1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/pagemap.h> 8 #include <linux/time.h> 9 #include <linux/init.h> 10 #include <linux/string.h> 11 #include <linux/backing-dev.h> 12 #include <linux/falloc.h> 13 #include <linux/filelock.h> 14 #include <linux/writeback.h> 15 #include <linux/compat.h> 16 #include <linux/slab.h> 17 #include <linux/btrfs.h> 18 #include <linux/uio.h> 19 #include <linux/iversion.h> 20 #include <linux/fsverity.h> 21 #include "ctree.h" 22 #include "direct-io.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "tree-log.h" 27 #include "locking.h" 28 #include "qgroup.h" 29 #include "compression.h" 30 #include "delalloc-space.h" 31 #include "reflink.h" 32 #include "subpage.h" 33 #include "fs.h" 34 #include "accessors.h" 35 #include "extent-tree.h" 36 #include "file-item.h" 37 #include "ioctl.h" 38 #include "file.h" 39 #include "super.h" 40 #include "print-tree.h" 41 42 /* 43 * Unlock folio after btrfs_file_write() is done with it. 44 */ 45 static void btrfs_drop_folio(struct btrfs_fs_info *fs_info, struct folio *folio, 46 u64 pos, u64 copied) 47 { 48 u64 block_start = round_down(pos, fs_info->sectorsize); 49 u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start; 50 51 ASSERT(block_len <= U32_MAX); 52 /* 53 * Folio checked is some magic around finding folios that have been 54 * modified without going through btrfs_dirty_folio(). Clear it here. 55 * There should be no need to mark the pages accessed as 56 * prepare_one_folio() should have marked them accessed in 57 * prepare_one_folio() via find_or_create_page() 58 */ 59 btrfs_folio_clamp_clear_checked(fs_info, folio, block_start, block_len); 60 folio_unlock(folio); 61 folio_put(folio); 62 } 63 64 /* 65 * After copy_folio_from_iter_atomic(), update the following things for delalloc: 66 * - Mark newly dirtied folio as DELALLOC in the io tree. 67 * Used to advise which range is to be written back. 68 * - Mark modified folio as Uptodate/Dirty and not needing COW fixup 69 * - Update inode size for past EOF write 70 */ 71 int btrfs_dirty_folio(struct btrfs_inode *inode, struct folio *folio, loff_t pos, 72 size_t write_bytes, struct extent_state **cached, bool noreserve) 73 { 74 struct btrfs_fs_info *fs_info = inode->root->fs_info; 75 int ret = 0; 76 u64 num_bytes; 77 u64 start_pos; 78 u64 end_of_last_block; 79 const u64 end_pos = pos + write_bytes; 80 loff_t isize = i_size_read(&inode->vfs_inode); 81 unsigned int extra_bits = 0; 82 83 if (write_bytes == 0) 84 return 0; 85 86 if (noreserve) 87 extra_bits |= EXTENT_NORESERVE; 88 89 start_pos = round_down(pos, fs_info->sectorsize); 90 num_bytes = round_up(end_pos - start_pos, fs_info->sectorsize); 91 ASSERT(num_bytes <= U32_MAX); 92 ASSERT(folio_pos(folio) <= pos && folio_next_pos(folio) >= end_pos); 93 94 end_of_last_block = start_pos + num_bytes - 1; 95 96 /* 97 * The pages may have already been dirty, clear out old accounting so 98 * we can set things up properly 99 */ 100 btrfs_clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block, 101 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 102 cached); 103 104 ret = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, 105 extra_bits, cached); 106 if (ret) 107 return ret; 108 109 btrfs_folio_clamp_set_uptodate(fs_info, folio, start_pos, num_bytes); 110 btrfs_folio_clamp_clear_checked(fs_info, folio, start_pos, num_bytes); 111 btrfs_folio_clamp_set_dirty(fs_info, folio, start_pos, num_bytes); 112 113 /* 114 * we've only changed i_size in ram, and we haven't updated 115 * the disk i_size. There is no need to log the inode 116 * at this time. 117 */ 118 if (end_pos > isize) 119 i_size_write(&inode->vfs_inode, end_pos); 120 return 0; 121 } 122 123 /* 124 * this is very complex, but the basic idea is to drop all extents 125 * in the range start - end. hint_block is filled in with a block number 126 * that would be a good hint to the block allocator for this file. 127 * 128 * If an extent intersects the range but is not entirely inside the range 129 * it is either truncated or split. Anything entirely inside the range 130 * is deleted from the tree. 131 * 132 * Note: the VFS' inode number of bytes is not updated, it's up to the caller 133 * to deal with that. We set the field 'bytes_found' of the arguments structure 134 * with the number of allocated bytes found in the target range, so that the 135 * caller can update the inode's number of bytes in an atomic way when 136 * replacing extents in a range to avoid races with stat(2). 137 */ 138 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 139 struct btrfs_root *root, struct btrfs_inode *inode, 140 struct btrfs_drop_extents_args *args) 141 { 142 struct btrfs_fs_info *fs_info = root->fs_info; 143 struct extent_buffer *leaf; 144 struct btrfs_file_extent_item *fi; 145 struct btrfs_key key; 146 struct btrfs_key new_key; 147 u64 ino = btrfs_ino(inode); 148 u64 search_start = args->start; 149 u64 disk_bytenr = 0; 150 u64 num_bytes = 0; 151 u64 extent_offset = 0; 152 u64 extent_end = 0; 153 u64 last_end = args->start; 154 int del_nr = 0; 155 int del_slot = 0; 156 int extent_type; 157 int recow; 158 int ret; 159 int modify_tree = -1; 160 int update_refs; 161 int found = 0; 162 struct btrfs_path *path = args->path; 163 164 args->bytes_found = 0; 165 args->extent_inserted = false; 166 167 /* Must always have a path if ->replace_extent is true */ 168 ASSERT(!(args->replace_extent && !args->path)); 169 170 if (!path) { 171 path = btrfs_alloc_path(); 172 if (!path) { 173 ret = -ENOMEM; 174 goto out; 175 } 176 } 177 178 if (args->drop_cache) 179 btrfs_drop_extent_map_range(inode, args->start, args->end - 1, false); 180 181 if (data_race(args->start >= inode->disk_i_size) && !args->replace_extent) 182 modify_tree = 0; 183 184 update_refs = (btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID); 185 while (1) { 186 recow = 0; 187 ret = btrfs_lookup_file_extent(trans, root, path, ino, 188 search_start, modify_tree); 189 if (ret < 0) 190 break; 191 if (ret > 0 && path->slots[0] > 0 && search_start == args->start) { 192 leaf = path->nodes[0]; 193 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 194 if (key.objectid == ino && 195 key.type == BTRFS_EXTENT_DATA_KEY) 196 path->slots[0]--; 197 } 198 ret = 0; 199 next_slot: 200 leaf = path->nodes[0]; 201 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 202 if (WARN_ON(del_nr > 0)) { 203 btrfs_print_leaf(leaf); 204 ret = -EINVAL; 205 break; 206 } 207 ret = btrfs_next_leaf(root, path); 208 if (ret < 0) 209 break; 210 if (ret > 0) { 211 ret = 0; 212 break; 213 } 214 leaf = path->nodes[0]; 215 recow = 1; 216 } 217 218 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 219 220 if (key.objectid > ino) 221 break; 222 if (WARN_ON_ONCE(key.objectid < ino) || 223 key.type < BTRFS_EXTENT_DATA_KEY) { 224 ASSERT(del_nr == 0); 225 path->slots[0]++; 226 goto next_slot; 227 } 228 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end) 229 break; 230 231 fi = btrfs_item_ptr(leaf, path->slots[0], 232 struct btrfs_file_extent_item); 233 extent_type = btrfs_file_extent_type(leaf, fi); 234 235 if (extent_type == BTRFS_FILE_EXTENT_REG || 236 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 237 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 238 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 239 extent_offset = btrfs_file_extent_offset(leaf, fi); 240 extent_end = key.offset + 241 btrfs_file_extent_num_bytes(leaf, fi); 242 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 243 extent_end = key.offset + 244 btrfs_file_extent_ram_bytes(leaf, fi); 245 } else { 246 /* can't happen */ 247 BUG(); 248 } 249 250 /* 251 * Don't skip extent items representing 0 byte lengths. They 252 * used to be created (bug) if while punching holes we hit 253 * -ENOSPC condition. So if we find one here, just ensure we 254 * delete it, otherwise we would insert a new file extent item 255 * with the same key (offset) as that 0 bytes length file 256 * extent item in the call to setup_items_for_insert() later 257 * in this function. 258 */ 259 if (extent_end == key.offset && extent_end >= search_start) { 260 last_end = extent_end; 261 goto delete_extent_item; 262 } 263 264 if (extent_end <= search_start) { 265 path->slots[0]++; 266 goto next_slot; 267 } 268 269 found = 1; 270 search_start = max(key.offset, args->start); 271 if (recow || !modify_tree) { 272 modify_tree = -1; 273 btrfs_release_path(path); 274 continue; 275 } 276 277 /* 278 * | - range to drop - | 279 * | -------- extent -------- | 280 */ 281 if (args->start > key.offset && args->end < extent_end) { 282 if (WARN_ON(del_nr > 0)) { 283 btrfs_print_leaf(leaf); 284 ret = -EINVAL; 285 break; 286 } 287 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 288 ret = -EOPNOTSUPP; 289 break; 290 } 291 292 memcpy(&new_key, &key, sizeof(new_key)); 293 new_key.offset = args->start; 294 ret = btrfs_duplicate_item(trans, root, path, 295 &new_key); 296 if (ret == -EAGAIN) { 297 btrfs_release_path(path); 298 continue; 299 } 300 if (ret < 0) 301 break; 302 303 leaf = path->nodes[0]; 304 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 305 struct btrfs_file_extent_item); 306 btrfs_set_file_extent_num_bytes(leaf, fi, 307 args->start - key.offset); 308 309 fi = btrfs_item_ptr(leaf, path->slots[0], 310 struct btrfs_file_extent_item); 311 312 extent_offset += args->start - key.offset; 313 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 314 btrfs_set_file_extent_num_bytes(leaf, fi, 315 extent_end - args->start); 316 317 if (update_refs && disk_bytenr > 0) { 318 struct btrfs_ref ref = { 319 .action = BTRFS_ADD_DELAYED_REF, 320 .bytenr = disk_bytenr, 321 .num_bytes = num_bytes, 322 .parent = 0, 323 .owning_root = btrfs_root_id(root), 324 .ref_root = btrfs_root_id(root), 325 }; 326 btrfs_init_data_ref(&ref, new_key.objectid, 327 args->start - extent_offset, 328 0, false); 329 ret = btrfs_inc_extent_ref(trans, &ref); 330 if (unlikely(ret)) { 331 btrfs_abort_transaction(trans, ret); 332 break; 333 } 334 } 335 key.offset = args->start; 336 } 337 /* 338 * From here on out we will have actually dropped something, so 339 * last_end can be updated. 340 */ 341 last_end = extent_end; 342 343 /* 344 * | ---- range to drop ----- | 345 * | -------- extent -------- | 346 */ 347 if (args->start <= key.offset && args->end < extent_end) { 348 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 349 ret = -EOPNOTSUPP; 350 break; 351 } 352 353 memcpy(&new_key, &key, sizeof(new_key)); 354 new_key.offset = args->end; 355 btrfs_set_item_key_safe(trans, path, &new_key); 356 357 extent_offset += args->end - key.offset; 358 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 359 btrfs_set_file_extent_num_bytes(leaf, fi, 360 extent_end - args->end); 361 if (update_refs && disk_bytenr > 0) 362 args->bytes_found += args->end - key.offset; 363 break; 364 } 365 366 search_start = extent_end; 367 /* 368 * | ---- range to drop ----- | 369 * | -------- extent -------- | 370 */ 371 if (args->start > key.offset && args->end >= extent_end) { 372 if (WARN_ON(del_nr > 0)) { 373 btrfs_print_leaf(leaf); 374 ret = -EINVAL; 375 break; 376 } 377 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 378 ret = -EOPNOTSUPP; 379 break; 380 } 381 382 btrfs_set_file_extent_num_bytes(leaf, fi, 383 args->start - key.offset); 384 if (update_refs && disk_bytenr > 0) 385 args->bytes_found += extent_end - args->start; 386 if (args->end == extent_end) 387 break; 388 389 path->slots[0]++; 390 goto next_slot; 391 } 392 393 /* 394 * | ---- range to drop ----- | 395 * | ------ extent ------ | 396 */ 397 if (args->start <= key.offset && args->end >= extent_end) { 398 delete_extent_item: 399 if (del_nr == 0) { 400 del_slot = path->slots[0]; 401 del_nr = 1; 402 } else { 403 if (WARN_ON(del_slot + del_nr != path->slots[0])) { 404 btrfs_print_leaf(leaf); 405 ret = -EINVAL; 406 break; 407 } 408 del_nr++; 409 } 410 411 if (update_refs && 412 extent_type == BTRFS_FILE_EXTENT_INLINE) { 413 args->bytes_found += extent_end - key.offset; 414 extent_end = ALIGN(extent_end, 415 fs_info->sectorsize); 416 } else if (update_refs && disk_bytenr > 0) { 417 struct btrfs_ref ref = { 418 .action = BTRFS_DROP_DELAYED_REF, 419 .bytenr = disk_bytenr, 420 .num_bytes = num_bytes, 421 .parent = 0, 422 .owning_root = btrfs_root_id(root), 423 .ref_root = btrfs_root_id(root), 424 }; 425 btrfs_init_data_ref(&ref, key.objectid, 426 key.offset - extent_offset, 427 0, false); 428 ret = btrfs_free_extent(trans, &ref); 429 if (unlikely(ret)) { 430 btrfs_abort_transaction(trans, ret); 431 break; 432 } 433 args->bytes_found += extent_end - key.offset; 434 } 435 436 if (args->end == extent_end) 437 break; 438 439 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { 440 path->slots[0]++; 441 goto next_slot; 442 } 443 444 ret = btrfs_del_items(trans, root, path, del_slot, 445 del_nr); 446 if (unlikely(ret)) { 447 btrfs_abort_transaction(trans, ret); 448 break; 449 } 450 451 del_nr = 0; 452 del_slot = 0; 453 454 btrfs_release_path(path); 455 continue; 456 } 457 458 BUG(); 459 } 460 461 if (!ret && del_nr > 0) { 462 /* 463 * Set path->slots[0] to first slot, so that after the delete 464 * if items are move off from our leaf to its immediate left or 465 * right neighbor leafs, we end up with a correct and adjusted 466 * path->slots[0] for our insertion (if args->replace_extent). 467 */ 468 path->slots[0] = del_slot; 469 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 470 if (ret) 471 btrfs_abort_transaction(trans, ret); 472 } 473 474 leaf = path->nodes[0]; 475 /* 476 * If btrfs_del_items() was called, it might have deleted a leaf, in 477 * which case it unlocked our path, so check path->locks[0] matches a 478 * write lock. 479 */ 480 if (!ret && args->replace_extent && 481 path->locks[0] == BTRFS_WRITE_LOCK && 482 btrfs_leaf_free_space(leaf) >= 483 sizeof(struct btrfs_item) + args->extent_item_size) { 484 485 key.objectid = ino; 486 key.type = BTRFS_EXTENT_DATA_KEY; 487 key.offset = args->start; 488 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) { 489 struct btrfs_key slot_key; 490 491 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]); 492 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0) 493 path->slots[0]++; 494 } 495 btrfs_setup_item_for_insert(trans, root, path, &key, 496 args->extent_item_size); 497 args->extent_inserted = true; 498 } 499 500 if (!args->path) 501 btrfs_free_path(path); 502 else if (!args->extent_inserted) 503 btrfs_release_path(path); 504 out: 505 args->drop_end = found ? min(args->end, last_end) : args->end; 506 507 return ret; 508 } 509 510 static bool extent_mergeable(struct extent_buffer *leaf, int slot, u64 objectid, 511 u64 bytenr, u64 orig_offset, u64 *start, u64 *end) 512 { 513 struct btrfs_file_extent_item *fi; 514 struct btrfs_key key; 515 u64 extent_end; 516 517 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 518 return false; 519 520 btrfs_item_key_to_cpu(leaf, &key, slot); 521 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) 522 return false; 523 524 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 525 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || 526 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || 527 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || 528 btrfs_file_extent_compression(leaf, fi) || 529 btrfs_file_extent_encryption(leaf, fi) || 530 btrfs_file_extent_other_encoding(leaf, fi)) 531 return false; 532 533 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 534 if ((*start && *start != key.offset) || (*end && *end != extent_end)) 535 return false; 536 537 *start = key.offset; 538 *end = extent_end; 539 return true; 540 } 541 542 /* 543 * Mark extent in the range start - end as written. 