2665 struct extent_state **cached_state)
2666 {
2667 u64 search_start = start;
2668 const u64 end = start + len - 1;
2669
2670 while (search_start < end) {
2671 const u64 search_len = end - search_start + 1;
2672 struct extent_map *em;
2673 u64 em_len;
2674 int ret = 0;
2675
2676 em = btrfs_get_extent(inode, NULL, search_start, search_len);
2677 if (IS_ERR(em))
2678 return PTR_ERR(em);
2679
2680 if (em->disk_bytenr != EXTENT_MAP_HOLE)
2681 goto next;
2682
2683 em_len = em->len;
2684 if (em->start < search_start)
2685 em_len -= search_start - em->start;
2686 if (em_len > search_len)
2687 em_len = search_len;
2688
2689 ret = btrfs_set_extent_bit(&inode->io_tree, search_start,
2690 search_start + em_len - 1,
2691 EXTENT_DELALLOC_NEW, cached_state);
2692 next:
2693 search_start = btrfs_extent_map_end(em);
2694 btrfs_free_extent_map(em);
2695 if (ret)
2696 return ret;
2697 }
2698 return 0;
2699 }
2700
btrfs_set_extent_delalloc(struct btrfs_inode * inode,u64 start,u64 end,unsigned int extra_bits,struct extent_state ** cached_state)2701 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2702 unsigned int extra_bits,
2703 struct extent_state **cached_state)
2704 {
2705 WARN_ON(PAGE_ALIGNED(end));
2706
2707 if (start >= i_size_read(&inode->vfs_inode) &&
2708 !(inode->flags & BTRFS_INODE_PREALLOC)) {
2709 /*
2710 * There can't be any extents following eof in this case so just
2711 * set the delalloc new bit for the range directly.
2712 */
2713 extra_bits |= EXTENT_DELALLOC_NEW;
2714 } else {
2715 int ret;
2716
2717 ret = btrfs_find_new_delalloc_bytes(inode, start,
2718 end + 1 - start,
2719 cached_state);
2720 if (ret)
2721 return ret;
2722 }
2723
2724 return btrfs_set_extent_bit(&inode->io_tree, start, end,
2725 EXTENT_DELALLOC | extra_bits, cached_state);
2726 }
2727
2728 /* see btrfs_writepage_start_hook for details on why this is required */
2729 struct btrfs_writepage_fixup {
2730 struct folio *folio;
2731 struct btrfs_inode *inode;
2732 struct btrfs_work work;
2733 };
2734
btrfs_writepage_fixup_worker(struct btrfs_work * work)2735 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2736 {
2737 struct btrfs_writepage_fixup *fixup =
2738 container_of(work, struct btrfs_writepage_fixup, work);
2739 struct btrfs_ordered_extent *ordered;
2740 struct extent_state *cached_state = NULL;
2741 struct extent_changeset *data_reserved = NULL;
2742 struct folio *folio = fixup->folio;
2743 struct btrfs_inode *inode = fixup->inode;
2744 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2745 u64 page_start = folio_pos(folio);
2746 u64 page_end = folio_end(folio) - 1;
2747 int ret = 0;
2748 bool free_delalloc_space = true;
2749
2750 /*
2751 * This is similar to page_mkwrite, we need to reserve the space before
2752 * we take the folio lock.
2753 */
2754 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2755 folio_size(folio));
2756 again:
2757 folio_lock(folio);
2758
2759 /*
2760 * Before we queued this fixup, we took a reference on the folio.
2761 * folio->mapping may go NULL, but it shouldn't be moved to a different
2762 * address space.
2763 */
2764 if (!folio->mapping || !folio_test_dirty(folio) ||
2765 !folio_test_checked(folio)) {
2766 /*
2767 * Unfortunately this is a little tricky, either
2768 *
2769 * 1) We got here and our folio had already been dealt with and
2770 * we reserved our space, thus ret == 0, so we need to just
2771 * drop our space reservation and bail. This can happen the
2772 * first time we come into the fixup worker, or could happen
2773 * while waiting for the ordered extent.
2774 * 2) Our folio was already dealt with, but we happened to get an
2775 * ENOSPC above from the btrfs_delalloc_reserve_space. In
2776 * this case we obviously don't have anything to release, but
2777 * because the folio was already dealt with we don't want to
2778 * mark the folio with an error, so make sure we're resetting
2779 * ret to 0. This is why we have this check _before_ the ret
2780 * check, because we do not want to have a surprise ENOSPC
2781 * when the folio was already properly dealt with.
2782 */
2783 if (!ret) {
2784 btrfs_delalloc_release_extents(inode, folio_size(folio));
2785 btrfs_delalloc_release_space(inode, data_reserved,
2786 page_start, folio_size(folio),
2787 true);
2788 }
2789 ret = 0;
2790 goto out_page;
2791 }
2792
2793 /*
2794 * We can't mess with the folio state unless it is locked, so now that
2795 * it is locked bail if we failed to make our space reservation.
2796 */
2797 if (ret)
2798 goto out_page;
2799
2800 btrfs_lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2801
2802 /* already ordered? We're done */
2803 if (folio_test_ordered(folio))
2804 goto out_reserved;
2805
2806 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2807 if (ordered) {
2808 btrfs_unlock_extent(&inode->io_tree, page_start, page_end,
2809 &cached_state);
2810 folio_unlock(folio);
2811 btrfs_start_ordered_extent(ordered);
2812 btrfs_put_ordered_extent(ordered);
2813 goto again;
2814 }
2815
2816 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2817 &cached_state);
2818 if (ret)
2819 goto out_reserved;
2820
2821 /*
2822 * Everything went as planned, we're now the owner of a dirty page with
2823 * delayed allocation bits set and space reserved for our COW
2824 * destination.
2825 *
2826 * The page was dirty when we started, nothing should have cleaned it.
2827 */
2828 BUG_ON(!folio_test_dirty(folio));
2829 free_delalloc_space = false;
2830 out_reserved:
2831 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2832 if (free_delalloc_space)
2833 btrfs_delalloc_release_space(inode, data_reserved, page_start,
2834 PAGE_SIZE, true);
2835 btrfs_unlock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2836 out_page:
2837 if (ret) {
2838 /*
2839 * We hit ENOSPC or other errors. Update the mapping and page
2840 * to reflect the errors and clean the page.
2841 */
2842 mapping_set_error(folio->mapping, ret);
2843 btrfs_mark_ordered_io_finished(inode, folio, page_start,
2844 folio_size(folio), !ret);
2845 folio_clear_dirty_for_io(folio);
2846 }
2847 btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE);
2848 folio_unlock(folio);
2849 folio_put(folio);
2850 kfree(fixup);
2851 extent_changeset_free(data_reserved);
2852 /*
2853 * As a precaution, do a delayed iput in case it would be the last iput
2854 * that could need flushing space. Recursing back to fixup worker would
2855 * deadlock.
2856 */
2857 btrfs_add_delayed_iput(inode);
2858 }
2859
2860 /*
2861 * There are a few paths in the higher layers of the kernel that directly
2862 * set the folio dirty bit without asking the filesystem if it is a
2863 * good idea. This causes problems because we want to make sure COW
2864 * properly happens and the data=ordered rules are followed.
2865 *
2866 * In our case any range that doesn't have the ORDERED bit set
2867 * hasn't been properly setup for IO. We kick off an async process
2868 * to fix it up. The async helper will wait for ordered extents, set
2869 * the delalloc bit and make it safe to write the folio.
2870 */
btrfs_writepage_cow_fixup(struct folio * folio)2871 int btrfs_writepage_cow_fixup(struct folio *folio)
2872 {
2873 struct inode *inode = folio->mapping->host;
2874 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2875 struct btrfs_writepage_fixup *fixup;
2876
2877 /* This folio has ordered extent covering it already */
2878 if (folio_test_ordered(folio))
2879 return 0;
2880
2881 /*
2882 * For experimental build, we error out instead of EAGAIN.
2883 *
2884 * We should not hit such out-of-band dirty folios anymore.
2885 */
2886 if (IS_ENABLED(CONFIG_BTRFS_EXPERIMENTAL)) {
2887 DEBUG_WARN();
2888 btrfs_err_rl(fs_info,
2889 "root %lld ino %llu folio %llu is marked dirty without notifying the fs",
2890 btrfs_root_id(BTRFS_I(inode)->root),
2891 btrfs_ino(BTRFS_I(inode)),
2892 folio_pos(folio));
2893 return -EUCLEAN;
2894 }
2895
2896 /*
2897 * folio_checked is set below when we create a fixup worker for this
2898 * folio, don't try to create another one if we're already
2899 * folio_test_checked.
2900 *
2901 * The extent_io writepage code will redirty the foio if we send back
2902 * EAGAIN.
2903 */
2904 if (folio_test_checked(folio))
2905 return -EAGAIN;
2906
2907 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2908 if (!fixup)
2909 return -EAGAIN;
2910
2911 /*
2912 * We are already holding a reference to this inode from
2913 * write_cache_pages. We need to hold it because the space reservation
2914 * takes place outside of the folio lock, and we can't trust
2915 * folio->mapping outside of the folio lock.
2916 */
2917 ihold(inode);
2918 btrfs_folio_set_checked(fs_info, folio, folio_pos(folio), folio_size(folio));
2919 folio_get(folio);
2920 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL);
2921 fixup->folio = folio;
2922 fixup->inode = BTRFS_I(inode);
2923 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2924
2925 return -EAGAIN;
2926 }
2927
insert_reserved_file_extent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,u64 file_pos,struct btrfs_file_extent_item * stack_fi,const bool update_inode_bytes,u64 qgroup_reserved)2928 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2929 struct btrfs_inode *inode, u64 file_pos,
2930 struct btrfs_file_extent_item *stack_fi,
2931 const bool update_inode_bytes,
2932 u64 qgroup_reserved)
2933 {
2934 struct btrfs_root *root = inode->root;
2935 const u64 sectorsize = root->fs_info->sectorsize;
2936 BTRFS_PATH_AUTO_FREE(path);
2937 struct extent_buffer *leaf;
2938 struct btrfs_key ins;
2939 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2940 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2941 u64 offset = btrfs_stack_file_extent_offset(stack_fi);
2942 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2943 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
2944 struct btrfs_drop_extents_args drop_args = { 0 };
2945 int ret;
2946
2947 path = btrfs_alloc_path();
2948 if (!path)
2949 return -ENOMEM;
2950
2951 /*
2952 * we may be replacing one extent in the tree with another.
2953 * The new extent is pinned in the extent map, and we don't want
2954 * to drop it from the cache until it is completely in the btree.
2955 *
2956 * So, tell btrfs_drop_extents to leave this extent in the cache.
2957 * the caller is expected to unpin it and allow it to be merged
2958 * with the others.
2959 */
2960 drop_args.path = path;
2961 drop_args.start = file_pos;
2962 drop_args.end = file_pos + num_bytes;
2963 drop_args.replace_extent = true;
2964 drop_args.extent_item_size = sizeof(*stack_fi);
2965 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2966 if (ret)
2967 goto out;
2968
2969 if (!drop_args.extent_inserted) {
2970 ins.objectid = btrfs_ino(inode);
2971 ins.type = BTRFS_EXTENT_DATA_KEY;
2972 ins.offset = file_pos;
2973
2974 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2975 sizeof(*stack_fi));
2976 if (ret)
2977 goto out;
2978 }
2979 leaf = path->nodes[0];
2980 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2981 write_extent_buffer(leaf, stack_fi,
2982 btrfs_item_ptr_offset(leaf, path->slots[0]),
2983 sizeof(struct btrfs_file_extent_item));
2984
2985 btrfs_release_path(path);
2986
2987 /*
2988 * If we dropped an inline extent here, we know the range where it is
2989 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
2990 * number of bytes only for that range containing the inline extent.
2991 * The remaining of the range will be processed when clearing the
2992 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
2993 */
2994 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
2995 u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
2996
2997 inline_size = drop_args.bytes_found - inline_size;
2998 btrfs_update_inode_bytes(inode, sectorsize, inline_size);
2999 drop_args.bytes_found -= inline_size;
3000 num_bytes -= sectorsize;
3001 }
3002
3003 if (update_inode_bytes)
3004 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
3005
3006 ins.objectid = disk_bytenr;
3007 ins.type = BTRFS_EXTENT_ITEM_KEY;
3008 ins.offset = disk_num_bytes;
3009
3010 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
3011 if (ret)
3012 goto out;
3013
3014 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
3015 file_pos - offset,
3016 qgroup_reserved, &ins);
3017 out:
3018 return ret;
3019 }
3020
btrfs_release_delalloc_bytes(struct btrfs_fs_info * fs_info,u64 start,u64 len)3021 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
3022 u64 start, u64 len)
3023 {
3024 struct btrfs_block_group *cache;
3025
3026 cache = btrfs_lookup_block_group(fs_info, start);
3027 ASSERT(cache);
3028
3029 spin_lock(&cache->lock);
3030 cache->delalloc_bytes -= len;
3031 spin_unlock(&cache->lock);
3032
3033 btrfs_put_block_group(cache);
3034 }
3035
insert_ordered_extent_file_extent(struct btrfs_trans_handle * trans,struct btrfs_ordered_extent * oe)3036 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
3037 struct btrfs_ordered_extent *oe)
3038 {
3039 struct btrfs_file_extent_item stack_fi;
3040 bool update_inode_bytes;
3041 u64 num_bytes = oe->num_bytes;
3042 u64 ram_bytes = oe->ram_bytes;
3043
3044 memset(&stack_fi, 0, sizeof(stack_fi));
3045 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
3046 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
3047 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
3048 oe->disk_num_bytes);
3049 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset);
3050 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags))
3051 num_bytes = oe->truncated_len;
3052 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes);
3053 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes);
3054 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
3055 /* Encryption and other encoding is reserved and all 0 */
3056
3057 /*
3058 * For delalloc, when completing an ordered extent we update the inode's
3059 * bytes when clearing the range in the inode's io tree, so pass false
3060 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
3061 * except if the ordered extent was truncated.
3062 */
3063 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
3064 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) ||
3065 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
3066
3067 return insert_reserved_file_extent(trans, oe->inode,
3068 oe->file_offset, &stack_fi,
3069 update_inode_bytes, oe->qgroup_rsv);
3070 }
3071
3072 /*
3073 * As ordered data IO finishes, this gets called so we can finish
3074 * an ordered extent if the range of bytes in the file it covers are
3075 * fully written.
3076 */
btrfs_finish_one_ordered(struct btrfs_ordered_extent * ordered_extent)3077 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent)
3078 {
3079 struct btrfs_inode *inode = ordered_extent->inode;
3080 struct btrfs_root *root = inode->root;
3081 struct btrfs_fs_info *fs_info = root->fs_info;
3082 struct btrfs_trans_handle *trans = NULL;
3083 struct extent_io_tree *io_tree = &inode->io_tree;
3084 struct extent_state *cached_state = NULL;
3085 u64 start, end;
3086 int compress_type = 0;
3087 int ret = 0;
3088 u64 logical_len = ordered_extent->num_bytes;
3089 bool freespace_inode;
3090 bool truncated = false;
3091 bool clear_reserved_extent = true;
3092 unsigned int clear_bits = EXTENT_DEFRAG;
3093
3094 start = ordered_extent->file_offset;
3095 end = start + ordered_extent->num_bytes - 1;
3096
3097 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3098 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3099 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) &&
3100 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags))
3101 clear_bits |= EXTENT_DELALLOC_NEW;
3102
3103 freespace_inode = btrfs_is_free_space_inode(inode);
3104 if (!freespace_inode)
3105 btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent);
3106
3107 if (unlikely(test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags))) {
3108 ret = -EIO;
3109 goto out;
3110 }
3111
3112 ret = btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr,
3113 ordered_extent->disk_num_bytes);
3114 if (ret)
3115 goto out;
3116
3117 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3118 truncated = true;
3119 logical_len = ordered_extent->truncated_len;
3120 /* Truncated the entire extent, don't bother adding */
3121 if (!logical_len)
3122 goto out;
3123 }
3124
3125 /*
3126 * If it's a COW write we need to lock the extent range as we will be
3127 * inserting/replacing file extent items and unpinning an extent map.
3128 * This must be taken before joining a transaction, as it's a higher
3129 * level lock (like the inode's VFS lock), otherwise we can run into an
3130 * ABBA deadlock with other tasks (transactions work like a lock,
3131 * depending on their current state).
3132 */
3133 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3134 clear_bits |= EXTENT_LOCKED | EXTENT_FINISHING_ORDERED;
3135 btrfs_lock_extent_bits(io_tree, start, end,
3136 EXTENT_LOCKED | EXTENT_FINISHING_ORDERED,
3137 &cached_state);
3138 }
3139
3140 if (freespace_inode)
3141 trans = btrfs_join_transaction_spacecache(root);
3142 else
3143 trans = btrfs_join_transaction(root);
3144 if (IS_ERR(trans)) {
3145 ret = PTR_ERR(trans);
3146 trans = NULL;
3147 goto out;
3148 }
3149
3150 trans->block_rsv = &inode->block_rsv;
3151
3152 ret = btrfs_insert_raid_extent(trans, ordered_extent);
3153 if (unlikely(ret)) {
3154 btrfs_abort_transaction(trans, ret);
3155 goto out;
3156 }
3157
3158 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3159 /* Logic error */
3160 ASSERT(list_empty(&ordered_extent->list));
3161 if (unlikely(!list_empty(&ordered_extent->list))) {
3162 ret = -EINVAL;
3163 btrfs_abort_transaction(trans, ret);
3164 goto out;
3165 }
3166
3167 btrfs_inode_safe_disk_i_size_write(inode, 0);
3168 ret = btrfs_update_inode_fallback(trans, inode);
3169 if (unlikely(ret)) {
3170 /* -ENOMEM or corruption */
3171 btrfs_abort_transaction(trans, ret);
3172 }
3173 goto out;
3174 }
3175
3176 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3177 compress_type = ordered_extent->compress_type;
3178 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3179 BUG_ON(compress_type);
3180 ret = btrfs_mark_extent_written(trans, inode,
3181 ordered_extent->file_offset,
3182 ordered_extent->file_offset +
3183 logical_len);
3184 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr,
3185 ordered_extent->disk_num_bytes);
3186 } else {
3187 BUG_ON(root == fs_info->tree_root);
3188 ret = insert_ordered_extent_file_extent(trans, ordered_extent);
3189 if (!ret) {
3190 clear_reserved_extent = false;
3191 btrfs_release_delalloc_bytes(fs_info,
3192 ordered_extent->disk_bytenr,
3193 ordered_extent->disk_num_bytes);
3194 }
3195 }
3196 if (unlikely(ret < 0)) {
3197 btrfs_abort_transaction(trans, ret);
3198 goto out;
3199 }
3200
3201 ret = btrfs_unpin_extent_cache(inode, ordered_extent->file_offset,
3202 ordered_extent->num_bytes, trans->transid);
3203 if (unlikely(ret < 0)) {
3204 btrfs_abort_transaction(trans, ret);
3205 goto out;
3206 }
3207
3208 ret = add_pending_csums(trans, &ordered_extent->list);
3209 if (unlikely(ret)) {
3210 btrfs_abort_transaction(trans, ret);
3211 goto out;
3212 }
3213
3214 /*
3215 * If this is a new delalloc range, clear its new delalloc flag to
3216 * update the inode's number of bytes. This needs to be done first
3217 * before updating the inode item.
3218 */
3219 if ((clear_bits & EXTENT_DELALLOC_NEW) &&
3220 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
3221 btrfs_clear_extent_bit(&inode->io_tree, start, end,
3222 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
3223 &cached_state);
3224
3225 btrfs_inode_safe_disk_i_size_write(inode, 0);
3226 ret = btrfs_update_inode_fallback(trans, inode);
3227 if (unlikely(ret)) { /* -ENOMEM or corruption */
3228 btrfs_abort_transaction(trans, ret);
3229 goto out;
3230 }
3231 out:
3232 btrfs_clear_extent_bit(&inode->io_tree, start, end, clear_bits,
3233 &cached_state);
3234
3235 if (trans)
3236 btrfs_end_transaction(trans);
3237
3238 if (ret || truncated) {
3239 /*
3240 * If we failed to finish this ordered extent for any reason we
3241 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3242 * extent, and mark the inode with the error if it wasn't
3243 * already set. Any error during writeback would have already
3244 * set the mapping error, so we need to set it if we're the ones
3245 * marking this ordered extent as failed.
3246 */
3247 if (ret)
3248 btrfs_mark_ordered_extent_error(ordered_extent);
3249
3250 /*
3251 * Drop extent maps for the part of the extent we didn't write.
3252 *
3253 * We have an exception here for the free_space_inode, this is
3254 * because when we do btrfs_get_extent() on the free space inode
3255 * we will search the commit root. If this is a new block group
3256 * we won't find anything, and we will trip over the assert in
3257 * writepage where we do ASSERT(em->block_start !=
3258 * EXTENT_MAP_HOLE).
3259 *
3260 * Theoretically we could also skip this for any NOCOW extent as
3261 * we don't mess with the extent map tree in the NOCOW case, but
3262 * for now simply skip this if we are the free space inode.
3263 */
3264 if (!btrfs_is_free_space_inode(inode)) {
3265 u64 unwritten_start = start;
3266
3267 if (truncated)
3268 unwritten_start += logical_len;
3269
3270 btrfs_drop_extent_map_range(inode, unwritten_start,
3271 end, false);
3272 }
3273
3274 /*
3275 * If the ordered extent had an IOERR or something else went
3276 * wrong we need to return the space for this ordered extent
3277 * back to the allocator. We only free the extent in the
3278 * truncated case if we didn't write out the extent at all.
3279 *
3280 * If we made it past insert_reserved_file_extent before we
3281 * errored out then we don't need to do this as the accounting
3282 * has already been done.
3283 */
3284 if ((ret || !logical_len) &&
3285 clear_reserved_extent &&
3286 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3287 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3288 /*
3289 * Discard the range before returning it back to the
3290 * free space pool
3291 */
3292 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3293 btrfs_discard_extent(fs_info,
3294 ordered_extent->disk_bytenr,
3295 ordered_extent->disk_num_bytes,
3296 NULL);
3297 btrfs_free_reserved_extent(fs_info,
3298 ordered_extent->disk_bytenr,
3299 ordered_extent->disk_num_bytes, true);
3300 /*
3301 * Actually free the qgroup rsv which was released when
3302 * the ordered extent was created.
3303 */
3304 btrfs_qgroup_free_refroot(fs_info, btrfs_root_id(inode->root),
3305 ordered_extent->qgroup_rsv,
3306 BTRFS_QGROUP_RSV_DATA);
3307 }
3308 }
3309
3310 /*
3311 * This needs to be done to make sure anybody waiting knows we are done
3312 * updating everything for this ordered extent.
3313 */
3314 btrfs_remove_ordered_extent(inode, ordered_extent);
3315
3316 /* once for us */
3317 btrfs_put_ordered_extent(ordered_extent);
3318 /* once for the tree */
3319 btrfs_put_ordered_extent(ordered_extent);
3320
3321 return ret;
3322 }
3323
btrfs_finish_ordered_io(struct btrfs_ordered_extent * ordered)3324 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered)
3325 {
3326 if (btrfs_is_zoned(ordered->inode->root->fs_info) &&
3327 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3328 list_empty(&ordered->bioc_list))
3329 btrfs_finish_ordered_zoned(ordered);
3330 return btrfs_finish_one_ordered(ordered);
3331 }
3332
btrfs_calculate_block_csum(struct btrfs_fs_info * fs_info,phys_addr_t paddr,u8 * dest)3333 void btrfs_calculate_block_csum(struct btrfs_fs_info *fs_info, phys_addr_t paddr,
3334 u8 *dest)
3335 {
3336 struct folio *folio = page_folio(phys_to_page(paddr));
3337 const u32 blocksize = fs_info->sectorsize;
3338 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3339
3340 shash->tfm = fs_info->csum_shash;
3341 /* The full block must be inside the folio. */
3342 ASSERT(offset_in_folio(folio, paddr) + blocksize <= folio_size(folio));
3343
3344 if (folio_test_partial_kmap(folio)) {
3345 size_t cur = paddr;
3346
3347 crypto_shash_init(shash);
3348 while (cur < paddr + blocksize) {
3349 void *kaddr;
3350 size_t len = min(paddr + blocksize - cur,
3351 PAGE_SIZE - offset_in_page(cur));
3352
3353 kaddr = kmap_local_folio(folio, offset_in_folio(folio, cur));
3354 crypto_shash_update(shash, kaddr, len);
3355 kunmap_local(kaddr);
3356 cur += len;
3357 }
3358 crypto_shash_final(shash, dest);
3359 } else {
3360 crypto_shash_digest(shash, phys_to_virt(paddr), blocksize, dest);
3361 }
3362 }
3363 /*
3364 * Verify the checksum for a single sector without any extra action that depend
3365 * on the type of I/O.
3366 *
3367 * @kaddr must be a properly kmapped address.
3368 */
btrfs_check_block_csum(struct btrfs_fs_info * fs_info,phys_addr_t paddr,u8 * csum,const u8 * const csum_expected)3369 int btrfs_check_block_csum(struct btrfs_fs_info *fs_info, phys_addr_t paddr, u8 *csum,
3370 const u8 * const csum_expected)
3371 {
3372 btrfs_calculate_block_csum(fs_info, paddr, csum);
3373 if (unlikely(memcmp(csum, csum_expected, fs_info->csum_size) != 0))
3374 return -EIO;
3375 return 0;
3376 }
3377
3378 /*
3379 * Verify the checksum of a single data sector.
3380 *
3381 * @bbio: btrfs_io_bio which contains the csum
3382 * @dev: device the sector is on
3383 * @bio_offset: offset to the beginning of the bio (in bytes)
3384 * @bv: bio_vec to check
3385 *
3386 * Check if the checksum on a data block is valid. When a checksum mismatch is
3387 * detected, report the error and fill the corrupted range with zero.
3388 *
3389 * Return %true if the sector is ok or had no checksum to start with, else %false.
3390 */
btrfs_data_csum_ok(struct btrfs_bio * bbio,struct btrfs_device * dev,u32 bio_offset,phys_addr_t paddr)3391 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev,
3392 u32 bio_offset, phys_addr_t paddr)
3393 {
3394 struct btrfs_inode *inode = bbio->inode;
3395 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3396 const u32 blocksize = fs_info->sectorsize;
3397 struct folio *folio;
3398 u64 file_offset = bbio->file_offset + bio_offset;
3399 u64 end = file_offset + blocksize - 1;
3400 u8 *csum_expected;
3401 u8 csum[BTRFS_CSUM_SIZE];
3402
3403 if (!bbio->csum)
3404 return true;
3405
3406 if (btrfs_is_data_reloc_root(inode->root) &&
3407 btrfs_test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM,
3408 NULL)) {
3409 /* Skip the range without csum for data reloc inode */
3410 btrfs_clear_extent_bit(&inode->io_tree, file_offset, end,
3411 EXTENT_NODATASUM, NULL);
3412 return true;
3413 }
3414
3415 csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) *
3416 fs_info->csum_size;
3417 if (btrfs_check_block_csum(fs_info, paddr, csum, csum_expected))
3418 goto zeroit;
3419 return true;
3420
3421 zeroit:
3422 btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected,
3423 bbio->mirror_num);
3424 if (dev)
3425 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
3426 folio = page_folio(phys_to_page(paddr));
3427 ASSERT(offset_in_folio(folio, paddr) + blocksize <= folio_size(folio));
3428 folio_zero_range(folio, offset_in_folio(folio, paddr), blocksize);
3429 return false;
3430 }
3431
3432 /*
3433 * Perform a delayed iput on @inode.
3434 *
3435 * @inode: The inode we want to perform iput on
3436 *
3437 * This function uses the generic vfs_inode::i_count to track whether we should
3438 * just decrement it (in case it's > 1) or if this is the last iput then link
3439 * the inode to the delayed iput machinery. Delayed iputs are processed at
3440 * transaction commit time/superblock commit/cleaner kthread.
3441 */
btrfs_add_delayed_iput(struct btrfs_inode * inode)3442 void btrfs_add_delayed_iput(struct btrfs_inode *inode)
3443 {
3444 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3445 unsigned long flags;
3446
3447 if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1))
3448 return;
3449
3450 WARN_ON_ONCE(test_bit(BTRFS_FS_STATE_NO_DELAYED_IPUT, &fs_info->fs_state));
3451 atomic_inc(&fs_info->nr_delayed_iputs);
3452 /*
3453 * Need to be irq safe here because we can be called from either an irq
3454 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq
3455 * context.
3456 */
3457 spin_lock_irqsave(&fs_info->delayed_iput_lock, flags);
3458 ASSERT(list_empty(&inode->delayed_iput));
3459 list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs);
3460 spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags);
3461 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3462 wake_up_process(fs_info->cleaner_kthread);
3463 }
3464
run_delayed_iput_locked(struct btrfs_fs_info * fs_info,struct btrfs_inode * inode)3465 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3466 struct btrfs_inode *inode)
3467 {
3468 list_del_init(&inode->delayed_iput);
3469 spin_unlock_irq(&fs_info->delayed_iput_lock);
3470 iput(&inode->vfs_inode);
3471 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3472 wake_up(&fs_info->delayed_iputs_wait);
3473 spin_lock_irq(&fs_info->delayed_iput_lock);
3474 }
3475
btrfs_run_delayed_iput(struct btrfs_fs_info * fs_info,struct btrfs_inode * inode)3476 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3477 struct btrfs_inode *inode)
3478 {
3479 if (!list_empty(&inode->delayed_iput)) {
3480 spin_lock_irq(&fs_info->delayed_iput_lock);
3481 if (!list_empty(&inode->delayed_iput))
3482 run_delayed_iput_locked(fs_info, inode);
3483 spin_unlock_irq(&fs_info->delayed_iput_lock);
3484 }
3485 }
3486
btrfs_run_delayed_iputs(struct btrfs_fs_info * fs_info)3487 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3488 {
3489 /*
3490 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which
3491 * calls btrfs_add_delayed_iput() and that needs to lock
3492 * fs_info->delayed_iput_lock. So we need to disable irqs here to
3493 * prevent a deadlock.
3494 */
3495 spin_lock_irq(&fs_info->delayed_iput_lock);
3496 while (!list_empty(&fs_info->delayed_iputs)) {
3497 struct btrfs_inode *inode;
3498
3499 inode = list_first_entry(&fs_info->delayed_iputs,
3500 struct btrfs_inode, delayed_iput);
3501 run_delayed_iput_locked(fs_info, inode);
3502 if (need_resched()) {
3503 spin_unlock_irq(&fs_info->delayed_iput_lock);
3504 cond_resched();
3505 spin_lock_irq(&fs_info->delayed_iput_lock);
3506 }
3507 }
3508 spin_unlock_irq(&fs_info->delayed_iput_lock);
3509 }
3510
3511 /*
3512 * Wait for flushing all delayed iputs
3513 *
3514 * @fs_info: the filesystem
3515 *
3516 * This will wait on any delayed iputs that are currently running with KILLABLE
3517 * set. Once they are all done running we will return, unless we are killed in
3518 * which case we return EINTR. This helps in user operations like fallocate etc
3519 * that might get blocked on the iputs.
3520 *
3521 * Return EINTR if we were killed, 0 if nothing's pending
3522 */
btrfs_wait_on_delayed_iputs(struct btrfs_fs_info * fs_info)3523 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3524 {
3525 int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3526 atomic_read(&fs_info->nr_delayed_iputs) == 0);
3527 if (ret)
3528 return -EINTR;
3529 return 0;
3530 }
3531
3532 /*
3533 * This creates an orphan entry for the given inode in case something goes wrong
3534 * in the middle of an unlink.
3535 */
btrfs_orphan_add(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3536 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3537 struct btrfs_inode *inode)
3538 {
3539 int ret;
3540
3541 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3542 if (unlikely(ret && ret != -EEXIST)) {
3543 btrfs_abort_transaction(trans, ret);
3544 return ret;
3545 }
3546
3547 return 0;
3548 }
3549
3550 /*
3551 * We have done the delete so we can go ahead and remove the orphan item for
3552 * this particular inode.
3553 */
btrfs_orphan_del(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3554 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3555 struct btrfs_inode *inode)
3556 {
3557 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3558 }
3559
3560 /*
3561 * this cleans up any orphans that may be left on the list from the last use
3562 * of this root.
3563 */
btrfs_orphan_cleanup(struct btrfs_root * root)3564 int btrfs_orphan_cleanup(struct btrfs_root *root)
3565 {
3566 struct btrfs_fs_info *fs_info = root->fs_info;
3567 BTRFS_PATH_AUTO_FREE(path);
3568 struct extent_buffer *leaf;
3569 struct btrfs_key key, found_key;
3570 struct btrfs_trans_handle *trans;
3571 u64 last_objectid = 0;
3572 int ret = 0, nr_unlink = 0;
3573
3574 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state))
3575 return 0;
3576
3577 path = btrfs_alloc_path();
3578 if (!path) {
3579 ret = -ENOMEM;
3580 goto out;
3581 }
3582 path->reada = READA_BACK;
3583
3584 key.objectid = BTRFS_ORPHAN_OBJECTID;
3585 key.type = BTRFS_ORPHAN_ITEM_KEY;
3586 key.offset = (u64)-1;
3587
3588 while (1) {
3589 struct btrfs_inode *inode;
3590
3591 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3592 if (ret < 0)
3593 goto out;
3594
3595 /*
3596 * if ret == 0 means we found what we were searching for, which
3597 * is weird, but possible, so only screw with path if we didn't
3598 * find the key and see if we have stuff that matches
3599 */
3600 if (ret > 0) {
3601 ret = 0;
3602 if (path->slots[0] == 0)
3603 break;
3604 path->slots[0]--;
3605 }
3606
3607 /* pull out the item */
3608 leaf = path->nodes[0];
3609 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3610
3611 /* make sure the item matches what we want */
3612 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3613 break;
3614 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3615 break;
3616
3617 /* release the path since we're done with it */
3618 btrfs_release_path(path);
3619
3620 /*
3621 * this is where we are basically btrfs_lookup, without the
3622 * crossing root thing. we store the inode number in the
3623 * offset of the orphan item.
3624 */
3625
3626 if (found_key.offset == last_objectid) {
3627 /*
3628 * We found the same inode as before. This means we were
3629 * not able to remove its items via eviction triggered
3630 * by an iput(). A transaction abort may have happened,
3631 * due to -ENOSPC for example, so try to grab the error
3632 * that lead to a transaction abort, if any.
3633 */
3634 btrfs_err(fs_info,
3635 "Error removing orphan entry, stopping orphan cleanup");
3636 ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL;
3637 goto out;
3638 }
3639
3640 last_objectid = found_key.offset;
3641
3642 found_key.objectid = found_key.offset;
3643 found_key.type = BTRFS_INODE_ITEM_KEY;
3644 found_key.offset = 0;
3645 inode = btrfs_iget(last_objectid, root);
3646 if (IS_ERR(inode)) {
3647 ret = PTR_ERR(inode);
3648 inode = NULL;
3649 if (ret != -ENOENT)
3650 goto out;
3651 }
3652
3653 if (!inode && root == fs_info->tree_root) {
3654 struct btrfs_root *dead_root;
3655 int is_dead_root = 0;
3656
3657 /*
3658 * This is an orphan in the tree root. Currently these
3659 * could come from 2 sources:
3660 * a) a root (snapshot/subvolume) deletion in progress
3661 * b) a free space cache inode
3662 * We need to distinguish those two, as the orphan item
3663 * for a root must not get deleted before the deletion
3664 * of the snapshot/subvolume's tree completes.
3665 *
3666 * btrfs_find_orphan_roots() ran before us, which has
3667 * found all deleted roots and loaded them into
3668 * fs_info->fs_roots_radix. So here we can find if an
3669 * orphan item corresponds to a deleted root by looking
3670 * up the root from that radix tree.
3671 */
3672
3673 spin_lock(&fs_info->fs_roots_radix_lock);
3674 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3675 (unsigned long)found_key.objectid);
3676 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3677 is_dead_root = 1;
3678 spin_unlock(&fs_info->fs_roots_radix_lock);
3679
3680 if (is_dead_root) {
3681 /* prevent this orphan from being found again */
3682 key.offset = found_key.objectid - 1;
3683 continue;
3684 }
3685
3686 }
3687
3688 /*
3689 * If we have an inode with links, there are a couple of
3690 * possibilities:
3691 *
3692 * 1. We were halfway through creating fsverity metadata for the
3693 * file. In that case, the orphan item represents incomplete
3694 * fsverity metadata which must be cleaned up with
3695 * btrfs_drop_verity_items and deleting the orphan item.
3696
3697 * 2. Old kernels (before v3.12) used to create an
3698 * orphan item for truncate indicating that there were possibly
3699 * extent items past i_size that needed to be deleted. In v3.12,
3700 * truncate was changed to update i_size in sync with the extent
3701 * items, but the (useless) orphan item was still created. Since
3702 * v4.18, we don't create the orphan item for truncate at all.
3703 *
3704 * So, this item could mean that we need to do a truncate, but
3705 * only if this filesystem was last used on a pre-v3.12 kernel
3706 * and was not cleanly unmounted. The odds of that are quite
3707 * slim, and it's a pain to do the truncate now, so just delete
3708 * the orphan item.
3709 *
3710 * It's also possible that this orphan item was supposed to be
3711 * deleted but wasn't. The inode number may have been reused,
3712 * but either way, we can delete the orphan item.
3713 */
3714 if (!inode || inode->vfs_inode.i_nlink) {
3715 if (inode) {
3716 ret = btrfs_drop_verity_items(inode);
3717 iput(&inode->vfs_inode);
3718 inode = NULL;
3719 if (ret)
3720 goto out;
3721 }
3722 trans = btrfs_start_transaction(root, 1);
3723 if (IS_ERR(trans)) {
3724 ret = PTR_ERR(trans);
3725 goto out;
3726 }
3727 btrfs_debug(fs_info, "auto deleting %Lu",
3728 found_key.objectid);
3729 ret = btrfs_del_orphan_item(trans, root,
3730 found_key.objectid);
3731 btrfs_end_transaction(trans);
3732 if (ret)
3733 goto out;
3734 continue;
3735 }
3736
3737 nr_unlink++;
3738
3739 /* this will do delete_inode and everything for us */
3740 iput(&inode->vfs_inode);
3741 }
3742 /* release the path since we're done with it */
3743 btrfs_release_path(path);
3744
3745 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3746 trans = btrfs_join_transaction(root);
3747 if (!IS_ERR(trans))
3748 btrfs_end_transaction(trans);
3749 }
3750
3751 if (nr_unlink)
3752 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3753
3754 out:
3755 if (ret)
3756 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3757 return ret;
3758 }
3759
3760 /*
3761 * Look ahead in the leaf for xattrs. If we don't find any then we know there
3762 * can't be any ACLs.
3763 *
3764 * @leaf: the eb leaf where to search
3765 * @slot: the slot the inode is in
3766 * @objectid: the objectid of the inode
3767 *
3768 * Return true if there is xattr/ACL, false otherwise.
3769 */
acls_after_inode_item(struct extent_buffer * leaf,int slot,u64 objectid,int * first_xattr_slot)3770 static noinline bool acls_after_inode_item(struct extent_buffer *leaf,
3771 int slot, u64 objectid,
3772 int *first_xattr_slot)
3773 {
3774 u32 nritems = btrfs_header_nritems(leaf);
3775 struct btrfs_key found_key;
3776 static u64 xattr_access = 0;
3777 static u64 xattr_default = 0;
3778 int scanned = 0;
3779
3780 if (!xattr_access) {
3781 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3782 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3783 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3784 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3785 }
3786
3787 slot++;
3788 *first_xattr_slot = -1;
3789 while (slot < nritems) {
3790 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3791
3792 /* We found a different objectid, there must be no ACLs. */
3793 if (found_key.objectid != objectid)
3794 return false;
3795
3796 /* We found an xattr, assume we've got an ACL. */
3797 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3798 if (*first_xattr_slot == -1)
3799 *first_xattr_slot = slot;
3800 if (found_key.offset == xattr_access ||
3801 found_key.offset == xattr_default)
3802 return true;
3803 }
3804
3805 /*
3806 * We found a key greater than an xattr key, there can't be any
3807 * ACLs later on.
3808 */
3809 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3810 return false;
3811
3812 slot++;
3813 scanned++;
3814
3815 /*
3816 * The item order goes like:
3817 * - inode
3818 * - inode backrefs
3819 * - xattrs
3820 * - extents,
3821 *
3822 * so if there are lots of hard links to an inode there can be
3823 * a lot of backrefs. Don't waste time searching too hard,
3824 * this is just an optimization.
3825 */
3826 if (scanned >= 8)
3827 break;
3828 }
3829 /*
3830 * We hit the end of the leaf before we found an xattr or something
3831 * larger than an xattr. We have to assume the inode has ACLs.
3832 */
3833 if (*first_xattr_slot == -1)
3834 *first_xattr_slot = slot;
3835 return true;
3836 }
3837
btrfs_init_file_extent_tree(struct btrfs_inode * inode)3838 static int btrfs_init_file_extent_tree(struct btrfs_inode *inode)
3839 {
3840 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3841
3842 if (WARN_ON_ONCE(inode->file_extent_tree))
3843 return 0;
3844 if (btrfs_fs_incompat(fs_info, NO_HOLES))
3845 return 0;
3846 if (!S_ISREG(inode->vfs_inode.i_mode))
3847 return 0;
3848 if (btrfs_is_free_space_inode(inode))
3849 return 0;
3850
3851 inode->file_extent_tree = kmalloc(sizeof(struct extent_io_tree), GFP_KERNEL);
3852 if (!inode->file_extent_tree)
3853 return -ENOMEM;
3854
3855 btrfs_extent_io_tree_init(fs_info, inode->file_extent_tree,
3856 IO_TREE_INODE_FILE_EXTENT);
3857 /* Lockdep class is set only for the file extent tree. */
3858 lockdep_set_class(&inode->file_extent_tree->lock, &file_extent_tree_class);
3859
3860 return 0;
3861 }
3862
btrfs_add_inode_to_root(struct btrfs_inode * inode,bool prealloc)3863 static int btrfs_add_inode_to_root(struct btrfs_inode *inode, bool prealloc)
3864 {
3865 struct btrfs_root *root = inode->root;
3866 struct btrfs_inode *existing;
3867 const u64 ino = btrfs_ino(inode);
3868 int ret;
3869
3870 if (inode_unhashed(&inode->vfs_inode))
3871 return 0;
3872
3873 if (prealloc) {
3874 ret = xa_reserve(&root->inodes, ino, GFP_NOFS);
3875 if (ret)
3876 return ret;
3877 }
3878
3879 existing = xa_store(&root->inodes, ino, inode, GFP_ATOMIC);
3880
3881 if (xa_is_err(existing)) {
3882 ret = xa_err(existing);
3883 ASSERT(ret != -EINVAL);
3884 ASSERT(ret != -ENOMEM);
3885 return ret;
3886 } else if (existing) {
3887 WARN_ON(!(existing->vfs_inode.i_state & (I_WILL_FREE | I_FREEING)));
3888 }
3889
3890 return 0;
3891 }
3892
3893 /*
3894 * Read a locked inode from the btree into the in-memory inode and add it to
3895 * its root list/tree.
3896 *
3897 * On failure clean up the inode.
3898 */
btrfs_read_locked_inode(struct btrfs_inode * inode,struct btrfs_path * path)3899 static int btrfs_read_locked_inode(struct btrfs_inode *inode, struct btrfs_path *path)
3900 {
3901 struct btrfs_root *root = inode->root;
3902 struct btrfs_fs_info *fs_info = root->fs_info;
3903 struct extent_buffer *leaf;
3904 struct btrfs_inode_item *inode_item;
3905 struct inode *vfs_inode = &inode->vfs_inode;
3906 struct btrfs_key location;
3907 unsigned long ptr;
3908 int maybe_acls;
3909 u32 rdev;
3910 int ret;
3911 bool filled = false;
3912 int first_xattr_slot;
3913
3914 ret = btrfs_fill_inode(inode, &rdev);
3915 if (!ret)
3916 filled = true;
3917
3918 ASSERT(path);
3919
3920 btrfs_get_inode_key(inode, &location);
3921
3922 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3923 if (ret) {
3924 /*
3925 * ret > 0 can come from btrfs_search_slot called by
3926 * btrfs_lookup_inode(), this means the inode was not found.
3927 */
3928 if (ret > 0)
3929 ret = -ENOENT;
3930 goto out;
3931 }
3932
3933 leaf = path->nodes[0];
3934
3935 if (filled)
3936 goto cache_index;
3937
3938 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3939 struct btrfs_inode_item);
3940 vfs_inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3941 set_nlink(vfs_inode, btrfs_inode_nlink(leaf, inode_item));
3942 i_uid_write(vfs_inode, btrfs_inode_uid(leaf, inode_item));
3943 i_gid_write(vfs_inode, btrfs_inode_gid(leaf, inode_item));
3944 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3945
3946 inode_set_atime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->atime),
3947 btrfs_timespec_nsec(leaf, &inode_item->atime));
3948
3949 inode_set_mtime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->mtime),
3950 btrfs_timespec_nsec(leaf, &inode_item->mtime));
3951
3952 inode_set_ctime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->ctime),
3953 btrfs_timespec_nsec(leaf, &inode_item->ctime));
3954
3955 inode->i_otime_sec = btrfs_timespec_sec(leaf, &inode_item->otime);
3956 inode->i_otime_nsec = btrfs_timespec_nsec(leaf, &inode_item->otime);
3957
3958 inode_set_bytes(vfs_inode, btrfs_inode_nbytes(leaf, inode_item));
3959 inode->generation = btrfs_inode_generation(leaf, inode_item);
3960 inode->last_trans = btrfs_inode_transid(leaf, inode_item);
3961
3962 inode_set_iversion_queried(vfs_inode, btrfs_inode_sequence(leaf, inode_item));
3963 vfs_inode->i_generation = inode->generation;
3964 vfs_inode->i_rdev = 0;
3965 rdev = btrfs_inode_rdev(leaf, inode_item);
3966
3967 if (S_ISDIR(vfs_inode->i_mode))
3968 inode->index_cnt = (u64)-1;
3969
3970 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item),
3971 &inode->flags, &inode->ro_flags);
3972 btrfs_update_inode_mapping_flags(inode);
3973 btrfs_set_inode_mapping_order(inode);
3974
3975 cache_index:
3976 ret = btrfs_init_file_extent_tree(inode);
3977 if (ret)
3978 goto out;
3979 btrfs_inode_set_file_extent_range(inode, 0,
3980 round_up(i_size_read(vfs_inode), fs_info->sectorsize));
3981 /*
3982 * If we were modified in the current generation and evicted from memory
3983 * and then re-read we need to do a full sync since we don't have any
3984 * idea about which extents were modified before we were evicted from
3985 * cache.
3986 *
3987 * This is required for both inode re-read from disk and delayed inode
3988 * in the delayed_nodes xarray.
3989 */
3990 if (inode->last_trans == btrfs_get_fs_generation(fs_info))
3991 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
3992
3993 /*
3994 * We don't persist the id of the transaction where an unlink operation
3995 * against the inode was last made. So here we assume the inode might
3996 * have been evicted, and therefore the exact value of last_unlink_trans
3997 * lost, and set it to last_trans to avoid metadata inconsistencies
3998 * between the inode and its parent if the inode is fsync'ed and the log
3999 * replayed. For example, in the scenario:
4000 *
4001 * touch mydir/foo
4002 * ln mydir/foo mydir/bar
4003 * sync
4004 * unlink mydir/bar
4005 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
4006 * xfs_io -c fsync mydir/foo
4007 * <power failure>
4008 * mount fs, triggers fsync log replay
4009 *
4010 * We must make sure that when we fsync our inode foo we also log its
4011 * parent inode, otherwise after log replay the parent still has the
4012 * dentry with the "bar" name but our inode foo has a link count of 1
4013 * and doesn't have an inode ref with the name "bar" anymore.
4014 *
4015 * Setting last_unlink_trans to last_trans is a pessimistic approach,
4016 * but it guarantees correctness at the expense of occasional full
4017 * transaction commits on fsync if our inode is a directory, or if our
4018 * inode is not a directory, logging its parent unnecessarily.
4019 */
4020 inode->last_unlink_trans = inode->last_trans;
4021
4022 /*
4023 * Same logic as for last_unlink_trans. We don't persist the generation
4024 * of the last transaction where this inode was used for a reflink
4025 * operation, so after eviction and reloading the inode we must be
4026 * pessimistic and assume the last transaction that modified the inode.
4027 */
4028 inode->last_reflink_trans = inode->last_trans;
4029
4030 path->slots[0]++;
4031 if (vfs_inode->i_nlink != 1 ||
4032 path->slots[0] >= btrfs_header_nritems(leaf))
4033 goto cache_acl;
4034
4035 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
4036 if (location.objectid != btrfs_ino(inode))
4037 goto cache_acl;
4038
4039 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4040 if (location.type == BTRFS_INODE_REF_KEY) {
4041 struct btrfs_inode_ref *ref;
4042
4043 ref = (struct btrfs_inode_ref *)ptr;
4044 inode->dir_index = btrfs_inode_ref_index(leaf, ref);
4045 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
4046 struct btrfs_inode_extref *extref;
4047
4048 extref = (struct btrfs_inode_extref *)ptr;
4049 inode->dir_index = btrfs_inode_extref_index(leaf, extref);
4050 }
4051 cache_acl:
4052 /*
4053 * try to precache a NULL acl entry for files that don't have
4054 * any xattrs or acls
4055 */
4056 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
4057 btrfs_ino(inode), &first_xattr_slot);
4058 if (first_xattr_slot != -1) {
4059 path->slots[0] = first_xattr_slot;
4060 ret = btrfs_load_inode_props(inode, path);
4061 if (ret)
4062 btrfs_err(fs_info,
4063 "error loading props for ino %llu (root %llu): %d",
4064 btrfs_ino(inode), btrfs_root_id(root), ret);
4065 }
4066
4067 if (!maybe_acls)
4068 cache_no_acl(vfs_inode);
4069
4070 switch (vfs_inode->i_mode & S_IFMT) {
4071 case S_IFREG:
4072 vfs_inode->i_mapping->a_ops = &btrfs_aops;
4073 vfs_inode->i_fop = &btrfs_file_operations;
4074 vfs_inode->i_op = &btrfs_file_inode_operations;
4075 break;
4076 case S_IFDIR:
4077 vfs_inode->i_fop = &btrfs_dir_file_operations;
4078 vfs_inode->i_op = &btrfs_dir_inode_operations;
4079 break;
4080 case S_IFLNK:
4081 vfs_inode->i_op = &btrfs_symlink_inode_operations;
4082 inode_nohighmem(vfs_inode);
4083 vfs_inode->i_mapping->a_ops = &btrfs_aops;
4084 break;
4085 default:
4086 vfs_inode->i_op = &btrfs_special_inode_operations;
4087 init_special_inode(vfs_inode, vfs_inode->i_mode, rdev);
4088 break;
4089 }
4090
4091 btrfs_sync_inode_flags_to_i_flags(inode);
4092
4093 ret = btrfs_add_inode_to_root(inode, true);
4094 if (ret)
4095 goto out;
4096
4097 return 0;
4098 out:
4099 iget_failed(vfs_inode);
4100 return ret;
4101 }
4102
4103 /*
4104 * given a leaf and an inode, copy the inode fields into the leaf
4105 */
fill_inode_item(struct btrfs_trans_handle * trans,struct extent_buffer * leaf,struct btrfs_inode_item * item,struct inode * inode)4106 static void fill_inode_item(struct btrfs_trans_handle *trans,
4107 struct extent_buffer *leaf,
4108 struct btrfs_inode_item *item,
4109 struct inode *inode)
4110 {
4111 u64 flags;
4112
4113 btrfs_set_inode_uid(leaf, item, i_uid_read(inode));
4114 btrfs_set_inode_gid(leaf, item, i_gid_read(inode));
4115 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
4116 btrfs_set_inode_mode(leaf, item, inode->i_mode);
4117 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
4118
4119 btrfs_set_timespec_sec(leaf, &item->atime, inode_get_atime_sec(inode));
4120 btrfs_set_timespec_nsec(leaf, &item->atime, inode_get_atime_nsec(inode));
4121
4122 btrfs_set_timespec_sec(leaf, &item->mtime, inode_get_mtime_sec(inode));
4123 btrfs_set_timespec_nsec(leaf, &item->mtime, inode_get_mtime_nsec(inode));
4124
4125 btrfs_set_timespec_sec(leaf, &item->ctime, inode_get_ctime_sec(inode));
4126 btrfs_set_timespec_nsec(leaf, &item->ctime, inode_get_ctime_nsec(inode));
4127
4128 btrfs_set_timespec_sec(leaf, &item->otime, BTRFS_I(inode)->i_otime_sec);
4129 btrfs_set_timespec_nsec(leaf, &item->otime, BTRFS_I(inode)->i_otime_nsec);
4130
4131 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
4132 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
4133 btrfs_set_inode_sequence(leaf, item, inode_peek_iversion(inode));
4134 btrfs_set_inode_transid(leaf, item, trans->transid);
4135 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
4136 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4137 BTRFS_I(inode)->ro_flags);
4138 btrfs_set_inode_flags(leaf, item, flags);
4139 btrfs_set_inode_block_group(leaf, item, 0);
4140 }
4141
4142 /*
4143 * copy everything in the in-memory inode into the btree.
4144 */
btrfs_update_inode_item(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)4145 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
4146 struct btrfs_inode *inode)
4147 {
4148 struct btrfs_inode_item *inode_item;
4149 BTRFS_PATH_AUTO_FREE(path);
4150 struct extent_buffer *leaf;
4151 struct btrfs_key key;
4152 int ret;
4153
4154 path = btrfs_alloc_path();
4155 if (!path)
4156 return -ENOMEM;
4157
4158 btrfs_get_inode_key(inode, &key);
4159 ret = btrfs_lookup_inode(trans, inode->root, path, &key, 1);
4160 if (ret) {
4161 if (ret > 0)
4162 ret = -ENOENT;
4163 return ret;
4164 }
4165
4166 leaf = path->nodes[0];
4167 inode_item = btrfs_item_ptr(leaf, path->slots[0],
4168 struct btrfs_inode_item);
4169
4170 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
4171 btrfs_set_inode_last_trans(trans, inode);
4172 return 0;
4173 }
4174
4175 /*
4176 * copy everything in the in-memory inode into the btree.
4177 */
btrfs_update_inode(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)4178 int btrfs_update_inode(struct btrfs_trans_handle *trans,
4179 struct btrfs_inode *inode)
4180 {
4181 struct btrfs_root *root = inode->root;
4182 struct btrfs_fs_info *fs_info = root->fs_info;
4183 int ret;
4184
4185 /*
4186 * If the inode is a free space inode, we can deadlock during commit
4187 * if we put it into the delayed code.
4188 *
4189 * The data relocation inode should also be directly updated
4190 * without delay
4191 */
4192 if (!btrfs_is_free_space_inode(inode)
4193 && !btrfs_is_data_reloc_root(root)
4194 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4195 btrfs_update_root_times(trans, root);
4196
4197 ret = btrfs_delayed_update_inode(trans, inode);
4198 if (!ret)
4199 btrfs_set_inode_last_trans(trans, inode);
4200 return ret;
4201 }
4202
4203 return btrfs_update_inode_item(trans, inode);
4204 }
4205
btrfs_update_inode_fallback(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)4206 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4207 struct btrfs_inode *inode)
4208 {
4209 int ret;
4210
4211 ret = btrfs_update_inode(trans, inode);
4212 if (ret == -ENOSPC)
4213 return btrfs_update_inode_item(trans, inode);
4214 return ret;
4215 }
4216
update_time_after_link_or_unlink(struct btrfs_inode * dir)4217 static void update_time_after_link_or_unlink(struct btrfs_inode *dir)
4218 {
4219 struct timespec64 now;
4220
4221 /*
4222 * If we are replaying a log tree, we do not want to update the mtime
4223 * and ctime of the parent directory with the current time, since the
4224 * log replay procedure is responsible for setting them to their correct
4225 * values (the ones it had when the fsync was done).
4226 */
4227 if (test_bit(BTRFS_FS_LOG_RECOVERING, &dir->root->fs_info->flags))
4228 return;
4229
4230 now = inode_set_ctime_current(&dir->vfs_inode);
4231 inode_set_mtime_to_ts(&dir->vfs_inode, now);
4232 }
4233
4234 /*
4235 * unlink helper that gets used here in inode.c and in the tree logging
4236 * recovery code. It remove a link in a directory with a given name, and
4237 * also drops the back refs in the inode to the directory
4238 */
__btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_inode * inode,const struct fscrypt_str * name,struct btrfs_rename_ctx * rename_ctx)4239 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4240 struct btrfs_inode *dir,
4241 struct btrfs_inode *inode,
4242 const struct fscrypt_str *name,
4243 struct btrfs_rename_ctx *rename_ctx)
4244 {
4245 struct btrfs_root *root = dir->root;
4246 struct btrfs_fs_info *fs_info = root->fs_info;
4247 struct btrfs_path *path;
4248 int ret = 0;
4249 struct btrfs_dir_item *di;
4250 u64 index;
4251 u64 ino = btrfs_ino(inode);
4252 u64 dir_ino = btrfs_ino(dir);
4253
4254 path = btrfs_alloc_path();
4255 if (!path)
4256 return -ENOMEM;
4257
4258 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1);
4259 if (IS_ERR_OR_NULL(di)) {
4260 btrfs_free_path(path);
4261 return di ? PTR_ERR(di) : -ENOENT;
4262 }
4263 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4264 /*
4265 * Down the call chains below we'll also need to allocate a path, so no
4266 * need to hold on to this one for longer than necessary.
4267 */
4268 btrfs_free_path(path);
4269 if (ret)
4270 return ret;
4271
4272 /*
4273 * If we don't have dir index, we have to get it by looking up
4274 * the inode ref, since we get the inode ref, remove it directly,
4275 * it is unnecessary to do delayed deletion.
4276 *
4277 * But if we have dir index, needn't search inode ref to get it.
4278 * Since the inode ref is close to the inode item, it is better
4279 * that we delay to delete it, and just do this deletion when
4280 * we update the inode item.
4281 */
4282 if (inode->dir_index) {
4283 ret = btrfs_delayed_delete_inode_ref(inode);
4284 if (!ret) {
4285 index = inode->dir_index;
4286 goto skip_backref;
4287 }
4288 }
4289
4290 ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index);
4291 if (unlikely(ret)) {
4292 btrfs_crit(fs_info,
4293 "failed to delete reference to %.*s, root %llu inode %llu parent %llu",
4294 name->len, name->name, btrfs_root_id(root), ino, dir_ino);
4295 btrfs_abort_transaction(trans, ret);
4296 return ret;
4297 }
4298 skip_backref:
4299 if (rename_ctx)
4300 rename_ctx->index = index;
4301
4302 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4303 if (unlikely(ret)) {
4304 btrfs_abort_transaction(trans, ret);
4305 return ret;
4306 }
4307
4308 /*
4309 * If we are in a rename context, we don't need to update anything in the
4310 * log. That will be done later during the rename by btrfs_log_new_name().
4311 * Besides that, doing it here would only cause extra unnecessary btree
4312 * operations on the log tree, increasing latency for applications.
4313 */
4314 if (!rename_ctx) {
4315 btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino);
4316 btrfs_del_dir_entries_in_log(trans, root, name, dir, index);
4317 }
4318
4319 /*
4320 * If we have a pending delayed iput we could end up with the final iput
4321 * being run in btrfs-cleaner context. If we have enough of these built
4322 * up we can end up burning a lot of time in btrfs-cleaner without any
4323 * way to throttle the unlinks. Since we're currently holding a ref on
4324 * the inode we can run the delayed iput here without any issues as the
4325 * final iput won't be done until after we drop the ref we're currently
4326 * holding.
4327 */
4328 btrfs_run_delayed_iput(fs_info, inode);
4329
4330 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2);
4331 inode_inc_iversion(&inode->vfs_inode);
4332 inode_set_ctime_current(&inode->vfs_inode);
4333 inode_inc_iversion(&dir->vfs_inode);
4334 update_time_after_link_or_unlink(dir);
4335
4336 return btrfs_update_inode(trans, dir);
4337 }
4338
btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_inode * inode,const struct fscrypt_str * name)4339 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4340 struct btrfs_inode *dir, struct btrfs_inode *inode,
4341 const struct fscrypt_str *name)
4342 {
4343 int ret;
4344
4345 ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL);
4346 if (!ret) {
4347 drop_nlink(&inode->vfs_inode);
4348 ret = btrfs_update_inode(trans, inode);
4349 }
4350 return ret;
4351 }
4352
4353 /*
4354 * helper to start transaction for unlink and rmdir.
4355 *
4356 * unlink and rmdir are special in btrfs, they do not always free space, so
4357 * if we cannot make our reservations the normal way try and see if there is
4358 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4359 * allow the unlink to occur.
4360 */
__unlink_start_trans(struct btrfs_inode * dir)4361 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir)
4362 {
4363 struct btrfs_root *root = dir->root;
4364
4365 return btrfs_start_transaction_fallback_global_rsv(root,
4366 BTRFS_UNLINK_METADATA_UNITS);
4367 }
4368
btrfs_unlink(struct inode * dir,struct dentry * dentry)4369 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4370 {
4371 struct btrfs_trans_handle *trans;
4372 struct inode *inode = d_inode(dentry);
4373 int ret;
4374 struct fscrypt_name fname;
4375
4376 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4377 if (ret)
4378 return ret;
4379
4380 /* This needs to handle no-key deletions later on */
4381
4382 trans = __unlink_start_trans(BTRFS_I(dir));
4383 if (IS_ERR(trans)) {
4384 ret = PTR_ERR(trans);
4385 goto fscrypt_free;
4386 }
4387
4388 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4389 false);
4390
4391 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4392 &fname.disk_name);
4393 if (ret)
4394 goto end_trans;
4395
4396 if (inode->i_nlink == 0) {
4397 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4398 if (ret)
4399 goto end_trans;
4400 }
4401
4402 end_trans:
4403 btrfs_end_transaction(trans);
4404 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
4405 fscrypt_free:
4406 fscrypt_free_filename(&fname);
4407 return ret;
4408 }
4409
btrfs_unlink_subvol(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct dentry * dentry)4410 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4411 struct btrfs_inode *dir, struct dentry *dentry)
4412 {
4413 struct btrfs_root *root = dir->root;
4414 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4415 struct btrfs_path *path;
4416 struct extent_buffer *leaf;
4417 struct btrfs_dir_item *di;
4418 struct btrfs_key key;
4419 u64 index;
4420 int ret;
4421 u64 objectid;
4422 u64 dir_ino = btrfs_ino(dir);
4423 struct fscrypt_name fname;
4424
4425 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
4426 if (ret)
4427 return ret;
4428
4429 /* This needs to handle no-key deletions later on */
4430
4431 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4432 objectid = btrfs_root_id(inode->root);
4433 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4434 objectid = inode->ref_root_id;
4435 } else {
4436 WARN_ON(1);
4437 fscrypt_free_filename(&fname);
4438 return -EINVAL;
4439 }
4440
4441 path = btrfs_alloc_path();
4442 if (!path) {
4443 ret = -ENOMEM;
4444 goto out;
4445 }
4446
4447 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4448 &fname.disk_name, -1);
4449 if (IS_ERR_OR_NULL(di)) {
4450 ret = di ? PTR_ERR(di) : -ENOENT;
4451 goto out;
4452 }
4453
4454 leaf = path->nodes[0];
4455 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4456 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4457 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4458 if (unlikely(ret)) {
4459 btrfs_abort_transaction(trans, ret);
4460 goto out;
4461 }
4462 btrfs_release_path(path);
4463
4464 /*
4465 * This is a placeholder inode for a subvolume we didn't have a
4466 * reference to at the time of the snapshot creation. In the meantime
4467 * we could have renamed the real subvol link into our snapshot, so
4468 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
4469 * Instead simply lookup the dir_index_item for this entry so we can
4470 * remove it. Otherwise we know we have a ref to the root and we can
4471 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4472 */
4473 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4474 di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name);
4475 if (IS_ERR(di)) {
4476 ret = PTR_ERR(di);
4477 btrfs_abort_transaction(trans, ret);
4478 goto out;
4479 }
4480
4481 leaf = path->nodes[0];
4482 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4483 index = key.offset;
4484 btrfs_release_path(path);
4485 } else {
4486 ret = btrfs_del_root_ref(trans, objectid,
4487 btrfs_root_id(root), dir_ino,
4488 &index, &fname.disk_name);
4489 if (unlikely(ret)) {
4490 btrfs_abort_transaction(trans, ret);
4491 goto out;
4492 }
4493 }
4494
4495 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4496 if (unlikely(ret)) {
4497 btrfs_abort_transaction(trans, ret);
4498 goto out;
4499 }
4500
4501 btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2);
4502 inode_inc_iversion(&dir->vfs_inode);
4503 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode));
4504 ret = btrfs_update_inode_fallback(trans, dir);
4505 if (ret)
4506 btrfs_abort_transaction(trans, ret);
4507 out:
4508 btrfs_free_path(path);
4509 fscrypt_free_filename(&fname);
4510 return ret;
4511 }
4512
4513 /*
4514 * Helper to check if the subvolume references other subvolumes or if it's
4515 * default.
4516 */
may_destroy_subvol(struct btrfs_root * root)4517 static noinline int may_destroy_subvol(struct btrfs_root *root)
4518 {
4519 struct btrfs_fs_info *fs_info = root->fs_info;
4520 BTRFS_PATH_AUTO_FREE(path);
4521 struct btrfs_dir_item *di;
4522 struct btrfs_key key;
4523 struct fscrypt_str name = FSTR_INIT("default", 7);
4524 u64 dir_id;
4525 int ret;
4526
4527 path = btrfs_alloc_path();
4528 if (!path)
4529 return -ENOMEM;
4530
4531 /* Make sure this root isn't set as the default subvol */
4532 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4533 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4534 dir_id, &name, 0);
4535 if (di && !IS_ERR(di)) {
4536 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4537 if (key.objectid == btrfs_root_id(root)) {
4538 ret = -EPERM;
4539 btrfs_err(fs_info,
4540 "deleting default subvolume %llu is not allowed",
4541 key.objectid);
4542 return ret;
4543 }
4544 btrfs_release_path(path);
4545 }
4546
4547 key.objectid = btrfs_root_id(root);
4548 key.type = BTRFS_ROOT_REF_KEY;
4549 key.offset = (u64)-1;
4550
4551 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4552 if (ret < 0)
4553 return ret;
4554 if (unlikely(ret == 0)) {
4555 /*
4556 * Key with offset -1 found, there would have to exist a root
4557 * with such id, but this is out of valid range.
4558 */
4559 return -EUCLEAN;
4560 }
4561
4562 ret = 0;
4563 if (path->slots[0] > 0) {
4564 path->slots[0]--;
4565 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4566 if (key.objectid == btrfs_root_id(root) && key.type == BTRFS_ROOT_REF_KEY)
4567 ret = -ENOTEMPTY;
4568 }
4569
4570 return ret;
4571 }
4572
4573 /* Delete all dentries for inodes belonging to the root */
btrfs_prune_dentries(struct btrfs_root * root)4574 static void btrfs_prune_dentries(struct btrfs_root *root)
4575 {
4576 struct btrfs_fs_info *fs_info = root->fs_info;
4577 struct btrfs_inode *inode;
4578 u64 min_ino = 0;
4579
4580 if (!BTRFS_FS_ERROR(fs_info))
4581 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4582
4583 inode = btrfs_find_first_inode(root, min_ino);
4584 while (inode) {
4585 if (icount_read(&inode->vfs_inode) > 1)
4586 d_prune_aliases(&inode->vfs_inode);
4587
4588 min_ino = btrfs_ino(inode) + 1;
4589 /*
4590 * btrfs_drop_inode() will have it removed from the inode
4591 * cache when its usage count hits zero.
4592 */
4593 iput(&inode->vfs_inode);
4594 cond_resched();
4595 inode = btrfs_find_first_inode(root, min_ino);
4596 }
4597 }
4598
btrfs_delete_subvolume(struct btrfs_inode * dir,struct dentry * dentry)4599 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry)
4600 {
4601 struct btrfs_root *root = dir->root;
4602 struct btrfs_fs_info *fs_info = root->fs_info;
4603 struct inode *inode = d_inode(dentry);
4604 struct btrfs_root *dest = BTRFS_I(inode)->root;
4605 struct btrfs_trans_handle *trans;
4606 struct btrfs_block_rsv block_rsv;
4607 u64 root_flags;
4608 u64 qgroup_reserved = 0;
4609 int ret;
4610
4611 down_write(&fs_info->subvol_sem);
4612
4613 /*
4614 * Don't allow to delete a subvolume with send in progress. This is
4615 * inside the inode lock so the error handling that has to drop the bit
4616 * again is not run concurrently.