544 * 545 * This changes extent type from 'pre-allocated' to 'regular'. If only 546 * part of extent is marked as written, the extent will be split into 547 * two or three. 548 */ 549 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 550 struct btrfs_inode *inode, u64 start, u64 end) 551 { 552 struct btrfs_root *root = inode->root; 553 struct extent_buffer *leaf; 554 BTRFS_PATH_AUTO_FREE(path); 555 struct btrfs_file_extent_item *fi; 556 struct btrfs_ref ref = { 0 }; 557 struct btrfs_key key; 558 struct btrfs_key new_key; 559 u64 bytenr; 560 u64 num_bytes; 561 u64 extent_end; 562 u64 orig_offset; 563 u64 other_start; 564 u64 other_end; 565 u64 split; 566 int del_nr = 0; 567 int del_slot = 0; 568 int recow; 569 int ret; 570 u64 ino = btrfs_ino(inode); 571 572 path = btrfs_alloc_path(); 573 if (!path) 574 return -ENOMEM; 575 again: 576 recow = 0; 577 split = start; 578 key.objectid = ino; 579 key.type = BTRFS_EXTENT_DATA_KEY; 580 key.offset = split; 581 582 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 583 if (ret < 0) 584 return ret; 585 if (ret > 0 && path->slots[0] > 0) 586 path->slots[0]--; 587 588 leaf = path->nodes[0]; 589 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 590 if (unlikely(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)) { 591 ret = -EINVAL; 592 btrfs_abort_transaction(trans, ret); 593 return ret; 594 } 595 fi = btrfs_item_ptr(leaf, path->slots[0], 596 struct btrfs_file_extent_item); 597 if (unlikely(btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC)) { 598 ret = -EINVAL; 599 btrfs_abort_transaction(trans, ret); 600 return ret; 601 } 602 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 603 if (unlikely(key.offset > start || extent_end < end)) { 604 ret = -EINVAL; 605 btrfs_abort_transaction(trans, ret); 606 return ret; 607 } 608 609 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 610 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 611 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); 612 memcpy(&new_key, &key, sizeof(new_key)); 613 614 if (start == key.offset && end < extent_end) { 615 other_start = 0; 616 other_end = start; 617 if (extent_mergeable(leaf, path->slots[0] - 1, 618 ino, bytenr, orig_offset, 619 &other_start, &other_end)) { 620 new_key.offset = end; 621 btrfs_set_item_key_safe(trans, path, &new_key); 622 fi = btrfs_item_ptr(leaf, path->slots[0], 623 struct btrfs_file_extent_item); 624 btrfs_set_file_extent_generation(leaf, fi, 625 trans->transid); 626 btrfs_set_file_extent_num_bytes(leaf, fi, 627 extent_end - end); 628 btrfs_set_file_extent_offset(leaf, fi, 629 end - orig_offset); 630 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 631 struct btrfs_file_extent_item); 632 btrfs_set_file_extent_generation(leaf, fi, 633 trans->transid); 634 btrfs_set_file_extent_num_bytes(leaf, fi, 635 end - other_start); 636 return 0; 637 } 638 } 639 640 if (start > key.offset && end == extent_end) { 641 other_start = end; 642 other_end = 0; 643 if (extent_mergeable(leaf, path->slots[0] + 1, 644 ino, bytenr, orig_offset, 645 &other_start, &other_end)) { 646 fi = btrfs_item_ptr(leaf, path->slots[0], 647 struct btrfs_file_extent_item); 648 btrfs_set_file_extent_num_bytes(leaf, fi, 649 start - key.offset); 650 btrfs_set_file_extent_generation(leaf, fi, 651 trans->transid); 652 path->slots[0]++; 653 new_key.offset = start; 654 btrfs_set_item_key_safe(trans, path, &new_key); 655 656 fi = btrfs_item_ptr(leaf, path->slots[0], 657 struct btrfs_file_extent_item); 658 btrfs_set_file_extent_generation(leaf, fi, 659 trans->transid); 660 btrfs_set_file_extent_num_bytes(leaf, fi, 661 other_end - start); 662 btrfs_set_file_extent_offset(leaf, fi, 663 start - orig_offset); 664 return 0; 665 } 666 } 667 668 while (start > key.offset || end < extent_end) { 669 if (key.offset == start) 670 split = end; 671 672 new_key.offset = split; 673 ret = btrfs_duplicate_item(trans, root, path, &new_key); 674 if (ret == -EAGAIN) { 675 btrfs_release_path(path); 676 goto again; 677 } 678 if (unlikely(ret < 0)) { 679 btrfs_abort_transaction(trans, ret); 680 return ret; 681 } 682 683 leaf = path->nodes[0]; 684 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 685 struct btrfs_file_extent_item); 686 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 687 btrfs_set_file_extent_num_bytes(leaf, fi, 688 split - key.offset); 689 690 fi = btrfs_item_ptr(leaf, path->slots[0], 691 struct btrfs_file_extent_item); 692 693 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 694 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); 695 btrfs_set_file_extent_num_bytes(leaf, fi, 696 extent_end - split); 697 698 ref.action = BTRFS_ADD_DELAYED_REF; 699 ref.bytenr = bytenr; 700 ref.num_bytes = num_bytes; 701 ref.parent = 0; 702 ref.owning_root = btrfs_root_id(root); 703 ref.ref_root = btrfs_root_id(root); 704 btrfs_init_data_ref(&ref, ino, orig_offset, 0, false); 705 ret = btrfs_inc_extent_ref(trans, &ref); 706 if (unlikely(ret)) { 707 btrfs_abort_transaction(trans, ret); 708 return ret; 709 } 710 711 if (split == start) { 712 key.offset = start; 713 } else { 714 if (unlikely(start != key.offset)) { 715 ret = -EINVAL; 716 btrfs_abort_transaction(trans, ret); 717 return ret; 718 } 719 path->slots[0]--; 720 extent_end = end; 721 } 722 recow = 1; 723 } 724 725 other_start = end; 726 other_end = 0; 727 728 ref.action = BTRFS_DROP_DELAYED_REF; 729 ref.bytenr = bytenr; 730 ref.num_bytes = num_bytes; 731 ref.parent = 0; 732 ref.owning_root = btrfs_root_id(root); 733 ref.ref_root = btrfs_root_id(root); 734 btrfs_init_data_ref(&ref, ino, orig_offset, 0, false); 735 if (extent_mergeable(leaf, path->slots[0] + 1, 736 ino, bytenr, orig_offset, 737 &other_start, &other_end)) { 738 if (recow) { 739 btrfs_release_path(path); 740 goto again; 741 } 742 extent_end = other_end; 743 del_slot = path->slots[0] + 1; 744 del_nr++; 745 ret = btrfs_free_extent(trans, &ref); 746 if (unlikely(ret)) { 747 btrfs_abort_transaction(trans, ret); 748 return ret; 749 } 750 } 751 other_start = 0; 752 other_end = start; 753 if (extent_mergeable(leaf, path->slots[0] - 1, 754 ino, bytenr, orig_offset, 755 &other_start, &other_end)) { 756 if (recow) { 757 btrfs_release_path(path); 758 goto again; 759 } 760 key.offset = other_start; 761 del_slot = path->slots[0]; 762 del_nr++; 763 ret = btrfs_free_extent(trans, &ref); 764 if (unlikely(ret)) { 765 btrfs_abort_transaction(trans, ret); 766 return ret; 767 } 768 } 769 if (del_nr == 0) { 770 fi = btrfs_item_ptr(leaf, path->slots[0], 771 struct btrfs_file_extent_item); 772 btrfs_set_file_extent_type(leaf, fi, 773 BTRFS_FILE_EXTENT_REG); 774 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 775 } else { 776 fi = btrfs_item_ptr(leaf, del_slot - 1, 777 struct btrfs_file_extent_item); 778 btrfs_set_file_extent_type(leaf, fi, 779 BTRFS_FILE_EXTENT_REG); 780 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 781 btrfs_set_file_extent_num_bytes(leaf, fi, 782 extent_end - key.offset); 783 784 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 785 if (unlikely(ret < 0)) { 786 btrfs_abort_transaction(trans, ret); 787 return ret; 788 } 789 } 790 791 return 0; 792 } 793 794 /* 795 * On error return an unlocked folio and the error value 796 * On success return a locked folio and 0 797 */ 798 static int prepare_uptodate_folio(struct inode *inode, struct folio *folio, u64 pos, 799 u64 len) 800 { 801 u64 clamp_start = max_t(u64, pos, folio_pos(folio)); 802 u64 clamp_end = min_t(u64, pos + len, folio_next_pos(folio)); 803 const u32 blocksize = inode_to_fs_info(inode)->sectorsize; 804 int ret = 0; 805 806 if (folio_test_uptodate(folio)) 807 return 0; 808 809 if (IS_ALIGNED(clamp_start, blocksize) && 810 IS_ALIGNED(clamp_end, blocksize)) 811 return 0; 812 813 ret = btrfs_read_folio(NULL, folio); 814 if (ret) 815 return ret; 816 folio_lock(folio); 817 if (unlikely(!folio_test_uptodate(folio))) { 818 folio_unlock(folio); 819 return -EIO; 820 } 821 822 /* 823 * Since btrfs_read_folio() will unlock the folio before it returns, 824 * there is a window where btrfs_release_folio() can be called to 825 * release the page. Here we check both inode mapping and page 826 * private to make sure the page was not released. 827 * 828 * The private flag check is essential for subpage as we need to store 829 * extra bitmap using folio private. 830 */ 831 if (folio->mapping != inode->i_mapping || !folio_test_private(folio)) { 832 folio_unlock(folio); 833 return -EAGAIN; 834 } 835 return 0; 836 } 837 838 static gfp_t get_prepare_gfp_flags(struct inode *inode, bool nowait) 839 { 840 gfp_t gfp; 841 842 gfp = btrfs_alloc_write_mask(inode->i_mapping); 843 if (nowait) { 844 gfp &= ~__GFP_DIRECT_RECLAIM; 845 gfp |= GFP_NOWAIT; 846 } 847 848 return gfp; 849 } 850 851 /* 852 * Get folio into the page cache and lock it. 853 */ 854 static noinline int prepare_one_folio(struct inode *inode, struct folio **folio_ret, 855 loff_t pos, size_t write_bytes, 856 bool nowait) 857 { 858 const pgoff_t index = pos >> PAGE_SHIFT; 859 gfp_t mask = get_prepare_gfp_flags(inode, nowait); 860 fgf_t fgp_flags = (nowait ? FGP_WRITEBEGIN | FGP_NOWAIT : FGP_WRITEBEGIN) | 861 fgf_set_order(write_bytes); 862 struct folio *folio; 863 int ret; 864 865 again: 866 folio = __filemap_get_folio(inode->i_mapping, index, fgp_flags, mask); 867 if (IS_ERR(folio)) 868 return PTR_ERR(folio); 869 870 ret = set_folio_extent_mapped(folio); 871 if (ret < 0) { 872 folio_unlock(folio); 873 folio_put(folio); 874 return ret; 875 } 876 ret = prepare_uptodate_folio(inode, folio, pos, write_bytes); 877 if (ret) { 878 /* The folio is already unlocked. */ 879 folio_put(folio); 880 if (!nowait && ret == -EAGAIN) 881 goto again; 882 return ret; 883 } 884 *folio_ret = folio; 885 return 0; 886 } 887 888 /* 889 * Locks the extent and properly waits for data=ordered extents to finish 890 * before allowing the folios to be modified if need. 891 * 892 * Return: 893 * 1 - the extent is locked 894 * 0 - the extent is not locked, and everything is OK 895 * -EAGAIN - need to prepare the folios again 896 */ 897 static noinline int 898 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct folio *folio, 899 loff_t pos, size_t write_bytes, 900 u64 *lockstart, u64 *lockend, bool nowait, 901 struct extent_state **cached_state) 902 { 903 struct btrfs_fs_info *fs_info = inode->root->fs_info; 904 u64 start_pos; 905 u64 last_pos; 906 int ret = 0; 907 908 start_pos = round_down(pos, fs_info->sectorsize); 909 last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1; 910 911 if (start_pos < inode->vfs_inode.i_size) { 912 struct btrfs_ordered_extent *ordered; 913 914 if (nowait) { 915 if (!btrfs_try_lock_extent(&inode->io_tree, start_pos, 916 last_pos, cached_state)) { 917 folio_unlock(folio); 918 folio_put(folio); 919 return -EAGAIN; 920 } 921 } else { 922 btrfs_lock_extent(&inode->io_tree, start_pos, last_pos, 923 cached_state); 924 } 925 926 ordered = btrfs_lookup_ordered_range(inode, start_pos, 927 last_pos - start_pos + 1); 928 if (ordered && 929 ordered->file_offset + ordered->num_bytes > start_pos && 930 ordered->file_offset <= last_pos) { 931 btrfs_unlock_extent(&inode->io_tree, start_pos, last_pos, 932 cached_state); 933 folio_unlock(folio); 934 folio_put(folio); 935 btrfs_start_ordered_extent(ordered); 936 btrfs_put_ordered_extent(ordered); 937 return -EAGAIN; 938 } 939 if (ordered) 940 btrfs_put_ordered_extent(ordered); 941 942 *lockstart = start_pos; 943 *lockend = last_pos; 944 ret = 1; 945 } 946 947 /* 948 * We should be called after prepare_one_folio() which should have locked 949 * all pages in the range. 950 */ 951 WARN_ON(!folio_test_locked(folio)); 952 953 return ret; 954 } 955 956 /* 957 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes) 958 * 959 * @pos: File offset. 960 * @write_bytes: The length to write, will be updated to the nocow writeable 961 * range. 962 * @nowait: Indicate if we can block or not (non-blocking IO context). 963 * 964 * This function will flush ordered extents in the range to ensure proper 965 * nocow checks. 966 * 967 * Return: 968 * > 0 If we can nocow, and updates @write_bytes. 969 * 0 If we can't do a nocow write. 970 * -EAGAIN If we can't do a nocow write because snapshotting of the inode's 971 * root is in progress or because we are in a non-blocking IO 972 * context and need to block (@nowait is true). 973 * < 0 If an error happened. 974 * 975 * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0. 976 */ 977 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos, 978 size_t *write_bytes, bool nowait) 979 { 980 struct btrfs_fs_info *fs_info = inode->root->fs_info; 981 struct btrfs_root *root = inode->root; 982 struct extent_state *cached_state = NULL; 983 u64 lockstart, lockend; 984 u64 cur_offset; 985 int ret = 0; 986 987 if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 988 return 0; 989 990 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) 991 return -EAGAIN; 992 993 lockstart = round_down(pos, fs_info->sectorsize); 994 lockend = round_up(pos + *write_bytes, 995 fs_info->sectorsize) - 1; 996 997 if (nowait) { 998 if (!btrfs_try_lock_ordered_range(inode, lockstart, lockend, 999 &cached_state)) { 1000 btrfs_drew_write_unlock(&root->snapshot_lock); 1001 return -EAGAIN; 1002 } 1003 } else { 1004 btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend, 1005 &cached_state); 1006 } 1007 1008 cur_offset = lockstart; 1009 while (cur_offset < lockend) { 1010 u64 num_bytes = lockend - cur_offset + 1; 1011 1012 ret = can_nocow_extent(inode, cur_offset, &num_bytes, NULL, nowait); 1013 if (ret <= 0) { 1014 /* 1015 * If cur_offset == lockstart it means we haven't found 1016 * any extent against which we can NOCOW, so unlock the 1017 * snapshot lock. 1018 */ 1019 if (cur_offset == lockstart) 1020 btrfs_drew_write_unlock(&root->snapshot_lock); 1021 break; 1022 } 1023 cur_offset += num_bytes; 1024 } 1025 1026 btrfs_unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 1027 1028 /* 1029 * cur_offset > lockstart means there's at least a partial range we can 1030 * NOCOW, and that range can cover one or more extents. 1031 */ 1032 if (cur_offset > lockstart) { 1033 *write_bytes = min_t(size_t, *write_bytes, cur_offset - pos); 1034 return 1; 1035 } 1036 1037 return ret; 1038 } 1039 1040 void btrfs_check_nocow_unlock(struct btrfs_inode *inode) 1041 { 1042 btrfs_drew_write_unlock(&inode->root->snapshot_lock); 1043 } 1044 1045 int btrfs_write_check(struct kiocb *iocb, size_t count) 1046 { 1047 struct file *file = iocb->ki_filp; 1048 struct inode *inode = file_inode(file); 1049 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 1050 loff_t pos = iocb->ki_pos; 1051 int ret; 1052 loff_t oldsize; 1053 1054 /* 1055 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or 1056 * prealloc flags, as without those flags we always have to COW. We will 1057 * later check if we can really COW into the target range (using 1058 * can_nocow_extent() at btrfs_get_blocks_direct_write()). 1059 */ 1060 if ((iocb->ki_flags & IOCB_NOWAIT) && 1061 !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 1062 return -EAGAIN; 1063 1064 ret = file_remove_privs(file); 1065 if (ret) 1066 return ret; 1067 1068 /* 1069 * We reserve space for updating the inode when we reserve space for the 1070 * extent we are going to write, so we will enospc out there. We don't 1071 * need to start yet another transaction to update the inode as we will 1072 * update the inode when we finish writing whatever data we write. 1073 */ 1074 if (!IS_NOCMTIME(inode)) { 1075 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 1076 inode_inc_iversion(inode); 1077 } 1078 1079 oldsize = i_size_read(inode); 1080 if (pos > oldsize) { 1081 /* Expand hole size to cover write data, preventing empty gap */ 1082 loff_t end_pos = round_up(pos + count, fs_info->sectorsize); 1083 1084 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos); 1085 if (ret) 1086 return ret; 1087 } 1088 1089 return 0; 1090 } 1091 1092 static void release_space(struct btrfs_inode *inode, struct extent_changeset *data_reserved, 1093 u64 start, u64 len, bool only_release_metadata) 1094 { 1095 if (len == 0) 1096 return; 1097 1098 if (only_release_metadata) { 1099 btrfs_check_nocow_unlock(inode); 1100 btrfs_delalloc_release_metadata(inode, len, true); 1101 } else { 1102 const struct btrfs_fs_info *fs_info = inode->root->fs_info; 1103 1104 btrfs_delalloc_release_space(inode, data_reserved, 1105 round_down(start, fs_info->sectorsize), 1106 len, true); 1107 } 1108 } 1109 1110 /* 1111 * Reserve data and metadata space for this buffered write range. 1112 * 1113 * Return >0 for the number of bytes reserved, which is always block aligned. 1114 * Return <0 for error. 1115 */ 1116 static ssize_t reserve_space(struct btrfs_inode *inode, 1117 struct extent_changeset **data_reserved, 1118 u64 start, size_t *len, bool nowait, 1119 bool *only_release_metadata) 1120 { 1121 const struct btrfs_fs_info *fs_info = inode->root->fs_info; 1122 const unsigned int block_offset = (start & (fs_info->sectorsize - 1)); 1123 size_t reserve_bytes; 1124 int ret; 1125 1126 ret = btrfs_check_data_free_space(inode, data_reserved, start, *len, nowait); 1127 if (ret < 0) { 1128 int can_nocow; 1129 1130 if (nowait && (ret == -ENOSPC || ret == -EAGAIN)) 1131 return -EAGAIN; 1132 1133 /* 1134 * If we don't have to COW at the offset, reserve metadata only. 1135 * write_bytes may get smaller than requested here. 1136 */ 1137 can_nocow = btrfs_check_nocow_lock(inode, start, len, nowait); 1138 if (can_nocow < 0) 1139 ret = can_nocow; 1140 if (can_nocow > 0) 1141 ret = 0; 1142 if (ret) 1143 return ret; 1144 *only_release_metadata = true; 1145 } 1146 1147 reserve_bytes = round_up(*len + block_offset, fs_info->sectorsize); 1148 WARN_ON(reserve_bytes == 0); 1149 ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes, 1150 reserve_bytes, nowait); 1151 if (ret) { 1152 if (!*only_release_metadata) 1153 btrfs_free_reserved_data_space(inode, *data_reserved, 1154 start, *len); 1155 else 1156 btrfs_check_nocow_unlock(inode); 1157 1158 if (nowait && ret == -ENOSPC) 1159 ret = -EAGAIN; 1160 return ret; 1161 } 1162 return reserve_bytes; 1163 } 1164 1165 /* Shrink the reserved data and metadata space from @reserved_len to @new_len. */ 1166 static void shrink_reserved_space(struct btrfs_inode *inode, 1167 struct extent_changeset *data_reserved, 1168 u64 reserved_start, u64 reserved_len, 1169 u64 new_len, bool only_release_metadata) 1170 { 1171 const u64 diff = reserved_len - new_len; 1172 1173 ASSERT(new_len <= reserved_len); 1174 btrfs_delalloc_shrink_extents(inode, reserved_len, new_len); 1175 if (only_release_metadata) 1176 btrfs_delalloc_release_metadata(inode, diff, true); 1177 else 1178 btrfs_delalloc_release_space(inode, data_reserved, 1179 reserved_start + new_len, diff, true); 1180 } 1181 1182 /* Calculate the maximum amount of bytes we can write into one folio. */ 1183 static size_t calc_write_bytes(const struct btrfs_inode *inode, 1184 const struct iov_iter *iter, u64 start) 1185 { 1186 const size_t max_folio_size = mapping_max_folio_size(inode->vfs_inode.i_mapping); 1187 1188 return min(max_folio_size - (start & (max_folio_size - 1)), 1189 iov_iter_count(iter)); 1190 } 1191 1192 /* 1193 * Do the heavy-lifting work to copy one range into one folio of the page cache. 1194 * 1195 * Return > 0 in case we copied all bytes or just some of them. 1196 * Return 0 if no bytes were copied, in which case the caller should retry. 1197 * Return <0 on error. 1198 */ 1199 static int copy_one_range(struct btrfs_inode *inode, struct iov_iter *iter, 1200 struct extent_changeset **data_reserved, u64 start, 1201 bool nowait) 1202 { 1203 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1204 struct extent_state *cached_state = NULL; 1205 size_t write_bytes = calc_write_bytes(inode, iter, start); 1206 size_t copied; 1207 const u64 reserved_start = round_down(start, fs_info->sectorsize); 1208 u64 reserved_len; 1209 struct folio *folio = NULL; 1210 int extents_locked; 1211 u64 lockstart; 1212 u64 lockend; 1213 bool only_release_metadata = false; 1214 const unsigned int bdp_flags = (nowait ? BDP_ASYNC : 0); 1215 int ret; 1216 1217 /* 1218 * Fault all pages before locking them in prepare_one_folio() to avoid 1219 * recursive lock. 1220 */ 1221 if (unlikely(fault_in_iov_iter_readable(iter, write_bytes))) 1222 return -EFAULT; 1223 extent_changeset_release(*data_reserved); 1224 ret = reserve_space(inode, data_reserved, start, &write_bytes, nowait, 1225 &only_release_metadata); 1226 if (ret < 0) 1227 return ret; 1228 reserved_len = ret; 1229 /* Write range must be inside the reserved range. */ 1230 ASSERT(reserved_start <= start); 1231 ASSERT(start + write_bytes <= reserved_start + reserved_len); 1232 1233 again: 1234 ret = balance_dirty_pages_ratelimited_flags(inode->vfs_inode.i_mapping, 1235 bdp_flags); 1236 if (ret) { 1237 btrfs_delalloc_release_extents(inode, reserved_len); 1238 release_space(inode, *data_reserved, reserved_start, reserved_len, 1239 only_release_metadata); 1240 return ret; 1241 } 1242 1243 ret = prepare_one_folio(&inode->vfs_inode, &folio, start, write_bytes, false); 1244 if (ret) { 1245 btrfs_delalloc_release_extents(inode, reserved_len); 1246 release_space(inode, *data_reserved, reserved_start, reserved_len, 1247 only_release_metadata); 1248 return ret; 1249 } 1250 1251 /* 1252 * The reserved range goes beyond the current folio, shrink the reserved 1253 * space to the folio boundary. 1254 */ 1255 if (reserved_start + reserved_len > folio_next_pos(folio)) { 1256 const u64 last_block = folio_next_pos(folio); 1257 1258 shrink_reserved_space(inode, *data_reserved, reserved_start, 1259 reserved_len, last_block - reserved_start, 1260 only_release_metadata); 1261 write_bytes = last_block - start; 1262 reserved_len = last_block - reserved_start; 1263 } 1264 1265 extents_locked = lock_and_cleanup_extent_if_need(inode, folio, start, 1266 write_bytes, &lockstart, 1267 &lockend, nowait, 1268 &cached_state); 1269 if (extents_locked < 0) { 1270 if (!nowait && extents_locked == -EAGAIN) 1271 goto again; 1272 1273 btrfs_delalloc_release_extents(inode, reserved_len); 1274 release_space(inode, *data_reserved, reserved_start, reserved_len, 1275 only_release_metadata); 1276 return extents_locked; 1277 } 1278 1279 copied = copy_folio_from_iter_atomic(folio, offset_in_folio(folio, start), 1280 write_bytes, iter); 1281 flush_dcache_folio(folio); 1282 1283 if (unlikely(copied < write_bytes)) { 1284 u64 last_block; 1285 1286 /* 1287 * The original write range doesn't need an uptodate folio as 1288 * the range is block aligned. But now a short copy happened. 1289 * We cannot handle it without an uptodate folio. 1290 * 1291 * So just revert the range and we will retry. 1292 */ 1293 if (!folio_test_uptodate(folio)) { 1294 iov_iter_revert(iter, copied); 1295 copied = 0; 1296 } 1297 1298 /* No copied bytes, unlock, release reserved space and exit. */ 1299 if (copied == 0) { 1300 if (extents_locked) 1301 btrfs_unlock_extent(&inode->io_tree, lockstart, lockend, 1302 &cached_state); 1303 else 1304 btrfs_free_extent_state(cached_state); 1305 btrfs_delalloc_release_extents(inode, reserved_len); 1306 release_space(inode, *data_reserved, reserved_start, reserved_len, 1307 only_release_metadata); 1308 btrfs_drop_folio(fs_info, folio, start, copied); 1309 return 0; 1310 } 1311 1312 /* Release the reserved space beyond the last block. */ 1313 last_block = round_up(start + copied, fs_info->sectorsize); 1314 1315 shrink_reserved_space(inode, *data_reserved, reserved_start, 1316 reserved_len, last_block - reserved_start, 1317 only_release_metadata); 1318 reserved_len = last_block - reserved_start; 1319 } 1320 1321 ret = btrfs_dirty_folio(inode, folio, start, copied, &cached_state, 1322 only_release_metadata); 1323 /* 1324 * If we have not locked the extent range, because the range's start 1325 * offset is >= i_size, we might still have a non-NULL cached extent 1326 * state, acquired while marking the extent range as delalloc through 1327 * btrfs_dirty_page(). Therefore free any possible cached extent state 1328 * to avoid a memory leak. 1329 */ 1330 if (extents_locked) 1331 btrfs_unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 1332 else 1333 btrfs_free_extent_state(cached_state); 1334 1335 btrfs_delalloc_release_extents(inode, reserved_len); 1336 if (ret) { 1337 btrfs_drop_folio(fs_info, folio, start, copied); 1338 release_space(inode, *data_reserved, reserved_start, reserved_len, 1339 only_release_metadata); 1340 return ret; 1341 } 1342 if (only_release_metadata) 1343 btrfs_check_nocow_unlock(inode); 1344 1345 btrfs_drop_folio(fs_info, folio, start, copied); 1346 return copied; 1347 } 1348 1349 ssize_t btrfs_buffered_write(struct kiocb *iocb, struct iov_iter *iter) 1350 { 1351 struct file *file = iocb->ki_filp; 1352 loff_t pos; 1353 struct inode *inode = file_inode(file); 1354 struct extent_changeset *data_reserved = NULL; 1355 size_t num_written = 0; 1356 ssize_t ret; 1357 loff_t old_isize; 1358 unsigned int ilock_flags = 0; 1359 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT); 1360 1361 if (nowait) 1362 ilock_flags |= BTRFS_ILOCK_TRY; 1363 1364 ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags); 1365 if (ret < 0) 1366 return ret; 1367 1368 /* 1369 * We can only trust the isize with inode lock held, or it can race with 1370 * other buffered writes and cause incorrect call of 1371 * pagecache_isize_extended() to overwrite existing data. 1372 */ 1373 old_isize = i_size_read(inode); 1374 1375 ret = generic_write_checks(iocb, iter); 1376 if (ret <= 0) 1377 goto out; 1378 1379 ret = btrfs_write_check(iocb, ret); 1380 if (ret < 0) 1381 goto out; 1382 1383 pos = iocb->ki_pos; 1384 while (iov_iter_count(iter) > 0) { 1385 ret = copy_one_range(BTRFS_I(inode), iter, &data_reserved, pos, nowait); 1386 if (ret < 0) 1387 break; 1388 pos += ret; 1389 num_written += ret; 1390 cond_resched(); 1391 } 1392 1393 extent_changeset_free(data_reserved); 1394 if (num_written > 0) { 1395 pagecache_isize_extended(inode, old_isize, iocb->ki_pos); 1396 iocb->ki_pos += num_written; 1397 } 1398 out: 1399 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1400 return num_written ? num_written : ret; 1401 } 1402 1403 static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from, 1404 const struct btrfs_ioctl_encoded_io_args *encoded) 1405 { 1406 struct file *file = iocb->ki_filp; 1407 struct inode *inode = file_inode(file); 1408 loff_t count; 1409 ssize_t ret; 1410 1411 btrfs_inode_lock(BTRFS_I(inode), 0); 1412 count = encoded->len; 1413 ret = generic_write_checks_count(iocb, &count); 1414 if (ret == 0 && count != encoded->len) { 1415 /* 1416 * The write got truncated by generic_write_checks_count(). We 1417 * can't do a partial encoded write. 1418 */ 1419 ret = -EFBIG; 1420 } 1421 if (ret || encoded->len == 0) 1422 goto out; 1423 1424 ret = btrfs_write_check(iocb, encoded->len); 1425 if (ret < 0) 1426 goto out; 1427 1428 ret = btrfs_do_encoded_write(iocb, from, encoded); 1429 out: 1430 btrfs_inode_unlock(BTRFS_I(inode), 0); 1431 return ret; 1432 } 1433 1434 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from, 1435 const struct btrfs_ioctl_encoded_io_args *encoded) 1436 { 1437 struct file *file = iocb->ki_filp; 1438 struct btrfs_inode *inode = BTRFS_I(file_inode(file)); 1439 ssize_t num_written, num_sync; 1440 1441 if (btrfs_is_shutdown(inode->root->fs_info)) 1442 return -EIO; 1443 /* 1444 * If the fs flips readonly due to some impossible error, although we 1445 * have opened a file as writable, we have to stop this write operation 1446 * to ensure consistency. 1447 */ 1448 if (BTRFS_FS_ERROR(inode->root->fs_info)) 1449 return -EROFS; 1450 1451 if (encoded && (iocb->ki_flags & IOCB_NOWAIT)) 1452 return -EOPNOTSUPP; 1453 1454 if (encoded) { 1455 num_written = btrfs_encoded_write(iocb, from, encoded); 1456 num_sync = encoded->len; 1457 } else if (iocb->ki_flags & IOCB_DIRECT) { 1458 num_written = btrfs_direct_write(iocb, from); 1459 num_sync = num_written; 1460 } else { 1461 num_written = btrfs_buffered_write(iocb, from); 1462 num_sync = num_written; 1463 } 1464 1465 btrfs_set_inode_last_sub_trans(inode); 1466 1467 if (num_sync > 0) { 1468 num_sync = generic_write_sync(iocb, num_sync); 1469 if (num_sync < 0) 1470 num_written = num_sync; 1471 } 1472 1473 return num_written; 1474 } 1475 1476 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 1477 { 1478 return btrfs_do_write_iter(iocb, from, NULL); 1479 } 1480 1481 int btrfs_release_file(struct inode *inode, struct file *filp) 1482 { 1483 struct btrfs_file_private *private = filp->private_data; 1484 1485 if (private) { 1486 kfree(private->filldir_buf); 1487 btrfs_free_extent_state(private->llseek_cached_state); 1488 kfree(private); 1489 filp->private_data = NULL; 1490 } 1491 1492 /* 1493 * Set by setattr when we are about to truncate a file from a non-zero 1494 * size to a zero size. This tries to flush down new bytes that may 1495 * have been written if the application were using truncate to replace 1496 * a file in place. 1497 */ 1498 if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 1499 &BTRFS_I(inode)->runtime_flags)) 1500 filemap_flush(inode->i_mapping); 1501 return 0; 1502 } 1503 1504 static int start_ordered_ops(struct btrfs_inode *inode, loff_t start, loff_t end) 1505 { 1506 int ret; 1507 struct blk_plug plug; 1508 1509 /* 1510 * This is only called in fsync, which would do synchronous writes, so 1511 * a plug can merge adjacent IOs as much as possible. Esp. in case of 1512 * multiple disks using raid profile, a large IO can be split to 1513 * several segments of stripe length (currently 64K). 1514 */ 1515 blk_start_plug(&plug); 1516 ret = btrfs_fdatawrite_range(inode, start, end); 1517 blk_finish_plug(&plug); 1518 1519 return ret; 1520 } 1521 1522 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx) 1523 { 1524 struct btrfs_inode *inode = ctx->inode; 1525 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1526 1527 if (btrfs_inode_in_log(inode, btrfs_get_fs_generation(fs_info)) && 1528 list_empty(&ctx->ordered_extents)) 1529 return true; 1530 1531 /* 1532 * If we are doing a fast fsync we can not bail out if the inode's 1533 * last_trans is <= then the last committed transaction, because we only 1534 * update the last_trans of the inode during ordered extent completion, 1535 * and for a fast fsync we don't wait for that, we only wait for the 1536 * writeback to complete. 