4617 */
4618 spin_lock(&dest->root_item_lock);
4619 if (dest->send_in_progress) {
4620 spin_unlock(&dest->root_item_lock);
4621 btrfs_warn(fs_info,
4622 "attempt to delete subvolume %llu during send",
4623 btrfs_root_id(dest));
4624 ret = -EPERM;
4625 goto out_up_write;
4626 }
4627 if (atomic_read(&dest->nr_swapfiles)) {
4628 spin_unlock(&dest->root_item_lock);
4629 btrfs_warn(fs_info,
4630 "attempt to delete subvolume %llu with active swapfile",
4631 btrfs_root_id(root));
4632 ret = -EPERM;
4633 goto out_up_write;
4634 }
4635 root_flags = btrfs_root_flags(&dest->root_item);
4636 btrfs_set_root_flags(&dest->root_item,
4637 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4638 spin_unlock(&dest->root_item_lock);
4639
4640 ret = may_destroy_subvol(dest);
4641 if (ret)
4642 goto out_undead;
4643
4644 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4645 /*
4646 * One for dir inode,
4647 * two for dir entries,
4648 * two for root ref/backref.
4649 */
4650 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4651 if (ret)
4652 goto out_undead;
4653 qgroup_reserved = block_rsv.qgroup_rsv_reserved;
4654
4655 trans = btrfs_start_transaction(root, 0);
4656 if (IS_ERR(trans)) {
4657 ret = PTR_ERR(trans);
4658 goto out_release;
4659 }
4660 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
4661 qgroup_reserved = 0;
4662 trans->block_rsv = &block_rsv;
4663 trans->bytes_reserved = block_rsv.size;
4664
4665 btrfs_record_snapshot_destroy(trans, dir);
4666
4667 ret = btrfs_unlink_subvol(trans, dir, dentry);
4668 if (unlikely(ret)) {
4669 btrfs_abort_transaction(trans, ret);
4670 goto out_end_trans;
4671 }
4672
4673 ret = btrfs_record_root_in_trans(trans, dest);
4674 if (unlikely(ret)) {
4675 btrfs_abort_transaction(trans, ret);
4676 goto out_end_trans;
4677 }
4678
4679 memset(&dest->root_item.drop_progress, 0,
4680 sizeof(dest->root_item.drop_progress));
4681 btrfs_set_root_drop_level(&dest->root_item, 0);
4682 btrfs_set_root_refs(&dest->root_item, 0);
4683
4684 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4685 ret = btrfs_insert_orphan_item(trans,
4686 fs_info->tree_root,
4687 btrfs_root_id(dest));
4688 if (unlikely(ret)) {
4689 btrfs_abort_transaction(trans, ret);
4690 goto out_end_trans;
4691 }
4692 }
4693
4694 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4695 BTRFS_UUID_KEY_SUBVOL, btrfs_root_id(dest));
4696 if (unlikely(ret && ret != -ENOENT)) {
4697 btrfs_abort_transaction(trans, ret);
4698 goto out_end_trans;
4699 }
4700 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4701 ret = btrfs_uuid_tree_remove(trans,
4702 dest->root_item.received_uuid,
4703 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4704 btrfs_root_id(dest));
4705 if (unlikely(ret && ret != -ENOENT)) {
4706 btrfs_abort_transaction(trans, ret);
4707 goto out_end_trans;
4708 }
4709 }
4710
4711 free_anon_bdev(dest->anon_dev);
4712 dest->anon_dev = 0;
4713 out_end_trans:
4714 trans->block_rsv = NULL;
4715 trans->bytes_reserved = 0;
4716 ret = btrfs_end_transaction(trans);
4717 inode->i_flags |= S_DEAD;
4718 out_release:
4719 btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL);
4720 if (qgroup_reserved)
4721 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
4722 out_undead:
4723 if (ret) {
4724 spin_lock(&dest->root_item_lock);
4725 root_flags = btrfs_root_flags(&dest->root_item);
4726 btrfs_set_root_flags(&dest->root_item,
4727 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4728 spin_unlock(&dest->root_item_lock);
4729 }
4730 out_up_write:
4731 up_write(&fs_info->subvol_sem);
4732 if (!ret) {
4733 d_invalidate(dentry);
4734 btrfs_prune_dentries(dest);
4735 ASSERT(dest->send_in_progress == 0);
4736 }
4737
4738 return ret;
4739 }
4740
btrfs_rmdir(struct inode * vfs_dir,struct dentry * dentry)4741 static int btrfs_rmdir(struct inode *vfs_dir, struct dentry *dentry)
4742 {
4743 struct btrfs_inode *dir = BTRFS_I(vfs_dir);
4744 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4745 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4746 int ret = 0;
4747 struct btrfs_trans_handle *trans;
4748 struct fscrypt_name fname;
4749
4750 if (inode->vfs_inode.i_size > BTRFS_EMPTY_DIR_SIZE)
4751 return -ENOTEMPTY;
4752 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4753 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) {
4754 btrfs_err(fs_info,
4755 "extent tree v2 doesn't support snapshot deletion yet");
4756 return -EOPNOTSUPP;
4757 }
4758 return btrfs_delete_subvolume(dir, dentry);
4759 }
4760
4761 ret = fscrypt_setup_filename(vfs_dir, &dentry->d_name, 1, &fname);
4762 if (ret)
4763 return ret;
4764
4765 /* This needs to handle no-key deletions later on */
4766
4767 trans = __unlink_start_trans(dir);
4768 if (IS_ERR(trans)) {
4769 ret = PTR_ERR(trans);
4770 goto out_notrans;
4771 }
4772
4773 /*
4774 * Propagate the last_unlink_trans value of the deleted dir to its
4775 * parent directory. This is to prevent an unrecoverable log tree in the
4776 * case we do something like this:
4777 * 1) create dir foo
4778 * 2) create snapshot under dir foo
4779 * 3) delete the snapshot
4780 * 4) rmdir foo
4781 * 5) mkdir foo
4782 * 6) fsync foo or some file inside foo
4783 *
4784 * This is because we can't unlink other roots when replaying the dir
4785 * deletes for directory foo.
4786 */
4787 if (inode->last_unlink_trans >= trans->transid)
4788 btrfs_record_snapshot_destroy(trans, dir);
4789
4790 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4791 ret = btrfs_unlink_subvol(trans, dir, dentry);
4792 goto out;
4793 }
4794
4795 ret = btrfs_orphan_add(trans, inode);
4796 if (ret)
4797 goto out;
4798
4799 /* now the directory is empty */
4800 ret = btrfs_unlink_inode(trans, dir, inode, &fname.disk_name);
4801 if (!ret)
4802 btrfs_i_size_write(inode, 0);
4803 out:
4804 btrfs_end_transaction(trans);
4805 out_notrans:
4806 btrfs_btree_balance_dirty(fs_info);
4807 fscrypt_free_filename(&fname);
4808
4809 return ret;
4810 }
4811
is_inside_block(u64 bytenr,u64 blockstart,u32 blocksize)4812 static bool is_inside_block(u64 bytenr, u64 blockstart, u32 blocksize)
4813 {
4814 ASSERT(IS_ALIGNED(blockstart, blocksize), "blockstart=%llu blocksize=%u",
4815 blockstart, blocksize);
4816
4817 if (blockstart <= bytenr && bytenr <= blockstart + blocksize - 1)
4818 return true;
4819 return false;
4820 }
4821
truncate_block_zero_beyond_eof(struct btrfs_inode * inode,u64 start)4822 static int truncate_block_zero_beyond_eof(struct btrfs_inode *inode, u64 start)
4823 {
4824 const pgoff_t index = (start >> PAGE_SHIFT);
4825 struct address_space *mapping = inode->vfs_inode.i_mapping;
4826 struct folio *folio;
4827 u64 zero_start;
4828 u64 zero_end;
4829 int ret = 0;
4830
4831 again:
4832 folio = filemap_lock_folio(mapping, index);
4833 /* No folio present. */
4834 if (IS_ERR(folio))
4835 return 0;
4836
4837 if (!folio_test_uptodate(folio)) {
4838 ret = btrfs_read_folio(NULL, folio);
4839 folio_lock(folio);
4840 if (folio->mapping != mapping) {
4841 folio_unlock(folio);
4842 folio_put(folio);
4843 goto again;
4844 }
4845 if (unlikely(!folio_test_uptodate(folio))) {
4846 ret = -EIO;
4847 goto out_unlock;
4848 }
4849 }
4850 folio_wait_writeback(folio);
4851
4852 /*
4853 * We do not need to lock extents nor wait for OE, as it's already
4854 * beyond EOF.
4855 */
4856
4857 zero_start = max_t(u64, folio_pos(folio), start);
4858 zero_end = folio_end(folio);
4859 folio_zero_range(folio, zero_start - folio_pos(folio),
4860 zero_end - zero_start);
4861
4862 out_unlock:
4863 folio_unlock(folio);
4864 folio_put(folio);
4865 return ret;
4866 }
4867
4868 /*
4869 * Handle the truncation of a fs block.
4870 *
4871 * @inode - inode that we're zeroing
4872 * @offset - the file offset of the block to truncate
4873 * The value must be inside [@start, @end], and the function will do
4874 * extra checks if the block that covers @offset needs to be zeroed.
4875 * @start - the start file offset of the range we want to zero
4876 * @end - the end (inclusive) file offset of the range we want to zero.
4877 *
4878 * If the range is not block aligned, read out the folio that covers @offset,
4879 * and if needed zero blocks that are inside the folio and covered by [@start, @end).
4880 * If @start or @end + 1 lands inside a block, that block will be marked dirty
4881 * for writeback.
4882 *
4883 * This is utilized by hole punch, zero range, file expansion.
4884 */
btrfs_truncate_block(struct btrfs_inode * inode,u64 offset,u64 start,u64 end)4885 int btrfs_truncate_block(struct btrfs_inode *inode, u64 offset, u64 start, u64 end)
4886 {
4887 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4888 struct address_space *mapping = inode->vfs_inode.i_mapping;
4889 struct extent_io_tree *io_tree = &inode->io_tree;
4890 struct btrfs_ordered_extent *ordered;
4891 struct extent_state *cached_state = NULL;
4892 struct extent_changeset *data_reserved = NULL;
4893 bool only_release_metadata = false;
4894 u32 blocksize = fs_info->sectorsize;
4895 pgoff_t index = (offset >> PAGE_SHIFT);
4896 struct folio *folio;
4897 gfp_t mask = btrfs_alloc_write_mask(mapping);
4898 int ret = 0;
4899 const bool in_head_block = is_inside_block(offset, round_down(start, blocksize),
4900 blocksize);
4901 const bool in_tail_block = is_inside_block(offset, round_down(end, blocksize),
4902 blocksize);
4903 bool need_truncate_head = false;
4904 bool need_truncate_tail = false;
4905 u64 zero_start;
4906 u64 zero_end;
4907 u64 block_start;
4908 u64 block_end;
4909
4910 /* @offset should be inside the range. */
4911 ASSERT(start <= offset && offset <= end, "offset=%llu start=%llu end=%llu",
4912 offset, start, end);
4913
4914 /* The range is aligned at both ends. */
4915 if (IS_ALIGNED(start, blocksize) && IS_ALIGNED(end + 1, blocksize)) {
4916 /*
4917 * For block size < page size case, we may have polluted blocks
4918 * beyond EOF. So we also need to zero them out.
4919 */
4920 if (end == (u64)-1 && blocksize < PAGE_SIZE)
4921 ret = truncate_block_zero_beyond_eof(inode, start);
4922 goto out;
4923 }
4924
4925 /*
4926 * @offset may not be inside the head nor tail block. In that case we
4927 * don't need to do anything.
4928 */
4929 if (!in_head_block && !in_tail_block)
4930 goto out;
4931
4932 /*
4933 * Skip the truncation if the range in the target block is already aligned.
4934 * The seemingly complex check will also handle the same block case.
4935 */
4936 if (in_head_block && !IS_ALIGNED(start, blocksize))
4937 need_truncate_head = true;
4938 if (in_tail_block && !IS_ALIGNED(end + 1, blocksize))
4939 need_truncate_tail = true;
4940 if (!need_truncate_head && !need_truncate_tail)
4941 goto out;
4942
4943 block_start = round_down(offset, blocksize);
4944 block_end = block_start + blocksize - 1;
4945
4946 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
4947 blocksize, false);
4948 if (ret < 0) {
4949 size_t write_bytes = blocksize;
4950
4951 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) {
4952 /* For nocow case, no need to reserve data space. */
4953 ASSERT(write_bytes == blocksize, "write_bytes=%zu blocksize=%u",
4954 write_bytes, blocksize);
4955 only_release_metadata = true;
4956 } else {
4957 goto out;
4958 }
4959 }
4960 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false);
4961 if (ret < 0) {
4962 if (!only_release_metadata)
4963 btrfs_free_reserved_data_space(inode, data_reserved,
4964 block_start, blocksize);
4965 goto out;
4966 }
4967 again:
4968 folio = __filemap_get_folio(mapping, index,
4969 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mask);
4970 if (IS_ERR(folio)) {
4971 if (only_release_metadata)
4972 btrfs_delalloc_release_metadata(inode, blocksize, true);
4973 else
4974 btrfs_delalloc_release_space(inode, data_reserved,
4975 block_start, blocksize, true);
4976 btrfs_delalloc_release_extents(inode, blocksize);
4977 ret = PTR_ERR(folio);
4978 goto out;
4979 }
4980
4981 if (!folio_test_uptodate(folio)) {
4982 ret = btrfs_read_folio(NULL, folio);
4983 folio_lock(folio);
4984 if (folio->mapping != mapping) {
4985 folio_unlock(folio);
4986 folio_put(folio);
4987 goto again;
4988 }
4989 if (unlikely(!folio_test_uptodate(folio))) {
4990 ret = -EIO;
4991 goto out_unlock;
4992 }
4993 }
4994
4995 /*
4996 * We unlock the page after the io is completed and then re-lock it
4997 * above. release_folio() could have come in between that and cleared
4998 * folio private, but left the page in the mapping. Set the page mapped
4999 * here to make sure it's properly set for the subpage stuff.
5000 */
5001 ret = set_folio_extent_mapped(folio);
5002 if (ret < 0)
5003 goto out_unlock;
5004
5005 folio_wait_writeback(folio);
5006
5007 btrfs_lock_extent(io_tree, block_start, block_end, &cached_state);
5008
5009 ordered = btrfs_lookup_ordered_extent(inode, block_start);
5010 if (ordered) {
5011 btrfs_unlock_extent(io_tree, block_start, block_end, &cached_state);
5012 folio_unlock(folio);
5013 folio_put(folio);
5014 btrfs_start_ordered_extent(ordered);
5015 btrfs_put_ordered_extent(ordered);
5016 goto again;
5017 }
5018
5019 btrfs_clear_extent_bit(&inode->io_tree, block_start, block_end,
5020 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
5021 &cached_state);
5022
5023 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
5024 &cached_state);
5025 if (ret) {
5026 btrfs_unlock_extent(io_tree, block_start, block_end, &cached_state);
5027 goto out_unlock;
5028 }
5029
5030 if (end == (u64)-1) {
5031 /*
5032 * We're truncating beyond EOF, the remaining blocks normally are
5033 * already holes thus no need to zero again, but it's possible for
5034 * fs block size < page size cases to have memory mapped writes
5035 * to pollute ranges beyond EOF.
5036 *
5037 * In that case although such polluted blocks beyond EOF will
5038 * not reach disk, it still affects our page caches.
5039 */
5040 zero_start = max_t(u64, folio_pos(folio), start);
5041 zero_end = min_t(u64, folio_end(folio) - 1, end);
5042 } else {
5043 zero_start = max_t(u64, block_start, start);
5044 zero_end = min_t(u64, block_end, end);
5045 }
5046 folio_zero_range(folio, zero_start - folio_pos(folio),
5047 zero_end - zero_start + 1);
5048
5049 btrfs_folio_clear_checked(fs_info, folio, block_start,
5050 block_end + 1 - block_start);
5051 btrfs_folio_set_dirty(fs_info, folio, block_start,
5052 block_end + 1 - block_start);
5053
5054 if (only_release_metadata)
5055 btrfs_set_extent_bit(&inode->io_tree, block_start, block_end,
5056 EXTENT_NORESERVE, &cached_state);
5057
5058 btrfs_unlock_extent(io_tree, block_start, block_end, &cached_state);
5059
5060 out_unlock:
5061 if (ret) {
5062 if (only_release_metadata)
5063 btrfs_delalloc_release_metadata(inode, blocksize, true);
5064 else
5065 btrfs_delalloc_release_space(inode, data_reserved,
5066 block_start, blocksize, true);
5067 }
5068 btrfs_delalloc_release_extents(inode, blocksize);
5069 folio_unlock(folio);
5070 folio_put(folio);
5071 out:
5072 if (only_release_metadata)
5073 btrfs_check_nocow_unlock(inode);
5074 extent_changeset_free(data_reserved);
5075 return ret;
5076 }
5077
maybe_insert_hole(struct btrfs_inode * inode,u64 offset,u64 len)5078 static int maybe_insert_hole(struct btrfs_inode *inode, u64 offset, u64 len)
5079 {
5080 struct btrfs_root *root = inode->root;
5081 struct btrfs_fs_info *fs_info = root->fs_info;
5082 struct btrfs_trans_handle *trans;
5083 struct btrfs_drop_extents_args drop_args = { 0 };
5084 int ret;
5085
5086 /*
5087 * If NO_HOLES is enabled, we don't need to do anything.
5088 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
5089 * or btrfs_update_inode() will be called, which guarantee that the next
5090 * fsync will know this inode was changed and needs to be logged.
5091 */
5092 if (btrfs_fs_incompat(fs_info, NO_HOLES))
5093 return 0;
5094
5095 /*
5096 * 1 - for the one we're dropping
5097 * 1 - for the one we're adding
5098 * 1 - for updating the inode.
5099 */
5100 trans = btrfs_start_transaction(root, 3);
5101 if (IS_ERR(trans))
5102 return PTR_ERR(trans);
5103
5104 drop_args.start = offset;
5105 drop_args.end = offset + len;
5106 drop_args.drop_cache = true;
5107
5108 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
5109 if (unlikely(ret)) {
5110 btrfs_abort_transaction(trans, ret);
5111 btrfs_end_transaction(trans);
5112 return ret;
5113 }
5114
5115 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len);
5116 if (ret) {
5117 btrfs_abort_transaction(trans, ret);
5118 } else {
5119 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
5120 btrfs_update_inode(trans, inode);
5121 }
5122 btrfs_end_transaction(trans);
5123 return ret;
5124 }
5125
5126 /*
5127 * This function puts in dummy file extents for the area we're creating a hole
5128 * for. So if we are truncating this file to a larger size we need to insert
5129 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
5130 * the range between oldsize and size
5131 */
btrfs_cont_expand(struct btrfs_inode * inode,loff_t oldsize,loff_t size)5132 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
5133 {
5134 struct btrfs_root *root = inode->root;
5135 struct btrfs_fs_info *fs_info = root->fs_info;
5136 struct extent_io_tree *io_tree = &inode->io_tree;
5137 struct extent_map *em = NULL;
5138 struct extent_state *cached_state = NULL;
5139 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
5140 u64 block_end = ALIGN(size, fs_info->sectorsize);
5141 u64 last_byte;
5142 u64 cur_offset;
5143 u64 hole_size;
5144 int ret = 0;
5145
5146 /*
5147 * If our size started in the middle of a block we need to zero out the
5148 * rest of the block before we expand the i_size, otherwise we could
5149 * expose stale data.
5150 */
5151 ret = btrfs_truncate_block(inode, oldsize, oldsize, -1);
5152 if (ret)
5153 return ret;
5154
5155 if (size <= hole_start)
5156 return 0;
5157
5158 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
5159 &cached_state);
5160 cur_offset = hole_start;
5161 while (1) {
5162 em = btrfs_get_extent(inode, NULL, cur_offset, block_end - cur_offset);
5163 if (IS_ERR(em)) {
5164 ret = PTR_ERR(em);
5165 em = NULL;
5166 break;
5167 }
5168 last_byte = min(btrfs_extent_map_end(em), block_end);
5169 last_byte = ALIGN(last_byte, fs_info->sectorsize);
5170 hole_size = last_byte - cur_offset;
5171
5172 if (!(em->flags & EXTENT_FLAG_PREALLOC)) {
5173 struct extent_map *hole_em;
5174
5175 ret = maybe_insert_hole(inode, cur_offset, hole_size);
5176 if (ret)
5177 break;
5178
5179 ret = btrfs_inode_set_file_extent_range(inode,
5180 cur_offset, hole_size);
5181 if (ret)
5182 break;
5183
5184 hole_em = btrfs_alloc_extent_map();
5185 if (!hole_em) {
5186 btrfs_drop_extent_map_range(inode, cur_offset,
5187 cur_offset + hole_size - 1,
5188 false);
5189 btrfs_set_inode_full_sync(inode);
5190 goto next;
5191 }
5192 hole_em->start = cur_offset;
5193 hole_em->len = hole_size;
5194
5195 hole_em->disk_bytenr = EXTENT_MAP_HOLE;
5196 hole_em->disk_num_bytes = 0;
5197 hole_em->ram_bytes = hole_size;
5198 hole_em->generation = btrfs_get_fs_generation(fs_info);
5199
5200 ret = btrfs_replace_extent_map_range(inode, hole_em, true);
5201 btrfs_free_extent_map(hole_em);
5202 } else {
5203 ret = btrfs_inode_set_file_extent_range(inode,
5204 cur_offset, hole_size);
5205 if (ret)
5206 break;
5207 }
5208 next:
5209 btrfs_free_extent_map(em);
5210 em = NULL;
5211 cur_offset = last_byte;
5212 if (cur_offset >= block_end)
5213 break;
5214 }
5215 btrfs_free_extent_map(em);
5216 btrfs_unlock_extent(io_tree, hole_start, block_end - 1, &cached_state);
5217 return ret;
5218 }
5219
btrfs_setsize(struct inode * inode,struct iattr * attr)5220 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5221 {
5222 struct btrfs_root *root = BTRFS_I(inode)->root;
5223 struct btrfs_trans_handle *trans;
5224 loff_t oldsize = i_size_read(inode);
5225 loff_t newsize = attr->ia_size;
5226 int mask = attr->ia_valid;
5227 int ret;
5228
5229 /*
5230 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5231 * special case where we need to update the times despite not having
5232 * these flags set. For all other operations the VFS set these flags
5233 * explicitly if it wants a timestamp update.
5234 */
5235 if (newsize != oldsize) {
5236 inode_inc_iversion(inode);
5237 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) {
5238 inode_set_mtime_to_ts(inode,
5239 inode_set_ctime_current(inode));
5240 }
5241 }
5242
5243 if (newsize > oldsize) {
5244 /*
5245 * Don't do an expanding truncate while snapshotting is ongoing.
5246 * This is to ensure the snapshot captures a fully consistent
5247 * state of this file - if the snapshot captures this expanding
5248 * truncation, it must capture all writes that happened before
5249 * this truncation.
5250 */
5251 btrfs_drew_write_lock(&root->snapshot_lock);
5252 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
5253 if (ret) {
5254 btrfs_drew_write_unlock(&root->snapshot_lock);
5255 return ret;
5256 }
5257
5258 trans = btrfs_start_transaction(root, 1);
5259 if (IS_ERR(trans)) {
5260 btrfs_drew_write_unlock(&root->snapshot_lock);
5261 return PTR_ERR(trans);
5262 }
5263
5264 i_size_write(inode, newsize);
5265 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
5266 pagecache_isize_extended(inode, oldsize, newsize);
5267 ret = btrfs_update_inode(trans, BTRFS_I(inode));
5268 btrfs_drew_write_unlock(&root->snapshot_lock);
5269 btrfs_end_transaction(trans);
5270 } else {
5271 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
5272
5273 if (btrfs_is_zoned(fs_info)) {
5274 ret = btrfs_wait_ordered_range(BTRFS_I(inode),
5275 ALIGN(newsize, fs_info->sectorsize),
5276 (u64)-1);
5277 if (ret)
5278 return ret;
5279 }
5280
5281 /*
5282 * We're truncating a file that used to have good data down to
5283 * zero. Make sure any new writes to the file get on disk
5284 * on close.
5285 */
5286 if (newsize == 0)
5287 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
5288 &BTRFS_I(inode)->runtime_flags);
5289
5290 truncate_setsize(inode, newsize);
5291
5292 inode_dio_wait(inode);
5293
5294 ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize);
5295 if (ret && inode->i_nlink) {
5296 int ret2;
5297
5298 /*
5299 * Truncate failed, so fix up the in-memory size. We
5300 * adjusted disk_i_size down as we removed extents, so
5301 * wait for disk_i_size to be stable and then update the
5302 * in-memory size to match.
5303 */
5304 ret2 = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1);
5305 if (ret2)
5306 return ret2;
5307 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5308 }
5309 }
5310
5311 return ret;
5312 }
5313
btrfs_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)5314 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5315 struct iattr *attr)
5316 {
5317 struct inode *inode = d_inode(dentry);
5318 struct btrfs_root *root = BTRFS_I(inode)->root;
5319 int ret;
5320
5321 if (btrfs_root_readonly(root))
5322 return -EROFS;
5323
5324 ret = setattr_prepare(idmap, dentry, attr);
5325 if (ret)
5326 return ret;
5327
5328 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5329 ret = btrfs_setsize(inode, attr);
5330 if (ret)
5331 return ret;
5332 }
5333
5334 if (attr->ia_valid) {
5335 setattr_copy(idmap, inode, attr);
5336 inode_inc_iversion(inode);
5337 ret = btrfs_dirty_inode(BTRFS_I(inode));
5338
5339 if (!ret && attr->ia_valid & ATTR_MODE)
5340 ret = posix_acl_chmod(idmap, dentry, inode->i_mode);
5341 }
5342
5343 return ret;
5344 }
5345
5346 /*
5347 * While truncating the inode pages during eviction, we get the VFS
5348 * calling btrfs_invalidate_folio() against each folio of the inode. This
5349 * is slow because the calls to btrfs_invalidate_folio() result in a
5350 * huge amount of calls to lock_extent() and clear_extent_bit(),
5351 * which keep merging and splitting extent_state structures over and over,
5352 * wasting lots of time.
5353 *
5354 * Therefore if the inode is being evicted, let btrfs_invalidate_folio()
5355 * skip all those expensive operations on a per folio basis and do only
5356 * the ordered io finishing, while we release here the extent_map and
5357 * extent_state structures, without the excessive merging and splitting.
5358 */
evict_inode_truncate_pages(struct inode * inode)5359 static void evict_inode_truncate_pages(struct inode *inode)
5360 {
5361 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5362 struct rb_node *node;
5363
5364 ASSERT(inode->i_state & I_FREEING);
5365 truncate_inode_pages_final(&inode->i_data);
5366
5367 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
5368
5369 /*
5370 * Keep looping until we have no more ranges in the io tree.
5371 * We can have ongoing bios started by readahead that have
5372 * their endio callback (extent_io.c:end_bio_extent_readpage)
5373 * still in progress (unlocked the pages in the bio but did not yet
5374 * unlocked the ranges in the io tree). Therefore this means some
5375 * ranges can still be locked and eviction started because before
5376 * submitting those bios, which are executed by a separate task (work
5377 * queue kthread), inode references (inode->i_count) were not taken
5378 * (which would be dropped in the end io callback of each bio).
5379 * Therefore here we effectively end up waiting for those bios and
5380 * anyone else holding locked ranges without having bumped the inode's
5381 * reference count - if we don't do it, when they access the inode's
5382 * io_tree to unlock a range it may be too late, leading to an
5383 * use-after-free issue.
5384 */
5385 spin_lock(&io_tree->lock);
5386 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5387 struct extent_state *state;
5388 struct extent_state *cached_state = NULL;
5389 u64 start;
5390 u64 end;
5391 unsigned state_flags;
5392
5393 node = rb_first(&io_tree->state);
5394 state = rb_entry(node, struct extent_state, rb_node);
5395 start = state->start;
5396 end = state->end;
5397 state_flags = state->state;
5398 spin_unlock(&io_tree->lock);
5399
5400 btrfs_lock_extent(io_tree, start, end, &cached_state);
5401
5402 /*
5403 * If still has DELALLOC flag, the extent didn't reach disk,
5404 * and its reserved space won't be freed by delayed_ref.
5405 * So we need to free its reserved space here.
5406 * (Refer to comment in btrfs_invalidate_folio, case 2)
5407 *
5408 * Note, end is the bytenr of last byte, so we need + 1 here.
5409 */
5410 if (state_flags & EXTENT_DELALLOC)
5411 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5412 end - start + 1, NULL);
5413
5414 btrfs_clear_extent_bit(io_tree, start, end,
5415 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING,
5416 &cached_state);
5417
5418 cond_resched();
5419 spin_lock(&io_tree->lock);
5420 }
5421 spin_unlock(&io_tree->lock);
5422 }
5423
evict_refill_and_join(struct btrfs_root * root,struct btrfs_block_rsv * rsv)5424 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5425 struct btrfs_block_rsv *rsv)
5426 {
5427 struct btrfs_fs_info *fs_info = root->fs_info;
5428 struct btrfs_trans_handle *trans;
5429 u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1);
5430 int ret;
5431
5432 /*
5433 * Eviction should be taking place at some place safe because of our
5434 * delayed iputs. However the normal flushing code will run delayed
5435 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5436 *
5437 * We reserve the delayed_refs_extra here again because we can't use
5438 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5439 * above. We reserve our extra bit here because we generate a ton of
5440 * delayed refs activity by truncating.
5441 *
5442 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can,
5443 * if we fail to make this reservation we can re-try without the
5444 * delayed_refs_extra so we can make some forward progress.
5445 */
5446 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra,
5447 BTRFS_RESERVE_FLUSH_EVICT);
5448 if (ret) {
5449 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size,
5450 BTRFS_RESERVE_FLUSH_EVICT);
5451 if (ret) {
5452 btrfs_warn(fs_info,
5453 "could not allocate space for delete; will truncate on mount");
5454 return ERR_PTR(-ENOSPC);
5455 }
5456 delayed_refs_extra = 0;
5457 }
5458
5459 trans = btrfs_join_transaction(root);
5460 if (IS_ERR(trans))
5461 return trans;
5462
5463 if (delayed_refs_extra) {
5464 trans->block_rsv = &fs_info->trans_block_rsv;
5465 trans->bytes_reserved = delayed_refs_extra;
5466 btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5467 delayed_refs_extra, true);
5468 }
5469 return trans;
5470 }
5471
btrfs_evict_inode(struct inode * inode)5472 void btrfs_evict_inode(struct inode *inode)
5473 {
5474 struct btrfs_fs_info *fs_info;
5475 struct btrfs_trans_handle *trans;
5476 struct btrfs_root *root = BTRFS_I(inode)->root;
5477 struct btrfs_block_rsv rsv;
5478 int ret;
5479
5480 trace_btrfs_inode_evict(inode);
5481
5482 if (!root) {
5483 fsverity_cleanup_inode(inode);
5484 clear_inode(inode);
5485 return;
5486 }
5487
5488 fs_info = inode_to_fs_info(inode);
5489 evict_inode_truncate_pages(inode);
5490
5491 if (inode->i_nlink &&
5492 ((btrfs_root_refs(&root->root_item) != 0 &&
5493 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID) ||
5494 btrfs_is_free_space_inode(BTRFS_I(inode))))
5495 goto out;
5496
5497 if (is_bad_inode(inode))
5498 goto out;
5499
5500 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5501 goto out;
5502
5503 if (inode->i_nlink > 0) {
5504 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5505 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID);
5506 goto out;
5507 }
5508
5509 /*
5510 * This makes sure the inode item in tree is uptodate and the space for
5511 * the inode update is released.
5512 */
5513 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5514 if (ret)
5515 goto out;
5516
5517 /*
5518 * This drops any pending insert or delete operations we have for this
5519 * inode. We could have a delayed dir index deletion queued up, but
5520 * we're removing the inode completely so that'll be taken care of in
5521 * the truncate.
5522 */
5523 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
5524
5525 btrfs_init_metadata_block_rsv(fs_info, &rsv, BTRFS_BLOCK_RSV_TEMP);
5526 rsv.size = btrfs_calc_metadata_size(fs_info, 1);
5527 rsv.failfast = true;
5528
5529 btrfs_i_size_write(BTRFS_I(inode), 0);
5530
5531 while (1) {
5532 struct btrfs_truncate_control control = {
5533 .inode = BTRFS_I(inode),
5534 .ino = btrfs_ino(BTRFS_I(inode)),
5535 .new_size = 0,
5536 .min_type = 0,
5537 };
5538
5539 trans = evict_refill_and_join(root, &rsv);
5540 if (IS_ERR(trans))
5541 goto out_release;
5542
5543 trans->block_rsv = &rsv;
5544
5545 ret = btrfs_truncate_inode_items(trans, root, &control);
5546 trans->block_rsv = &fs_info->trans_block_rsv;
5547 btrfs_end_transaction(trans);
5548 /*
5549 * We have not added new delayed items for our inode after we
5550 * have flushed its delayed items, so no need to throttle on
5551 * delayed items. However we have modified extent buffers.
5552 */
5553 btrfs_btree_balance_dirty_nodelay(fs_info);
5554 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5555 goto out_release;
5556 else if (!ret)
5557 break;
5558 }
5559
5560 /*
5561 * Errors here aren't a big deal, it just means we leave orphan items in
5562 * the tree. They will be cleaned up on the next mount. If the inode
5563 * number gets reused, cleanup deletes the orphan item without doing
5564 * anything, and unlink reuses the existing orphan item.
5565 *
5566 * If it turns out that we are dropping too many of these, we might want
5567 * to add a mechanism for retrying these after a commit.
5568 */
5569 trans = evict_refill_and_join(root, &rsv);
5570 if (!IS_ERR(trans)) {
5571 trans->block_rsv = &rsv;
5572 btrfs_orphan_del(trans, BTRFS_I(inode));
5573 trans->block_rsv = &fs_info->trans_block_rsv;
5574 btrfs_end_transaction(trans);
5575 }
5576
5577 out_release:
5578 btrfs_block_rsv_release(fs_info, &rsv, (u64)-1, NULL);
5579 out:
5580 /*
5581 * If we didn't successfully delete, the orphan item will still be in
5582 * the tree and we'll retry on the next mount. Again, we might also want
5583 * to retry these periodically in the future.
5584 */
5585 btrfs_remove_delayed_node(BTRFS_I(inode));
5586 fsverity_cleanup_inode(inode);
5587 clear_inode(inode);
5588 }
5589
5590 /*
5591 * Return the key found in the dir entry in the location pointer, fill @type
5592 * with BTRFS_FT_*, and return 0.
5593 *
5594 * If no dir entries were found, returns -ENOENT.
5595 * If found a corrupted location in dir entry, returns -EUCLEAN.
5596 */
btrfs_inode_by_name(struct btrfs_inode * dir,struct dentry * dentry,struct btrfs_key * location,u8 * type)5597 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry,
5598 struct btrfs_key *location, u8 *type)
5599 {
5600 struct btrfs_dir_item *di;
5601 BTRFS_PATH_AUTO_FREE(path);
5602 struct btrfs_root *root = dir->root;
5603 int ret = 0;
5604 struct fscrypt_name fname;
5605
5606 path = btrfs_alloc_path();
5607 if (!path)
5608 return -ENOMEM;
5609
5610 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
5611 if (ret < 0)
5612 return ret;
5613 /*
5614 * fscrypt_setup_filename() should never return a positive value, but
5615 * gcc on sparc/parisc thinks it can, so assert that doesn't happen.