1537 */ 1538 if (inode->last_trans <= btrfs_get_last_trans_committed(fs_info) && 1539 (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) || 1540 list_empty(&ctx->ordered_extents))) 1541 return true; 1542 1543 return false; 1544 } 1545 1546 /* 1547 * fsync call for both files and directories. This logs the inode into 1548 * the tree log instead of forcing full commits whenever possible. 1549 * 1550 * It needs to call filemap_fdatawait so that all ordered extent updates are 1551 * in the metadata btree are up to date for copying to the log. 1552 * 1553 * It drops the inode mutex before doing the tree log commit. This is an 1554 * important optimization for directories because holding the mutex prevents 1555 * new operations on the dir while we write to disk. 1556 */ 1557 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 1558 { 1559 struct dentry *dentry = file_dentry(file); 1560 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 1561 struct btrfs_root *root = inode->root; 1562 struct btrfs_fs_info *fs_info = root->fs_info; 1563 struct btrfs_trans_handle *trans; 1564 struct btrfs_log_ctx ctx; 1565 int ret = 0, err; 1566 u64 len; 1567 bool full_sync; 1568 bool skip_ilock = false; 1569 1570 if (current->journal_info == BTRFS_TRANS_DIO_WRITE_STUB) { 1571 skip_ilock = true; 1572 current->journal_info = NULL; 1573 btrfs_assert_inode_locked(inode); 1574 } 1575 1576 trace_btrfs_sync_file(file, datasync); 1577 1578 btrfs_init_log_ctx(&ctx, inode); 1579 1580 /* 1581 * Always set the range to a full range, otherwise we can get into 1582 * several problems, from missing file extent items to represent holes 1583 * when not using the NO_HOLES feature, to log tree corruption due to 1584 * races between hole detection during logging and completion of ordered 1585 * extents outside the range, to missing checksums due to ordered extents 1586 * for which we flushed only a subset of their pages. 1587 */ 1588 start = 0; 1589 end = LLONG_MAX; 1590 len = (u64)LLONG_MAX + 1; 1591 1592 /* 1593 * We write the dirty pages in the range and wait until they complete 1594 * out of the ->i_mutex. If so, we can flush the dirty pages by 1595 * multi-task, and make the performance up. See 1596 * btrfs_wait_ordered_range for an explanation of the ASYNC check. 1597 */ 1598 ret = start_ordered_ops(inode, start, end); 1599 if (ret) 1600 goto out; 1601 1602 if (skip_ilock) 1603 down_write(&inode->i_mmap_lock); 1604 else 1605 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP); 1606 1607 atomic_inc(&root->log_batch); 1608 1609 /* 1610 * Before we acquired the inode's lock and the mmap lock, someone may 1611 * have dirtied more pages in the target range. We need to make sure 1612 * that writeback for any such pages does not start while we are logging 1613 * the inode, because if it does, any of the following might happen when 1614 * we are not doing a full inode sync: 1615 * 1616 * 1) We log an extent after its writeback finishes but before its 1617 * checksums are added to the csum tree, leading to -EIO errors 1618 * when attempting to read the extent after a log replay. 1619 * 1620 * 2) We can end up logging an extent before its writeback finishes. 1621 * Therefore after the log replay we will have a file extent item 1622 * pointing to an unwritten extent (and no data checksums as well). 1623 * 1624 * So trigger writeback for any eventual new dirty pages and then we 1625 * wait for all ordered extents to complete below. 1626 */ 1627 ret = start_ordered_ops(inode, start, end); 1628 if (ret) { 1629 if (skip_ilock) 1630 up_write(&inode->i_mmap_lock); 1631 else 1632 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 1633 goto out; 1634 } 1635 1636 /* 1637 * Always check for the full sync flag while holding the inode's lock, 1638 * to avoid races with other tasks. The flag must be either set all the 1639 * time during logging or always off all the time while logging. 1640 * We check the flag here after starting delalloc above, because when 1641 * running delalloc the full sync flag may be set if we need to drop 1642 * extra extent map ranges due to temporary memory allocation failures. 1643 */ 1644 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 1645 1646 /* 1647 * We have to do this here to avoid the priority inversion of waiting on 1648 * IO of a lower priority task while holding a transaction open. 1649 * 1650 * For a full fsync we wait for the ordered extents to complete while 1651 * for a fast fsync we wait just for writeback to complete, and then 1652 * attach the ordered extents to the transaction so that a transaction 1653 * commit waits for their completion, to avoid data loss if we fsync, 1654 * the current transaction commits before the ordered extents complete 1655 * and a power failure happens right after that. 1656 * 1657 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the 1658 * logical address recorded in the ordered extent may change. We need 1659 * to wait for the IO to stabilize the logical address. 1660 */ 1661 if (full_sync || btrfs_is_zoned(fs_info)) { 1662 ret = btrfs_wait_ordered_range(inode, start, len); 1663 clear_bit(BTRFS_INODE_COW_WRITE_ERROR, &inode->runtime_flags); 1664 } else { 1665 /* 1666 * Get our ordered extents as soon as possible to avoid doing 1667 * checksum lookups in the csum tree, and use instead the 1668 * checksums attached to the ordered extents. 1669 */ 1670 btrfs_get_ordered_extents_for_logging(inode, &ctx.ordered_extents); 1671 ret = filemap_fdatawait_range(inode->vfs_inode.i_mapping, start, end); 1672 if (ret) 1673 goto out_release_extents; 1674 1675 /* 1676 * Check and clear the BTRFS_INODE_COW_WRITE_ERROR now after 1677 * starting and waiting for writeback, because for buffered IO 1678 * it may have been set during the end IO callback 1679 * (end_bbio_data_write() -> btrfs_finish_ordered_extent()) in 1680 * case an error happened and we need to wait for ordered 1681 * extents to complete so that any extent maps that point to 1682 * unwritten locations are dropped and we don't log them. 1683 */ 1684 if (test_and_clear_bit(BTRFS_INODE_COW_WRITE_ERROR, &inode->runtime_flags)) 1685 ret = btrfs_wait_ordered_range(inode, start, len); 1686 } 1687 1688 if (ret) 1689 goto out_release_extents; 1690 1691 atomic_inc(&root->log_batch); 1692 1693 if (skip_inode_logging(&ctx)) { 1694 /* 1695 * We've had everything committed since the last time we were 1696 * modified so clear this flag in case it was set for whatever 1697 * reason, it's no longer relevant. 1698 */ 1699 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 1700 /* 1701 * An ordered extent might have started before and completed 1702 * already with io errors, in which case the inode was not 1703 * updated and we end up here. So check the inode's mapping 1704 * for any errors that might have happened since we last 1705 * checked called fsync. 1706 */ 1707 ret = filemap_check_wb_err(inode->vfs_inode.i_mapping, file->f_wb_err); 1708 goto out_release_extents; 1709 } 1710 1711 btrfs_init_log_ctx_scratch_eb(&ctx); 1712 1713 /* 1714 * We use start here because we will need to wait on the IO to complete 1715 * in btrfs_sync_log, which could require joining a transaction (for 1716 * example checking cross references in the nocow path). If we use join 1717 * here we could get into a situation where we're waiting on IO to 1718 * happen that is blocked on a transaction trying to commit. With start 1719 * we inc the extwriter counter, so we wait for all extwriters to exit 1720 * before we start blocking joiners. This comment is to keep somebody 1721 * from thinking they are super smart and changing this to 1722 * btrfs_join_transaction *cough*Josef*cough*. 1723 */ 1724 trans = btrfs_start_transaction(root, 0); 1725 if (IS_ERR(trans)) { 1726 ret = PTR_ERR(trans); 1727 goto out_release_extents; 1728 } 1729 trans->in_fsync = true; 1730 1731 ret = btrfs_log_dentry_safe(trans, dentry, &ctx); 1732 /* 1733 * Scratch eb no longer needed, release before syncing log or commit 1734 * transaction, to avoid holding unnecessary memory during such long 1735 * operations. 1736 */ 1737 if (ctx.scratch_eb) { 1738 free_extent_buffer(ctx.scratch_eb); 1739 ctx.scratch_eb = NULL; 1740 } 1741 btrfs_release_log_ctx_extents(&ctx); 1742 if (ret < 0) { 1743 /* Fallthrough and commit/free transaction. */ 1744 ret = BTRFS_LOG_FORCE_COMMIT; 1745 } 1746 1747 /* we've logged all the items and now have a consistent 1748 * version of the file in the log. It is possible that 1749 * someone will come in and modify the file, but that's 1750 * fine because the log is consistent on disk, and we 1751 * have references to all of the file's extents 1752 * 1753 * It is possible that someone will come in and log the 1754 * file again, but that will end up using the synchronization 1755 * inside btrfs_sync_log to keep things safe. 1756 */ 1757 if (skip_ilock) 1758 up_write(&inode->i_mmap_lock); 1759 else 1760 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 1761 1762 if (ret == BTRFS_NO_LOG_SYNC) { 1763 ret = btrfs_end_transaction(trans); 1764 goto out; 1765 } 1766 1767 /* We successfully logged the inode, attempt to sync the log. */ 1768 if (!ret) { 1769 ret = btrfs_sync_log(trans, root, &ctx); 1770 if (!ret) { 1771 ret = btrfs_end_transaction(trans); 1772 goto out; 1773 } 1774 } 1775 1776 /* 1777 * At this point we need to commit the transaction because we had 1778 * btrfs_need_log_full_commit() or some other error. 1779 * 1780 * If we didn't do a full sync we have to stop the trans handle, wait on 1781 * the ordered extents, start it again and commit the transaction. If 1782 * we attempt to wait on the ordered extents here we could deadlock with 1783 * something like fallocate() that is holding the extent lock trying to 1784 * start a transaction while some other thread is trying to commit the 1785 * transaction while we (fsync) are currently holding the transaction 1786 * open. 1787 */ 1788 if (!full_sync) { 1789 ret = btrfs_end_transaction(trans); 1790 if (ret) 1791 goto out; 1792 ret = btrfs_wait_ordered_range(inode, start, len); 1793 if (ret) 1794 goto out; 1795 1796 /* 1797 * This is safe to use here because we're only interested in 1798 * making sure the transaction that had the ordered extents is 1799 * committed. We aren't waiting on anything past this point, 1800 * we're purely getting the transaction and committing it. 1801 */ 1802 trans = btrfs_attach_transaction_barrier(root); 1803 if (IS_ERR(trans)) { 1804 ret = PTR_ERR(trans); 1805 1806 /* 1807 * We committed the transaction and there's no currently 1808 * running transaction, this means everything we care 1809 * about made it to disk and we are done. 1810 */ 1811 if (ret == -ENOENT) 1812 ret = 0; 1813 goto out; 1814 } 1815 } 1816 1817 ret = btrfs_commit_transaction(trans); 1818 out: 1819 free_extent_buffer(ctx.scratch_eb); 1820 ASSERT(list_empty(&ctx.list)); 1821 ASSERT(list_empty(&ctx.conflict_inodes)); 1822 err = file_check_and_advance_wb_err(file); 1823 if (!ret) 1824 ret = err; 1825 return ret > 0 ? -EIO : ret; 1826 1827 out_release_extents: 1828 btrfs_release_log_ctx_extents(&ctx); 1829 if (skip_ilock) 1830 up_write(&inode->i_mmap_lock); 1831 else 1832 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 1833 goto out; 1834 } 1835 1836 /* 1837 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 1838 * called from a page fault handler when a page is first dirtied. Hence we must 1839 * be careful to check for EOF conditions here. We set the page up correctly 1840 * for a written page which means we get ENOSPC checking when writing into 1841 * holes and correct delalloc and unwritten extent mapping on filesystems that 1842 * support these features. 1843 * 1844 * We are not allowed to take the i_mutex here so we have to play games to 1845 * protect against truncate races as the page could now be beyond EOF. Because 1846 * truncate_setsize() writes the inode size before removing pages, once we have 1847 * the page lock we can determine safely if the page is beyond EOF. If it is not 1848 * beyond EOF, then the page is guaranteed safe against truncation until we 1849 * unlock the page. 1850 */ 1851 static vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf) 1852 { 1853 struct page *page = vmf->page; 1854 struct folio *folio = page_folio(page); 1855 struct btrfs_inode *inode = BTRFS_I(file_inode(vmf->vma->vm_file)); 1856 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1857 struct extent_io_tree *io_tree = &inode->io_tree; 1858 struct btrfs_ordered_extent *ordered; 1859 struct extent_state *cached_state = NULL; 1860 struct extent_changeset *data_reserved = NULL; 1861 unsigned long zero_start; 1862 loff_t size; 1863 size_t fsize = folio_size(folio); 1864 int ret; 1865 bool only_release_metadata = false; 1866 u64 reserved_space; 1867 u64 page_start; 1868 u64 page_end; 1869 u64 end; 1870 1871 reserved_space = fsize; 1872 1873 sb_start_pagefault(inode->vfs_inode.i_sb); 1874 page_start = folio_pos(folio); 1875 page_end = page_start + folio_size(folio) - 1; 1876 end = page_end; 1877 1878 /* 1879 * Reserving delalloc space after obtaining the page lock can lead to 1880 * deadlock. For example, if a dirty page is locked by this function 1881 * and the call to btrfs_delalloc_reserve_space() ends up triggering 1882 * dirty page write out, then the btrfs_writepages() function could 1883 * end up waiting indefinitely to get a lock on the page currently 1884 * being processed by btrfs_page_mkwrite() function. 1885 */ 1886 ret = btrfs_check_data_free_space(inode, &data_reserved, page_start, 1887 reserved_space, false); 1888 if (ret < 0) { 1889 size_t write_bytes = reserved_space; 1890 1891 if (btrfs_check_nocow_lock(inode, page_start, &write_bytes, false) <= 0) 1892 goto out_noreserve; 1893 1894 only_release_metadata = true; 1895 1896 /* 1897 * Can't write the whole range, there may be shared extents or 1898 * holes in the range, bail out with @only_release_metadata set 1899 * to true so that we unlock the nocow lock before returning the 1900 * error. 1901 */ 1902 if (write_bytes < reserved_space) 1903 goto out_noreserve; 1904 } 1905 ret = btrfs_delalloc_reserve_metadata(inode, reserved_space, 1906 reserved_space, false); 1907 if (ret < 0) { 1908 if (!only_release_metadata) 1909 btrfs_free_reserved_data_space(inode, data_reserved, 1910 page_start, reserved_space); 1911 goto out_noreserve; 1912 } 1913 1914 ret = file_update_time(vmf->vma->vm_file); 1915 if (ret < 0) 1916 goto out; 1917 again: 1918 down_read(&inode->i_mmap_lock); 1919 folio_lock(folio); 1920 size = i_size_read(&inode->vfs_inode); 1921 1922 if ((folio->mapping != inode->vfs_inode.i_mapping) || 1923 (page_start >= size)) { 1924 /* Page got truncated out from underneath us. */ 1925 goto out_unlock; 1926 } 1927 folio_wait_writeback(folio); 1928 1929 btrfs_lock_extent(io_tree, page_start, page_end, &cached_state); 1930 ret = set_folio_extent_mapped(folio); 1931 if (ret < 0) { 1932 btrfs_unlock_extent(io_tree, page_start, page_end, &cached_state); 1933 goto out_unlock; 1934 } 1935 1936 /* 1937 * We can't set the delalloc bits if there are pending ordered 1938 * extents. Drop our locks and wait for them to finish. 