5616 */
5617 ASSERT(ret == 0);
5618
5619 /* This needs to handle no-key deletions later on */
5620
5621 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir),
5622 &fname.disk_name, 0);
5623 if (IS_ERR_OR_NULL(di)) {
5624 ret = di ? PTR_ERR(di) : -ENOENT;
5625 goto out;
5626 }
5627
5628 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5629 if (unlikely(location->type != BTRFS_INODE_ITEM_KEY &&
5630 location->type != BTRFS_ROOT_ITEM_KEY)) {
5631 ret = -EUCLEAN;
5632 btrfs_warn(root->fs_info,
5633 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5634 __func__, fname.disk_name.name, btrfs_ino(dir),
5635 location->objectid, location->type, location->offset);
5636 }
5637 if (!ret)
5638 *type = btrfs_dir_ftype(path->nodes[0], di);
5639 out:
5640 fscrypt_free_filename(&fname);
5641 return ret;
5642 }
5643
5644 /*
5645 * when we hit a tree root in a directory, the btrfs part of the inode
5646 * needs to be changed to reflect the root directory of the tree root. This
5647 * is kind of like crossing a mount point.
5648 */
fixup_tree_root_location(struct btrfs_fs_info * fs_info,struct btrfs_inode * dir,struct dentry * dentry,struct btrfs_key * location,struct btrfs_root ** sub_root)5649 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5650 struct btrfs_inode *dir,
5651 struct dentry *dentry,
5652 struct btrfs_key *location,
5653 struct btrfs_root **sub_root)
5654 {
5655 BTRFS_PATH_AUTO_FREE(path);
5656 struct btrfs_root *new_root;
5657 struct btrfs_root_ref *ref;
5658 struct extent_buffer *leaf;
5659 struct btrfs_key key;
5660 int ret;
5661 int err = 0;
5662 struct fscrypt_name fname;
5663
5664 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname);
5665 if (ret)
5666 return ret;
5667
5668 path = btrfs_alloc_path();
5669 if (!path) {
5670 err = -ENOMEM;
5671 goto out;
5672 }
5673
5674 err = -ENOENT;
5675 key.objectid = btrfs_root_id(dir->root);
5676 key.type = BTRFS_ROOT_REF_KEY;
5677 key.offset = location->objectid;
5678
5679 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5680 if (ret) {
5681 if (ret < 0)
5682 err = ret;
5683 goto out;
5684 }
5685
5686 leaf = path->nodes[0];
5687 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5688 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5689 btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len)
5690 goto out;
5691
5692 ret = memcmp_extent_buffer(leaf, fname.disk_name.name,
5693 (unsigned long)(ref + 1), fname.disk_name.len);
5694 if (ret)
5695 goto out;
5696
5697 btrfs_release_path(path);
5698
5699 new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5700 if (IS_ERR(new_root)) {
5701 err = PTR_ERR(new_root);
5702 goto out;
5703 }
5704
5705 *sub_root = new_root;
5706 location->objectid = btrfs_root_dirid(&new_root->root_item);
5707 location->type = BTRFS_INODE_ITEM_KEY;
5708 location->offset = 0;
5709 err = 0;
5710 out:
5711 fscrypt_free_filename(&fname);
5712 return err;
5713 }
5714
5715
5716
btrfs_del_inode_from_root(struct btrfs_inode * inode)5717 static void btrfs_del_inode_from_root(struct btrfs_inode *inode)
5718 {
5719 struct btrfs_root *root = inode->root;
5720 struct btrfs_inode *entry;
5721 bool empty = false;
5722
5723 xa_lock(&root->inodes);
5724 /*
5725 * This btrfs_inode is being freed and has already been unhashed at this
5726 * point. It's possible that another btrfs_inode has already been
5727 * allocated for the same inode and inserted itself into the root, so
5728 * don't delete it in that case.
5729 *
5730 * Note that this shouldn't need to allocate memory, so the gfp flags
5731 * don't really matter.
5732 */
5733 entry = __xa_cmpxchg(&root->inodes, btrfs_ino(inode), inode, NULL,
5734 GFP_ATOMIC);
5735 if (entry == inode)
5736 empty = xa_empty(&root->inodes);
5737 xa_unlock(&root->inodes);
5738
5739 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5740 xa_lock(&root->inodes);
5741 empty = xa_empty(&root->inodes);
5742 xa_unlock(&root->inodes);
5743 if (empty)
5744 btrfs_add_dead_root(root);
5745 }
5746 }
5747
5748
btrfs_init_locked_inode(struct inode * inode,void * p)5749 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5750 {
5751 struct btrfs_iget_args *args = p;
5752
5753 btrfs_set_inode_number(BTRFS_I(inode), args->ino);
5754 BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5755
5756 if (args->root && args->root == args->root->fs_info->tree_root &&
5757 args->ino != BTRFS_BTREE_INODE_OBJECTID)
5758 set_bit(BTRFS_INODE_FREE_SPACE_INODE,
5759 &BTRFS_I(inode)->runtime_flags);
5760 return 0;
5761 }
5762
btrfs_find_actor(struct inode * inode,void * opaque)5763 static int btrfs_find_actor(struct inode *inode, void *opaque)
5764 {
5765 struct btrfs_iget_args *args = opaque;
5766
5767 return args->ino == btrfs_ino(BTRFS_I(inode)) &&
5768 args->root == BTRFS_I(inode)->root;
5769 }
5770
btrfs_iget_locked(u64 ino,struct btrfs_root * root)5771 static struct btrfs_inode *btrfs_iget_locked(u64 ino, struct btrfs_root *root)
5772 {
5773 struct inode *inode;
5774 struct btrfs_iget_args args;
5775 unsigned long hashval = btrfs_inode_hash(ino, root);
5776
5777 args.ino = ino;
5778 args.root = root;
5779
5780 inode = iget5_locked_rcu(root->fs_info->sb, hashval, btrfs_find_actor,
5781 btrfs_init_locked_inode,
5782 (void *)&args);
5783 if (!inode)
5784 return NULL;
5785 return BTRFS_I(inode);
5786 }
5787
5788 /*
5789 * Get an inode object given its inode number and corresponding root. Path is
5790 * preallocated to prevent recursing back to iget through allocator.
5791 */
btrfs_iget_path(u64 ino,struct btrfs_root * root,struct btrfs_path * path)5792 struct btrfs_inode *btrfs_iget_path(u64 ino, struct btrfs_root *root,
5793 struct btrfs_path *path)
5794 {
5795 struct btrfs_inode *inode;
5796 int ret;
5797
5798 inode = btrfs_iget_locked(ino, root);
5799 if (!inode)
5800 return ERR_PTR(-ENOMEM);
5801
5802 if (!(inode->vfs_inode.i_state & I_NEW))
5803 return inode;
5804
5805 ret = btrfs_read_locked_inode(inode, path);
5806 if (ret)
5807 return ERR_PTR(ret);
5808
5809 unlock_new_inode(&inode->vfs_inode);
5810 return inode;
5811 }
5812
5813 /*
5814 * Get an inode object given its inode number and corresponding root.
5815 */
btrfs_iget(u64 ino,struct btrfs_root * root)5816 struct btrfs_inode *btrfs_iget(u64 ino, struct btrfs_root *root)
5817 {
5818 struct btrfs_inode *inode;
5819 struct btrfs_path *path;
5820 int ret;
5821
5822 inode = btrfs_iget_locked(ino, root);
5823 if (!inode)
5824 return ERR_PTR(-ENOMEM);
5825
5826 if (!(inode->vfs_inode.i_state & I_NEW))
5827 return inode;
5828
5829 path = btrfs_alloc_path();
5830 if (!path) {
5831 iget_failed(&inode->vfs_inode);
5832 return ERR_PTR(-ENOMEM);
5833 }
5834
5835 ret = btrfs_read_locked_inode(inode, path);
5836 btrfs_free_path(path);
5837 if (ret)
5838 return ERR_PTR(ret);
5839
5840 unlock_new_inode(&inode->vfs_inode);
5841 return inode;
5842 }
5843
new_simple_dir(struct inode * dir,struct btrfs_key * key,struct btrfs_root * root)5844 static struct btrfs_inode *new_simple_dir(struct inode *dir,
5845 struct btrfs_key *key,
5846 struct btrfs_root *root)
5847 {
5848 struct timespec64 ts;
5849 struct inode *vfs_inode;
5850 struct btrfs_inode *inode;
5851
5852 vfs_inode = new_inode(dir->i_sb);
5853 if (!vfs_inode)
5854 return ERR_PTR(-ENOMEM);
5855
5856 inode = BTRFS_I(vfs_inode);
5857 inode->root = btrfs_grab_root(root);
5858 inode->ref_root_id = key->objectid;
5859 set_bit(BTRFS_INODE_ROOT_STUB, &inode->runtime_flags);
5860 set_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags);
5861
5862 btrfs_set_inode_number(inode, BTRFS_EMPTY_SUBVOL_DIR_OBJECTID);
5863 /*
5864 * We only need lookup, the rest is read-only and there's no inode
5865 * associated with the dentry
5866 */
5867 vfs_inode->i_op = &simple_dir_inode_operations;
5868 vfs_inode->i_opflags &= ~IOP_XATTR;
5869 vfs_inode->i_fop = &simple_dir_operations;
5870 vfs_inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5871
5872 ts = inode_set_ctime_current(vfs_inode);
5873 inode_set_mtime_to_ts(vfs_inode, ts);
5874 inode_set_atime_to_ts(vfs_inode, inode_get_atime(dir));
5875 inode->i_otime_sec = ts.tv_sec;
5876 inode->i_otime_nsec = ts.tv_nsec;
5877
5878 vfs_inode->i_uid = dir->i_uid;
5879 vfs_inode->i_gid = dir->i_gid;
5880
5881 return inode;
5882 }
5883
5884 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN);
5885 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE);
5886 static_assert(BTRFS_FT_DIR == FT_DIR);
5887 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV);
5888 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV);
5889 static_assert(BTRFS_FT_FIFO == FT_FIFO);
5890 static_assert(BTRFS_FT_SOCK == FT_SOCK);
5891 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK);
5892
btrfs_inode_type(const struct btrfs_inode * inode)5893 static inline u8 btrfs_inode_type(const struct btrfs_inode *inode)
5894 {
5895 return fs_umode_to_ftype(inode->vfs_inode.i_mode);
5896 }
5897
btrfs_lookup_dentry(struct inode * dir,struct dentry * dentry)5898 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5899 {
5900 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
5901 struct btrfs_inode *inode;
5902 struct btrfs_root *root = BTRFS_I(dir)->root;
5903 struct btrfs_root *sub_root = root;
5904 struct btrfs_key location = { 0 };
5905 u8 di_type = 0;
5906 int ret = 0;
5907
5908 if (dentry->d_name.len > BTRFS_NAME_LEN)
5909 return ERR_PTR(-ENAMETOOLONG);
5910
5911 ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type);
5912 if (ret < 0)
5913 return ERR_PTR(ret);
5914
5915 if (location.type == BTRFS_INODE_ITEM_KEY) {
5916 inode = btrfs_iget(location.objectid, root);
5917 if (IS_ERR(inode))
5918 return ERR_CAST(inode);
5919
5920 /* Do extra check against inode mode with di_type */
5921 if (unlikely(btrfs_inode_type(inode) != di_type)) {
5922 btrfs_crit(fs_info,
5923 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5924 inode->vfs_inode.i_mode, btrfs_inode_type(inode),
5925 di_type);
5926 iput(&inode->vfs_inode);
5927 return ERR_PTR(-EUCLEAN);
5928 }
5929 return &inode->vfs_inode;
5930 }
5931
5932 ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry,
5933 &location, &sub_root);
5934 if (ret < 0) {
5935 if (ret != -ENOENT)
5936 inode = ERR_PTR(ret);
5937 else
5938 inode = new_simple_dir(dir, &location, root);
5939 } else {
5940 inode = btrfs_iget(location.objectid, sub_root);
5941 btrfs_put_root(sub_root);
5942
5943 if (IS_ERR(inode))
5944 return ERR_CAST(inode);
5945
5946 down_read(&fs_info->cleanup_work_sem);
5947 if (!sb_rdonly(inode->vfs_inode.i_sb))
5948 ret = btrfs_orphan_cleanup(sub_root);
5949 up_read(&fs_info->cleanup_work_sem);
5950 if (ret) {
5951 iput(&inode->vfs_inode);
5952 inode = ERR_PTR(ret);
5953 }
5954 }
5955
5956 if (IS_ERR(inode))
5957 return ERR_CAST(inode);
5958
5959 return &inode->vfs_inode;
5960 }
5961
btrfs_dentry_delete(const struct dentry * dentry)5962 static int btrfs_dentry_delete(const struct dentry *dentry)
5963 {
5964 struct btrfs_root *root;
5965 struct inode *inode = d_inode(dentry);
5966
5967 if (!inode && !IS_ROOT(dentry))
5968 inode = d_inode(dentry->d_parent);
5969
5970 if (inode) {
5971 root = BTRFS_I(inode)->root;
5972 if (btrfs_root_refs(&root->root_item) == 0)
5973 return 1;
5974
5975 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5976 return 1;
5977 }
5978 return 0;
5979 }
5980
btrfs_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)5981 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5982 unsigned int flags)
5983 {
5984 struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5985
5986 if (inode == ERR_PTR(-ENOENT))
5987 inode = NULL;
5988 return d_splice_alias(inode, dentry);
5989 }
5990
5991 /*
5992 * Find the highest existing sequence number in a directory and then set the
5993 * in-memory index_cnt variable to the first free sequence number.
5994 */
btrfs_set_inode_index_count(struct btrfs_inode * inode)5995 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
5996 {
5997 struct btrfs_root *root = inode->root;
5998 struct btrfs_key key, found_key;
5999 BTRFS_PATH_AUTO_FREE(path);
6000 struct extent_buffer *leaf;
6001 int ret;
6002
6003 key.objectid = btrfs_ino(inode);
6004 key.type = BTRFS_DIR_INDEX_KEY;
6005 key.offset = (u64)-1;
6006
6007 path = btrfs_alloc_path();
6008 if (!path)
6009 return -ENOMEM;
6010
6011 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6012 if (ret < 0)
6013 return ret;
6014 /* FIXME: we should be able to handle this */
6015 if (ret == 0)
6016 return ret;
6017
6018 if (path->slots[0] == 0) {
6019 inode->index_cnt = BTRFS_DIR_START_INDEX;
6020 return 0;
6021 }
6022
6023 path->slots[0]--;
6024
6025 leaf = path->nodes[0];
6026 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6027
6028 if (found_key.objectid != btrfs_ino(inode) ||
6029 found_key.type != BTRFS_DIR_INDEX_KEY) {
6030 inode->index_cnt = BTRFS_DIR_START_INDEX;
6031 return 0;
6032 }
6033
6034 inode->index_cnt = found_key.offset + 1;
6035
6036 return 0;
6037 }
6038
btrfs_get_dir_last_index(struct btrfs_inode * dir,u64 * index)6039 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index)
6040 {
6041 int ret = 0;
6042
6043 btrfs_inode_lock(dir, 0);
6044 if (dir->index_cnt == (u64)-1) {
6045 ret = btrfs_inode_delayed_dir_index_count(dir);
6046 if (ret) {
6047 ret = btrfs_set_inode_index_count(dir);
6048 if (ret)
6049 goto out;
6050 }
6051 }
6052
6053 /* index_cnt is the index number of next new entry, so decrement it. */
6054 *index = dir->index_cnt - 1;
6055 out:
6056 btrfs_inode_unlock(dir, 0);
6057
6058 return ret;
6059 }
6060
6061 /*
6062 * All this infrastructure exists because dir_emit can fault, and we are holding
6063 * the tree lock when doing readdir. For now just allocate a buffer and copy
6064 * our information into that, and then dir_emit from the buffer. This is
6065 * similar to what NFS does, only we don't keep the buffer around in pagecache
6066 * because I'm afraid I'll mess that up. Long term we need to make filldir do
6067 * copy_to_user_inatomic so we don't have to worry about page faulting under the
6068 * tree lock.
6069 */
btrfs_opendir(struct inode * inode,struct file * file)6070 static int btrfs_opendir(struct inode *inode, struct file *file)
6071 {
6072 struct btrfs_file_private *private;
6073 u64 last_index;
6074 int ret;
6075
6076 ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index);
6077 if (ret)
6078 return ret;
6079
6080 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
6081 if (!private)
6082 return -ENOMEM;
6083 private->last_index = last_index;
6084 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
6085 if (!private->filldir_buf) {
6086 kfree(private);
6087 return -ENOMEM;
6088 }
6089 file->private_data = private;
6090 return 0;
6091 }
6092
btrfs_dir_llseek(struct file * file,loff_t offset,int whence)6093 static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence)
6094 {
6095 struct btrfs_file_private *private = file->private_data;
6096 int ret;
6097
6098 ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)),
6099 &private->last_index);
6100 if (ret)
6101 return ret;
6102
6103 return generic_file_llseek(file, offset, whence);
6104 }
6105
6106 struct dir_entry {
6107 u64 ino;
6108 u64 offset;
6109 unsigned type;
6110 int name_len;
6111 };
6112
btrfs_filldir(void * addr,int entries,struct dir_context * ctx)6113 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
6114 {
6115 while (entries--) {
6116 struct dir_entry *entry = addr;
6117 char *name = (char *)(entry + 1);
6118
6119 ctx->pos = get_unaligned(&entry->offset);
6120 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
6121 get_unaligned(&entry->ino),
6122 get_unaligned(&entry->type)))
6123 return 1;
6124 addr += sizeof(struct dir_entry) +
6125 get_unaligned(&entry->name_len);
6126 ctx->pos++;
6127 }
6128 return 0;
6129 }
6130
btrfs_real_readdir(struct file * file,struct dir_context * ctx)6131 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
6132 {
6133 struct inode *inode = file_inode(file);
6134 struct btrfs_root *root = BTRFS_I(inode)->root;
6135 struct btrfs_file_private *private = file->private_data;
6136 struct btrfs_dir_item *di;
6137 struct btrfs_key key;
6138 struct btrfs_key found_key;
6139 BTRFS_PATH_AUTO_FREE(path);
6140 void *addr;
6141 LIST_HEAD(ins_list);
6142 LIST_HEAD(del_list);
6143 int ret;
6144 char *name_ptr;
6145 int name_len;
6146 int entries = 0;
6147 int total_len = 0;
6148 bool put = false;
6149 struct btrfs_key location;
6150
6151 if (!dir_emit_dots(file, ctx))
6152 return 0;
6153
6154 path = btrfs_alloc_path();
6155 if (!path)
6156 return -ENOMEM;
6157
6158 addr = private->filldir_buf;
6159 path->reada = READA_FORWARD;
6160
6161 put = btrfs_readdir_get_delayed_items(BTRFS_I(inode), private->last_index,
6162 &ins_list, &del_list);
6163
6164 again:
6165 key.type = BTRFS_DIR_INDEX_KEY;
6166 key.offset = ctx->pos;
6167 key.objectid = btrfs_ino(BTRFS_I(inode));
6168
6169 btrfs_for_each_slot(root, &key, &found_key, path, ret) {
6170 struct dir_entry *entry;
6171 struct extent_buffer *leaf = path->nodes[0];
6172 u8 ftype;
6173
6174 if (found_key.objectid != key.objectid)
6175 break;
6176 if (found_key.type != BTRFS_DIR_INDEX_KEY)
6177 break;
6178 if (found_key.offset < ctx->pos)
6179 continue;
6180 if (found_key.offset > private->last_index)
6181 break;
6182 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
6183 continue;
6184 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
6185 name_len = btrfs_dir_name_len(leaf, di);
6186 if ((total_len + sizeof(struct dir_entry) + name_len) >=
6187 PAGE_SIZE) {
6188 btrfs_release_path(path);
6189 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6190 if (ret)
6191 goto nopos;
6192 addr = private->filldir_buf;
6193 entries = 0;
6194 total_len = 0;
6195 goto again;
6196 }
6197
6198 ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di));
6199 entry = addr;
6200 name_ptr = (char *)(entry + 1);
6201 read_extent_buffer(leaf, name_ptr,
6202 (unsigned long)(di + 1), name_len);
6203 put_unaligned(name_len, &entry->name_len);
6204 put_unaligned(fs_ftype_to_dtype(ftype), &entry->type);
6205 btrfs_dir_item_key_to_cpu(leaf, di, &location);
6206 put_unaligned(location.objectid, &entry->ino);
6207 put_unaligned(found_key.offset, &entry->offset);
6208 entries++;
6209 addr += sizeof(struct dir_entry) + name_len;
6210 total_len += sizeof(struct dir_entry) + name_len;
6211 }
6212 /* Catch error encountered during iteration */
6213 if (ret < 0)
6214 goto err;
6215
6216 btrfs_release_path(path);
6217
6218 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6219 if (ret)
6220 goto nopos;
6221
6222 if (btrfs_readdir_delayed_dir_index(ctx, &ins_list))
6223 goto nopos;
6224
6225 /*
6226 * Stop new entries from being returned after we return the last
6227 * entry.
6228 *
6229 * New directory entries are assigned a strictly increasing
6230 * offset. This means that new entries created during readdir
6231 * are *guaranteed* to be seen in the future by that readdir.
6232 * This has broken buggy programs which operate on names as
6233 * they're returned by readdir. Until we reuse freed offsets
6234 * we have this hack to stop new entries from being returned
6235 * under the assumption that they'll never reach this huge
6236 * offset.
6237 *
6238 * This is being careful not to overflow 32bit loff_t unless the
6239 * last entry requires it because doing so has broken 32bit apps
6240 * in the past.
6241 */
6242 if (ctx->pos >= INT_MAX)
6243 ctx->pos = LLONG_MAX;
6244 else
6245 ctx->pos = INT_MAX;
6246 nopos:
6247 ret = 0;
6248 err:
6249 if (put)
6250 btrfs_readdir_put_delayed_items(BTRFS_I(inode), &ins_list, &del_list);
6251 return ret;
6252 }
6253
6254 /*
6255 * This is somewhat expensive, updating the tree every time the
6256 * inode changes. But, it is most likely to find the inode in cache.
6257 * FIXME, needs more benchmarking...there are no reasons other than performance
6258 * to keep or drop this code.
6259 */
btrfs_dirty_inode(struct btrfs_inode * inode)6260 static int btrfs_dirty_inode(struct btrfs_inode *inode)
6261 {
6262 struct btrfs_root *root = inode->root;
6263 struct btrfs_fs_info *fs_info = root->fs_info;
6264 struct btrfs_trans_handle *trans;
6265 int ret;
6266
6267 if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags))
6268 return 0;
6269
6270 trans = btrfs_join_transaction(root);
6271 if (IS_ERR(trans))
6272 return PTR_ERR(trans);
6273
6274 ret = btrfs_update_inode(trans, inode);
6275 if (ret == -ENOSPC || ret == -EDQUOT) {
6276 /* whoops, lets try again with the full transaction */
6277 btrfs_end_transaction(trans);
6278 trans = btrfs_start_transaction(root, 1);
6279 if (IS_ERR(trans))
6280 return PTR_ERR(trans);
6281
6282 ret = btrfs_update_inode(trans, inode);
6283 }
6284 btrfs_end_transaction(trans);
6285 if (inode->delayed_node)
6286 btrfs_balance_delayed_items(fs_info);
6287
6288 return ret;
6289 }
6290
6291 /*
6292 * This is a copy of file_update_time. We need this so we can return error on
6293 * ENOSPC for updating the inode in the case of file write and mmap writes.
6294 */
btrfs_update_time(struct inode * inode,int flags)6295 static int btrfs_update_time(struct inode *inode, int flags)
6296 {
6297 struct btrfs_root *root = BTRFS_I(inode)->root;
6298 bool dirty;
6299
6300 if (btrfs_root_readonly(root))
6301 return -EROFS;
6302
6303 dirty = inode_update_timestamps(inode, flags);
6304 return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0;
6305 }
6306
6307 /*
6308 * helper to find a free sequence number in a given directory. This current
6309 * code is very simple, later versions will do smarter things in the btree
6310 */
btrfs_set_inode_index(struct btrfs_inode * dir,u64 * index)6311 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6312 {
6313 int ret = 0;
6314
6315 if (dir->index_cnt == (u64)-1) {
6316 ret = btrfs_inode_delayed_dir_index_count(dir);
6317 if (ret) {
6318 ret = btrfs_set_inode_index_count(dir);
6319 if (ret)
6320 return ret;
6321 }
6322 }
6323
6324 *index = dir->index_cnt;
6325 dir->index_cnt++;
6326
6327 return ret;
6328 }
6329
btrfs_insert_inode_locked(struct inode * inode)6330 static int btrfs_insert_inode_locked(struct inode *inode)
6331 {
6332 struct btrfs_iget_args args;
6333
6334 args.ino = btrfs_ino(BTRFS_I(inode));
6335 args.root = BTRFS_I(inode)->root;
6336
6337 return insert_inode_locked4(inode,
6338 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6339 btrfs_find_actor, &args);
6340 }
6341
btrfs_new_inode_prepare(struct btrfs_new_inode_args * args,unsigned int * trans_num_items)6342 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
6343 unsigned int *trans_num_items)
6344 {
6345 struct inode *dir = args->dir;
6346 struct inode *inode = args->inode;
6347 int ret;
6348
6349 if (!args->orphan) {
6350 ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0,
6351 &args->fname);
6352 if (ret)
6353 return ret;
6354 }
6355
6356 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl);
6357 if (ret) {
6358 fscrypt_free_filename(&args->fname);
6359 return ret;
6360 }
6361
6362 /* 1 to add inode item */
6363 *trans_num_items = 1;
6364 /* 1 to add compression property */
6365 if (BTRFS_I(dir)->prop_compress)
6366 (*trans_num_items)++;
6367 /* 1 to add default ACL xattr */
6368 if (args->default_acl)
6369 (*trans_num_items)++;
6370 /* 1 to add access ACL xattr */
6371 if (args->acl)
6372 (*trans_num_items)++;
6373 #ifdef CONFIG_SECURITY
6374 /* 1 to add LSM xattr */
6375 if (dir->i_security)
6376 (*trans_num_items)++;
6377 #endif
6378 if (args->orphan) {
6379 /* 1 to add orphan item */
6380 (*trans_num_items)++;
6381 } else {
6382 /*
6383 * 1 to add dir item
6384 * 1 to add dir index
6385 * 1 to update parent inode item
6386 *
6387 * No need for 1 unit for the inode ref item because it is
6388 * inserted in a batch together with the inode item at
6389 * btrfs_create_new_inode().
6390 */
6391 *trans_num_items += 3;
6392 }
6393 return 0;
6394 }
6395
btrfs_new_inode_args_destroy(struct btrfs_new_inode_args * args)6396 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args)
6397 {
6398 posix_acl_release(args->acl);
6399 posix_acl_release(args->default_acl);
6400 fscrypt_free_filename(&args->fname);
6401 }
6402
6403 /*
6404 * Inherit flags from the parent inode.
6405 *
6406 * Currently only the compression flags and the cow flags are inherited.
6407 */
btrfs_inherit_iflags(struct btrfs_inode * inode,struct btrfs_inode * dir)6408 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir)
6409 {
6410 unsigned int flags;
6411
6412 flags = dir->flags;
6413
6414 if (flags & BTRFS_INODE_NOCOMPRESS) {
6415 inode->flags &= ~BTRFS_INODE_COMPRESS;
6416 inode->flags |= BTRFS_INODE_NOCOMPRESS;
6417 } else if (flags & BTRFS_INODE_COMPRESS) {
6418 inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
6419 inode->flags |= BTRFS_INODE_COMPRESS;
6420 }
6421
6422 if (flags & BTRFS_INODE_NODATACOW) {
6423 inode->flags |= BTRFS_INODE_NODATACOW;
6424 if (S_ISREG(inode->vfs_inode.i_mode))
6425 inode->flags |= BTRFS_INODE_NODATASUM;
6426 }
6427
6428 btrfs_sync_inode_flags_to_i_flags(inode);
6429 }
6430
btrfs_create_new_inode(struct btrfs_trans_handle * trans,struct btrfs_new_inode_args * args)6431 int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
6432 struct btrfs_new_inode_args *args)
6433 {
6434 struct timespec64 ts;
6435 struct inode *dir = args->dir;
6436 struct inode *inode = args->inode;
6437 const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name;
6438 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
6439 struct btrfs_root *root;
6440 struct btrfs_inode_item *inode_item;
6441 struct btrfs_path *path;
6442 u64 objectid;
6443 struct btrfs_inode_ref *ref;
6444 struct btrfs_key key[2];
6445 u32 sizes[2];
6446 struct btrfs_item_batch batch;
6447 unsigned long ptr;
6448 int ret;
6449 bool xa_reserved = false;
6450
6451 path = btrfs_alloc_path();
6452 if (!path)
6453 return -ENOMEM;
6454
6455 if (!args->subvol)
6456 BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root);
6457 root = BTRFS_I(inode)->root;
6458
6459 ret = btrfs_init_file_extent_tree(BTRFS_I(inode));
6460 if (ret)
6461 goto out;
6462
6463 ret = btrfs_get_free_objectid(root, &objectid);
6464 if (ret)
6465 goto out;
6466 btrfs_set_inode_number(BTRFS_I(inode), objectid);
6467
6468 ret = xa_reserve(&root->inodes, objectid, GFP_NOFS);
6469 if (ret)
6470 goto out;
6471 xa_reserved = true;
6472
6473 if (args->orphan) {
6474 /*
6475 * O_TMPFILE, set link count to 0, so that after this point, we
6476 * fill in an inode item with the correct link count.
6477 */
6478 set_nlink(inode, 0);
6479 } else {
6480 trace_btrfs_inode_request(dir);
6481
6482 ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index);
6483 if (ret)
6484 goto out;
6485 }
6486
6487 if (S_ISDIR(inode->i_mode))
6488 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX;
6489
6490 BTRFS_I(inode)->generation = trans->transid;
6491 inode->i_generation = BTRFS_I(inode)->generation;
6492
6493 /*
6494 * We don't have any capability xattrs set here yet, shortcut any
6495 * queries for the xattrs here. If we add them later via the inode
6496 * security init path or any other path this flag will be cleared.
6497 */
6498 set_bit(BTRFS_INODE_NO_CAP_XATTR, &BTRFS_I(inode)->runtime_flags);
6499
6500 /*
6501 * Subvolumes don't inherit flags from their parent directory.
6502 * Originally this was probably by accident, but we probably can't
6503 * change it now without compatibility issues.
6504 */
6505 if (!args->subvol)
6506 btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir));
6507
6508 btrfs_set_inode_mapping_order(BTRFS_I(inode));
6509 if (S_ISREG(inode->i_mode)) {
6510 if (btrfs_test_opt(fs_info, NODATASUM))
6511 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6512 if (btrfs_test_opt(fs_info, NODATACOW))
6513 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6514 BTRFS_INODE_NODATASUM;
6515 btrfs_update_inode_mapping_flags(BTRFS_I(inode));
6516 }
6517
6518 ret = btrfs_insert_inode_locked(inode);
6519 if (ret < 0) {
6520 if (!args->orphan)
6521 BTRFS_I(dir)->index_cnt--;
6522 goto out;
6523 }
6524
6525 /*
6526 * We could have gotten an inode number from somebody who was fsynced
6527 * and then removed in this same transaction, so let's just set full
6528 * sync since it will be a full sync anyway and this will blow away the
6529 * old info in the log.
6530 */
6531 btrfs_set_inode_full_sync(BTRFS_I(inode));
6532
6533 key[0].objectid = objectid;
6534 key[0].type = BTRFS_INODE_ITEM_KEY;
6535 key[0].offset = 0;
6536
6537 sizes[0] = sizeof(struct btrfs_inode_item);
6538
6539 if (!args->orphan) {
6540 /*
6541 * Start new inodes with an inode_ref. This is slightly more
6542 * efficient for small numbers of hard links since they will
6543 * be packed into one item. Extended refs will kick in if we
6544 * add more hard links than can fit in the ref item.
6545 */
6546 key[1].objectid = objectid;
6547 key[1].type = BTRFS_INODE_REF_KEY;
6548 if (args->subvol) {
6549 key[1].offset = objectid;
6550 sizes[1] = 2 + sizeof(*ref);
6551 } else {
6552 key[1].offset = btrfs_ino(BTRFS_I(dir));
6553 sizes[1] = name->len + sizeof(*ref);
6554 }
6555 }
6556
6557 batch.keys = &key[0];
6558 batch.data_sizes = &sizes[0];
6559 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]);
6560 batch.nr = args->orphan ? 1 : 2;
6561 ret = btrfs_insert_empty_items(trans, root, path, &batch);
6562 if (unlikely(ret != 0)) {
6563 btrfs_abort_transaction(trans, ret);
6564 goto discard;
6565 }
6566
6567 ts = simple_inode_init_ts(inode);
6568 BTRFS_I(inode)->i_otime_sec = ts.tv_sec;
6569 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec;
6570
6571 /*
6572 * We're going to fill the inode item now, so at this point the inode
6573 * must be fully initialized.
6574 */
6575
6576 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6577 struct btrfs_inode_item);
6578 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6579 sizeof(*inode_item));
6580 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6581
6582 if (!args->orphan) {
6583 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6584 struct btrfs_inode_ref);
6585 ptr = (unsigned long)(ref + 1);
6586 if (args->subvol) {
6587 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2);
6588 btrfs_set_inode_ref_index(path->nodes[0], ref, 0);
6589 write_extent_buffer(path->nodes[0], "..", ptr, 2);
6590 } else {
6591 btrfs_set_inode_ref_name_len(path->nodes[0], ref,
6592 name->len);
6593 btrfs_set_inode_ref_index(path->nodes[0], ref,
6594 BTRFS_I(inode)->dir_index);
6595 write_extent_buffer(path->nodes[0], name->name, ptr,
6596 name->len);
6597 }
6598 }
6599
6600 /*
6601 * We don't need the path anymore, plus inheriting properties, adding
6602 * ACLs, security xattrs, orphan item or adding the link, will result in
6603 * allocating yet another path. So just free our path.
6604 */
6605 btrfs_free_path(path);
6606 path = NULL;
6607
6608 if (args->subvol) {
6609 struct btrfs_inode *parent;
6610
6611 /*
6612 * Subvolumes inherit properties from their parent subvolume,
6613 * not the directory they were created in.
6614 */
6615 parent = btrfs_iget(BTRFS_FIRST_FREE_OBJECTID, BTRFS_I(dir)->root);
6616 if (IS_ERR(parent)) {
6617 ret = PTR_ERR(parent);
6618 } else {
6619 ret = btrfs_inode_inherit_props(trans, BTRFS_I(inode),
6620 parent);
6621 iput(&parent->vfs_inode);
6622 }
6623 } else {
6624 ret = btrfs_inode_inherit_props(trans, BTRFS_I(inode),
6625 BTRFS_I(dir));
6626 }
6627 if (ret) {
6628 btrfs_err(fs_info,
6629 "error inheriting props for ino %llu (root %llu): %d",
6630 btrfs_ino(BTRFS_I(inode)), btrfs_root_id(root), ret);
6631 }
6632
6633 /*
6634 * Subvolumes don't inherit ACLs or get passed to the LSM. This is
6635 * probably a bug.
6636 */
6637 if (!args->subvol) {
6638 ret = btrfs_init_inode_security(trans, args);
6639 if (unlikely(ret)) {
6640 btrfs_abort_transaction(trans, ret);
6641 goto discard;
6642 }
6643 }
6644
6645 ret = btrfs_add_inode_to_root(BTRFS_I(inode), false);
6646 if (WARN_ON(ret)) {
6647 /* Shouldn't happen, we used xa_reserve() before. */
6648 btrfs_abort_transaction(trans, ret);
6649 goto discard;
6650 }
6651
6652 trace_btrfs_inode_new(inode);
6653 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6654
6655 btrfs_update_root_times(trans, root);
6656
6657 if (args->orphan) {
6658 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
6659 if (unlikely(ret)) {
6660 btrfs_abort_transaction(trans, ret);
6661 goto discard;
6662 }
6663 } else {
6664 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
6665 0, BTRFS_I(inode)->dir_index);
6666 if (unlikely(ret)) {
6667 btrfs_abort_transaction(trans, ret);
6668 goto discard;
6669 }
6670 }
6671
6672 return 0;
6673
6674 discard:
6675 /*
6676 * discard_new_inode() calls iput(), but the caller owns the reference
6677 * to the inode.
6678 */
6679 ihold(inode);
6680 discard_new_inode(inode);
6681 out:
6682 if (xa_reserved)
6683 xa_release(&root->inodes, objectid);
6684
6685 btrfs_free_path(path);
6686 return ret;
6687 }
6688
6689 /*
6690 * utility function to add 'inode' into 'parent_inode' with
6691 * a give name and a given sequence number.
6692 * if 'add_backref' is true, also insert a backref from the
6693 * inode to the parent directory.
6694 */
btrfs_add_link(struct btrfs_trans_handle * trans,struct btrfs_inode * parent_inode,struct btrfs_inode * inode,const struct fscrypt_str * name,bool add_backref,u64 index)6695 int btrfs_add_link(struct btrfs_trans_handle *trans,
6696 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6697 const struct fscrypt_str *name, bool add_backref, u64 index)
6698 {
6699 int ret = 0;
6700 struct btrfs_key key;
6701 struct btrfs_root *root = parent_inode->root;
6702 u64 ino = btrfs_ino(inode);
6703 u64 parent_ino = btrfs_ino(parent_inode);
6704
6705 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6706 memcpy(&key, &inode->root->root_key, sizeof(key));
6707 } else {
6708 key.objectid = ino;
6709 key.type = BTRFS_INODE_ITEM_KEY;
6710 key.offset = 0;
6711 }
6712
6713 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6714 ret = btrfs_add_root_ref(trans, key.objectid,
6715 btrfs_root_id(root), parent_ino,
6716 index, name);
6717 } else if (add_backref) {
6718 ret = btrfs_insert_inode_ref(trans, root, name,
6719 ino, parent_ino, index);
6720 }
6721
6722 /* Nothing to clean up yet */
6723 if (ret)
6724 return ret;
6725
6726 ret = btrfs_insert_dir_item(trans, name, parent_inode, &key,
6727 btrfs_inode_type(inode), index);
6728 if (ret == -EEXIST || ret == -EOVERFLOW)
6729 goto fail_dir_item;
6730 else if (unlikely(ret)) {
6731 btrfs_abort_transaction(trans, ret);
6732 return ret;
6733 }
6734
6735 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6736 name->len * 2);
6737 inode_inc_iversion(&parent_inode->vfs_inode);
6738 update_time_after_link_or_unlink(parent_inode);
6739
6740 ret = btrfs_update_inode(trans, parent_inode);
6741 if (ret)
6742 btrfs_abort_transaction(trans, ret);
6743 return ret;
6744
6745 fail_dir_item:
6746 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6747 u64 local_index;
6748 int ret2;
6749
6750 ret2 = btrfs_del_root_ref(trans, key.objectid, btrfs_root_id(root),
6751 parent_ino, &local_index, name);
6752 if (ret2)
6753 btrfs_abort_transaction(trans, ret2);
6754 } else if (add_backref) {
6755 int ret2;
6756
6757 ret2 = btrfs_del_inode_ref(trans, root, name, ino, parent_ino, NULL);
6758 if (ret2)
6759 btrfs_abort_transaction(trans, ret2);
6760 }
6761
6762 /* Return the original error code */
6763 return ret;
6764 }
6765
btrfs_create_common(struct inode * dir,struct dentry * dentry,struct inode * inode)6766 static int btrfs_create_common(struct inode *dir, struct dentry *dentry,
6767 struct inode *inode)
6768 {
6769 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
6770 struct btrfs_root *root = BTRFS_I(dir)->root;
6771 struct btrfs_new_inode_args new_inode_args = {
6772 .dir = dir,
6773 .dentry = dentry,
6774 .inode = inode,
6775 };
6776 unsigned int trans_num_items;
6777 struct btrfs_trans_handle *trans;
6778 int ret;
6779
6780 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
6781 if (ret)
6782 goto out_inode;
6783
6784 trans = btrfs_start_transaction(root, trans_num_items);
6785 if (IS_ERR(trans)) {
6786 ret = PTR_ERR(trans);
6787 goto out_new_inode_args;
6788 }
6789
6790 ret = btrfs_create_new_inode(trans, &new_inode_args);
6791 if (!ret)
6792 d_instantiate_new(dentry, inode);
6793
6794 btrfs_end_transaction(trans);
6795 btrfs_btree_balance_dirty(fs_info);
6796 out_new_inode_args:
6797 btrfs_new_inode_args_destroy(&new_inode_args);
6798 out_inode:
6799 if (ret)
6800 iput(inode);
6801 return ret;
6802 }
6803
btrfs_mknod(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t rdev)6804 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
6805 struct dentry *dentry, umode_t mode, dev_t rdev)
6806 {
6807 struct inode *inode;
6808
6809 inode = new_inode(dir->i_sb);
6810 if (!inode)
6811 return -ENOMEM;
6812 inode_init_owner(idmap, inode, dir, mode);
6813 inode->i_op = &btrfs_special_inode_operations;
6814 init_special_inode(inode, inode->i_mode, rdev);
6815 return btrfs_create_common(dir, dentry, inode);
6816 }
6817
btrfs_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)6818 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir,
6819 struct dentry *dentry, umode_t mode, bool excl)
6820 {
6821 struct inode *inode;
6822
6823 inode = new_inode(dir->i_sb);
6824 if (!inode)
6825 return -ENOMEM;
6826 inode_init_owner(idmap, inode, dir, mode);
6827 inode->i_fop = &btrfs_file_operations;
6828 inode->i_op = &btrfs_file_inode_operations;
6829 inode->i_mapping->a_ops = &btrfs_aops;
6830 return btrfs_create_common(dir, dentry, inode);
6831 }
6832
btrfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)6833 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6834 struct dentry *dentry)
6835 {
6836 struct btrfs_trans_handle *trans = NULL;
6837 struct btrfs_root *root = BTRFS_I(dir)->root;
6838 struct inode *inode = d_inode(old_dentry);
6839 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
6840 struct fscrypt_name fname;
6841 u64 index;
6842 int ret;
6843
6844 /* do not allow sys_link's with other subvols of the same device */
6845 if (btrfs_root_id(root) != btrfs_root_id(BTRFS_I(inode)->root))
6846 return -EXDEV;
6847
6848 if (inode->i_nlink >= BTRFS_LINK_MAX)
6849 return -EMLINK;
6850
6851 ret = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname);
6852 if (ret)
6853 goto fail;
6854
6855 ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
6856 if (ret)
6857 goto fail;
6858
6859 /*
6860 * 2 items for inode and inode ref
6861 * 2 items for dir items
6862 * 1 item for parent inode
6863 * 1 item for orphan item deletion if O_TMPFILE
6864 */
6865 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6866 if (IS_ERR(trans)) {
6867 ret = PTR_ERR(trans);
6868 trans = NULL;
6869 goto fail;
6870 }
6871
6872 /* There are several dir indexes for this inode, clear the cache. */
6873 BTRFS_I(inode)->dir_index = 0ULL;
6874 inode_inc_iversion(inode);
6875 inode_set_ctime_current(inode);
6876 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6877
6878 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6879 &fname.disk_name, 1, index);
6880 if (ret)
6881 goto fail;
6882
6883 /* Link added now we update the inode item with the new link count. */
6884 inc_nlink(inode);
6885 ret = btrfs_update_inode(trans, BTRFS_I(inode));
6886 if (unlikely(ret)) {
6887 btrfs_abort_transaction(trans, ret);
6888 goto fail;
6889 }
6890
6891 if (inode->i_nlink == 1) {
6892 /*
6893 * If the new hard link count is 1, it's a file created with the
6894 * open(2) O_TMPFILE flag.
6895 */
6896 ret = btrfs_orphan_del(trans, BTRFS_I(inode));
6897 if (unlikely(ret)) {
6898 btrfs_abort_transaction(trans, ret);
6899 goto fail;
6900 }
6901 }
6902
6903 /* Grab reference for the new dentry passed to d_instantiate(). */
6904 ihold(inode);
6905 d_instantiate(dentry, inode);
6906 btrfs_log_new_name(trans, old_dentry, NULL, 0, dentry->d_parent);
6907
6908 fail:
6909 fscrypt_free_filename(&fname);
6910 if (trans)
6911 btrfs_end_transaction(trans);
6912 btrfs_btree_balance_dirty(fs_info);
6913 return ret;
6914 }
6915
btrfs_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)6916 static struct dentry *btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
6917 struct dentry *dentry, umode_t mode)
6918 {
6919 struct inode *inode;
6920
6921 inode = new_inode(dir->i_sb);
6922 if (!inode)
6923 return ERR_PTR(-ENOMEM);
6924 inode_init_owner(idmap, inode, dir, S_IFDIR | mode);
6925 inode->i_op = &btrfs_dir_inode_operations;
6926 inode->i_fop = &btrfs_dir_file_operations;
6927 return ERR_PTR(btrfs_create_common(dir, dentry, inode));
6928 }
6929
uncompress_inline(struct btrfs_path * path,struct folio * folio,struct btrfs_file_extent_item * item)6930 static noinline int uncompress_inline(struct btrfs_path *path,
6931 struct folio *folio,
6932 struct btrfs_file_extent_item *item)
6933 {
6934 int ret;
6935 struct extent_buffer *leaf = path->nodes[0];
6936 const u32 blocksize = leaf->fs_info->sectorsize;
6937 char *tmp;
6938 size_t max_size;
6939 unsigned long inline_size;
6940 unsigned long ptr;
6941 int compress_type;
6942
6943 compress_type = btrfs_file_extent_compression(leaf, item);
6944 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6945 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
6946 tmp = kmalloc(inline_size, GFP_NOFS);
6947 if (!tmp)
6948 return -ENOMEM;
6949 ptr = btrfs_file_extent_inline_start(item);
6950
6951 read_extent_buffer(leaf, tmp, ptr, inline_size);
6952
6953 max_size = min_t(unsigned long, blocksize, max_size);
6954 ret = btrfs_decompress(compress_type, tmp, folio, 0, inline_size,
6955 max_size);
6956
6957 /*
6958 * decompression code contains a memset to fill in any space between the end
6959 * of the uncompressed data and the end of max_size in case the decompressed
6960 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6961 * the end of an inline extent and the beginning of the next block, so we
6962 * cover that region here.
6963 */
6964
6965 if (max_size < blocksize)
6966 folio_zero_range(folio, max_size, blocksize - max_size);
6967 kfree(tmp);
6968 return ret;
6969 }
6970
read_inline_extent(struct btrfs_path * path,struct folio * folio)6971 static int read_inline_extent(struct btrfs_path *path, struct folio *folio)
6972 {
6973 const u32 blocksize = path->nodes[0]->fs_info->sectorsize;
6974 struct btrfs_file_extent_item *fi;
6975 void *kaddr;
6976 size_t copy_size;
6977
6978 if (!folio || folio_test_uptodate(folio))
6979 return 0;
6980
6981 ASSERT(folio_pos(folio) == 0);
6982
6983 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
6984 struct btrfs_file_extent_item);
6985 if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE)
6986 return uncompress_inline(path, folio, fi);
6987
6988 copy_size = min_t(u64, blocksize,
6989 btrfs_file_extent_ram_bytes(path->nodes[0], fi));
6990 kaddr = kmap_local_folio(folio, 0);
6991 read_extent_buffer(path->nodes[0], kaddr,
6992 btrfs_file_extent_inline_start(fi), copy_size);
6993 kunmap_local(kaddr);
6994 if (copy_size < blocksize)
6995 folio_zero_range(folio, copy_size, blocksize - copy_size);
6996 return 0;
6997 }
6998
6999 /*
7000 * Lookup the first extent overlapping a range in a file.
7001 *
7002 * @inode: file to search in
7003 * @page: page to read extent data into if the extent is inline
7004 * @start: file offset
7005 * @len: length of range starting at @start
7006 *
7007 * Return the first &struct extent_map which overlaps the given range, reading
7008 * it from the B-tree and caching it if necessary. Note that there may be more
7009 * extents which overlap the given range after the returned extent_map.
7010 *
7011 * If @page is not NULL and the extent is inline, this also reads the extent
7012 * data directly into the page and marks the extent up to date in the io_tree.
7013 *
7014 * Return: ERR_PTR on error, non-NULL extent_map on success.
7015 */
btrfs_get_extent(struct btrfs_inode * inode,struct folio * folio,u64 start,u64 len)7016 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
7017 struct folio *folio, u64 start, u64 len)
7018 {
7019 struct btrfs_fs_info *fs_info = inode->root->fs_info;
7020 int ret = 0;
7021 u64 extent_start = 0;
7022 u64 extent_end = 0;
7023 u64 objectid = btrfs_ino(inode);
7024 int extent_type = -1;
7025 struct btrfs_path *path = NULL;
7026 struct btrfs_root *root = inode->root;
7027 struct btrfs_file_extent_item *item;
7028 struct extent_buffer *leaf;
7029 struct btrfs_key found_key;
7030 struct extent_map *em = NULL;
7031 struct extent_map_tree *em_tree = &inode->extent_tree;
7032
7033 read_lock(&em_tree->lock);
7034 em = btrfs_lookup_extent_mapping(em_tree, start, len);
7035 read_unlock(&em_tree->lock);
7036
7037 if (em) {
7038 if (em->start > start || em->start + em->len <= start)
7039 btrfs_free_extent_map(em);
7040 else if (em->disk_bytenr == EXTENT_MAP_INLINE && folio)
7041 btrfs_free_extent_map(em);
7042 else
7043 goto out;
7044 }
7045 em = btrfs_alloc_extent_map();
7046 if (!em) {
7047 ret = -ENOMEM;
7048 goto out;
7049 }
7050 em->start = EXTENT_MAP_HOLE;
7051 em->disk_bytenr = EXTENT_MAP_HOLE;
7052 em->len = (u64)-1;
7053
7054 path = btrfs_alloc_path();
7055 if (!path) {
7056 ret = -ENOMEM;
7057 goto out;
7058 }
7059
7060 /* Chances are we'll be called again, so go ahead and do readahead */
7061 path->reada = READA_FORWARD;
7062
7063 /*
7064 * The same explanation in load_free_space_cache applies here as well,
7065 * we only read when we're loading the free space cache, and at that
7066 * point the commit_root has everything we need.
7067 */
7068 if (btrfs_is_free_space_inode(inode)) {
7069 path->search_commit_root = 1;
7070 path->skip_locking = 1;
7071 }
7072
7073 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
7074 if (ret < 0) {
7075 goto out;
7076 } else if (ret > 0) {
7077 if (path->slots[0] == 0)
7078 goto not_found;
7079 path->slots[0]--;
7080 ret = 0;
7081 }
7082
7083 leaf = path->nodes[0];
7084 item = btrfs_item_ptr(leaf, path->slots[0],
7085 struct btrfs_file_extent_item);
7086 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7087 if (found_key.objectid != objectid ||
7088 found_key.type != BTRFS_EXTENT_DATA_KEY) {
7089 /*
7090 * If we backup past the first extent we want to move forward
7091 * and see if there is an extent in front of us, otherwise we'll
7092 * say there is a hole for our whole search range which can
7093 * cause problems.
7094 */
7095 extent_end = start;
7096 goto next;
7097 }
7098
7099 extent_type = btrfs_file_extent_type(leaf, item);
7100 extent_start = found_key.offset;
7101 extent_end = btrfs_file_extent_end(path);
7102 if (extent_type == BTRFS_FILE_EXTENT_REG ||
7103 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
7104 /* Only regular file could have regular/prealloc extent */
7105 if (unlikely(!S_ISREG(inode->vfs_inode.i_mode))) {
7106 ret = -EUCLEAN;
7107 btrfs_crit(fs_info,
7108 "regular/prealloc extent found for non-regular inode %llu",
7109 btrfs_ino(inode));
7110 goto out;
7111 }
7112 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
7113 extent_start);
7114 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
7115 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
7116 path->slots[0],
7117 extent_start);
7118 }
7119 next:
7120 if (start >= extent_end) {
7121 path->slots[0]++;
7122 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
7123 ret = btrfs_next_leaf(root, path);
7124 if (ret < 0)
7125 goto out;
7126 else if (ret > 0)
7127 goto not_found;
7128
7129 leaf = path->nodes[0];
7130 }
7131 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7132 if (found_key.objectid != objectid ||
7133 found_key.type != BTRFS_EXTENT_DATA_KEY)
7134 goto not_found;
7135 if (start + len <= found_key.offset)
7136 goto not_found;
7137 if (start > found_key.offset)
7138 goto next;
7139
7140 /* New extent overlaps with existing one */
7141 em->start = start;
7142 em->len = found_key.offset - start;
7143 em->disk_bytenr = EXTENT_MAP_HOLE;
7144 goto insert;
7145 }
7146
7147 btrfs_extent_item_to_extent_map(inode, path, item, em);
7148
7149 if (extent_type == BTRFS_FILE_EXTENT_REG ||
7150 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
7151 goto insert;
7152 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
7153 /*
7154 * Inline extent can only exist at file offset 0. This is
7155 * ensured by tree-checker and inline extent creation path.
7156 * Thus all members representing file offsets should be zero.
7157 */
7158 ASSERT(extent_start == 0);
7159 ASSERT(em->start == 0);
7160
7161 /*
7162 * btrfs_extent_item_to_extent_map() should have properly
7163 * initialized em members already.
7164 *
7165 * Other members are not utilized for inline extents.
7166 */
7167 ASSERT(em->disk_bytenr == EXTENT_MAP_INLINE);
7168 ASSERT(em->len == fs_info->sectorsize);
7169
7170 ret = read_inline_extent(path, folio);
7171 if (ret < 0)
7172 goto out;
7173 goto insert;
7174 }
7175 not_found:
7176 em->start = start;
7177 em->len = len;
7178 em->disk_bytenr = EXTENT_MAP_HOLE;
7179 insert:
7180 ret = 0;
7181 btrfs_release_path(path);
7182 if (unlikely(em->start > start || btrfs_extent_map_end(em) <= start)) {
7183 btrfs_err(fs_info,
7184 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7185 em->start, em->len, start, len);
7186 ret = -EIO;
7187 goto out;
7188 }
7189
7190 write_lock(&em_tree->lock);
7191 ret = btrfs_add_extent_mapping(inode, &em, start, len);
7192 write_unlock(&em_tree->lock);
7193 out:
7194 btrfs_free_path(path);
7195
7196 trace_btrfs_get_extent(root, inode, em);
7197
7198 if (ret) {
7199 btrfs_free_extent_map(em);
7200 return ERR_PTR(ret);
7201 }
7202 return em;
7203 }
7204
btrfs_extent_readonly(struct btrfs_fs_info * fs_info,u64 bytenr)7205 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
7206 {
7207 struct btrfs_block_group *block_group;
7208 bool readonly = false;
7209
7210 block_group = btrfs_lookup_block_group(fs_info, bytenr);
7211 if (!block_group || block_group->ro)
7212 readonly = true;
7213 if (block_group)
7214 btrfs_put_block_group(block_group);
7215 return readonly;
7216 }
7217
7218 /*
7219 * Check if we can do nocow write into the range [@offset, @offset + @len)
7220 *
7221 * @offset: File offset
7222 * @len: The length to write, will be updated to the nocow writeable
7223 * range
7224 * @orig_start: (optional) Return the original file offset of the file extent
7225 * @orig_len: (optional) Return the original on-disk length of the file extent
7226 * @ram_bytes: (optional) Return the ram_bytes of the file extent
7227 *
7228 * Return:
7229 * >0 and update @len if we can do nocow write
7230 * 0 if we can't do nocow write
7231 * <0 if error happened
7232 *
7233 * NOTE: This only checks the file extents, caller is responsible to wait for
7234 * any ordered extents.
7235 */
can_nocow_extent(struct btrfs_inode * inode,u64 offset,u64 * len,struct btrfs_file_extent * file_extent,bool nowait)7236 noinline int can_nocow_extent(struct btrfs_inode *inode, u64 offset, u64 *len,
7237 struct btrfs_file_extent *file_extent,
7238 bool nowait)
7239 {
7240 struct btrfs_root *root = inode->root;
7241 struct btrfs_fs_info *fs_info = root->fs_info;
7242 struct can_nocow_file_extent_args nocow_args = { 0 };
7243 BTRFS_PATH_AUTO_FREE(path);
7244 int ret;
7245 struct extent_buffer *leaf;
7246 struct extent_io_tree *io_tree = &inode->io_tree;
7247 struct btrfs_file_extent_item *fi;
7248 struct btrfs_key key;
7249 int found_type;
7250
7251 path = btrfs_alloc_path();
7252 if (!path)
7253 return -ENOMEM;
7254 path->nowait = nowait;
7255
7256 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
7257 offset, 0);
7258 if (ret < 0)
7259 return ret;
7260
7261 if (ret == 1) {
7262 if (path->slots[0] == 0) {
7263 /* Can't find the item, must COW. */
7264 return 0;
7265 }
7266 path->slots[0]--;
7267 }
7268 ret = 0;
7269 leaf = path->nodes[0];
7270 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
7271 if (key.objectid != btrfs_ino(inode) ||
7272 key.type != BTRFS_EXTENT_DATA_KEY) {
7273 /* Not our file or wrong item type, must COW. */
7274 return 0;
7275 }
7276
7277 if (key.offset > offset) {
7278 /* Wrong offset, must COW. */
7279 return 0;
7280 }
7281
7282 if (btrfs_file_extent_end(path) <= offset)
7283 return 0;
7284
7285 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
7286 found_type = btrfs_file_extent_type(leaf, fi);
7287
7288 nocow_args.start = offset;
7289 nocow_args.end = offset + *len - 1;
7290 nocow_args.free_path = true;
7291
7292 ret = can_nocow_file_extent(path, &key, inode, &nocow_args);
7293 /* can_nocow_file_extent() has freed the path. */
7294 path = NULL;
7295
7296 if (ret != 1) {
7297 /* Treat errors as not being able to NOCOW. */
7298 return 0;
7299 }
7300
7301 if (btrfs_extent_readonly(fs_info,
7302 nocow_args.file_extent.disk_bytenr +
7303 nocow_args.file_extent.offset))
7304 return 0;
7305
7306 if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
7307 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7308 u64 range_end;
7309
7310 range_end = round_up(offset + nocow_args.file_extent.num_bytes,
7311 root->fs_info->sectorsize) - 1;
7312 ret = btrfs_test_range_bit_exists(io_tree, offset, range_end,
7313 EXTENT_DELALLOC);
7314 if (ret)
7315 return -EAGAIN;
7316 }
7317
7318 if (file_extent)
7319 memcpy(file_extent, &nocow_args.file_extent, sizeof(*file_extent));
7320
7321 *len = nocow_args.file_extent.num_bytes;
7322
7323 return 1;
7324 }
7325
7326 /* The callers of this must take lock_extent() */
btrfs_create_io_em(struct btrfs_inode * inode,u64 start,const struct btrfs_file_extent * file_extent,int type)7327 struct extent_map *btrfs_create_io_em(struct btrfs_inode *inode, u64 start,
7328 const struct btrfs_file_extent *file_extent,
7329 int type)
7330 {
7331 struct extent_map *em;
7332 int ret;
7333
7334 /*
7335 * Note the missing NOCOW type.
7336 *
7337 * For pure NOCOW writes, we should not create an io extent map, but
7338 * just reusing the existing one.
7339 * Only PREALLOC writes (NOCOW write into preallocated range) can
7340 * create an io extent map.
7341 */
7342 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7343 type == BTRFS_ORDERED_COMPRESSED ||
7344 type == BTRFS_ORDERED_REGULAR);
7345
7346 switch (type) {
7347 case BTRFS_ORDERED_PREALLOC:
7348 /* We're only referring part of a larger preallocated extent. */
7349 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes);
7350 break;
7351 case BTRFS_ORDERED_REGULAR:
7352 /* COW results a new extent matching our file extent size. */
7353 ASSERT(file_extent->disk_num_bytes == file_extent->num_bytes);
7354 ASSERT(file_extent->ram_bytes == file_extent->num_bytes);
7355
7356 /* Since it's a new extent, we should not have any offset. */
7357 ASSERT(file_extent->offset == 0);
7358 break;
7359 case BTRFS_ORDERED_COMPRESSED:
7360 /* Must be compressed. */
7361 ASSERT(file_extent->compression != BTRFS_COMPRESS_NONE);
7362
7363 /*
7364 * Encoded write can make us to refer to part of the
7365 * uncompressed extent.
7366 */
7367 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes);
7368 break;
7369 }
7370
7371 em = btrfs_alloc_extent_map();
7372 if (!em)
7373 return ERR_PTR(-ENOMEM);
7374
7375 em->start = start;
7376 em->len = file_extent->num_bytes;
7377 em->disk_bytenr = file_extent->disk_bytenr;
7378 em->disk_num_bytes = file_extent->disk_num_bytes;
7379 em->ram_bytes = file_extent->ram_bytes;
7380 em->generation = -1;
7381 em->offset = file_extent->offset;
7382 em->flags |= EXTENT_FLAG_PINNED;
7383 if (type == BTRFS_ORDERED_COMPRESSED)
7384 btrfs_extent_map_set_compression(em, file_extent->compression);
7385
7386 ret = btrfs_replace_extent_map_range(inode, em, true);
7387 if (ret) {
7388 btrfs_free_extent_map(em);
7389 return ERR_PTR(ret);
7390 }
7391
7392 /* em got 2 refs now, callers needs to do btrfs_free_extent_map once. */
7393 return em;
7394 }
7395
7396 /*
7397 * For release_folio() and invalidate_folio() we have a race window where
7398 * folio_end_writeback() is called but the subpage spinlock is not yet released.
7399 * If we continue to release/invalidate the page, we could cause use-after-free
7400 * for subpage spinlock. So this function is to spin and wait for subpage
7401 * spinlock.
7402 */
wait_subpage_spinlock(struct folio * folio)7403 static void wait_subpage_spinlock(struct folio *folio)
7404 {
7405 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
7406 struct btrfs_folio_state *bfs;
7407
7408 if (!btrfs_is_subpage(fs_info, folio))
7409 return;
7410
7411 ASSERT(folio_test_private(folio) && folio_get_private(folio));
7412 bfs = folio_get_private(folio);
7413
7414 /*
7415 * This may look insane as we just acquire the spinlock and release it,
7416 * without doing anything. But we just want to make sure no one is
7417 * still holding the subpage spinlock.
7418 * And since the page is not dirty nor writeback, and we have page
7419 * locked, the only possible way to hold a spinlock is from the endio
7420 * function to clear page writeback.
7421 *
7422 * Here we just acquire the spinlock so that all existing callers
7423 * should exit and we're safe to release/invalidate the page.
7424 */
7425 spin_lock_irq(&bfs->lock);
7426 spin_unlock_irq(&bfs->lock);
7427 }
7428
btrfs_launder_folio(struct folio * folio)7429 static int btrfs_launder_folio(struct folio *folio)
7430 {
7431 return btrfs_qgroup_free_data(folio_to_inode(folio), NULL, folio_pos(folio),
7432 folio_size(folio), NULL);
7433 }
7434
__btrfs_release_folio(struct folio * folio,gfp_t gfp_flags)7435 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7436 {
7437 if (try_release_extent_mapping(folio, gfp_flags)) {
7438 wait_subpage_spinlock(folio);
7439 clear_folio_extent_mapped(folio);
7440 return true;
7441 }
7442 return false;
7443 }
7444
btrfs_release_folio(struct folio * folio,gfp_t gfp_flags)7445 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7446 {
7447 if (folio_test_writeback(folio) || folio_test_dirty(folio))
7448 return false;
7449 return __btrfs_release_folio(folio, gfp_flags);
7450 }
7451
7452 #ifdef CONFIG_MIGRATION
btrfs_migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode)7453 static int btrfs_migrate_folio(struct address_space *mapping,
7454 struct folio *dst, struct folio *src,
7455 enum migrate_mode mode)
7456 {
7457 int ret = filemap_migrate_folio(mapping, dst, src, mode);
7458
7459 if (ret)
7460 return ret;
7461
7462 if (folio_test_ordered(src)) {
7463 folio_clear_ordered(src);
7464 folio_set_ordered(dst);
7465 }
7466
7467 return 0;
7468 }
7469 #else
7470 #define btrfs_migrate_folio NULL
7471 #endif
7472
btrfs_invalidate_folio(struct folio * folio,size_t offset,size_t length)7473 static void btrfs_invalidate_folio(struct folio *folio, size_t offset,
7474 size_t length)
7475 {
7476 struct btrfs_inode *inode = folio_to_inode(folio);
7477 struct btrfs_fs_info *fs_info = inode->root->fs_info;
7478 struct extent_io_tree *tree = &inode->io_tree;
7479 struct extent_state *cached_state = NULL;
7480 u64 page_start = folio_pos(folio);
7481 u64 page_end = page_start + folio_size(folio) - 1;
7482 u64 cur;
7483 int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
7484
7485 /*
7486 * We have folio locked so no new ordered extent can be created on this
7487 * page, nor bio can be submitted for this folio.
7488 *
7489 * But already submitted bio can still be finished on this folio.
7490 * Furthermore, endio function won't skip folio which has Ordered
7491 * already cleared, so it's possible for endio and
7492 * invalidate_folio to do the same ordered extent accounting twice
7493 * on one folio.
7494 *
7495 * So here we wait for any submitted bios to finish, so that we won't
7496 * do double ordered extent accounting on the same folio.
7497 */
7498 folio_wait_writeback(folio);
7499 wait_subpage_spinlock(folio);
7500
7501 /*
7502 * For subpage case, we have call sites like
7503 * btrfs_punch_hole_lock_range() which passes range not aligned to
7504 * sectorsize.
7505 * If the range doesn't cover the full folio, we don't need to and
7506 * shouldn't clear page extent mapped, as folio->private can still
7507 * record subpage dirty bits for other part of the range.
7508 *
7509 * For cases that invalidate the full folio even the range doesn't
7510 * cover the full folio, like invalidating the last folio, we're
7511 * still safe to wait for ordered extent to finish.
7512 */
7513 if (!(offset == 0 && length == folio_size(folio))) {
7514 btrfs_release_folio(folio, GFP_NOFS);
7515 return;
7516 }
7517
7518 if (!inode_evicting)
7519 btrfs_lock_extent(tree, page_start, page_end, &cached_state);
7520
7521 cur = page_start;
7522 while (cur < page_end) {
7523 struct btrfs_ordered_extent *ordered;
7524 u64 range_end;
7525 u32 range_len;
7526 u32 extra_flags = 0;
7527
7528 ordered = btrfs_lookup_first_ordered_range(inode, cur,
7529 page_end + 1 - cur);
7530 if (!ordered) {
7531 range_end = page_end;
7532 /*
7533 * No ordered extent covering this range, we are safe
7534 * to delete all extent states in the range.
7535 */
7536 extra_flags = EXTENT_CLEAR_ALL_BITS;
7537 goto next;
7538 }
7539 if (ordered->file_offset > cur) {
7540 /*
7541 * There is a range between [cur, oe->file_offset) not
7542 * covered by any ordered extent.
7543 * We are safe to delete all extent states, and handle
7544 * the ordered extent in the next iteration.
7545 */
7546 range_end = ordered->file_offset - 1;
7547 extra_flags = EXTENT_CLEAR_ALL_BITS;
7548 goto next;
7549 }
7550
7551 range_end = min(ordered->file_offset + ordered->num_bytes - 1,
7552 page_end);
7553 ASSERT(range_end + 1 - cur < U32_MAX);
7554 range_len = range_end + 1 - cur;
7555 if (!btrfs_folio_test_ordered(fs_info, folio, cur, range_len)) {
7556 /*
7557 * If Ordered is cleared, it means endio has
7558 * already been executed for the range.
7559 * We can't delete the extent states as
7560 * btrfs_finish_ordered_io() may still use some of them.
7561 */
7562 goto next;
7563 }
7564 btrfs_folio_clear_ordered(fs_info, folio, cur, range_len);
7565
7566 /*
7567 * IO on this page will never be started, so we need to account
7568 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
7569 * here, must leave that up for the ordered extent completion.
7570 *
7571 * This will also unlock the range for incoming
7572 * btrfs_finish_ordered_io().
7573 */
7574 if (!inode_evicting)
7575 btrfs_clear_extent_bit(tree, cur, range_end,
7576 EXTENT_DELALLOC |
7577 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
7578 EXTENT_DEFRAG, &cached_state);
7579
7580 spin_lock_irq(&inode->ordered_tree_lock);
7581 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
7582 ordered->truncated_len = min(ordered->truncated_len,
7583 cur - ordered->file_offset);
7584 spin_unlock_irq(&inode->ordered_tree_lock);
7585
7586 /*
7587 * If the ordered extent has finished, we're safe to delete all
7588 * the extent states of the range, otherwise
7589 * btrfs_finish_ordered_io() will get executed by endio for
7590 * other pages, so we can't delete extent states.
7591 */
7592 if (btrfs_dec_test_ordered_pending(inode, &ordered,
7593 cur, range_end + 1 - cur)) {
7594 btrfs_finish_ordered_io(ordered);
7595 /*
7596 * The ordered extent has finished, now we're again
7597 * safe to delete all extent states of the range.