1939 */ 1940 ordered = btrfs_lookup_ordered_range(inode, page_start, fsize); 1941 if (ordered) { 1942 btrfs_unlock_extent(io_tree, page_start, page_end, &cached_state); 1943 folio_unlock(folio); 1944 up_read(&inode->i_mmap_lock); 1945 btrfs_start_ordered_extent(ordered); 1946 btrfs_put_ordered_extent(ordered); 1947 goto again; 1948 } 1949 1950 if (folio_contains(folio, (size - 1) >> PAGE_SHIFT)) { 1951 reserved_space = round_up(size - page_start, fs_info->sectorsize); 1952 if (reserved_space < fsize) { 1953 const u64 to_free = fsize - reserved_space; 1954 1955 end = page_start + reserved_space - 1; 1956 if (only_release_metadata) 1957 btrfs_delalloc_release_metadata(inode, to_free, true); 1958 else 1959 btrfs_delalloc_release_space(inode, data_reserved, 1960 end + 1, to_free, true); 1961 } 1962 } 1963 1964 /* 1965 * page_mkwrite gets called when the page is firstly dirtied after it's 1966 * faulted in, but write(2) could also dirty a page and set delalloc 1967 * bits, thus in this case for space account reason, we still need to 1968 * clear any delalloc bits within this page range since we have to 1969 * reserve data&meta space before lock_page() (see above comments). 1970 */ 1971 btrfs_clear_extent_bit(io_tree, page_start, end, 1972 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 1973 EXTENT_DEFRAG, &cached_state); 1974 1975 ret = btrfs_set_extent_delalloc(inode, page_start, end, 0, &cached_state); 1976 if (ret < 0) { 1977 btrfs_unlock_extent(io_tree, page_start, page_end, &cached_state); 1978 goto out_unlock; 1979 } 1980 1981 /* Page is wholly or partially inside EOF. */ 1982 if (page_start + folio_size(folio) > size) 1983 zero_start = offset_in_folio(folio, size); 1984 else 1985 zero_start = fsize; 1986 1987 if (zero_start != fsize) 1988 folio_zero_range(folio, zero_start, folio_size(folio) - zero_start); 1989 1990 btrfs_folio_clear_checked(fs_info, folio, page_start, fsize); 1991 btrfs_folio_set_dirty(fs_info, folio, page_start, end + 1 - page_start); 1992 btrfs_folio_set_uptodate(fs_info, folio, page_start, end + 1 - page_start); 1993 1994 btrfs_set_inode_last_sub_trans(inode); 1995 1996 if (only_release_metadata) 1997 btrfs_set_extent_bit(io_tree, page_start, end, EXTENT_NORESERVE, 1998 &cached_state); 1999 2000 btrfs_unlock_extent(io_tree, page_start, page_end, &cached_state); 2001 up_read(&inode->i_mmap_lock); 2002 2003 btrfs_delalloc_release_extents(inode, fsize); 2004 if (only_release_metadata) 2005 btrfs_check_nocow_unlock(inode); 2006 sb_end_pagefault(inode->vfs_inode.i_sb); 2007 extent_changeset_free(data_reserved); 2008 return VM_FAULT_LOCKED; 2009 2010 out_unlock: 2011 folio_unlock(folio); 2012 up_read(&inode->i_mmap_lock); 2013 out: 2014 btrfs_delalloc_release_extents(inode, fsize); 2015 if (only_release_metadata) 2016 btrfs_delalloc_release_metadata(inode, reserved_space, true); 2017 else 2018 btrfs_delalloc_release_space(inode, data_reserved, page_start, 2019 reserved_space, true); 2020 out_noreserve: 2021 if (only_release_metadata) 2022 btrfs_check_nocow_unlock(inode); 2023 2024 sb_end_pagefault(inode->vfs_inode.i_sb); 2025 2026 extent_changeset_free(data_reserved); 2027 2028 if (ret < 0) 2029 return vmf_error(ret); 2030 2031 /* Make the VM retry the fault. */ 2032 return VM_FAULT_NOPAGE; 2033 } 2034 2035 static const struct vm_operations_struct btrfs_file_vm_ops = { 2036 .fault = filemap_fault, 2037 .map_pages = filemap_map_pages, 2038 .page_mkwrite = btrfs_page_mkwrite, 2039 }; 2040 2041 static int btrfs_file_mmap_prepare(struct vm_area_desc *desc) 2042 { 2043 struct file *filp = desc->file; 2044 struct address_space *mapping = filp->f_mapping; 2045 2046 if (btrfs_is_shutdown(inode_to_fs_info(file_inode(filp)))) 2047 return -EIO; 2048 if (!mapping->a_ops->read_folio) 2049 return -ENOEXEC; 2050 2051 file_accessed(filp); 2052 desc->vm_ops = &btrfs_file_vm_ops; 2053 2054 return 0; 2055 } 2056 2057 static bool hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf, 2058 int slot, u64 start, u64 end) 2059 { 2060 struct btrfs_file_extent_item *fi; 2061 struct btrfs_key key; 2062 2063 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 2064 return false; 2065 2066 btrfs_item_key_to_cpu(leaf, &key, slot); 2067 if (key.objectid != btrfs_ino(inode) || 2068 key.type != BTRFS_EXTENT_DATA_KEY) 2069 return false; 2070 2071 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2072 2073 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2074 return false; 2075 2076 if (btrfs_file_extent_disk_bytenr(leaf, fi)) 2077 return false; 2078 2079 if (key.offset == end) 2080 return true; 2081 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) 2082 return true; 2083 return false; 2084 } 2085 2086 static int fill_holes(struct btrfs_trans_handle *trans, 2087 struct btrfs_inode *inode, 2088 struct btrfs_path *path, u64 offset, u64 end) 2089 { 2090 struct btrfs_fs_info *fs_info = trans->fs_info; 2091 struct btrfs_root *root = inode->root; 2092 struct extent_buffer *leaf; 2093 struct btrfs_file_extent_item *fi; 2094 struct extent_map *hole_em; 2095 struct btrfs_key key; 2096 int ret; 2097 2098 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 2099 goto out; 2100 2101 key.objectid = btrfs_ino(inode); 2102 key.type = BTRFS_EXTENT_DATA_KEY; 2103 key.offset = offset; 2104 2105 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2106 if (ret <= 0) { 2107 /* 2108 * We should have dropped this offset, so if we find it then 2109 * something has gone horribly wrong. 2110 */ 2111 if (ret == 0) 2112 ret = -EINVAL; 2113 return ret; 2114 } 2115 2116 leaf = path->nodes[0]; 2117 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) { 2118 u64 num_bytes; 2119 2120 path->slots[0]--; 2121 fi = btrfs_item_ptr(leaf, path->slots[0], 2122 struct btrfs_file_extent_item); 2123 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + 2124 end - offset; 2125 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2126 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2127 btrfs_set_file_extent_offset(leaf, fi, 0); 2128 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2129 goto out; 2130 } 2131 2132 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) { 2133 u64 num_bytes; 2134 2135 key.offset = offset; 2136 btrfs_set_item_key_safe(trans, path, &key); 2137 fi = btrfs_item_ptr(leaf, path->slots[0], 2138 struct btrfs_file_extent_item); 2139 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - 2140 offset; 2141 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2142 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2143 btrfs_set_file_extent_offset(leaf, fi, 0); 2144 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2145 goto out; 2146 } 2147 btrfs_release_path(path); 2148 2149 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, 2150 end - offset); 2151 if (ret) 2152 return ret; 2153 2154 out: 2155 btrfs_release_path(path); 2156 2157 hole_em = btrfs_alloc_extent_map(); 2158 if (!hole_em) { 2159 btrfs_drop_extent_map_range(inode, offset, end - 1, false); 2160 btrfs_set_inode_full_sync(inode); 2161 } else { 2162 hole_em->start = offset; 2163 hole_em->len = end - offset; 2164 hole_em->ram_bytes = hole_em->len; 2165 2166 hole_em->disk_bytenr = EXTENT_MAP_HOLE; 2167 hole_em->disk_num_bytes = 0; 2168 hole_em->generation = trans->transid; 2169 2170 ret = btrfs_replace_extent_map_range(inode, hole_em, true); 2171 btrfs_free_extent_map(hole_em); 2172 if (ret) 2173 btrfs_set_inode_full_sync(inode); 2174 } 2175 2176 return 0; 2177 } 2178 2179 /* 2180 * Find a hole extent on given inode and change start/len to the end of hole 2181 * extent.(hole/vacuum extent whose em->start <= start && 2182 * em->start + em->len > start) 2183 * When a hole extent is found, return 1 and modify start/len. 2184 */ 2185 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len) 2186 { 2187 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2188 struct extent_map *em; 2189 int ret = 0; 2190 2191 em = btrfs_get_extent(inode, NULL, 2192 round_down(*start, fs_info->sectorsize), 2193 round_up(*len, fs_info->sectorsize)); 2194 if (IS_ERR(em)) 2195 return PTR_ERR(em); 2196 2197 /* Hole or vacuum extent(only exists in no-hole mode) */ 2198 if (em->disk_bytenr == EXTENT_MAP_HOLE) { 2199 const u64 em_end = btrfs_extent_map_end(em); 2200 2201 ret = 1; 2202 *len = (em_end > *start + *len) ? 0 : (*start + *len - em_end); 2203 *start = em_end; 2204 } 2205 btrfs_free_extent_map(em); 2206 return ret; 2207 } 2208 2209 /* 2210 * Check if there is no folio in the range. 2211 * 2212 * We cannot utilize filemap_range_has_page() in a filemap with large folios 2213 * as we can hit the following false positive: 2214 * 2215 * start end 2216 * | | 2217 * |//|//|//|//| | | | | | | | |//|//| 2218 * \ / \ / 2219 * Folio A Folio B 2220 * 2221 * That large folio A and B cover the start and end indexes. 2222 * In that case filemap_range_has_page() will always return true, but the above 2223 * case is fine for btrfs_punch_hole_lock_range() usage. 2224 * 2225 * So here we only ensure that no other folios is in the range, excluding the 2226 * head/tail large folio. 2227 */ 2228 static bool check_range_has_page(struct inode *inode, u64 start, u64 end) 2229 { 2230 struct folio_batch fbatch; 2231 bool ret = false; 2232 /* 2233 * For subpage case, if the range is not at page boundary, we could 2234 * have pages at the leading/tailing part of the range. 2235 * This could lead to dead loop since filemap_range_has_page() 2236 * will always return true. 2237 * So here we need to do extra page alignment for 2238 * filemap_range_has_page(). 2239 * 2240 * And do not decrease page_lockend right now, as it can be 0. 2241 */ 2242 const u64 page_lockstart = round_up(start, PAGE_SIZE); 2243 const u64 page_lockend = round_down(end + 1, PAGE_SIZE); 2244 const pgoff_t start_index = page_lockstart >> PAGE_SHIFT; 2245 const pgoff_t end_index = (page_lockend - 1) >> PAGE_SHIFT; 2246 pgoff_t tmp = start_index; 2247 int found_folios; 2248 2249 /* The same page or adjacent pages. */ 2250 if (page_lockend <= page_lockstart) 2251 return false; 2252 2253 folio_batch_init(&fbatch); 2254 found_folios = filemap_get_folios(inode->i_mapping, &tmp, end_index, &fbatch); 2255 for (int i = 0; i < found_folios; i++) { 2256 struct folio *folio = fbatch.folios[i]; 2257 2258 /* A large folio begins before the start. Not a target. */ 2259 if (folio->index < start_index) 2260 continue; 2261 /* A large folio extends beyond the end. Not a target. */ 2262 if (folio_next_index(folio) > end_index) 2263 continue; 2264 /* A folio doesn't cover the head/tail index. Found a target. */ 2265 ret = true; 2266 break; 2267 } 2268 folio_batch_release(&fbatch); 2269 return ret; 2270 } 2271 2272 static void btrfs_punch_hole_lock_range(struct inode *inode, 2273 const u64 lockstart, const u64 lockend, 2274 struct extent_state **cached_state) 2275 { 2276 while (1) { 2277 truncate_pagecache_range(inode, lockstart, lockend); 2278 2279 btrfs_lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2280 cached_state); 2281 /* 2282 * We can't have ordered extents in the range, nor dirty/writeback 2283 * pages, because we have locked the inode's VFS lock in exclusive 2284 * mode, we have locked the inode's i_mmap_lock in exclusive mode, 2285 * we have flushed all delalloc in the range and we have waited 2286 * for any ordered extents in the range to complete. 2287 * We can race with anyone reading pages from this range, so after 2288 * locking the range check if we have pages in the range, and if 2289 * we do, unlock the range and retry. 2290 */ 2291 if (!check_range_has_page(inode, lockstart, lockend)) 2292 break; 2293 2294 btrfs_unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2295 cached_state); 2296 } 2297 2298 btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend); 2299 } 2300 2301 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans, 2302 struct btrfs_inode *inode, 2303 struct btrfs_path *path, 2304 struct btrfs_replace_extent_info *extent_info, 2305 const u64 replace_len, 2306 const u64 bytes_to_drop) 2307 { 2308 struct btrfs_fs_info *fs_info = trans->fs_info; 2309 struct btrfs_root *root = inode->root; 2310 struct btrfs_file_extent_item *extent; 2311 struct extent_buffer *leaf; 2312 struct btrfs_key key; 2313 int slot; 2314 int ret; 2315 2316 if (replace_len == 0) 2317 return 0; 2318 2319 if (extent_info->disk_offset == 0 && 2320 btrfs_fs_incompat(fs_info, NO_HOLES)) { 2321 btrfs_update_inode_bytes(inode, 0, bytes_to_drop); 2322 return 0; 2323 } 2324 2325 key.objectid = btrfs_ino(inode); 2326 key.type = BTRFS_EXTENT_DATA_KEY; 2327 key.offset = extent_info->file_offset; 2328 ret = btrfs_insert_empty_item(trans, root, path, &key, 2329 sizeof(struct btrfs_file_extent_item)); 2330 if (ret) 2331 return ret; 2332 leaf = path->nodes[0]; 2333 slot = path->slots[0]; 2334 write_extent_buffer(leaf, extent_info->extent_buf, 2335 btrfs_item_ptr_offset(leaf, slot), 2336 sizeof(struct btrfs_file_extent_item)); 2337 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2338 ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE); 2339 btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset); 2340 btrfs_set_file_extent_num_bytes(leaf, extent, replace_len); 2341 if (extent_info->is_new_extent) 2342 btrfs_set_file_extent_generation(leaf, extent, trans->transid); 2343 btrfs_release_path(path); 2344 2345 ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset, 2346 replace_len); 2347 if (ret) 2348 return ret; 2349 2350 /* If it's a hole, nothing more needs to be done. */ 2351 if (extent_info->disk_offset == 0) { 2352 btrfs_update_inode_bytes(inode, 0, bytes_to_drop); 2353 return 0; 2354 } 2355 2356 btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop); 2357 2358 if (extent_info->is_new_extent && extent_info->insertions == 0) { 2359 key.objectid = extent_info->disk_offset; 2360 key.type = BTRFS_EXTENT_ITEM_KEY; 2361 key.offset = extent_info->disk_len; 2362 ret = btrfs_alloc_reserved_file_extent(trans, root, 2363 btrfs_ino(inode), 2364 extent_info->file_offset, 2365 extent_info->qgroup_reserved, 2366 &key); 2367 } else { 2368 struct btrfs_ref ref = { 2369 .action = BTRFS_ADD_DELAYED_REF, 2370 .bytenr = extent_info->disk_offset, 2371 .num_bytes = extent_info->disk_len, 2372 .owning_root = btrfs_root_id(root), 2373 .ref_root = btrfs_root_id(root), 2374 }; 2375 u64 ref_offset; 2376 2377 ref_offset = extent_info->file_offset - extent_info->data_offset; 2378 btrfs_init_data_ref(&ref, btrfs_ino(inode), ref_offset, 0, false); 2379 ret = btrfs_inc_extent_ref(trans, &ref); 2380 } 2381 2382 extent_info->insertions++; 2383 2384 return ret; 2385 } 2386 2387 /* 2388 * The respective range must have been previously locked, as well as the inode. 2389 * The end offset is inclusive (last byte of the range). 2390 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing 2391 * the file range with an extent. 2392 * When not punching a hole, we don't want to end up in a state where we dropped 2393 * extents without inserting a new one, so we must abort the transaction to avoid 2394 * a corruption. 