7598 */
7599 extra_flags = EXTENT_CLEAR_ALL_BITS;
7600 }
7601 next:
7602 if (ordered)
7603 btrfs_put_ordered_extent(ordered);
7604 /*
7605 * Qgroup reserved space handler
7606 * Sector(s) here will be either:
7607 *
7608 * 1) Already written to disk or bio already finished
7609 * Then its QGROUP_RESERVED bit in io_tree is already cleared.
7610 * Qgroup will be handled by its qgroup_record then.
7611 * btrfs_qgroup_free_data() call will do nothing here.
7612 *
7613 * 2) Not written to disk yet
7614 * Then btrfs_qgroup_free_data() call will clear the
7615 * QGROUP_RESERVED bit of its io_tree, and free the qgroup
7616 * reserved data space.
7617 * Since the IO will never happen for this page.
7618 */
7619 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur, NULL);
7620 if (!inode_evicting)
7621 btrfs_clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED |
7622 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
7623 EXTENT_DEFRAG | extra_flags,
7624 &cached_state);
7625 cur = range_end + 1;
7626 }
7627 /*
7628 * We have iterated through all ordered extents of the page, the page
7629 * should not have Ordered anymore, or the above iteration
7630 * did something wrong.
7631 */
7632 ASSERT(!folio_test_ordered(folio));
7633 btrfs_folio_clear_checked(fs_info, folio, folio_pos(folio), folio_size(folio));
7634 if (!inode_evicting)
7635 __btrfs_release_folio(folio, GFP_NOFS);
7636 clear_folio_extent_mapped(folio);
7637 }
7638
btrfs_truncate(struct btrfs_inode * inode,bool skip_writeback)7639 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback)
7640 {
7641 struct btrfs_truncate_control control = {
7642 .inode = inode,
7643 .ino = btrfs_ino(inode),
7644 .min_type = BTRFS_EXTENT_DATA_KEY,
7645 .clear_extent_range = true,
7646 };
7647 struct btrfs_root *root = inode->root;
7648 struct btrfs_fs_info *fs_info = root->fs_info;
7649 struct btrfs_block_rsv rsv;
7650 int ret;
7651 struct btrfs_trans_handle *trans;
7652 u64 mask = fs_info->sectorsize - 1;
7653 const u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
7654
7655 if (!skip_writeback) {
7656 ret = btrfs_wait_ordered_range(inode,
7657 inode->vfs_inode.i_size & (~mask),
7658 (u64)-1);
7659 if (ret)
7660 return ret;
7661 }
7662
7663 /*
7664 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
7665 * things going on here:
7666 *
7667 * 1) We need to reserve space to update our inode.
7668 *
7669 * 2) We need to have something to cache all the space that is going to
7670 * be free'd up by the truncate operation, but also have some slack
7671 * space reserved in case it uses space during the truncate (thank you
7672 * very much snapshotting).
7673 *
7674 * And we need these to be separate. The fact is we can use a lot of
7675 * space doing the truncate, and we have no earthly idea how much space
7676 * we will use, so we need the truncate reservation to be separate so it
7677 * doesn't end up using space reserved for updating the inode. We also
7678 * need to be able to stop the transaction and start a new one, which
7679 * means we need to be able to update the inode several times, and we
7680 * have no idea of knowing how many times that will be, so we can't just
7681 * reserve 1 item for the entirety of the operation, so that has to be
7682 * done separately as well.
7683 *
7684 * So that leaves us with
7685 *
7686 * 1) rsv - for the truncate reservation, which we will steal from the
7687 * transaction reservation.
7688 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
7689 * updating the inode.
7690 */
7691 btrfs_init_metadata_block_rsv(fs_info, &rsv, BTRFS_BLOCK_RSV_TEMP);
7692 rsv.size = min_size;
7693 rsv.failfast = true;
7694
7695 /*
7696 * 1 for the truncate slack space
7697 * 1 for updating the inode.
7698 */
7699 trans = btrfs_start_transaction(root, 2);
7700 if (IS_ERR(trans)) {
7701 ret = PTR_ERR(trans);
7702 goto out;
7703 }
7704
7705 /* Migrate the slack space for the truncate to our reserve */
7706 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, &rsv,
7707 min_size, false);
7708 /*
7709 * We have reserved 2 metadata units when we started the transaction and
7710 * min_size matches 1 unit, so this should never fail, but if it does,
7711 * it's not critical we just fail truncation.
7712 */
7713 if (WARN_ON(ret)) {
7714 btrfs_end_transaction(trans);
7715 goto out;
7716 }
7717
7718 trans->block_rsv = &rsv;
7719
7720 while (1) {
7721 struct extent_state *cached_state = NULL;
7722 const u64 new_size = inode->vfs_inode.i_size;
7723 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
7724
7725 control.new_size = new_size;
7726 btrfs_lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
7727 /*
7728 * We want to drop from the next block forward in case this new
7729 * size is not block aligned since we will be keeping the last
7730 * block of the extent just the way it is.
7731 */
7732 btrfs_drop_extent_map_range(inode,
7733 ALIGN(new_size, fs_info->sectorsize),
7734 (u64)-1, false);
7735
7736 ret = btrfs_truncate_inode_items(trans, root, &control);
7737
7738 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
7739 btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
7740
7741 btrfs_unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
7742
7743 trans->block_rsv = &fs_info->trans_block_rsv;
7744 if (ret != -ENOSPC && ret != -EAGAIN)
7745 break;
7746
7747 ret = btrfs_update_inode(trans, inode);
7748 if (ret)
7749 break;
7750
7751 btrfs_end_transaction(trans);
7752 btrfs_btree_balance_dirty(fs_info);
7753
7754 trans = btrfs_start_transaction(root, 2);
7755 if (IS_ERR(trans)) {
7756 ret = PTR_ERR(trans);
7757 trans = NULL;
7758 break;
7759 }
7760
7761 btrfs_block_rsv_release(fs_info, &rsv, -1, NULL);
7762 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
7763 &rsv, min_size, false);
7764 /*
7765 * We have reserved 2 metadata units when we started the
7766 * transaction and min_size matches 1 unit, so this should never
7767 * fail, but if it does, it's not critical we just fail truncation.
7768 */
7769 if (WARN_ON(ret))
7770 break;
7771
7772 trans->block_rsv = &rsv;
7773 }
7774
7775 /*
7776 * We can't call btrfs_truncate_block inside a trans handle as we could
7777 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we
7778 * know we've truncated everything except the last little bit, and can
7779 * do btrfs_truncate_block and then update the disk_i_size.
7780 */
7781 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) {
7782 btrfs_end_transaction(trans);
7783 btrfs_btree_balance_dirty(fs_info);
7784
7785 ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size,
7786 inode->vfs_inode.i_size, (u64)-1);
7787 if (ret)
7788 goto out;
7789 trans = btrfs_start_transaction(root, 1);
7790 if (IS_ERR(trans)) {
7791 ret = PTR_ERR(trans);
7792 goto out;
7793 }
7794 btrfs_inode_safe_disk_i_size_write(inode, 0);
7795 }
7796
7797 if (trans) {
7798 int ret2;
7799
7800 trans->block_rsv = &fs_info->trans_block_rsv;
7801 ret2 = btrfs_update_inode(trans, inode);
7802 if (ret2 && !ret)
7803 ret = ret2;
7804
7805 ret2 = btrfs_end_transaction(trans);
7806 if (ret2 && !ret)
7807 ret = ret2;
7808 btrfs_btree_balance_dirty(fs_info);
7809 }
7810 out:
7811 btrfs_block_rsv_release(fs_info, &rsv, (u64)-1, NULL);
7812 /*
7813 * So if we truncate and then write and fsync we normally would just
7814 * write the extents that changed, which is a problem if we need to
7815 * first truncate that entire inode. So set this flag so we write out
7816 * all of the extents in the inode to the sync log so we're completely
7817 * safe.
7818 *
7819 * If no extents were dropped or trimmed we don't need to force the next
7820 * fsync to truncate all the inode's items from the log and re-log them
7821 * all. This means the truncate operation did not change the file size,
7822 * or changed it to a smaller size but there was only an implicit hole
7823 * between the old i_size and the new i_size, and there were no prealloc
7824 * extents beyond i_size to drop.
7825 */
7826 if (control.extents_found > 0)
7827 btrfs_set_inode_full_sync(inode);
7828
7829 return ret;
7830 }
7831
btrfs_new_subvol_inode(struct mnt_idmap * idmap,struct inode * dir)7832 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap,
7833 struct inode *dir)
7834 {
7835 struct inode *inode;
7836
7837 inode = new_inode(dir->i_sb);
7838 if (inode) {
7839 /*
7840 * Subvolumes don't inherit the sgid bit or the parent's gid if
7841 * the parent's sgid bit is set. This is probably a bug.
7842 */
7843 inode_init_owner(idmap, inode, NULL,
7844 S_IFDIR | (~current_umask() & S_IRWXUGO));
7845 inode->i_op = &btrfs_dir_inode_operations;
7846 inode->i_fop = &btrfs_dir_file_operations;
7847 }
7848 return inode;
7849 }
7850
btrfs_alloc_inode(struct super_block * sb)7851 struct inode *btrfs_alloc_inode(struct super_block *sb)
7852 {
7853 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
7854 struct btrfs_inode *ei;
7855 struct inode *inode;
7856
7857 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL);
7858 if (!ei)
7859 return NULL;
7860
7861 ei->root = NULL;
7862 ei->generation = 0;
7863 ei->last_trans = 0;
7864 ei->last_sub_trans = 0;
7865 ei->logged_trans = 0;
7866 ei->delalloc_bytes = 0;
7867 /* new_delalloc_bytes and last_dir_index_offset are in a union. */
7868 ei->new_delalloc_bytes = 0;
7869 ei->defrag_bytes = 0;
7870 ei->disk_i_size = 0;
7871 ei->flags = 0;
7872 ei->ro_flags = 0;
7873 /*
7874 * ->index_cnt will be properly initialized later when creating a new
7875 * inode (btrfs_create_new_inode()) or when reading an existing inode
7876 * from disk (btrfs_read_locked_inode()).
7877 */
7878 ei->csum_bytes = 0;
7879 ei->dir_index = 0;
7880 ei->last_unlink_trans = 0;
7881 ei->last_reflink_trans = 0;
7882 ei->last_log_commit = 0;
7883
7884 spin_lock_init(&ei->lock);
7885 ei->outstanding_extents = 0;
7886 if (sb->s_magic != BTRFS_TEST_MAGIC)
7887 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
7888 BTRFS_BLOCK_RSV_DELALLOC);
7889 ei->runtime_flags = 0;
7890 ei->prop_compress = BTRFS_COMPRESS_NONE;
7891 ei->defrag_compress = BTRFS_COMPRESS_NONE;
7892
7893 ei->delayed_node = NULL;
7894
7895 ei->i_otime_sec = 0;
7896 ei->i_otime_nsec = 0;
7897
7898 inode = &ei->vfs_inode;
7899 btrfs_extent_map_tree_init(&ei->extent_tree);
7900
7901 /* This io tree sets the valid inode. */
7902 btrfs_extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO);
7903 ei->io_tree.inode = ei;
7904
7905 ei->file_extent_tree = NULL;
7906
7907 mutex_init(&ei->log_mutex);
7908 spin_lock_init(&ei->ordered_tree_lock);
7909 ei->ordered_tree = RB_ROOT;
7910 ei->ordered_tree_last = NULL;
7911 INIT_LIST_HEAD(&ei->delalloc_inodes);
7912 INIT_LIST_HEAD(&ei->delayed_iput);
7913 init_rwsem(&ei->i_mmap_lock);
7914
7915 return inode;
7916 }
7917
7918 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
btrfs_test_destroy_inode(struct inode * inode)7919 void btrfs_test_destroy_inode(struct inode *inode)
7920 {
7921 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
7922 kfree(BTRFS_I(inode)->file_extent_tree);
7923 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7924 }
7925 #endif
7926
btrfs_free_inode(struct inode * inode)7927 void btrfs_free_inode(struct inode *inode)
7928 {
7929 kfree(BTRFS_I(inode)->file_extent_tree);
7930 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7931 }
7932
btrfs_destroy_inode(struct inode * vfs_inode)7933 void btrfs_destroy_inode(struct inode *vfs_inode)
7934 {
7935 struct btrfs_ordered_extent *ordered;
7936 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
7937 struct btrfs_root *root = inode->root;
7938 bool freespace_inode;
7939
7940 WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
7941 WARN_ON(vfs_inode->i_data.nrpages);
7942 WARN_ON(inode->block_rsv.reserved);
7943 WARN_ON(inode->block_rsv.size);
7944 WARN_ON(inode->outstanding_extents);
7945 if (!S_ISDIR(vfs_inode->i_mode)) {
7946 WARN_ON(inode->delalloc_bytes);
7947 WARN_ON(inode->new_delalloc_bytes);
7948 WARN_ON(inode->csum_bytes);
7949 }
7950 if (!root || !btrfs_is_data_reloc_root(root))
7951 WARN_ON(inode->defrag_bytes);
7952
7953 /*
7954 * This can happen where we create an inode, but somebody else also
7955 * created the same inode and we need to destroy the one we already
7956 * created.
7957 */
7958 if (!root)
7959 return;
7960
7961 /*
7962 * If this is a free space inode do not take the ordered extents lockdep
7963 * map.
7964 */
7965 freespace_inode = btrfs_is_free_space_inode(inode);
7966
7967 while (1) {
7968 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7969 if (!ordered)
7970 break;
7971 else {
7972 btrfs_err(root->fs_info,
7973 "found ordered extent %llu %llu on inode cleanup",
7974 ordered->file_offset, ordered->num_bytes);
7975
7976 if (!freespace_inode)
7977 btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent);
7978
7979 btrfs_remove_ordered_extent(inode, ordered);
7980 btrfs_put_ordered_extent(ordered);
7981 btrfs_put_ordered_extent(ordered);
7982 }
7983 }
7984 btrfs_qgroup_check_reserved_leak(inode);
7985 btrfs_del_inode_from_root(inode);
7986 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
7987 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
7988 btrfs_put_root(inode->root);
7989 }
7990
btrfs_drop_inode(struct inode * inode)7991 int btrfs_drop_inode(struct inode *inode)
7992 {
7993 struct btrfs_root *root = BTRFS_I(inode)->root;
7994
7995 if (root == NULL)
7996 return 1;
7997
7998 /* the snap/subvol tree is on deleting */
7999 if (btrfs_root_refs(&root->root_item) == 0)
8000 return 1;
8001 else
8002 return inode_generic_drop(inode);
8003 }
8004
init_once(void * foo)8005 static void init_once(void *foo)
8006 {
8007 struct btrfs_inode *ei = foo;
8008
8009 inode_init_once(&ei->vfs_inode);
8010 #ifdef CONFIG_FS_VERITY
8011 ei->i_verity_info = NULL;
8012 #endif
8013 }
8014
btrfs_destroy_cachep(void)8015 void __cold btrfs_destroy_cachep(void)
8016 {
8017 /*
8018 * Make sure all delayed rcu free inodes are flushed before we
8019 * destroy cache.
8020 */
8021 rcu_barrier();
8022 kmem_cache_destroy(btrfs_inode_cachep);
8023 }
8024
btrfs_init_cachep(void)8025 int __init btrfs_init_cachep(void)
8026 {
8027 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8028 sizeof(struct btrfs_inode), 0,
8029 SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT,
8030 init_once);
8031 if (!btrfs_inode_cachep)
8032 return -ENOMEM;
8033
8034 return 0;
8035 }
8036
btrfs_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int flags)8037 static int btrfs_getattr(struct mnt_idmap *idmap,
8038 const struct path *path, struct kstat *stat,
8039 u32 request_mask, unsigned int flags)
8040 {
8041 u64 delalloc_bytes;
8042 u64 inode_bytes;
8043 struct inode *inode = d_inode(path->dentry);
8044 u32 blocksize = btrfs_sb(inode->i_sb)->sectorsize;
8045 u32 bi_flags = BTRFS_I(inode)->flags;
8046 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
8047
8048 stat->result_mask |= STATX_BTIME;
8049 stat->btime.tv_sec = BTRFS_I(inode)->i_otime_sec;
8050 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime_nsec;
8051 if (bi_flags & BTRFS_INODE_APPEND)
8052 stat->attributes |= STATX_ATTR_APPEND;
8053 if (bi_flags & BTRFS_INODE_COMPRESS)
8054 stat->attributes |= STATX_ATTR_COMPRESSED;
8055 if (bi_flags & BTRFS_INODE_IMMUTABLE)
8056 stat->attributes |= STATX_ATTR_IMMUTABLE;
8057 if (bi_flags & BTRFS_INODE_NODUMP)
8058 stat->attributes |= STATX_ATTR_NODUMP;
8059 if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
8060 stat->attributes |= STATX_ATTR_VERITY;
8061
8062 stat->attributes_mask |= (STATX_ATTR_APPEND |
8063 STATX_ATTR_COMPRESSED |
8064 STATX_ATTR_IMMUTABLE |
8065 STATX_ATTR_NODUMP);
8066
8067 generic_fillattr(idmap, request_mask, inode, stat);
8068 stat->dev = BTRFS_I(inode)->root->anon_dev;
8069
8070 stat->subvol = btrfs_root_id(BTRFS_I(inode)->root);
8071 stat->result_mask |= STATX_SUBVOL;
8072
8073 spin_lock(&BTRFS_I(inode)->lock);
8074 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
8075 inode_bytes = inode_get_bytes(inode);
8076 spin_unlock(&BTRFS_I(inode)->lock);
8077 stat->blocks = (ALIGN(inode_bytes, blocksize) +
8078 ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT;
8079 return 0;
8080 }
8081
btrfs_rename_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)8082 static int btrfs_rename_exchange(struct inode *old_dir,
8083 struct dentry *old_dentry,
8084 struct inode *new_dir,
8085 struct dentry *new_dentry)
8086 {
8087 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir);
8088 struct btrfs_trans_handle *trans;
8089 unsigned int trans_num_items;
8090 struct btrfs_root *root = BTRFS_I(old_dir)->root;
8091 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8092 struct inode *new_inode = new_dentry->d_inode;
8093 struct inode *old_inode = old_dentry->d_inode;
8094 struct btrfs_rename_ctx old_rename_ctx;
8095 struct btrfs_rename_ctx new_rename_ctx;
8096 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8097 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
8098 u64 old_idx = 0;
8099 u64 new_idx = 0;
8100 int ret;
8101 int ret2;
8102 bool need_abort = false;
8103 bool logs_pinned = false;
8104 struct fscrypt_name old_fname, new_fname;
8105 struct fscrypt_str *old_name, *new_name;
8106
8107 /*
8108 * For non-subvolumes allow exchange only within one subvolume, in the
8109 * same inode namespace. Two subvolumes (represented as directory) can
8110 * be exchanged as they're a logical link and have a fixed inode number.
8111 */
8112 if (root != dest &&
8113 (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
8114 new_ino != BTRFS_FIRST_FREE_OBJECTID))
8115 return -EXDEV;
8116
8117 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
8118 if (ret)
8119 return ret;
8120
8121 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
8122 if (ret) {
8123 fscrypt_free_filename(&old_fname);
8124 return ret;
8125 }
8126
8127 old_name = &old_fname.disk_name;
8128 new_name = &new_fname.disk_name;
8129
8130 /* close the race window with snapshot create/destroy ioctl */
8131 if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
8132 new_ino == BTRFS_FIRST_FREE_OBJECTID)
8133 down_read(&fs_info->subvol_sem);
8134
8135 /*
8136 * For each inode:
8137 * 1 to remove old dir item
8138 * 1 to remove old dir index
8139 * 1 to add new dir item
8140 * 1 to add new dir index
8141 * 1 to update parent inode
8142 *
8143 * If the parents are the same, we only need to account for one
8144 */
8145 trans_num_items = (old_dir == new_dir ? 9 : 10);
8146 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8147 /*
8148 * 1 to remove old root ref
8149 * 1 to remove old root backref
8150 * 1 to add new root ref
8151 * 1 to add new root backref
8152 */
8153 trans_num_items += 4;
8154 } else {
8155 /*
8156 * 1 to update inode item
8157 * 1 to remove old inode ref
8158 * 1 to add new inode ref
8159 */
8160 trans_num_items += 3;
8161 }
8162 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
8163 trans_num_items += 4;
8164 else
8165 trans_num_items += 3;
8166 trans = btrfs_start_transaction(root, trans_num_items);
8167 if (IS_ERR(trans)) {
8168 ret = PTR_ERR(trans);
8169 goto out_notrans;
8170 }
8171
8172 if (dest != root) {
8173 ret = btrfs_record_root_in_trans(trans, dest);
8174 if (ret)
8175 goto out_fail;
8176 }
8177
8178 /*
8179 * We need to find a free sequence number both in the source and
8180 * in the destination directory for the exchange.
8181 */
8182 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
8183 if (ret)
8184 goto out_fail;
8185 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
8186 if (ret)
8187 goto out_fail;
8188
8189 BTRFS_I(old_inode)->dir_index = 0ULL;
8190 BTRFS_I(new_inode)->dir_index = 0ULL;
8191
8192 /* Reference for the source. */
8193 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8194 /* force full log commit if subvolume involved. */
8195 btrfs_set_log_full_commit(trans);
8196 } else {
8197 ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino,
8198 btrfs_ino(BTRFS_I(new_dir)),
8199 old_idx);
8200 if (ret)
8201 goto out_fail;
8202 need_abort = true;
8203 }
8204
8205 /* And now for the dest. */
8206 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8207 /* force full log commit if subvolume involved. */
8208 btrfs_set_log_full_commit(trans);
8209 } else {
8210 ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino,
8211 btrfs_ino(BTRFS_I(old_dir)),
8212 new_idx);
8213 if (ret) {
8214 if (unlikely(need_abort))
8215 btrfs_abort_transaction(trans, ret);
8216 goto out_fail;
8217 }
8218 }
8219
8220 /* Update inode version and ctime/mtime. */
8221 inode_inc_iversion(old_dir);
8222 inode_inc_iversion(new_dir);
8223 inode_inc_iversion(old_inode);
8224 inode_inc_iversion(new_inode);
8225 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
8226
8227 if (old_ino != BTRFS_FIRST_FREE_OBJECTID &&
8228 new_ino != BTRFS_FIRST_FREE_OBJECTID) {
8229 /*
8230 * If we are renaming in the same directory (and it's not for
8231 * root entries) pin the log early to prevent any concurrent
8232 * task from logging the directory after we removed the old
8233 * entries and before we add the new entries, otherwise that
8234 * task can sync a log without any entry for the inodes we are
8235 * renaming and therefore replaying that log, if a power failure
8236 * happens after syncing the log, would result in deleting the
8237 * inodes.
8238 *
8239 * If the rename affects two different directories, we want to
8240 * make sure the that there's no log commit that contains
8241 * updates for only one of the directories but not for the
8242 * other.
8243 *
8244 * If we are renaming an entry for a root, we don't care about
8245 * log updates since we called btrfs_set_log_full_commit().
8246 */
8247 btrfs_pin_log_trans(root);
8248 btrfs_pin_log_trans(dest);
8249 logs_pinned = true;
8250 }
8251
8252 if (old_dentry->d_parent != new_dentry->d_parent) {
8253 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8254 BTRFS_I(old_inode), true);
8255 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
8256 BTRFS_I(new_inode), true);
8257 }
8258
8259 /* src is a subvolume */
8260 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8261 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
8262 if (unlikely(ret)) {
8263 btrfs_abort_transaction(trans, ret);
8264 goto out_fail;
8265 }
8266 } else { /* src is an inode */
8267 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
8268 BTRFS_I(old_dentry->d_inode),
8269 old_name, &old_rename_ctx);
8270 if (unlikely(ret)) {
8271 btrfs_abort_transaction(trans, ret);
8272 goto out_fail;
8273 }
8274 ret = btrfs_update_inode(trans, BTRFS_I(old_inode));
8275 if (unlikely(ret)) {
8276 btrfs_abort_transaction(trans, ret);
8277 goto out_fail;
8278 }
8279 }
8280
8281 /* dest is a subvolume */
8282 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8283 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
8284 if (unlikely(ret)) {
8285 btrfs_abort_transaction(trans, ret);
8286 goto out_fail;
8287 }
8288 } else { /* dest is an inode */
8289 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir),
8290 BTRFS_I(new_dentry->d_inode),
8291 new_name, &new_rename_ctx);
8292 if (unlikely(ret)) {
8293 btrfs_abort_transaction(trans, ret);
8294 goto out_fail;
8295 }
8296 ret = btrfs_update_inode(trans, BTRFS_I(new_inode));
8297 if (unlikely(ret)) {
8298 btrfs_abort_transaction(trans, ret);
8299 goto out_fail;
8300 }
8301 }
8302
8303 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8304 new_name, 0, old_idx);
8305 if (unlikely(ret)) {
8306 btrfs_abort_transaction(trans, ret);
8307 goto out_fail;
8308 }
8309
8310 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
8311 old_name, 0, new_idx);
8312 if (unlikely(ret)) {
8313 btrfs_abort_transaction(trans, ret);
8314 goto out_fail;
8315 }
8316
8317 if (old_inode->i_nlink == 1)
8318 BTRFS_I(old_inode)->dir_index = old_idx;
8319 if (new_inode->i_nlink == 1)
8320 BTRFS_I(new_inode)->dir_index = new_idx;
8321
8322 /*
8323 * Do the log updates for all inodes.
8324 *
8325 * If either entry is for a root we don't need to update the logs since
8326 * we've called btrfs_set_log_full_commit() before.
8327 */
8328 if (logs_pinned) {
8329 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
8330 old_rename_ctx.index, new_dentry->d_parent);
8331 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir),
8332 new_rename_ctx.index, old_dentry->d_parent);
8333 }
8334
8335 out_fail:
8336 if (logs_pinned) {
8337 btrfs_end_log_trans(root);
8338 btrfs_end_log_trans(dest);
8339 }
8340 ret2 = btrfs_end_transaction(trans);
8341 ret = ret ? ret : ret2;
8342 out_notrans:
8343 if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
8344 old_ino == BTRFS_FIRST_FREE_OBJECTID)
8345 up_read(&fs_info->subvol_sem);
8346
8347 fscrypt_free_filename(&new_fname);
8348 fscrypt_free_filename(&old_fname);
8349 return ret;
8350 }
8351
new_whiteout_inode(struct mnt_idmap * idmap,struct inode * dir)8352 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap,
8353 struct inode *dir)
8354 {
8355 struct inode *inode;
8356
8357 inode = new_inode(dir->i_sb);
8358 if (inode) {
8359 inode_init_owner(idmap, inode, dir,
8360 S_IFCHR | WHITEOUT_MODE);
8361 inode->i_op = &btrfs_special_inode_operations;
8362 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV);
8363 }
8364 return inode;
8365 }
8366
btrfs_rename(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)8367 static int btrfs_rename(struct mnt_idmap *idmap,
8368 struct inode *old_dir, struct dentry *old_dentry,
8369 struct inode *new_dir, struct dentry *new_dentry,
8370 unsigned int flags)
8371 {
8372 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir);
8373 struct btrfs_new_inode_args whiteout_args = {
8374 .dir = old_dir,
8375 .dentry = old_dentry,
8376 };
8377 struct btrfs_trans_handle *trans;
8378 unsigned int trans_num_items;
8379 struct btrfs_root *root = BTRFS_I(old_dir)->root;
8380 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8381 struct inode *new_inode = d_inode(new_dentry);
8382 struct inode *old_inode = d_inode(old_dentry);
8383 struct btrfs_rename_ctx rename_ctx;
8384 u64 index = 0;
8385 int ret;
8386 int ret2;
8387 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8388 struct fscrypt_name old_fname, new_fname;
8389 bool logs_pinned = false;
8390
8391 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
8392 return -EPERM;
8393
8394 /* we only allow rename subvolume link between subvolumes */
8395 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8396 return -EXDEV;
8397
8398 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8399 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
8400 return -ENOTEMPTY;
8401
8402 if (S_ISDIR(old_inode->i_mode) && new_inode &&
8403 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8404 return -ENOTEMPTY;
8405
8406 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
8407 if (ret)
8408 return ret;
8409
8410 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
8411 if (ret) {
8412 fscrypt_free_filename(&old_fname);
8413 return ret;
8414 }
8415
8416 /* check for collisions, even if the name isn't there */
8417 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name);
8418 if (ret) {
8419 if (ret == -EEXIST) {
8420 /* we shouldn't get
8421 * eexist without a new_inode */
8422 if (WARN_ON(!new_inode)) {
8423 goto out_fscrypt_names;
8424 }
8425 } else {
8426 /* maybe -EOVERFLOW */
8427 goto out_fscrypt_names;
8428 }
8429 }
8430 ret = 0;
8431
8432 /*
8433 * we're using rename to replace one file with another. Start IO on it
8434 * now so we don't add too much work to the end of the transaction
8435 */
8436 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
8437 filemap_flush(old_inode->i_mapping);
8438
8439 if (flags & RENAME_WHITEOUT) {
8440 whiteout_args.inode = new_whiteout_inode(idmap, old_dir);
8441 if (!whiteout_args.inode) {
8442 ret = -ENOMEM;
8443 goto out_fscrypt_names;
8444 }
8445 ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items);
8446 if (ret)
8447 goto out_whiteout_inode;
8448 } else {
8449 /* 1 to update the old parent inode. */
8450 trans_num_items = 1;
8451 }
8452
8453 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8454 /* Close the race window with snapshot create/destroy ioctl */
8455 down_read(&fs_info->subvol_sem);
8456 /*
8457 * 1 to remove old root ref
8458 * 1 to remove old root backref
8459 * 1 to add new root ref
8460 * 1 to add new root backref
8461 */
8462 trans_num_items += 4;
8463 } else {
8464 /*
8465 * 1 to update inode
8466 * 1 to remove old inode ref
8467 * 1 to add new inode ref
8468 */
8469 trans_num_items += 3;
8470 }
8471 /*
8472 * 1 to remove old dir item
8473 * 1 to remove old dir index
8474 * 1 to add new dir item
8475 * 1 to add new dir index
8476 */
8477 trans_num_items += 4;
8478 /* 1 to update new parent inode if it's not the same as the old parent */
8479 if (new_dir != old_dir)
8480 trans_num_items++;
8481 if (new_inode) {
8482 /*
8483 * 1 to update inode
8484 * 1 to remove inode ref
8485 * 1 to remove dir item
8486 * 1 to remove dir index
8487 * 1 to possibly add orphan item
8488 */
8489 trans_num_items += 5;
8490 }
8491 trans = btrfs_start_transaction(root, trans_num_items);
8492 if (IS_ERR(trans)) {
8493 ret = PTR_ERR(trans);
8494 goto out_notrans;
8495 }
8496
8497 if (dest != root) {
8498 ret = btrfs_record_root_in_trans(trans, dest);
8499 if (ret)
8500 goto out_fail;
8501 }
8502
8503 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
8504 if (ret)
8505 goto out_fail;
8506
8507 BTRFS_I(old_inode)->dir_index = 0ULL;
8508 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8509 /* force full log commit if subvolume involved. */
8510 btrfs_set_log_full_commit(trans);
8511 } else {
8512 ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name,
8513 old_ino, btrfs_ino(BTRFS_I(new_dir)),
8514 index);
8515 if (ret)
8516 goto out_fail;
8517 }
8518
8519 inode_inc_iversion(old_dir);
8520 inode_inc_iversion(new_dir);
8521 inode_inc_iversion(old_inode);
8522 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
8523
8524 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
8525 /*
8526 * If we are renaming in the same directory (and it's not a
8527 * root entry) pin the log to prevent any concurrent task from
8528 * logging the directory after we removed the old entry and
8529 * before we add the new entry, otherwise that task can sync
8530 * a log without any entry for the inode we are renaming and
8531 * therefore replaying that log, if a power failure happens
8532 * after syncing the log, would result in deleting the inode.
8533 *
8534 * If the rename affects two different directories, we want to
8535 * make sure the that there's no log commit that contains
8536 * updates for only one of the directories but not for the
8537 * other.
8538 *
8539 * If we are renaming an entry for a root, we don't care about
8540 * log updates since we called btrfs_set_log_full_commit().
8541 */
8542 btrfs_pin_log_trans(root);
8543 btrfs_pin_log_trans(dest);
8544 logs_pinned = true;
8545 }
8546
8547 if (old_dentry->d_parent != new_dentry->d_parent)
8548 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8549 BTRFS_I(old_inode), true);
8550
8551 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8552 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
8553 if (unlikely(ret)) {
8554 btrfs_abort_transaction(trans, ret);
8555 goto out_fail;
8556 }
8557 } else {
8558 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
8559 BTRFS_I(d_inode(old_dentry)),
8560 &old_fname.disk_name, &rename_ctx);
8561 if (unlikely(ret)) {
8562 btrfs_abort_transaction(trans, ret);
8563 goto out_fail;
8564 }
8565 ret = btrfs_update_inode(trans, BTRFS_I(old_inode));
8566 if (unlikely(ret)) {
8567 btrfs_abort_transaction(trans, ret);
8568 goto out_fail;
8569 }
8570 }
8571
8572 if (new_inode) {
8573 inode_inc_iversion(new_inode);
8574 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
8575 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8576 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
8577 if (unlikely(ret)) {
8578 btrfs_abort_transaction(trans, ret);
8579 goto out_fail;
8580 }
8581 BUG_ON(new_inode->i_nlink == 0);
8582 } else {
8583 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir),
8584 BTRFS_I(d_inode(new_dentry)),
8585 &new_fname.disk_name);
8586 if (unlikely(ret)) {
8587 btrfs_abort_transaction(trans, ret);
8588 goto out_fail;
8589 }
8590 }
8591 if (new_inode->i_nlink == 0) {
8592 ret = btrfs_orphan_add(trans,
8593 BTRFS_I(d_inode(new_dentry)));
8594 if (unlikely(ret)) {
8595 btrfs_abort_transaction(trans, ret);
8596 goto out_fail;
8597 }
8598 }
8599 }
8600
8601 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8602 &new_fname.disk_name, 0, index);
8603 if (unlikely(ret)) {
8604 btrfs_abort_transaction(trans, ret);
8605 goto out_fail;
8606 }
8607
8608 if (old_inode->i_nlink == 1)
8609 BTRFS_I(old_inode)->dir_index = index;
8610
8611 if (logs_pinned)
8612 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
8613 rename_ctx.index, new_dentry->d_parent);
8614
8615 if (flags & RENAME_WHITEOUT) {
8616 ret = btrfs_create_new_inode(trans, &whiteout_args);
8617 if (unlikely(ret)) {
8618 btrfs_abort_transaction(trans, ret);
8619 goto out_fail;
8620 } else {
8621 unlock_new_inode(whiteout_args.inode);
8622 iput(whiteout_args.inode);
8623 whiteout_args.inode = NULL;
8624 }
8625 }
8626 out_fail:
8627 if (logs_pinned) {
8628 btrfs_end_log_trans(root);
8629 btrfs_end_log_trans(dest);
8630 }
8631 ret2 = btrfs_end_transaction(trans);
8632 ret = ret ? ret : ret2;
8633 out_notrans:
8634 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8635 up_read(&fs_info->subvol_sem);
8636 if (flags & RENAME_WHITEOUT)
8637 btrfs_new_inode_args_destroy(&whiteout_args);
8638 out_whiteout_inode:
8639 if (flags & RENAME_WHITEOUT)
8640 iput(whiteout_args.inode);
8641 out_fscrypt_names:
8642 fscrypt_free_filename(&old_fname);
8643 fscrypt_free_filename(&new_fname);
8644 return ret;
8645 }
8646
btrfs_rename2(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)8647 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir,
8648 struct dentry *old_dentry, struct inode *new_dir,
8649 struct dentry *new_dentry, unsigned int flags)
8650 {
8651 int ret;
8652
8653 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
8654 return -EINVAL;
8655
8656 if (flags & RENAME_EXCHANGE)
8657 ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir,
8658 new_dentry);
8659 else
8660 ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir,
8661 new_dentry, flags);
8662
8663 btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info);
8664
8665 return ret;
8666 }
8667
8668 struct btrfs_delalloc_work {
8669 struct inode *inode;
8670 struct completion completion;
8671 struct list_head list;
8672 struct btrfs_work work;
8673 };
8674
btrfs_run_delalloc_work(struct btrfs_work * work)8675 static void btrfs_run_delalloc_work(struct btrfs_work *work)
8676 {
8677 struct btrfs_delalloc_work *delalloc_work;
8678 struct inode *inode;
8679
8680 delalloc_work = container_of(work, struct btrfs_delalloc_work,
8681 work);
8682 inode = delalloc_work->inode;
8683 filemap_flush(inode->i_mapping);
8684 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8685 &BTRFS_I(inode)->runtime_flags))
8686 filemap_flush(inode->i_mapping);
8687
8688 iput(inode);
8689 complete(&delalloc_work->completion);
8690 }
8691
btrfs_alloc_delalloc_work(struct inode * inode)8692 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
8693 {
8694 struct btrfs_delalloc_work *work;
8695
8696 work = kmalloc(sizeof(*work), GFP_NOFS);
8697 if (!work)
8698 return NULL;
8699
8700 init_completion(&work->completion);
8701 INIT_LIST_HEAD(&work->list);
8702 work->inode = inode;
8703 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL);
8704
8705 return work;
8706 }
8707
8708 /*
8709 * some fairly slow code that needs optimization. This walks the list
8710 * of all the inodes with pending delalloc and forces them to disk.
8711 */
start_delalloc_inodes(struct btrfs_root * root,struct writeback_control * wbc,bool snapshot,bool in_reclaim_context)8712 static int start_delalloc_inodes(struct btrfs_root *root,
8713 struct writeback_control *wbc, bool snapshot,
8714 bool in_reclaim_context)
8715 {
8716 struct btrfs_delalloc_work *work, *next;
8717 LIST_HEAD(works);
8718 LIST_HEAD(splice);
8719 int ret = 0;
8720 bool full_flush = wbc->nr_to_write == LONG_MAX;
8721
8722 mutex_lock(&root->delalloc_mutex);
8723 spin_lock(&root->delalloc_lock);
8724 list_splice_init(&root->delalloc_inodes, &splice);
8725 while (!list_empty(&splice)) {
8726 struct btrfs_inode *inode;
8727 struct inode *tmp_inode;
8728
8729 inode = list_first_entry(&splice, struct btrfs_inode, delalloc_inodes);
8730
8731 list_move_tail(&inode->delalloc_inodes, &root->delalloc_inodes);
8732
8733 if (in_reclaim_context &&
8734 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &inode->runtime_flags))
8735 continue;
8736
8737 tmp_inode = igrab(&inode->vfs_inode);
8738 if (!tmp_inode) {
8739 cond_resched_lock(&root->delalloc_lock);
8740 continue;
8741 }
8742 spin_unlock(&root->delalloc_lock);
8743
8744 if (snapshot)
8745 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, &inode->runtime_flags);
8746 if (full_flush) {
8747 work = btrfs_alloc_delalloc_work(&inode->vfs_inode);
8748 if (!work) {
8749 iput(&inode->vfs_inode);
8750 ret = -ENOMEM;
8751 goto out;
8752 }
8753 list_add_tail(&work->list, &works);
8754 btrfs_queue_work(root->fs_info->flush_workers,
8755 &work->work);
8756 } else {
8757 ret = filemap_fdatawrite_wbc(inode->vfs_inode.i_mapping, wbc);
8758 btrfs_add_delayed_iput(inode);
8759 if (ret || wbc->nr_to_write <= 0)
8760 goto out;
8761 }
8762 cond_resched();
8763 spin_lock(&root->delalloc_lock);
8764 }
8765 spin_unlock(&root->delalloc_lock);
8766
8767 out:
8768 list_for_each_entry_safe(work, next, &works, list) {
8769 list_del_init(&work->list);
8770 wait_for_completion(&work->completion);
8771 kfree(work);
8772 }
8773
8774 if (!list_empty(&splice)) {
8775 spin_lock(&root->delalloc_lock);
8776 list_splice_tail(&splice, &root->delalloc_inodes);
8777 spin_unlock(&root->delalloc_lock);
8778 }
8779 mutex_unlock(&root->delalloc_mutex);
8780 return ret;
8781 }
8782
btrfs_start_delalloc_snapshot(struct btrfs_root * root,bool in_reclaim_context)8783 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
8784 {
8785 struct writeback_control wbc = {
8786 .nr_to_write = LONG_MAX,
8787 .sync_mode = WB_SYNC_NONE,
8788 .range_start = 0,
8789 .range_end = LLONG_MAX,
8790 };
8791 struct btrfs_fs_info *fs_info = root->fs_info;
8792
8793 if (BTRFS_FS_ERROR(fs_info))
8794 return -EROFS;
8795
8796 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context);
8797 }
8798
btrfs_start_delalloc_roots(struct btrfs_fs_info * fs_info,long nr,bool in_reclaim_context)8799 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
8800 bool in_reclaim_context)
8801 {
8802 struct writeback_control wbc = {
8803 .nr_to_write = nr,
8804 .sync_mode = WB_SYNC_NONE,
8805 .range_start = 0,
8806 .range_end = LLONG_MAX,
8807 };
8808 struct btrfs_root *root;
8809 LIST_HEAD(splice);
8810 int ret;
8811
8812 if (BTRFS_FS_ERROR(fs_info))
8813 return -EROFS;
8814
8815 mutex_lock(&fs_info->delalloc_root_mutex);
8816 spin_lock(&fs_info->delalloc_root_lock);
8817 list_splice_init(&fs_info->delalloc_roots, &splice);
8818 while (!list_empty(&splice)) {
8819 /*
8820 * Reset nr_to_write here so we know that we're doing a full
8821 * flush.
8822 */
8823 if (nr == LONG_MAX)
8824 wbc.nr_to_write = LONG_MAX;
8825
8826 root = list_first_entry(&splice, struct btrfs_root,
8827 delalloc_root);
8828 root = btrfs_grab_root(root);
8829 BUG_ON(!root);
8830 list_move_tail(&root->delalloc_root,
8831 &fs_info->delalloc_roots);
8832 spin_unlock(&fs_info->delalloc_root_lock);
8833
8834 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
8835 btrfs_put_root(root);
8836 if (ret < 0 || wbc.nr_to_write <= 0)
8837 goto out;
8838 spin_lock(&fs_info->delalloc_root_lock);
8839 }
8840 spin_unlock(&fs_info->delalloc_root_lock);
8841
8842 ret = 0;
8843 out:
8844 if (!list_empty(&splice)) {
8845 spin_lock(&fs_info->delalloc_root_lock);
8846 list_splice_tail(&splice, &fs_info->delalloc_roots);
8847 spin_unlock(&fs_info->delalloc_root_lock);
8848 }
8849 mutex_unlock(&fs_info->delalloc_root_mutex);
8850 return ret;
8851 }
8852
btrfs_symlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,const char * symname)8853 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
8854 struct dentry *dentry, const char *symname)
8855 {
8856 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
8857 struct btrfs_trans_handle *trans;
8858 struct btrfs_root *root = BTRFS_I(dir)->root;
8859 struct btrfs_path *path;
8860 struct btrfs_key key;
8861 struct inode *inode;
8862 struct btrfs_new_inode_args new_inode_args = {
8863 .dir = dir,
8864 .dentry = dentry,
8865 };
8866 unsigned int trans_num_items;
8867 int ret;
8868 int name_len;
8869 int datasize;
8870 unsigned long ptr;
8871 struct btrfs_file_extent_item *ei;
8872 struct extent_buffer *leaf;
8873
8874 name_len = strlen(symname);
8875 /*
8876 * Symlinks utilize uncompressed inline extent data, which should not
8877 * reach block size.
8878 */
8879 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
8880 name_len >= fs_info->sectorsize)
8881 return -ENAMETOOLONG;
8882
8883 inode = new_inode(dir->i_sb);
8884 if (!inode)
8885 return -ENOMEM;
8886 inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO);
8887 inode->i_op = &btrfs_symlink_inode_operations;
8888 inode_nohighmem(inode);
8889 inode->i_mapping->a_ops = &btrfs_aops;
8890 btrfs_i_size_write(BTRFS_I(inode), name_len);
8891 inode_set_bytes(inode, name_len);
8892
8893 new_inode_args.inode = inode;
8894 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
8895 if (ret)
8896 goto out_inode;
8897 /* 1 additional item for the inline extent */
8898 trans_num_items++;
8899
8900 trans = btrfs_start_transaction(root, trans_num_items);
8901 if (IS_ERR(trans)) {
8902 ret = PTR_ERR(trans);
8903 goto out_new_inode_args;
8904 }
8905
8906 ret = btrfs_create_new_inode(trans, &new_inode_args);
8907 if (ret)
8908 goto out;
8909
8910 path = btrfs_alloc_path();
8911 if (unlikely(!path)) {
8912 ret = -ENOMEM;
8913 btrfs_abort_transaction(trans, ret);
8914 discard_new_inode(inode);
8915 inode = NULL;
8916 goto out;
8917 }
8918 key.objectid = btrfs_ino(BTRFS_I(inode));
8919 key.type = BTRFS_EXTENT_DATA_KEY;
8920 key.offset = 0;
8921 datasize = btrfs_file_extent_calc_inline_size(name_len);
8922 ret = btrfs_insert_empty_item(trans, root, path, &key, datasize);
8923 if (unlikely(ret)) {
8924 btrfs_abort_transaction(trans, ret);
8925 btrfs_free_path(path);
8926 discard_new_inode(inode);
8927 inode = NULL;
8928 goto out;
8929 }
8930 leaf = path->nodes[0];
8931 ei = btrfs_item_ptr(leaf, path->slots[0],
8932 struct btrfs_file_extent_item);
8933 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
8934 btrfs_set_file_extent_type(leaf, ei,
8935 BTRFS_FILE_EXTENT_INLINE);
8936 btrfs_set_file_extent_encryption(leaf, ei, 0);
8937 btrfs_set_file_extent_compression(leaf, ei, 0);
8938 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
8939 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
8940
8941 ptr = btrfs_file_extent_inline_start(ei);
8942 write_extent_buffer(leaf, symname, ptr, name_len);
8943 btrfs_free_path(path);
8944
8945 d_instantiate_new(dentry, inode);
8946 ret = 0;
8947 out:
8948 btrfs_end_transaction(trans);
8949 btrfs_btree_balance_dirty(fs_info);
8950 out_new_inode_args:
8951 btrfs_new_inode_args_destroy(&new_inode_args);
8952 out_inode:
8953 if (ret)
8954 iput(inode);
8955 return ret;
8956 }
8957
insert_prealloc_file_extent(struct btrfs_trans_handle * trans_in,struct btrfs_inode * inode,struct btrfs_key * ins,u64 file_offset)8958 static struct btrfs_trans_handle *insert_prealloc_file_extent(
8959 struct btrfs_trans_handle *trans_in,
8960 struct btrfs_inode *inode,
8961 struct btrfs_key *ins,
8962 u64 file_offset)
8963 {
8964 struct btrfs_file_extent_item stack_fi;
8965 struct btrfs_replace_extent_info extent_info;
8966 struct btrfs_trans_handle *trans = trans_in;
8967 struct btrfs_path *path;
8968 u64 start = ins->objectid;
8969 u64 len = ins->offset;
8970 u64 qgroup_released = 0;
8971 int ret;
8972
8973 memset(&stack_fi, 0, sizeof(stack_fi));
8974
8975 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
8976 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
8977 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
8978 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
8979 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
8980 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
8981 /* Encryption and other encoding is reserved and all 0 */
8982
8983 ret = btrfs_qgroup_release_data(inode, file_offset, len, &qgroup_released);
8984 if (ret < 0)
8985 return ERR_PTR(ret);
8986
8987 if (trans) {
8988 ret = insert_reserved_file_extent(trans, inode,
8989 file_offset, &stack_fi,
8990 true, qgroup_released);
8991 if (ret)
8992 goto free_qgroup;
8993 return trans;
8994 }
8995
8996 extent_info.disk_offset = start;
8997 extent_info.disk_len = len;
8998 extent_info.data_offset = 0;
8999 extent_info.data_len = len;
9000 extent_info.file_offset = file_offset;
9001 extent_info.extent_buf = (char *)&stack_fi;
9002 extent_info.is_new_extent = true;
9003 extent_info.update_times = true;
9004 extent_info.qgroup_reserved = qgroup_released;
9005 extent_info.insertions = 0;
9006
9007 path = btrfs_alloc_path();
9008 if (!path) {
9009 ret = -ENOMEM;
9010 goto free_qgroup;
9011 }
9012
9013 ret = btrfs_replace_file_extents(inode, path, file_offset,
9014 file_offset + len - 1, &extent_info,
9015 &trans);
9016 btrfs_free_path(path);
9017 if (ret)
9018 goto free_qgroup;
9019 return trans;
9020
9021 free_qgroup:
9022 /*
9023 * We have released qgroup data range at the beginning of the function,
9024 * and normally qgroup_released bytes will be freed when committing
9025 * transaction.
9026 * But if we error out early, we have to free what we have released
9027 * or we leak qgroup data reservation.
9028 */
9029 btrfs_qgroup_free_refroot(inode->root->fs_info,
9030 btrfs_root_id(inode->root), qgroup_released,
9031 BTRFS_QGROUP_RSV_DATA);
9032 return ERR_PTR(ret);
9033 }
9034
__btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint,struct btrfs_trans_handle * trans)9035 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9036 u64 start, u64 num_bytes, u64 min_size,
9037 loff_t actual_len, u64 *alloc_hint,
9038 struct btrfs_trans_handle *trans)
9039 {
9040 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
9041 struct extent_map *em;
9042 struct btrfs_root *root = BTRFS_I(inode)->root;
9043 struct btrfs_key ins;
9044 u64 cur_offset = start;
9045 u64 clear_offset = start;
9046 u64 i_size;
9047 u64 cur_bytes;
9048 u64 last_alloc = (u64)-1;
9049 int ret = 0;
9050 bool own_trans = true;
9051 u64 end = start + num_bytes - 1;
9052
9053 if (trans)
9054 own_trans = false;
9055 while (num_bytes > 0) {
9056 cur_bytes = min_t(u64, num_bytes, SZ_256M);
9057 cur_bytes = max(cur_bytes, min_size);
9058 /*
9059 * If we are severely fragmented we could end up with really
9060 * small allocations, so if the allocator is returning small
9061 * chunks lets make its job easier by only searching for those
9062 * sized chunks.
9063 */
9064 cur_bytes = min(cur_bytes, last_alloc);
9065 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9066 min_size, 0, *alloc_hint, &ins, 1, 0);
9067 if (ret)
9068 break;
9069
9070 /*
9071 * We've reserved this space, and thus converted it from
9072 * ->bytes_may_use to ->bytes_reserved. Any error that happens
9073 * from here on out we will only need to clear our reservation
9074 * for the remaining unreserved area, so advance our
9075 * clear_offset by our extent size.
9076 */
9077 clear_offset += ins.offset;
9078
9079 last_alloc = ins.offset;
9080 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
9081 &ins, cur_offset);
9082 /*
9083 * Now that we inserted the prealloc extent we can finally
9084 * decrement the number of reservations in the block group.
9085 * If we did it before, we could race with relocation and have
9086 * relocation miss the reserved extent, making it fail later.
9087 */
9088 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9089 if (IS_ERR(trans)) {
9090 ret = PTR_ERR(trans);
9091 btrfs_free_reserved_extent(fs_info, ins.objectid,
9092 ins.offset, false);
9093 break;
9094 }
9095
9096 em = btrfs_alloc_extent_map();
9097 if (!em) {
9098 btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset,
9099 cur_offset + ins.offset - 1, false);
9100 btrfs_set_inode_full_sync(BTRFS_I(inode));
9101 goto next;
9102 }
9103
9104 em->start = cur_offset;
9105 em->len = ins.offset;
9106 em->disk_bytenr = ins.objectid;
9107 em->offset = 0;
9108 em->disk_num_bytes = ins.offset;
9109 em->ram_bytes = ins.offset;
9110 em->flags |= EXTENT_FLAG_PREALLOC;
9111 em->generation = trans->transid;
9112
9113 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true);
9114 btrfs_free_extent_map(em);
9115 next:
9116 num_bytes -= ins.offset;
9117 cur_offset += ins.offset;
9118 *alloc_hint = ins.objectid + ins.offset;
9119
9120 inode_inc_iversion(inode);
9121 inode_set_ctime_current(inode);
9122 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9123 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9124 (actual_len > inode->i_size) &&
9125 (cur_offset > inode->i_size)) {
9126 if (cur_offset > actual_len)
9127 i_size = actual_len;
9128 else
9129 i_size = cur_offset;
9130 i_size_write(inode, i_size);
9131 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
9132 }
9133
9134 ret = btrfs_update_inode(trans, BTRFS_I(inode));
9135
9136 if (unlikely(ret)) {
9137 btrfs_abort_transaction(trans, ret);
9138 if (own_trans)
9139 btrfs_end_transaction(trans);
9140 break;
9141 }
9142
9143 if (own_trans) {
9144 btrfs_end_transaction(trans);
9145 trans = NULL;
9146 }
9147 }
9148 if (clear_offset < end)
9149 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
9150 end - clear_offset + 1);
9151 return ret;
9152 }
9153
btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)9154 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9155 u64 start, u64 num_bytes, u64 min_size,
9156 loff_t actual_len, u64 *alloc_hint)
9157 {
9158 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9159 min_size, actual_len, alloc_hint,
9160 NULL);
9161 }
9162
btrfs_prealloc_file_range_trans(struct inode * inode,struct btrfs_trans_handle * trans,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)9163 int btrfs_prealloc_file_range_trans(struct inode *inode,
9164 struct btrfs_trans_handle *trans, int mode,
9165 u64 start, u64 num_bytes, u64 min_size,
9166 loff_t actual_len, u64 *alloc_hint)
9167 {
9168 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9169 min_size, actual_len, alloc_hint, trans);
9170 }
9171
btrfs_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)9172 static int btrfs_permission(struct mnt_idmap *idmap,
9173 struct inode *inode, int mask)
9174 {
9175 struct btrfs_root *root = BTRFS_I(inode)->root;
9176 umode_t mode = inode->i_mode;
9177
9178 if (mask & MAY_WRITE &&
9179 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9180 if (btrfs_root_readonly(root))
9181 return -EROFS;
9182 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9183 return -EACCES;
9184 }
9185 return generic_permission(idmap, inode, mask);
9186 }
9187
btrfs_tmpfile(struct mnt_idmap * idmap,struct inode * dir,struct file * file,umode_t mode)9188 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
9189 struct file *file, umode_t mode)
9190 {
9191 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
9192 struct btrfs_trans_handle *trans;
9193 struct btrfs_root *root = BTRFS_I(dir)->root;
9194 struct inode *inode;
9195 struct btrfs_new_inode_args new_inode_args = {
9196 .dir = dir,
9197 .dentry = file->f_path.dentry,
9198 .orphan = true,
9199 };
9200 unsigned int trans_num_items;
9201 int ret;
9202
9203 inode = new_inode(dir->i_sb);
9204 if (!inode)
9205 return -ENOMEM;
9206 inode_init_owner(idmap, inode, dir, mode);
9207 inode->i_fop = &btrfs_file_operations;
9208 inode->i_op = &btrfs_file_inode_operations;
9209 inode->i_mapping->a_ops = &btrfs_aops;
9210
9211 new_inode_args.inode = inode;
9212 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
9213 if (ret)
9214 goto out_inode;
9215
9216 trans = btrfs_start_transaction(root, trans_num_items);
9217 if (IS_ERR(trans)) {
9218 ret = PTR_ERR(trans);
9219 goto out_new_inode_args;
9220 }
9221
9222 ret = btrfs_create_new_inode(trans, &new_inode_args);
9223
9224 /*
9225 * We set number of links to 0 in btrfs_create_new_inode(), and here we
9226 * set it to 1 because d_tmpfile() will issue a warning if the count is
9227 * 0, through:
9228 *
9229 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9230 */
9231 set_nlink(inode, 1);
9232
9233 if (!ret) {
9234 d_tmpfile(file, inode);
9235 unlock_new_inode(inode);
9236 mark_inode_dirty(inode);
9237 }
9238
9239 btrfs_end_transaction(trans);
9240 btrfs_btree_balance_dirty(fs_info);
9241 out_new_inode_args:
9242 btrfs_new_inode_args_destroy(&new_inode_args);
9243 out_inode:
9244 if (ret)
9245 iput(inode);
9246 return finish_open_simple(file, ret);
9247 }
9248
btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info * fs_info,int compress_type)9249 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
9250 int compress_type)
9251 {
9252 switch (compress_type) {
9253 case BTRFS_COMPRESS_NONE:
9254 return BTRFS_ENCODED_IO_COMPRESSION_NONE;
9255 case BTRFS_COMPRESS_ZLIB:
9256 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB;
9257 case BTRFS_COMPRESS_LZO:
9258 /*
9259 * The LZO format depends on the sector size. 64K is the maximum
9260 * sector size that we support.
9261 */
9262 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K)
9263 return -EINVAL;
9264 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K +
9265 (fs_info->sectorsize_bits - 12);
9266 case BTRFS_COMPRESS_ZSTD:
9267 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD;
9268 default:
9269 return -EUCLEAN;
9270 }
9271 }
9272
btrfs_encoded_read_inline(struct kiocb * iocb,struct iov_iter * iter,u64 start,u64 lockend,struct extent_state ** cached_state,u64 extent_start,size_t count,struct btrfs_ioctl_encoded_io_args * encoded,bool * unlocked)9273 static ssize_t btrfs_encoded_read_inline(
9274 struct kiocb *iocb,
9275 struct iov_iter *iter, u64 start,
9276 u64 lockend,
9277 struct extent_state **cached_state,
9278 u64 extent_start, size_t count,
9279 struct btrfs_ioctl_encoded_io_args *encoded,
9280 bool *unlocked)
9281 {
9282 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9283 struct btrfs_root *root = inode->root;
9284 struct btrfs_fs_info *fs_info = root->fs_info;
9285 struct extent_io_tree *io_tree = &inode->io_tree;
9286 BTRFS_PATH_AUTO_FREE(path);
9287 struct extent_buffer *leaf;
9288 struct btrfs_file_extent_item *item;
9289 u64 ram_bytes;
9290 unsigned long ptr;
9291 void *tmp;
9292 ssize_t ret;
9293 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
9294
9295 path = btrfs_alloc_path();
9296 if (!path)
9297 return -ENOMEM;
9298
9299 path->nowait = nowait;
9300
9301 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
9302 extent_start, 0);
9303 if (ret) {
9304 if (unlikely(ret > 0)) {
9305 /* The extent item disappeared? */
9306 return -EIO;
9307 }
9308 return ret;
9309 }
9310 leaf = path->nodes[0];
9311 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
9312
9313 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
9314 ptr = btrfs_file_extent_inline_start(item);
9315
9316 encoded->len = min_t(u64, extent_start + ram_bytes,
9317 inode->vfs_inode.i_size) - iocb->ki_pos;
9318 ret = btrfs_encoded_io_compression_from_extent(fs_info,
9319 btrfs_file_extent_compression(leaf, item));
9320 if (ret < 0)
9321 return ret;
9322 encoded->compression = ret;
9323 if (encoded->compression) {
9324 size_t inline_size;
9325
9326 inline_size = btrfs_file_extent_inline_item_len(leaf,
9327 path->slots[0]);
9328 if (inline_size > count)
9329 return -ENOBUFS;
9330
9331 count = inline_size;
9332 encoded->unencoded_len = ram_bytes;
9333 encoded->unencoded_offset = iocb->ki_pos - extent_start;
9334 } else {
9335 count = min_t(u64, count, encoded->len);
9336 encoded->len = count;
9337 encoded->unencoded_len = count;
9338 ptr += iocb->ki_pos - extent_start;
9339 }
9340
9341 tmp = kmalloc(count, GFP_NOFS);
9342 if (!tmp)
9343 return -ENOMEM;
9344
9345 read_extent_buffer(leaf, tmp, ptr, count);
9346 btrfs_release_path(path);
9347 btrfs_unlock_extent(io_tree, start, lockend, cached_state);
9348 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9349 *unlocked = true;
9350
9351 ret = copy_to_iter(tmp, count, iter);
9352 if (ret != count)
9353 ret = -EFAULT;
9354 kfree(tmp);
9355
9356 return ret;
9357 }
9358
9359 struct btrfs_encoded_read_private {
9360 struct completion *sync_reads;
9361 void *uring_ctx;
9362 refcount_t pending_refs;
9363 blk_status_t status;
9364 };
9365
btrfs_encoded_read_endio(struct btrfs_bio * bbio)9366 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio)
9367 {
9368 struct btrfs_encoded_read_private *priv = bbio->private;
9369
9370 if (bbio->bio.bi_status) {
9371 /*
9372 * The memory barrier implied by the refcount_dec_and_test() here
9373 * pairs with the memory barrier implied by the refcount_dec_and_test()
9374 * in btrfs_encoded_read_regular_fill_pages() to ensure that
9375 * this write is observed before the load of status in
9376 * btrfs_encoded_read_regular_fill_pages().
9377 */
9378 WRITE_ONCE(priv->status, bbio->bio.bi_status);
9379 }
9380 if (refcount_dec_and_test(&priv->pending_refs)) {
9381 int err = blk_status_to_errno(READ_ONCE(priv->status));
9382
9383 if (priv->uring_ctx) {
9384 btrfs_uring_read_extent_endio(priv->uring_ctx, err);
9385 kfree(priv);
9386 } else {
9387 complete(priv->sync_reads);
9388 }
9389 }
9390 bio_put(&bbio->bio);
9391 }
9392
btrfs_encoded_read_regular_fill_pages(struct btrfs_inode * inode,u64 disk_bytenr,u64 disk_io_size,struct page ** pages,void * uring_ctx)9393 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
9394 u64 disk_bytenr, u64 disk_io_size,
9395 struct page **pages, void *uring_ctx)
9396 {
9397 struct btrfs_fs_info *fs_info = inode->root->fs_info;
9398 struct btrfs_encoded_read_private *priv, sync_priv;
9399 struct completion sync_reads;
9400 unsigned long i = 0;
9401 struct btrfs_bio *bbio;
9402 int ret;
9403
9404 /*
9405 * Fast path for synchronous reads which completes in this call, io_uring
9406 * needs longer time span.
9407 */
9408 if (uring_ctx) {
9409 priv = kmalloc(sizeof(struct btrfs_encoded_read_private), GFP_NOFS);
9410 if (!priv)
9411 return -ENOMEM;
9412 } else {
9413 priv = &sync_priv;
9414 init_completion(&sync_reads);
9415 priv->sync_reads = &sync_reads;
9416 }
9417
9418 refcount_set(&priv->pending_refs, 1);
9419 priv->status = 0;
9420 priv->uring_ctx = uring_ctx;
9421
9422 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
9423 btrfs_encoded_read_endio, priv);
9424 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
9425 bbio->inode = inode;
9426
9427 do {
9428 size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE);
9429
9430 if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) {
9431 refcount_inc(&priv->pending_refs);
9432 btrfs_submit_bbio(bbio, 0);
9433
9434 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
9435 btrfs_encoded_read_endio, priv);
9436 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
9437 bbio->inode = inode;
9438 continue;
9439 }
9440
9441 i++;
9442 disk_bytenr += bytes;
9443 disk_io_size -= bytes;
9444 } while (disk_io_size);
9445
9446 refcount_inc(&priv->pending_refs);
9447 btrfs_submit_bbio(bbio, 0);
9448
9449 if (uring_ctx) {
9450 if (refcount_dec_and_test(&priv->pending_refs)) {
9451 ret = blk_status_to_errno(READ_ONCE(priv->status));
9452 btrfs_uring_read_extent_endio(uring_ctx, ret);
9453 kfree(priv);
9454 return ret;
9455 }
9456
9457 return -EIOCBQUEUED;
9458 } else {
9459 if (!refcount_dec_and_test(&priv->pending_refs))
9460 wait_for_completion_io(&sync_reads);
9461 /* See btrfs_encoded_read_endio() for ordering. */
9462 return blk_status_to_errno(READ_ONCE(priv->status));
9463 }
9464 }
9465
btrfs_encoded_read_regular(struct kiocb * iocb,struct iov_iter * iter,u64 start,u64 lockend,struct extent_state ** cached_state,u64 disk_bytenr,u64 disk_io_size,size_t count,bool compressed,bool * unlocked)9466 ssize_t btrfs_encoded_read_regular(struct kiocb *iocb, struct iov_iter *iter,
9467 u64 start, u64 lockend,
9468 struct extent_state **cached_state,
9469 u64 disk_bytenr, u64 disk_io_size,
9470 size_t count, bool compressed, bool *unlocked)
9471 {
9472 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9473 struct extent_io_tree *io_tree = &inode->io_tree;
9474 struct page **pages;
9475 unsigned long nr_pages, i;
9476 u64 cur;
9477 size_t page_offset;
9478 ssize_t ret;
9479
9480 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
9481 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
9482 if (!pages)
9483 return -ENOMEM;
9484 ret = btrfs_alloc_page_array(nr_pages, pages, false);
9485 if (ret) {
9486 ret = -ENOMEM;
9487 goto out;
9488 }
9489
9490 ret = btrfs_encoded_read_regular_fill_pages(inode, disk_bytenr,
9491 disk_io_size, pages, NULL);
9492 if (ret)
9493 goto out;
9494
9495 btrfs_unlock_extent(io_tree, start, lockend, cached_state);
9496 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9497 *unlocked = true;
9498
9499 if (compressed) {
9500 i = 0;
9501 page_offset = 0;
9502 } else {
9503 i = (iocb->ki_pos - start) >> PAGE_SHIFT;
9504 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1);
9505 }
9506 cur = 0;
9507 while (cur < count) {
9508 size_t bytes = min_t(size_t, count - cur,
9509 PAGE_SIZE - page_offset);
9510
9511 if (copy_page_to_iter(pages[i], page_offset, bytes,
9512 iter) != bytes) {
9513 ret = -EFAULT;
9514 goto out;
9515 }
9516 i++;
9517 cur += bytes;
9518 page_offset = 0;
9519 }
9520 ret = count;
9521 out:
9522 for (i = 0; i < nr_pages; i++) {
9523 if (pages[i])
9524 __free_page(pages[i]);
9525 }
9526 kfree(pages);
9527 return ret;
9528 }
9529
btrfs_encoded_read(struct kiocb * iocb,struct iov_iter * iter,struct btrfs_ioctl_encoded_io_args * encoded,struct extent_state ** cached_state,u64 * disk_bytenr,u64 * disk_io_size)9530 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
9531 struct btrfs_ioctl_encoded_io_args *encoded,
9532 struct extent_state **cached_state,
9533 u64 *disk_bytenr, u64 *disk_io_size)
9534 {
9535 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9536 struct btrfs_fs_info *fs_info = inode->root->fs_info;
9537 struct extent_io_tree *io_tree = &inode->io_tree;
9538 ssize_t ret;
9539 size_t count = iov_iter_count(iter);
9540 u64 start, lockend;
9541 struct extent_map *em;
9542 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
9543 bool unlocked = false;
9544
9545 file_accessed(iocb->ki_filp);
9546
9547 ret = btrfs_inode_lock(inode,
9548 BTRFS_ILOCK_SHARED | (nowait ? BTRFS_ILOCK_TRY : 0));
9549 if (ret)
9550 return ret;
9551
9552 if (iocb->ki_pos >= inode->vfs_inode.i_size) {
9553 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9554 return 0;
9555 }
9556 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize);
9557 /*
9558 * We don't know how long the extent containing iocb->ki_pos is, but if
9559 * it's compressed we know that it won't be longer than this.
9560 */
9561 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
9562
9563 if (nowait) {
9564 struct btrfs_ordered_extent *ordered;
9565
9566 if (filemap_range_needs_writeback(inode->vfs_inode.i_mapping,
9567 start, lockend)) {
9568 ret = -EAGAIN;
9569 goto out_unlock_inode;
9570 }
9571
9572 if (!btrfs_try_lock_extent(io_tree, start, lockend, cached_state)) {
9573 ret = -EAGAIN;
9574 goto out_unlock_inode;
9575 }
9576
9577 ordered = btrfs_lookup_ordered_range(inode, start,
9578 lockend - start + 1);
9579 if (ordered) {
9580 btrfs_put_ordered_extent(ordered);
9581 btrfs_unlock_extent(io_tree, start, lockend, cached_state);
9582 ret = -EAGAIN;
9583 goto out_unlock_inode;
9584 }
9585 } else {
9586 for (;;) {
9587 struct btrfs_ordered_extent *ordered;
9588
9589 ret = btrfs_wait_ordered_range(inode, start,
9590 lockend - start + 1);
9591 if (ret)
9592 goto out_unlock_inode;
9593
9594 btrfs_lock_extent(io_tree, start, lockend, cached_state);
9595 ordered = btrfs_lookup_ordered_range(inode, start,
9596 lockend - start + 1);
9597 if (!ordered)
9598 break;
9599 btrfs_put_ordered_extent(ordered);
9600 btrfs_unlock_extent(io_tree, start, lockend, cached_state);
9601 cond_resched();
9602 }
9603 }
9604
9605 em = btrfs_get_extent(inode, NULL, start, lockend - start + 1);
9606 if (IS_ERR(em)) {
9607 ret = PTR_ERR(em);
9608 goto out_unlock_extent;
9609 }
9610
9611 if (em->disk_bytenr == EXTENT_MAP_INLINE) {
9612 u64 extent_start = em->start;
9613
9614 /*
9615 * For inline extents we get everything we need out of the
9616 * extent item.