2395 */ 2396 int btrfs_replace_file_extents(struct btrfs_inode *inode, 2397 struct btrfs_path *path, const u64 start, 2398 const u64 end, 2399 struct btrfs_replace_extent_info *extent_info, 2400 struct btrfs_trans_handle **trans_out) 2401 { 2402 struct btrfs_drop_extents_args drop_args = { 0 }; 2403 struct btrfs_root *root = inode->root; 2404 struct btrfs_fs_info *fs_info = root->fs_info; 2405 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1); 2406 u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize); 2407 struct btrfs_trans_handle *trans = NULL; 2408 struct btrfs_block_rsv rsv; 2409 unsigned int rsv_count; 2410 u64 cur_offset; 2411 u64 len = end - start; 2412 int ret = 0; 2413 2414 if (end <= start) 2415 return -EINVAL; 2416 2417 btrfs_init_metadata_block_rsv(fs_info, &rsv, BTRFS_BLOCK_RSV_TEMP); 2418 rsv.size = btrfs_calc_insert_metadata_size(fs_info, 1); 2419 rsv.failfast = true; 2420 2421 /* 2422 * 1 - update the inode 2423 * 1 - removing the extents in the range 2424 * 1 - adding the hole extent if no_holes isn't set or if we are 2425 * replacing the range with a new extent 2426 */ 2427 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info) 2428 rsv_count = 3; 2429 else 2430 rsv_count = 2; 2431 2432 trans = btrfs_start_transaction(root, rsv_count); 2433 if (IS_ERR(trans)) { 2434 ret = PTR_ERR(trans); 2435 trans = NULL; 2436 goto out_release; 2437 } 2438 2439 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, &rsv, 2440 min_size, false); 2441 if (WARN_ON(ret)) 2442 goto out_trans; 2443 trans->block_rsv = &rsv; 2444 2445 cur_offset = start; 2446 drop_args.path = path; 2447 drop_args.end = end + 1; 2448 drop_args.drop_cache = true; 2449 while (cur_offset < end) { 2450 drop_args.start = cur_offset; 2451 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2452 /* If we are punching a hole decrement the inode's byte count */ 2453 if (!extent_info) 2454 btrfs_update_inode_bytes(inode, 0, 2455 drop_args.bytes_found); 2456 if (ret != -ENOSPC) { 2457 /* 2458 * The only time we don't want to abort is if we are 2459 * attempting to clone a partial inline extent, in which 2460 * case we'll get EOPNOTSUPP. However if we aren't 2461 * clone we need to abort no matter what, because if we 2462 * got EOPNOTSUPP via prealloc then we messed up and 2463 * need to abort. 2464 */ 2465 if (unlikely(ret && 2466 (ret != -EOPNOTSUPP || 2467 (extent_info && extent_info->is_new_extent)))) 2468 btrfs_abort_transaction(trans, ret); 2469 break; 2470 } 2471 2472 trans->block_rsv = &fs_info->trans_block_rsv; 2473 2474 if (!extent_info && cur_offset < drop_args.drop_end && 2475 cur_offset < ino_size) { 2476 ret = fill_holes(trans, inode, path, cur_offset, 2477 drop_args.drop_end); 2478 if (unlikely(ret)) { 2479 /* 2480 * If we failed then we didn't insert our hole 2481 * entries for the area we dropped, so now the 2482 * fs is corrupted, so we must abort the 2483 * transaction. 2484 */ 2485 btrfs_abort_transaction(trans, ret); 2486 break; 2487 } 2488 } else if (!extent_info && cur_offset < drop_args.drop_end) { 2489 /* 2490 * We are past the i_size here, but since we didn't 2491 * insert holes we need to clear the mapped area so we 2492 * know to not set disk_i_size in this area until a new 2493 * file extent is inserted here. 2494 */ 2495 ret = btrfs_inode_clear_file_extent_range(inode, 2496 cur_offset, 2497 drop_args.drop_end - cur_offset); 2498 if (unlikely(ret)) { 2499 /* 2500 * We couldn't clear our area, so we could 2501 * presumably adjust up and corrupt the fs, so 2502 * we need to abort. 2503 */ 2504 btrfs_abort_transaction(trans, ret); 2505 break; 2506 } 2507 } 2508 2509 if (extent_info && 2510 drop_args.drop_end > extent_info->file_offset) { 2511 u64 replace_len = drop_args.drop_end - 2512 extent_info->file_offset; 2513 2514 ret = btrfs_insert_replace_extent(trans, inode, path, 2515 extent_info, replace_len, 2516 drop_args.bytes_found); 2517 if (unlikely(ret)) { 2518 btrfs_abort_transaction(trans, ret); 2519 break; 2520 } 2521 extent_info->data_len -= replace_len; 2522 extent_info->data_offset += replace_len; 2523 extent_info->file_offset += replace_len; 2524 } 2525 2526 /* 2527 * We are releasing our handle on the transaction, balance the 2528 * dirty pages of the btree inode and flush delayed items, and 2529 * then get a new transaction handle, which may now point to a 2530 * new transaction in case someone else may have committed the 2531 * transaction we used to replace/drop file extent items. So 2532 * bump the inode's iversion and update mtime and ctime except 2533 * if we are called from a dedupe context. This is because a 2534 * power failure/crash may happen after the transaction is 2535 * committed and before we finish replacing/dropping all the 2536 * file extent items we need. 2537 */ 2538 inode_inc_iversion(&inode->vfs_inode); 2539 2540 if (!extent_info || extent_info->update_times) 2541 inode_set_mtime_to_ts(&inode->vfs_inode, 2542 inode_set_ctime_current(&inode->vfs_inode)); 2543 2544 ret = btrfs_update_inode(trans, inode); 2545 if (ret) 2546 break; 2547 2548 btrfs_end_transaction(trans); 2549 btrfs_btree_balance_dirty(fs_info); 2550 2551 trans = btrfs_start_transaction(root, rsv_count); 2552 if (IS_ERR(trans)) { 2553 ret = PTR_ERR(trans); 2554 trans = NULL; 2555 break; 2556 } 2557 2558 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 2559 &rsv, min_size, false); 2560 if (WARN_ON(ret)) 2561 break; 2562 trans->block_rsv = &rsv; 2563 2564 cur_offset = drop_args.drop_end; 2565 len = end - cur_offset; 2566 if (!extent_info && len) { 2567 ret = find_first_non_hole(inode, &cur_offset, &len); 2568 if (unlikely(ret < 0)) 2569 break; 2570 if (ret && !len) { 2571 ret = 0; 2572 break; 2573 } 2574 } 2575 } 2576 2577 /* 2578 * If we were cloning, force the next fsync to be a full one since we 2579 * we replaced (or just dropped in the case of cloning holes when 2580 * NO_HOLES is enabled) file extent items and did not setup new extent 2581 * maps for the replacement extents (or holes). 2582 */ 2583 if (extent_info && !extent_info->is_new_extent) 2584 btrfs_set_inode_full_sync(inode); 2585 2586 if (ret) 2587 goto out_trans; 2588 2589 trans->block_rsv = &fs_info->trans_block_rsv; 2590 /* 2591 * If we are using the NO_HOLES feature we might have had already an 2592 * hole that overlaps a part of the region [lockstart, lockend] and 2593 * ends at (or beyond) lockend. Since we have no file extent items to 2594 * represent holes, drop_end can be less than lockend and so we must 2595 * make sure we have an extent map representing the existing hole (the 2596 * call to __btrfs_drop_extents() might have dropped the existing extent 2597 * map representing the existing hole), otherwise the fast fsync path 2598 * will not record the existence of the hole region 2599 * [existing_hole_start, lockend]. 2600 */ 2601 if (drop_args.drop_end <= end) 2602 drop_args.drop_end = end + 1; 2603 /* 2604 * Don't insert file hole extent item if it's for a range beyond eof 2605 * (because it's useless) or if it represents a 0 bytes range (when 2606 * cur_offset == drop_end). 2607 */ 2608 if (!extent_info && cur_offset < ino_size && 2609 cur_offset < drop_args.drop_end) { 2610 ret = fill_holes(trans, inode, path, cur_offset, 2611 drop_args.drop_end); 2612 if (unlikely(ret)) { 2613 /* Same comment as above. */ 2614 btrfs_abort_transaction(trans, ret); 2615 goto out_trans; 2616 } 2617 } else if (!extent_info && cur_offset < drop_args.drop_end) { 2618 /* See the comment in the loop above for the reasoning here. */ 2619 ret = btrfs_inode_clear_file_extent_range(inode, cur_offset, 2620 drop_args.drop_end - cur_offset); 2621 if (unlikely(ret)) { 2622 btrfs_abort_transaction(trans, ret); 2623 goto out_trans; 2624 } 2625 2626 } 2627 if (extent_info) { 2628 ret = btrfs_insert_replace_extent(trans, inode, path, 2629 extent_info, extent_info->data_len, 2630 drop_args.bytes_found); 2631 if (unlikely(ret)) { 2632 btrfs_abort_transaction(trans, ret); 2633 goto out_trans; 2634 } 2635 } 2636 2637 out_trans: 2638 if (!trans) 2639 goto out_release; 2640 2641 trans->block_rsv = &fs_info->trans_block_rsv; 2642 if (ret) 2643 btrfs_end_transaction(trans); 2644 else 2645 *trans_out = trans; 2646 out_release: 2647 btrfs_block_rsv_release(fs_info, &rsv, (u64)-1, NULL); 2648 return ret; 2649 } 2650 2651 static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len) 2652 { 2653 struct inode *inode = file_inode(file); 2654 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2655 struct btrfs_root *root = BTRFS_I(inode)->root; 2656 struct extent_state *cached_state = NULL; 2657 struct btrfs_path *path; 2658 struct btrfs_trans_handle *trans = NULL; 2659 u64 lockstart; 2660 u64 lockend; 2661 u64 tail_start; 2662 u64 tail_len; 2663 const u64 orig_start = offset; 2664 const u64 orig_end = offset + len - 1; 2665 int ret = 0; 2666 bool same_block; 2667 u64 ino_size; 2668 bool truncated_block = false; 2669 bool updated_inode = false; 2670 2671 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2672 2673 ret = btrfs_wait_ordered_range(BTRFS_I(inode), offset, len); 2674 if (ret) 2675 goto out_only_mutex; 2676 2677 ino_size = round_up(inode->i_size, fs_info->sectorsize); 2678 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len); 2679 if (ret < 0) 2680 goto out_only_mutex; 2681 if (ret && !len) { 2682 /* Already in a large hole */ 2683 ret = 0; 2684 goto out_only_mutex; 2685 } 2686 2687 ret = file_modified(file); 2688 if (ret) 2689 goto out_only_mutex; 2690 2691 lockstart = round_up(offset, fs_info->sectorsize); 2692 lockend = round_down(offset + len, fs_info->sectorsize) - 1; 2693 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset)) 2694 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)); 2695 /* 2696 * Only do this if we are in the same block and we aren't doing the 2697 * entire block. 2698 */ 2699 if (same_block && len < fs_info->sectorsize) { 2700 if (offset < ino_size) { 2701 truncated_block = true; 2702 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len - 1, 2703 orig_start, orig_end); 2704 } else { 2705 ret = 0; 2706 } 2707 goto out_only_mutex; 2708 } 2709 2710 /* zero back part of the first block */ 2711 if (offset < ino_size) { 2712 truncated_block = true; 2713 ret = btrfs_truncate_block(BTRFS_I(inode), offset, orig_start, orig_end); 2714 if (ret) { 2715 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2716 return ret; 2717 } 2718 } 2719 2720 /* Check the aligned pages after the first unaligned page, 2721 * if offset != orig_start, which means the first unaligned page 2722 * including several following pages are already in holes, 2723 * the extra check can be skipped */ 2724 if (offset == orig_start) { 2725 /* after truncate page, check hole again */ 2726 len = offset + len - lockstart; 2727 offset = lockstart; 2728 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len); 2729 if (ret < 0) 2730 goto out_only_mutex; 2731 if (ret && !len) { 2732 ret = 0; 2733 goto out_only_mutex; 2734 } 2735 lockstart = offset; 2736 } 2737 2738 /* Check the tail unaligned part is in a hole */ 2739 tail_start = lockend + 1; 2740 tail_len = offset + len - tail_start; 2741 if (tail_len) { 2742 ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len); 2743 if (unlikely(ret < 0)) 2744 goto out_only_mutex; 2745 if (!ret) { 2746 /* zero the front end of the last page */ 2747 if (tail_start + tail_len < ino_size) { 2748 truncated_block = true; 2749 ret = btrfs_truncate_block(BTRFS_I(inode), 2750 tail_start + tail_len - 1, 2751 orig_start, orig_end); 2752 if (ret) 2753 goto out_only_mutex; 2754 } 2755 } 2756 } 2757 2758 if (lockend < lockstart) { 2759 ret = 0; 2760 goto out_only_mutex; 2761 } 2762 2763 btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state); 2764 2765 path = btrfs_alloc_path(); 2766 if (!path) { 2767 ret = -ENOMEM; 2768 goto out; 2769 } 2770 2771 ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart, 2772 lockend, NULL, &trans); 2773 btrfs_free_path(path); 2774 if (ret) 2775 goto out; 2776 2777 ASSERT(trans != NULL); 2778 inode_inc_iversion(inode); 2779 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 2780 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 2781 updated_inode = true; 2782 btrfs_end_transaction(trans); 2783 btrfs_btree_balance_dirty(fs_info); 2784 out: 2785 btrfs_unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2786 &cached_state); 2787 out_only_mutex: 2788 if (!updated_inode && truncated_block && !ret) { 2789 /* 2790 * If we only end up zeroing part of a page, we still need to 2791 * update the inode item, so that all the time fields are 2792 * updated as well as the necessary btrfs inode in memory fields 2793 * for detecting, at fsync time, if the inode isn't yet in the 2794 * log tree or it's there but not up to date. 2795 */ 2796 struct timespec64 now = inode_set_ctime_current(inode); 2797 2798 inode_inc_iversion(inode); 2799 inode_set_mtime_to_ts(inode, now); 2800 trans = btrfs_start_transaction(root, 1); 2801 if (IS_ERR(trans)) { 2802 ret = PTR_ERR(trans); 2803 } else { 2804 int ret2; 2805 2806 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 2807 ret2 = btrfs_end_transaction(trans); 2808 if (!ret) 2809 ret = ret2; 2810 } 2811 } 2812 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2813 return ret; 2814 } 2815 2816 /* Helper structure to record which range is already reserved */ 2817 struct falloc_range { 2818 struct list_head list; 2819 u64 start; 2820 u64 len; 2821 }; 2822 2823 /* 2824 * Helper function to add falloc range 2825 * 2826 * Caller should have locked the larger range of extent containing 2827 * [start, len) 2828 */ 2829 static int add_falloc_range(struct list_head *head, u64 start, u64 len) 2830 { 2831 struct falloc_range *range = NULL; 2832 2833 if (!list_empty(head)) { 2834 /* 2835 * As fallocate iterates by bytenr order, we only need to check 2836 * the last range. 2837 */ 2838 range = list_last_entry(head, struct falloc_range, list); 2839 if (range->start + range->len == start) { 2840 range->len += len; 2841 return 0; 2842 } 2843 } 2844 2845 range = kmalloc(sizeof(*range), GFP_KERNEL); 2846 if (!range) 2847 return -ENOMEM; 2848 range->start = start; 2849 range->len = len; 2850 list_add_tail(&range->list, head); 2851 return 0; 2852 } 2853 2854 static int btrfs_fallocate_update_isize(struct inode *inode, 2855 const u64 end, 2856 const int mode) 2857 { 2858 struct btrfs_trans_handle *trans; 2859 struct btrfs_root *root = BTRFS_I(inode)->root; 2860 u64 range_start; 2861 u64 range_end; 2862 int ret; 2863 int ret2; 2864 2865 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode)) 2866 return 0; 2867 2868 range_start = round_down(i_size_read(inode), root->fs_info->sectorsize); 2869 range_end = round_up(end, root->fs_info->sectorsize); 2870 2871 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), range_start, 2872 range_end - range_start); 2873 if (ret) 2874 return ret; 2875 2876 trans = btrfs_start_transaction(root, 1); 2877 if (IS_ERR(trans)) 2878 return PTR_ERR(trans); 2879 2880 inode_set_ctime_current(inode); 2881 i_size_write(inode, end); 2882 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 2883 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 2884 ret2 = btrfs_end_transaction(trans); 2885 2886 return ret ? ret : ret2; 2887 } 2888 2889 enum { 2890 RANGE_BOUNDARY_WRITTEN_EXTENT, 2891 RANGE_BOUNDARY_PREALLOC_EXTENT, 2892 RANGE_BOUNDARY_HOLE, 2893 }; 2894 2895 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode, 2896 u64 offset) 2897 { 2898 const u64 sectorsize = inode->root->fs_info->sectorsize; 2899 struct extent_map *em; 2900 int ret; 2901 2902 offset = round_down(offset, sectorsize); 2903 em = btrfs_get_extent(inode, NULL, offset, sectorsize); 2904 if (IS_ERR(em)) 2905 return PTR_ERR(em); 2906 2907 if (em->disk_bytenr == EXTENT_MAP_HOLE) 2908 ret = RANGE_BOUNDARY_HOLE; 2909 else if (em->flags & EXTENT_FLAG_PREALLOC) 2910 ret = RANGE_BOUNDARY_PREALLOC_EXTENT; 2911 else 2912 ret = RANGE_BOUNDARY_WRITTEN_EXTENT; 2913 2914 btrfs_free_extent_map(em); 2915 return ret; 2916 } 2917 2918 static int btrfs_zero_range(struct inode *inode, 2919 loff_t offset, 2920 loff_t len, 2921 const int mode) 2922 { 2923 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2924 struct extent_map *em; 2925 struct extent_changeset *data_reserved = NULL; 2926 int ret; 2927 u64 alloc_hint = 0; 2928 const u64 sectorsize = fs_info->sectorsize; 2929 const u64 orig_start = offset; 2930 const u64 orig_end = offset + len - 1; 2931 u64 alloc_start = round_down(offset, sectorsize); 2932 u64 alloc_end = round_up(offset + len, sectorsize); 2933 u64 bytes_to_reserve = 0; 2934 bool space_reserved = false; 2935 2936 em = btrfs_get_extent(BTRFS_I(inode), NULL, alloc_start, 2937 alloc_end - alloc_start); 2938 if (IS_ERR(em)) { 2939 ret = PTR_ERR(em); 2940 goto out; 2941 } 2942 2943 /* 2944 * Avoid hole punching and extent allocation for some cases. More cases 2945 * could be considered, but these are unlikely common and we keep things 2946 * as simple as possible for now. Also, intentionally, if the target 2947 * range contains one or more prealloc extents together with regular 2948 * extents and holes, we drop all the existing extents and allocate a 2949 * new prealloc extent, so that we get a larger contiguous disk extent. 2950 */ 2951 if (em->start <= alloc_start && (em->flags & EXTENT_FLAG_PREALLOC)) { 2952 const u64 em_end = btrfs_extent_map_end(em); 2953 2954 if (em_end >= offset + len) { 2955 /* 2956 * The whole range is already a prealloc extent, 2957 * do nothing except updating the inode's i_size if 2958 * needed. 2959 */ 2960 btrfs_free_extent_map(em); 2961 ret = btrfs_fallocate_update_isize(inode, offset + len, 2962 mode); 2963 goto out; 2964 } 2965 /* 2966 * Part of the range is already a prealloc extent, so operate 2967 * only on the remaining part of the range. 2968 */ 2969 alloc_start = em_end; 2970 ASSERT(IS_ALIGNED(alloc_start, sectorsize)); 2971 len = offset + len - alloc_start; 2972 offset = alloc_start; 2973 alloc_hint = btrfs_extent_map_block_start(em) + em->len; 2974 } 2975 btrfs_free_extent_map(em); 2976 2977 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) == 2978 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) { 2979 em = btrfs_get_extent(BTRFS_I(inode), NULL, alloc_start, sectorsize); 2980 if (IS_ERR(em)) { 2981 ret = PTR_ERR(em); 2982 goto out; 2983 } 2984 2985 if (em->flags & EXTENT_FLAG_PREALLOC) { 2986 btrfs_free_extent_map(em); 2987 ret = btrfs_fallocate_update_isize(inode, offset + len, 2988 mode); 2989 goto out; 2990 } 2991 if (len < sectorsize && em->disk_bytenr != EXTENT_MAP_HOLE) { 2992 btrfs_free_extent_map(em); 2993 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len - 1, 2994 orig_start, orig_end); 2995 if (!ret) 2996 ret = btrfs_fallocate_update_isize(inode, 2997 offset + len, 2998 mode); 2999 return ret; 3000 } 3001 btrfs_free_extent_map(em); 3002 alloc_start = round_down(offset, sectorsize); 3003 alloc_end = alloc_start + sectorsize; 3004 goto reserve_space; 3005 } 3006 3007 alloc_start = round_up(offset, sectorsize); 3008 alloc_end = round_down(offset + len, sectorsize); 3009 3010 /* 3011 * For unaligned ranges, check the pages at the boundaries, they might 3012 * map to an extent, in which case we need to partially zero them, or 3013 * they might map to a hole, in which case we need our allocation range 3014 * to cover them. 3015 */ 3016 if (!IS_ALIGNED(offset, sectorsize)) { 3017 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode), 3018 offset); 3019 if (ret < 0) 3020 goto out; 3021 if (ret == RANGE_BOUNDARY_HOLE) { 3022 alloc_start = round_down(offset, sectorsize); 3023 ret = 0; 3024 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 3025 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 3026 orig_start, orig_end); 3027 if (ret) 3028 goto out; 3029 } else { 3030 ret = 0; 3031 } 3032 } 3033 3034 if (!IS_ALIGNED(offset + len, sectorsize)) { 3035 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode), 3036 offset + len); 3037 if (ret < 0) 3038 goto out; 3039 if (ret == RANGE_BOUNDARY_HOLE) { 3040 alloc_end = round_up(offset + len, sectorsize); 3041 ret = 0; 3042 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 3043 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len - 1, 3044 orig_start, orig_end); 3045 if (ret) 3046 goto out; 3047 } else { 3048 ret = 0; 3049 } 3050 } 3051 3052 reserve_space: 3053 if (alloc_start < alloc_end) { 3054 struct extent_state *cached_state = NULL; 3055 const u64 lockstart = alloc_start; 3056 const u64 lockend = alloc_end - 1; 3057 3058 bytes_to_reserve = alloc_end - alloc_start; 3059 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3060 bytes_to_reserve); 3061 if (ret < 0) 3062 goto out; 3063 space_reserved = true; 3064 btrfs_punch_hole_lock_range(inode, lockstart, lockend, 3065 &cached_state); 3066 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved, 3067 alloc_start, bytes_to_reserve); 3068 if (ret) { 3069 btrfs_unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, 3070 lockend, &cached_state); 3071 goto out; 3072 } 3073 ret = btrfs_prealloc_file_range(inode, mode, alloc_start, 3074 alloc_end - alloc_start, 3075 fs_info->sectorsize, 3076 offset + len, &alloc_hint); 3077 btrfs_unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 3078 &cached_state); 3079 /* btrfs_prealloc_file_range releases reserved space on error */ 3080 if (ret) { 3081 space_reserved = false; 3082 goto out; 3083 } 3084 } 3085 ret = btrfs_fallocate_update_isize(inode, offset + len, mode); 3086 out: 3087 if (ret && space_reserved) 3088 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved, 3089 alloc_start, bytes_to_reserve); 3090 extent_changeset_free(data_reserved); 3091 3092 return ret; 3093 } 3094 3095 static long btrfs_fallocate(struct file *file, int mode, 3096 loff_t offset, loff_t len) 3097 { 3098 struct inode *inode = file_inode(file); 3099 struct extent_state *cached_state = NULL; 3100 struct extent_changeset *data_reserved = NULL; 3101 struct falloc_range *range; 3102 struct falloc_range *tmp; 3103 LIST_HEAD(reserve_list); 3104 u64 cur_offset; 3105 u64 last_byte; 3106 u64 alloc_start; 3107 u64 alloc_end; 3108 u64 alloc_hint = 0; 3109 u64 locked_end; 3110 u64 actual_end = 0; 3111 u64 data_space_needed = 0; 3112 u64 data_space_reserved = 0; 3113 u64 qgroup_reserved = 0; 3114 struct extent_map *em; 3115 int blocksize = BTRFS_I(inode)->root->fs_info->sectorsize; 3116 int ret; 3117 3118 if (btrfs_is_shutdown(inode_to_fs_info(inode))) 3119 return -EIO; 3120 3121 /* Do not allow fallocate in ZONED mode */ 3122 if (btrfs_is_zoned(inode_to_fs_info(inode))) 3123 return -EOPNOTSUPP; 3124 3125 alloc_start = round_down(offset, blocksize); 3126 alloc_end = round_up(offset + len, blocksize); 3127 cur_offset = alloc_start; 3128 3129 /* Make sure we aren't being give some crap mode */ 3130 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 3131 FALLOC_FL_ZERO_RANGE)) 3132 return -EOPNOTSUPP; 3133 3134 if (mode & FALLOC_FL_PUNCH_HOLE) 3135 return btrfs_punch_hole(file, offset, len); 3136 3137 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 3138 3139 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) { 3140 ret = inode_newsize_ok(inode, offset + len); 3141 if (ret) 3142 goto out; 3143 } 3144 3145 ret = file_modified(file); 3146 if (ret) 3147 goto out; 3148 3149 /* 3150 * TODO: Move these two operations after we have checked 3151 * accurate reserved space, or fallocate can still fail but 3152 * with page truncated or size expanded. 3153 * 3154 * But that's a minor problem and won't do much harm BTW. 3155 */ 3156 if (alloc_start > inode->i_size) { 3157 ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode), 3158 alloc_start); 3159 if (ret) 3160 goto out; 3161 } else if (offset + len > inode->i_size) { 3162 /* 3163 * If we are fallocating from the end of the file onward we 3164 * need to zero out the end of the block if i_size lands in the 3165 * middle of a block. 3166 */ 3167 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 3168 inode->i_size, (u64)-1); 3169 if (ret) 3170 goto out; 3171 } 3172 3173 /* 3174 * We have locked the inode at the VFS level (in exclusive mode) and we 3175 * have locked the i_mmap_lock lock (in exclusive mode). Now before 3176 * locking the file range, flush all dealloc in the range and wait for 3177 * all ordered extents in the range to complete. After this we can lock 3178 * the file range and, due to the previous locking we did, we know there 3179 * can't be more delalloc or ordered extents in the range. 3180 */ 3181 ret = btrfs_wait_ordered_range(BTRFS_I(inode), alloc_start, 3182 alloc_end - alloc_start); 3183 if (ret) 3184 goto out; 3185 3186 if (mode & FALLOC_FL_ZERO_RANGE) { 3187 ret = btrfs_zero_range(inode, offset, len, mode); 3188 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 3189 return ret; 3190 } 3191 3192 locked_end = alloc_end - 1; 3193 btrfs_lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3194 &cached_state); 3195 3196 btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end); 3197 3198 /* First, check if we exceed the qgroup limit */ 3199 while (cur_offset < alloc_end) { 3200 em = btrfs_get_extent(BTRFS_I(inode), NULL, cur_offset, 3201 alloc_end - cur_offset); 3202 if (IS_ERR(em)) { 3203 ret = PTR_ERR(em); 3204 break; 3205 } 3206 last_byte = min(btrfs_extent_map_end(em), alloc_end); 3207 actual_end = min_t(u64, btrfs_extent_map_end(em), offset + len); 3208 last_byte = ALIGN(last_byte, blocksize); 3209 if (em->disk_bytenr == EXTENT_MAP_HOLE || 3210 (cur_offset >= inode->i_size && 3211 !(em->flags & EXTENT_FLAG_PREALLOC))) { 3212 const u64 range_len = last_byte - cur_offset; 3213 3214 ret = add_falloc_range(&reserve_list, cur_offset, range_len); 3215 if (ret < 0) { 3216 btrfs_free_extent_map(em); 3217 break; 3218 } 3219 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), 3220 &data_reserved, cur_offset, range_len); 3221 if (ret < 0) { 3222 btrfs_free_extent_map(em); 3223 break; 3224 } 3225 qgroup_reserved += range_len; 3226 data_space_needed += range_len; 3227 } 3228 btrfs_free_extent_map(em); 3229 cur_offset = last_byte; 3230 } 3231 3232 if (!ret && data_space_needed > 0) { 3233 /* 3234 * We are safe to reserve space here as we can't have delalloc 3235 * in the range, see above. 3236 */ 3237 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3238 data_space_needed); 3239 if (!ret) 3240 data_space_reserved = data_space_needed; 3241 } 3242 3243 /* 3244 * If ret is still 0, means we're OK to fallocate. 3245 * Or just cleanup the list and exit. 3246 */ 3247 list_for_each_entry_safe(range, tmp, &reserve_list, list) { 3248 if (!ret) { 3249 ret = btrfs_prealloc_file_range(inode, mode, 3250 range->start, 3251 range->len, blocksize, 3252 offset + len, &alloc_hint); 3253 /* 3254 * btrfs_prealloc_file_range() releases space even 3255 * if it returns an error. 3256 */ 3257 data_space_reserved -= range->len; 3258 qgroup_reserved -= range->len; 3259 } else if (data_space_reserved > 0) { 3260 btrfs_free_reserved_data_space(BTRFS_I(inode), 3261 data_reserved, range->start, 3262 range->len); 3263 data_space_reserved -= range->len; 3264 qgroup_reserved -= range->len; 3265 } else if (qgroup_reserved > 0) { 3266 btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved, 3267 range->start, range->len, NULL); 3268 qgroup_reserved -= range->len; 3269 } 3270 list_del(&range->list); 3271 kfree(range); 3272 } 3273 if (ret < 0) 3274 goto out_unlock; 3275 3276 /* 3277 * We didn't need to allocate any more space, but we still extended the 3278 * size of the file so we need to update i_size and the inode item. 3279 */ 3280 ret = btrfs_fallocate_update_isize(inode, actual_end, mode); 3281 out_unlock: 3282 btrfs_unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3283 &cached_state); 3284 out: 3285 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 3286 extent_changeset_free(data_reserved); 3287 return ret; 3288 } 3289 3290 /* 3291 * Helper for btrfs_find_delalloc_in_range(). Find a subrange in a given range 3292 * that has unflushed and/or flushing delalloc. There might be other adjacent 3293 * subranges after the one it found, so btrfs_find_delalloc_in_range() keeps 3294 * looping while it gets adjacent subranges, and merging them together. 3295 */ 3296 static bool find_delalloc_subrange(struct btrfs_inode *inode, u64 start, u64 end, 3297 struct extent_state **cached_state, 3298 bool *search_io_tree, 3299 u64 *delalloc_start_ret, u64 *delalloc_end_ret) 3300 { 3301 u64 len = end + 1 - start; 3302 u64 delalloc_len = 0; 3303 struct btrfs_ordered_extent *oe; 3304 u64 oe_start; 3305 u64 oe_end; 3306 3307 /* 3308 * Search the io tree first for EXTENT_DELALLOC. If we find any, it 3309 * means we have delalloc (dirty pages) for which writeback has not 3310 * started yet. 3311 */ 3312 if (*search_io_tree) { 3313 spin_lock(&inode->lock); 3314 if (inode->delalloc_bytes > 0) { 3315 spin_unlock(&inode->lock); 3316 *delalloc_start_ret = start; 3317 delalloc_len = btrfs_count_range_bits(&inode->io_tree, 3318 delalloc_start_ret, end, 3319 len, EXTENT_DELALLOC, 1, 3320 cached_state); 3321 } else { 3322 spin_unlock(&inode->lock); 3323 } 3324 } 3325 3326 if (delalloc_len > 0) { 3327 /* 3328 * If delalloc was found then *delalloc_start_ret has a sector size 3329 * aligned value (rounded down). 3330 */ 3331 *delalloc_end_ret = *delalloc_start_ret + delalloc_len - 1; 3332 3333 if (*delalloc_start_ret == start) { 3334 /* Delalloc for the whole range, nothing more to do. */ 3335 if (*delalloc_end_ret == end) 3336 return true; 3337 /* Else trim our search range for ordered extents. */ 3338 start = *delalloc_end_ret + 1; 3339 len = end + 1 - start; 3340 } 3341 } else { 3342 /* No delalloc, future calls don't need to search again. */ 3343 *search_io_tree = false; 3344 } 3345 3346 /* 3347 * Now also check if there's any ordered extent in the range. 3348 * We do this because: 3349 * 3350 * 1) When delalloc is flushed, the file range is locked, we clear the 3351 * EXTENT_DELALLOC bit from the io tree and create an extent map and 3352 * an ordered extent for the write. So we might just have been called 3353 * after delalloc is flushed and before the ordered extent completes 3354 * and inserts the new file extent item in the subvolume's btree; 3355 * 3356 * 2) We may have an ordered extent created by flushing delalloc for a 3357 * subrange that starts before the subrange we found marked with 3358 * EXTENT_DELALLOC in the io tree. 3359 * 3360 * We could also use the extent map tree to find such delalloc that is 3361 * being flushed, but using the ordered extents tree is more efficient 3362 * because it's usually much smaller as ordered extents are removed from 3363 * the tree once they complete. With the extent maps, we may have them 3364 * in the extent map tree for a very long time, and they were either 3365 * created by previous writes or loaded by read operations. 3366 */ 3367 oe = btrfs_lookup_first_ordered_range(inode, start, len); 3368 if (!oe) 3369 return (delalloc_len > 0); 3370 3371 /* The ordered extent may span beyond our search range. */ 3372 oe_start = max(oe->file_offset, start); 3373 oe_end = min(oe->file_offset + oe->num_bytes - 1, end); 3374 3375 btrfs_put_ordered_extent(oe); 3376 3377 /* Don't have unflushed delalloc, return the ordered extent range. */ 3378 if (delalloc_len == 0) { 3379 *delalloc_start_ret = oe_start; 3380 *delalloc_end_ret = oe_end; 3381 return true; 3382 } 3383 3384 /* 3385 * We have both unflushed delalloc (io_tree) and an ordered extent. 3386 * If the ranges are adjacent returned a combined range, otherwise 3387 * return the leftmost range. 