9617 */
9618 btrfs_free_extent_map(em);
9619 em = NULL;
9620 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend,
9621 cached_state, extent_start,
9622 count, encoded, &unlocked);
9623 goto out_unlock_extent;
9624 }
9625
9626 /*
9627 * We only want to return up to EOF even if the extent extends beyond
9628 * that.
9629 */
9630 encoded->len = min_t(u64, btrfs_extent_map_end(em),
9631 inode->vfs_inode.i_size) - iocb->ki_pos;
9632 if (em->disk_bytenr == EXTENT_MAP_HOLE ||
9633 (em->flags & EXTENT_FLAG_PREALLOC)) {
9634 *disk_bytenr = EXTENT_MAP_HOLE;
9635 count = min_t(u64, count, encoded->len);
9636 encoded->len = count;
9637 encoded->unencoded_len = count;
9638 } else if (btrfs_extent_map_is_compressed(em)) {
9639 *disk_bytenr = em->disk_bytenr;
9640 /*
9641 * Bail if the buffer isn't large enough to return the whole
9642 * compressed extent.
9643 */
9644 if (em->disk_num_bytes > count) {
9645 ret = -ENOBUFS;
9646 goto out_em;
9647 }
9648 *disk_io_size = em->disk_num_bytes;
9649 count = em->disk_num_bytes;
9650 encoded->unencoded_len = em->ram_bytes;
9651 encoded->unencoded_offset = iocb->ki_pos - (em->start - em->offset);
9652 ret = btrfs_encoded_io_compression_from_extent(fs_info,
9653 btrfs_extent_map_compression(em));
9654 if (ret < 0)
9655 goto out_em;
9656 encoded->compression = ret;
9657 } else {
9658 *disk_bytenr = btrfs_extent_map_block_start(em) + (start - em->start);
9659 if (encoded->len > count)
9660 encoded->len = count;
9661 /*
9662 * Don't read beyond what we locked. This also limits the page
9663 * allocations that we'll do.
9664 */
9665 *disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start;
9666 count = start + *disk_io_size - iocb->ki_pos;
9667 encoded->len = count;
9668 encoded->unencoded_len = count;
9669 *disk_io_size = ALIGN(*disk_io_size, fs_info->sectorsize);
9670 }
9671 btrfs_free_extent_map(em);
9672 em = NULL;
9673
9674 if (*disk_bytenr == EXTENT_MAP_HOLE) {
9675 btrfs_unlock_extent(io_tree, start, lockend, cached_state);
9676 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9677 unlocked = true;
9678 ret = iov_iter_zero(count, iter);
9679 if (ret != count)
9680 ret = -EFAULT;
9681 } else {
9682 ret = -EIOCBQUEUED;
9683 goto out_unlock_extent;
9684 }
9685
9686 out_em:
9687 btrfs_free_extent_map(em);
9688 out_unlock_extent:
9689 /* Leave inode and extent locked if we need to do a read. */
9690 if (!unlocked && ret != -EIOCBQUEUED)
9691 btrfs_unlock_extent(io_tree, start, lockend, cached_state);
9692 out_unlock_inode:
9693 if (!unlocked && ret != -EIOCBQUEUED)
9694 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9695 return ret;
9696 }
9697
btrfs_do_encoded_write(struct kiocb * iocb,struct iov_iter * from,const struct btrfs_ioctl_encoded_io_args * encoded)9698 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
9699 const struct btrfs_ioctl_encoded_io_args *encoded)
9700 {
9701 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9702 struct btrfs_root *root = inode->root;
9703 struct btrfs_fs_info *fs_info = root->fs_info;
9704 struct extent_io_tree *io_tree = &inode->io_tree;
9705 struct extent_changeset *data_reserved = NULL;
9706 struct extent_state *cached_state = NULL;
9707 struct btrfs_ordered_extent *ordered;
9708 struct btrfs_file_extent file_extent;
9709 int compression;
9710 size_t orig_count;
9711 u64 start, end;
9712 u64 num_bytes, ram_bytes, disk_num_bytes;
9713 unsigned long nr_folios, i;
9714 struct folio **folios;
9715 struct btrfs_key ins;
9716 bool extent_reserved = false;
9717 struct extent_map *em;
9718 ssize_t ret;
9719
9720 switch (encoded->compression) {
9721 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB:
9722 compression = BTRFS_COMPRESS_ZLIB;
9723 break;
9724 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD:
9725 compression = BTRFS_COMPRESS_ZSTD;
9726 break;
9727 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K:
9728 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K:
9729 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K:
9730 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K:
9731 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K:
9732 /* The sector size must match for LZO. */
9733 if (encoded->compression -
9734 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 !=
9735 fs_info->sectorsize_bits)
9736 return -EINVAL;
9737 compression = BTRFS_COMPRESS_LZO;
9738 break;
9739 default:
9740 return -EINVAL;
9741 }
9742 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE)
9743 return -EINVAL;
9744
9745 /*
9746 * Compressed extents should always have checksums, so error out if we
9747 * have a NOCOW file or inode was created while mounted with NODATASUM.
9748 */
9749 if (inode->flags & BTRFS_INODE_NODATASUM)
9750 return -EINVAL;
9751
9752 orig_count = iov_iter_count(from);
9753
9754 /* The extent size must be sane. */
9755 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED ||
9756 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0)
9757 return -EINVAL;
9758
9759 /*
9760 * The compressed data must be smaller than the decompressed data.
9761 *
9762 * It's of course possible for data to compress to larger or the same
9763 * size, but the buffered I/O path falls back to no compression for such
9764 * data, and we don't want to break any assumptions by creating these
9765 * extents.
9766 *
9767 * Note that this is less strict than the current check we have that the
9768 * compressed data must be at least one sector smaller than the
9769 * decompressed data. We only want to enforce the weaker requirement
9770 * from old kernels that it is at least one byte smaller.
9771 */
9772 if (orig_count >= encoded->unencoded_len)
9773 return -EINVAL;
9774
9775 /* The extent must start on a sector boundary. */
9776 start = iocb->ki_pos;
9777 if (!IS_ALIGNED(start, fs_info->sectorsize))
9778 return -EINVAL;
9779
9780 /*
9781 * The extent must end on a sector boundary. However, we allow a write
9782 * which ends at or extends i_size to have an unaligned length; we round
9783 * up the extent size and set i_size to the unaligned end.
9784 */
9785 if (start + encoded->len < inode->vfs_inode.i_size &&
9786 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize))
9787 return -EINVAL;
9788
9789 /* Finally, the offset in the unencoded data must be sector-aligned. */
9790 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize))
9791 return -EINVAL;
9792
9793 num_bytes = ALIGN(encoded->len, fs_info->sectorsize);
9794 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize);
9795 end = start + num_bytes - 1;
9796
9797 /*
9798 * If the extent cannot be inline, the compressed data on disk must be
9799 * sector-aligned. For convenience, we extend it with zeroes if it
9800 * isn't.
9801 */
9802 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize);
9803 nr_folios = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE);
9804 folios = kvcalloc(nr_folios, sizeof(struct folio *), GFP_KERNEL_ACCOUNT);
9805 if (!folios)
9806 return -ENOMEM;
9807 for (i = 0; i < nr_folios; i++) {
9808 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from));
9809 char *kaddr;
9810
9811 folios[i] = folio_alloc(GFP_KERNEL_ACCOUNT, 0);
9812 if (!folios[i]) {
9813 ret = -ENOMEM;
9814 goto out_folios;
9815 }
9816 kaddr = kmap_local_folio(folios[i], 0);
9817 if (copy_from_iter(kaddr, bytes, from) != bytes) {
9818 kunmap_local(kaddr);
9819 ret = -EFAULT;
9820 goto out_folios;
9821 }
9822 if (bytes < PAGE_SIZE)
9823 memset(kaddr + bytes, 0, PAGE_SIZE - bytes);
9824 kunmap_local(kaddr);
9825 }
9826
9827 for (;;) {
9828 struct btrfs_ordered_extent *ordered;
9829
9830 ret = btrfs_wait_ordered_range(inode, start, num_bytes);
9831 if (ret)
9832 goto out_folios;
9833 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping,
9834 start >> PAGE_SHIFT,
9835 end >> PAGE_SHIFT);
9836 if (ret)
9837 goto out_folios;
9838 btrfs_lock_extent(io_tree, start, end, &cached_state);
9839 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes);
9840 if (!ordered &&
9841 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end))
9842 break;
9843 if (ordered)
9844 btrfs_put_ordered_extent(ordered);
9845 btrfs_unlock_extent(io_tree, start, end, &cached_state);
9846 cond_resched();
9847 }
9848
9849 /*
9850 * We don't use the higher-level delalloc space functions because our
9851 * num_bytes and disk_num_bytes are different.
9852 */
9853 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes);
9854 if (ret)
9855 goto out_unlock;
9856 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes);
9857 if (ret)
9858 goto out_free_data_space;
9859 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes,
9860 false);
9861 if (ret)
9862 goto out_qgroup_free_data;
9863
9864 /* Try an inline extent first. */
9865 if (encoded->unencoded_len == encoded->len &&
9866 encoded->unencoded_offset == 0 &&
9867 can_cow_file_range_inline(inode, start, encoded->len, orig_count)) {
9868 ret = __cow_file_range_inline(inode, encoded->len,
9869 orig_count, compression, folios[0],
9870 true);
9871 if (ret <= 0) {
9872 if (ret == 0)
9873 ret = orig_count;
9874 goto out_delalloc_release;
9875 }
9876 }
9877
9878 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes,
9879 disk_num_bytes, 0, 0, &ins, 1, 1);
9880 if (ret)
9881 goto out_delalloc_release;
9882 extent_reserved = true;
9883
9884 file_extent.disk_bytenr = ins.objectid;
9885 file_extent.disk_num_bytes = ins.offset;
9886 file_extent.num_bytes = num_bytes;
9887 file_extent.ram_bytes = ram_bytes;
9888 file_extent.offset = encoded->unencoded_offset;
9889 file_extent.compression = compression;
9890 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED);
9891 if (IS_ERR(em)) {
9892 ret = PTR_ERR(em);
9893 goto out_free_reserved;
9894 }
9895 btrfs_free_extent_map(em);
9896
9897 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent,
9898 (1U << BTRFS_ORDERED_ENCODED) |
9899 (1U << BTRFS_ORDERED_COMPRESSED));
9900 if (IS_ERR(ordered)) {
9901 btrfs_drop_extent_map_range(inode, start, end, false);
9902 ret = PTR_ERR(ordered);
9903 goto out_free_reserved;
9904 }
9905 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9906
9907 if (start + encoded->len > inode->vfs_inode.i_size)
9908 i_size_write(&inode->vfs_inode, start + encoded->len);
9909
9910 btrfs_unlock_extent(io_tree, start, end, &cached_state);
9911
9912 btrfs_delalloc_release_extents(inode, num_bytes);
9913
9914 btrfs_submit_compressed_write(ordered, folios, nr_folios, 0, false);
9915 ret = orig_count;
9916 goto out;
9917
9918 out_free_reserved:
9919 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9920 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, true);
9921 out_delalloc_release:
9922 btrfs_delalloc_release_extents(inode, num_bytes);
9923 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0);
9924 out_qgroup_free_data:
9925 if (ret < 0)
9926 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes, NULL);
9927 out_free_data_space:
9928 /*
9929 * If btrfs_reserve_extent() succeeded, then we already decremented
9930 * bytes_may_use.
9931 */
9932 if (!extent_reserved)
9933 btrfs_free_reserved_data_space_noquota(inode, disk_num_bytes);
9934 out_unlock:
9935 btrfs_unlock_extent(io_tree, start, end, &cached_state);
9936 out_folios:
9937 for (i = 0; i < nr_folios; i++) {
9938 if (folios[i])
9939 folio_put(folios[i]);
9940 }
9941 kvfree(folios);
9942 out:
9943 if (ret >= 0)
9944 iocb->ki_pos += encoded->len;
9945 return ret;
9946 }
9947
9948 #ifdef CONFIG_SWAP
9949 /*
9950 * Add an entry indicating a block group or device which is pinned by a
9951 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
9952 * negative errno on failure.
9953 */
btrfs_add_swapfile_pin(struct inode * inode,void * ptr,bool is_block_group)9954 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
9955 bool is_block_group)
9956 {
9957 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
9958 struct btrfs_swapfile_pin *sp, *entry;
9959 struct rb_node **p;
9960 struct rb_node *parent = NULL;
9961
9962 sp = kmalloc(sizeof(*sp), GFP_NOFS);
9963 if (!sp)
9964 return -ENOMEM;
9965 sp->ptr = ptr;
9966 sp->inode = inode;
9967 sp->is_block_group = is_block_group;
9968 sp->bg_extent_count = 1;
9969
9970 spin_lock(&fs_info->swapfile_pins_lock);
9971 p = &fs_info->swapfile_pins.rb_node;
9972 while (*p) {
9973 parent = *p;
9974 entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
9975 if (sp->ptr < entry->ptr ||
9976 (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
9977 p = &(*p)->rb_left;
9978 } else if (sp->ptr > entry->ptr ||
9979 (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
9980 p = &(*p)->rb_right;
9981 } else {
9982 if (is_block_group)
9983 entry->bg_extent_count++;
9984 spin_unlock(&fs_info->swapfile_pins_lock);
9985 kfree(sp);
9986 return 1;
9987 }
9988 }
9989 rb_link_node(&sp->node, parent, p);
9990 rb_insert_color(&sp->node, &fs_info->swapfile_pins);
9991 spin_unlock(&fs_info->swapfile_pins_lock);
9992 return 0;
9993 }
9994
9995 /* Free all of the entries pinned by this swapfile. */
btrfs_free_swapfile_pins(struct inode * inode)9996 static void btrfs_free_swapfile_pins(struct inode *inode)
9997 {
9998 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
9999 struct btrfs_swapfile_pin *sp;
10000 struct rb_node *node, *next;
10001
10002 spin_lock(&fs_info->swapfile_pins_lock);
10003 node = rb_first(&fs_info->swapfile_pins);
10004 while (node) {
10005 next = rb_next(node);
10006 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10007 if (sp->inode == inode) {
10008 rb_erase(&sp->node, &fs_info->swapfile_pins);
10009 if (sp->is_block_group) {
10010 btrfs_dec_block_group_swap_extents(sp->ptr,
10011 sp->bg_extent_count);
10012 btrfs_put_block_group(sp->ptr);
10013 }
10014 kfree(sp);
10015 }
10016 node = next;
10017 }
10018 spin_unlock(&fs_info->swapfile_pins_lock);
10019 }
10020
10021 struct btrfs_swap_info {
10022 u64 start;
10023 u64 block_start;
10024 u64 block_len;
10025 u64 lowest_ppage;
10026 u64 highest_ppage;
10027 unsigned long nr_pages;
10028 int nr_extents;
10029 };
10030
btrfs_add_swap_extent(struct swap_info_struct * sis,struct btrfs_swap_info * bsi)10031 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10032 struct btrfs_swap_info *bsi)
10033 {
10034 unsigned long nr_pages;
10035 unsigned long max_pages;
10036 u64 first_ppage, first_ppage_reported, next_ppage;
10037 int ret;
10038
10039 /*
10040 * Our swapfile may have had its size extended after the swap header was
10041 * written. In that case activating the swapfile should not go beyond
10042 * the max size set in the swap header.
10043 */
10044 if (bsi->nr_pages >= sis->max)
10045 return 0;
10046
10047 max_pages = sis->max - bsi->nr_pages;
10048 first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT;
10049 next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT;
10050
10051 if (first_ppage >= next_ppage)
10052 return 0;
10053 nr_pages = next_ppage - first_ppage;
10054 nr_pages = min(nr_pages, max_pages);
10055
10056 first_ppage_reported = first_ppage;
10057 if (bsi->start == 0)
10058 first_ppage_reported++;
10059 if (bsi->lowest_ppage > first_ppage_reported)
10060 bsi->lowest_ppage = first_ppage_reported;
10061 if (bsi->highest_ppage < (next_ppage - 1))
10062 bsi->highest_ppage = next_ppage - 1;
10063
10064 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10065 if (ret < 0)
10066 return ret;
10067 bsi->nr_extents += ret;
10068 bsi->nr_pages += nr_pages;
10069 return 0;
10070 }
10071
btrfs_swap_deactivate(struct file * file)10072 static void btrfs_swap_deactivate(struct file *file)
10073 {
10074 struct inode *inode = file_inode(file);
10075
10076 btrfs_free_swapfile_pins(inode);
10077 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10078 }
10079
btrfs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)10080 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10081 sector_t *span)
10082 {
10083 struct inode *inode = file_inode(file);
10084 struct btrfs_root *root = BTRFS_I(inode)->root;
10085 struct btrfs_fs_info *fs_info = root->fs_info;
10086 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10087 struct extent_state *cached_state = NULL;
10088 struct btrfs_chunk_map *map = NULL;
10089 struct btrfs_device *device = NULL;
10090 struct btrfs_swap_info bsi = {
10091 .lowest_ppage = (sector_t)-1ULL,
10092 };
10093 struct btrfs_backref_share_check_ctx *backref_ctx = NULL;
10094 struct btrfs_path *path = NULL;
10095 int ret = 0;
10096 u64 isize;
10097 u64 prev_extent_end = 0;
10098
10099 /*
10100 * Acquire the inode's mmap lock to prevent races with memory mapped
10101 * writes, as they could happen after we flush delalloc below and before
10102 * we lock the extent range further below. The inode was already locked
10103 * up in the call chain.
10104 */
10105 btrfs_assert_inode_locked(BTRFS_I(inode));
10106 down_write(&BTRFS_I(inode)->i_mmap_lock);
10107
10108 /*
10109 * If the swap file was just created, make sure delalloc is done. If the
10110 * file changes again after this, the user is doing something stupid and
10111 * we don't really care.
10112 */
10113 ret = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1);
10114 if (ret)
10115 goto out_unlock_mmap;
10116
10117 /*
10118 * The inode is locked, so these flags won't change after we check them.
10119 */
10120 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10121 btrfs_warn(fs_info, "swapfile must not be compressed");
10122 ret = -EINVAL;
10123 goto out_unlock_mmap;
10124 }
10125 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10126 btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10127 ret = -EINVAL;
10128 goto out_unlock_mmap;
10129 }
10130 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10131 btrfs_warn(fs_info, "swapfile must not be checksummed");
10132 ret = -EINVAL;
10133 goto out_unlock_mmap;
10134 }
10135
10136 path = btrfs_alloc_path();
10137 backref_ctx = btrfs_alloc_backref_share_check_ctx();
10138 if (!path || !backref_ctx) {
10139 ret = -ENOMEM;
10140 goto out_unlock_mmap;
10141 }
10142
10143 /*
10144 * Balance or device remove/replace/resize can move stuff around from
10145 * under us. The exclop protection makes sure they aren't running/won't
10146 * run concurrently while we are mapping the swap extents, and
10147 * fs_info->swapfile_pins prevents them from running while the swap
10148 * file is active and moving the extents. Note that this also prevents
10149 * a concurrent device add which isn't actually necessary, but it's not
10150 * really worth the trouble to allow it.
10151 */
10152 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
10153 btrfs_warn(fs_info,
10154 "cannot activate swapfile while exclusive operation is running");
10155 ret = -EBUSY;
10156 goto out_unlock_mmap;
10157 }
10158
10159 /*
10160 * Prevent snapshot creation while we are activating the swap file.
10161 * We do not want to race with snapshot creation. If snapshot creation
10162 * already started before we bumped nr_swapfiles from 0 to 1 and
10163 * completes before the first write into the swap file after it is
10164 * activated, than that write would fallback to COW.
10165 */
10166 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
10167 btrfs_exclop_finish(fs_info);
10168 btrfs_warn(fs_info,
10169 "cannot activate swapfile because snapshot creation is in progress");
10170 ret = -EINVAL;
10171 goto out_unlock_mmap;
10172 }
10173 /*
10174 * Snapshots can create extents which require COW even if NODATACOW is
10175 * set. We use this counter to prevent snapshots. We must increment it
10176 * before walking the extents because we don't want a concurrent
10177 * snapshot to run after we've already checked the extents.
10178 *
10179 * It is possible that subvolume is marked for deletion but still not
10180 * removed yet. To prevent this race, we check the root status before
10181 * activating the swapfile.
10182 */
10183 spin_lock(&root->root_item_lock);
10184 if (btrfs_root_dead(root)) {
10185 spin_unlock(&root->root_item_lock);
10186
10187 btrfs_drew_write_unlock(&root->snapshot_lock);
10188 btrfs_exclop_finish(fs_info);
10189 btrfs_warn(fs_info,
10190 "cannot activate swapfile because subvolume %llu is being deleted",
10191 btrfs_root_id(root));
10192 ret = -EPERM;
10193 goto out_unlock_mmap;
10194 }
10195 atomic_inc(&root->nr_swapfiles);
10196 spin_unlock(&root->root_item_lock);
10197
10198 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10199
10200 btrfs_lock_extent(io_tree, 0, isize - 1, &cached_state);
10201 while (prev_extent_end < isize) {
10202 struct btrfs_key key;
10203 struct extent_buffer *leaf;
10204 struct btrfs_file_extent_item *ei;
10205 struct btrfs_block_group *bg;
10206 u64 logical_block_start;
10207 u64 physical_block_start;
10208 u64 extent_gen;
10209 u64 disk_bytenr;
10210 u64 len;
10211
10212 key.objectid = btrfs_ino(BTRFS_I(inode));
10213 key.type = BTRFS_EXTENT_DATA_KEY;
10214 key.offset = prev_extent_end;
10215
10216 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
10217 if (ret < 0)
10218 goto out;
10219
10220 /*
10221 * If key not found it means we have an implicit hole (NO_HOLES
10222 * is enabled).
10223 */
10224 if (ret > 0) {
10225 btrfs_warn(fs_info, "swapfile must not have holes");
10226 ret = -EINVAL;
10227 goto out;
10228 }
10229
10230 leaf = path->nodes[0];
10231 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
10232
10233 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) {
10234 /*
10235 * It's unlikely we'll ever actually find ourselves
10236 * here, as a file small enough to fit inline won't be
10237 * big enough to store more than the swap header, but in
10238 * case something changes in the future, let's catch it
10239 * here rather than later.
10240 */
10241 btrfs_warn(fs_info, "swapfile must not be inline");
10242 ret = -EINVAL;
10243 goto out;
10244 }
10245
10246 if (btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) {
10247 btrfs_warn(fs_info, "swapfile must not be compressed");
10248 ret = -EINVAL;
10249 goto out;
10250 }
10251
10252 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
10253 if (disk_bytenr == 0) {
10254 btrfs_warn(fs_info, "swapfile must not have holes");
10255 ret = -EINVAL;
10256 goto out;
10257 }
10258
10259 logical_block_start = disk_bytenr + btrfs_file_extent_offset(leaf, ei);
10260 extent_gen = btrfs_file_extent_generation(leaf, ei);
10261 prev_extent_end = btrfs_file_extent_end(path);
10262
10263 if (prev_extent_end > isize)
10264 len = isize - key.offset;
10265 else
10266 len = btrfs_file_extent_num_bytes(leaf, ei);
10267
10268 backref_ctx->curr_leaf_bytenr = leaf->start;
10269
10270 /*
10271 * Don't need the path anymore, release to avoid deadlocks when
10272 * calling btrfs_is_data_extent_shared() because when joining a
10273 * transaction it can block waiting for the current one's commit
10274 * which in turn may be trying to lock the same leaf to flush
10275 * delayed items for example.
10276 */
10277 btrfs_release_path(path);
10278
10279 ret = btrfs_is_data_extent_shared(BTRFS_I(inode), disk_bytenr,
10280 extent_gen, backref_ctx);
10281 if (ret < 0) {
10282 goto out;
10283 } else if (ret > 0) {
10284 btrfs_warn(fs_info,
10285 "swapfile must not be copy-on-write");
10286 ret = -EINVAL;
10287 goto out;
10288 }
10289
10290 map = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10291 if (IS_ERR(map)) {
10292 ret = PTR_ERR(map);
10293 goto out;
10294 }
10295
10296 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10297 btrfs_warn(fs_info,
10298 "swapfile must have single data profile");
10299 ret = -EINVAL;
10300 goto out;
10301 }
10302
10303 if (device == NULL) {
10304 device = map->stripes[0].dev;
10305 ret = btrfs_add_swapfile_pin(inode, device, false);
10306 if (ret == 1)
10307 ret = 0;
10308 else if (ret)
10309 goto out;
10310 } else if (device != map->stripes[0].dev) {
10311 btrfs_warn(fs_info, "swapfile must be on one device");
10312 ret = -EINVAL;
10313 goto out;
10314 }
10315
10316 physical_block_start = (map->stripes[0].physical +
10317 (logical_block_start - map->start));
10318 btrfs_free_chunk_map(map);
10319 map = NULL;
10320
10321 bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10322 if (!bg) {
10323 btrfs_warn(fs_info,
10324 "could not find block group containing swapfile");
10325 ret = -EINVAL;
10326 goto out;
10327 }
10328
10329 if (!btrfs_inc_block_group_swap_extents(bg)) {
10330 btrfs_warn(fs_info,
10331 "block group for swapfile at %llu is read-only%s",
10332 bg->start,
10333 atomic_read(&fs_info->scrubs_running) ?
10334 " (scrub running)" : "");
10335 btrfs_put_block_group(bg);
10336 ret = -EINVAL;
10337 goto out;
10338 }
10339
10340 ret = btrfs_add_swapfile_pin(inode, bg, true);
10341 if (ret) {
10342 btrfs_put_block_group(bg);
10343 if (ret == 1)
10344 ret = 0;
10345 else
10346 goto out;
10347 }
10348
10349 if (bsi.block_len &&
10350 bsi.block_start + bsi.block_len == physical_block_start) {
10351 bsi.block_len += len;
10352 } else {
10353 if (bsi.block_len) {
10354 ret = btrfs_add_swap_extent(sis, &bsi);
10355 if (ret)
10356 goto out;
10357 }
10358 bsi.start = key.offset;
10359 bsi.block_start = physical_block_start;
10360 bsi.block_len = len;
10361 }
10362
10363 if (fatal_signal_pending(current)) {
10364 ret = -EINTR;
10365 goto out;
10366 }
10367
10368 cond_resched();
10369 }
10370
10371 if (bsi.block_len)
10372 ret = btrfs_add_swap_extent(sis, &bsi);
10373
10374 out:
10375 if (!IS_ERR_OR_NULL(map))
10376 btrfs_free_chunk_map(map);
10377
10378 btrfs_unlock_extent(io_tree, 0, isize - 1, &cached_state);
10379
10380 if (ret)
10381 btrfs_swap_deactivate(file);
10382
10383 btrfs_drew_write_unlock(&root->snapshot_lock);
10384
10385 btrfs_exclop_finish(fs_info);
10386
10387 out_unlock_mmap:
10388 up_write(&BTRFS_I(inode)->i_mmap_lock);
10389 btrfs_free_backref_share_ctx(backref_ctx);
10390 btrfs_free_path(path);
10391 if (ret)
10392 return ret;
10393
10394 if (device)
10395 sis->bdev = device->bdev;
10396 *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10397 sis->max = bsi.nr_pages;
10398 sis->pages = bsi.nr_pages - 1;
10399 return bsi.nr_extents;
10400 }
10401 #else
btrfs_swap_deactivate(struct file * file)10402 static void btrfs_swap_deactivate(struct file *file)
10403 {
10404 }
10405
btrfs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)10406 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10407 sector_t *span)
10408 {
10409 return -EOPNOTSUPP;
10410 }
10411 #endif
10412
10413 /*
10414 * Update the number of bytes used in the VFS' inode. When we replace extents in
10415 * a range (clone, dedupe, fallocate's zero range), we must update the number of
10416 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
10417 * always get a correct value.
10418 */
btrfs_update_inode_bytes(struct btrfs_inode * inode,const u64 add_bytes,const u64 del_bytes)10419 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
10420 const u64 add_bytes,
10421 const u64 del_bytes)
10422 {
10423 if (add_bytes == del_bytes)
10424 return;
10425
10426 spin_lock(&inode->lock);
10427 if (del_bytes > 0)
10428 inode_sub_bytes(&inode->vfs_inode, del_bytes);
10429 if (add_bytes > 0)
10430 inode_add_bytes(&inode->vfs_inode, add_bytes);
10431 spin_unlock(&inode->lock);
10432 }
10433
10434 /*
10435 * Verify that there are no ordered extents for a given file range.
10436 *
10437 * @inode: The target inode.
10438 * @start: Start offset of the file range, should be sector size aligned.
10439 * @end: End offset (inclusive) of the file range, its value +1 should be
10440 * sector size aligned.
10441 *
10442 * This should typically be used for cases where we locked an inode's VFS lock in
10443 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode,
10444 * we have flushed all delalloc in the range, we have waited for all ordered
10445 * extents in the range to complete and finally we have locked the file range in
10446 * the inode's io_tree.
10447 */
btrfs_assert_inode_range_clean(struct btrfs_inode * inode,u64 start,u64 end)10448 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end)
10449 {
10450 struct btrfs_root *root = inode->root;
10451 struct btrfs_ordered_extent *ordered;
10452
10453 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
10454 return;
10455
10456 ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start);
10457 if (ordered) {
10458 btrfs_err(root->fs_info,
10459 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])",
10460 start, end, btrfs_ino(inode), btrfs_root_id(root),
10461 ordered->file_offset,
10462 ordered->file_offset + ordered->num_bytes - 1);
10463 btrfs_put_ordered_extent(ordered);
10464 }
10465
10466 ASSERT(ordered == NULL);
10467 }
10468
10469 /*
10470 * Find the first inode with a minimum number.
10471 *
10472 * @root: The root to search for.
10473 * @min_ino: The minimum inode number.
10474 *
10475 * Find the first inode in the @root with a number >= @min_ino and return it.
10476 * Returns NULL if no such inode found.
10477 */
btrfs_find_first_inode(struct btrfs_root * root,u64 min_ino)10478 struct btrfs_inode *btrfs_find_first_inode(struct btrfs_root *root, u64 min_ino)
10479 {
10480 struct btrfs_inode *inode;
10481 unsigned long from = min_ino;
10482
10483 xa_lock(&root->inodes);
10484 while (true) {
10485 inode = xa_find(&root->inodes, &from, ULONG_MAX, XA_PRESENT);
10486 if (!inode)
10487 break;
10488 if (igrab(&inode->vfs_inode))
10489 break;
10490
10491 from = btrfs_ino(inode) + 1;
10492 cond_resched_lock(&root->inodes.xa_lock);
10493 }
10494 xa_unlock(&root->inodes);
10495
10496 return inode;
10497 }
10498
10499 static const struct inode_operations btrfs_dir_inode_operations = {
10500 .getattr = btrfs_getattr,
10501 .lookup = btrfs_lookup,
10502 .create = btrfs_create,
10503 .unlink = btrfs_unlink,
10504 .link = btrfs_link,
10505 .mkdir = btrfs_mkdir,
10506 .rmdir = btrfs_rmdir,
10507 .rename = btrfs_rename2,
10508 .symlink = btrfs_symlink,
10509 .setattr = btrfs_setattr,
10510 .mknod = btrfs_mknod,
10511 .listxattr = btrfs_listxattr,
10512 .permission = btrfs_permission,
10513 .get_inode_acl = btrfs_get_acl,
10514 .set_acl = btrfs_set_acl,
10515 .update_time = btrfs_update_time,
10516 .tmpfile = btrfs_tmpfile,
10517 .fileattr_get = btrfs_fileattr_get,
10518 .fileattr_set = btrfs_fileattr_set,
10519 };
10520
10521 static const struct file_operations btrfs_dir_file_operations = {
10522 .llseek = btrfs_dir_llseek,
10523 .read = generic_read_dir,
10524 .iterate_shared = btrfs_real_readdir,
10525 .open = btrfs_opendir,
10526 .unlocked_ioctl = btrfs_ioctl,
10527 #ifdef CONFIG_COMPAT
10528 .compat_ioctl = btrfs_compat_ioctl,
10529 #endif
10530 .release = btrfs_release_file,
10531 .fsync = btrfs_sync_file,
10532 };
10533
10534 /*
10535 * btrfs doesn't support the bmap operation because swapfiles
10536 * use bmap to make a mapping of extents in the file. They assume
10537 * these extents won't change over the life of the file and they
10538 * use the bmap result to do IO directly to the drive.
10539 *
10540 * the btrfs bmap call would return logical addresses that aren't
10541 * suitable for IO and they also will change frequently as COW
10542 * operations happen. So, swapfile + btrfs == corruption.
10543 *
10544 * For now we're avoiding this by dropping bmap.
10545 */
10546 static const struct address_space_operations btrfs_aops = {
10547 .read_folio = btrfs_read_folio,
10548 .writepages = btrfs_writepages,
10549 .readahead = btrfs_readahead,
10550 .invalidate_folio = btrfs_invalidate_folio,
10551 .launder_folio = btrfs_launder_folio,
10552 .release_folio = btrfs_release_folio,
10553 .migrate_folio = btrfs_migrate_folio,
10554 .dirty_folio = filemap_dirty_folio,
10555 .error_remove_folio = generic_error_remove_folio,
10556 .swap_activate = btrfs_swap_activate,
10557 .swap_deactivate = btrfs_swap_deactivate,
10558 };
10559
10560 static const struct inode_operations btrfs_file_inode_operations = {
10561 .getattr = btrfs_getattr,
10562 .setattr = btrfs_setattr,
10563 .listxattr = btrfs_listxattr,
10564 .permission = btrfs_permission,
10565 .fiemap = btrfs_fiemap,
10566 .get_inode_acl = btrfs_get_acl,
10567 .set_acl = btrfs_set_acl,
10568 .update_time = btrfs_update_time,
10569 .fileattr_get = btrfs_fileattr_get,
10570 .fileattr_set = btrfs_fileattr_set,
10571 };
10572 static const struct inode_operations btrfs_special_inode_operations = {
10573 .getattr = btrfs_getattr,
10574 .setattr = btrfs_setattr,
10575 .permission = btrfs_permission,
10576 .listxattr = btrfs_listxattr,
10577 .get_inode_acl = btrfs_get_acl,
10578 .set_acl = btrfs_set_acl,
10579 .update_time = btrfs_update_time,
10580 };
10581 static const struct inode_operations btrfs_symlink_inode_operations = {
10582 .get_link = page_get_link,
10583 .getattr = btrfs_getattr,
10584 .setattr = btrfs_setattr,
10585 .permission = btrfs_permission,
10586 .listxattr = btrfs_listxattr,
10587 .update_time = btrfs_update_time,
10588 };
10589
10590 const struct dentry_operations btrfs_dentry_operations = {
10591 .d_delete = btrfs_dentry_delete,
10592 };
10593