3388 */ 3389 if (oe_start < *delalloc_start_ret) { 3390 if (oe_end < *delalloc_start_ret) 3391 *delalloc_end_ret = oe_end; 3392 *delalloc_start_ret = oe_start; 3393 } else if (*delalloc_end_ret + 1 == oe_start) { 3394 *delalloc_end_ret = oe_end; 3395 } 3396 3397 return true; 3398 } 3399 3400 /* 3401 * Check if there's delalloc in a given range. 3402 * 3403 * @inode: The inode. 3404 * @start: The start offset of the range. It does not need to be 3405 * sector size aligned. 3406 * @end: The end offset (inclusive value) of the search range. 3407 * It does not need to be sector size aligned. 3408 * @cached_state: Extent state record used for speeding up delalloc 3409 * searches in the inode's io_tree. Can be NULL. 3410 * @delalloc_start_ret: Output argument, set to the start offset of the 3411 * subrange found with delalloc (may not be sector size 3412 * aligned). 3413 * @delalloc_end_ret: Output argument, set to he end offset (inclusive value) 3414 * of the subrange found with delalloc. 3415 * 3416 * Returns true if a subrange with delalloc is found within the given range, and 3417 * if so it sets @delalloc_start_ret and @delalloc_end_ret with the start and 3418 * end offsets of the subrange. 3419 */ 3420 bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end, 3421 struct extent_state **cached_state, 3422 u64 *delalloc_start_ret, u64 *delalloc_end_ret) 3423 { 3424 u64 cur_offset = round_down(start, inode->root->fs_info->sectorsize); 3425 u64 prev_delalloc_end = 0; 3426 bool search_io_tree = true; 3427 bool ret = false; 3428 3429 while (cur_offset <= end) { 3430 u64 delalloc_start; 3431 u64 delalloc_end; 3432 bool delalloc; 3433 3434 delalloc = find_delalloc_subrange(inode, cur_offset, end, 3435 cached_state, &search_io_tree, 3436 &delalloc_start, 3437 &delalloc_end); 3438 if (!delalloc) 3439 break; 3440 3441 if (prev_delalloc_end == 0) { 3442 /* First subrange found. */ 3443 *delalloc_start_ret = max(delalloc_start, start); 3444 *delalloc_end_ret = delalloc_end; 3445 ret = true; 3446 } else if (delalloc_start == prev_delalloc_end + 1) { 3447 /* Subrange adjacent to the previous one, merge them. */ 3448 *delalloc_end_ret = delalloc_end; 3449 } else { 3450 /* Subrange not adjacent to the previous one, exit. */ 3451 break; 3452 } 3453 3454 prev_delalloc_end = delalloc_end; 3455 cur_offset = delalloc_end + 1; 3456 cond_resched(); 3457 } 3458 3459 return ret; 3460 } 3461 3462 /* 3463 * Check if there's a hole or delalloc range in a range representing a hole (or 3464 * prealloc extent) found in the inode's subvolume btree. 3465 * 3466 * @inode: The inode. 3467 * @whence: Seek mode (SEEK_DATA or SEEK_HOLE). 3468 * @start: Start offset of the hole region. It does not need to be sector 3469 * size aligned. 3470 * @end: End offset (inclusive value) of the hole region. It does not 3471 * need to be sector size aligned. 3472 * @start_ret: Return parameter, used to set the start of the subrange in the 3473 * hole that matches the search criteria (seek mode), if such 3474 * subrange is found (return value of the function is true). 3475 * The value returned here may not be sector size aligned. 3476 * 3477 * Returns true if a subrange matching the given seek mode is found, and if one 3478 * is found, it updates @start_ret with the start of the subrange. 3479 */ 3480 static bool find_desired_extent_in_hole(struct btrfs_inode *inode, int whence, 3481 struct extent_state **cached_state, 3482 u64 start, u64 end, u64 *start_ret) 3483 { 3484 u64 delalloc_start; 3485 u64 delalloc_end; 3486 bool delalloc; 3487 3488 delalloc = btrfs_find_delalloc_in_range(inode, start, end, cached_state, 3489 &delalloc_start, &delalloc_end); 3490 if (delalloc && whence == SEEK_DATA) { 3491 *start_ret = delalloc_start; 3492 return true; 3493 } 3494 3495 if (delalloc && whence == SEEK_HOLE) { 3496 /* 3497 * We found delalloc but it starts after out start offset. So we 3498 * have a hole between our start offset and the delalloc start. 3499 */ 3500 if (start < delalloc_start) { 3501 *start_ret = start; 3502 return true; 3503 } 3504 /* 3505 * Delalloc range starts at our start offset. 3506 * If the delalloc range's length is smaller than our range, 3507 * then it means we have a hole that starts where the delalloc 3508 * subrange ends. 3509 */ 3510 if (delalloc_end < end) { 3511 *start_ret = delalloc_end + 1; 3512 return true; 3513 } 3514 3515 /* There's delalloc for the whole range. */ 3516 return false; 3517 } 3518 3519 if (!delalloc && whence == SEEK_HOLE) { 3520 *start_ret = start; 3521 return true; 3522 } 3523 3524 /* 3525 * No delalloc in the range and we are seeking for data. The caller has 3526 * to iterate to the next extent item in the subvolume btree. 3527 */ 3528 return false; 3529 } 3530 3531 static loff_t find_desired_extent(struct file *file, loff_t offset, int whence) 3532 { 3533 struct btrfs_inode *inode = BTRFS_I(file->f_mapping->host); 3534 struct btrfs_file_private *private; 3535 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3536 struct extent_state *cached_state = NULL; 3537 struct extent_state **delalloc_cached_state; 3538 const loff_t i_size = i_size_read(&inode->vfs_inode); 3539 const u64 ino = btrfs_ino(inode); 3540 struct btrfs_root *root = inode->root; 3541 struct btrfs_path *path; 3542 struct btrfs_key key; 3543 u64 last_extent_end; 3544 u64 lockstart; 3545 u64 lockend; 3546 u64 start; 3547 int ret; 3548 bool found = false; 3549 3550 if (i_size == 0 || offset >= i_size) 3551 return -ENXIO; 3552 3553 /* 3554 * Quick path. If the inode has no prealloc extents and its number of 3555 * bytes used matches its i_size, then it can not have holes. 3556 */ 3557 if (whence == SEEK_HOLE && 3558 !(inode->flags & BTRFS_INODE_PREALLOC) && 3559 inode_get_bytes(&inode->vfs_inode) == i_size) 3560 return i_size; 3561 3562 spin_lock(&inode->lock); 3563 private = file->private_data; 3564 spin_unlock(&inode->lock); 3565 3566 if (private && private->owner_task != current) { 3567 /* 3568 * Not allocated by us, don't use it as its cached state is used 3569 * by the task that allocated it and we don't want neither to 3570 * mess with it nor get incorrect results because it reflects an 3571 * invalid state for the current task. 3572 */ 3573 private = NULL; 3574 } else if (!private) { 3575 private = kzalloc(sizeof(*private), GFP_KERNEL); 3576 /* 3577 * No worries if memory allocation failed. 3578 * The private structure is used only for speeding up multiple 3579 * lseek SEEK_HOLE/DATA calls to a file when there's delalloc, 3580 * so everything will still be correct. 3581 */ 3582 if (private) { 3583 bool free = false; 3584 3585 private->owner_task = current; 3586 3587 spin_lock(&inode->lock); 3588 if (file->private_data) 3589 free = true; 3590 else 3591 file->private_data = private; 3592 spin_unlock(&inode->lock); 3593 3594 if (free) { 3595 kfree(private); 3596 private = NULL; 3597 } 3598 } 3599 } 3600 3601 if (private) 3602 delalloc_cached_state = &private->llseek_cached_state; 3603 else 3604 delalloc_cached_state = NULL; 3605 3606 /* 3607 * offset can be negative, in this case we start finding DATA/HOLE from 3608 * the very start of the file. 3609 */ 3610 start = max_t(loff_t, 0, offset); 3611 3612 lockstart = round_down(start, fs_info->sectorsize); 3613 lockend = round_up(i_size, fs_info->sectorsize); 3614 if (lockend <= lockstart) 3615 lockend = lockstart + fs_info->sectorsize; 3616 lockend--; 3617 3618 path = btrfs_alloc_path(); 3619 if (!path) 3620 return -ENOMEM; 3621 path->reada = READA_FORWARD; 3622 3623 key.objectid = ino; 3624 key.type = BTRFS_EXTENT_DATA_KEY; 3625 key.offset = start; 3626 3627 last_extent_end = lockstart; 3628 3629 btrfs_lock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 3630 3631 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3632 if (ret < 0) { 3633 goto out; 3634 } else if (ret > 0 && path->slots[0] > 0) { 3635 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 3636 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY) 3637 path->slots[0]--; 3638 } 3639 3640 while (start < i_size) { 3641 struct extent_buffer *leaf = path->nodes[0]; 3642 struct btrfs_file_extent_item *extent; 3643 u64 extent_end; 3644 u8 type; 3645 3646 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3647 ret = btrfs_next_leaf(root, path); 3648 if (ret < 0) 3649 goto out; 3650 else if (ret > 0) 3651 break; 3652 3653 leaf = path->nodes[0]; 3654 } 3655 3656 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3657 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 3658 break; 3659 3660 extent_end = btrfs_file_extent_end(path); 3661 3662 /* 3663 * In the first iteration we may have a slot that points to an 3664 * extent that ends before our start offset, so skip it. 3665 */ 3666 if (extent_end <= start) { 3667 path->slots[0]++; 3668 continue; 3669 } 3670 3671 /* We have an implicit hole, NO_HOLES feature is likely set. */ 3672 if (last_extent_end < key.offset) { 3673 u64 search_start = last_extent_end; 3674 u64 found_start; 3675 3676 /* 3677 * First iteration, @start matches @offset and it's 3678 * within the hole. 3679 */ 3680 if (start == offset) 3681 search_start = offset; 3682 3683 found = find_desired_extent_in_hole(inode, whence, 3684 delalloc_cached_state, 3685 search_start, 3686 key.offset - 1, 3687 &found_start); 3688 if (found) { 3689 start = found_start; 3690 break; 3691 } 3692 /* 3693 * Didn't find data or a hole (due to delalloc) in the 3694 * implicit hole range, so need to analyze the extent. 3695 */ 3696 } 3697 3698 extent = btrfs_item_ptr(leaf, path->slots[0], 3699 struct btrfs_file_extent_item); 3700 type = btrfs_file_extent_type(leaf, extent); 3701 3702 /* 3703 * Can't access the extent's disk_bytenr field if this is an 3704 * inline extent, since at that offset, it's where the extent 3705 * data starts. 3706 */ 3707 if (type == BTRFS_FILE_EXTENT_PREALLOC || 3708 (type == BTRFS_FILE_EXTENT_REG && 3709 btrfs_file_extent_disk_bytenr(leaf, extent) == 0)) { 3710 /* 3711 * Explicit hole or prealloc extent, search for delalloc. 3712 * A prealloc extent is treated like a hole. 3713 */ 3714 u64 search_start = key.offset; 3715 u64 found_start; 3716 3717 /* 3718 * First iteration, @start matches @offset and it's 3719 * within the hole. 3720 */ 3721 if (start == offset) 3722 search_start = offset; 3723 3724 found = find_desired_extent_in_hole(inode, whence, 3725 delalloc_cached_state, 3726 search_start, 3727 extent_end - 1, 3728 &found_start); 3729 if (found) { 3730 start = found_start; 3731 break; 3732 } 3733 /* 3734 * Didn't find data or a hole (due to delalloc) in the 3735 * implicit hole range, so need to analyze the next 3736 * extent item. 3737 */ 3738 } else { 3739 /* 3740 * Found a regular or inline extent. 3741 * If we are seeking for data, adjust the start offset 3742 * and stop, we're done. 3743 */ 3744 if (whence == SEEK_DATA) { 3745 start = max_t(u64, key.offset, offset); 3746 found = true; 3747 break; 3748 } 3749 /* 3750 * Else, we are seeking for a hole, check the next file 3751 * extent item. 3752 */ 3753 } 3754 3755 start = extent_end; 3756 last_extent_end = extent_end; 3757 path->slots[0]++; 3758 if (fatal_signal_pending(current)) { 3759 ret = -EINTR; 3760 goto out; 3761 } 3762 cond_resched(); 3763 } 3764 3765 /* We have an implicit hole from the last extent found up to i_size. */ 3766 if (!found && start < i_size) { 3767 found = find_desired_extent_in_hole(inode, whence, 3768 delalloc_cached_state, start, 3769 i_size - 1, &start); 3770 if (!found) 3771 start = i_size; 3772 } 3773 3774 out: 3775 btrfs_unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 3776 btrfs_free_path(path); 3777 3778 if (ret < 0) 3779 return ret; 3780 3781 if (whence == SEEK_DATA && start >= i_size) 3782 return -ENXIO; 3783 3784 return min_t(loff_t, start, i_size); 3785 } 3786 3787 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence) 3788 { 3789 struct inode *inode = file->f_mapping->host; 3790 3791 switch (whence) { 3792 default: 3793 return generic_file_llseek(file, offset, whence); 3794 case SEEK_DATA: 3795 case SEEK_HOLE: 3796 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 3797 offset = find_desired_extent(file, offset, whence); 3798 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 3799 break; 3800 } 3801 3802 if (offset < 0) 3803 return offset; 3804 3805 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 3806 } 3807 3808 static int btrfs_file_open(struct inode *inode, struct file *filp) 3809 { 3810 int ret; 3811 3812 if (btrfs_is_shutdown(inode_to_fs_info(inode))) 3813 return -EIO; 3814 3815 filp->f_mode |= FMODE_NOWAIT | FMODE_CAN_ODIRECT; 3816 3817 ret = fsverity_file_open(inode, filp); 3818 if (ret) 3819 return ret; 3820 return generic_file_open(inode, filp); 3821 } 3822 3823 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 3824 { 3825 ssize_t ret = 0; 3826 3827 if (btrfs_is_shutdown(inode_to_fs_info(file_inode(iocb->ki_filp)))) 3828 return -EIO; 3829 3830 if (iocb->ki_flags & IOCB_DIRECT) { 3831 ret = btrfs_direct_read(iocb, to); 3832 if (ret < 0 || !iov_iter_count(to) || 3833 iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp))) 3834 return ret; 3835 } 3836 3837 return filemap_read(iocb, to, ret); 3838 } 3839 3840 static ssize_t btrfs_file_splice_read(struct file *in, loff_t *ppos, 3841 struct pipe_inode_info *pipe, 3842 size_t len, unsigned int flags) 3843 { 3844 if (btrfs_is_shutdown(inode_to_fs_info(file_inode(in)))) 3845 return -EIO; 3846 3847 return filemap_splice_read(in, ppos, pipe, len, flags); 3848 } 3849 3850 const struct file_operations btrfs_file_operations = { 3851 .llseek = btrfs_file_llseek, 3852 .read_iter = btrfs_file_read_iter, 3853 .splice_read = btrfs_file_splice_read, 3854 .write_iter = btrfs_file_write_iter, 3855 .splice_write = iter_file_splice_write, 3856 .mmap_prepare = btrfs_file_mmap_prepare, 3857 .open = btrfs_file_open, 3858 .release = btrfs_release_file, 3859 .get_unmapped_area = thp_get_unmapped_area, 3860 .fsync = btrfs_sync_file, 3861 .fallocate = btrfs_fallocate, 3862 .unlocked_ioctl = btrfs_ioctl, 3863 #ifdef CONFIG_COMPAT 3864 .compat_ioctl = btrfs_compat_ioctl, 3865 #endif 3866 .remap_file_range = btrfs_remap_file_range, 3867 .uring_cmd = btrfs_uring_cmd, 3868 .fop_flags = FOP_BUFFER_RASYNC | FOP_BUFFER_WASYNC, 3869 .setlease = generic_setlease, 3870 }; 3871 3872 int btrfs_fdatawrite_range(struct btrfs_inode *inode, loff_t start, loff_t end) 3873 { 3874 struct address_space *mapping = inode->vfs_inode.i_mapping; 3875 int ret; 3876 3877 /* 3878 * So with compression we will find and lock a dirty page and clear the 3879 * first one as dirty, setup an async extent, and immediately return 3880 * with the entire range locked but with nobody actually marked with 3881 * writeback. So we can't just filemap_write_and_wait_range() and 3882 * expect it to work since it will just kick off a thread to do the 3883 * actual work. So we need to call filemap_fdatawrite_range _again_ 3884 * since it will wait on the page lock, which won't be unlocked until 3885 * after the pages have been marked as writeback and so we're good to go 3886 * from there. We have to do this otherwise we'll miss the ordered 3887 * extents and that results in badness. Please Josef, do not think you 3888 * know better and pull this out at some point in the future, it is 3889 * right and you are wrong. 3890 */ 3891 ret = filemap_fdatawrite_range(mapping, start, end); 3892 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags)) 3893 ret = filemap_fdatawrite_range(mapping, start, end); 3894 3895 return ret; 3896 } 3897